JP2021089929A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2021089929A
JP2021089929A JP2019218635A JP2019218635A JP2021089929A JP 2021089929 A JP2021089929 A JP 2021089929A JP 2019218635 A JP2019218635 A JP 2019218635A JP 2019218635 A JP2019218635 A JP 2019218635A JP 2021089929 A JP2021089929 A JP 2021089929A
Authority
JP
Japan
Prior art keywords
well
region
semiconductor
trench
conductive type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019218635A
Other languages
English (en)
Inventor
貫太 前田
Kanta Maeda
貫太 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Lapis Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapis Semiconductor Co Ltd filed Critical Lapis Semiconductor Co Ltd
Priority to JP2019218635A priority Critical patent/JP2021089929A/ja
Priority to CN202011350762.6A priority patent/CN112909003A/zh
Priority to US17/106,585 priority patent/US11476368B2/en
Publication of JP2021089929A publication Critical patent/JP2021089929A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42324Gate electrodes for transistors with a floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42324Gate electrodes for transistors with a floating gate
    • H01L29/42336Gate electrodes for transistors with a floating gate with one gate at least partly formed in a trench
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66825Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • H01L29/7883Programmable transistors with only two possible levels of programmation charging by tunnelling of carriers, e.g. Fowler-Nordheim tunnelling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/60Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates the control gate being a doped region, e.g. single-poly memory cell

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

【課題】小面積で且つ十分な容量を有する不揮発性メモリを提供する。【解決手段】不揮発性メモリを構成する半導体装置であって、第1導電型の半導体部と、半導体部の1の面内の第1の領域から内部に向かって延在するように形成された第1導電型とは逆極性の第2導電型の第1ウェルと、第1の領域から離間して半導体部の1の面内の第2の領域から内部に向かって延在するように形成された第2導電型の第2ウェルと、1の面上に形成された絶縁膜と、絶縁膜上の第1ウェルの上方の領域及び第2ウェルの上方の領域に跨って延在するように形成された導電層と、を有し、第1ウェルには、1の面から第1ウェル内に伸長するトレンチが形成され、トレンチの内部の表面には絶縁膜が延在しており、トレンチの内部の絶縁膜上にはトレンチを埋めるように導電層と連続的に形成された導電部が設けられている。【選択図】図2

Description

本発明は、半導体装置に関する。
不揮発性の記憶装置として、電気的に絶縁された浮遊電極層であるフローティングゲート内の電荷の蓄積状態を変化させることにより、データの記憶及び消去を行う不揮発性メモリが知られている。かかる不揮発性メモリの構造としては、フローティングゲートを構成するポリシリコン層とコントロールゲートを構成するポリシリコン層とを重ねて配置する所謂スタック型の構造が一般的である。
一方、スタック型の不揮発性メモリとは異なり、単層のポリシリコンを用いて構成された単層ポリシリコン型の不揮発性メモリが知られている(例えば、特許文献1)。単層ポリシリコン型の不揮発性メモリでは、例えばコントロールゲートとして機能する第1のウェル領域、読出しゲートとして機能する第2のウェル領域、及びトンネルゲートとして機能する第3のウェル領域が半導体基板の表層部付近に設けられている。基板上には、第1のウェル領域から第3のウェル領域に亘ってオーバーラップするように、ゲート絶縁膜及び単層のポリシリコンからなるフローティングゲートが形成されている。
第1のウェル領域、第2のウェル領域及び第3のウェル領域の各々のゲート絶縁膜を挟んでフローティングゲートと対向する部分において、フローティングゲート、読み出しゲート及びトンネルゲートに対応するキャパシタが形成される。そして、コントロールゲート、読み出しゲート及びトンネルゲートの各々に電圧を印加し、フローティングゲートの電位を変化させることにより、データの書込や消去等の動作を行う。
例えば、データ書込時には、コントロールゲートに電圧Vw(Vw>0V)、トンネルゲートに0V、読み出しゲートに中間電圧Vc(0V<Vc<Vw)をそれぞれ印加する。コントロールゲートに印加された電圧Vwに応じてフローティングゲートの電位が上昇し、第3のウェル領域(すなわち、トンネルゲート)からフローティングゲートに電荷が注入される。一方、データ消去時には、コントロールゲートに0V、トンネルゲートに電圧Vw、読み出しゲートに中間電圧Vcをそれぞれ印加する。コントロールゲートに印加された電圧0Vに応じてフローティングゲートの電位が下降し、フローティングゲートに蓄積されていた電荷が第3のウェル領域へと移動する。
特開平9−129760号公報
データの書込及び消去の動作を効率的に行うためには、フローティングゲートの電位がコントロールゲートに印加した電圧と近くなるように、コントロールゲートのキャパシタの容量を読み出しゲートやトンネルゲートのキャパシタの容量に対して相対的に大きくなるようにすることが好ましい。
一般的に、平板コンデンサ等のキャパシタの容量は、電極の面積に比例する。上記のような単層ポリシリコン型の不揮発性メモリでは、フローティングゲートとコントロールゲートとがオーバーラップする部分の面積が、コントロールゲートのキャパシタの容量における「電極の面積」に相当する。このため、コントロールゲートのキャパシタの容量を大きくしようとすると、フローティングゲートとオーバーラップするコントロールゲートの面積(すなわち、半導体基板に平行な方向における第1のウェル領域の面積)を大きくする必要があり、結果としてメモリセルの単位面積が大きくなってしまうという問題があった。
本発明は、上記問題点に鑑みてなされたものであり、小面積で且つ十分な容量を有する不揮発性メモリを提供することを目的とする。
本発明に係る半導体装置は、不揮発性メモリを構成する半導体装置であって、第1導電型の半導体部と、前記半導体部の1の面内の第1の領域から内部に向かって延在するように形成された前記第1導電型とは逆極性の第2導電型の第1ウェルと、前記第1の領域から離間して前記半導体部の前記1の面内の第2の領域から内部に向かって延在するように形成された前記第2導電型の第2ウェルと、前記1の面上に形成された絶縁膜と、前記絶縁膜上の前記第1ウェルの上方の領域及び前記第2ウェルの上方の領域に跨って延在するように形成された導電層と、を有し、前記第1ウェルには、前記1の面から前記第1ウェル内に伸長するトレンチが形成され、前記トレンチの内部の表面には前記絶縁膜が延在しており、前記トレンチの内部の前記絶縁膜上には前記トレンチを埋めるように前記導電層と連続的に形成された導電部が設けられていることを特徴とする。
また、本発明に係る半導体装置は、不揮発性メモリを構成する半導体装置であって、第1導電型の半導体部と、前記半導体部の1の面内の第1の領域から内部に向かって延在するように形成された前記第1導電型とは逆極性の第2導電型の第1ウェルと、前記第1の領域から離間して前記半導体部の前記1の面内の第2の領域から内部に向かって延在するように形成された前記第2導電型の第2ウェルと、前記1の面上に形成された絶縁膜と、前記絶縁膜上の前記第1ウェルの上方の領域及び前記第2ウェルの上方の領域に跨って延在するように形成された導電層と、を有し、前記絶縁膜は、前記第1ウェルの上方に位置するように延在して第1の膜厚を有する第1領域、及び前記第1の膜厚よりも厚い第2の膜厚を有する第2領域を有することを特徴とする。
本発明の半導体装置によれば、不揮発性メモリにおいてメモリセルの容量を維持しつつ面積を小さくすることが可能となる。
本発明の実施例1に係る半導体装置の構成を示す上面図である。 図1の半導体装置のX−X線に沿った断面図である。 半導体装置の製造手順を示すフローチャートである。 半導体層形成工程におけるX−X線での断面を表す断面図である。 素子分離層形成工程におけるX−X線での断面を表す断面図である。 ウェル形成工程におけるX−X線での断面を表す断面図である。 エッチング工程におけるX−X線での断面を表す断面図である。 トレンチ形成工程におけるX−X線での断面を表す断面図である。 トレンチ内酸化膜形成工程におけるX−X線での断面を表す断面図である。 トレンチ内導電部形成工程におけるX−X線での断面を表す断面図である。 ゲート酸化膜形成工程におけるX−X線での断面を表す断面図である。 ゲートポリシリコン形成工程におけるX−X線での断面を表す断面図である。 拡散層形成工程におけるX−X線での断面を表す断面図である。 コンタクト形成工程におけるX−X線での断面を表す断面図である。 本発明の実施例2に係る半導体装置の構成を示す上面図である。 図7の半導体装置のX−X線に沿った断面図である。 変形例の半導体基板準備工程におけるX−X線での断面を表す断面図である。 変形例の素子分離層形成工程におけるX−X線での断面を表す断面図である。 変形例のNウェル形成工程におけるX−X線での断面を表す断面図である。 変形例のPウェル形成工程におけるX−X線での断面を表す断面図である。 実施例1の変形例の半導体装置のX−X線に沿った断面図である。 実施例2の変形例の半導体装置のX−X線に沿った断面図である。
以下に本発明の好適な実施例を詳細に説明する。なお、以下の各実施例における説明及び添付図面においては、実質的に同一または等価な部分には同一の参照符号を付している。
図1は、本実施例に係る半導体装置100を素子形成面の上方から見た上面図である。
半導体装置100は、半導体基板10と、半導体基板10の1の面(すなわち、素子搭載面)に露出するように半導体基板10の内部に形成された第1ウェル11、第2ウェル12及び第3ウェル13と、を有する。また、半導体基板10の上記1の面には、第1ウェル11、第2ウェル12及び第3ウェル13の各々の一部を覆うようにゲートポリシリコン20が形成されている。
半導体基板10は、例えばSi(シリコン)基板から構成され、上面視で長方形の形状を有する。
第3ウェル13は、第1導電型(例えば、P型)のウェル領域である。一方、第1ウェル11及び第2ウェル12は、第1導電型とは逆極性の第2導電型(例えば、N型)のウェル領域である。
半導体基板10の1の面に露出した第1ウェル11の表面(以下、単に第1ウェル11の表面と称する)は、上面視で矩形の形状を有する。
第1ウェル11には、第2導電型の拡散層15が形成されている。拡散層15は、第1ウェル11の表面に露出している。拡散層15には、タングステン等の導電体から構成されるコンタクトC1が接続されている。拡散層15及びコンタクトC1は、第1ウェル11の表面のゲートポリシリコン20によって覆われていない領域に形成されている。すなわち、拡散層15及びコンタクトC1は、半導体基板10の1の面に露出している。
第1ウェル11の表面には、トレンチ30が形成されている。第1ウェル11の表面におけるトレンチ30(すなわち、トレンチ30の開口部)は、図1に破線で示すように、上面視において半導体基板10の短辺方向に長辺を有する長方形(すなわち、半導体基板10の長辺方向に延伸する短辺を有する長方形)の形状を有する。なお、本実施例では、2つのトレンチ30が第1ウェル11に形成されている場合を例として示している。
トレンチ30は、第1ウェル11の表面のゲートポリシリコン20によって覆われた部分に形成されている。すなわち、トレンチ30の開口部は、ゲートポリシリコン20によって覆われている。
第2ウェル12は、半導体基板10の長手方向に第1ウェル11と離間して形成されている。半導体基板10の1の面に露出した第2ウェル12の表面(以下、単に第2ウェル12の表面と称する)は、上面視で矩形の形状を有する。
第2ウェル12には、第2導電型の拡散層16が形成されている。拡散層16は、第2ウェル12の表面に露出している。拡散層16には、タングステン等の導電体から構成されるコンタクトC2が接続されている。拡散層16及びコンタクトC2は、第2ウェル12の表面のゲートポリシリコン20によって覆われていない領域に形成されている。すなわち、拡散層16及びコンタクトC2は、半導体基板10の1の面に露出している。
第3ウェル13は、第1ウェル11と第2ウェル12との間の領域に形成されている。半導体基板10の1の面に露出した第3ウェル13の表面は、上面視で半導体基板10の短辺方向に伸長する長辺を有する長方形(すなわち、半導体基板10の長辺方向に伸長する短辺を有する長方形)の形状を有する。
第3ウェル13には、タングステン等の導電体から構成されるコンタクトC3及びC4が接続されている。コンタクトC3及びC4は、第3ウェル13の表面のゲートポリシリコン20によって覆われていない領域に形成されている。すなわち、コンタクトC3及びC4は、半導体基板10の1の面に露出している。
ゲートポリシリコン20は、ポリシリコン膜からなる単層の導電層である。ゲートポリシリコン20は、第1ウェル11及び第2ウェル12に跨り且つ第1ウェル11及び第2ウェル12の各々の一部を露出するように形成されている。本実施例では、ゲートポリシリコン20は、第1ウェル11の表面の一部を覆う矩形部分と、第3ウェル13及び第2ウェル12の一部を覆うように当該矩形部分から延伸する帯状部分と、を有する。
また、第3ウェル13の表面の一部を覆うように、選択トランジスタ23が形成されている。選択トランジスタ23は、例えば上面視において長方形の形状を有し、第3ウェル13の半導体基板10の1の面に露出した部分と各々の長辺方向が直交するように配置されている。
図2は、図1のX−X線に沿った断面図である。
第3ウェル13は、半導体基板10の表層部に形成された第1導電型の半導体層17から構成されている。半導体層17は、半導体基板10の1の面から内部に向かって延在するように形成されている。
半導体層17は、半導体基板10に第1導電型のイオンを注入することにより形成されている。なお、図2では、半導体基板10のイオン注入されていない部分(すなわち、半導体層17の下部に位置する領域)をシリコン基板18として示している。
第1ウェル11は、半導体層17の表層部に形成されている。すなわち、第1ウェル11は、半導体基板10の1の面から半導体層17の内部に向かって延在するように形成されている。
第2ウェル12は、半導体層17の表層部において、第1ウェル11と離間した位置に形成されている。第1ウェル11と同様、第2ウェル12は、半導体基板10の1の面から半導体層17の内部に向かって延在するように形成されている。
第3ウェル13は、半導体層17の第1ウェル11と第2ウェル12とに挟まれた領域により構成されている。
第1ウェル11、第2ウェル12及び第3ウェル13の各々の間の領域には、素子分離領域14が形成されている。素子分離領域14は、STI(Shallow Trench Isolation)構造を有し、第1ウェル11、第2ウェル12及び第3ウェル13の各々の周囲を囲むように設けられている。なお、図1では素子分離領域14の図示を省略している。
拡散層15は、第1ウェル11の表面に第2導電型の不純物(例えば、N型の場合はリン或いはヒ素)を注入することにより構成されている。拡散層16は、第2ウェル12の表面に第2導電型の不純物を注入することにより構成されている。
ゲートポリシリコン20と第1ウェル11、第2ウェル12及び第3ウェル13の表面との間には、ゲート絶縁膜21が形成されている。ゲート絶縁膜21は、例えばシリコン酸化膜から構成されている。ゲート絶縁膜21は、第1ウェル11及び第2ウェル12の各々の一部と、第3ウェル13とを覆うように形成されている。
なお、ゲートポリシリコン20の側壁は、シリコン酸化膜等の絶縁膜から構成されたサイドウォール(図示せず)で覆われている。
トレンチ30は、図2に示すように、断面視において、第1ウェル11のゲートポリシリコン20に対向する面から第1ウェル11の内部に向かって伸長している。例えば、トレンチ30は、断面視において第1ウェル11の深さ方向(すなわち、第1ウェル11の表面に垂直な方向)を高さ方向とする台形の形状を有する。例えば、半導体基板10の長手方向におけるトレンチ30の幅(図1を参照)を数百nm〜数μmとすると、トレンチ30は半導体基板10の1の面に垂直な方向において約20μmの深さとなるように形成されている。
トレンチ30の内部の表面には、ゲート絶縁膜21と連続するように形成されたトレンチ内絶縁膜31がトレンチ30の形状に沿って形成されている。トレンチ内絶縁膜31は、ゲート絶縁膜21と同じ材料(すなわち、本実施例ではシリコン酸化膜)から構成されている。
また、トレンチ30を埋めるように、ゲートポリシリコン20と連続的に形成されたトレンチ内導電部32が形成されている。トレンチ内導電部32は、ゲートポリシリコン20と同じ材料(すなわち、ポリシリコン)から構成されている。トレンチ30、トレンチ内絶縁膜31及びトレンチ内導電部32は、一体としてトレンチキャパシタを構成している。
半導体装置100は、単層ポリシリコン型の不揮発性の半導体メモリを構成するメモリセルである。ゲートポリシリコン20は、当該メモリセルのフローティングゲートを構成する導電層である。
また、第1ウェル11は、当該メモリセルにデータの書き込み及び消去を行う際のコントロールゲートとして機能するウェル領域である。第2ウェル12は、当該メモリセルにデータの書き込み及び消去を行う際のトンネルゲートとして機能するウェル領域である。第3ウェル13は、当該メモリセルからデータの読み出しを行う際の読み出しゲートとして機能するウェル領域である。
例えば、データ書込時にはコンタクトC1に電圧Vw(Vw>0V)を印加し、コンタクトC2に0Vを印加する。これにより、ゲートポリシリコン20が電圧Vwに近い電位となり、第2ウェル12からゲートポリシリコン20に電荷が注入される。一方、データ消去時にはコンタクトC1に0Vを印加し、コンタクトC2に電圧Vwを印加する。これにより、ゲートポリシリコン20が0Vに近い電位となり、ゲートポリシリコン20から第2ウェル12へと電荷が移動する。ゲート絶縁膜21は、ゲートポリシリコン20と第2ウェル12との間の電荷移動におけるトンネル酸化膜として機能する。
なお、第3ウェル13に接続されたコンタクトC3及びC4には、データ書込時及びデータ消去時において、中間電圧Vc(0<Vc<Vw)が印加される。また、データ読出時には、ゲートポリシリコン20における電荷の蓄積状態に応じた読み出し電流が第3ウェル13に流れる。
本実施例の半導体装置100では、上記のように第1ウェル11にトレンチ30が設けられ、トレンチ内絶縁膜31及びトレンチ内導電部32とともにトレンチキャパシタが構成されている。このため、半導体装置100は、例えばコントロールゲートの容量が同程度であり且つトレンチキャパシタを有しない他の不揮発性メモリセルと比べて、メモリセル全体の面積が小さい。これについて、以下説明する。
一般的に平行平板コンデンサの容量は、キャパシタ容量をC、誘電率をε、電極間距離をd、電極面積をAとすると、次の数式(数1)のように表される。
Figure 2021089929
本実施例の半導体装置100のような単層ポリシリコン型のメモリセルでは、コントロールゲートのキャパシタ容量をCとすると、コントロールゲートである第1ウェル11とフローティングゲートであるゲートポリシリコン20とがゲート絶縁膜21を挟んで対向する部分の面積が、電極面積Aに相当する。従って、第1ウェル11とゲートポリシリコン20とがゲート絶縁膜21を挟んで対向する部分の面積が大きい程、コントロールゲートのキャパシタ容量が大きくなる。
本実施例の半導体装置100では、第1ウェル11のゲートポリシリコン20と対向する領域にトレンチが設けられ、当該部分が立体構造となっているため、トレンチ30が設けられていない場合と比べて第1ウェル11とゲートポリシリコン20との対向面積が大きい。従って、コントロールゲートのキャパシタ容量が相対的に大きい。
仮に、第1ウェル11のゲートポリシリコン20と対向する領域にトレンチが設けられていない構造で、本実施例の半導体装置100と同等のコントロールゲートのキャパシタ容量を実現しようとすると、第1ウェル11及びゲートポリシリコン20を水平方向にさらに伸ばして対向する部分の面積を増やす必要がある。このため、メモリセル全体のサイズが大きくなってしまう。
これに対し、本実施例の半導体装置100によれば、トレンチ30の分だけ電極面積Aが大きく、水平方向の面積を増やす必要がないため、コントロールゲートのキャパシタ容量を維持しつつ、メモリサイズを小さく抑えることが可能となる。
また、コントロールゲートのキャパシタ容量を読み出しゲートやトンネルゲートのキャパシタ容量に対して相対的に大きくすることができるため、フローティングゲートの電位をコントロールゲートに印加する電圧と近い値にすることができる。従って、データの書き込み及び消去の動作において、フローティングゲートとトンネルゲートとの間(すなわち、ゲートポリシリコン20と第2ウェル12との間)の電子の移動を十分に行うことが可能となる。
次に、本実施例の半導体装置100の製造方法について、図3に示す製造フローに沿って説明する。
まず、図4Aに示すように、イオン注入法により半導体基板10の表層部に、第1導電型の半導体領域を形成する。これにより、第1導電型の半導体層17が形成される(STEP101)。
次に、図4Bに示すように、エッチングにより半導体層17の表面に溝を形成し、溝を含む半導体基板10の表面全体にCVD(Chemical Vapor Deposition)法によってSiO2等の絶縁膜を形成する。これにより、素子分離領域14が形成される(STEP102)。
次に、図4Cに示すように、半導体層17の表面にフォトリソグラフィによりパターニングしたレジスト膜40を形成する。そして、イオン注入により、半導体層17の表面に、第2導電型(本実施例ではN型)の不純物としての例えばP+(リン)或いはAs+(ヒ素)を注入する。これにより、第2導電型を有する第1ウェル11及び第2ウェル12が形成される(STEP103)。
次に、図4Dに示すように、表面全体をエッチングし、素子分離領域14以外の半導体基板10の表面の絶縁膜を除去する。これにより、第1ウェル11及び第2ウェル12の表面が露出する(STEP104)。
次に、図5Aに示すように、第1ウェル11の表面にエッチングを行い、トレンチ30を形成する(STEP105)。
次に、図5Bに示すように、熱酸化法によりトレンチ30の内部を覆うシリコン酸化膜(すなわち、トレンチ内絶縁膜31)を形成する(STEP106)。
次に、図5Cに示すように、CVD法によりトレンチ30の内部にトレンチ内導電部32を形成する(STEP107)。
次に、熱酸化法により第1ウェル11及び第2ウェル12の各々の一部と、第3ウェル13を覆うようにシリコン酸化膜を形成する。そして、エッチングによりトレンチ内導電部32の上面のシリコン酸化膜を取り除く。これにより、図5Dに示すように、STEP105で形成したトレンチ内絶縁膜31と連続した形状を有するゲート絶縁膜21が形成される(STEP108)。
次に、CVD法によりゲート酸化膜21の表面にポリシリコン膜を形成する。これにより、図6Aに示すように、ゲートポリシリコン20が形成される(STEP109)。
次に、図6Bに示すように、上記工程を経たウェハの表面にフォトリソグラフィによりパターニングしたレジスト膜40を形成する。そして、イオン注入により、第1ウェル11及び第2ウェル12の表面に、第2導電型(本実施例ではN型)の不純物としての例えばP+(リン)或いはAs+(ヒ素)を注入する。これにより、第2導電型の拡散層15及び拡散層16が形成される(STEP110)。
次に、上記工程を経たウェハの表面にコンタクトホールを形成し、タングステン等の導電体によって当該コンタクトホールを埋める。これにより、図6Cに示すように、コンタクトC1及びC2が形成される(STEP111)。
以上のような工程を経て、半導体装置100が製造される。
上記の通り、本実施例の半導体装置100では、コントロールゲートを構成する第1ウェル11にトレンチ30が設けられており、コントロールゲートとフローティングゲートとが対向する部分の面積をトレンチ30の分だけ大きくとることができる。このため、トレンチ30のような溝を有しない場合と比べて、コントロールゲート及びフローティングゲートの基板表面に水平な方向の面積を小さくすることができる。従って、本実施例の半導体装置100によれば、小面積で且つ十分な容量を有する不揮発性メモリを提供することが可能となる。
次に、本発明の実施例2について説明する。図7は、本実施例に係る半導体装置200を素子形成面の上方から見た上面図である。図8は、図7のX−X線に沿った断面図である。
本実施例の半導体装置200は、図1及び図2に示した実施例1の半導体装置100と異なり、第1ウェル11にトレンチ30が形成されていない。一方、本実施例の半導体装置200では、実施例1の半導体装置100とは異なり、ゲート絶縁膜21に相対的に膜厚の薄い第1の領域21Aと、相対的に膜厚の厚い第2の領域21Bとが形成されている。
第1の領域21Aは、第1ウェル11とゲートポリシリコン20とがゲート絶縁膜21を挟んで対向する位置に形成されている。第1の領域21Aの膜厚は、実施例1の半導体装置100におけるゲート絶縁膜21の膜厚よりも薄い。これに対し、第2の領域21Bは、実施例1の半導体装置100におけるゲート絶縁膜21と同程度の膜厚を有する。
本実施例の半導体装置100は、コントロールゲートを構成する第1ウェル11とフローティングゲートを構成するゲートポリシリコン20とが対向する位置にゲート絶縁膜21の膜厚の薄い第1の領域21Aが設けられているため、コントロールゲートの容量が同程度であり且つこのような膜厚の薄い領域を有しないメモリセルと比べて、メモリセル全体の面積が小さい。これについて、以下説明する。
実施例1で説明したように、キャパシタ容量をC、誘電率をε、電極間距離をd、電極面積をAとすると、平行平板コンデンサの容量は上記の数式(数1)のように表される。
本実施例の半導体装置200のような単層ポリシリコン型のメモリセルでは、コントロールゲートのキャパシタ容量をCとすると、コントロールゲートを構成する第1ウェル11とフローティングゲートを構成するゲートポリシリコン20とがゲート絶縁膜21を挟んで対向する部分の距離が、電極間距離dに相当する。従って、第1ウェル11とゲートポリシリコン20との距離が短い(すなわち、dの値が小さい)程、コントロールゲートのキャパシタ容量が大きくなる。
本実施例の半導体装置100では、第1ウェル11とゲートポリシリコン20とが対向する部分において、ゲート絶縁膜21の膜厚が薄い領域である第1の領域21Aが設けられており、このような領域を有しない場合と比べて第1ウェル11とゲートポリシリコン20との距離が短い。従って、コントロールゲートのキャパシタ容量が相対的に大きい。
仮に、ゲート絶縁膜21に膜厚の薄い領域が設けられていない構造(すなわち、ゲート絶縁膜21の全体が本実施例の第2の領域21Bと同等の膜厚であるような構造)で、本実施例の半導体装置200と同等のコントロールゲートのキャパシタ容量を実現しようとすると、第1ウェル11及びゲートポリシリコン20を水平方向にさらに伸ばして対向する部分の面積を増やす必要がある。このため、メモリセル全体のサイズが大きくなってしまう。
これに対し、本実施例の半導体装置200によれば、電極間距離dの値が小さく、電極面積Aを大きくする必要がないため、コントロールゲートのキャパシタ容量を維持しつつ、メモリサイズを小さく抑えることが可能となる。
本実施例の半導体装置200におけるゲート絶縁膜21は、第2の領域21Bの膜厚を有するシリコン酸化膜を形成し、その一部の領域を取り除いた後、当該一部の領域にあらためて第1の領域21Aの膜厚を有するシリコン酸化膜を形成することにより、形成することが可能である。
すなわち、まず熱酸化法により、第1ウェル11の表面、第2ウェル12及び第3ウェル13の表面に、比較的厚い膜厚(すなわち、第2の領域21Bの膜厚)となるようにシリコン酸化膜を形成する。そして、エッチングにより、当該シリコン酸化膜の第1ウェル11の表面を覆っている部分を除去する。そして、熱酸化法により、当該部分に比較的薄い膜厚(すなわち、第1の領域21Aの膜厚)となるようにシリコン酸化膜をあらためて形成する。
以上のように、本実施例の半導体装置100では、コントロールゲートを構成する第1ウェル11とフローティングゲートを構成するゲートポリシリコン20とが対向する部分において、ゲート絶縁膜21の膜厚が薄い領域が形成されている。このため、膜厚が薄い領域を有しない場合と比べて、コントロールゲート及びフローティングゲートの基板表面に水平な方向の面積を小さくすることができる。従って、本実施例の半導体装置200によれば、小面積で且つ十分な容量を有する不揮発性メモリを提供することが可能となる。
なお、本発明は上記実施例で示したものに限られない。例えば、上記実施例1では、トレンチ30が上面視で長方形の形状を有するトレンチ(すなわち、溝)である場合を例として説明したが、トレンチ30の形状はこれに限られない。例えば、上面視で円形や楕円形等の形状を有するディンプルとして形成されていてもよい。また、トレンチ30の断面視での形状や例示した寸法についても、上記実施例で示したものに限られない。要するに、ゲート絶縁膜21を挟んで第1ウェル11とゲートポリシリコン20とが対向する部分の面積が広くなるように、第1ウェル11の表面に立体構造が形成されていればよい。
また、上記実施例1では、第1ウェル11にトレンチ30が2つ形成されている場合を例として説明したが、トレンチの数はこれに限られない。すなわち、トレンチの数は1つであってもよく、3つ以上であってもよい。また、複数のトレンチが形成されている場合、これらは同じ形状であっても互いに異なる形状であってもよい。
また、第1ウェル11、第2ウェル12及び第3ウェル13の上面視での形状は、上記実施例で示したものに限られない。
また、上記実施例では、ポリシリコンからなる導電層であるゲートポリシリコン20を用いてフローティングゲートを構成する場合を例として説明したが、ポリシリコン以外の導電性を有する他の材料からなる導電層を用いてフローティングゲートを構成してもよい。同様に、トレンチ内導電部32をポリシリコン以外の導電性材料から構成してもよい。
また、上記実施例では、ゲート絶縁膜21及びトレンチ内絶縁膜31がシリコン酸化膜から構成されている場合を例として説明したが、これに限られず、絶縁性を有する他の材料を用いて構成してもよい。
また、上記実施例で示した製造方法は一例であり、上記とは異なる工程で製造してもよい。例えば、上記実施例では、半導体基板10の表層部に第1導電型を有する半導体層17を形成し、イオン注入により第2導電型の第1ウェル11及び第2ウェル12を形成することにより、第1ウェル11と第2ウェル12との間の領域を第1導電型の第3ウェルとする例について説明した。しかし、これとは異なり、半導体層17を形成せずにイオン注入によって第3ウェル13を形成してもよい。
図9A〜図9Dは、このような第3ウェル13の形成に至るまでの製造方法の変形例における各工程での半導体基板10の断面図である。
まず、図9Aに示すように、第1導電型の半導体基板50(例えば、P型のSi基板)を準備する。そして、図9Bに示すように、半導体基板50の表面にエッチングで溝を形成し、溝を含む半導体基板50の表面全体にCVD法を用いてSiO2等の絶縁膜を形成することにより、素子分離領域14を形成する。
次に、図9Cに示すように、半導体基板50の表面にフォトリソグラフィによりパターニングしたレジスト膜40を形成し、イオン注入により、半導体基板50の表面に、第2導電型(N型)の不純物を注入する。これにより、第1ウェル11及び第2ウェル12が形成される。
そして、図9Dに示すように、第1ウェル11及び第2ウェル12の上面にレジスト膜40を形成し、第1導電型(P型)の不純物を注入する。これにより、第3ウェル13が形成される。以降の製造工程は、上記実施例1で説明したエッチング工程(STEP104、図4D)以降の製造工程と同様である。
かかる製造工程によれば、図10に示すように、上記実施例1の半導体装置100のような半導体層17(図2を参照)を有さず、第1導電型の半導体基板50に第1ウェル11、第2ウェル12及び第3ウェル13がそれぞれ形成された半導体装置300が製造される。
なお、図9A〜図9Dの製造工程を実施例2について適用してもよい。これにより、図11に示すように、上記実施例2の半導体装置200のような半導体層17(図8を参照)を有さず、第1導電型の半導体基板50に第1ウェル11、第2ウェル12及び第3ウェル13がそれぞれ形成された半導体装置400が製造される。
また、上記実施例1及び実施例2は適宜組み合わせることが可能である。すなわち、第1ウェル11にトレンチ30を設けるとともに、第1ウェル11とゲートポリシリコン20とが対向する領域にゲート絶縁膜21の膜厚の薄い第1の領域21Aを設けるように構成してもよい。
100 半導体装置
10 半導体基板
11 第1ウェル
12 第2ウェル
13 第3ウェル
14 素子分離領域
15 拡散層
16 拡散層
17 半導体層
18 シリコン基板
20 ゲートポリシリコン
21 ゲート酸化膜
23 選択トランジスタ
30 トレンチ
31 トレンチ内絶縁膜
32 トレンチ内導電部
40 レジスト膜
200 半導体装置
21A 第1の領域
21B 第2の領域
300,400 半導体装置
50 半導体基板

Claims (7)

  1. 不揮発性メモリを構成する半導体装置であって、
    第1導電型の半導体部と、
    前記半導体部の1の面内の第1の領域から内部に向かって延在するように形成された前記第1導電型とは逆極性の第2導電型の第1ウェルと、
    前記第1の領域から離間して前記半導体部の前記1の面内の第2の領域から内部に向かって延在するように形成された前記第2導電型の第2ウェルと、
    前記1の面上に形成された絶縁膜と、
    前記絶縁膜上の前記第1ウェルの上方の領域及び前記第2ウェルの上方の領域に跨って延在するように形成された導電層と、
    を有し、
    前記第1ウェルには、前記1の面から前記第1ウェル内に伸長するトレンチが形成され、前記トレンチの内部の表面には前記絶縁膜が延在しており、前記トレンチの内部の前記絶縁膜上には前記トレンチを埋めるように前記導電層と連続的に形成された導電部が設けられていることを特徴とする半導体装置。
  2. 前記半導体部は、前記第1ウェルと前記第2ウェルとの間の領域において、前記半導体部の前記1の面から内部に向かって延在する前記第1導電型の第3ウェルを構成することを特徴とする請求項1に記載の半導体装置。
  3. 前記第1ウェルには、前記1の面から前記第1ウェルの内部に向かって延在する前記第2導電型の第1拡散層が形成され、
    前記第2ウェルには、前記1の面から前記第2ウェルの内部に向かって延在する前記第2導電型の第2拡散層が形成されていることを特徴とする請求項1又は2に記載の半導体装置。
  4. 前記導電層及び前記導電部は、前記第2導電型のポリシリコン層から構成され、
    前記絶縁膜は、シリコン酸化膜から構成されていることを特徴とする請求項1乃至3のいずれか1に記載の半導体装置。
  5. 前記半導体部は、半導体基板と、前記半導体基板の1の面から内部に向かって延在する前記第1導電型の半導体層を有することを特徴とする請求項1乃至4のいずれか1に記載の半導体装置。
  6. 前記半導体部は、前記第1導電型の半導体基板であることを特徴とする請求項1乃至4のいずれか1に記載の半導体装置。
  7. 不揮発性メモリを構成する半導体装置であって、
    第1導電型の半導体部と、
    前記半導体部の1の面内の第1の領域から内部に向かって延在するように形成された前記第1導電型とは逆極性の第2導電型の第1ウェルと、
    前記第1の領域から離間して前記半導体部の前記1の面内の第2の領域から内部に向かって延在するように形成された前記第2導電型の第2ウェルと、
    前記1の面上に形成された絶縁膜と、
    前記絶縁膜上の前記第1ウェルの上方の領域及び前記第2ウェルの上方の領域に跨って延在するように形成された導電層と、
    を有し、
    前記絶縁膜は、前記第1ウェルの上方に位置するように延在して第1の膜厚を有する第1領域、及び前記第1の膜厚よりも厚い第2の膜厚を有する第2領域を有することを特徴とする半導体装置。
JP2019218635A 2019-12-03 2019-12-03 半導体装置 Pending JP2021089929A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019218635A JP2021089929A (ja) 2019-12-03 2019-12-03 半導体装置
CN202011350762.6A CN112909003A (zh) 2019-12-03 2020-11-26 半导体装置
US17/106,585 US11476368B2 (en) 2019-12-03 2020-11-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019218635A JP2021089929A (ja) 2019-12-03 2019-12-03 半導体装置

Publications (1)

Publication Number Publication Date
JP2021089929A true JP2021089929A (ja) 2021-06-10

Family

ID=76090971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019218635A Pending JP2021089929A (ja) 2019-12-03 2019-12-03 半導体装置

Country Status (3)

Country Link
US (1) US11476368B2 (ja)
JP (1) JP2021089929A (ja)
CN (1) CN112909003A (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129760A (ja) * 1995-11-06 1997-05-16 Seiko Epson Corp 半導体装置及びその製造方法
JPH09135008A (ja) * 1995-11-08 1997-05-20 Toshiba Corp 半導体装置およびその製造方法
JP2002158301A (ja) * 2000-11-22 2002-05-31 Denso Corp 半導体記憶装置及びその製造方法
JP2011187870A (ja) * 2010-03-11 2011-09-22 Panasonic Corp 不揮発性半導体記憶装置
JP2014143377A (ja) * 2013-01-25 2014-08-07 Seiko Instruments Inc 半導体不揮発性メモリ
JP2018049937A (ja) * 2016-09-21 2018-03-29 ラピスセミコンダクタ株式会社 半導体メモリおよび半導体メモリの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100812080B1 (ko) * 2007-06-26 2008-03-07 주식회사 동부하이텍 비휘발성 메모리 소자 및 그 제조 방법
US8772854B2 (en) * 2012-04-02 2014-07-08 Taiwan Semiconductor Manufacturing Company, Ltd. Multiple-time programming memory cells and methods for forming the same
FR3070534A1 (fr) * 2017-08-28 2019-03-01 Stmicroelectronics (Rousset) Sas Procede de fabrication d'elements capacitifs dans des tranchees

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129760A (ja) * 1995-11-06 1997-05-16 Seiko Epson Corp 半導体装置及びその製造方法
JPH09135008A (ja) * 1995-11-08 1997-05-20 Toshiba Corp 半導体装置およびその製造方法
JP2002158301A (ja) * 2000-11-22 2002-05-31 Denso Corp 半導体記憶装置及びその製造方法
JP2011187870A (ja) * 2010-03-11 2011-09-22 Panasonic Corp 不揮発性半導体記憶装置
JP2014143377A (ja) * 2013-01-25 2014-08-07 Seiko Instruments Inc 半導体不揮発性メモリ
JP2018049937A (ja) * 2016-09-21 2018-03-29 ラピスセミコンダクタ株式会社 半導体メモリおよび半導体メモリの製造方法

Also Published As

Publication number Publication date
CN112909003A (zh) 2021-06-04
US11476368B2 (en) 2022-10-18
US20210167213A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
TWI389305B (zh) 非揮發性半導體儲存元件及其製造方法
JP5590353B2 (ja) 半導体装置
CN107548520B (zh) 半导体存储装置及其制造方法
KR102051236B1 (ko) 플로팅 게이트, 워드 라인, 소거 게이트를 갖는 분리형 게이트 비휘발성 메모리 셀
US8692309B2 (en) Semiconductor device
JP2008166379A (ja) 半導体記憶装置及びその製造方法
US11201163B2 (en) High-density NOR-type flash memory
JP2008135715A (ja) 不揮発性メモリ素子及びその製造方法
US20100171168A1 (en) Non-volatile memory device and method of manufacturing the same
JP2019117913A (ja) 半導体装置およびその製造方法
TW200403839A (en) Nonvolatile semiconductor memory device and its manufacturing method
JP7081892B2 (ja) 半導体メモリの製造方法
JPH04302477A (ja) 不揮発性半導体メモリ装置
JP2008300575A (ja) 半導体記憶装置およびその製造方法
US20130015518A1 (en) Semiconductor memory device
JP2021089929A (ja) 半導体装置
KR20230031334A (ko) 워드 라인 게이트 위에 배치된 소거 게이트를 갖는 스플릿 게이트, 2-비트 비휘발성 메모리 셀, 및 그 제조 방법
US8921923B2 (en) Method for manufacturing semiconductor memory device and semiconductor memory device
KR20230029954A (ko) 워드 라인 게이트 위에 소거 게이트가 배치된 분리형 게이트 비휘발성 메모리 셀, 및 이의 제조 방법
JP2011171475A (ja) 不揮発性半導体記憶装置
US20210288174A1 (en) Semiconductor device
JP2022018432A (ja) 半導体装置
US9006812B2 (en) Nonvolatile semiconductor memory device and method for manufacturing the same
RU2790414C1 (ru) Способ производства энергонезависимого запоминающего устройства
JP2009004751A (ja) 不揮発性メモリ素子及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240207