JP2021067752A - 電子打楽器、電子楽器、情報処理装置、及び情報処理方法 - Google Patents

電子打楽器、電子楽器、情報処理装置、及び情報処理方法 Download PDF

Info

Publication number
JP2021067752A
JP2021067752A JP2019191583A JP2019191583A JP2021067752A JP 2021067752 A JP2021067752 A JP 2021067752A JP 2019191583 A JP2019191583 A JP 2019191583A JP 2019191583 A JP2019191583 A JP 2019191583A JP 2021067752 A JP2021067752 A JP 2021067752A
Authority
JP
Japan
Prior art keywords
striking surface
vibration
reference value
envelope
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019191583A
Other languages
English (en)
Inventor
清矢 和泉
Seiya Izumi
清矢 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roland Corp
Original Assignee
Roland Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roland Corp filed Critical Roland Corp
Priority to JP2019191583A priority Critical patent/JP2021067752A/ja
Priority to CN202010861765.XA priority patent/CN112687249A/zh
Priority to US17/012,003 priority patent/US11600253B2/en
Publication of JP2021067752A publication Critical patent/JP2021067752A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10DSTRINGED MUSICAL INSTRUMENTS; WIND MUSICAL INSTRUMENTS; ACCORDIONS OR CONCERTINAS; PERCUSSION MUSICAL INSTRUMENTS; AEOLIAN HARPS; SINGING-FLAME MUSICAL INSTRUMENTS; MUSICAL INSTRUMENTS NOT OTHERWISE PROVIDED FOR
    • G10D13/00Percussion musical instruments; Details or accessories therefor
    • G10D13/10Details of, or accessories for, percussion musical instruments
    • G10D13/26Mechanical details of electronic drums
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10DSTRINGED MUSICAL INSTRUMENTS; WIND MUSICAL INSTRUMENTS; ACCORDIONS OR CONCERTINAS; PERCUSSION MUSICAL INSTRUMENTS; AEOLIAN HARPS; SINGING-FLAME MUSICAL INSTRUMENTS; MUSICAL INSTRUMENTS NOT OTHERWISE PROVIDED FOR
    • G10D13/00Percussion musical instruments; Details or accessories therefor
    • G10D13/01General design of percussion musical instruments
    • G10D13/02Drums; Tambourines with drumheads
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/0008Associated control or indicating means
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/02Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos
    • G10H1/04Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos by additional modulation
    • G10H1/053Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos by additional modulation during execution only
    • G10H1/057Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos by additional modulation during execution only by envelope-forming circuits
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/32Constructional details
    • G10H1/34Switch arrangements, e.g. keyboards or mechanical switches specially adapted for electrophonic musical instruments
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H3/00Instruments in which the tones are generated by electromechanical means
    • G10H3/12Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument
    • G10H3/14Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using mechanically actuated vibrators with pick-up means
    • G10H3/146Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using mechanically actuated vibrators with pick-up means using a membrane, e.g. a drum; Pick-up means for vibrating surfaces, e.g. housing of an instrument
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2230/00General physical, ergonomic or hardware implementation of electrophonic musical tools or instruments, e.g. shape or architecture
    • G10H2230/045Special instrument [spint], i.e. mimicking the ergonomy, shape, sound or other characteristic of a specific acoustic musical instrument category
    • G10H2230/251Spint percussion, i.e. mimicking percussion instruments; Electrophonic musical instruments with percussion instrument features; Electrophonic aspects of acoustic percussion instruments, MIDI-like control therefor
    • G10H2230/275Spint drum
    • G10H2230/281Spint drum assembly, i.e. mimicking two or more drums or drumpads assembled on a common structure, e.g. drum kit
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2250/00Aspects of algorithms or signal processing methods without intrinsic musical character, yet specifically adapted for or used in electrophonic musical processing
    • G10H2250/025Envelope processing of music signals in, e.g. time domain, transform domain or cepstrum domain

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Electrophonic Musical Instruments (AREA)

Abstract

【課題】より適正なクロストークキャンセルを可能とする【解決手段】第1の打面と、第1の打面の方向と反対の方向を向いた第2の打面と、第2の打面の振動が自己振動か第1の打面の打撃に伴う励振かを判定するための基準値の時間的変化を示すエンベロープを、第1の打面の振動を示す波形に基づいて生成する処理と、エンベロープが示す基準値を用いて、第2の打面の打撃を示す情報に第2の打面の励振に基づく情報を含めない処理と、を行う制御装置と、を含む電子打楽器である。【選択図】図16

Description

本発明は、電子打楽器、電子楽器、情報処理装置、及び情報処理方法に関する。
夫々振動する複数の演奏操作子を備える電子楽器として、電子打楽器や電子弦楽器がある。例えば、電子打楽器は、複数の演奏操作子として、複数の打面(打撃面ともいう)を有する。電子楽器の構造上、或る打面に対して打撃を加えると、その打面の振動(自己振動という)が他の打面に伝わって振動し(励振と呼ばれる)、センサが励振を打撃と誤検知して発音が誤ってなされる場合があり得る(クロストークと呼ばれる)。
従来、演奏操作子の振動量を検出し、振動量の最大値を記憶し、この最大値に基づいて発生させた、演奏操作子の実際の振動の包絡線に似た仮想的な疑似包絡線に対応した基準値と振動量とを比較して楽音の発生を指示する技術がある(例えば、特許文献1参照)。このような他の打面から受けたクロストークによる誤発音を防ぐ処理は、クロストークキャンセルと呼ばれている(例えば、特許文献2)
特公平7−69687号公報 特開2013−145262号公報
しかしながら、先行技術文献には、反対方向を向いた二つの打面を有する電子打楽器にクロストークキャンセルを適用することについて全く開示及び示唆がない。すなわち、反対方向を向いた二つの打面を有する電子打楽器にクロストークキャンセルを適用することは既知ではなかった。
また、特許文献1に記載の技術では、以下のような問題があった。打楽器の奏法の一つに、いわゆる「同時撃ち」と呼ばれる、複数の打面を同時に叩く奏法がある。同時撃ちにおいて、奏者は、同時に打面を叩こうとするが、奏者の技量などの要因によって、打面が叩かれるタイミングにズレが生じることがある。また、短い時間の間に二つの打面を続けて打撃する場合もある。
特許文献1に記載の技術(従来技術)における基準値の時間的変化は、時間経過とともに徐々に減衰する波形を示す。このような波形では、或る打面の打撃のタイミングから遅れたタイミングでなされた他の打面への打撃がクロストークとして誤ってキャンセルされる虞があった。
このような誤ったクロストークキャンセルの問題は、電子打楽器に限定されず、励振(クロストーク)が発生する複数の演奏操作子を有する電子打楽器以外の電子楽器(例えば、電子弦楽器)にも共通する問題であった。
本発明は、より適正なクロストークキャンセルを実行することのできる電子打楽器、電子楽器、情報処理装置、及び情報処理方法を提供することを目的とする。
本発明の実施例の一つは、第1の打面と、
前記第1の打面の方向と反対の方向を向いた第2の打面と、
前記第2の打面の振動が自己振動か前記第1の打面の打撃に伴う励振かを判定するための基準値の時間的変化を示すエンベロープを、前記第1の打面の振動を示す波形に基づいて生成する処理と、前記エンベロープが示す前記基準値を用いて、前記第2の打面の打撃を示す情報に前記第2の打面の励振に基づく情報を含めない処理と、を行う制御装置と、を含む電子打楽器である。
実施例における電子打楽器において、前記制御装置は、所定の時点毎に、前記第2の打面の振動を示す波形のレベルと、前記エンベロープが示すその時点の基準値を閾値に加算した比較対象レベルとの比較を行い、比較対象レベルを超える波形のスキャンを行い、そうでない波形のスキャンを行わない構成を採用してもよい。
実施例における電子打楽器において、前記第2の打面が前記第1の打面と連結部を介して連結されていてもよい。また、前記エンベロープは、開始時点から第1の時点まで第1の期間において前記基準値の増加を示し、第1の時点から終点までの第2の期間において前記基準値の減少を示す構成を採用してもよい。また、前記開始時点における基準値の値が前記第1の時点における最大振動値に所定係数を乗じた値であってもよい。
本発明の実施例の一つは、第1の演奏操作子と第2の演奏操作子とを含む電子楽器であって、
前記第2の演奏操作子の振動が自己振動か前記第1の演奏操作子の振動に伴う励振かを判定するための基準値の時間的変化を示すエンベロープを、前記第1の演奏操作子の振動を示す波形に基づいて生成する処理と、前記エンベロープが示す前記基準値を用いて、前記第2の演奏操作子の操作を示す情報に前記第2の演奏操作子の励振に基づく情報を含めない処理と、を行う制御装置と、
を含み、
前記エンベロープは、開始時点から第1の時点まで第1の期間において前記基準値の増加を示し、第1の時点から終点までの第2の期間において前記基準値の減少を示す。
本発明の実施例に係る電子楽器において、前記制御装置は、所定の時点毎に、前記第2の演奏操作子の振動を示す波形のレベルと、前記エンベロープが示すその時点の基準値を閾値に加算した比較対象レベルとの比較を行い、比較対象レベルを超える波形のスキャンを行い、そうでない波形のスキャンを行わない構成を採用してもよい。
また、本発明の実施例に係る電子楽器において、前記開始時点における基準値の値が前記第1の時点における最大振動値に所定係数を乗じた値である構成であってもよい。また、前記電子楽器は、電子打楽器であり、前記第1の演奏操作子及び前記第2の演奏操作子は、第1の打面及び第2の打面である構成を採用してもよい。この場合、前記第2の打面は、前記第1の打面の方向と反対方向を向いている構成を採用してもよい。また、前記第1の打面は、連結部を介して前記第2の打面と連結されている構成を採用してもよい。
本発明の実施例は、上述した電子打楽器の情報処理装置、情報処理方法、プログラム、及びプログラムを記憶した記憶媒体を含んでもよい。また、本発明の実施例は、上述した電子楽器の情報処理装置、情報処理方法、プログラム、及びプログラムを記憶した記憶媒体を含んでもよい。
図1は、実施形態に係る電子楽器の回路構成例を示す。 図2は、電子打楽器の一例を示す。 図3は、電子打楽器の一例を示す。 図4は、電子打楽器の一例を示す。 図5Aは、電子打楽器10Aを模式的に示し、図5Bは、電子打楽器10Bを模式的に示す。 図6は、打撃検出装置で行われる処理を示す。 図7は、打撃検出処理の詳細を示すブロック図である。 図8は、打撃検出装置における立ち上がり検出処理の一例を示すフローチャートである。 図9は、XTC処理の一例を示すフローチャートである。 図10は、最大振動値算出処理の一例を示すフローチャートである。 図11は、XTCレベル算出処理の一例を示すフローチャートである。 図12は、XTCレベルの算出方法(XTCエンベロープの生成方法)を説明する図である。 図13は、XTCフラグの更新処理の一例を示すフローチャートである。 図14Aは振動波形の説明図であり、図14Bは打撃波形情報の説明図である。 図15は、電子打楽器10Aの打面13aと打面13bとの一方(打面13a)を打撃した場合の信号波形を示す。 図15は、電子打楽器10Aの打面13aと打面13bとの双方の同時撃ちを実行した場合の信号波形を示す。 図16は、電子打楽器10Bの打面13aと打面13bとの一方(打面13a)を打撃した場合の信号波形を示す。 図17は、電子打楽器10Bの打面13aと打面13bとの双方の同時撃ちを実行した場合の信号波形を示す。 図18は、電子打楽器10Cの打面13aを打撃した場合における、打面13aと、打面13aに隣接する打面13bとの信号波形を示す。
以下、図面を参照して、実施形態について説明する。実施形態の構成は例示であり、実施形態の構成に限定されない。
<電子楽器の構成>
図1は、実施形態に係る電子楽器の回路構成例を示す。本実施形態に係る電子楽器は、振動する複数の演奏操作子を有する電子楽器である。振動する複数の演奏操作子を有する電子楽器は、電子打楽器及び電子弦楽器を少なくとも含む。
図1において、電子楽器10は、バスBを介して相互に接続された、CPU(Central Processing Unit、MPUとも呼ばれる)11と、記憶装置12と、複数の演奏操作子1
3と、音源14と、入力装置18と、出力装置19とを備えている。
音源14には、DAC(Digital Analog Converter)15が接続され、DAC15は、アンプ(増幅器)16に接続され、アンプ16はスピーカ17に接続されている。CPU11,記憶装置12及び音源14は、楽音発生装置20として動作する。CPU11は、「制御部」、「制御装置」、「プロセッサ」の一例である。
記憶装置12は、主記憶装置と補助記憶装置とを含む。主記憶装置は、プログラムやデータの記憶領域、CPU11の作業領域などとして使用される。主記憶装置は、例えば、RAM(Random Access Memory)、又はRAMとROM(Read Only Memory)との組み合わせによって形成される。補助記憶装置は、プログラムやデータの記憶領域、波形データを記憶する波形メモリなどとして使用される。補助記憶装置は、例えば、フラッシュメモリ、ハードディスク、SSD(Solid State Drive)、EEPROM(Electrically Eras
able Programmable Read-Only Memory)などである。
入力装置18は、キー、ボタン、つまみなどの操作子を含む。入力装置18は、様々な情報やデータを電子楽器10に入力するために使用される。情報やデータは、電子楽器10に様々な設定を施すためのデータを含む。出力装置19は、例えばディスプレイであり、電子楽器10に設定されるパラメータなどの情報を表示する。
複数の演奏操作子13は、電子楽器10が電子打楽器である場合は打面であり、電子楽器10が電子弦楽器である場合は複数の弦である。
CPU11は、記憶装置12に記憶されたプログラムを実行することによって様々な処理を行う。例えば、CPU11は、演奏操作子13の操作に応じた打撃波形を生成し、楽音データ及び音源14を用いて楽音の発音処理を行う。CPU11は、楽音信号の生成にあたり、演奏操作子13の夫々について、他の演奏操作子13の振動が伝わって生じる励振による誤発音を回避する処理(クロストークキャンセル(XTC)処理という)を行う。
音源14は、波形メモリを内蔵するPCM音源形式の音源回路である。CPU11は、XTC処理後の打撃波形情報を波形メモリに記憶し、打撃された打面に対応する音色情報を記憶装置12から読み出し、音源14に供給する。音源14は、打撃波形と音色情報とを用いた発音処理によって打楽器(和太鼓、バスドラム、タム、スネアドラム、ハイハットオープン、ハイハットクローズなど)を模した楽音信号を生成して出力する。音源14から発せられた楽音信号は、DAC15に供給されてアナログ信号に変換され、アンプ16にて増幅され、スピーカ17から放音される。電子楽器10の情報処理装置は、少なくとも、CPU11及び記憶装置12を含む。CPU11によって実行される処理は、CPU以外のプロセッサ(DSPなど)、集積回路(ASIC、FPGAなど)によって行われるようにしてもよい。
電子楽器10は、例えば、図2に示す電子打楽器10Aであってもよく、図3に示す電子打楽器10Bであってもよく、図4に示す電子打楽器10Cであってもよい。図2に示す電子打楽器10Aは、「両面太鼓」と呼ばれ、お互いに反対方向を向いた二つの打面13a、13bを有する。打面13a、13bは、スティック、バチ、手などで打撃を加えることで振動する。打面13a及び13bの夫々は円形に形成され、リング状のフレーム21a、21bに夫々取り付けられて(張設されて)いる。フレーム21aとフレーム21bとは、8本の連結棒22を介して連結されている。フレーム21a、21b及び連結棒22は、「連結部」の一例である。
電子楽器10Aでは、打面13a及び13bの一方の打面が振動すると、その振動は連結部(フレーム及び連結棒)を介して打面13a及び13bの他方の打面に伝わり、他方の打面を振動させる(励振)。
なお、連結棒22で囲まれた打面13aと打面13bとの間の空間内には、コントローラ23が配置されている(固定されている)。コントローラ23は、表面に入力装置18であるボタン群と出力装置19であるディスプレイとが設けられた筐体を備え、筐体内には、図1に示した構成要素のうち、複数の演奏操作子以外の構成要素を収容している。
図3に示す電子打楽器10Bは、三脚スタンド24の上に並べて配置された二つの打面13a及び13bを有する。打面13a及び13bは、同じ大きさの円形を有している。打面13bはリング状のフレーム21cに設けられて(張設されて)おり、打面13bはリング状のフレーム21dに設けられて(張設されて)いる。
フレーム21c及びフレーム21dの夫々は、三脚スタンド24の支柱24aの上端部24bから夫々延びるロッド24c、24dによって支持されている。フレーム21c、ロッド24c、上端部24b、ロッド24d及びフレーム21dは、打面13aと打面13bとを連結する連結部の一例である。
電子楽器10Bにおいても、打面13a及び13bの一方の打面が振動すると、その振動は連結部を介して打面13a及び13bの他方の打面に伝わり、他方の打面を振動させる(励振)。
図3に示す例では、打面13c及び13dは、三脚スタンド24の主柱24cに対して左右対称に配置されるとともに、同一平面上に配置されている。但し、打面13c及び13dの高さや、奏者(ユーザ)に向かう角度は、相互に異なっていてもよい。
図4に示す電子打楽器10Cは、マルチ打面パッドと呼ばれる。電子打楽器10Cは、ベース(筐体)の上面に、複数の打面をなす八つのパッド13a〜13hを有している。このように、実施形態に係る電子打楽器10A、10B、10Cは、複数の(二以上の任意の数)の打面を有する。パッド13a〜13hの夫々を打撃したとき、その打撃による振動は打撃されたパッド以外のパッドに筐体26を介して伝わり、打撃されたパッド以外のパッドを振動させる。筐体26は連結部として作用する。
電子打楽器10A、10Bにおいて、打面13a(13b)を打撃した場合に、打面13b(13a)が励振によって振動する場合、打面13a(13b)は「第1の打面(演奏操作子)」に該当し、打面13b(13a)は、「第2の打面(演奏操作子)」に該当する。このように、二つの打面のうち、振動が自己振動か励振かの判定を行う対象となる打面が「第2の打面(演奏操作子)」であり、励振の要因となる他の打面が「第1の打面(演奏操作子)」となる。電子打楽器10Cの打面13a及び13bについても、上記の第1及び第2の打面の定義は成立する。さらに、電子打楽器10Cでは、上下方向、左右方向、斜め方向の少なくとも一つにおいて隣接する二つのパッドについて、一方を第2の打面(演奏操作子)とし、他方を第1の打面(演奏操作子)とするクロストークキャンセルが実行される。
図5Aは、電子打楽器10Aを模式的に示し、図5Bは、電子打楽器10Bを模式的に示す。打面13aに対する打撃によって打面13aが振動する。この振動は、振動センサ(振動検出子)30aによってアナログの電気信号に変換される。一方、打面13bに対する打撃によって打面13bが振動する。この振動は、振動センサ(振動検出子)30bによってアナログの電気信号に変換される。
打面13aの打撃による振動は、連結部を介して打面13bに伝わり、打面13bを振動させる(励振)。振動センサ30bが出力する電気信号には、打面13bの自己振動の成分だけでなく励振による成分も含まれる。同様に、振動センサ30aが出力する電気信号には、打面13aの自己振動の成分だけでなく励振による成分も含まれる。
CPU11が記憶装置12に記憶されたプログラムを実行することによって、電子楽器10Aは、打撃検出装置31と、音源部32とを備えた装置として動作する。打撃検出装置31は、CPU11及び記憶装置12によって形成される。音源部32は、音源14、DAC15及びアンプ16によって形成される。
打撃検出装置31は、打面13a、13bの打撃に対応する楽音データ(打撃情報)を生成し、音源部32は打撃情報に基づく楽音を発音する。楽音はスピーカ17に接続され
て放音される。
図6は、打撃検出装置31で行われる処理を示す。打撃検出装置31は、打面13aの振動波形に対する打撃検出処理50aと、打面13bの振動波形に対する打撃検出処理50bを行う。打撃検出処理50a、50bの夫々は、0.1ms周期のCPU11の割り込み処理によって実行される。0.1msは例示であり、これより大きくても小さくてもよい。打撃検出処理50a、50bの夫々は、クロストークキャンセル(XTC)処理60によって算出される、その時点tにおけるXTCレベルを用いて行われる。打撃検出処理50a、50bによって、打面13a、13bの夫々の振動を示す波形から励振と判定される振動の情報が除かれた振動の情報が打撃波形情報として出力される。
波形分析処理70は、打撃波形情報の発生毎にオンデマンドで実行される。波形分析処理70では、打撃波形情報によって示される打撃波形の分析が行われ、打撃の強さや極性など、打撃に係る1以上のパラメータを含んだ打撃情報が生成される。打撃情報は、音源部32に供給される。
図7は、打撃検出処理50a(50b)の詳細を示すブロック図である。打面13a(13b)の振動を示すアナログ信号は、アナログ−ディジタル変換される(A/D変換51)。続いて、ディジタル信号から直流成分が除去され(DCカット52)、整流処理53によって全波整流処理がなされる。
整流処理53の後の波形に関して、振動(打撃)の立ち上がりを検出する立ち上がり検出54が実行される。立ち上がり検出54は、整流後の波形に関して、所定のレベル(比較対象レベル:閾値)を超えるレベルの入力があった場合に、その入力を立ち上がりとして検出する。
立ち上がりが検出された場合には、XTCフラグ(XTC(XTCレベルの計算)を有効にするフラグ)が有効(オン)に設定される。XTCフラグが有効な間、そのXTCフラグが有効に設定された打面以外の打面に関して周期的に実行される立ち上がり検出54において、XTC処理60によって算出されるその時点tにおけるXTCレベルが立ち上がり検出54に供給される。例えば、打面13aに係る立ち上がり検出54においてXTCフラグをオンにした場合、XTCフラグがオンの間、打面13aの振動波形に基づいて生成したXTCレベル(L(t))を、打面13bの立ち上がり検出54に供給する。
XTCレベルは、入力レベルがXTCレベルを考慮した所定のレベルを超えているかの判定に使用される。入力レベルが所定のレベルを超えない場合、その入力レベルに係る波形は、クロストークによる振動として扱われ、その波形のスキャン(波形スキャン55)は開始されない。したがって、打撃検出処理50の出力として得られる打撃波形情報には、スキャンされなかったクロストーク由来とされる(励振に基づく)波形の情報は含まれない。
立ち上がりが検出されてから所定時間が経過すると、XTCフラグが無効(オフ)に設定される。波形スキャン55は、立ち上がりが検出されてから一定期間(例えば、XTC
フラグが有効になってから無効にされるまで)の間に検出された、打面の自己振動と判定
された入力レベルを内部メモリ(例えば記憶装置12)に記憶する処理である。
図8は、打撃検出処理50における立ち上がり検出54の処理例を示すフローチャートである。図8に示す処理の主体は、打撃検出装置31として動作するCPU11である。処理例の説明に用いる用語及び定義は以下の通りである。
XTC: “クロストークキャンセル”の略語である。
XTC_FLG:XTC処理に用いるフラグ(XTCフラグ)である。初期状態では無効
となっている。
IN: 立上り検出54に入力される波形のレベルを示す。
X_L: XTCレベルを示す。XTCレベルは、クロストークを防ぐためのキャンセル
値として用いられる。
THRE: 立上り検出に用いる閾値である。
X_R: XTCレートを示す。XTCレートはユーザが変更できるパラメータで、XT
Cの効き具合を変更するために使用される (0<=X_R<=1)。
X_C: XTCレベルの計算に用いる内部係数である。本実施形態では固定値とする (0<=X_C<1)。
T_E: XTC処理の終了時点を示す。
T_P: XTCエンベロープによって示されるレベルL(t)が最大(ピーク)となる時点
を示す(T_P<T_E)。
T_S: 波形のスキャン(最大振幅値の記録)の終了時点を示す(T_S<T_P)。
以下は、XTCフラグが有効である場合に用いられる変数を示す。
t: カウンタ(時間)を示す。tの初期値は0であり、いずれかのXTCフラグの有効時はXTC処理ごとにインクリメント(+1)される。
MAX(t):t時点での最大振動値を示す。
L(t): t 時点でのXTCレベルの算出値(基準値)を示す。
図8に示すステップS01では、CPU11は、XTC処理のサブルーチンを実行する。XTC処理によって、その時点tにおけるXTCレベルX_LをCPU11は取得する。但し、他の(もう一つの)打面のXTCフラグが有効(オン)でない間は、XTCレベルは0である。
ステップS02では、CPU11は、振動波形の入力レベルINが、閾値THREにXTCレベルを加算した比較対象レベルを示す値(所定値THRE+X_L)より大きいか否かを判定する。上述したように、他の(もう一つの)打面のXTCフラグが有効でない場合、XTCレベルは0であるので、入力レベルINが閾値THREより大きいかの判定となる。このように、XTCレベルは、打面の振動が自己振動か励振かを判定するための基準値の一例である。
ここで、入力レベルINが(THRE+X_L)より大きいと判定する場合には(ステップS02のYES)、処理がステップS03に進み、そうでない場合には(ステップS02のNO)、図8に示す処理は終了する。
ステップS03では、CPU11は、閾値THRE(所定値THRE+X_L)を超えるレベルに係る波形のスキャンを開始する。ステップS04では、CPU11は、自身の打面のクロストークキャンセルに係るXTCフラグを有効化し、処理を終了する。
図9は、XTC処理60の例を示すフローチャートである。ステップS11では、CPU11は、他の(もう一つの)打面(打面13aに対する打面13b又はその逆)のXTCフラグが有効か否かを判定する。XTCフラグが有効と判定される場合には(ステップS11のYES)、処理がS12に進む。XTCフラグが無効と判定される場合(ステップS11のNO)、XTCレベルが0に設定され(ステップS16)、処理がステップS02(図8)に戻る。
ステップS12では、CPU11は最大振動値算出処理を行う。図10は、最大振動値算出処理の例を示すフローチャートである。図10において、ステップS21では、CP
U11は、現在の時点tが時点T_S(最大振動値を記録するための波形スキャンの終了時点)より前か否かを判定する。現在の時点tが時点T_Sに達していないと判定される場合には(ステップS21のYES)、処理がステップS22に進み、そうでない場合には(ステップS21のNO)、処理がステップS24に進む。
ステップS22では、CPU11は、XTCフラグが有効である他の(もう一つの)打面の入力レベルINが時点tでの最大振動値を示すMAX(t)より大きいかを判定する。レベルINがMAX(t)より大きいと判定されるには(ステップS22のYES)、処理がステップS23に進み、そうでない場合には(ステップS22のNO)、処理がステップS24に進む。
ステップS23では、CPU11は、INの値をMAX(t)の値に設定する。その後、処理がステップS13(図9)に進める。ステップS24に処理が進んだ場合には、CPU11は、時点tより一つ前の時点(t−1)における最大振動値MAX(t−1)をMAX(t)に設定し、処理をステップS13に進める。
ステップS13では、CPU11は、XTCレベル算出処理を行う。図11は、XTCレベル算出処理の例を示すフローチャートである。XTCレベル算出処理は、打面13bに対する立ち上がり検出54に供給するXTCレベルを、立ち上がりが検出された他の(もう一つの)打面13aの振動波形を用いて計算する。すなわち、打面13a及び13bのうち打面13aの立ち上がりが先に検出されると、打面13bの打撃検出処理50には、打面13aの振動波形を用いて生成したXTCエンベロープが用いられる。
ステップS31において、CPU11は、現時点tが時点T_P(XTCエンベロープのレベルL(t)が最大となる時点)より前か否かを判定する。現時点tが時点T_Pより前と判定される場合には(ステップS31のYES)、処理がステップS32に進み、そうでないと判定される場合には(ステップS31のNO)、処理がステップS33に進む。
ステップS32では、CPU11は、以下の式(a)を用いてL(t)を計算する。
L(t)=MAX(t)×X_R×(X_C+t×(1−X_C)/T_P)・・・(a)
ステップS33では、CPU11は、以下の式(b)を用いてL(t)を計算する。
L(t)=MAX(t)×X_R/(T_E−T_P)×(T_E−t)・・・(b)
ステップS34では、CPU11は、S32又はS33で得られたL(t)の値をXTCレベルX_Lに設定し、処理をステップS14(図9)に戻す。
図12は、L(t)の算出方法(XTCエンベロープ)を説明する図である。XTCエンベロープは、各時点tにおけるXTCレベルを示すL(t)の時間変化を示し、図12に示す包絡線波形として表現することができる。
図12における時点T_Pは、XTCレベルL(t)が最大(ピーク)となる時点である。t=0の時点は、XTCフラグが有効に設定された時点を示す。時点0から時点T_Sまでの間、最大振動値MAX(t)の算出処理(図10)が実行される。
時点T_PにおけるXTCレベルL(t)の値は、本実施形態では、“MAX(T_P)×X_R”と定義される。MAX(T_P)は、時点T_Pにおける最大振動値を示す。X_R(XTCレート)は、クロストークキャンセルの効き具合を示す値であり、XTCレートが大きい程、クロストークとして扱われる(打撃波形情報から除外される)振動が増加する。
XTCレベルL(t)の値は、時点T_Pを最大として、t=0の時点(開始点の一例)から時点T_P(第1の時点の一例)までの間の期間(第1の期間)は、増幅期間として、時間経過とともにL(t)が増加する。t=0の時点におけるL(t)の値は0でもよいが、図12に示すように“MAX(T_P)×X_R×X_C”の値を用いてもよい。
X_Cは、L(t)の最大値“MAX(T_P)×X_R”へ向かってL(t)をリニアに増加させるための内部係数(所定係数)であり、0以上で1より小さい値である。第1の期間の時間長が一定の場合、X_Cの値が小さい程、増加の傾きが大きくなる。また、時点T_Pから終点T_E(第2の時点の一例)までの期間(第2の期間)は、減衰期間として、時間経過とともにL(t)が減少する。
L(t)を求める式(a)は、第1の期間において、L(t)を線形に増加させる関数であり、式(b)は、第2の期間において、L(t)を線形に減少させる関数である。式(a)及び(b)は、これまでに説明したパラメータMAX(t)、X_R、X_C、t、T_Pを用いて算出される。MAX(t)は計算によって、tの値はカウンタのインクリメント(計時)によって得られる。
パラメータX_R、X_C、T_P、T_Sの夫々は、実験やシミュレーションなどによって予め設定しておく値であり、記憶装置12に記憶されている。もっとも、CPU11が、XTCレートの計算時に通信によって受信してもよく、記憶装置12以外の記憶装置から取得するようにしてもよい。
ステップS14(図9)では、時間tを管理するカウンタの値がインクリメントされて、現在のtの値に1が加算された値となる。ステップS15では、XTCフラグの更新処理が実行される。
図13は、XTCフラグの更新処理の一例を示すフローチャートである。ステップS41では、CPU11は、現時点tが終点T_Eに達しているか否かを判定する。時点tが終点T_Eに達していると判定される場合には(ステップS41のYES)、処理がステップS42に進み、そうでない場合には(ステップS41のNO)、XTCフラグ更新処理が終了するとともに、XTC処理も終了し、処理がステップS02に進む。
図14Aは、XTCの説明図であり、図14BはXTCによって得られる打撃波形情報の説明図である。図14Aのグラフにおいて、時点(時刻)t1〜t7に示す上端が黒丸の垂線は、振動波形信号のサンプルを示し、垂線の高さはレベルの高さ(入力レベルIN)を示す。各垂線と直交する破線は、入力レベルINと比較する所定レベルを示す。
時刻t1〜t7では、いずれも、XTCフラグが有効(オン)となっており、入力レベルINは、閾値THREにXTCレベルX_Lを加えた所定レベル(0<X_L)と比較される。時刻t1〜t6では、入力レベルINが所定レベルを下回り、時刻t7では、入力レベルINが所定レベルを上回る。
所定レベルを超過するサンプルは波形スキャン55の対象となり、所定レベルを超過しないサンプルは波形スキャン55の対象から除外される。換言すれば、所定レベルを超過するサンプルについて波形スキャン55が行われ、そうでないサンプルの波形スキャン55は行われない。その結果、図14Bに示すように、所定レベルを超えるサンプル(t7のサンプル)のレベルを示す情報が打撃波形情報として使用される。
ここで、時刻t1〜t6のサンプルがクロストーク由来の(励振に基づく)サンプルで
あれば、これらのサンプルに係る情報は打撃波形情報に含まれない。このことは、音源部32に供給される打撃情報に、クロストーク由来の成分が含まれないことを意味する。従って、クロストーク由来の発音は行われず、クロストークがキャンセルされる。このように、打撃検出処理31では、XTCエンベロープが示すXTCレベルを用いて、或る打面(演奏操作子)の打撃(操作)を示す情報に、或る打面の励振(クロストーク)に基づく情報を含めない処理を行う。
図15は、電子打楽器10Aの打面13aと打面13bとの一方(打面13aとする)を打撃した場合の信号波形を示す。最上段には、打面13aを打撃した場合の波形(打面13aの自己振動波形)を示す。上から二番目の段には、整流処理後の打面13aの打撃波形が示されている。上から三番目の段には、打面13aの打撃に伴う打面13bの励振(クロストーク)を示す。上から四番目の段(最下段)には、整流処理後の打面13bのクロストーク波形が示されている。打面13bのクロストークのキャンセルは、打面13aの自己振動波形を用いて生成したXTCエンベロープを用いて行われる。
図16は、電子打楽器10Aの打面13aと打面13bとの双方の同時撃ちを実行した場合の信号波形を示す。図16の最上段には、打面13aの振動波形(打面13aの自己振動及び打面13bの打撃に伴うクロストークを含む)を示す。上から二番目の段には、整流処理後の打面13aの振動波形が示されている。上から三番目の段には、打面13bの振動波形(打面13bの自己振動及び打面13aの打撃に伴うクロストークを含む)を示す。上から四番目の段(最下段)には、整流処理後の打面13bの振動波形が示されている。打面13bのクロストークのキャンセルは、打面13aの振動波形を用いて生成したXTCエンベロープを用いて行われる。
図16中のピーク(A)は、打面13aの打撃によるピークを示し、ピーク(B1)は、打面13bの打撃によるピークを示す。打面13aについてピーク(A)の立ち上がりが検出されると、打面13bについてXTCフラグが有効となり、打面13aの振動波形に基づいて生成したXTCエンベロープが示すXTCレベルが打面13bの立ち上がり検出54で使用され、波形スキャン55の対象とするか否かの判定が入力レベルと所定レベルとの比較により行われる(図8のS02)。
図16のグラフの1目盛りは2msであるので、同時撃ちの場合でも、微少な時間単位で見た場合、両者の打撃のタイミングにはズレが生じる。このピーク(B1)は、波形スキャン55の対象となるべきものである。ここで、最下段のグラフに示すように、打面13aの振動波形を用いて生成されたXTCエンベロープでは、ピーク(B1)の整流後のピーク(B2)のレベルはエンベロープで示されるXTCレベルよりも高い。このため、立ち上がり検出54において波形スキャン55の対象となり、打面13bの打撃波形情報に含まれる。
図16において、一点鎖線で示す直線(C)は、比較例として、特許文献1(特公平7−69687号公報)に記載の技術に基づくXTCエンベロープの一部を示す。比較例のXTCエンベロープでは、振動の立ち上がりから減衰する。このため、ピーク(B1)がエンベロープを下回り、ピーク(B1)がスキャンされなくなる。すなわち、打面13bの自己振動による発音が行われなくなる。実施形態のXTCエンベロープでは、そのような問題を回避することができる。
図17は、電子打楽器10Bの打面13aと打面13bとの一方(打面13aとする)を打撃した場合の信号波形を示す。最上段には、打面13aを打撃した場合の波形(打面13aの自己振動波形)を示す。上から二番目の段には、整流処理後の打面13aの打撃波形が示されている。上から三番目の段には、打面13aの打撃に伴う打面13bの励振
(クロストーク)を示す。上から四番目の段(最下段)には、整流処理後の打面13bのクロストーク波形が示されている。打面13bのクロストークのキャンセルは、打面13aの自己振動波形を用いて生成したXTCエンベロープを用いて行われる。
図18は、電子打楽器10Bの打面13aと打面13bとの双方の同時撃ちを実行した場合の信号波形を示す。図18の最上段には、打面13aの振動波形(打面13aの自己振動及び打面13bの打撃に伴うクロストークを含む)を示す。上から二番目の段には、整流処理後の打面13aの振動波形が示されている。上から三番目の段には、打面13bの振動波形(打面13bの自己振動及び打面13aの打撃に伴うクロストークを含む)を示す。上から四番目の段(最下段)には、整流処理後の打面13bの振動波形が示されている。打面13bのクロストークのキャンセルは、打面13aの振動波形を用いて生成したXTCエンベロープを用いて行われる。
電子打楽器10Bの連結部の剛性は、電子打楽器10Aの連結部の剛性よりも低く、振動の伝達速度が電子打楽器10Bに比べて緩やかである。このため、T_Pの長さは、電子打楽器10Aに比べて長くとっている。
図19は、電子打楽器10Cの打面13aを打撃した場合における、打面13aと、打面13aに隣接する打面13bの信号波形を示す。最上段には、打面13aを打撃した場合の波形(打面13aの自己振動波形)を示す。上から二番目の段には、整流処理後の打面13aの打撃波形が示されている。上から三番目の段には、打面13aの打撃に伴う打面13bの励振(クロストーク)を示す。上から四番目の段(最下段)には、整流処理後の打面13bのクロストーク波形が示されている。打面13bのクロストークのキャンセルは、打面13aの自己振動波形を用いて生成したXTCエンベロープを用いて行われる。
電子打楽器10Cのパッドは、堅い樹脂製の筐体上に配置されているため、電子打楽器10A及び10Bに比べて振動が伝わりやすい。このため、T_Pの時間長は短くなっている。
実施形態によれば、電子打楽器10Aのような、反対方向を向いた二つの打面13a及び13bを有する電子打楽器にクロストークキャンセル処理を適用することができる。また、実施形態に係る電子打楽器10A、10B、10Cでは、クロストークを適正にキャセルできるとともに、同時撃ちのような、二つの打面が同時に打撃された場合、打撃のタイミングにズレが生じても、タイミングの遅い方の打撃によるピークがクロストークとして除去されることを回避することができる。
実施形態では、エンベロープを生成する態様について説明したが、エンベロープ(L(t)の時間的変化)を予め記憶装置12に記憶しておき、エンベロープ算出のステップで、記憶装置12から時間tに応じたXTCレベルL(t)を読み出して供給するようにしてもよい。このようにすれば、CPU11の付加を軽減することができ、処理時間の短縮を図ることができる。実施形態にて示した構成は、目的を逸脱しない範囲で適宜組み合わせることができる。
10・・・電子楽器
10A、10B、10C・・・電子打楽器
11・・・CPU
12・・・記憶装置
13・・・演奏操作子
13a〜13h・・・打面

Claims (15)

  1. 第1の打面と、
    前記第1の打面の方向と反対の方向を向いた第2の打面と、
    前記第2の打面の振動が自己振動か前記第1の打面の打撃に伴う励振かを判定するための基準値の時間的変化を示すエンベロープを、前記第1の打面の振動を示す波形に基づいて生成する処理と、前記エンベロープが示す前記基準値を用いて、前記第2の打面の打撃を示す情報に前記第2の打面の励振に基づく情報を含めない処理と、を行う制御装置と、を含む電子打楽器。
  2. 前記制御装置は、所定の時点毎に、前記第2の打面の振動を示す波形のレベルと、前記エンベロープが示すその時点の基準値を閾値に加算した比較対象レベルとの比較を行い、比較対象レベルを超える波形のスキャンを行い、そうでない波形のスキャンを行わない
    請求項1に記載の電子打楽器。
  3. 前記第2の打面が前記第1の打面と連結部を介して連結されている
    請求項1又は2に記載の電子打楽器。
  4. 前記エンベロープは、開始時点から第1の時点まで第1の期間において前記基準値の増加を示し、第1の時点から終点までの第2の期間において前記基準値の減少を示す
    請求項1から3のいずれか一項に記載の電子打楽器。
  5. 前記開始時点における基準値の値が前記第1の時点における最大振動値に所定係数を乗じた値である
    請求項4に記載の電子打楽器。
  6. 第1の演奏操作子と第2の演奏操作子とを含む電子楽器であって、
    前記第2の演奏操作子の振動が自己振動か前記第1の演奏操作子の振動に伴う励振かを判定するための基準値の時間的変化を示すエンベロープを、前記第1の演奏操作子の振動を示す波形に基づいて生成する処理と、前記エンベロープが示す前記基準値を用いて、前記第2の演奏操作子の操作を示す情報に前記第2の演奏操作子の励振に基づく情報を含めない処理と、を行う制御装置と、
    を含み、
    前記エンベロープは、開始時点から第1の時点まで第1の期間において前記基準値の増加を示し、第1の時点から終点までの第2の期間において前記基準値の減少を示す
    電子楽器。
  7. 前記制御装置は、所定の時点毎に、前記第2の演奏操作子の振動を示す波形のレベルと、前記エンベロープが示すその時点の基準値を閾値に加算した比較対象レベルとの比較を行い、比較対象レベルを超える波形のスキャンを行い、そうでない波形のスキャンを行わない
    請求項6に記載の電子楽器。
  8. 前記開始時点における基準値の値が前記第1の時点における最大振動値に所定係数を乗じた値である
    請求項6又は7に記載の電子楽器。
  9. 前記電子楽器は、電子打楽器であり、
    前記第1の演奏操作子及び前記第2の演奏操作子は、第1の打面及び第2の打面である請求項6から8のいずれか一項に記載の電子楽器。
  10. 前記第2の打面は、前記第1の打面の方向と反対方向を向いている
    請求項9に記載の電子楽器。
  11. 前記第1の打面は、連結部を介して前記第2の打面と連結されている
    請求項10に記載の電子楽器。
  12. 第1の打面と、前記第1の打面の方向と反対の方向を向いた第2の打面とを備える電子打楽器の情報処理装置であって、
    前記第2の打面の振動が自己振動か前記第1の打面の打撃に伴う励振かを判定するための基準値の時間的変化を示すエンベロープを、前記第1の打面の振動を示す波形に基づいて生成する処理と、前記エンベロープが示す前記基準値を用いて、前記第2の打面の打撃を示す情報に前記第2の打面の励振に基づく情報を含めない処理と、を行う制御装置、
    を含む情報処理装置。
  13. 第1の打面と、前記第1の打面の方向と反対の方向を向いた第2の打面とを備える電子打楽器の制御装置が、
    前記第2の打面の振動が自己振動か前記第1の打面の打撃に伴う励振かを判定するための基準値の時間的変化を示すエンベロープを、前記第1の打面の振動を示す波形に基づいて生成し、
    前記エンベロープが示す前記基準値を用いて、前記第2の打面の打撃を示す情報から前記第2の打面の励振に基づく情報を含めない
    ことを含む情報処理方法。
  14. 第1の演奏操作子と第2の演奏操作子とを含む電子楽器の情報処理装置であって、
    前記第2の演奏操作子の振動が自己振動か前記第1の演奏操作子の振動に伴う励振かを判定するための基準値の時間的変化を示すエンベロープを、前記第1の演奏操作子の振動を示す波形に基づいて生成する処理と、前記エンベロープが示す前記基準値を用いて、前記第2の演奏操作子の操作を示す情報に前記第2の演奏操作子の励振に基づく情報を含めない処理と、を行う制御装置を含み、
    前記エンベロープは、開始時点から第1の時点まで第1の期間において前記基準値の増加を示し、第1の時点から終点までの第2の期間において前記基準値の減少を示す
    情報処理装置。
  15. 第1の演奏操作子と第2の演奏操作子とを含む電子楽器の制御装置が、
    前記第2の演奏操作子の振動が自己振動か前記第1の演奏操作子の振動に伴う励振かを判定するための基準値の時間的変化を示すエンベロープを、前記第1の演奏操作子の振動を示す波形に基づいて生成し、
    前記エンベロープが示す前記基準値を用いて、前記第2の演奏操作子の操作を示す情報に前記第2の演奏操作子の励振に基づく情報を含めない
    ことを含み、
    前記エンベロープは、開始時点から第1の時点まで第1の期間において前記基準値の増加を示し、第1の時点から終点までの第2の期間において前記基準値の減少を示す
    情報処理方法。
JP2019191583A 2019-10-18 2019-10-18 電子打楽器、電子楽器、情報処理装置、及び情報処理方法 Pending JP2021067752A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019191583A JP2021067752A (ja) 2019-10-18 2019-10-18 電子打楽器、電子楽器、情報処理装置、及び情報処理方法
CN202010861765.XA CN112687249A (zh) 2019-10-18 2020-08-25 电子打击乐器、电子乐器、信息处理装置及信息处理方法
US17/012,003 US11600253B2 (en) 2019-10-18 2020-09-03 Electronic percussion instrument, electronic musical instrument, information processing device, and information processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019191583A JP2021067752A (ja) 2019-10-18 2019-10-18 電子打楽器、電子楽器、情報処理装置、及び情報処理方法

Publications (1)

Publication Number Publication Date
JP2021067752A true JP2021067752A (ja) 2021-04-30

Family

ID=75445392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019191583A Pending JP2021067752A (ja) 2019-10-18 2019-10-18 電子打楽器、電子楽器、情報処理装置、及び情報処理方法

Country Status (3)

Country Link
US (1) US11600253B2 (ja)
JP (1) JP2021067752A (ja)
CN (1) CN112687249A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013380A1 (ja) * 2021-08-06 2023-02-09 ローランド株式会社 電子打楽器および打面部の固定方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021067752A (ja) * 2019-10-18 2021-04-30 ローランド株式会社 電子打楽器、電子楽器、情報処理装置、及び情報処理方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4067253A (en) * 1976-04-02 1978-01-10 The Wurlitzer Company Electronic tone-generating system
JPS5924434B2 (ja) * 1977-10-15 1984-06-09 カシオ計算機株式会社 電子楽器
US4205582A (en) * 1979-02-22 1980-06-03 Kimball International, Inc. Percussion envelope generator
US4535669A (en) * 1982-07-13 1985-08-20 Casio Computer Co., Ltd. Touch response apparatus for electronic musical apparatus
JP2606918B2 (ja) * 1989-03-27 1997-05-07 株式会社河合楽器製作所 楽音情報演算方式
US5147970A (en) * 1989-08-11 1992-09-15 Casio Computer Co., Ltd. Electronic musical instrument for generating musical tones on the basis of characteristics of input waveform signal
JP3114283B2 (ja) * 1991-09-24 2000-12-04 ヤマハ株式会社 楽音信号発生装置
JP2650577B2 (ja) * 1992-09-10 1997-09-03 ヤマハ株式会社 楽音合成装置
JPH0769687A (ja) 1993-09-03 1995-03-14 Yazaki Corp 光ファイバテープ心線の製造方法
US5438529A (en) * 1994-01-26 1995-08-01 Immersion Human Interface Corporation Percussion input device for personal computer systems
JP3045375B2 (ja) * 1996-05-18 2000-05-29 ヤマハ株式会社 楽音合成装置
US6610917B2 (en) * 1998-05-15 2003-08-26 Lester F. Ludwig Activity indication, external source, and processing loop provisions for driven vibrating-element environments
JP4228615B2 (ja) * 2002-08-07 2009-02-25 ヤマハ株式会社 電子打楽器
JP4124343B2 (ja) * 2003-04-11 2008-07-23 ローランド株式会社 電子打楽器
JP4333592B2 (ja) * 2004-05-24 2009-09-16 ヤマハ株式会社 電子ハイハットシンバル
JP5798494B2 (ja) 2012-01-13 2015-10-21 ローランド株式会社 発音制御装置
BE1023229B1 (nl) * 2015-06-30 2017-01-05 Van Den Broeck Bram Stemmen van een trommel
WO2019021405A1 (ja) * 2017-07-26 2019-01-31 ローランド株式会社 発音制御システム
JP2021067752A (ja) * 2019-10-18 2021-04-30 ローランド株式会社 電子打楽器、電子楽器、情報処理装置、及び情報処理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013380A1 (ja) * 2021-08-06 2023-02-09 ローランド株式会社 電子打楽器および打面部の固定方法

Also Published As

Publication number Publication date
US11600253B2 (en) 2023-03-07
US20210118417A1 (en) 2021-04-22
CN112687249A (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
JP4183626B2 (ja) 電子打楽器
US9099069B2 (en) Signal processing device
US8710347B2 (en) Performance apparatus and electronic musical instrument
US9035164B2 (en) Keyboard musical instrument
JP2021067752A (ja) 電子打楽器、電子楽器、情報処理装置、及び情報処理方法
JP2017102303A (ja) 打楽器およびカホン
WO2016152219A1 (ja) 付加的振動音を発生可能な楽器及び方法
JP5912483B2 (ja) 楽音制御装置
JP5151401B2 (ja) 音声処理装置
JP6856081B2 (ja) 電子楽器、電子楽器の制御方法、及びプログラム
CN110248272B (zh) 音响处理装置及音响处理方法
JP5088398B2 (ja) 演奏装置および電子楽器
JP2021051106A (ja) 電子管楽器、電子管楽器の制御方法及びプログラム
JP6443093B2 (ja) 信号処理装置、および信号処理システム
WO2015111657A1 (ja) 音響効果設定方法
JP3430585B2 (ja) 電子打楽器
JP4419808B2 (ja) 電子打楽器
JP2013044889A (ja) 演奏装置
JP7298650B2 (ja) 電子楽器、方法及びプログラム
JP7215523B2 (ja) 電子楽器、方法及びプログラム
JP2012013725A (ja) 演奏システムおよび電子楽器
JP2744257B2 (ja) 電子打楽器
WO2021131067A1 (ja) 電子打楽器のフィードバック制御装置及び方法
JP2021105682A (ja) 電子打楽器および楽音生成方法
JP3012135B2 (ja) 電子楽器