JP2020191302A - 被覆リチウム−ニッケル複合酸化物粒子及び被覆リチウム−ニッケル複合酸化物粒子の製造方法 - Google Patents

被覆リチウム−ニッケル複合酸化物粒子及び被覆リチウム−ニッケル複合酸化物粒子の製造方法 Download PDF

Info

Publication number
JP2020191302A
JP2020191302A JP2020136271A JP2020136271A JP2020191302A JP 2020191302 A JP2020191302 A JP 2020191302A JP 2020136271 A JP2020136271 A JP 2020136271A JP 2020136271 A JP2020136271 A JP 2020136271A JP 2020191302 A JP2020191302 A JP 2020191302A
Authority
JP
Japan
Prior art keywords
composite oxide
lithium
nickel composite
oxide particles
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020136271A
Other languages
English (en)
Other versions
JP7040566B2 (ja
Inventor
太田 陽介
Yosuke Ota
陽介 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Publication of JP2020191302A publication Critical patent/JP2020191302A/ja
Application granted granted Critical
Publication of JP7040566B2 publication Critical patent/JP7040566B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2203Oxides; Hydroxides of metals of lithium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2293Oxides; Hydroxides of metals of nickel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】環境安定性の高さから水分、炭酸ガスを吸収することによる不純物の発生を抑えることができ、かつ密着性が高く容易にコーティング層が離脱することがなく且つ、リチウムイオン伝導性を有する優れた被覆リチウム−ニッケル複合酸化物粒子を提供する。【解決手段】導電性高分子が三次元構造によりリチウム−ニッケル複合酸化物粒子に架橋した被覆リチウム−ニッケル複合酸化物粒子。前記導電性高分子の被覆量が、リチウム−ニッケル複合酸化物粒子100質量%に対して0.1〜5.0質量%であり、前記導電性高分子が、ポリピロール、ポリアニリン、ポリチオフェン、ポリ(p−フェニレン)、ポリフルオレンおよびそれらの誘導体からなる群から選ばれる少なくとも一種類からなる重合体若しくは共重合体である、被覆リチウム−ニッケル複合酸化物粒子。【選択図】図4

Description

本発明は、ニッケル含有量の高い被覆リチウム−ニッケル複合酸化物粒子に関し、大気雰囲気下の安定性を向上させた取り扱いしやすい被覆リチウム−ニッケル複合酸化物粒子及びその製造方法に関するものである。
近年、携帯電話、ノートパソコン等の小型電子機器の急速な拡大とともに、充放電可能な電源として、リチウムイオン二次電池の需要が急激に伸びている。リチウムイオン二次電池の正極で充放電に寄与する正極活物質として、リチウム−コバルト酸化物(以下、コバルト系と明記することがある。)が広く用いられている。しかしながら、電池設計の最適化によりコバルト系正極の容量は理論容量と同等程度まで改善され、さらなる高容量化は困難になりつつある。
そこで、従来のコバルト系よりも理論容量の高いリチウム−ニッケル酸化物を用いたリチウム−ニッケル複合酸化物粒子の開発が進められている。しかしながら、純粋なリチウム−ニッケル酸化物は、水や二酸化炭素等に対する反応性の高さから安全性、サイクル特性等に問題があり、実用電池として使用することは困難であった。そこで上記問題の改善策として、コバルト、マンガン、鉄等の遷移金属元素またはアルミニウムを添加したリチウム−ニッケル複合酸化物粒子が開発されている。
リチウム−ニッケル複合酸化物には、ニッケル、マンガン、コバルトがそれぞれ当モル量添加されてなるいわゆる三元系と呼ばれる遷移金属組成Ni0.33Co0.33Mn0.33で表される複合酸化物粒子(以下、三元系と明記することがある。)といわゆるニッケル系と呼ばれるニッケル含有量が0.65モルを超えるリチウム−ニッケル複合酸化物粒子(以下、ニッケル系と明記することがある。)がある。容量の観点からは三元系と比べ、ニッケル含有量の多いニッケル系に大きな優位性がある。
しかしながら、ニッケル系は、水や二酸化炭素等に対する反応性の高さからコバルト系や三元系と比べ環境により敏感であり、空気中の水分や二酸化炭素(CO)をより吸収しやすい特徴がある。水分、二酸化炭素は、粒子表面にそれぞれ水酸化リチウム(LiOH)、炭酸リチウム(LiCO)といった不純物として堆積され、正極製造工程や電池性能に悪影響を与えることが報告されている。
ところで、正極の製造工程では、リチウム−ニッケル複合酸化物粒子、導電助剤、バインダーと有機溶媒等を混合した正極合剤スラリーをアルミニウム等の集電体上に塗布・乾燥する工程を経る。一般的に水酸化リチウムは、正極合剤スラリー製造工程において、バインダーと反応しスラリー粘度を急激に上昇させる、またスラリーをゲル化させる原因となることがある。これらの現象は不良や欠陥、正極製造の歩留まりの低下を引き起こし、製品の品質に差を生じさせることがある。また、充放電時、これら不純物は電解液と反応しガスを発生させることがあり、電池の安定性に問題を生じさせかねない。
したがって、ニッケル系を正極活物質として用いる場合、上述した水酸化リチウム(LiOH)等の不純物の発生を防ぐため、その正極製造工程を脱炭酸雰囲気下におけるドライ(低湿度)環境下で行う必要がある。そのため、ニッケル系は理論容量が高くリチウムイオン二次電池の材料として有望であるにも関わらず、その製造環境を維持するために高額な設備導入コスト及びランニングコストが掛かるため、その普及の障壁となっているという問題がある。
このような問題を解決するために、リチウム−ニッケル複合酸化物粒子表面上にコーティング剤を用いることにより被覆する方法が提案されている。このようなコーティング剤としては、無機系のコーティング剤と有機系のコーティング剤に大別され、無機系のコーティング剤としては酸化チタン、酸化アルミニウム、リン酸アルミニウム、リン酸コバルト、フッ化リチウムなどの材料が、有機系のコーティング剤としてはヒュームドシリカ、カルボキシメチルセルロース、フッ素含有ポリマーなどの材料が提案されている。
例えば、特許文献1では、リチウム−ニッケル複合酸化物粒子表面にフッ化リチウム(LiF)またはフッ素含有ポリマー層を形成する方法、また、特許文献2では、リチウム−ニッケル複合酸化物粒子にフッ素含有ポリマー層を形成し、さらに不純物を中和するためのルイス酸化合物を添加する方法が提案されている。いずれの処理もフッ素系材料を含有するコーティング層によりリチウム−ニッケル複合酸化物粒子を疎水性に改質され、水分の吸着を抑制し、水酸化リチウム(LiOH)などの不純物の堆積を抑制することが可能となる。
しかしながら、コーティングに用いられるフッ素系材料を含有するコーティング層は、電気伝導性を有していない。そのため、不純物の堆積を抑制することができても、コーティング層そのものが絶縁体となってしまうことから、正極抵抗の増加し、電池特性の低下を引き起こす。そのため、リチウム−ニッケル複合酸化物粒子そのものの品質が低下するという問題があった。
特開2013−179063号公報 特表2011−511402号公報
本発明は、上記従来技術の問題点に鑑み、大気雰囲気下で取り扱うことができ、且つ電池特性に悪影響がないリチウムイオン伝導体の被膜を得ることのできる、被覆リチウム−ニッケル複合酸化物粒子及びその製造方法の提供を目的とする。
本発明は、上述した従来技術における問題点を解決するために鋭意研究を重ねた結果、ニッケル系リチウム−ニッケル複合酸化物粒子の表面に、電気伝導性とイオン伝導性を併せもつ導電性高分子を被覆することで、被覆による正極抵抗の増加による電池特性の低下を防ぐことができることを見出した。また、当該被覆リチウム−ニッケル複合酸化物粒子は、正極合剤スラリーを混練した際にも、粒子表面からコーティング層が剥がれ落ちることがない。さらに、大気中の水分や炭酸ガスにより生じる不純物の生成を抑制でき、且つ、材料取り扱い時、輸送時、保管時、電極作製および電池製造時における大気雰囲気下での取り扱いを可能とする好適な被覆リチウム−ニッケル複合酸化物粒子及びその製造方法であることを見出し、本発明を完成するに至った。
すなわち第一の発明は、ニッケル系リチウム−ニッケル複合酸化物粒子の表面に、導電性高分子が被覆されているリチウムイオン電池正極活物質用の被覆リチウム−ニッケル複合酸化物粒子である。
第二の発明は、前記導電性高分子の被覆量がリチウム−ニッケル複合酸化物100質量%に対して0.1〜5.0質量%である第一の発明に記載の被覆リチウム−ニッケル複合酸化物粒子である。
第三の発明は、前記導電性高分子が、ポリピロール、ポリアニリン、ポリチオフェン、ポリ(p−フェニレン)、ポリフルオレンおよびそれらの誘導体からなる群から選ばれる少なくとも1種類からなる重合体又は共重合体である第一又は第二の発明に記載の被覆リチウム−ニッケル複合酸化物粒子である。
第四の発明は、前記リチウム−ニッケル複合酸化物が下記一般式(1)で表される第一から第三のいずれかの発明に記載の被覆リチウム−ニッケル複合酸化物粒子である。
LiNi(1−y−z) ・・・(1)
(式中、xは0.80〜1.10、yは0.01〜0.20、zは0.01〜0.15、1−y−zは0.65を超える値であって、Mは、CoまたはMnから選ばれる少なくとも一種類の元素を示し、NはAl、InまたはSnから選ばれる少なくとも一種類の元素を示す。)
第五の発明は、5〜20μmの平均粒径を有する球状粒子である第一から第四のいずれかの発明に記載のリチウムイオン電池用複合酸化物正極活物質である。
第六の発明は、前記導電性高分子を、被覆樹脂を溶解する良溶媒に溶解させて被覆用樹脂溶液とする工程と、前記被膜用樹脂溶液に、前記被覆用樹脂を溶解せず前記良溶媒よりも沸点の高い貧溶媒を添加する工程と、前記被膜用樹脂溶液に、前記リチウムニッケル複合酸化物を添加してスラリーと成す工程と、前記スラリーをから順次良溶媒および貧溶媒を除去する工程を含むことを特徴とする第一から第五のいずれかの発明に記載の被覆リチウム−ニッケル複合酸化物粒子の製造方法である。
本発明では、ニッケル系リチウム−ニッケル複合酸化物粒子をコアに、導電性高分子で構成されるシェルにもつ被覆リチウム−ニッケル複合酸化物粒子を製造することにより、リチウム−ニッケル複合酸化物粒子表面に良好な電気伝導性およびリチウムイオン伝導性有し、且つ水分、炭酸ガスの透過を抑制できる膜で被覆された優れた被覆リチウム−ニッケル複合酸化物粒子及びその製造方法である。
この被覆リチウム−ニッケル複合酸化物粒子は、これまで炭酸ガス濃度、水分濃度が厳しく管理された正極製造設備に変わり、コバルト系、三元系で用いられてきた製造設備も流用できる、高容量リチウムイオン電池用複合酸化物正極活物質として提供できる。
実施例及び比較例の1週間静置した場合における粒子質量当たりの変化率である。 実施例及び比較例のサイクル試験による容量変化率である。 サイクル試験前のインピーダンス試験によるCole−Coleプロットである。 500回のサイクル試験後のインピーダンス試験によるCole−Coleプロットである。
以下に本発明の被覆リチウム−ニッケル複合酸化物粒子とその製造方法について詳細に説明する。尚、本発明は、以下の詳細な説明によって限定的に解釈されるものではない。本発明において、一次粒子が凝集した二次粒子をリチウム−ニッケル複合酸化物粒子と呼ぶ場合がある。
該粒子表面を被覆する導電性高分子は良好な電気伝導性とイオン伝導性を有することから電池特性に悪影響を及ぼすことがない。また、導電性高分子で被覆された被覆リチウム−ニッケル複合酸化物粒子は、導電性高分子がコーティング層として働くため、環境安定性に優れ、コバルト系や三元系と同様の設備で取扱うことができる。そのため、本発明は、導電性と環境安定性を備えた優れた被覆リチウム−ニッケル複合酸化物粒子である。
[導電性高分子]
本発明に係るリチウム−ニッケル複合酸化物粒子に被覆する導電性高分子とは、電気伝導性を持つ高分子化合物の呼称である。この高分子化合物の特徴は、分子構造中に二重結合と単結合が交互に並んだ構造、つまりπ共役が発達した主鎖を持つことにある。通常、導電性高分子の他、ドーパントと呼ばれるアクセプター分子、またはドナー分子をドーピングすることによってキャリアが発生し、電気伝導性を発現させる。ドーパントとは、例えば、Li、Na、K、Cs等のアルカリ金属イオン、テトラエチルアンモニウム等のアルキルアンモニウムイオンやハロゲン類、ルイス酸、プロトン類、遷移金属ハライド等を例示することができる。
導電性高分子は、ポリアセチレンに代表されるようにπ共役系が高度に成長した高分子であるが、いかなる溶媒にも溶解せず、また融点を持たない、いわゆる不溶不融の性質を持っている。したがって、加工性が悪く工業的な応用が困難であった。
しかしながら、近年の研究により導電性高分子を有機溶媒に溶解または水溶媒に分散するなど、実質的にもしくは見かけ上で溶液として得られる導電性高分子が開発され、これにより工業化への利用が広がってきている。
以下に例を挙げ詳細を説明する。1つ目は、導電性高分子を構成するモノマーに直接置換基を導入して、有機溶媒溶解性や水溶解性を与える方法である。具体的に説明すると、チオフェンの3位にアルキル基を導入したポリ−3−アルキル置換チオフェンから合成されたポリチオフェン誘導体は、クロロホルム、塩化メチレン等の有機溶媒に溶解し、また分解前に融点を持つ、すなわち溶融溶解することが知られている。また、3位にアルキルスルホン酸を導入したポリ−3−アルキルスルホン酸チオフェンから合成されたポリチオフェン誘導体は、水となじみやすいスルホ基によって水溶性が得られ、同時に自己ドーピングが可能となる。
また、2つ目は、水溶性ドーパントを用いる方法がある。水となじみやすいスルホ基を分子中に有するポリマーがドーパント兼水分散剤と導入されることにより、水中への導電性高分子の微分散が可能となる。具体的に説明すると、水溶性高分子の水溶液中で、導電性高分子を構成させるモノマーを酸化重合させる。この際、水溶性高分子を持つスルホ基の一部が導電性高分子にドーピングするとともに水溶性高分子と導電性高分子を一体化させ、残りのスルホ基によって水溶性の導電性高分子となる。この導電性高分子は水中に数10nmレベルで微分散できる。この代表例がポリスチレンスルホン酸(PSS)を用い、導電性高分子モノマーに3,4―エチレンジオキシチオフェン(EDOT)を用いて開発されたPEDOT/PSSがある。
本発明に用いることができる高分子化合物は、例えば、ポリピロール系化合物、ポリアニリン系化合物、ポリチオフェン化合物、ポリ(p−フェニレン)化合物、ポリフルオレン化合物又はこれらの誘導体などを例示することができる。本発明は、導電性高分子を溶媒に溶解または分散させる工程を経るため、溶解性または分散性に富む、例えば、PEDOT/PSSやリグニンをポリアニリン末端に修飾させたリグニングラフト型ポリアニリンなどを好ましく使用することができる。
また、導電性高分子の被覆量は、ニッケル系リチウム−ニッケル複合酸化物粒子100質量%に対して、0.1〜5.0質量%が好ましく、より好ましくは0.2〜0.5質量%である。0.1質量%未満では処理が不十分になる傾向があり、5.0質量%を超えると粒子被覆に関与しない導電性高分子により粒子の重点密度を低下させ、正極製造時に悪影響を及ぼす可能性がある。
[ニッケル系リチウム−ニッケル複合酸化物粒子]
ニッケル系リチウム−ニッケル複合酸化物粒子は、球状粒子であって、その平均粒径は、5〜20μmであることが好ましい。このような範囲とすることで、リチウム−ニッケル複合酸化物粒子として良好な電池性能を有するとともに、且つ良好な電池の繰り返し寿命(サイクル特性)を両立ができるため好ましい。
また、ニッケル系リチウム−ニッケル複合酸化物粒子は、下記一般式(1)で表されるものであることが好ましい。
LiNi(1−y−z)・・・(1)
式中、xは0.80〜1.10、yは0.01〜0.20、zは0.01〜0.15、1−y−zは0.65を超える値であって、Mは、CoまたはMnより選ばれた少なくとも一種の元素を示し、NはAl、InまたはSnより選ばれた少なくとも一種の元素を示す。
なお、1−y−zの値(ニッケル含有量)は、容量の観点から、好ましくは0.70を超える値であり、さらに好ましくは0.80を超える値である。
コバルト系(LCO)、三元系(NCM)、ニッケル系(NCA)の電極エネルギー密度(Wh/L)は、それぞれ2160Wh/L(LiCoO)、2018.6Wh/L(LiNi0.33Co0.33Mn0.33Co0.33O)、2376Wh/L(LiNi0.8Co0.15Al0.05O)となる。そのため、当該ニッケル系リチウム−ニッケル複合酸化物粒子をリチウムイオン電池の正極活物質として用いることで、高容量の電池を作製することができる。
[被覆リチウム−ニッケル複合酸化物粒子の製造方法]
被覆リチウム−ニッケル複合酸化物粒子を製造する方法、すなわちニッケル系リチウム−ニッケル複合酸化物粒子にシェルとなる導電性高分子を被覆する方法としては、様々な方法をとることができる。
例えば、導電性高分子に対して良溶媒中に該導電性高分子を溶解または分散させ、さらに粒子を混合しスラリーを作製する。その後、導電性高分子に対して貧溶媒を段階的に添加し洗い、完全に良溶媒を除くことで粒子表面に導電性高分子を沈着される方法、いわゆる相分離法を利用して製造することができる。
また、シェルとなる導電性高分子を導電性高分子に対して良溶媒中に溶解または分散させ、コアとなる粒子を混合しスラリーを作製する。さらに、このスラリーに導電性高分子に対して貧溶媒を加え混合する。その後、良溶媒を除々に除去して粒子表面に導電性高分子を析出させる方法、いわゆる界面沈殿法を利用して製造することもできる。
また、導電性高分子を溶解または分散させた溶液中にコアとなる粒子を分散させ、液滴を細かく分散して熱風中に吹き付ける方法、いわゆる気中乾燥法、スプレードライ法を利用して製造することもできる。
また、コアとなる粒子を転動するパンで流動させ、そこに導電性高分子を溶解または分散させた溶液を噴霧し、粒子表面に均一に導電性高分子を塗布・乾燥させる方法、いわゆるパンコーティング法を利用して製造することもできる。
また、底部から送風された気体にコアとなる粒子を上下に循環させ導電性高分子を溶解または分散させた溶液を噴霧する方法、いわゆる気中懸濁被覆法を利用して製造することもできる。
中でも、製造コストの観点から、上述した相分離法を利用して製造することが最も好ましい。
以下、本発明の実施例について比較例を挙げて具体的に説明する。但し、本発明は以下実施例によってのみ限定されるものではない。
(実施例1)
SIGMA−ALDRICH製ポリアニリン(エメラルジン塩)、リグニングラフト型パウダー0.1gをエタノール284gに溶解させ溶液を作製した。この溶液にニッケル系リチウム−ニッケル複合酸化物粒子として遷移金属組成Li1.03Ni0.82Co0.15Al0.03で表される複合酸化物粒子50gを入れ、さらにトルエン16gを添加し混合し、スラリーを作製した。次に、スラリーをエバポレーターに移し、減圧下、45℃に温めたウォーターバスにフラスコ部を入れ、回転させながらエタノールを除去した。続いてウォーターバスの設定温度を60℃とし、トルエンの除去を行った。最後に完全に溶媒を除去するために粉末を真空乾燥機に移し、減圧下100℃、2時間の乾燥を行い、処理粉体を作製した。
このポリアニリン化合物が被覆されたものを実施例1に係る被覆リチウム−ニッケル複合酸化物粒子として、以下に示した大気安定性試験、ゲル化試験、及び電池特性試験(充放電試験、サイクル試験)を行った。
(実施例2)
SIGMA-ALDRICH製PEDOT/PSS(dry re-dispersible pellets)0.1gをエタノール284gに溶解させ溶液を作製した。この溶液にニッケル系リチウム−ニッケル複合酸化物粒子として遷移金属組成Li1.03Ni0.82Co0.15Al0.03で表される複合酸化物粒子50gを入れ、さらにトルエン16gを添加し混合し、スラリーを作製した。スラリーをエバポレーターに移し、減圧下、45℃に温めたウォーターバスにフラスコ部を入れ、回転させながらエタノールを除去した。続いてウォーターバスの設定温度を60℃とし、トルエンの除去を行った。最後に完全に溶媒を除去するために粉末を真空乾燥機に移し、減圧下100℃2時間の乾燥を行い、処理粉体を作製した。
このPEDOT/PSSが被覆されたものを実施例2に係る被覆リチウム−ニッケル複合酸化物粒子として、以下に示した大気安定性試験、ゲル化試験、及び電池特性試験(充放電試験、サイクル試験)を行った。
(比較例1)
処理を施さないリチウム−ニッケル複合酸化物粒子を用いたこと以外、実施例1、実施例2と同様に大気安定性、ゲル化試験、電池特性試験を行った。
<大気安定性試験>
実施例及び比較例のリチウム−ニッケル複合酸化物粒子をそれぞれ2.0gガラス瓶に詰め、温度30℃・湿度70%の恒湿恒温槽に1週間静置し初期質量からの増加質量を測定し、粒子質量当たりの変化率を算出した。比較例1に係るリチウム−ニッケル複合酸化物粒子の1週間後の粒子質量当たりの変化率を100として実施例1〜2及び比較例1の1日ごとの変化率を図1に示す。
図1から分かるように、ポリアニリン化合物が被覆された実施例1の被覆リチウム−ニッケル複合酸化物粒子やPEDOT/PSSが被覆された実施例2の被覆リチウム−ニッケル複合酸化物粒子は、導電性高分子が被覆されていない比較例1のリチウム−ニッケル複合酸化物粒子と比べ、質量当たりの変化率が小さい。本結果から、ポリアニリン化合物やPEDOT/PSSが被覆されていることで、大気中の水分、炭酸ガスの透過を抑制できることが確認された。
<ゲル化試験>
正極合剤スラリーの粘度の経時変化の測定を、以下の順序により正極合剤スラリーを作製し、粘度増加およびゲル化の観察を行った。
配合比として、実施例及び比較例に係るリチウム−ニッケル複合酸化物粒子:導電助剤:バインダー:N−メチル−2−ピロリドン(NMP)のそれぞれの質量比が、45:2.5:2.5:50となるように秤量し、さらに1.5質量%の水を添加後、自転・公転ミキサーで撹拌して正極合剤スラリーを得た。得られたスラリーを25℃のインキュベーター内で保管し、経時変化をスパチュラでかき混ぜ粘度増加、ゲル化度合いを、実施例1〜2及び比較例1についてそれぞれ確認し、完全にゲル化するまで保管を行った。
実施例1及び実施例2に係るスラリーが完全にゲル化するまでに3日を要したのに対し、比較例1に係るスラリーが完全にゲル化するまでには1日を要した。このことから、実施例1及び実施例2に係るスラリーは、リチウム−ニッケル複合酸化物粒子にポリアニリン化合物やPEDOT/PSSが被覆されていることで、水酸化リチウム(LiOH)、炭酸リチウム(LiCO)といった不純物の生成が抑えられ、これら不純物とバインダーと反応することによるスラリーのゲル化及びスラリー粘度の上昇させることを妨げることができることが確認された。
また、フッ素化合物によってリチウム−ニッケル複合酸化物粒子を被覆させた場合には、フッ素化合物は一般的にN−メチル−2−ピロリドン(NMP)に溶解するため、フッ素系化合物が被膜しても被膜が溶解すると考えられる。そのため、実施例に係る被覆リチウム−ニッケル複合酸化物粒子とは異なり、製造された正極を保管する際、不純物生成を抑制することが困難と考えられる。したがって、正極保管時に生成した不純物が原因となる電池駆動時のガス発生を伴う電解液との反応の抑制が難しく、高額な保管設備が必要となる。
<電池特性評価>
以下の手順にて、評価用非水電解質二次電池(リチウムイオン二次電池)を作製し、電池特性評価を行った。
[二次電池の製造]
本発明のリチウム−ニッケル複合酸化物粒子の電池特性評価は、コイン型電池とラミネート型電池を作製し、コイン型電池で充放電容量測定を行い、ラミネートセル型電池で充放電サイクル試験と抵抗測定を行った。
(a)正極
得られた実施例及び比較例に係るリチウム−ニッケル複合酸化物粒子に、導電助剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVdF)とをこれらの材料の質量比が85:10:5となるように混合し、N−メチル−2−ピロリドン(NMP)溶液に溶解させ、正極合剤スラリーを作製した。この正極合剤スラリーを、コンマコーターによりアルミ箔に塗布し、100℃で加熱し、乾燥させることにより正極を得た。得られた正極をロールプレス機に通して荷重を加え、正極密度を向上させた正極シートを作製した。この正極シートをコイン型電池評価用に直径がφ9mmとなるように打ち抜き、またラミネートセル型電池用に50mm×30mmとなるように切り出し、それぞれを評価用正極電極として用いた。
(b)負極
負極活物質としてグラファイトと、結着材としてポリフッ化ビニリデン(PVdF)とを、これらの材料の質量比が92.5:7.5となるように混合し、N−メチル−2−ピロリドン(NMP)溶液に溶解させて、負極合剤ペーストを得た。
この負極合剤スラリーを、正極と同様に、コンマコーターにより銅箔に塗布し、120℃で加熱し、乾燥させるとことにより負極を得た。得られた負極をロールプレス機に通して荷重を加え、電極密度を向上させた負極シートを作製した。得られた負極シートをコイン型電池用にφ14mmとなるように打ち抜き、またラミネートセル型電池用に54mm×34mmとなるように切り出し、それぞれを評価用負極として用いた。
(c)コイン電池及びラミネートセル型電池
作製した評価用電極を真空乾燥機中120℃で12時間乾燥した。そして、この正極を用いて2032型コイン電池とラミネートセル型電池を、露点が−80℃に管理されたアルゴン雰囲気のグローブボックス内で作製した。電解液には、1MのLiPFを支持電解質とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の3:7(富山薬品工業株式会社製)、セパレーターとしてガラスセパレーターを用いてそれぞれの評価用電池を作製した。
<<充放電試験>>
作製したコイン型電池について、組立から24時間程度静置し、開回路電圧OCV(Open Circuit Voltage)が安定した後、25℃の恒温槽内で、0.2Cレートの電流密度でカットオフ電圧4.3Vになるまで充電した。1時間の休止後、カットオフ電圧3.0Vになるまで放電したときの放電容量を測定する充放電試験を行った。
実施例1に係るコイン型電池の初期放電容量は、198.99mAh/g、実施例2に係るコイン型電池の初期放電容量は、191.91mAh/gであったのに対し、比較例1に係るコイン型電池の初期放電容量は、191.93mAh/gであった。
<<サイクル試験>>
作製したラミネート型電池について、コイン型電池と同様に、組立から24時間程度静置し、開回路電圧が安定した後、25℃の恒温槽内で、0.2Cレートの電流密度でカットオフ電圧4.1Vになるまで充電した。1時間の休止後、カットオフ電圧が3.0Vになるまで放電した。次にこの電池を、60℃の恒温槽内で2.0Cレートの電流密度で4.1V−CC充電、3.0V−CC放電を繰り返すサイクル試験を行い、500サイクル後の容量維持率を確認するサイクル試験を行った。サイクル試験の結果を図2に、サイクル試験前のインピーダンス試験結果を図3に、500回のサイクル試験後のインピーダンス試験結果を図4に示す。
図2及び図3からサイクル試験前の容量維持量及びインピーダンスにおけるCole−Coleプロットでは、実施例及び比較例に係るラミネート電池はほぼ同等であるが、図2及び図4から500回のサイクル試験後のインピーダンス試験後の容量維持量では比較例1に係るラミネート型電池に比べ、実施例1及び実施例2に係るラミネート型電池容量維持量がより高く保たれている。これは、実施例のラミネート電池に使用されたリチウム−ニッケル複合酸化物粒子にはポリアニリン、PEDOT/PSSが被覆されているため、長サイクルの使用においても容量維持量の低下量が少ないため、より容量維持率の高い優れたリチウム−ニッケル複合酸化物粒子であることが確認された。
このような問題を解決するために、リチウム−ニッケル複合酸化物粒子表面上にコーティング剤を用いることにより被覆する方法が提案されている。このようなコーティング剤としては、無機系のコーティング剤と有機系のコーティング剤に大別され、無機系のコーティング剤としては酸化チタン、酸化アルミニウム、リン酸アルミニウム、リン酸コバルト、ヒュームドシリカ、フッ化リチウムなどの材料が、有機系のコーティング剤としては、カルボキシメチルセルロース、フッ素含有ポリマーなどの材料が提案されている。
第五の発明は、5〜20μmの平均粒径を有する球状粒子である第一から第四のいずれかの発明に記載の被覆リチウム−ニッケル複合酸化物粒子である。
<大気安定性試験>
実施例の被覆リチウム−ニッケル複合酸化物粒子及び比較例のリチウム−ニッケル複合酸化物粒子をそれぞれ2.0gガラス瓶に詰め、温度30℃・湿度70%の恒湿恒温槽に1週間静置し初期質量からの増加質量を測定し、粒子質量当たりの変化率を算出した。比較例1に係るリチウム−ニッケル複合酸化物粒子の1週間後の粒子質量当たりの変化率を100として実施例1〜2及び比較例1の1日ごとの変化率を図1に示す。
配合比として、実施例及び比較例に係る被覆リチウム−ニッケル複合酸化物粒子及びリチウム−ニッケル複合酸化物粒子を、粒子:導電助剤:バインダー:N−メチル−2−ピロリドン(NMP)のそれぞれの質量比が、45:2.5:2.5:50となるように秤量し、さらに1.5質量%の水を添加後、自転・公転ミキサーで撹拌して正極合剤スラリーを得た。得られたスラリーを25℃のインキュベーター内で保管し、経時変化をスパチュラでかき混ぜ粘度増加、ゲル化度合いを、実施例1〜2及び比較例1についてそれぞれ確認し、完全にゲル化するまで保管を行った。
[二次電池の製造]
本発明の被覆リチウム−ニッケル複合酸化物粒子の電池特性評価は、コイン型電池とラミネート型電池を作製し、コイン型電池で充放電容量測定を行い、ラミネートセル型電池で充放電サイクル試験と抵抗測定を行った。
(a)正極
得られた実施例及び比較例に係る被覆リチウム−ニッケル複合酸化物粒子及びリチウム−ニッケル複合酸化物粒子に、導電助剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVdF)とをこれらの材料の質量比が85:10:5となるように混合し、N−メチル−2−ピロリドン(NMP)溶液に溶解させ、正極合剤スラリーを作製した。この正極合剤スラリーを、コンマコーターによりアルミ箔に塗布し、100℃で加熱し、乾燥させることにより正極を得た。得られた正極をロールプレス機に通して荷重を加え、正極密度を向上させた正極シートを作製した。この正極シートをコイン型電池評価用に直径がφ9mmとなるように打ち抜き、またラミネートセル型電池用に50mm×30mmとなるように切り出し、それぞれを評価用正極電極として用いた。
図2及び図3からサイクル試験前の容量維持量及びインピーダンスにおけるCole−Coleプロットでは、実施例及び比較例に係るラミネート電池はほぼ同等であるが、図2及び図4から500回のサイクル試験後のインピーダンス試験後の容量維持量では比較例1に係るラミネート型電池に比べ、実施例1及び実施例2に係るラミネート型電池容量維持量がより高く保たれている。本試験結果から、実施例のラミネート電池に使用されたリチウム−ニッケル複合酸化物粒子にはポリアニリン、PEDOT/PSSが被覆されているため、長サイクルの使用においても容量維持量の低下量が少な、より容量維持率の高い優れた被覆リチウム−ニッケル複合酸化物粒子であることが確認された。

Claims (6)

  1. ニッケル系リチウム−ニッケル複合酸化物粒子の表面に、導電性高分子が被覆されているリチウムイオン電池正極活物質用の被覆リチウム−ニッケル複合酸化物粒子。
  2. 前記導電性高分子の被覆量が、リチウム−ニッケル複合酸化物粒子100質量%に対して0.1〜5.0質量%である請求項1に記載の被覆リチウム−ニッケル複合酸化物粒子。
  3. 前記導電性高分子が、ポリピロール、ポリアニリン、ポリチオフェン、ポリ(p−フェニレン)、ポリフルオレンおよびそれらの誘導体からなる群から選ばれる少なくとも一種類からなる重合体若しくは共重合体である請求項1又は2に記載の被覆リチウム−ニッケル複合酸化物粒子。
  4. 前記リチウム−ニッケル複合酸化物が下記一般式(1)で表される請求項1から3のいずれかに記載の被覆リチウム−ニッケル複合酸化物粒子。
    LiNi(1−y−z) ・・・(1)
    (式中、xは0.80〜1.10、yは0.01〜0.20、zは0.01〜0.15、1−y−zは0.65を超える値であって、Mは、CoまたはMnから選ばれる少なくとも一種類の元素を示し、NはAl、InまたはSnから選ばれる少なくとも一種類の元素を示す。)
  5. 5〜20μmの平均粒径を有する球状粒子である請求項1から4のいずれかに記載の被覆リチウム−ニッケル複合酸化物粒子。
  6. 前記導電性高分子を溶解する良溶媒に溶解させて被覆用樹脂溶液とする工程と、
    前記被膜用樹脂溶液に、前記被覆用樹脂を溶解せず前記良溶媒よりも沸点の高い貧溶媒を添加する工程と、
    前記被膜用樹脂溶液に、前記リチウム−ニッケル複合酸化物粒子を添加してスラリーとする工程と、
    前記スラリーから順次良溶媒および貧溶媒を除去する工程を含む請求項1から5のいずれかに記載の被覆リチウム−ニッケル複合酸化物粒子の製造方法。
JP2020136271A 2014-05-30 2020-08-12 被覆リチウム-ニッケル複合酸化物粒子及び被覆リチウム-ニッケル複合酸化物粒子の製造方法 Active JP7040566B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014112651 2014-05-30
JP2014112651 2014-05-30

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016523440A Division JP6790824B2 (ja) 2014-05-30 2015-05-20 被覆リチウム−ニッケル複合酸化物粒子及び被覆リチウム−ニッケル複合酸化物粒子の製造方法

Publications (2)

Publication Number Publication Date
JP2020191302A true JP2020191302A (ja) 2020-11-26
JP7040566B2 JP7040566B2 (ja) 2022-03-23

Family

ID=54698790

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016523440A Active JP6790824B2 (ja) 2014-05-30 2015-05-20 被覆リチウム−ニッケル複合酸化物粒子及び被覆リチウム−ニッケル複合酸化物粒子の製造方法
JP2020136271A Active JP7040566B2 (ja) 2014-05-30 2020-08-12 被覆リチウム-ニッケル複合酸化物粒子及び被覆リチウム-ニッケル複合酸化物粒子の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016523440A Active JP6790824B2 (ja) 2014-05-30 2015-05-20 被覆リチウム−ニッケル複合酸化物粒子及び被覆リチウム−ニッケル複合酸化物粒子の製造方法

Country Status (5)

Country Link
US (2) US20170207454A1 (ja)
EP (1) EP3151315B1 (ja)
JP (2) JP6790824B2 (ja)
CN (1) CN106415901A (ja)
WO (1) WO2015182453A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113363477A (zh) * 2021-03-26 2021-09-07 万向一二三股份公司 一种多层包覆三元正极材料的制备方法
JP2023516229A (ja) * 2021-06-30 2023-04-18 北京当升材料科技股▲フン▼有限公司 正極材料、その製造方法及び使用、リチウムイオン電池の正極板及びリチウムイオン電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6728716B2 (ja) * 2016-01-28 2020-07-22 住友金属鉱山株式会社 被覆ニッケル系リチウム−ニッケル複合酸化物粒子の製造方法
JP6540887B2 (ja) * 2016-03-30 2019-07-10 株式会社村田製作所 多価イオン二次電池用正極活物質、多価イオン二次電池用正極、多価イオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具及び電子機器
CN112514119A (zh) * 2018-08-03 2021-03-16 住友金属矿山株式会社 锂离子二次电池用正极活性物质、锂离子二次电池用正极活性物质的制造方法以及锂离子二次电池
WO2020099302A2 (en) * 2018-11-16 2020-05-22 Basf Se Process for making a coated oxide material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329415A (ja) * 1998-05-19 1999-11-30 Kyushu Electric Power Co Inc リチウム電池及びリチウム電池の正極の製造方法
JP2004273055A (ja) * 2003-03-11 2004-09-30 Hitachi Ltd 情報保持媒体、情報記録方法および装置
JP2008078491A (ja) * 2006-09-22 2008-04-03 Nissan Motor Co Ltd 光機能性薄膜素子、光機能性薄膜素子の製造方法、及び物品
JP2011071074A (ja) * 2009-09-24 2011-04-07 Nihon Sentan Kagaku Kk リチウムを含む遷移金属化合物と導電性高分子からなる導電性複合体およびその製造方法ならびにその複合体を用いたリチウムイオン2次電池用正極材料、リチウムイオン2次電池ならびにリチウムイオン2次電池を用いた車
JP2011228222A (ja) * 2010-04-23 2011-11-10 Oike Ind Co Ltd 導電性コーティング組成物
JP2013012410A (ja) * 2011-06-29 2013-01-17 Tanaka Chemical Corp 非水電解質二次電池用正極材料及び非水電解質二次電池用正極材料の製造方法
JP2014096343A (ja) * 2012-04-27 2014-05-22 Toyota Industries Corp リチウムイオン二次電池用正極及びリチウムイオン二次電池
WO2014185460A1 (ja) * 2013-05-15 2014-11-20 三井造船株式会社 二次電池用正極材料、二次電池用正極材料の製造方法、及び二次電池
JP2016009523A (ja) * 2014-06-20 2016-01-18 住友金属鉱山株式会社 被覆リチウム−ニッケル複合酸化物粒子及び被覆リチウム−ニッケル複合酸化物粒子の製造方法
JP2016009524A (ja) * 2014-06-20 2016-01-18 住友金属鉱山株式会社 被覆リチウム−ニッケル複合酸化物粒子及び被覆リチウム−ニッケル複合酸化物粒子の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6174623B1 (en) * 1994-03-08 2001-01-16 Valence Technology, Inc. Conductive-polymer-coated electrode particles
EP0889080A1 (en) * 1996-12-10 1999-01-07 Daicel Chemical Industries, Ltd. Porous films, process for producing the same, and laminate films and recording sheets made with the use of the porous films
WO2006080110A1 (ja) * 2005-01-26 2006-08-03 Shirouma Science Co., Ltd. リチウム二次電池用正極材料
US20090194747A1 (en) 2008-02-04 2009-08-06 Vale Inco Limited Method for improving environmental stability of cathode materials for lithium batteries
KR101123057B1 (ko) * 2009-01-06 2012-03-20 주식회사 엘지화학 리튬 이차전지용 양극 활물질
KR101139677B1 (ko) * 2009-03-11 2012-07-09 주식회사 에코프로 리튬이차전지용 양극 활물질 및 이를 포함하는 리튬이차전지
CN102612776B (zh) 2009-11-05 2016-08-24 尤米科尔公司 核-壳形式的锂过渡金属氧化物
US20130012410A1 (en) * 2010-03-29 2013-01-10 Mayo Foundation For Medical Education And Research Methods and materials for detecting colorectal cancer and adenoma
JP5704986B2 (ja) * 2011-03-24 2015-04-22 日立マクセル株式会社 非水電解質二次電池用正極材料及び非水電解質二次電池
JP5621740B2 (ja) * 2011-09-22 2014-11-12 住友大阪セメント株式会社 電極材料及び電極並びに電極材料の製造方法
JP5500158B2 (ja) * 2011-12-05 2014-05-21 トヨタ自動車株式会社 固体電池用電極の製造方法
KR101698764B1 (ko) * 2012-10-11 2017-01-23 삼성에스디아이 주식회사 리튬 전지의 전극용 바인더, 이를 포함한 바인더 조성물 및 이를 채용한 리튬 전지

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329415A (ja) * 1998-05-19 1999-11-30 Kyushu Electric Power Co Inc リチウム電池及びリチウム電池の正極の製造方法
JP2004273055A (ja) * 2003-03-11 2004-09-30 Hitachi Ltd 情報保持媒体、情報記録方法および装置
JP2008078491A (ja) * 2006-09-22 2008-04-03 Nissan Motor Co Ltd 光機能性薄膜素子、光機能性薄膜素子の製造方法、及び物品
JP2011071074A (ja) * 2009-09-24 2011-04-07 Nihon Sentan Kagaku Kk リチウムを含む遷移金属化合物と導電性高分子からなる導電性複合体およびその製造方法ならびにその複合体を用いたリチウムイオン2次電池用正極材料、リチウムイオン2次電池ならびにリチウムイオン2次電池を用いた車
JP2011228222A (ja) * 2010-04-23 2011-11-10 Oike Ind Co Ltd 導電性コーティング組成物
JP2013012410A (ja) * 2011-06-29 2013-01-17 Tanaka Chemical Corp 非水電解質二次電池用正極材料及び非水電解質二次電池用正極材料の製造方法
JP2014096343A (ja) * 2012-04-27 2014-05-22 Toyota Industries Corp リチウムイオン二次電池用正極及びリチウムイオン二次電池
WO2014185460A1 (ja) * 2013-05-15 2014-11-20 三井造船株式会社 二次電池用正極材料、二次電池用正極材料の製造方法、及び二次電池
JP2016009523A (ja) * 2014-06-20 2016-01-18 住友金属鉱山株式会社 被覆リチウム−ニッケル複合酸化物粒子及び被覆リチウム−ニッケル複合酸化物粒子の製造方法
JP2016009524A (ja) * 2014-06-20 2016-01-18 住友金属鉱山株式会社 被覆リチウム−ニッケル複合酸化物粒子及び被覆リチウム−ニッケル複合酸化物粒子の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113363477A (zh) * 2021-03-26 2021-09-07 万向一二三股份公司 一种多层包覆三元正极材料的制备方法
JP2023516229A (ja) * 2021-06-30 2023-04-18 北京当升材料科技股▲フン▼有限公司 正極材料、その製造方法及び使用、リチウムイオン電池の正極板及びリチウムイオン電池
JP7313578B2 (ja) 2021-06-30 2023-07-24 北京当升材料科技股▲フン▼有限公司 正極材料、その製造方法及び使用、リチウムイオン電池の正極板及びリチウムイオン電池

Also Published As

Publication number Publication date
JPWO2015182453A1 (ja) 2017-05-25
US20170207454A1 (en) 2017-07-20
WO2015182453A1 (ja) 2015-12-03
JP6790824B2 (ja) 2020-11-25
EP3151315A4 (en) 2017-11-08
EP3151315A1 (en) 2017-04-05
CN106415901A (zh) 2017-02-15
JP7040566B2 (ja) 2022-03-23
US11196049B2 (en) 2021-12-07
US20190355989A1 (en) 2019-11-21
EP3151315B1 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
JP7040566B2 (ja) 被覆リチウム-ニッケル複合酸化物粒子及び被覆リチウム-ニッケル複合酸化物粒子の製造方法
US10964951B2 (en) Anode-protecting layer for a lithium metal secondary battery and manufacturing method
KR101592658B1 (ko) 표면 처리된 양극 활물질 및 이를 이용한 리튬이차전지
US9722249B2 (en) Use of conductive polymers in battery electrodes
CN105375035A (zh) 一种集流体,其制备方法以及含有该集流体的锂离子电池
WO2016146612A1 (en) Use of pedot/pss in a cathode of a lithium-sulfur electrochemical cell
Liu et al. Lithiated halloysite nanotube/cross-linked network polymer composite artificial solid electrolyte interface layer for high-performance lithium metal batteries
JP2019059912A (ja) 改質セルロースをベースとする固体ポリマー電解質、及びリチウム又はナトリウム二次電池におけるその使用
CN102593424A (zh) 一种锂离子电池正极的制备方法
Yu et al. Bifunctional hydrogen-bonding cross-linked polymeric binder for high sulfur loading cathodes in lithium/sulfur batteries
CN105742713A (zh) 全固态聚合物锂电池
KR20190037019A (ko) 리튬 이차전지용 고분자 재료 및 그 제조방법
WO2023050833A1 (zh) 一种正极材料及其制备方法、二次电池、电池模块、电池包和用电装置
Wu et al. Ionic network for aqueous-polymer binders to enhance the electrochemical performance of Li-Ion batteries
Li et al. Temperature–responsive coating endowing LiNi0. 8Co0. 1Mn0. 1O2 cathode materials with improved cycling stability and overheating self-protection function
CN107887573B (zh) 具有拓扑结构的正极活性物质及其应用
Cao et al. Organic cathode materials for rechargeable batteries
CN107275580B (zh) 一种长循环寿命高比容量锂硫电池正极材料和锂硫电池正极及其制备
Yang et al. Redox-active polymers (redoxmers) for electrochemical energy storage
Das et al. Development of design strategies for conjugated polymer binders in lithium-ion batteries
US20210175504A1 (en) Method and system for sulfur and sulfur-containing chemicals as cathode additives for silicon anode-based lithium ion batteries
Kumar et al. Renewable cathode materials dependent on conjugated polymer composite systems
KR102233775B1 (ko) 고분자, 및 이를 포함하는 전해질과 리튬 전지
WO2015082711A1 (en) Alkali ion battery and method for producing the same
JP6102836B2 (ja) 被覆リチウム−ニッケル複合酸化物粒子及び被覆リチウム−ニッケル複合酸化物粒子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220221

R150 Certificate of patent or registration of utility model

Ref document number: 7040566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150