JP2021051968A - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
JP2021051968A
JP2021051968A JP2019175415A JP2019175415A JP2021051968A JP 2021051968 A JP2021051968 A JP 2021051968A JP 2019175415 A JP2019175415 A JP 2019175415A JP 2019175415 A JP2019175415 A JP 2019175415A JP 2021051968 A JP2021051968 A JP 2021051968A
Authority
JP
Japan
Prior art keywords
electrode
short
separator
secondary battery
mixture layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019175415A
Other languages
English (en)
Other versions
JP7125658B2 (ja
Inventor
康資 岩瀬
Kosuke Iwase
康資 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019175415A priority Critical patent/JP7125658B2/ja
Priority to US17/009,828 priority patent/US11646475B2/en
Priority to KR1020200112014A priority patent/KR102466796B1/ko
Priority to CN202010967391.XA priority patent/CN112563681B/zh
Priority to DE102020211832.9A priority patent/DE102020211832A1/de
Publication of JP2021051968A publication Critical patent/JP2021051968A/ja
Application granted granted Critical
Publication of JP7125658B2 publication Critical patent/JP7125658B2/ja
Priority to US18/189,248 priority patent/US20230246316A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】充電中に過剰な電流が供給された際に、電池温度が高温域まで急激に上昇することを防止できる非水電解質二次電池を提供する。【解決手段】ここに開示される二次電池の電極体20は、複数の電極シート50、60の電極合材層54、64同士が重ねられたコア部22と、集電箔露出部52aが重ねられた端子接続部24と、端子接続部24とコア部22との境界に形成されており、電極合材層64と集電箔露出部52aとが対向する合材層非対向部27とを備えている。そして、ここに開示される二次電池では、合材層非対向部27において電極シート50、60の間に介在するセパレータ70に、所定の深さdの短絡促進部72が形成されている。これにより、電極合材層54、64同士の内部短絡が生じて電池温度が高温域まで急激に上昇する前に、電極合材層64と集電箔露出部52aとの内部短絡を生じさせて充電を停止させることができる。【選択図】図4

Description

本発明は、非水電解質二次電池に関する。
近年、リチウムイオン二次電池等の非水電解質二次電池は、パソコン、携帯端末等のポータブル電源や、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両駆動用電源などに好適に用いられている。
非水電解質二次電池では、充電時に大きな電流が流れて過充電状態になった際に、200℃以上の高温域まで電池温度が昇温することがある。このような過充電時の高温域への昇温を防止して高い安全性を確保する技術の一つとして、正極と負極との間に介在するセパレータにシャットダウン機能を付与する技術が挙げられる。具体的には、非水電解質二次電池のセパレータには、電荷担体(例えば、リチウムイオン)を通過させる微細孔が形成されている。シャットダウン機能を有するセパレータは、過充電初期の温度上昇で溶融して微細孔を塞ぐため、高温域への昇温が始まる前に充電を停止させることができる。かかるシャットダウン機能を有するセパレータの一例が特許文献1に開示されている。
特開2006−331922号公報
ところで、近年の非水電解質二次電池の分野では、安全性への要求の高まりから、過充電時の高温域への昇温をより確実に防止できる技術の開発が求められている。例えば、過充電の初期に過剰な電流が供給されて大きな温度上昇が生じた場合、セパレータの溶融が急激に進行する可能性がある。この場合、電荷担体の遮断による充電の停止(シャットダウン機能)が働く前に正極と負極との接触による内部短絡が生じ、電池温度が高温域まで急激に上昇する可能性がある。
本発明は、かかる問題を解決するためになされたものであり、その主な目的は、充電中に過剰な電流が供給された際に、電池温度が高温域まで急激に上昇することを防止できる非水電解質二次電池を提供することを目的とする。
上記目的を実現するべく、本発明によって以下の構成の非水電解質二次電池(以下、単に「二次電池」ともいう)が提供される。
ここで開示される二次電池は、複数の電極シートがセパレータを介して重ねられた電極体と、電極体に電気的に接続される一対の電極端子とを備えている。かかる二次電池の電極シートは、集電箔の表面に電極合材層が形成されたシート状の電極であって、幅方向の一方の側縁部に集電箔が露出した集電箔露出部が形成されている。また、電極体は、幅方向の中央部に形成されており、複数の電極シートの電極合材層同士が重ねられたコア部と、幅方向の両側縁部の各々に形成されており、集電箔露出部が重ねられ、電極端子が接続される端子接続部と、端子接続部とコア部との境界の少なくとも一方に形成されており、電極合材層と集電箔露出部とが対向する合材層非対向部とを備えている。そして、ここに開示される二次電池では、合材層非対向部において電極シートの間に介在するセパレータに、当該セパレータの厚みに対して30%以上の深さの凹部からなる短絡促進部が形成されている。
ここに開示される二次電池では、所定の深さの凹部(短絡促進部)がセパレータに形成されている。このような構造のセパレータが加熱されると、短絡促進部が形成された位置から溶融が始まる。このため、短絡促進部の形成位置を調節することによって、過剰な電流の供給による温度上昇が生じた際に内部短絡が生じる位置を制御することができる。そして、ここに開示される二次電池では、上述の短絡促進部が、電極合材層と集電箔露出部とが対向した合材層非対向部に形成されている。本発明者の検討によると、高温域への急激な温度上昇が生じるのは、電極体のコア部において電極合材層同士の内部短絡が生じた場合であり、合材層非対向部において電極合材層と集電箔露出部(集電箔)との間で内部短絡が生じても、急激な温度上昇が生じずに充電が停止する。すなわち、ここに開示される二次電池によると、過剰な電流の供給による温度上昇が生じた際に、電極合材層と集電箔との間で内部短絡が発生するように、セパレータにおける短絡促進部の形成位置が調節されているため、電池温度が高温域まで急激に上昇することを防止できる。
ここに開示される非水電解質二次電池の好ましい一態様では、短絡促進部は、コア部の側縁に沿って延びる長尺の溝である。
これによって、電極体のコア部で大きな温度上昇が生じた際に当該コア部で生じた熱が短絡促進部に効率よく伝わるため、合材層非対向部において適切に内部短絡を生じさせることができる。
ここに開示される非水電解質二次電池の好ましい一態様では、端子接続部と電極端子との接続箇所に、端子接続部と電極端子とを接合した接合部が形成されており、短絡促進部の総面積が、近接する方の接合部の面積の25%以上である。
一般的な二次電池では、過剰な電流が供給された際に、端子接続部と電極端子との接合部が急激に発熱することがある。本態様によると、かかる接合部での発熱を考慮して、短絡促進部の面積が規定されているため、合材層非対向部においてより適切に内部短絡を生じさせることができる。
ここに開示される非水電解質二次電池の好ましい一態様では、短絡促進部は、電極体の厚み方向の最外側に配置されたセパレータに形成されている。
これによって、短絡促進部の形成が容易になるため、短絡促進部を形成する工程を設けることによる生産効率の低下を抑制することができる。
ここに開示される非水電解質二次電池の好ましい一態様では、短絡促進部は、電極体の厚み方向の内側に配置されたセパレータに形成されている。
一般的な二次電池の電極体内部は、発熱しやすく、かつ、放熱しにくいため、高温になりやすい傾向がある。この点を考慮し、電極体の内側に配置されたセパレータに短絡促進部を形成することによって、合材層非対向部において適切に内部短絡を生じさせることができる。
本発明の一実施形態に係る非水電解質二次電池を模式的に示す斜視図である。 本発明の一実施形態に係る非水電解質二次電池の内部構造を模式的に示す正面図である。 本発明の一実施形態における捲回電極体を模式的に示す斜視図である。 本発明の一実施形態における捲回電極体の幅方向に沿った断面を模式的に示す図である。 本発明の他の実施形態における捲回電極体を模式的に示す側面図である。 本発明の他の実施形態における積層型電極体の構成を模式的に示す斜視図である。 本発明の他の実施形態における積層型電極体を構成する各部材を模式的に示す説明図である。
以下、本発明の一実施形態に係る非水電解質二次電池の一例としてリチウムイオン二次電池について図面を参照しながら説明する。以下の図面において、同じ作用を奏する部材・部位には同じ符号を付して説明している。なお、各図における寸法関係(長さ、幅、厚みなど)は実際の寸法関係を反映するものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、電解質の組成および製法など)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。なお、ここで開示される非水電解質二次電池の構造は、リチウムイオン二次電池に限定されず、種々の二次電池(例えば、ニッケル水素電池)に適用することができる。
1.第1の実施形態
図1は本実施形態に係る非水電解質二次電池を模式的に示す斜視図である。図2は本実施形態に係る非水電解質二次電池の内部構造を模式的に示す正面図である。図3は本実施形態における捲回電極体を模式的に示す斜視図である。また、図4は本実施形態における捲回電極体の幅方向に沿った断面を模式的に示す図である。また、各図における符号Xは「(非水電解質二次電池の)幅方向」を指し、符号Yは「(非水電解質二次電池の)厚み方向」を指し、符号Zは「(非水電解質二次電池の)高さ方向」を指す。なお、これらの方向は、説明の便宜上定めたものであり、ここに開示される非水電解質二次電池を設置する方向を限定することを意図したものではない。
(1)ケース
図1に示すように、本実施形態に係る非水電解質二次電池1は、扁平な角型のケース10を備えている。このケース10は、上面開口(図示省略)を有する角型のケース本体12と、当該上面開口を塞ぐ蓋体14とを備える。このケース10は、例えば、アルミニウム合金などの軽量で強度が高い金属材料を主体に構成されていると好ましい。図2に示すように、ケース10の内部には、電極体20が収容されている。また、図示は省略するが、ケース10の内部には、電極体20の他に非水電解質(典型的には、非水電解液)も収容されている。非水電解質は、一般的なリチウムイオン二次電池に用いられ得るものを特に制限なく使用することができ、本発明を特徴付けるものでないため説明を省略する。
また、本実施形態に係る二次電池1は、電極体20に電気的に接続される一対の電極端子を備えている。電極体20と電極端子との接続については後に詳しく説明するが、本明細書では、電極体20の正極側に接続される電極端子を「正極端子16」といい、負極側に接続される電極端子を「負極端子18」という。これらの正極端子16と負極端子18の各々は、ケース10の蓋体14に取り付けられている。
(2)電極体
図3に示すように、電極体20は、セパレータ70を介して複数の電極シート50、60を重ねることによって形成されている。本実施形態において用いられる電極体20は、扁平形状の捲回電極体である。この扁平形状の捲回電極体20は、2枚のセパレータ70を介して正極および負極の一対の電極シート50、60を積層させた積層体を形成し、この積層体を巻き重ねた捲回体を押し潰すことによって形成される。なお、扁平形状の捲回電極体を形成する手段は、これに限定されず、例えば、矩形の板状の軸芯の周囲にセパレータと電極シートを巻き重ねるという手段を採用することもできる。
(3)電極
電極シート50、60は、集電箔52、62の表面に電極合材層54、64が形成されたシート状の電極である。さらに、各々の電極シート50、60の幅方向Xにおける一方の側縁部には、電極合材層54、64が形成されずに、集電箔52、62が露出した集電箔露出部52a、62aが形成されている。なお、本明細書では、正極側の電極シート50を「正極シート50」と称し、負極側の電極シート60を「負極シート60」と称する。以下、正極シート50と負極シート60について具体的に説明する。
(a)正極シート
正極シート50は、正極集電箔52と、当該正極集電箔52の両面に形成された正極合材層54とを有している。この正極シート50の幅方向Xの一方の側縁部には、正極合材層54が形成されず、正極集電箔52が露出した正極露出部52aが形成されている。正極集電箔52には、この種の二次電池の正極集電箔として用いられる材料を特に制限なく使用できる。典型的には、正極集電箔52は、安価であり、かつ、良好な導電性を有する金属、例えば、アルミニウム、ニッケル、チタン、ステンレス鋼等の金属、またはこれらの金属を含む合金等から構成されていることが好ましい。
正極合材層54には、正極活物質が含まれている。かかる正極活物質の一例として、LiCoO、LiNiO、LiNiCoMn(1−x−y)(ここで0<x<1、0<y<1、0<x+y<1)等に代表される層状構造の複合酸化物が挙げられる。あるいは、LiNiMn、LiMn、Li1+xMn2−y(ここでMは存在しないか若しくはAl、Mg、Co、Fe、Ni、Znから選ばれる一種以上の金属元素、0≦x<1、0≦y<2)で表されるようなスピネル構造の複合酸化物、LiFePO等のオリビン構造の複合化合物、等が挙げられる。なお、正極活物質は、ここに開示される技術を限定するものではなく、この種の二次電池で従来から用いられている種々の化合物を使用できるため詳細な説明を説明する。
なお、正極合材層54には、正極活物質以外の任意成分が添加されていてもよい。かかる任意成分としては、例えば、導電材やバインダ等が挙げられる。導電材としては、アセチレンブラック(AB)、グラファイト、カーボンナノチューブ等の炭素材料を好適に使用し得る。また、バインダとしては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系バインダや、スチレンブタジエンゴム(SBR)等のゴム系バインダ等を使用できる。
(b)負極シート
負極シート60は、負極集電箔62と、当該負極集電箔62の両面に形成された負極合材層64とを有している。上述した正極シート50と同様に、負極シート60にも集電箔露出部が設けられている。具体的には、負極シート60では、幅方向Xの他方の側縁部に、負極合材層64が形成されずに負極集電箔62が露出した負極露出部62aが形成されている。負極集電箔62には、この種の二次電池の負極集電箔として用いられる材料を特に制限なく使用できる。典型的には、負極集電箔62は、安価であり、かつ、良好な導電性を有する金属、例えば、銅や銅を主体とする合金を用いることができる。
また、図3に示すように、本実施形態に係る二次電池では、負極合材層64の容量を増やして負極側での金属Liの析出を抑制するために、正極合材層54の幅w1よりも長い幅w2を有した負極合材層64が形成されている。この負極合材層64には、負極活物質が含まれている。かかる負極活物質の一例として、グラファイト、メソカーボンマイクロビーズ、カーボンブラック(アセチレンブラック、ケッチェンブラック等)のような炭素材料が挙げられる。なお、負極活物質は、ここに開示される技術を限定するものではなく、この種の二次電池で従来から用いられている種々の化合物を使用できるため詳細な説明を説明する。
また、負極合材層64には、負極活物質以外の任意成分を添加してもよい。例えば、負極合材層64には、増粘剤やバインダ等を添加することができる。増粘剤としては、カルボキシメチルセルロース(CMC)等を使用できる。また、バインダとしては、正極合材層54と同様に、PVDF、PTFE等のフッ素系バインダや、SBR等のゴム系バインダなどを好適に使用できる。
(4)セパレータ
セパレータ70は、電極シート50、60の間に介在する絶縁性のシート状部材である。本実施形態における電極体20では、負極合材層64の幅w2よりも長い幅w3を有した2枚のセパレータ70が使用されている。そして、一方のセパレータ70は、正極シート50の背面に配置され、他方のセパレータ70は、負極シート60の背面に配置されている。このように、セパレータ70、負極シート60、セパレータ70、正極シート50の順で各々のシート状部材を積層させた積層体を捲回することによって、2枚のセパレータ70を介して正極シート50と負極シート60とが巻き重ねられた捲回電極体20が形成される。
また、セパレータ70には、電荷担体(リチウムイオン)を透過させる微細孔が複数形成されている。これによって、正極シート50と負極シート60との短絡を防止した上で、正極シート50と負極シート60との間で電荷担体を移動させることができる。なお、セパレータ70の材料は、一般的な二次電池に用いられるものと同様のものを特に制限なく使用することができる。かかるセパレータ70の材料の一例として、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂材料が挙げられる。これらのなかでも、PEやPP等のポリオレフィン樹脂からなる樹脂シートは、80℃〜140℃(典型的には90℃〜120℃、好ましくは100℃〜110℃、例えば105℃)程度の温度で溶融し、微細孔を塞ぐシャットダウン機能を発揮できる。また、上述のポリオレフィン樹脂は、後述する短絡促進部72からのセパレータ70の溶融を適切に生じさせることができるという観点からも好適である。なお、セパレータ70は、単一の材料から構成される単層構造であってもよく、材質や性状(例えば、平均厚みや空孔率等)の異なる2種以上の樹脂シートが積層された構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。
そして、本実施形態において用いられるセパレータ70には短絡促進部72が形成されている。図4に示すように、短絡促進部72は、セパレータ70の厚みtに対して30%以上の深さdを有する凹部である。かかる短絡促進部72を有するセパレータ70が加熱されると、当該短絡促進部72が形成された薄い位置から溶融が開始する。このため、セパレータ70における短絡促進部72の形成位置を調節することによって、過剰な充電電流による温度上昇が生じた際に、正極シート50と負極シート60との間で内部短絡が生じる位置を制御することができる。なお、意図した位置での内部短絡をより確実に生じさせるという観点から、短絡促進部72の深さdは、セパレータ70の厚みtの35%以上が好ましく、40%以上がより好ましく、45%以上がさらに好ましく、50%以上が特に好ましい。一方、意図した内部短絡を生じさせるという観点からは、短絡促進部72の深さdの上限は、特に限定されず、セパレータ70の厚みの90%以下であってもよい。但し、セパレータ70の強度を考慮すると、短絡促進部72の深さdの上限は、セパレータ70の厚みの80%以下が好ましく、75%以下がより好ましく、70%以下がさらに好ましく、65%以下が特に好ましい。
そして、本実施形態に係る二次電池では、上述の短絡促進部72が、電極合材層と集電箔露出部とが対向する合材層非対向部という領域において、電極シートの間に介在するセパレータに形成されている。これによって、充電中に過剰な電流が供給されて大きな温度上昇が生じた際に、電極合材層と集電箔露出部(集電箔)との内部短絡を意図的に生じさせ、高温域への急激な昇温が生じる前に充電を停止させることができる。以下、本実施形態に係る二次電池1の短絡促進部72の形成位置について、捲回電極体20の詳細な構造とあわせて具体的に説明する。
先ず、図3に示すように、本実施形態では、捲回電極体20を作製する際に、幅方向Xの一方から正極露出部52aがはみ出し、かつ、他方から負極露出部62aがはみ出すように、正極シート50と負極シート60とを積層させている。この積層体を捲回した捲回電極体20では、コア部22と、端子接続部24、26と、合材層非対向部27、28という3種類の領域が形成される。
コア部22は、捲回電極体20の幅方向Xの中央部に形成される領域である。このコア部22では、電極シート50、60の電極合材層54、64同士が重ねられている。本実施形態におけるコア部22では、正極合材層54と負極合材層64とがセパレータ70を介して対向するように巻き重ねられている。本実施形態に係る二次電池1では、主にこのコア部22において、電荷担体の移動による充放電反応が生じる。
また、端子接続部24、26は、捲回電極体20の幅方向Xの両側縁部の各々に形成される領域である。この端子接続部24、26は、集電箔露出部52a、62aが重ねられ、電極端子16、18(図2参照)が接続される。本実施形態では、幅方向Xの一方の側縁部に、正極露出部52aが巻き重ねられた正極側の端子接続部(正極接続部)24が形成され、他方の側縁部に、負極露出部62aが巻き重ねられた負極側の端子接続部(負極接続部)26が形成される。そして、正極接続部24には正極端子16が接続され、負極接続部26には負極端子18が接続される(図2参照)。かかる端子接続部24、26と電極端子16、18との接続には、超音波溶接、レーザ溶接、抵抗溶接などが用いられ、接続部位には接合部42、44が形成される。
合材層非対向部27、28は、コア部22と端子接続部24、26との境界に形成された、電極合材層54、64が対向しない領域である。具体的には、図3に示すように、本実施形態では、正極合材層54の幅w1よりも長くなるように負極合材層64の幅w2が設定されているため、捲回電極体20の中央部のコア部22と両側縁部の端子接続部24、26との境界には、正極合材層54が存在せず、負極合材層64が存在する合材層非対向部27、28が形成される。より具体的には、正極接続部24とコア部22との境界では、セパレータ70を介して負極合材層64と正極露出部52a(正極集電箔52)が巻き重ねられた合材層非対向部27が形成される。一方、負極接続部26とコア部22との境界では、セパレータ70と負極合材層64とが巻き重ねられた合材層非対向部28が形成される。
そして、図3および図4に示すように、本実施形態に係る二次電池1では、電極合材層(負極合材層64)と集電箔露出部(正極露出部52a)とが対向する合材層非対向部27におけるセパレータ70に短絡促進部72が形成されている。これによって、過剰な充電電流による温度上昇が生じた際に、合材層非対向部27に配置されたセパレータ70が他の領域よりも先に溶融し、負極合材層64と正極露出部52aとの内部短絡が生じる。このような電極合材層と集電箔との内部短絡が生じると充電が停止するが、このときの温度上昇の程度は、コア部で生じ得る電極合材層同士の内部短絡と比べて低いことが本発明者によって確認されている。したがって、本実施形態では、過剰な充電電流が供給されて温度上昇が生じた際に、高温域への急激な昇温の原因となるコア部22での内部短絡が生じる前に、電極合材層64と集電箔52との内部短絡を生じさせて充電が停止するように、短絡促進部72の形成位置が調節されている。したがって、本実施形態に係る二次電池1によると、充電中に過剰な電流が供給された際に、電池温度が高温域まで急激に上昇することを防止し、従来よりも高い安全性を確保することができる。
なお、本実施形態における短絡促進部72は、コア部22の側縁に沿って延びる長尺の溝である(図3参照)。かかる長尺な溝状の短絡促進部72は、捲回電極体20の全周に亘ってセパレータ70に形成されている。このような長尺な溝状の短絡促進部72は、捲回電極体20を形成する際のセパレータ70の移送ライン上にケガキ針を配置することによって形成することができる。このコア部22に沿って短絡促進部72を形成することによって、コア部22で生じた大きな熱を短絡促進部72に効率よく伝えることができるため、合材層非対向部27においてセパレータ70を適切に溶融させ、コア部22において内部短絡が生じることを防止できる。
また、過剰な電流充電が供給された際の発熱部位の他の例として、端子接続部24、26と電極端子16、18との接合部42、44(図2参照)が挙げられる。この接合部42、44での発熱を考慮すると、正面視における短絡促進部72の総面積が、近接する方の接合部(ここでは、正極接続部24と正極端子16との接合部42)の面積の25%以上であることが好ましい。また、合材層非対向部27においてより適切に内部短絡を生じさせるという観点から、短絡促進部72の総面積は、接合部42の面積の30%以上がより好ましく、35%以上がさらに好ましく、40%以上が特に好ましい。また、短絡促進部72の総面積の上限は、特に限定されず、接合部42の面積の90%以下であってもよい。但し、セパレータ70の強度を考慮すると、当該短絡促進部72の総面積の上限は、接合部42の面積の80%以下が好ましく、70%以下がより好ましく、60%以下がさらに好ましく、50%以下が特に好ましい。なお、本明細書における「短絡促進部の総面積」は、セパレータ表面に形成された全ての短絡促進部の正面視における面積の合計を示すものであり、電極体を分解し、使用した複数枚のセパレータの各々の表面を調べることによって測定できる。
2.他の実施形態
以上、本発明の一実施形態に係る非水電解質二次電池について説明した。なお、上述した実施形態は、本発明を限定することを意図したものではなく、種々の変更を行うことができる。以下、本発明の他の実施形態に係る非水電解質二次電池について説明する。
(1)短絡促進部の形状
上述の実施形態では、コア部22の側縁に沿った長尺な溝状の短絡促進部72がセパレータ70に形成されている。しかし、短絡促進部は、セパレータの厚みに対して30%以上の深さを有する凹部であればよく、当該短絡促進部の正面視における形状は特に限定されない。例えば、合材層非対向部のセパレータに、ドット状の凹部(短絡促進部)を複数形成してもよい。また、合材層非対向部のセパレータに、電極体の幅方向に沿った溝状の短絡促進部を複数本形成してもよい。これらの場合でも、大きな温度上昇が生じた際に、合材層非対向部からセパレータの溶融を開始させ、電極合材層と集電箔との内部短絡を生じさせることができる。
また、図4に示すように、上述した実施形態では、セパレータ70の片面に短絡促進部72が形成されている。しかし、短絡促進部は、セパレータの両面に形成されていてもよい。なお、セパレータの両面に短絡促進部を形成する場合には、2つの短絡促進部の深さの合計がセパレータ70の厚みの30%以上であれば、当該短絡促進部が形成された位置からセパレータを溶融させることができる。
(2)周方向における短絡促進部の形成位置
上述の実施形態では、コア部22の側縁に沿った溝状の短絡促進部72が捲回電極体20の全周に亘って形成されている。しかし、短絡促進部は、捲回電極体の全周に亘って形成されている必要はなく、周方向の特定の位置にのみ形成されていてもよい。この場合、セパレータの強度を十分に確保することができる。例えば、扁平形状の捲回電極体20は、図5に示すように、側面視において対向する一対の平坦部20aと、高さ方向Zにおける捲回電極体20の両端部に形成され、電極シートが湾曲している一対のR部20bとを備えている。かかる扁平形状の捲回電極体20において、短絡促進部は、平坦部20aに配置されたセパレータのみに形成されていてもよいし、R部20bに配置されたセパレータのみに形成されていてもよい。なお、一般的な扁平形状の捲回電極体20では、R部20bで生じた熱が放熱されにくい傾向がある。この点を考慮すると、R部20bに配置されたセパレータに短絡促進部を形成することが好ましい。
また、短絡促進部は、電極体20の厚み方向Yにおける特定の位置にのみに形成されていてもよい。例えば、厚み方向Yの最外側に配置されたセパレータは、短絡促進部を容易に形成できるため、短絡促進部を形成する工程を設けることによる生産効率の低下を抑制できる。一方、一般的な二次電池では、電極体の内部が発熱しやすく、かつ、放熱しにくいため、高温になりやすい傾向がある。この点を考慮すると、電極体20の厚み方向Yの内側に配置されたセパレータに短絡促進部を形成することが好ましい。
(3)正面視における短絡促進部の形成位置
図3に示すように、上述の実施形態では、正極合材層54の幅w1よりも、負極合材層64の幅w2が長いため、正極接続部24とコア部22との間に、負極合材層64と正極露出部52aとが対向する合材層非対向部27が形成される。そして、この正極接続部24とコア部22との間の合材層非対向部27におけるセパレータ70に短絡促進部72が形成されている。
しかしながら、短絡促進部が形成される合材層非対向部は、負極合材層と正極露出部とが対向する合材層非対向部に限定されない。例えば、正極と負極の各々の電極合材層の塗工幅や、正極シートと負極シートとの積層位置などを調節することによって、正極合材層と負極露出部とが対向する合材層非対向部を形成することもできる。この場合には、正極合材層と負極露出部とが対向する合材層非対向部におけるセパレータに短絡促進部を形成してもよい。この場合でも、大きな温度上昇が生じた際に、電極合材層と集電箔との内部短絡を意図的に生じさせ、電極合材層同士の内部短絡による高温域への急激な温度上昇を防止できる。また、合材層非対向部は、一対の端子接続部とコア部との境界の両方に形成されている必要はない。例えば、一方の端子接続部とコア部との境界に、電極合材層と集電箔露出部とが対向した合材層非対向部が形成されていれば、当該合材層非対向部におけるセパレータに短絡促進部を形成することによって、電極合材層同士の内部短絡による高温域への急激な温度上昇を防止できる。加えて、両方の合材層非対向部において電極合材層と集電箔露出部とが対向している場合は、両方の合材層非対向部のセパレータに短絡促進部を形成してもよい。
なお、正極合材層の幅と負極合材層の幅とは、同じであってもよい。このような場合でも、正極シートと負極シートとの積層位置を調節することによって、合材層非対向部を形成することができる。
(4)HRL層の形成
また、セパレータの表面には、HRL層(Heat Resistant Layer)が形成されていてもよい。かかるHRL層は、耐熱性の高い無機粒子(例えば、アルミナ粒子など)を含む層である。このようなHRL層を形成することによって、温度上昇によるセパレータの溶融・収縮を抑制できるため、コア部における電極合材層同士の内部短絡をより好適に防止できる。なお、このHRL層付セパレータを使用する場合、短絡促進部は、HRL層が形成されていない側の面と、HRL層が形成されている側の面の何れに形成されていてもよい。何れの場合でも、短絡促進部が形成された位置から好適にセパレータの溶融を開始させることができる。なお、短絡促進部の形成を容易にするという観点からは、HRL層が形成されていない側の面に短絡促進部を形成した方が好ましい。一方、短絡促進部からの溶融を生じさせやすくするという観点からは、HRL層が形成されている側の面に短絡促進部を形成した方が好ましい。
(5)電極体の構造
上述した実施形態では、図3に示すような捲回電極体20を備えた二次電池を対象としている。しかしながら、ここに開示される技術の効果を阻害しない限りにおいて、電極体は、従来公知の種々の構造を制限なく採用できる。換言すると、ここに開示される技術における電極体は、複数の電極シートがセパレータを介して重ねられることによって形成されており、かつ、電極合材層と集電箔露出部とが対向する合材層非対向部を有していればよく、電極シートとセパレータを巻き重ねる捲回電極体に限定されない。かかる電極体の他の例として、セパレータを介して複数の電極シートを積み重ねた積層型電極体が挙げられる。図6は他の実施形態における積層型電極体の構成を模式的に示す斜視図であり、図7は当該積層型電極体を構成する各部材を模式的に示す説明図である。
図6および図7に示すように、積層型電極体20Aは、矩形シート状のセパレータ70を間に介在させつつ、矩形の正極シート50と負極シート60とを交互に複数枚積層することにより構成される。この積層型電極体20Aには、正極合材層54と負極合材層64とが積み重ねられたコア部22Aと、正極露出部52aが積み重ねられた正極接続部24Aと、負極露出部62aが積み重ねられた負極接続部26Aとが形成される。そして、この積層型電極体20Aにおいても、例えば、正極合材層54の幅w1よりも負極合材層64の幅w2を長くすることによって、コア部22Aと端子接続部(正極接続部24A、極接続部26A)との境界に合材層非対向部27A、28Aを形成できる。そして、負極合材層64と正極露出部52aとが対向する合材層非対向部27Aにおけるセパレータ70に短絡促進部72を形成することによって、過剰な充電電流による大きな温度上昇が生じた際に、負極合材層64と正極露出部52aとの内部短絡を生じさせて充電を停止させることができる。このため、ここに開示される技術によると、積層型電極体20Aを備えた二次電池の場合でも、コア部22での内部短絡による高温域への急激な温度上昇を適切に防止することができる。
また、電極体の構造の他の例として、円筒状の捲回電極体などが挙げられる。このような円筒状の捲回電極体を用いる場合でも、電極合材層と集電箔露出部とが対向する合材層非対向部が形成されていれば、当該合材層非対向部におけるセパレータに短絡促進部を形成することによって、コア部22での内部短絡による高温域への急激な昇温を適切に抑制できる。
[試験例]
以下、本発明に関係する試験を説明するが、以下の説明は本発明を限定することを意図したものではない。
A.第1の試験
1.サンプルの作製
(1)サンプル1
サンプル1では、先ず、正極活物質(LiNi1/3Co1/3Mn1/3)と、導電材(AB)と、バインダ(PVdF)とを質量比で94:3:3の割合で溶媒(NMP)に分散させた正極スラリーを調製した。そして、この正極スラリーを正極集電箔(アルミニウム製)の両面に塗布した後に乾燥させることによって正極シートを作製した。次に、負極活物質(グラファイト)と、増粘剤(CMC)と、バインダ(SBR)とを質量比で98:1:1の割合で溶媒(水)に分散させた負極スラリーを調製した。そして、負極スラリーを負極集電箔(銅製)の両面に塗布した後に乾燥させることによって負極シートを作製した。そして、無機粒子(ベーマイト)と、バインダ(PVdF)とを質量比で98:2の割合で溶媒(NMP)に分散させたHRLスラリーを調製した。そして、厚さ20μmの三層樹脂フィルム(PP−PE−PP)の片面にHRLスラリーを塗布した後に乾燥させることによって、HRL層付セパレータを作製した。
次に、セパレータのHRL層と負極シートとが対向するように、セパレータ、負極、セパレータ、正極の順で各々のシート状材料を積層させて積層体を作製した。このとき、幅方向の一方の側縁部から正極露出部がはみ出し、かつ、他方の側縁部から負極露出部がはみ出すように各々のシート状材料を積層させた。さらに、本試験では、正極接続部とコア部との間に、負極合材層と正極露出部とが対向する合材層非対向部が形成されるように、各シートの積層位置を調節した。そして、積層体を捲回させた後に捲回体を押し潰すことによって扁平形状の捲回電極体を作製した。
次に、捲回電極体の正極接続部に正極端子(アルミニウム製)を超音波溶接で接続した後に、負極接続部に負極端子(銅製)を抵抗溶接によって接続した。そして、ケース(アルミニウム合金製)の内部に捲回電極体と非水電解液を収容し、当該ケースを密閉することによって試験用のリチウムイオン二次電池(サンプル1)を作製した。なお、本試験では、非水電解液として、ECとEMCとDMCとを体積比で1:1:1の割合で混合した溶媒に、リチウム塩(LiPF)を1mol/Lの濃度で溶解させたものを使用した。
(2)サンプル2
サンプル2では、HRL層とは反対側の面に、当該HRL層の厚みを除いたセパレータの厚み(三層樹脂フィルムの厚み)の10%の深さの凹部(短絡促進部)を形成したことを除いて、サンプル1と同じ条件で試験用電池を作製した。なお、本サンプルでは、負極合材層と正極露出部とが対向する合材層非対向部に短絡促進部が配置されるように、各シート状部材の積層位置を調節した。また、本サンプルでは、捲回後の電極体の厚み方向の最外側、かつ、R部に配置されるように、短絡促進部の位置を調節した。
(3)サンプル3〜5
サンプル3〜5では、短絡促進部の深さを異ならせたことを除いて、サンプル2と同じ条件で試験用電池を作製した。サンプル3〜5における短絡促進部の深さは、後述の表1に示す。
2.評価試験
本試験では、各サンプルのケース内部に熱電対を挿入して過充電試験を行った。なお、熱電対は、ケース内部のコア部近傍に配置した。そして、過充電試験では、−10℃の環境に試験用電池を設置し、上限電圧を25Vに設定した上で、SOC(State of Charge)が10%の状態から、10Cの充電レートで定電流充電(CC充電)を行った。そして、充電期間中のケース内部の温度を測定して最大温度(℃)を調べると共に、内部短絡による充電停止が生じたタイミングを調べた。結果を表1に示す。
Figure 2021051968
表1に示されるように、サンプル5は、他のサンプルと比較して、高温域への急激な温度上昇が顕著に抑制されていた。また、内部短絡による充電の停止が生じたタイミングも他のサンプルよりも早かった。このことから、セパレータの厚みの30%以上の深さの凹部(短絡促進部)をセパレータに形成することによって所望の位置からのセパレータの溶融を促すことができるため、この短絡促進部を合材層非対向部に配置することによって、電極合材層同士の短絡を防止して過剰な温度上昇を抑制できることが分かった。
B.第2の試験
1.サンプルの作製
セパレータにおける短絡促進部の形成位置を異ならせたことを除いて、第1の試験のサンプル5と同じ条件で5種類の試験用電池(サンプル6〜10)を作製した。各サンプルにおける短絡促進部の形成位置を表2に示す。
2.評価試験
第1の試験と同様の条件で過充電試験を実施し、充電期間中の最大温度(℃)と、充電停止時期を調べた。結果を表2に示す。なお、表2では、比較検討のために、第1の試験におけるサンプル1、5の結果も示す。
Figure 2021051968
表2に示すように、サンプル5〜10の何れにおいても、高温域への急激な温度上昇が抑制されていた。さらに、サンプル5、7、9を比較した結果、電極体の厚み方向における短絡促進部の形成位置は、中間部、最外周、最内周の順で昇温抑制効果が大きくなる傾向が確認された。また、捲回電極体のR部に短絡促進部が形成されたサンプル5、7、9と、平坦部に短絡促進部が形成されたサンプル6、8、10とを比較すると、R部に短絡促進部を形成した方が優れた昇温抑制効果が発揮されることが分かった。
以上、本発明の具体例としての試験例を説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
1 非水電解質二次電池
10 ケース
12 ケース本体
14 蓋体
16 正極端子(電極端子)
18 負極端子(電極端子)
20 電極体(捲回電極体)
20A 積層型電極体
20a 平坦部
20b R部
22、22A コア部
24、24A 正極接続部(端子接続部)
26、26A 負極接続部(端子接続部)
27、28、27A 合材層非対向部
42、44 接合部
50 正極シート(電極シート)
52 正極集電箔(集電箔)
52a 正極露出部(集電箔露出部)
54 正極合材層(電極合材層)
60 負極シート(電極シート)
62 負極集電箔(集電箔)
62a 負極露出部(集電箔露出部)
64 負極合材層(電極合材層)
70 セパレータ
72 短絡促進部

Claims (5)

  1. 複数の電極シートがセパレータを介して重ねられた電極体と、前記電極体に電気的に接続される一対の電極端子とを備えた非水電解質二次電池であって、
    前記電極シートは、集電箔の表面に電極合材層が形成されたシート状の電極であって、幅方向の一方の側縁部に前記集電箔が露出した集電箔露出部が形成され、
    前記電極体は、
    前記幅方向の中央部に形成されており、前記複数の電極シートの前記電極合材層同士が重ねられたコア部と、
    前記幅方向の両側縁部の各々に形成されており、前記集電箔露出部が重ねられ、前記電極端子が接続される端子接続部と、
    前記端子接続部と前記コア部との境界の少なくとも一方に形成されており、前記電極合材層と前記集電箔露出部とが対向する合材層非対向部と
    を備えており、
    前記合材層非対向部において前記電極シートの間に介在するセパレータに、当該セパレータの厚みに対して30%以上の深さの凹部からなる短絡促進部が形成されている、非水電解質二次電池。
  2. 前記短絡促進部は、前記コア部の側縁に沿って延びる長尺の溝である、請求項1に記載の非水電解質二次電池。
  3. 前記端子接続部と前記電極端子との接続箇所に、前記端子接続部と前記電極端子とを接合した接合部が形成されており、前記短絡促進部の総面積が、近接する方の前記接合部の面積の25%以上である、請求項1または2に記載の非水電解質二次電池。
  4. 前記短絡促進部は、前記電極体の厚み方向の最外側に配置されたセパレータに形成されている、請求項1〜3のいずれか一項に記載の非水電解質二次電池。
  5. 前記短絡促進部は、前記電極体の厚み方向の内側に配置されたセパレータに形成されている、請求項1〜3のいずれか一項に記載の非水電解質二次電池。
JP2019175415A 2019-09-26 2019-09-26 非水電解質二次電池 Active JP7125658B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019175415A JP7125658B2 (ja) 2019-09-26 2019-09-26 非水電解質二次電池
US17/009,828 US11646475B2 (en) 2019-09-26 2020-09-02 Nonaqueous electrolyte secondary battery
KR1020200112014A KR102466796B1 (ko) 2019-09-26 2020-09-03 비수전해질 이차 전지
CN202010967391.XA CN112563681B (zh) 2019-09-26 2020-09-15 非水电解质二次电池
DE102020211832.9A DE102020211832A1 (de) 2019-09-26 2020-09-22 Sekundärbatterie mit nichtwässrigem elektrolyt
US18/189,248 US20230246316A1 (en) 2019-09-26 2023-03-24 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019175415A JP7125658B2 (ja) 2019-09-26 2019-09-26 非水電解質二次電池

Publications (2)

Publication Number Publication Date
JP2021051968A true JP2021051968A (ja) 2021-04-01
JP7125658B2 JP7125658B2 (ja) 2022-08-25

Family

ID=74872699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019175415A Active JP7125658B2 (ja) 2019-09-26 2019-09-26 非水電解質二次電池

Country Status (5)

Country Link
US (2) US11646475B2 (ja)
JP (1) JP7125658B2 (ja)
KR (1) KR102466796B1 (ja)
CN (1) CN112563681B (ja)
DE (1) DE102020211832A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233149A (ja) * 1998-02-13 1999-08-27 Sony Corp 非水電解液電池
JP2008243660A (ja) * 2007-03-28 2008-10-09 Sanyo Electric Co Ltd 非水電解質二次電池
WO2009001502A1 (ja) * 2007-06-22 2008-12-31 Panasonic Corporation 非水系二次電池、電池パック、電源システム、及び電動機器
JP2012234822A (ja) * 2005-08-30 2012-11-29 Sanyo Electric Co Ltd 非水系二次電池
JP2014225327A (ja) * 2011-09-14 2014-12-04 パナソニック株式会社 非水電解質二次電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243037A (ja) * 2002-02-18 2003-08-29 Shin Kobe Electric Mach Co Ltd リチウムイオン電池
JP2006331922A (ja) 2005-05-27 2006-12-07 Nissan Motor Co Ltd 二次電池
JP5400268B2 (ja) * 2006-01-26 2014-01-29 パナソニック株式会社 リチウム二次電池
JP2009032668A (ja) 2007-06-22 2009-02-12 Panasonic Corp 非水系二次電池、電池パック、電源システム、及び電動機器
CN101510597B (zh) * 2008-12-05 2011-02-09 东莞新能源科技有限公司 锂离子电池及其隔离膜
JP6361920B2 (ja) 2014-09-05 2018-07-25 トヨタ自動車株式会社 リチウムイオン電池
KR20180110086A (ko) * 2016-03-18 2018-10-08 제이에무에나지 가부시키가이샤 축전 디바이스 및 그의 제조 방법
WO2017163932A1 (ja) * 2016-03-24 2017-09-28 三洋電機株式会社 非水電解質二次電池
CN206059507U (zh) * 2016-08-15 2017-03-29 广东朋昊鑫动力新能源有限公司 一种防外短路结构
TW201817078A (zh) * 2016-10-26 2018-05-01 伍必翔 二次電池內部電極片的過電流截斷結構

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233149A (ja) * 1998-02-13 1999-08-27 Sony Corp 非水電解液電池
JP2012234822A (ja) * 2005-08-30 2012-11-29 Sanyo Electric Co Ltd 非水系二次電池
JP2008243660A (ja) * 2007-03-28 2008-10-09 Sanyo Electric Co Ltd 非水電解質二次電池
WO2009001502A1 (ja) * 2007-06-22 2008-12-31 Panasonic Corporation 非水系二次電池、電池パック、電源システム、及び電動機器
JP2014225327A (ja) * 2011-09-14 2014-12-04 パナソニック株式会社 非水電解質二次電池

Also Published As

Publication number Publication date
US20210098769A1 (en) 2021-04-01
KR20210036808A (ko) 2021-04-05
US11646475B2 (en) 2023-05-09
US20230246316A1 (en) 2023-08-03
KR102466796B1 (ko) 2022-11-14
JP7125658B2 (ja) 2022-08-25
CN112563681B (zh) 2023-05-12
DE102020211832A1 (de) 2021-04-01
CN112563681A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
JP6208708B2 (ja) リチウムイオン二次電池およびそれを用いたシステム
JP2016081881A (ja) 非水電解液二次電池
US20140302366A1 (en) Nonaqueous electrolyte secondary cell
JP5614574B2 (ja) 二次電池
JP6176500B2 (ja) 二次電池及びその製造方法ならびに該電池に用いられる負極シートの製造方法
JP6238081B2 (ja) 非水電解液二次電池
JP5765574B2 (ja) 二次電池及びその製造方法ならびに該電池に用いられる負極シートの製造方法
JP6008188B2 (ja) 非水電解液二次電池
EP3131149B1 (en) Flat-type secondary battery
JP7125658B2 (ja) 非水電解質二次電池
CN111435729B (zh) 锂离子二次电池
JP7316520B2 (ja) 電池
US20240178535A1 (en) Nonaqueous electrolyte secondary battery
CN108075093B (zh) 电池组
JP7045644B2 (ja) 密閉型電池および組電池
JP2012243455A (ja) リチウムイオン二次電池
JP4984388B2 (ja) バイポーラ電池、組電池、複合電池およびこれらを搭載した車両
US20200295340A1 (en) Sealed battery and manufacturing method thereof
JP4576891B2 (ja) 非水電解質二次電池
KR20140050545A (ko) 리튬 이온 이차 전지용 정극
JP2024031547A (ja) 二次電池の製造方法および二次電池
JP2022088952A (ja) 全固体電池
KR20200052234A (ko) 비수전해액 이차 전지
JP2015201316A (ja) 非水電解液二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220727

R151 Written notification of patent or utility model registration

Ref document number: 7125658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151