JP2020133969A - 冷蔵庫 - Google Patents

冷蔵庫 Download PDF

Info

Publication number
JP2020133969A
JP2020133969A JP2019026175A JP2019026175A JP2020133969A JP 2020133969 A JP2020133969 A JP 2020133969A JP 2019026175 A JP2019026175 A JP 2019026175A JP 2019026175 A JP2019026175 A JP 2019026175A JP 2020133969 A JP2020133969 A JP 2020133969A
Authority
JP
Japan
Prior art keywords
chamber
switching
switching chamber
refrigerator
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019026175A
Other languages
English (en)
Other versions
JP7046023B2 (ja
Inventor
拳司 伊藤
Kenji Ito
拳司 伊藤
慎一郎 岡留
Shinichiro Okadome
慎一郎 岡留
直之 小林
Naoyuki Kobayashi
直之 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2019026175A priority Critical patent/JP7046023B2/ja
Publication of JP2020133969A publication Critical patent/JP2020133969A/ja
Application granted granted Critical
Publication of JP7046023B2 publication Critical patent/JP7046023B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】 除霜運転の頻度を適切に制御することによって、冷却性能の低下を抑制し、消費電力量の増加を抑制することができる冷蔵庫を提供する。【解決手段】 冷蔵温度帯と冷凍温度帯に設定可能な切替室と、前記切替室の前方に設けられた扉と、圧縮機と冷却器を有する冷凍サイクルと、前記冷却器に付着した霜を溶かすための除霜制御と、を備え、冷蔵庫の動作条件の変数によって自動で除霜間隔を調整する冷蔵庫において、前記切替室の温度帯の設定により、前記除霜間隔を変更する。【選択図】図15

Description

本発明は冷蔵庫に関する。
一般に冷蔵庫は、氷点下以下の冷却器と庫内の空気が熱交換することで、貯蔵室を所望の温度に冷却する機器であり、冷却器の表面には霜が成長する。霜の成長は熱抵抗や通風抵抗の増加をもたらすため、霜が成長するにつれて熱交換性能が低下する。よって、熱交換性能を回復するために霜を融解して除去する除霜運転が行われる。
特許文献1に記載の冷蔵庫は、「冷凍室の他に、冷凍温度帯及び冷蔵温度帯を含む複数段階の設定温度に切替可能な切替室を備え、前記冷凍室及び切替室に冷気を供給するための冷却器の強制的な除霜運転を予め決められた周期で行うようにした冷蔵庫において、前記切替室の設定温度が冷凍温度帯に切り替えられた状態時には前記除霜運転周期を延長するという除霜周期変更制御を行う制御手段を備えたことを特徴」とした冷蔵庫が記載されている(特許文献1の請求項1)。
特開2000−146411号公報
しかしながら、特許文献1の除霜制御では、除霜運転を実施した後に固定された所定時間が経過しない限り、除霜運転が開始されないため、冷蔵庫の扉の開時間が長く、圧縮機の運転時間も長いなど、冷却器への霜の付着が多い場合であっても、冷却器に多量の霜が付着したまま運転が継続されてしまい、十分な冷却性能を発揮できなくなるという問題があった。
また所定の除霜運転周期が経過した場合に必ず除霜運転を実行するため、冷蔵庫の扉の開時間が短く、圧縮機の運転時間も短いなど、冷却器への霜の付着が少なく、除霜運転が不要な場合であっても除霜運転が実施されため、除霜の頻度が多くなってしてしまう。除霜の頻度が多くなることで、除霜ヒータの通電時間も増加し、そのため消費電力量が増加するという問題があった。
本発明は上記の課題を解決するもので、除霜運転の頻度を適切に制御することによって、冷却性能の低下を抑制し、消費電力量の増加を抑制することができる冷蔵庫を提供することを目的とする。
上記事情に鑑みてなされた本発明は、冷蔵温度帯と冷凍温度帯に設定可能な切替室と、前記切替室の前方に設けられた扉と、圧縮機と冷却器を有する冷凍サイクルと、前記冷却器に付着した霜を溶かすための除霜制御と、を備え、冷蔵庫の動作条件の変数によって自動で除霜間隔を調整する冷蔵庫において、前記切替室の温度帯の設定により、前記除霜間隔を変更する。
本発明によれば、除霜運転の頻度を適切に制御することによって、冷却性能の低下を抑制し、消費電力量の増加を抑制した冷蔵庫を提供できる。
実施例に係わる冷蔵庫の正面図 図1のA−A断面図 (a)は図1のドア、容器、吐出口を外した状態の正面図,(b)は図1のドア、容器を外した状態の正面図 実施例に係る製氷室、冷凍室、第一切替室、及び第二切替室の冷気の流れを示す風路構造の概略図 図2の断熱仕切壁より下の拡大図 図3(b)の断熱仕切壁より下の拡大図 ダンパ及びそのダンパに設けるダンパヒータ 実施例に係る冷蔵庫の冷凍サイクルの構成図 (a)は操作盤の各大図,(b)は表示盤の各大図 実施例に係る冷蔵庫の基本温度制御フローチャート 実施例に係る冷蔵庫の基本温度制御フローチャート 本実施例の基本的な冷却制御を示す経時温度変化の例 実施例に係る冷蔵庫の除霜運転制御フローチャート 実施例1に係る冷蔵庫における第一切替室のモード切り替え制御フローチャート 本実施例に係る冷蔵庫のブロック図 圧縮機運転時間、ドア開時間から算出した積算値が所定の閾値に達したかどうかで除霜運転を行うかどうかを判定することを示タイムチャート 霜の付着が多くなり、積算値が所定の閾値に達したタイミングで除霜運転を行う例を示すタイムチャート 最短除霜間隔のタイミングで除霜運転を行う例を示すタイムチャート 最長除霜間隔のタイミングで除霜運転を行う例を示すタイムチャート 除霜運転の実行判定を示すフローチャート 実施例2に係わる冷蔵庫の正面図 実施例2に係わる操作表示盤 実施例2に係わる他の形態例の操作表示盤
以下、本発明の実施形態である。本発明に関する冷蔵庫の実施例について説明する。
(実施例1)
図1は実施例1に係わる冷蔵庫の正面図、図2は図1のA−A断面図である。
図1に示すように、冷蔵庫1の箱体10は、上方から冷蔵室2、左右に併設された製氷室3と冷凍室4、第一切替室5、第二切替室6の順番で貯蔵室を有している。冷蔵庫1はそれぞれの貯蔵室の開口を開閉するドアを備えている。これらのドアは、冷蔵室2の開口を開閉する、左右に分割された回転式の冷蔵室ドア2a、2bと、製氷室3、冷凍室4、第一切替室5、第二切替室6の開口をそれぞれ開閉する引き出し式の製氷室ドア3a、冷凍室ドア4a、第一切替室ドア5a、第二切替室ドア6aである。これら複数のドアの内部材料は主にウレタンで構成されている。
ドア2aには図8(b)にて後述する表示盤201を設けている。ドア2a、2bを冷蔵庫1に固定するために、ドアヒンジ(図示せず)が冷蔵室2上部及び下部に設けてあり、上部のドアヒンジはドアヒンジカバー16で覆われている。
製氷室3及び冷凍室4は、庫内を冷凍温度帯(0℃未満)の例えば平均的に−18℃程度にした冷凍貯蔵室であり、冷蔵室2は庫内を冷蔵温度帯(0℃以上)の例えば平均的に4℃程度にした冷蔵貯蔵室である。第一切替室5、及び第二切替室6は冷凍温度帯もしくは冷蔵温度帯に設定可能な切替貯蔵室で、例えば、平均的に4℃程度にする冷蔵モードと、平均的に−20℃程度にする冷凍モードとを切り替えられる。本実施例の冷蔵庫1では、さらに冷蔵モードと冷凍モードの間の温度となる強冷蔵モードや弱冷凍モード、また冷蔵モードよりも高温にする弱冷蔵モード、冷凍モードよりも低温にする強冷凍モードといった、複数の運転モードを設けており、これらの運転モードは,冷蔵室2内に設けた操作部200を操作することで選択できる。なお,本実施例の冷蔵庫1では,製氷室3及び冷凍室4はツースター性能(−12℃以下),冷凍モードの第一切替室5、及び第二切替室6はフォースター性能(−18℃以下)としており,製氷室3及び冷凍室4よりも冷凍モードの第一切替室5、及び第二切替室6の方が低温にしている。また,本実施例の冷蔵庫1では,野菜室(セラー室)としての使用は弱冷蔵モードで代用するが,冷蔵モードと独立して野菜モードを設けてもよい。
図2に示すように、冷蔵庫1は、鋼板製の外箱10aと合成樹脂製の内箱10bとの間に発泡断熱材(例えば発泡ウレタン)を充填して形成される箱体10により、庫外と庫内は隔てられて構成されている。箱体10には発泡断熱材に加えて、比較的熱伝導率の低い真空断熱材25を外箱10aと内箱10bとの間に実装することで、食品収納容積を低下させることなく断熱性能を高めている。ここで、真空断熱材は、グラスウールやウレタン等の芯材を、外包材で包んで構成される。外包材はガスバリア性を確保するために金属層(例えばアルミニウム)を含む。また、真空断熱材は製造性から一般的に各面形状が平面で形成される。
本実施例では、箱体10の背面と下部に真空断熱材25e、25fを、箱体10の両側部に真空断熱材25g(図示せず)を設けることで、冷蔵庫1の断熱性能を高めている。
同様に、本実施例では、第一切替室ドア5a、第二切替室ドア6aに真空断熱材25c、25dを設けることで、冷蔵庫1の断熱性能を高めている。上記の断熱構成は、特に各切替室5、6を冷凍モードとし、庫外と切替室5、6との温度差が大きく、外気から侵入する熱量が多い場合に、省エネルギー性能を大きく向上できる。
冷蔵室2と、製氷室3及び冷蔵室4は断熱仕切壁28によって隔てられている。また、製氷室3及び冷凍室4と、第一切替室5は断熱仕切壁29によって隔てられ、第一切替室5と第二切替室6は断熱仕切壁30によって隔てられている。また,第一切替室5の後方には後述するF蒸発器14b及びその周辺風路(F蒸発器室8b、冷凍室風路12、及び冷凍室戻り風路12d)が設けられ,第一切替室5とF蒸発器14b及びその周辺風路の間には断熱仕切壁27が設けられている。
冷蔵室ドア2a、2bの庫内側には複数のドアポケット33a、33b、33cを設け、また棚34a、34b、34c、34dを設けることで、冷蔵室2内は複数の貯蔵スペースに区画されている。製氷室ドア3a、冷凍室ドア4a、第一切替室ドア5a、第二切替室ドア6aには、一体に引き出される製氷室容器3b、冷凍室容器4b、第一切替室容器5b、第二切替室容器6bを備えている。
冷蔵室2、冷凍室4、第一切替室5、第二切替室6の庫内背面側には、それぞれ冷蔵室温度センサ41、冷凍室温度センサ42、第一切替室温度センサ43(図3(b)に図示)、第二切替室温度センサ44(図3(b)に図示)を設け、R蒸発器14aの上部にはR蒸発器温度センサ40a、F蒸発器14bの上部にはF蒸発器温度センサ40bを設け、これらのセンサにより、冷蔵室2、冷凍室4、第一切替室5、第二切替室6、R蒸発器14a、及びF蒸発器14bの温度を検知している。また、冷蔵庫1の天井部のドアヒンジカバー16の内部には、外気温度センサ46と外気湿度センサ47を設け、外気(庫外空気)の温度と湿度を検知している。その他にも、ドアセンサ(図示せず)を設けることで、ドア2a、2b、3a、4a、5a、6aの開閉状態をそれぞれ検知している。
冷蔵庫1の上部には、制御装置の一部であるCPU、ROMやRAM等のメモリ、インターフェース回路等を搭載した制御基板31を配置している。また、制御基板31は、外気温度センサ46、外気湿度センサ47、冷蔵室温度センサ41、冷凍室温度センサ42、第一切替室温度センサ43、第二切替室温度センサ44、R蒸発器温度センサ40a、F蒸発器温度センサ40b等と電気配線(図示せず)で接続されている。
制御基板31では、各センサの出力値や操作盤200の設定、ROMに予め記録されたプログラム等を基に、後述する圧縮機58やRファン9a、Fファン9b、ダンパ101a、101b、102a、102b、冷媒制御弁52,表示盤201の制御を行っている。
加えて,本実施例の冷蔵庫1では外部機器と接続できる通信基盤(図示なし)を設けており,冷蔵庫1の情報をスマートフォン等のモバイルデバイスやパーソナルコンピュータ等に提供できるようにしている。以下でこの機能は外部通信機能とする。
図3(a)は、図1のドア、容器、後述する吐出口を外した(省略した)状態の正面図である。図3(b)は、図1のドア及び容器を外した状態の正面図である。
図2および図3(a)に示すように、冷蔵用蒸発器であるR蒸発器14aは、冷蔵室2の背部にあるR蒸発器室8aの内部に設けてある。R蒸発器14aと熱交換して低温になった空気(冷気)は、R蒸発器14aの上方に設けた冷蔵用ファンであるRファン9aにより、冷蔵室風路11、冷蔵室吐出口11aを介して冷蔵室2に送風され、冷蔵室2内を冷却する。ここで、Rファン9aの形態は、遠心型ファンであるターボファンとしている。冷蔵室2に送風された空気は冷蔵室戻り口15a(図2参照)及び冷蔵室戻り口15b(図3(a)参照)からR蒸発器室8aへと戻り、再びR蒸発器14aにより冷却される。
冷蔵室2の冷蔵室吐出口11aは冷蔵室2の上部に設けており、本実施例では最上段の棚34aと二段目の棚34bの上方に空気が吐出するように設けている。また冷蔵室戻り口15a、15bは冷蔵室2の下部に設けており、本実施例では冷蔵室戻り口15bは冷蔵室2の下から2番目の段(棚34cと棚34dの間)に設け、冷蔵室戻り口15aは冷蔵室2の最下段(棚34dと断熱仕切壁28の間)で後述する第二間接冷却室36の略背部に設けている。
図3(b)に示すように、冷蔵室2内にある棚34dの上方には第一間接冷却室35を設けている。第一間接冷却室35は、ケース35aを備えており、また、第一間接冷却室35に冷気を直接送風する吐出口を設けていない。すなわち、第一間接冷却室35は、R蒸発器14aで生成した低温低湿な冷気が直接入らないようにした間接冷却構造となっており、第一間接冷却室35内に設けた食品の乾燥が抑制され、野菜等の乾燥に弱い食品の保存性を向上できる。
また,冷蔵室2の内部である、断熱仕切壁28の上方には第二間接冷却室36を設けている。第二間接冷却室36は、ドア36aと収納部36bを接触させた略密閉構造としている。これにより、低温低湿な空気が第二間接冷却室36内の食品に直接入らないようにして、第二間接冷却室36内の食品の乾燥を抑制している。
図4は、実施例に係る製氷室3、冷凍室4、第一切替室5、及び第二切替室6の冷気の流れを示す風路構造の概略図である。図2,図3(a),および図4を用いて、冷蔵室2以外の庫内の風路構成と、冷気の流れを説明する。
図2および図4に示すように、冷凍用蒸発器であるF蒸発器14bは第一切替室5、第二切替室6の背部のF蒸発器室8b内に設けてある。F蒸発器14bと熱交換して低温になった空気(冷気)は、F蒸発器14bの上方に設けた冷凍用ファンであるFファン9bにより、冷凍室風路12、冷凍室吐出口12a、12bを介して製氷室3及び冷凍室4に送風され、製氷室3の製氷皿3c内の水、容器3b内の氷、冷凍室4の容器4b内の食品等を冷却する。なお,製氷皿3cへの水は,図3(b)に示す製氷タンク37から製氷ポンプ(図示せず)により供給される。ここで、Fファン9bの形態も、省スペース化のため,遠心型ファンであるターボファンとしている。製氷室3及び冷凍室4を冷却した空気は、冷凍室戻り口12cより冷凍室戻り風路12dを介して、F蒸発器室8bに戻り、再びF蒸発器14bにより冷却される。
本実施例の冷蔵庫1では、第一切替室5、及び第二切替室6もF蒸発器14bで低温にした空気(冷気)で冷却する。第一切替室5及び第二切替室6への冷気の送風は、送風制御部であるダンパ101a、101b、102a、及び102bにより制御する。
まず、第一切替室5への冷気の流れを説明する。第一切替室5の冷気の流れは、冷凍モードと冷蔵モードとで異なる。第一切替室5が冷凍モードの際は、ダンパ101aを開けて、ダンパ101bを閉じる。F蒸発器14bで冷却された空気は、Fファン9b、冷凍室風路12、ダンパ101a、そして第一切替室5の直接冷却用吐出口である第一切替室吐出口111aを介して、第一切替室5に設けた第一切替室容器5b内に送風され、第一切替室容器5b内の食品を冷却する。冷気は第一切替室容器5b内の食品を直接冷却するため、比較的短時間で第一切替室容器5b内の食品を冷却できる。
第一切替室5が冷蔵モードの際は、ダンパ101aを閉じて、ダンパ101bを開ける。F蒸発器14bで冷却された空気は、Fファン9b、冷凍室風路12、ダンパ101b、そして第一切替室5の間接冷却用吐出口である第一切替室吐出口111bを介して、第一切替室容器5bの外側(外周)に送風される。冷気は第一切替室容器5b内の食品に直接到達し難くなり、すなわち食品は第一切替室容器5bを介して間接冷却されるため、食品の乾燥を抑えつつ冷却できる。第一切替室吐出口111a、又は第一切替室吐出口111bより吐出し、第一切替室5内を冷却した空気は、第一切替室戻り口111cより冷凍室戻り風路12dを介してF蒸発器室8bに戻り、再びF蒸発器14bにより冷却される。
次に、第二切替室6への冷気の流れを説明する。第二切替室6の構成は、第一切替室5と同様で、運転モードによってダンパの開閉を変更している。第二切替室6が冷凍モードの際は、ダンパ102aを開け、ダンパ102bを閉じる。F蒸発器14bで冷却された空気(冷気)は、Fファン9b、冷凍室風路12、ダンパ102a、そして第二切替室6の直接冷却用吐出口である第二切替室吐出口112aを介して、第二切替室容器6b内に送風され、第二切替室容器6b上の食品を冷却する。冷気は第二切替室容器5bの食品を直接冷却するため、比較的短時間で第二切替室容器6b内の食品を冷却できる。
第二切替室6が冷蔵モードの際は、ダンパ102bを開け、ダンパ102aを閉じる。F蒸発器14bで冷却された空気は、Fファン9b、冷凍室風路12、ダンパ102b、そして第二切替室6の間接冷却用吐出口である第二切替室吐出口111bを介して、第二切替室容器6bの外側(外周)に送風し、間接冷却として、食品の乾燥を抑えつつ冷却する。第二切替室6内を冷却した空気は、第二切替室戻り口112cより冷凍室戻り風路12dを介してF蒸発器室8bに戻り、再びF蒸発器14bにより冷却される。
なお,本実施例の冷蔵庫では,冷蔵モードにおいても,庫内の温度が所定値よりも高い場合(例えば基準温度よりも10℃以上高い場合)にはダンパ101a,102aを開けるようにしている。これにより,直接冷却により容器内の食品を短時間で冷却し,食品が高温の時間を抑え,食品の鮮度保持性能を高めることができる。
また,冷蔵モードのうち,野菜室としての使用を想定した弱冷蔵モード(図8に示す操作盤200で「弱」に設定)にダンパ101b,102bを使用し,通常の冷蔵モード(図8に示す操作盤200で「中」設定),または強冷蔵モード時(図8に示す操作盤200で「強」設定)ではダンパ101a,102aを使用するようにしてもよい。これにより,野菜を想定した場合は間接冷却で食品の乾燥を抑え,袋に入った食品や缶やペットボトルに入った飲料など,乾燥の心配の比較的少ないものを貯蔵する際は早く冷やすことを優先することができる。
図5は、実施例に係る第一切替室5、及び第二切替室6の冷蔵温度を実現するための構成を示す図であり,図5(a)は図2の断熱仕切壁28より下の拡大図,図5(b)は図3(b)の断熱仕切壁28より下の拡大図である。
本冷蔵庫1では,第一切替室5を加熱するため,第一切替室5の背面側(断熱仕切壁27の前方)に第一切替室背面ヒータ60,底面側(断熱仕切壁29の上部)に第一切替室下面ヒータ61を設けている。同様に,第二切替室6を加熱するため,第二切替室6の上面側(断熱仕切壁29の下部)に第二切替室上面ヒータ62,背面側に第二切替室背面ヒータ63を設けている。
また,本実施例の冷蔵庫1では断熱仕切壁29の内部に真空断熱材25aを設け、断熱仕切壁30内部にも真空断熱材25bを設け,断熱仕切壁27には例えば発泡ポリスチレンの発泡断熱材24を設けている。これらにより,冷蔵庫1の各貯蔵室間の熱移動,及びF蒸発器14b及びその周辺風路(F蒸発器室8b、冷凍室風路12、及び冷凍室戻り風路12d)と第一切替室5との間の熱移動を抑えている。
上記の構成により、特に第一切替室5を冷蔵モードとし、第二切替室6を冷凍モードとした場合の冷蔵庫1の省エネルギー性能を向上できる。冷蔵温度帯の第一切替室5は、隣接する部屋が冷凍温度帯である上面(断熱仕切壁29)、背面(断熱仕切壁27)、さらに底面(断熱仕切壁30)から吸熱され、第一切替室5が低温になり易いが,断熱仕切壁27、29,30に発泡断熱材24または真空断熱材25を設けることで,上面、背面、底面からの吸熱を抑え,ヒータを用いない,またはヒータの電力を抑えて所定の温度対に維持できるようにしている。ヒータに用いる電力を抑えられるため,省エネルギー性能を高めている。一方,外気が低温の場合は,外気による加熱が抑制される,或いは外気からも冷却されることがあり,上記のように庫内間の吸熱を抑えるだけでは不十分になるため,第一切替室5を加熱するための第一切替室背面ヒータ60と第一切替室下面ヒータ61,また第二切替室6を加熱するための第二切替室上面ヒータ62と第二切替室背面ヒータ63を設け,これらを適切に加熱することで,冷蔵温度帯に設定した第一切替室5及び第二切替室6を所定の温度に維持できるようにしている。また,これらのヒータはモード切替制御を短時間で行うために用いても良い。すなわち,冷凍モードから冷蔵モードへ切り替える際に,これらのヒータで加熱し,短時間で冷蔵温度にさせる制御を行ってもよい。
なお,断熱仕切壁27内部に真空断熱材25でなく,発泡断熱材24としたのは,真空断熱材25に比べて形状の設計自由度が高く,複雑な形状にでき,また,それ自体で風路を形成できるためである。すなわち,断熱仕切壁27は,F蒸発器室8b、冷凍室風路12、及び冷凍室戻り風路12dを形成し,またF蒸発器14b,Fファン9b、ダンパ101a,101b,102a,102b等を設けるが,発泡断熱材24を用いることで,これらを配設しながら,断熱性能を高め,また比較的通風抵抗の少ない風路を形成することができる。
一方,断熱仕切壁29,30は略直方体形状と比較的形状が単純であるため,真空断熱材25を用いることで比較的薄い厚さで高い断熱性能を得られ,貯蔵室間の熱移動を抑えつつ,食品を収納する各貯蔵室の内容積を大きくすることに有効である。
なお,第一切替室5内は自然対流により上部が高温,下部が低温になり易く,さらに第二切替室6が冷凍モードの際には下面も冷却されるため,第一切替室5は低温になり易い下面にヒータを設けている。一方,第二切替室6は,下面が外気と接するために加熱され,上面は第一切替室5が冷凍モードでは冷却されるため,上面側にヒータを設けている。
また,第二切替室6は,最大(第一切替室5が冷凍モード,第二切替室6が冷凍モード時)で,上面と背面上部が,冷凍温度帯の他室から断熱仕切壁を介して冷却されるのに対し,第一切替室5は,最大(第一切替室5が冷凍モード,第二切替室6が冷凍モード時)で,上面,背面,下面が,冷凍温度帯の他室から断熱仕切壁を介して冷却されるため,冷却される面積の大きい第一切替室5の方が,ヒータの最大加熱量を多くしている。すなわち,第一切替室5を加熱するための第一切替室背面ヒータ60と第一切替室下面ヒータ61の合計の最大消費電力は,第二切替室6を加熱するための第二切替室上面ヒータ62と第二切替室背面ヒータ63の合計の最大消費電力よりも多くし,冷却されて低温になりやすい第一切替室5も適切な温度に制御できるようにしている。
図6は、ダンパ101a,101b,102a,102b及びそのダンパに設けるダンパヒータ64である。各ダンパ本実施例の冷蔵庫1では,ダンパ101aはダンパ構成部111,ダンパ102aはダンパ構成部112,ダンパ101bと102bはダンパ構成部113に内装されており,それぞれダンパ構成部111,112,113に同じく内装したモータ(図示なし)により,各ダンパ101a,101b,102a,102bを駆動させる。なお,ダンパ構成部113は,1つのモータで2つのダンパ101b,102bを駆動させるツインダンパとしており,これによりモータ数を低減し,省スペース化と低コスト化を行っている。
本ダンパ構成部111,112,113の外周部にはそれぞれダンパヒータ64を設けている。これにより,各ダンパに霜・氷が付着し凍結してしまっても,ヒータにより加熱して,この霜・氷を融解することで,ダンパ101a,101b,102a,102bが動作しなくなることを抑制している。なお,本実施例では,配設しやすいことからダンパ構成部111,112,113の外周部にヒータを設けているが,ダンパ101a,101b,102a,102b(開閉する駆動部)にヒータを設けてもよい。この場合,ダンパ101a,101b,102a,102bを直接加熱できるため,各ダンパに付着した霜・氷を融解し易く,より少ないエネルギーで各ダンパが動作しなくなることを抑制することができる。
図7は、本実施例の冷蔵庫1の冷凍サイクルの構成図である。本実施例の冷蔵庫1では、圧縮機58、冷媒の放熱を行う放熱手段である庫外放熱器50aと壁面放熱配管50b、仕切り壁28、29、30の前面部への結露を抑制する結露防止配管50c、冷媒を減圧させる減圧手段である冷蔵用キャピラリチューブ53aと冷凍用キャピラリチューブ53b、冷媒と庫内の空気を熱交換させて、庫内の熱を吸熱するR蒸発器14aとF蒸発器14bを備え、これらにより庫内を冷却している。また、冷凍サイクル中の水分を除去するドライヤ51と、液冷媒が圧縮機58に流入するのを防止する気液分離器54a、54bを備え、さらに冷媒流路を制御する三方弁52、逆止弁56、冷媒流を接続する冷媒合流部55も備えており、これらを冷媒配管59により接続することで冷凍サイクルを構成している。
なお本実施例の冷蔵庫1は、冷媒にイソブタンを用いている。また、本実施例の圧縮機58はインバータを備えて回転速度を変えることができる。
三方弁52は、52a、52bで示す2つの流出口を備え、流出口52a側に冷媒を流す冷蔵モードと、流出口52b側に冷媒を流す冷凍モードを備え、これらを切換えることができる部材である。また、本実施例の三方弁52は、流出口52aと流出口52bの何れも冷媒が流れないようにする全閉、また何れも冷媒が流れるようにする全開のモードも備え、これらにも切換え可能である。
本実施例の冷蔵庫1では、冷媒は以下のように流れる。圧縮機58から吐出した冷媒は、庫外放熱器50a、庫外放熱器50b、結露防止配管50c、ドライヤ51の順に流れ、三方弁52に至る。三方弁52の流出口52aは冷媒配管を介して冷蔵用キャピラリチューブ53aと接続され、流出口52bは冷媒配管を介して冷凍用キャピラリチューブ53bと接続されている。
冷蔵室2を冷却する場合は、三方弁52から流出口52a側に冷媒が流れるようにする。流出口52aから流出した冷媒は、冷蔵用キャピラリチューブ53a、R蒸発器14a、気液分離機54a、冷媒合流部55の順に流れた後、圧縮機58に戻る。冷蔵用キャピラリチューブ53aで低圧低温になった冷媒がR蒸発器14aを流れることでR蒸発器14aが低温となり、このR蒸発器14bにより冷却された空気をRファン9a(図2参照)で送風することで冷蔵室2を冷却する。
製氷室3、冷凍室4、第一切替室5、第二切替室6を冷却する際は、三方弁52から流出口52b側に冷媒が流れるようにする。流出口52bから流出した冷媒は、冷凍用キャピラリチューブ53b、F蒸発器14b、気液分離機54b、逆止弁56、冷媒合流部55の順に流れた後、圧縮機58に戻る。逆止弁56は気液分離機54bから冷媒合流部55側には冷媒が流れ、冷媒合流部55から気液分離機54b側へは流れないように配設している。冷凍用キャピラリチューブ53bで低圧低温になった冷媒がF蒸発器14bを流れることでF蒸発器14bが低温となり、F蒸発器14bにより冷却された空気をFファン9b(図2参照)で送風することで製氷室3、冷蔵室4、第一切替室5、第二切替室6を冷却する。このように、本実施例の冷蔵庫では、冷蔵室2はR蒸発器14aを用いて冷却し、製氷室3、冷凍室4、第一切替室5、第二切替室6はF蒸発器14bを用いて冷却する構成としている。
ここで、冷凍温度帯である、又は冷凍温度帯に設定可能な製氷室3、冷凍室4、第一切替室5、第二切替室6を冷却するF蒸発器14bに冷媒を流す際は、これらの貯蔵室よりも低温な蒸発器温度(例えば−25℃)とする。一方、冷蔵温度帯の冷蔵室2を冷却するR蒸発器14aに冷媒を流す際は、冷媒の蒸発器温度を比較的高くする(例えば−10℃)。一般的に、蒸発器の温度が高いほど、冷凍サイクルの冷却効率を高めることができ、省エネルギー性能向上に有効である。また、蒸発器の温度が高いほど、空気が蒸発器を通過する際の空気中の水分の着霜が抑えられ、すなわち空気の除湿が抑えられ、庫内を高湿に保つことができる。従って、R蒸発器14aの温度が高い状態で冷蔵室2を冷却することで、冷凍温度帯の貯蔵室と共通の蒸発器で冷却する場合に比べ、冷蔵室2冷却時の省エネルギー性能を高められるとともに、冷蔵室2内を高湿に保つことができる。
また、冷蔵室2のみを冷却するR蒸発器14aと、その他の貯蔵室を冷却するF蒸発器14bとを分けることで、R蒸発器14aの除霜方式をオフサイクル除霜とし、さらなる省エネルギー性能向上と、冷蔵室2の高湿化を図っている。
まず図2及び図3を用いてF蒸発器14bの主な除霜方式について説明する。F蒸発器14bの下部には、F蒸発器14bを加熱する除霜ヒータ21を設けている。除霜ヒータ21は、例えば50W〜200Wの電気ヒータで、本実施例では150Wのラジアントヒータとしている。F蒸発器14bの除霜時に発生した除霜水(融解水)はF蒸発器室8bの下部のFトイ23bからF排水管26を介して圧縮機58の上部に設けたF蒸発皿32に排出される。
一方、R蒸発器14aの除霜にはオフサイクル除霜方式を採用しており、R蒸発器14aに冷媒を流さない状態で、Rファン9aを駆動させる。Rファン9aにより、冷蔵室2の空気が冷蔵室戻り口15a、15bを介してR蒸発器14aに流れ(図2、図3(a)参照)、霜の融点よりも高温の冷蔵温度(0℃以上)の冷蔵室2の空気によりR蒸発器14aの霜を加熱して除霜する。R蒸発器14aの除霜時に発生した除霜水は、R蒸発器室8aの下部に設けたRトイ23a(図2参照)から、図示しないR排水管を介して機械室39に設けた図示しないR蒸発皿に排出される。
オフサイクル除霜方式を用いると、電気ヒータ(約150W)を用いることなくファン(0.5〜3W)のみでR蒸発器14aの除霜が行えるため、電気ヒータを用いる除霜方式に比べ消費電力を抑えられる。また、オフサイクル除霜中に通過する空気(約4℃)は、低温なR蒸発器14a及びR蒸発器14aに付着した霜(約0℃)により冷却されるため、R蒸発器14aを除霜すると同時に、冷蔵室2を冷却できる。従って省エネルギー性能の高い除霜方式である。さらに、オフサイクル除霜中はR蒸発器14aの温度が高いため、R蒸発器14aを通過する空気の除湿が抑えられ、或いは加湿されるため、冷蔵室2を高湿に保つ効果をさらに高めることができる。
図8(a)は操作盤200,図8(b)は表示盤201の拡大図である。冷蔵室2内に設けた図8(a)に示す操作盤200では,各操作部を押すことで,自動製氷や節電機能,外部通信機能等の付加機能のON,OFFと,冷蔵室2,第一切替室5,第二切替室6の温度調整が可能である。温度調整とは,冷蔵室2及び冷蔵モードの第一切替室5,第二切替室6では,前述の弱冷蔵モード,強冷蔵モードへの変更,冷凍モードの第一切替室5,第二切替室6では,前述の弱冷凍モード,強冷凍モードへの変更を行うもので,例えば2℃程度目標温度を変えるものである。この温度調整に加えて,本実施例の冷蔵庫1では,温度調整の操作部とは別に,第一切替室5の冷蔵モードと冷凍モードを切り替えるモード切替操作部200aと,第二切替室6の冷蔵モードと冷凍モードを切り替えるモード切替操作部200bを設けている。他の操作部は押した直後に設定が変更されるが,モード切替操作部200a,200bは,例えば3秒長押しすることで設定が変更されるようにしている。また,本実施例の冷蔵庫1では,何れの操作部を操作した際も操作盤200に設けたブザーにより操作の受け付けを音で知らせるようにしているが,モード切替操作部200a,200bを長押しし,モード切り替えの実行を受け付けると,他の操作を受け付けた際とは異なる音で受け付けを知らせるようにしている。
また,本実施例1の冷蔵庫1では,操作盤200を冷蔵室2内に設けていることから,冷蔵室ドア2a,2bを開けずに冷蔵庫1からの情報を把握できるよう,図8(b)に示す冷蔵室ドア2aに表示盤201を設けている。表示盤201は,ユーザーの使用状態が省エネ性に優れていることを示す「eco」サインや,製氷タンク37の状態を示す「給水」サインに加え,第一切替室5がモード切り替え中であることを表示するモード切替中表示201aと,第二切替室6がモード切り替え中であることを表示するモード切替中表示201bを設けている。
以上で示した本構成は,ユーザーによる冷蔵モードと冷凍モードの誤動作に配慮している。冷蔵モードと冷凍モードを誤って切り替えると,例えば冷蔵モードで収納していた野菜が凍結することや,冷凍モードで収納していた冷凍食品が解凍されてしまうといった不具合を生じてしまう。従って,温度調整等の操作を行うつもりで意図せず温度帯が変わってしまうことや,意図しない操作(操作部に意図せず触れてしまう等)で温度帯が変わってしまうことがないよう配慮する必要がある。
これに対し,本実施例の冷蔵庫1では,温度調整用の操作部とモード切替操作部200a,200bを独立させ,誤ったモード変更を抑制している。また,モード切替操作部200a,200bを備えた操作盤200を冷蔵室2内に設けており,これにより,冷蔵室ドア2a,2bが閉まっている状態では操作部に意図せず触れることがなくなるようにしている。
さらに,冷蔵モードと冷凍モードの切り替えを実行するための操作を,長押しとすることで,操作部に意図せず触れてしまうことでの誤動作をより確実に抑えている。なお,本実施例では誤動作抑制方法として長押しとしたが,例えば複数の操作部を同時に押した場合にモード変更するようにしてもよい。この場合は長押しする時間が必要ないため早くモード切り替えの指示を送ることができる。一方,本実施例1のように1つの操作だが長押しとすることで,比較的操作を簡単にすることができる。
加えて,モード切り替えの実行を受け付けると,他の操作を受け付けた際とは異なるブザー音を鳴らすことで,誤って操作してしまった際に気づき易くしている。また,表示盤201に,第一切替室5がモード切り替え中であることを表示するモード切替中表示201aと,第二切替室6がモード切り替え中であることを表示するモード切替中表示201bを設けることで,ドアを開けずにモード切り替えが実行されていることを確認でき,誤って操作してしまった際に気づき易くしている。これにより,すぐにユーザーがモード切り替えを中止(モードを元に戻す)して,意図しない凍結及び解凍を抑制できるようにしている。なお,ドアを開けずに確認できる表示201に,モード切替中表示201a,201bを設けることで,複数のユーザーがいる家庭において,別のユーザーによりモードが切り替えられたことに気づく易くなり,必要に応じてモード切り替えを早期に中止できるようにしている。特に小さい子供がいる家庭の場合,子供のいたずらによりモード切り替えが行われてしまうリスクが考えられることから,本機能は有効である。
また,本実施例の冷蔵庫1では,外部通信機能により,ユーザーが指定したモバイルデバイス等に,モード切り替えが開始されたことをポップアップ表示できるようにしており,これにより,別のユーザーによりモードが切り替えられたことを,より気づく易くしている。
なお,例えば指紋認証やパスワードなどでモード切り替えの操作に制限を設けることや,外部通信機能を用い,メインユーザー以外が通常使用しないモバイルデバイスからのみ,モード切り替えが行えるようにするなどで,予めメインユーザー以外によるモード切り替えが行われないようにしてもよい。
以上が本実施例の冷蔵庫1の基本的な構成である。以下で冷蔵庫1の具体的な制御について説明していく。
図9,図10は本実施例の基本的な冷却制御フローチャートである。圧縮機58がOFF(停止)状態の制御S1−1から説明を始める。本実施例では,冷凍温度帯の貯蔵室を備えるF蒸発器14bにより冷却される貯蔵室について,冷却が必要か判断する。まず制御S1−2において,冷凍室温度センサ42により検知する冷凍室4の温度T_Fが例えば−15℃の所定温度T_F−ONより低いか否か,すなわち冷凍室4の冷却が必要かを判断する。T_FがT_F−ON以上の場合(S1−2:No)は,制御S1−12,S1−13へ移行し,F蒸発器14bを用いた冷却運転,すなわちF蒸発器14bに冷媒を流し,低温になったF蒸発器14b周辺の空気をFファン9bにより各貯蔵室に送風する運転になる。冷凍室4の温度T_Fが所定温度T_F−ON(例えば−15℃)より低い場合(S1−2:Yes)は,第一切替室5の冷却が必要かを判断する。この時,第一切替室5が冷蔵モードか冷凍モードかにより,冷却が必要かを判断する温度が異なり,冷凍モードの際(制御S1−3:Yes)は例えば−18℃のT_S1F−ON,冷蔵モードの際(制御S1−3:No)は例えば6℃のT_S1R−ONを基準とする。第一切替室温度センサ43により検知する第一切替室5の温度T_S1が,T_S1F−ON,またはT_S1R−ON以上(制御S1−4またはS1−5:No)であれば,制御S1−12,S1−13のF蒸発器14bを用いた冷却運転になる。同様に第二切替室6についても,冷凍モードの際(制御S1−6:Yes)は例えば−19℃のT_S2F−ON,冷蔵モードの際(制御S1−6:No)は例えば7℃のT_S2R−ONを基準とし,第二切替室温度センサ44により検知する第一切替室6の温度T_S2がこれらの温度以上(制御S1−7又はS1−8:No)であれば,制御S1−12,S1−13のF蒸発器14bを用いた冷却運転になる。この運転の終了条件は図10を用いて後述する。
制御S1−2からS1−8までの判断により,冷凍室4,第一切替室5,第二切替室6の冷却が不要と判断された場合,また図10で示すF蒸発器14bを用いた冷却運転が終了した場合(制御S1−14),冷蔵室2の冷却が必要かを判断する。冷蔵室温度センサ41により検知する冷蔵室2の温度T_Rが,例えば6℃の所定温度T_R−ON以上の場合(制御S1−9:No)は,R蒸発器14aを用いた冷却運転(制御S1−10)になる。R蒸発器14aを用いた冷却運転は,冷蔵室2の温度T_Rが例えば2℃のT_R−OFF以下になる(制御S1−11:Yes)と,R蒸発器14aを用いた冷却運転を終了し,再びF蒸発器14bを用いた冷却運転の要否を判断する制御S1−2に戻る。また,制御S1−9に到達しつつ,冷蔵室2の温度T_Rが,T_R−ON未満であった場合(制御S1−9:Yes)は,何れの冷却も必要ないと判断し,圧縮機58を停止する(制御S1−1)。
次に,図10を用いてF蒸発器14bを用いた冷却運転中の制御について説明する。図9の制御S1−13は図10の制御S2−1と同一である。本実施例の冷蔵庫1では,第一切替室5に関する制御と,第二切替室6に関する制御,また冷凍室4に関する制御を平行して行う。
まず,第一切替室5に関する制御について説明する。第一切替室5が冷凍モードに設定している場合(制御S2−3:Yes),直接冷却用のダンパ101aを開け(制御S2−4),第一切替室5の温度T_S1が例えば−22℃のT_S1F−OFF以下になるまで冷却する(制御S2−5)。第一切替室5が冷蔵モードに設定している場合(制御S2−3:No)は,間接冷却用のダンパ101bを開け(制御S2−6),第一切替室5の温度T_S1が例えば2℃のT_S1R−OFF以下になるまで冷却する(制御S2−7)。これらの制御が終わると,冷やし過ぎによる消費電力量の増加,及び冷蔵モード時の食品凍結を防止するため,ダンパ101a,101bを閉め(制御S2−8),第一切替室5が冷却中であることを示す制御S2−2で1としていたCheck_S1を0とする(制御S2−9)。
なお,他の冷凍室4,第二切替室6の冷却制御が完了(制御S2−25に到達)するまで,第一切替室5の温度が高くなりすぎるのを防止するため,第一切替室5を冷凍モードに設定している場合(制御S2−10:Yes)は第一切替室5の温度T_S1が例えば−20℃のT_S1F−ON2以上(制御S2−11:Yes),冷蔵モードに設定している場合(制御S2−10:No)は第一切替室5の温度T_S1が例えば4℃のT_S1R−ON2以上になる(制御S2−12:Yes)と,再びダンパを開ける(制御S2−4,S2−6)。その後,T_S1がT_S1F−OFFまたはT_S1R−OFFより再び低温になると再びダンパを閉める(制御S2−5,S2−7,S2−8)。
次に,第二切替室6に関する制御を説明するが,基本的に第一切替室5と同様である。第二切替室6が冷凍モードに設定している場合(制御S2−13:Yes),直接冷却用のダンパ102aを開け(制御S2−14),第二切替室6の温度T_S2が例えば−23℃のT_S2F−OFF以下になるまで冷却する(制御S2−15)。第二切替室6が冷蔵モードに設定している場合(制御S2−13:No)は,間接冷却用のダンパ102bを開け(制御S2−16),第二切替室6の温度T_S2が例えば3℃のT_S2R−OFF以下になるまで冷却する(制御S2−17)。これらの制御が終わると,ダンパ102a,102bを閉め(制御S2−18),第二切替室6が冷却中であることを示す制御S2−2で1としていたCheck_S2を0とする(制御S2−19)。その後,冷凍室4,第一切替室5の冷却制御が完了(制御S2−25に到達)するまで,第二切替室6が冷凍モードに設定されている場合(制御S2−20:Yes)は第二切替室6の温度T_S2が例えば−21℃のT_S2F−ON2以上(制御S2−21),冷蔵モードに設定されている場合(制御S2−20:No)は第二切替室5の温度T_S2が例えば5℃のT_S1R−ON2以上になる(制御S2−22)と,再びダンパを開け(制御S2−14,S2−16),T_S2がT_S2F−OFFまたはT_S2R−OFF以下になると再びダンパを閉める(制御S2−15,S2−17,S2−18)。
最後に冷凍室4に関する制御について説明する。冷凍室4は温度制御を行うダンパを備えていないため,冷凍室4の温度T_Fが例えば−20℃のT_F−OFF以下であることを判定する(制御S2−23:Yes)と,冷凍室4の冷却制御は終了となる。
冷凍室4の冷却が終了し(制御S2−23:Yes),Check_S1,S2により第一切替室5と第二切替室6の冷却制御が終了していると判断する(制御S2−24:Yes)と,Fファン9bをOFFし(制御S2−25),F蒸発器14bを用いた冷却運転が終了(制御S2−26)となる。
以上のように,本実施例の冷蔵庫1では,冷凍室4,第一切替室5,第二切替室6の何れかがそれぞれの所定温度以上の場合にはF蒸発器14bを用いた冷却運転に移行(図9の制御S1−2からS1−8)し,また,F蒸発器14bを用いた冷却運転中は,冷凍室4,第一切替室5,第二切替室6の何れも少なくとも一度は所定温度以下になるまで必ず冷却するようにしている(図10)。これにより,何れか1つの貯蔵室の温度のみで制御する場合に比べ,何れの貯蔵室の温度も高くなり過ぎず,かつ低温になりすぎないようにすることができ,省エネルギー性能を高めながら食品の保存性能を高めることができる。
さらに,第一切替室5,第二切替室6の冷却制御では,所定温度に到達すると,冷やし過ぎを防止するためダンパを閉じ(制御S2−8,S2−18),冷却状態を解除するが(制御S2−9,S2−19),温度が高くなった場合は(制御S2−10からS2−12,またはS2−20からS2−22),再度ダンパを開けて冷却する。これにより,冷やし過ぎを防止しつつ,温度が高くなりすぎるのも防止し,省エネルギー性能を高めながら食品の保存性能を高めている。
なお,制御S2−10からS2−12,またはS2−20からS2−22によるダンパ101a,101b,102a,102bを再度開ける制御を行う間,Check_S1,Check_S2は0のままとしている。これにより,Check_S1,Check_S2が交互に1の状態となってしまい,F蒸発器14bを用いた冷却運転が終了しないことを抑制している。本実施例の冷蔵庫1は複数の蒸発器を備え,R蒸発器14aを用いた冷却運転と,F蒸発器14bを用いた冷却運転を切り替えて冷却を行うため,F蒸発器14bを用いた冷却運転が終了してR蒸発器14aを用いた冷却運転に移行すると,暫くの間,F蒸発器14bを用いた冷却運転に移行できない。したがって,この再度ダンパを開ける制御に用いるT_S1F−ON2は図9に示したT_S1F−ONより低温であり,同様にT_S1R−ON2はT_S1R−ONより低温,T_S2F−ON2はT_S2F−ONより低温,T_S2R−ON2はT_S2R−ONより低温にしておき,比較的低温の状態でF蒸発器14bを用いた冷却運転が終了するようにしている。
図11は本実施例の基本的な冷却制御を示す経時温度変化の例である。図11は第一切替室5と第二切替室6の両方が冷凍モードの場合である。各制御番号は図9,図10に対応する。
図11の第一切替室5と第二切替室6の両方が冷凍モードの場合について,時刻t0から説明する。時刻t0にて圧縮機58が停止した(制御S1−1)後,制御S1−2〜S1−9の各判定が行われる。時刻t1において,第二切替室6の温度T_S2が,T_S2F−ON以上(制御S1−7:No)になり,F蒸発器14bによる冷却運転が開始される(制御S1−12,S1−13及びS2−1)。図11では,第一切替室5と第二切替室6の両方が冷凍モードのため,直接冷却用のダンパであるダンパ101aと102aが開く。時刻t2で第一切替室5の温度T_S1が,T_S1F−OFF以下になる(制御S2−5:Yes)と,ダンパ101aが閉じ(制御S2−8),第一切替室5が冷却中であることを示すCheck_S1を0(クリア)する(制御S2−9)。また,同様に時刻t3において,第二切替室6の温度T_S2が,T_S2F−OFF以下になる(制御S2−15:Yes)と,ダンパ102aが閉じ(制御S2−18),第二切替室6が冷却中であることを示すCheck_S2を0(クリア)する(制御S2−19)。その後,時刻t4において,冷凍室4の温度T_Fが,T_F−OFF以下になり,冷凍室4,第一切替室5,第二切替室6の何れも冷却が完了したと判断し(制御S2−23,S2−24),F蒸発器14bを用いた冷却運転を終了する(制御S2−25,S2−26及びS1−14)。なお,この間の時刻t6において,第一切替室5の温度がT_S1F−ON2よりも高くなったことから,ダンパ101aを再度開け(制御S2−11:Yes→制御S2−5),第一切替室5の温度上昇を抑えている。
F蒸発器14bを用いた冷却運転を終了した時刻t4において,冷蔵室2の温度T_Rが,T_R−ON以上になっている(制御S1−9:No)ことから,R蒸発器14aを用いた冷却運転に移行する(制御S1−10)。その後,時刻t5において,冷蔵室2の温度T_Rが,T_R−OFF以下になる(制御S1−11:Yes)と,R蒸発器14aを用いた冷却運転を終了し,再びF蒸発器14bを用いた冷却運転の必要可否を判断する(制御S1−2からS2−8)。図11の時刻t5では,F蒸発器14bを用いた冷却運転の必要がないと判断され,冷蔵室2の温度もT_R−ON未満(制御S1−9:Yes)のため,圧縮機58がOFFとなる(制御S1−1)。なお,この時に三方弁52を全閉とすることで,冷凍サイクルの高圧側の冷媒がR蒸発器14a,及びF蒸発器14bに流入し,R蒸発器14a,及びF蒸発器14bが温度上昇することを防ぐためである。
以後,同様の運転が繰り返される。
図12は本実施例の基本的な除霜制御フローチャートである。本実施例の冷蔵庫1は,F蒸発器14bについた霜を除霜ヒータ21により解かす除霜運転を行う。
本実施例の冷蔵庫1では,図9,図10で示した冷却運転中に,前回の除霜運転からの時間,外気温度センサ46と外気湿度センサ47により検知する周囲の温度と湿度,圧縮機58の運転状態(回転数,運転時間),各ドアが開いている時間等により,着霜状態を予測し,所定の条件を満たす(制御S3−1:Yes)と除霜が必要と判断して除霜運転を開始する(制御S3−2)。なお,除霜運転の開始条件を満たした後(制御S3−1:Yes),除霜運転を開始する前に(制御S3−2),除霜運転での温度上昇を予測して予め庫内を通常よりも低温に冷やしておくプリクール運転を行っても良い。
除霜運転中(制御S3−2)は圧縮機58とファン9bをOFF,除霜ヒータ21をONし,またダンパヒータ64もONにする。ダンパ101a,101b,102a,102bはF蒸発器14bを用いた冷却運転を行っている間,冷凍温度の空気により冷却されるが,第一切替室5または第二切替室6が冷蔵モードで,特に野菜などを貯蔵している場合,庫内からの高湿な空気がダンパ101a,101b,102a,102bに到達し,着霜することがあるため,除霜運転中にダンパヒータ64もONにし,ダンパ101a,101b,102a,102bの除霜も行う。なお,第一切替室5用のダンパ101a,101bと,第二切替室6用のダンパ102a,102bのヒータを別個に設け,冷蔵モードにしている切替室に関わるダンパ側のヒータのみONにして,ヒータ電力を抑えて省エネルギー性能を高めてもよい。
除霜運転を行い,F蒸発器温度センサ44bにより検知するF蒸発器14bの温度T_eが例えば8℃のT_e−def以上になる(制御S3−3)と除霜運転を終了(制御S3−4,S3−5)し,図9の冷却制御に戻る(図9中の制御S1−15)。
図13は本実施例の冷蔵庫1における第一切替室5のモード切り替え制御フローチャートである。なお,第二切替室6のモード切り替え制御は第一切替室5と同様のため省略する。本実施例の冷蔵庫1では,第一切替室5のモード切り替えが行われると,「温度制御」と「ダンパヒータ制御」と「切替中表示」の3つの制御を並列して行う。
まず温度制御について説明する。モードの切り替えが行われると,第一切替室5に関する各基準温度設定値が変更される(例えば図9の制御S1-4(基準温度T_S2F-ON)を制御S1-5(基準温度T_S2R-ON)に変更)。また,短時間で所定の温度に到達させる,特に冷蔵モードから冷凍モードの切り替えの際に冷凍温度に到達させるため,圧縮機58の回転数及びFファン9bの回転数を高める。その後,その状態にて図9,図10に示した冷却制御を行う(制御S4−2)が,圧縮機58がOFFになる(制御S4−3)と,除霜運転に移行する(制御S4−5)。除霜運転が終了する(制御S4−6)と,図9,図10に示した通常の冷却制御に戻り,モード切り替え時特有の温度制御を終了する。除霜運転中の制御は図12に示したものと同様である。なお,本実施例では,冷凍モードから冷蔵モードへの切り替えの場合も,圧縮機58の回転数及びFファン9bの回転数を高めるようにしており,これは後述する除霜運転を早く開始させるため(制御S4−3:Yes→制御S4−5)と,制御の場合分けを少なくして制御プログラムを簡略化するためである。
ここで,制御S4−3にて除霜運転に移行する理由について説明する。
1つ目は,この除霜運転を行うことで,冷凍モードから冷蔵モードへの加熱を促進できる。除霜ヒータは約150Wと,本実施例の冷蔵庫の中で最大の発熱量を備えているため,これによりF蒸発器14b及びその周辺風路を加熱することで,第一切替室5及び第二切替室6も断熱仕切壁27を介して加熱され,比較的短い時間で冷凍温度帯から冷蔵温度帯に切り替えることができる。なお,例えば第一切替室5を冷凍モードから冷蔵モードにした場合,この除霜運転中は第一切替室5側のダンパ101aまたは101bを開けておき,F蒸発器14b周辺の風路を流れる暖気が第一切替室5に流れるようにすることで,この暖気により第一切替室5を加熱し,冷蔵温度帯に切り替える速度をさらに高めてもよい。
2つ目は,モード毎に異なる着霜により,考慮し難い着霜状態が生じることを抑制するためである。例えばF蒸発器14bには,第一切替室5用のダンパ101aと第二切替室6用のダンパ102aの両方を開けている場合は冷凍室4と第一切替室5と第二切替室6の空気が流れ,ダンパ101aのみを開けている場合は冷凍室4と第一切替室5の空気が流れ,ダンパ102aのみを開けている場合は冷凍室4と第一切替室5の空気が流れ,また両方を閉じている場合は冷凍室4の空気が流れる。すなわち,ダンパの開閉状態によってF蒸発器14b周りの空気の流れが変わる。従って,冷蔵モードと冷凍モードでダンパ101a,101bの開閉時間が変わると,F蒸発器14b周りの空気の流れに対する影響が変わる。また,本実施例の冷蔵庫1では,冷凍モードと冷蔵モードでダンパ101a,101bと異なるダンパを開けているため,さらに冷凍モードと冷蔵モードでF蒸発器14b周りの空気の流れは複雑に変化する。空気の流れが変わるとF蒸発器14bに生じる着霜分布も変わる。加えて,冷蔵モードの貯蔵室から来る空気の方が基本的に高温で高湿(絶対湿度が高い)ため着霜もし易く,その点でもモードによって着霜分布が変わる。そのため,切替室が冷蔵モードと冷凍モードの両方が混ざった場合を考慮して着霜状態を予測することは難しい。試験において評価する場合も冷蔵モードと冷凍モードの時間割合を変えて各割合で着霜分布の評価する必要があり,膨大な試験時間が必要になり困難である。これは,特に本実施例1のように切替室の容量が比較的大きい(例えば切替室の幅方向の長さが、冷蔵庫1全体の幅方向と同じ)冷蔵庫や,複数の切替室を持っている冷蔵庫では影響が大きい。意図しない着霜分布になると,空気が意図しない箇所に流れ,さらに意図しない箇所へと霜が成長していくことが考えられる。これにより,例えば除霜ヒータ21等の熱が伝わり難い箇所に霜が成長し,除霜が適切に行えないことや,F蒸発器14bの冷気を送風するFファン9bの周りに霜が成長し,Fファン9bがロックしてしまい送風できない等の不具合を生じる恐れがある。
そこで本実施例の冷蔵庫1では,モードを切り替えた後,比較的早い時間にて除霜運転を行うようしている。これにより,モードを切り替える前に生じていた霜の影響を抑え,このような不具合を抑制している。すなわち,信頼性の高い冷蔵庫としている。
但し,前回の除霜運転終了から経過した時間(図13の制御S3−4よりタイマAにて計測)が例えば6時間以下と短い場合(制御S4−4:No),前のモード状態での着霜の影響は小さいと考え本除霜制御は省略し,図9,図10に示した通常の冷却制御に戻り,モード切り替え時特有の温度制御を終了する。これにより高い信頼性を保ちながら,除霜運転による消費電力量の増加を抑え,省エネルギー性能を高めている。
次に,ダンパヒータ制御について説明する。本制御は冷蔵モードから冷凍モードに切り替えた際に行われる(制御S4−8:Yes)。図12の除霜運転制御でも示したが,ダンパ101a,101bはF蒸発器14bを用いた冷却運転を行っている間,冷凍温度の空気により冷却されるが,第一切替室5が冷蔵モードで,特に野菜などを貯蔵している場合,庫内からの高湿な空気がダンパ101a,101bに到達し,着霜することがある。そこで,本実施例の冷蔵庫1では,冷蔵モードから冷凍モードに切り替えると,タイマBが20分以上になるまでダンパヒータ64をONにする(制御S4−9からS4−11)。これにより,冷蔵モードを実施している間にダンパ101a,101bが凍結しても,冷凍モードでは確実にダンパ101a,101bが正常に動作できるようにしている。特に,本実施例の冷蔵庫1では,第一切替室5のダンパを複数備え,冷蔵モードの場合,基本的にダンパ101aは開かないようにしているため,本制御が重要となる。冷蔵モードの状態でダンパ101aが長時間に渡って動作しないと,通常の除霜運転中に霜を溶かしていても,ダンパ101aに除霜水が残って氷結してしまい,正常に動作できない状態になってしまう可能性がある。一方,冷凍モードになるとダンパ101aを主に開閉させるため,冷蔵モードから冷凍モードに切り替えた際にダンパヒータ64によりダンパ101aを加熱し,確実にダンパ101aが動作するようにしている。
次に,切替中表示制御について説明する。本実施例の冷蔵庫1では,第一切替室5のモードを切り替えると,モード切替中表示201a(図8(b)参照)がON(点灯)する(制御S4−13)。このモード切替中表示201aは,冷蔵モードから冷凍モードへの切り替えの際(制御S4−14:Yes)は,第一切替室5の温度T_S1が例えば−15℃のF切替完了判定温度になるとOFF(制御S4−17)し,冷凍モードから冷蔵モードへの切り替えの際(制御S4−14:No)は,第一切替室5の温度T_S1が例えば0℃以上のR切替完了判定温度になるとOFF(制御S4−17)する。これにより,消灯してから食品を入れるようにすることで,冷蔵モードから冷凍モードへの切り替えの際は,冷凍食品が誤って解凍されることを抑えられ,冷凍モードから冷蔵モードへの切り替えの際は,食品が誤って凍結することを抑えられるようにしている。冷蔵モードに切り替える際は水の融点温度(0℃)付近であるのに対し,冷凍モードに切り替える際は−15℃と融点温度よりも10℃以上低温にしているのは,例えばアイスクリームなどの融点が低いものに配慮しているとともに,食品を入れる際のドア開閉による温度上昇を考慮したものである。なお,冷凍モードから冷蔵モードへの切り替えの際は,モード切替中表示201aの表示をOFFする温度条件として,下限に加え上限を設け,例えば0℃以上10℃以下になるとモード切替中表示201aの表示をOFFするようにしてもよい。このようにすると,食品の凍結を抑えるのみでなく,庫内が適正温度になったことをユーザーに知らせることができる。これは特に,冷蔵庫の電源投入直後など,庫内の温度が高い状態でモードを切り替えた際に有効である。
なお,上記の切替中表示のOFFに合せ,本実施例の冷蔵庫1では,専用のブザー音を所定の時間鳴らし,また,ユーザーがモバイルデバイスやパーソナルコンピュータを登録していると,外部通信機能により,そのデバイスに切替完了をポップアップで通知するようにしている(制御S4−17)。これによりモード切り替えを行っても,食品の意図しない凍結及び解凍を抑えながら,比較的早いタイミングで食品を入れられるようにしている。
なお,図8(b)でも前述したように,本実施例の冷蔵庫1では,デバイスを登録しておくと,モード切り替えが開始されたこともポップアップ表示する(制御S4−13)ようにしており,これにより,別のユーザーによりモードが切り替えられたことを気づき易くしている。
図14は冷蔵庫1の制御ブロック図である。冷蔵室ドア2a、2bの開閉状態を検知する冷蔵室ドアセンサ201、製氷室ドア3aの開閉状態を検知する製氷室ドアセンサ202、冷凍室ドア4aの開閉状態を検知する冷凍室ドアセンサ203、第一切替室ドア5aの開閉状態を検知する第一切替室ドアセンサ204、第二切替室ドア6aの開閉状態を検知する第二切替室ドアセンサ205、R蒸発器温度センサ40a、F蒸発器温度センサ40b、外気温度センサ37、外気湿度センサ38、制御部206、マイコン207、メモリ208を備えている。マイコン207は冷蔵庫1の全体を制御しており、マイコン207はドア2a、2b、3a、4a、5a、6a、の開時間、圧縮機24の運転時間、冷蔵庫の周囲温度、冷蔵庫の周囲湿度などを把握し、それらを内蔵するメモリ208に記憶する。
これらは所定時間毎にまとめられ、圧縮機運転時間、ドア開時間としてメモリ208に記憶される。また、マイコン207は、圧縮機運転時間、ドア開時間から算出した積算値に所定の係数をかけたものを、図15(a)(b)に示す圧縮機運転時間から算出した積算値と、ドア開時間から算出した積算値としてメモリ208に記憶する。図15(a)に示す、圧縮機運転時間から算出した積算値は、所定時間内の圧縮機運転時間が長いほど大きくなる。図15(b)に示す、ドア開時間から算出した積算値は、所定時間内のドア開時間が長いほど大きくなる。さらに、これらの積算値の合計を図15(c)に示す総積算値としてメモリ208に記憶する。
積算値にかける係数は、外気温度、外気湿度、ドアの大きさ、圧縮機の回転数などの状況に応じて、変更して良い。例えば、外気温度センサ37から得た外気温度が高い場合はドア開時間から算出した積算値にかける係数を大きくし、外気温度が低い場合はドア開時間から算出した積算値にかける係数を小さくする、などである。
本実施例の冷蔵庫1では、例えば24時間間隔などの所定の除霜周期が用意されている。以下では、最初の除霜周期を「第一期間」と称し、これに続く除霜周期を「第二期間」、「第三期間」、「第四期間」などと称する。
基本的な除霜運転のタイミングは、総積算値が第一閾値に到達したとき、もしくは総積算値が、第一閾値より小さい第二閾値に到達した除霜周期の最終時間帯、のどちらかである。つまり、基本的には除霜のタイミングは総積算値によって判断される。
しかし例外として、総積算値が閾値に到達しても除霜制御を実施しない期間設け、この期間を「最短除霜間隔」と称する。また、総積算値が閾値に到達していなくても除霜制御を実施する期間を設け、この期間を「最長除霜間隔」と称する。
図15の例では、第一期間中は総積算値が第一閾値に達しておらず、最終時間帯で第一閾値よりも小さい第二閾値にも達していないため、第一期間中には除霜運転が実施されない。図15(d)では当該期間中に除霜運転が実施されなかったことを「×」で示している。第一期間に続く第二期間では、第二期間の最終時間帯には総積算値が第二閾値にも達しないため、第二期間中には除霜運転が実施されない。一方、第三期間の最終時間帯には総積算値が第二閾値に達するため、第三期間の最終時間帯に除霜運転が実施される。
除霜運転が実施されると、次の期間は第一期間となり、それぞれの積算値がゼロにリセットされる。
なお、ここで実施される除霜運転とは、単に圧縮機24を停止してラジアントヒータ21に通電することに限定されるものでなく、除霜前のプリクール運転を含んでも良い。
以上で説明した図15に示す除霜運転制御によれば、圧縮機運転時間が短い場合や、ドア開時間が短い時間など、霜の付着が少なく除霜運転の必要がないと判断できる場合は、既定の除霜間隔毎の除霜運転をスキップすることで、除霜運転でのエネルギー消費を回避し、冷蔵庫1の消費エネルギーを抑制するとともに、続く除霜周期はより小さい閾値を用いて除霜要否を判断することで、長時間除霜制御が行われないという不具合を回避することができる。
次に図16乃至図18を用いて、他の除霜運転制御を説明する。なお、図15と重複する説明は省略するものとする。図16でも第二除霜期間中の総積算値は第二閾値を超えていないため、第二期間の最終時間帯では除霜運転は行われない。一方、第三期間の途中から総積算値が第二閾値を超えるが、第二閾値は除霜周期の最終時間帯に除霜運転を実施するかの判断に用いるものであるため、この時点では除霜運転は実施されない。その後、ドアが長時間開放されるなどした結果、総積算値が第一閾値を超えると、除霜運転を開始し、除霜運転の終了後にそれぞれの積算値がゼロにリセットされるとともに、新たに第一期間を開始する。
このように図16の例では、総積算値が第一閾値を超え、霜が急激に付着していると判断された時には、直ちに除霜運転を実施することで、蒸発器14の冷却性能を適宜回復させることができる。
図17では、第一除霜期間中の最短除霜間隔が経過する前に、ドアが長時間開放されるなどした結果、最短除霜間隔中に総積算値が第一閾値を越えている。しかし、除霜運転が実施された後は、最短除霜間隔が経過するまで次の除霜運転が実施されないため、この場合は最短除霜間隔を超過したタイミングで除霜運転が実施される。
このように図17の例では、前回の除霜運転から一定時間は、総積算値が第一閾値を超えても、除霜運転が行われない。これは除霜運転直後の、貯蔵室温度が上昇している期間中に、再び除霜運転が実施されてしまうことで、貯蔵室を冷却する時間を十分に確保できなくなることを防ぐためである。一方、最短除霜間隔を長く設定しすぎてしまうと、蒸発器に霜が付着し冷却性能が低下しても、除霜運転が実施されなくなってしまうため、貯蔵室内を十分に冷却できなくなる危険性がある。そのため、蒸発器の耐着霜性能を考慮したうえで、十分に信頼性を確保できる時間に設定する必要がある。
図18では、第四除霜期間中の総積算値が第二積算値を超えていないが、第四期間中に積算開始からの時間が最長除霜間隔に到達しているため、最長除霜間隔に到達するタイミングで除霜運転が行われる。
このように図18の例では、総積算値が第二閾値を超えておらず、霜があまり付着していないと判断された時でも、最長除霜間隔が経過したら除霜運転が実施される。これは貯蔵室内に保存されている食品から発生した水分により、蒸発器に霜が付着することを考慮しているためである。本実施例の冷蔵庫1では積算値の算出を圧縮機運転時間とドア開時間により行っているため、例えば貯蔵室内に野菜などの、水分を多く含む食品が保存されている場合には、ドアが開放されずに運転をしていても、食品から発生した水分を含む空気が庫内を循環するため、蒸発器へ霜が付着していく。そのため最長除霜間隔を設けることで、積算値のみでは検出できない霜の付着を考慮して、除霜運転を実施することで、蒸発器の冷却性能を回復させることができる。一方、最長除霜間隔を短く設定しすぎてしまうと、蒸発器に付着している霜が少ない場合に除霜運転が行われてしまい、除霜運転によるエネルギー消費が生じてしまうため、蒸発器の耐着霜性能を考慮したうえで、十分に信頼性を確保しつつ、長めの期間に設定することで、省エネルギー性能の向上を図る必要がある。
本実施例の冷蔵庫1は、切替室の設定温度帯により、最短除霜間隔および最長除霜間隔が変更される。これは貯蔵室の温度帯によって、貯蔵される食品が異なるので、食品から発生する水分量が違い、庫内を循環する空気の湿度が違うことが想定されるためである。例えば、設定温度帯が冷蔵温度帯の場合に貯蔵される食品を想定すると、野菜は水分を多く含むため、切替室から蒸発器へ戻る空気の湿度が高くなる。一方、設定温度帯が冷凍温度帯の場合は、主に貯蔵されるのは冷凍食品であるため、切替室から蒸発器へ戻る空気の湿度が低くなる。
蒸発器に戻る空気の湿度が高くなるほど、冷却運転中の霜の付着量が多くなる。また、貯蔵室ドアの開閉が生じると、貯蔵室内の温度が上昇し、その貯蔵室に積極的に冷気を送風することになるため、蒸発器に高湿の空気が積極的に戻ることとなり、霜の付着量がさらに多くなる。
また、貯蔵室ドアの開閉が生じると、冷蔵庫周囲の空気が貯蔵室内に侵入する。その際に元々の貯蔵室内の温度が高いほど、侵入する空気との温度差が小さくなるため、貯蔵室内の壁面や貯蔵容器に結露が生じにくい。そのため、元々の貯蔵室内の温度が高いほど、ドアの開閉時に周囲から侵入する空気に含まれる水分が、冷却器へ到達し易くなるため、霜の付着量が多くなる。
よって、切替室が冷蔵温度帯に設定されている場合は、切替室が冷凍温度帯に設定されている場合よりも、霜の付着量が多くなることが想定される。
そのため本実施例の冷蔵庫1においては、RRモードとFFモードで比較した場合に、庫内を循環する空気の湿度が高く、ドア開の頻度が多くなると想定される、RRモードのほうが、最短除霜間隔および最長除霜間隔を短く設定している。
また、切替室の設定温度帯により蒸発器に付着する霜の量が異なるため、圧縮機運転時間および、ドア開時間にかけるそれぞれの係数を、切替室の設定温度帯により変更している。
切替室が冷蔵温度帯に設定されている場合は、切替室が冷凍温度帯に設定されている場合よりも、霜の付着量が多くなることが想定される。
そのため本実施例の冷蔵庫1においては、RRモードとFFモードで比較した場合に、RRモードのほうが、圧縮機運転時間から算出する積算値にかける係数と、ドア開時間から算出する積算値にかける係数を大きくしている。
これにより、霜の付着量が多くなると想定される、RRモードのほうが、積算値が第一閾値、第二閾値を超えやすくなり、除霜運転が実施されやすくなっている。
なお、本実施例の冷蔵庫1では圧縮機運転時間および、ドア開時間にかけるそれぞれの係数を変更しているが、これらの係数を変更せずに、切替室の設定温度帯により、第一閾値および第二閾値を変更しても良い。例えば、RRモードとFFモードで比較した場合、霜の付着量が多くなるRRモードでの、第一閾値および第二閾値を、FFモードでの第一閾値および第二閾値より小さくすることで、除霜運転が実施されやすくすることも有効である。
図19は除霜運転の実行判定を示すフローチャートである。
圧縮機運転時間、扉開時間の積算を開始し(S2)、切替室の運転モードを判定する(S3、S4、S5、S6)。次に、運転中のモードで積算開始からの時間が、最短除霜間隔を経過するまで冷却運転を継続する(S7、S8、S9、S10)。最短除霜間隔が経過したら、積算値が第一閾値を超えているか判断し、第一閾値を超えている場合は、霜の付着量が多いと予想できるため、除霜運転を実行する(S11、S12、S13、S14の運転中のモードでYes)。
一方、積算値が第一閾値を超えていない場合には、除霜運転を実行する必要性が低いと判断できるため、冷却運転を継続する。
しかしながら、貯蔵されている食品が水分を多量に含んでいる場合などでは、扉の開時間が短く積算値が少なくても、庫内を循環する空気の湿度が高く、霜の量が多い可能性がある。そのため、積算値が第一閾値を超えていなくても、積算開始からの運転時間が最長除霜間隔を経過したら、除霜運転を実行する(S15、S16、S17、S18の運転中のモードでYes)。
積算値が第一閾値を超えておらず、最長除霜間隔も経過していない場合には、積算値が第一閾値よりも小さい第二閾値を超えているかを基準に、除霜運転を実施するか判定する(S19、S20、S21、S22)。積算値が第二閾値を超えている場合には、霜の付着量が多いと予測できるため、当該除霜周期の最終時間帯に除霜運転を実施する(S23、S24、S25、S26)。
また、積算値が第二閾値を超えてから、当該除霜周期の最終時間帯に到達するまでの間に、積算値が第一閾値を超えた場合には、霜の付着量が急増したと予測できるため、除霜運転を実施する。
除霜運転の終了時に積算値をゼロにリセットし、再び積算を開始する。
なお、図19に示すフローチャートは、冷蔵庫1の除霜運転終了から次の除霜運転開始の間に、切替室の設定温度帯が変更されていない場合のものである。切替室の設定温度帯が変更された場合、切替室温度帯変更時の特別制御に移行する。この特別制御中は第一閾値、第二閾値、最短除霜間隔、最長除霜間隔を設けず、特別制御専用の閾値および除霜周期により除霜制御を実施する。これは、貯蔵室内の温度が大きく変化し、蒸発器への霜の付着量が変化するため、モード毎に適切になるように調整された積算値の算出方法では、霜の付着量を予測することが困難となるためである。よって、切替室温度帯変更時には信頼性を向上させるために、特別制御に移行し、温度帯変更終了後の除霜制御を実施した後、図19のS1に戻る。
以上で説明した本実施例の構成によれば、冷蔵庫1の使用状況に合わせて除霜運転を実施するので、蒸発器への霜の付着量過多による、冷却性能の低下を抑制することができる。また、蒸発器への霜の着霜量が過少時の、不要な除霜運転による、消費電力量の悪化を抑制することができる。
(実施例2)
本実施例は,操作盤と表示盤を兼ねる操作表示盤202を備えた形態例である。操作盤200,表示盤201以外は実施例1と同様である。
図20は実施例2に係わる冷蔵庫の正面図,図21は実施例2に係わる操作表示盤202である。
本実施例では,冷蔵室ドア2aに操作表示盤202を備えており,何れのドアも開けることなく,操作できるようにしている。これにより,操作性を向上させている。一方,操作表示盤202では,実施例1の操作盤201と同様,第一切替室5のモードを切り替える際はモード切替操作部202a,第二切替室6のモードを切り替える際はモード切替操作部202bを,例えば3秒長押しとする。本実施例では,何れのドアも開けることなく,通常のキッチン作業中にモード切替操作部202a,202bに触れてしまう恐れがあるが,長押しとすることで,意図せずモードが切り替わる誤操作を抑えることができる。
本実施例では,実施例1の図8(b)で示したモード切替中表示201a,201bを,冷蔵モードか冷凍モードかを示す表示部202c,202dで兼ねる。ただし,実施例1においてモード切替中表示が点灯する条件(図13参照)では,本実施例では表示部202c,202dが点滅することで代用する。具体的には,例えばモード切替操作部202aを長押しし,冷蔵モードの第一切替室5を冷凍モードに切り替える指示が行われると,第一切替室5が低温になるまで表示部202cの冷凍側の照明を点滅させる。これにより,少ない照明でモードの状態表示と切替中表示を示すことができ,低コスト化できると共に,ドアを開けることなく,切り替え中であることと,切り替え後のモードが何になるかを合せて確認することができる。
次に,類似の効果が得られる他の形態例を示す。
図22は他の形態例の操作表示盤203である。(a)は全ての照明を点灯させた状態,(b)は操作している最中の表示の一例,(c)は無操作時の表示の一例,(d)はモード切替中の表示の一例である。
実施例2と同様に,操作表示盤203は冷蔵室ドア2aに設けており,何れのドアも開けることなく,操作できる。本実施例の操作表示盤203は,冷蔵庫の形状を模した図を載せており,それぞれの貯蔵室の温度設定(図中の低め,標準,高め)と,各切替室5,6のモード状態(冷凍,冷蔵)を,その模した貯蔵室内に表示させる。各貯蔵室の横に,それぞれの温度調整の操作部と,モード切替操作部203a,203bを設けている。これにより,各貯蔵室の名前が分からないユーザーでも,状態が確認し易く,また操作し易くなっている。
本実施例では,いずれかの操作部に触れると,(b)に示すように,そのときの各貯蔵室の各状態を表示するが,数秒間操作がされないと,(c)に示すように,切替室5,6の冷凍モード,冷蔵モードの状態のみ,すなわち表示部203c,204dのみを表示するようにしている。なお,これは図21に示す例でも同様である。このように切替室5,6の冷凍モード,冷蔵モードの状態を常に点灯させて表示しておくことで,ユーザーによる冷凍食品と冷蔵食品の入れ間違えを抑制できる。なお,この効果は,操作部200,と表示部201を兼ねたものに限定されるものだけではなく,例えば表示部202に,それぞれのモードの状態を示す表示を設けても同様の効果が得られる。
図22の例では,モード切替中表示が点灯する条件(図20参照)では,表示部203c,203dを点滅させる。例えば,モード切替操作部202aを長押しし,冷蔵モードの第一切替室5を冷凍モードに切り替える指示が行われると,第一切替室5が低温になるまで表示部203cの冷凍の文字を点滅させる。これにより,図21に示した例と同様,少ない照明でモードの状態表示と切替中表示を示すことができ,低コスト化できると共に,ドアを開けることなく,切り替え中であることと,切り替え後のモードが何になるかを合せて確認することができる。
以上が、本実施の形態例を示す実施例である。なお、本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1 冷蔵庫
2 冷蔵室
2a、2b 冷蔵室ドア
3 製氷室
3a 製氷室ドア
3b 製氷室容器
3c 製氷皿
4 冷凍室
4a 冷凍室ドア
4b 冷凍室容器
5 第一切替室
5a 第一切替室ドア
5b 第一切替室容器
6 第二切替室
6a 第二切替室ドア
6b 第二切替室容器
8a R蒸発器室(冷蔵用蒸発器室)
8b F蒸発器室(冷凍用蒸発器室)
9a Rファン(冷蔵用ファン)
9b Fファン(冷凍用ファン)
10 断熱箱体
10a 外箱
10b 内箱
11 冷蔵室風路
11a 冷蔵室吐出口
12 冷凍室風路
12a 製氷室吐出口
12b 冷凍室吐出口
12c 冷凍室戻り口
12d 冷凍室戻り風路
14a R蒸発器(冷蔵用蒸発器)
14b F蒸発器(冷凍用蒸発器)
15a、b 冷蔵室戻り口
16 ヒンジカバー
21 ラジアントヒータ
23a Rトイ
23b Fトイ
24 発泡断熱材
25,25a、25a、25b、25c、25d、25e、25f、25g 真空断熱材
26 F排水管
27、28、29、30 断熱仕切壁
31 制御基板
32a R蒸発皿
32b F蒸発皿
34a R棚最上段
34b R棚2段目
34c R棚3段目
34d R棚最下段
35 第一間接冷却室
36 第二間接冷却室
37 製氷タンク
39 機械室
40a R蒸発器温度センサ
40b F蒸発器温度センサ
41 冷蔵室温度センサ
42 冷凍室温度センサ
43 第一切替室温度センサ
44 第二切替室温度センサ
45 トイ温度センサ
46 外気温度センサ
47 外気湿度センサ
50a、50b 放熱器
51 ドライヤ
52 三方弁(冷媒制御手段)
53a 冷蔵用キャピラリチューブ(減圧手段)
53b 冷凍用キャピラリチューブ(減圧手段)
54b 冷蔵用気液分離器
54b 冷凍用気液分離器
55 冷媒合流部
56 逆止弁
57a、57b 熱交換部
58 圧縮機
60 第一切替室背面ヒータ
61 第一切替室下面ヒータ
62 第一切替室上面ヒータ
63 第一切替室背面ヒータ
64 ダンパヒータ
101a、101b、102a、102b ダンパ(送風制御部)
111a、111b 第一切替室吐出口
111c 第一切替室戻り口
112a、112b 第二切替室吐出口
112c 第二切替室戻り口
200 操作部

Claims (4)

  1. 冷蔵温度帯と冷凍温度帯に設定可能な切替室と、
    前記切替室の前方に設けられた扉と、
    圧縮機と冷却器を有する冷凍サイクルと、
    前記冷却器に付着した霜を溶かすための除霜制御と、を備え、冷蔵庫の動作条件の変数によって自動で除霜間隔を調整する冷蔵庫において、
    前記切替室の温度帯の設定により、前記除霜間隔を変更すること、を特徴とする冷蔵庫。
  2. 冷蔵温度帯と冷凍温度帯に設定可能な切替室と、
    前記切替室の前方に設けられた扉と、
    圧縮機と冷却器を有する冷凍サイクルと、
    前記冷却器に付着した霜を溶かすための除霜制御と、を備え、冷蔵庫の動作条件の変数によって自動で除霜間隔を調整する冷蔵庫において、
    前記切替室が冷蔵温度帯に設定されている場合には、冷凍温度帯に設定されている場合と比べて、前記除霜間隔を短くすること、を特徴とする冷蔵庫。
  3. 前記切替室の貯蔵温度帯を変更した後の1回目の除霜制御は、貯蔵温度帯を変更していない場合と比べて、前記除霜間隔を短くすることを特徴とする請求項2に記載の冷蔵庫。
  4. 冷蔵温度帯と冷凍温度帯に設定可能な切替室と、
    前記切替室の前方に設けられた扉と、
    圧縮機と冷却器を有する冷凍サイクルと、
    前記冷却器に付着した霜を溶かすための除霜制御と、
    を備え、冷蔵庫の動作条件の変数によって、最短除霜間隔から最長除霜間隔までの範囲で自動で除霜間隔を調整する冷蔵庫において、
    前記切替室が冷蔵温度帯に設定されている場合には、冷凍温度帯に設定されている場合と比べて、前記最短除霜間隔または前記最長除霜間隔を短くすること、を特徴とする冷蔵庫。
JP2019026175A 2019-02-18 2019-02-18 冷蔵庫 Active JP7046023B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019026175A JP7046023B2 (ja) 2019-02-18 2019-02-18 冷蔵庫

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019026175A JP7046023B2 (ja) 2019-02-18 2019-02-18 冷蔵庫

Publications (2)

Publication Number Publication Date
JP2020133969A true JP2020133969A (ja) 2020-08-31
JP7046023B2 JP7046023B2 (ja) 2022-04-01

Family

ID=72278416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019026175A Active JP7046023B2 (ja) 2019-02-18 2019-02-18 冷蔵庫

Country Status (1)

Country Link
JP (1) JP7046023B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113237275A (zh) * 2021-06-02 2021-08-10 北京科技大学 一种支持大数据持续优化的风冷冰箱化霜控制系统及方法
CN114646178A (zh) * 2020-12-17 2022-06-21 青岛海尔生物医疗股份有限公司 一种除霜控制方法及制冷设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284281A (ja) * 1985-10-09 1987-04-17 松下冷機株式会社 冷凍冷蔵庫
JPH11304333A (ja) * 1998-04-27 1999-11-05 Toshiba Corp 冷蔵庫の制御方法
JP2005180788A (ja) * 2003-12-19 2005-07-07 Sanyo Electric Co Ltd 冷却貯蔵庫の霜取り制御装置
JP2007139296A (ja) * 2005-11-18 2007-06-07 Sharp Corp 冷蔵庫

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284281A (ja) * 1985-10-09 1987-04-17 松下冷機株式会社 冷凍冷蔵庫
JPH11304333A (ja) * 1998-04-27 1999-11-05 Toshiba Corp 冷蔵庫の制御方法
JP2005180788A (ja) * 2003-12-19 2005-07-07 Sanyo Electric Co Ltd 冷却貯蔵庫の霜取り制御装置
JP2007139296A (ja) * 2005-11-18 2007-06-07 Sharp Corp 冷蔵庫

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114646178A (zh) * 2020-12-17 2022-06-21 青岛海尔生物医疗股份有限公司 一种除霜控制方法及制冷设备
CN114646178B (zh) * 2020-12-17 2023-09-15 青岛海尔生物医疗股份有限公司 一种除霜控制方法及制冷设备
CN113237275A (zh) * 2021-06-02 2021-08-10 北京科技大学 一种支持大数据持续优化的风冷冰箱化霜控制系统及方法
CN113237275B (zh) * 2021-06-02 2022-04-22 北京科技大学 一种支持大数据持续优化的风冷冰箱化霜控制系统及方法

Also Published As

Publication number Publication date
JP7046023B2 (ja) 2022-04-01

Similar Documents

Publication Publication Date Title
JP5017340B2 (ja) 冷蔵庫
US7237395B2 (en) Methods and apparatus for controlling refrigerators
JP5135045B2 (ja) 冷蔵庫
JP6993993B2 (ja) 冷蔵庫
JP4945395B2 (ja) 冷蔵庫
JP2003121043A (ja) 冷蔵庫
JP2015222131A (ja) 冷蔵庫
JP7046023B2 (ja) 冷蔵庫
JP2001082850A (ja) 冷蔵庫
JP6709363B2 (ja) 冷蔵庫
JP2003090667A (ja) 冷蔵庫の製氷室構成
JP4982537B2 (ja) 冷蔵庫
JP6985308B2 (ja) 冷蔵庫
JP2000258028A (ja) 冷蔵庫
CN111473575B (zh) 冰箱
JP7090198B2 (ja) 冷蔵庫
JP5376796B2 (ja) 冷蔵庫
JP2021046984A (ja) 冷蔵庫
WO2005038364A1 (ja) 冷却貯蔵庫及び冷却用機器
JP7454458B2 (ja) 冷蔵庫
JP6963044B2 (ja) 冷蔵庫
JP2003287331A (ja) 冷蔵庫
WO2022172483A1 (ja) 冷蔵庫
JP2023007618A (ja) 冷蔵庫
JP6975657B2 (ja) 冷蔵庫

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210308

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220322

R150 Certificate of patent or registration of utility model

Ref document number: 7046023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150