JP2020118084A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2020118084A
JP2020118084A JP2019009564A JP2019009564A JP2020118084A JP 2020118084 A JP2020118084 A JP 2020118084A JP 2019009564 A JP2019009564 A JP 2019009564A JP 2019009564 A JP2019009564 A JP 2019009564A JP 2020118084 A JP2020118084 A JP 2020118084A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
voltage
output current
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019009564A
Other languages
English (en)
Other versions
JP7115335B2 (ja
Inventor
圭一郎 青木
Keiichiro Aoki
圭一郎 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019009564A priority Critical patent/JP7115335B2/ja
Priority to US16/733,289 priority patent/US11092100B2/en
Priority to CN202010068677.4A priority patent/CN111472894B/zh
Priority to EP20153044.1A priority patent/EP3686416A1/en
Publication of JP2020118084A publication Critical patent/JP2020118084A/ja
Application granted granted Critical
Publication of JP7115335B2 publication Critical patent/JP7115335B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1408Dithering techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1484Output circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2438Active learning methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2474Characteristics of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2051Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using voltage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1496Measurement of the conductivity of a sensor

Abstract

【課題】内燃機関の排気通路に配置された空燃比センサによる空燃比の検出精度の低下を抑制することができる内燃機関の制御装置を提供する。【解決手段】内燃機関の制御装置は、内燃機関の排気通路に配置されると共に排気ガスの空燃比を検出する空燃比センサ40,41と、空燃比センサの出力電流を検出する電流検出装置61と、空燃比センサに電圧を印加する電圧印加装置60と、電圧印加装置を介して空燃比センサへの印加電圧を制御する電圧制御部81とを備える。電圧制御部は、空燃比センサに流入する流入排気ガスの空燃比が理論空燃比であるときに出力電流がゼロになるように定められた基準電圧に印加電圧を設定し、流入排気ガスの空燃比が理論空燃比であると判定されているときに電流検出装置によって検出された出力電流がゼロになるように基準電圧を補正する。【選択図】図12

Description

本発明は内燃機関の制御装置に関する。
従来、内燃機関の排気通路に触媒及び空燃比センサを配置することが知られている。空燃比センサの出力に基づいて混合気の空燃比を制御することによって排気ガスが触媒において効果的に浄化され、ひいては排気エミッションが改善される。
しかしながら、経年劣化、個体バラツキ等によって空燃比センサの出力にずれが生じる場合がある。このため、特許文献1に記載の内燃機関の制御装置では、触媒の下流側に配置された下流側空燃比センサの出力が補正される。具体的には、燃料カット制御後のリッチ制御によって下流側空燃比センサに流入する排気ガスの空燃比が理論空燃比となるタイミングで検出された下流側空燃比センサの出力空燃比と理論空燃比との差に基づいて、下流側空燃比センサ41の出力空燃比が補正される。
特開2016−031041号公報
上記の下流側空燃比センサでは、初期設定において、下流側空燃比センサに流入する排気ガスの空燃比が理論空燃比であるときに出力電流がゼロになるように印加電圧が設定されている。出力電流がゼロである場合には、空燃比センサに電流が流れないため、排気ガスの温度又は圧力の変動、回路誤差等による出力電流のバラツキが低減される。
一方、下流側空燃比センサの出力にずれが生じると、下流側空燃比センサに流入する排気ガスの空燃比が理論空燃比であるときの出力電流がゼロ以外の値となる。このため、下流側空燃比センサに流入する排気ガスの空燃比が理論空燃比であったとしても、このときの出力電流のバラツキが大きくなる。
上記の補正方法では、下流側空燃比センサの出力のずれが演算によって補正されるため、下流側空燃比センサの特性が初期設定からずれたままとなる。このため、下流側空燃比センサの出力電流のバラツキによって、空燃比の検出精度が低下するおそれがある。
そこで、上記課題に鑑みて、本発明の目的は、内燃機関の排気通路に配置された空燃比センサによる空燃比の検出精度の低下を抑制することができる内燃機関の制御装置を提供することにある。
本開示の要旨は以下のとおりである。
(1)内燃機関の排気通路に配置されると共に排気ガスの空燃比を検出する空燃比センサと、前記空燃比センサの出力電流を検出する電流検出装置と、前記空燃比センサに電圧を印加する電圧印加装置と、前記電圧印加装置を介して前記空燃比センサへの印加電圧を制御する電圧制御部とを備え、前記電圧制御部は、前記空燃比センサに流入する流入排気ガスの空燃比が理論空燃比であるときに前記出力電流がゼロになるように定められた基準電圧に前記印加電圧を設定し、前記流入排気ガスの空燃比が理論空燃比であると判定されているときに前記電流検出装置によって検出された前記出力電流がゼロになるように前記基準電圧を補正する、内燃機関の制御装置。
(2)酸素を吸蔵可能な触媒が前記排気通路に配置され、前記空燃比センサは前記触媒の下流側に配置される、上記(1)に記載の内燃機関の制御装置。
(3)前記空燃比制御部は、前記燃焼室への燃料供給を停止する燃料カット制御を実行し、該燃料カット制御後に、前記触媒の酸素吸蔵量がゼロになるように前記混合気の空燃比を理論空燃比よりもリッチな空燃比にするリッチ制御を実行し、前記電圧制御部は、前記リッチ制御が実行され且つ前記出力電流の所定時間当たりの変化量が所定値以下であるときに前記電流検出装置によって検出された前記出力電流がゼロになるように前記基準電圧を補正する、上記(2)に記載の内燃機関の制御装置。
(4)前記空燃比制御部は、前記燃焼室への燃料供給を停止する燃料カット制御を実行し、該燃料カット制御後に前記流入排気ガスの空燃比を理論空燃比よりもリッチにするリッチ制御を実行し、前記電圧制御部は、前記リッチ制御が実行され且つ前記出力電流の所定時間当たりの変化量が所定値以下であるときに前記電流検出装置によって検出された前記出力電流がゼロになるように前記基準電圧を補正する、上記(3)に記載の内燃機関の制御装置。
(5)前記空燃比制御部は、前記触媒の酸素吸蔵量がゼロと最大酸素吸蔵量との間で変化するように前記混合気の空燃比を理論空燃比よりもリッチな空燃比と理論空燃比よりもリーンな空燃比とに切り替えるアクティブ制御を実行し、前記電圧制御部は、前記アクティブ制御が実行され且つ前記出力電流の所定時間当たりの変化量が所定値以下であるときに前記電流検出装置によって検出された前記出力電流がゼロになるように前記基準電圧を補正する、上記(3)に記載の内燃機関の制御装置。
(6)前記電圧制御部は、前記基準電圧と、該基準電圧とは異なる切替電圧との間で前記印加電圧を切り替え、前記基準電圧を補正する場合、前記出力電流がゼロであるときに前記基準電圧に対応する前記空燃比センサの排気側電極上の酸素濃度と、前記出力電流がゼロであるときに前記切替電圧に対応する前記空燃比センサの排気側電極上の酸素濃度との差が一定となるように前記切替電圧を補正する、上記(1)から(5)のいずれか1つに記載の内燃機関の制御装置。
本発明によれば、内燃機関の排気通路に配置された空燃比センサによる空燃比の検出精度の低下を抑制することができる内燃機関の制御装置が提供される。
図1は、本発明の第一実施形態に係る内燃機関の制御装置が設けられた内燃機関を概略的に示す図である。 図2は、三元触媒の浄化特性を示す。 図3は、空燃比センサの概略的な断面図である。 図4は、空燃比センサの動作を概略的に示す図である。 図5は、電気回路の具体例を示す。 図6は、空燃比センサの電圧−電流特性を示す図である。 図7は、図6のX−X領域における電圧−電流特性を示す図である。 図8は、排気ガスの空燃比と出力電流との関係を示すグラフである。 図9は、出力電流がゼロのときのセンサ印加電圧と排気側電極上の酸素濃度との関係を示すグラフである。 図10は、本発明の第一実施形態に係る内燃機関の制御装置の構成を概略的に示す図である。 図11は、燃料カット制御後にリッチ制御が実行されるときの空燃比制御の種類及び下流側空燃比センサの出力電流のタイムチャートである。 図12は、本発明の第一実施形態における電圧補正処理の制御ルーチンを示すフローチャートである。 図13は、流入排気ガスの空燃比が理論空燃比であると判定されているときに検出された出力電流に基づいて基準電圧の補正量を算出するためのマップを示す図である。 図14は、アクティブ制御が実行されるときの混合気の目標空燃比及び下流側空燃比センサの出力電流のタイムチャートである。 図15は、本発明の第二実施形態における電圧補正処理の制御ルーチンを示すフローチャートである。 図16は、出力電流がゼロのときのセンサ印加電圧と排気側電極上の酸素濃度との関係を示すグラフである。 図17は、図16のY領域の概略的な拡大図である。 図18は、本発明の第三実施形態における電圧補正処理の制御ルーチンを示すフローチャートである。
以下、図面を参照して本発明の実施形態について詳細に説明する。なお、以下の説明では、同様な構成要素には同一の参照番号を付す。
<第一実施形態>
最初に図1〜図13を参照して、本発明の第一実施形態について説明する。
<内燃機関全体の説明>
図1は、本発明の第一実施形態に係る内燃機関の制御装置が設けられた内燃機関を概略的に示す図である。図1に示される内燃機関は火花点火式内燃機関である。内燃機関は車両に搭載される。
図1を参照すると、2はシリンダブロック、3はシリンダブロック2内で往復動するピストン、4はシリンダブロック2上に固定されたシリンダヘッド、5はピストン3とシリンダヘッド4との間に形成された燃焼室、6は吸気弁、7は吸気ポート、8は排気弁、9は排気ポートをそれぞれ示す。吸気弁6は吸気ポート7を開閉し、排気弁8は排気ポート9を開閉する。
図1に示したように、シリンダヘッド4の内壁面の中央部には点火プラグ10が配置され、シリンダヘッド4の内壁面周辺部には燃料噴射弁11が配置される。点火プラグ10は、点火信号に応じて火花を発生させるように構成される。また、燃料噴射弁11は、噴射信号に応じて、所定量の燃料を燃焼室5内に噴射する。本実施形態では、燃料として理論空燃比が14.6であるガソリンが用いられる。
各気筒の吸気ポート7はそれぞれ対応する吸気枝管13を介してサージタンク14に連結され、サージタンク14は吸気管15を介してエアクリーナ16に連結される。吸気ポート7、吸気枝管13、サージタンク14、吸気管15等は、空気を燃焼室5に導く吸気通路を形成する。また、吸気管15内には、スロットル弁駆動アクチュエータ17によって駆動されるスロットル弁18が配置される。スロットル弁18は、スロットル弁駆動アクチュエータ17によって回動せしめられることで、吸気通路の開口面積を変更することができる。
一方、各気筒の排気ポート9は排気マニホルド19に連結される。排気マニホルド19は、各排気ポート9に連結される複数の枝部と、これら枝部が集合した集合部とを有する。排気マニホルド19の集合部は、上流側触媒20を内蔵した上流側ケーシング21に連結される。上流側ケーシング21は、排気管22を介して、下流側触媒23を内蔵した下流側ケーシング24に連結される。排気ポート9、排気マニホルド19、上流側ケーシング21、排気管22、下流側ケーシング24等は、燃焼室5における混合気の燃焼によって生じた排気ガスを排出する排気通路を形成する。
内燃機関の各種制御は、内燃機関に設けられた各種センサの出力等に基づいて電子制御ユニット(ECU)31によって実行される。電子制御ユニット(ECU)31はデジタルコンピュータからなり、双方向性バス32を介して相互に接続されたRAM(ランダムアクセスメモリ)33、ROM(リードオンリメモリ)34、CPU(マイクロプロセッサ)35、入力ポート36及び出力ポート37を備える。吸気管15には、吸気管15内を流れる空気の流量を検出するエアフロメータ39が配置され、エアフロメータ39の出力は対応するAD変換器38を介して入力ポート36に入力される。
また、排気マニホルド19の集合部、すなわち上流側触媒20の上流側には、排気マニホルド19内を流れる排気ガス(すなわち、上流側触媒20に流入する排気ガス)の空燃比を検出する上流側空燃比センサ40が配置される。上流側空燃比センサ40の出力は対応するAD変換器38を介して入力ポート36に入力される。
また、排気管22内、すなわち上流側触媒20の下流側には、排気管22内を流れる排気ガス(すなわち、上流側触媒20から流出する排気ガス)の空燃比を検出する下流側空燃比センサ41が配置される。下流側空燃比センサ41の出力は対応するAD変換器38を介して入力ポート36に入力される。
また、アクセルペダル42には、アクセルペダル42の踏込み量に比例した出力電圧を発生する負荷センサ43が接続され、負荷センサ43の出力電圧は対応するAD変換器38を介して入力ポート36に入力される。CPU35は負荷センサ43の出力に基づいて機関負荷を算出する。
クランク角センサ44は例えばクランクシャフトが15度回転する毎に出力パルスを発生し、この出力パルスが入力ポート36に入力される。CPU35はクランク角センサ44の出力に基づいて機関回転数を算出する。
一方、出力ポート37は対応する駆動回路45を介して点火プラグ10、燃料噴射弁11及びスロットル弁駆動アクチュエータ17に接続される。
なお、上述した内燃機関は、ガソリンを燃料とする無過給内燃機関であるが、内燃機関の構成は、上記構成に限定されるものではない。したがって、気筒配列、燃料の噴射態様、吸排気系の構成、動弁機構の構成、過給器の有無のような内燃機関の具体的な構成は、図1に示した構成と異なっていてもよい。例えば、燃料噴射弁11は、吸気ポート7内に燃料を噴射するように配置されてもよい。
<触媒の説明>
排気通路に配置された上流側触媒20及び下流側触媒23は同様な構成を有する。触媒20、23は、酸素吸蔵能力を有する触媒であり、例えば三元触媒である。具体的には、触媒20、23は、セラミックから成る担体に、触媒作用を有する貴金属(例えば、白金(Pt))及び酸素吸蔵能力を有する助触媒(例えば、セリア(CeO2))を担持させたものである。
図2は、三元触媒の浄化特性を示す。図2に示されるように、触媒20、23による未燃ガス(HC、CO)及び窒素酸化物(NOx)の浄化率は、触媒20、23に流入する排気ガスの空燃比が理論空燃比近傍領域(図2における浄化ウィンドウA)にあるときに非常に高くなる。したがって、触媒20、23は、排気ガスの空燃比が理論空燃比に維持されていると、未燃ガス及びNOxを効果的に浄化することができる。
また、触媒20、23は助触媒によって排気ガスの空燃比に応じて酸素を吸蔵し又は放出する。具体的には、触媒20、23は、排気ガスの空燃比が理論空燃比よりもリーンであるときには、排気ガス中の過剰な酸素を吸蔵する。一方、触媒20、23は、排気ガスの空燃比が理論空燃比よりもリッチであるときには、未燃ガスを酸化させるのに不足している酸素を放出する。この結果、排気ガスの空燃比が理論空燃比から若干ずれた場合であっても、触媒20、23の表面上における空燃比が理論空燃比近傍に維持され、触媒20、23において未燃ガス及び窒素酸化物が効果的に浄化される。
なお、触媒20、23は、触媒作用及び酸素吸蔵能力を有していれば、三元触媒以外の触媒であってもよい。
<空燃比センサの構成>
排気通路に配置された上流側空燃比センサ40及び下流側空燃比センサ41は同様な構成を有する。図3は、空燃比センサ40、41の概略的な断面図である。図3から分かるように、本実施形態では、空燃比センサ40、41は、固体電解質層及び一対の電極を含むセンサセルが1つである1セル型の空燃比センサである。
図3に示したように、空燃比センサ40、41は、固体電解質層51と、固体電解質層51の一方の側面上に配置された排気側電極52と、固体電解質層51の他方の側面上に配置された大気側電極53と、排気ガスの拡散律速を行う拡散律速層54と、拡散律速層54を保護する保護層55と、空燃比センサ40、41の加熱を行うヒータ部56とを備える。
固体電解質層51の一方の側面上には拡散律速層54が設けられ、拡散律速層54の固体電解質層51側の側面とは反対側の側面上には保護層55が設けられる。本実施形態では、固体電解質層51と拡散律速層54との間に被測ガス室57が形成される。排気通路を流れる排気ガスの一部は拡散律速層54を介して被測ガス室57に導入される。また、排気側電極52は被測ガス室57内に配置される。したがって、排気側電極52は拡散律速層54を介して排気ガスに曝される。なお、被測ガス室57は必ずしも設ける必要はなく、排気側電極52の表面上に拡散律速層54が直接接触するように空燃比センサ40、41が構成されてもよい。
固体電解質層51の他方の側面上にはヒータ部56が設けられる。固体電解質層51とヒータ部56との間には基準ガス室58が形成され、基準ガス室58内には基準ガスが導入される。本実施形態では、基準ガス室58は大気に開放されており、基準ガスとして大気が基準ガス室58に導入される。大気側電極53は基準ガス室58内に配置される。したがって、大気側電極53は基準ガス(大気)に曝される。
ヒータ部56には複数のヒータ59が設けられており、ヒータ59によって空燃比センサ40、41の温度、特に固体電解質層51の温度を制御することができる。ヒータ部56は、固体電解質層51を活性化するまで加熱するのに十分な発熱容量を有している。
固体電解質層51は、酸化物イオン伝導性を有する薄板体である。固体電解質層51は、例えば、ZrO2(ジルコニア)、HfO2、ThO2、Bi23等にCaO、MgO、Y23、Yb23等を安定剤として添加した焼結体である。また、拡散律速層54は、アルミナ、マグネシア、けい石質、スピネル、ムライト等の耐熱性無機物質の多孔質焼結体により形成されている。さらに、排気側電極52及び大気側電極53は、白金等の触媒活性の高い貴金属により形成されている。
また、排気側電極52及び大気側電極53には、電気回路70が接続されている。電気回路70は電圧印加装置60及び電流検出装置61を含む。電圧印加装置60は、大気側電極53の電位が排気側電極52の電位よりも高くなるように空燃比センサ40、41に電圧を印加する。したがって、排気側電極52は負極として機能し、大気側電極53は正極として機能する。ECU31の出力ポート37は、対応する駆動回路45を介して電圧印加装置60に接続されている。したがって、ECU31は電圧印加装置60を介して空燃比センサ40への印加電圧を制御することができる。
また、電流検出装置61は、排気側電極52と大気側電極53との間を流れる電流、すなわち空燃比センサ40、41の出力電流を検出する。電流検出装置61の出力は、対応するAD変換器38を介してECU31の入力ポート36に入力される。したがって、ECU31は、電流検出装置61によって検出された空燃比センサ40、41の出力電流を取得することができる。
<空燃比センサの動作>
次に、図4を参照して、空燃比センサ40、41の基本的な動作について説明する。図4は、空燃比センサ40、41の動作を概略的に示す図である。空燃比センサ40、41は、保護層55及び拡散律速層54の外周面が排気ガスに曝されるように排気通路に配置される。また、空燃比センサ40、41の基準ガス室58には大気が導入される。
上述したように、固体電解質層51は酸化物イオン伝導性を有する。このため、活性化された固体電解質層51の両側面間に酸素濃度の差が生じると、濃度の高い側面側から濃度の低い側面側へと酸化物イオンを移動させようとする起電力Eが発生する。斯かる特性は酸素電池特性と称される。
一方、固体電解質層51の両側面間に電位差が与えられると、固体電解質層の両側面間に電位差に応じた酸素濃度比が生じるように、酸化物イオンが移動する。斯かる特性は酸素ポンピング特性と称される。
空燃比センサ40、41に流入する排気ガスの空燃比が理論空燃比よりもリーンのときには、排気ガス中の酸素濃度が高いため、固体電解質層51の両側面間の酸素濃度比はそれほど大きくない。このため、空燃比センサ40、41への印加電圧Vrを適切な値に設定すれば、固体電解質層51の両側面間の酸素濃度比は、センサ印加電圧Vrに対応する酸素濃度比よりも小さくなる。このため、固体電解質層51の両側面間の酸素濃度比がセンサ印加電圧Vrに対応する酸素濃度比に近付くように、図4(A)に示されたように、排気側電極52から大気側電極53に向かって酸化物イオンが移動する。この結果、電圧印加装置60の正極から電圧印加装置60の負極へ電流Irが流れる。このとき、電流検出装置61によって正の電流が検出される。また、電流Irの値は、被測ガス室57に流入する排気ガス中の酸素濃度が高いほど、すなわち排気ガスの空燃比が高いほど大きくなる。
一方、空燃比センサ40、41に流入する排気ガスの空燃比が理論空燃比よりもリッチのときには、排気側電極52上の酸素が排気ガス中の未燃ガスと反応して除去される。このため、排気側電極52における酸素濃度が極めて低くなり、固体電解質層51の両側面間の酸素濃度比が大きくなる。このため、センサ印加電圧Vrを適切な値に設定すれば、固体電解質層51の両側面間の酸素濃度比は、センサ印加電圧Vrに対応する酸素濃度比よりも大きくなる。このため、固体電解質層51の両側面間の酸素濃度比がセンサ印加電圧Vrに対応する酸素濃度比に近付くように、図4(B)に示されたように、大気側電極53から排気側電極52に向かって酸化物イオンが移動する。この結果、電圧印加装置60の負極から電圧印加装置60の正極へ電流Irが流れる。このとき、電流検出装置61によって負の電流が検出される。また、電流Irの絶対値は、被測ガス室57に流入する排気ガス中の未燃ガス濃度が高いほど、すなわち排気ガスの空燃比が低いほど大きくなる。
また、空燃比センサ40、41に流入する排気ガスの空燃比が理論空燃比のときには、排気ガス中の酸素及び未燃ガスの量が化学当量比となっている。このため、排気側電極52の触媒作用によって両者は完全に燃焼し、固体電解質層51の両側面間の酸素濃度比は、印加電圧Vrに対応する酸素濃度比に維持される。このため、図4(C)に示されるように、酸素ポンピング特性による酸化物イオンの移動は起こらず、電流検出装置61によって検出される電流はゼロになる。
したがって、空燃比センサ40、41の出力電流の値は、空燃比センサ40、41に流入する排気ガスの空燃比に応じて変動する。このため、ECU31は、電流検出装置61によって検出された出力電流に基づいて排気ガスの空燃比を推定することができる。なお、排気ガスの空燃比とは、その排気ガスが生成されるまでに供給された燃料の質量に対する空気の質量の比率(空気の質量/燃料の質量)を意味し、排気ガス中の酸素濃度及び還元ガス濃度から推定される。
<電気回路の具体例>
図5は、電気回路70の具体例を示す。図示した例では、酸素電池特性により生じる起電力をE、固体電解質層51の内部抵抗をRi、電極52、53間の電位差をVs、電圧印加装置60によって空燃比センサ40、41に印加されるセンサ印加電圧をVrと表している。
図5から分かるように、電圧印加装置60は、基本的に、酸素電池特性により生じる起電力Eがセンサ印加電圧Vrに一致するように負帰還制御を行う。電圧印加装置60は、固体電解質層51の両側面間の酸素濃度比の変化によって両電極52、53間の電位差Vsが変化した際にも、この電位差Vsがセンサ印加電圧Vrとなるように負帰還制御を行う。
排気ガスの空燃比が理論空燃比であり、固体電解質層51の両側面間の酸素濃度比が変化しない場合には、固体電解質層51の両側面間の酸素濃度比はセンサ印加電圧Vrに対応する酸素濃度比となる。この場合、起電力E及び電位差Vsがセンサ印加電圧Vrに一致するため、電流Irは流れない。
一方、排気ガスの空燃比が理論空燃比とは異なる空燃比であり、固体電解質層51の両側面間の酸素濃度比が変化する場合には、固体電解質層51の両側面間の酸素濃度比はセンサ印加電圧Vrに対応する酸素濃度比とは異なる。この場合、起電力Eはセンサ印加電圧Vrとは異なる値となる。この結果、負帰還制御により、起電力Eがセンサ印加電圧Vrと一致するように固体電解質層51の両側面間で酸化物イオンの移動をさせるべく、電極52、53間に電位差Vsが付与される。また、酸化物イオンの移動に伴って電流Irが流れる。この結果、起電力Eがセンサ印加電圧Vrに収束し、電位差Vsもセンサ印加電圧Vrに収束する。
また、電流検出装置61は電流Irを検出するために電圧E0を検出する。ここで、E0は下記式(1)のように表される。
0=Vr+V0+IrR …(1)
ここで、V0は、E0が負の値とならないように印加されるオフセット電圧(例えば3V)であり、Rは、図5に示される抵抗の値である。
式(1)において、センサ印加電圧Vr、オフセット電圧V0及び抵抗値Rは一定であるため、電圧E0は電流Irに応じて変化する。したがって、電流検出装置61は電圧E0に基づいて電流Irを算出することができる。
なお、電気回路70は、空燃比センサ40、41に電圧を印加し且つ空燃比センサ40、41の出力電流を検出できれば、図5に示される構成と異なっていてもよい。
<空燃比センサの出力特性>
上述した原理の結果、空燃比センサ40、41は、図6に示したような電圧−電流(V−I)特性を有する。図6に示されるように、センサ印加電圧Vrが0以下及び0近傍の領域では、排気空燃比が一定である場合には、センサ印加電圧Vrが高くなるにつれて、出力電流Irが大きくなる。なお、センサ印加電圧Vrに比例して出力電流Irが変化する電圧領域は比例領域と称される。
比例領域では、センサ印加電圧Vrが低いため、固体電解質層51を介して移動可能な酸化物イオンの流量が少ない。この場合、電圧印加に伴って固体電解質層51内を移動する酸化物イオンの移動速度が、拡散律速層54を介して被測ガス室57に導入される排気ガスの導入速度よりも遅くなる。このため、固体電解質層51を介して移動可能な酸化物イオンの流量がセンサ印加電圧Vrに応じて変化し、センサ印加電圧Vrの増加に伴って出力電流Irが増加する。なお、センサ印加電圧Vrが0のときに出力電流Irが負の値になるのは、酸素電池特性により固体電解質層51の両側面間の酸素濃度比に応じた起電力が生じるためである。
図6に示されるように、センサ印加電圧Vrが所定値以上になると、出力電流Irはセンサ印加電圧Vrの値に関わらずほぼ一定の値に維持される。この飽和した電流は限界電流と称され、限界電流が発生する電圧領域は限界電流領域と称される。限界電流領域では、センサ印加電圧Vrが比例領域よりも高いため、固体電解質層51を介して移動可能な酸化物イオンの流量が比例領域よりも多くなる。この場合、電圧印加に伴って固体電解質層51内を移動する酸化物イオンの移動速度が、拡散律速層54を介して被測ガス室57に導入される排気ガスの導入速度よりも早くなる。このため、固体電解質層51を介して移動可能な酸化物イオンの流量がセンサ印加電圧Vrに応じてほとんど変化しないため、出力電流Irはセンサ印加電圧Vrの値に関わらずほぼ一定の値に維持される。一方、固体電解質層51を介して移動可能な酸化物イオンの流量が固体電解質層51の両側面間の酸素濃度比に応じて変化するため、出力電流Irは排気ガスの空燃比に応じて変化する。
図6に示されるように、センサ印加電圧Vrが非常に高い領域では、排気空燃比が一定である場合には、センサ印加電圧Vrが高くなるにつれて、出力電流Irが大きくなる。センサ印加電圧Vrが非常に高くなると、排気側電極52において排気ガス中の水が分解される。水の分解によって生じた酸化物イオンは固体電解質層51内を排気側電極52から大気側電極53へ移動する。この結果、水の分解による電流も出力電流Irとして検出されるため、出力電流Irが限界電流よりも大きくなる。斯かる電圧領域は水分解領域と称される。
図7は、図6のX−X領域における電圧−電流特性を示す図である。図7から分かるように、限界電流領域においても、排気ガスの空燃比が一定であるときに、センサ印加電圧Vrが高くなるにつれて、出力電流Irが僅かに大きくなる。このため、出力電流Irがゼロとなるときのセンサ印加電圧Vrの値が排気ガスの空燃比に応じて変化する。
例えば、排気ガスの空燃比が理論空燃比(14.6)である場合、出力電流Irがゼロとなるときのセンサ印加電圧Vrの値は0.45Vである。排気ガスの空燃比が理論空燃比よりも低い(リッチである)場合、出力電流Irがゼロとなるときのセンサ印加電圧Vrの値は0.45Vよりも高い。一方、排気ガスの空燃比が理論空燃比よりも高い(リーンである)場合、出力電流Irがゼロとなるときのセンサ印加電圧Vrの値は0.45Vよりも低い。
図8は、排気ガスの空燃比と出力電流Irとの関係を示すグラフである。図8では、理論空燃比近傍の領域が拡大されている。図8には、センサ印加電圧Vrが、0.3V、0.45V及び0.6Vであるときの排気ガスの空燃比と出力電流Irとの関係が示される。図9は、出力電流がゼロのときのセンサ印加電圧Vrと排気側電極上の酸素濃度との関係を示すグラフである。図9では、y軸(排気側電極上の酸素濃度)が対数表示されている。排気ガスの空燃比がリッチであるほど、排気側電極上の酸素濃度は低くなる。図8及び図9から分かるように、センサ印加電圧Vrが高くなるにつれて、出力電流Irがゼロとなるときの排気ガスの空燃比は低くなる(リッチになる)。
<内燃機関の制御装置>
以下、本発明の第一実施形態に係る内燃機関の制御装置について説明する。図10は、本発明の第一実施形態に係る内燃機関の制御装置の構成を概略的に示す図である。内燃機関の制御装置は、下流側空燃比センサ41、電流検出装置61、電圧印加装置60、電圧制御部81及び空燃比制御部82を備える。
本実施形態では、ECU31が電圧制御部81及び空燃比制御部82を有する。電圧制御部81及び空燃比制御部82は、ECU31のROM33に記憶されたプログラムをECU31のCPU35が実行することによって実現される機能ブロック図である。
空燃比制御部82は、燃焼室5に供給される混合気の空燃比、ひいては上流側触媒20に流入する排気ガスの空燃比を制御する。具体的には、空燃比制御部82は、燃料噴射弁11から燃焼室5に供給される燃料の量を変更することによって混合気の空燃比を制御する。
電圧制御部81は電圧印加装置60を介して下流側空燃比センサ41への印加電圧(以下、単に「印加電圧」という)を制御する。図8に示されるように、印加電圧が変更されると、下流側空燃比センサ41に流入する排気ガス(以下、「流入排気ガス」という)の空燃比と下流側空燃比センサ41の出力電流との関係、すなわち上流側触媒20から流出する排気ガスの空燃比と下流側空燃比センサ41の出力電流との関係が変化する。
下流側空燃比センサ41に電流が流れる場合、排気ガスの温度又は圧力の変動、回路誤差等によって下流側空燃比センサ41の出力電流が変化する。一方、下流側空燃比センサ41の出力電流がゼロである場合には、排気ガスの温度又は圧力の変動、回路誤差等による下流側空燃比センサ41の出力電流のバラツキが低減される。
本実施形態では、電圧制御部81は、流入排気ガスの空燃比が理論空燃比であるときに下流側空燃比センサ41の出力電流がゼロになるように定められた基準電圧に印加電圧を設定する。このことによって、流入排気ガスの空燃比が理論空燃比であることを精度良く検出することができ、ひいては上流側触媒20から流出する排気ガスの特性の変化を迅速に検出することができる。このため、下流側空燃比センサ41によって検出される空燃比に基づいて混合気の空燃比を制御することによって排気エミッションの悪化を抑制することができる。
しかしながら、経年劣化、個体バラツキ等によって下流側空燃比センサ41の出力にずれが生じる場合がある。下流側空燃比センサ41の出力にずれが生じると、流入排気ガスの空燃比が理論空燃比であっても下流側空燃比センサ41の出力電流がゼロ以外の値になる。この結果、下流側空燃比センサ41による空燃比の検出精度、特に理論空燃比の検出精度が悪化する。
このため、空燃比の検出精度の悪化による排気エミッションの悪化を抑制するためには、下流側空燃比センサ41の出力のずれを補正する必要がある。例えば、流入排気ガスの空燃比が理論空燃比であるときに検出された下流側空燃比センサ41の出力電流を補正量に設定し、実際に検出された下流側空燃比センサ41の出力電流から補正量を減算することが考えられる。
しかしながら、この方法では、下流側空燃比センサ41の出力のずれが演算によって補正されるため、下流側空燃比センサ41の特性が初期設定からずれたままとなる。このため、下流側空燃比センサ41の出力電流のバラツキによって、空燃比の検出精度が低下するおそれがある。
これに対して、本実施形態では、下流側空燃比センサ41の出力にずれが生じている場合、印加電圧を変更することによって理論空燃比に対応する下流側空燃比センサ41の出力電流をゼロにする。具体的には、電圧制御部81は、流入排気ガスの空燃比が理論空燃比であると判定されているときに電流検出装置61によって検出された下流側空燃比センサ41の出力電流がゼロになるように基準電圧を補正する。このことによって、下流側空燃比センサ41の特性が初期の理想的な状態となり、下流側空燃比センサ41の出力電流のバラツキが低減される。この結果、下流側空燃比センサ41による空燃比の検出精度の低下を抑制することができる。
上述したように基準電圧を補正するためには、流入排気ガスの空燃比を理論空燃比にする必要がある。上流側触媒20の酸素吸蔵量がゼロと最大酸素吸蔵量との間で変化する場合、上流側触媒20の排気浄化特性によって流入排気ガスの空燃比が少なくとも一時的に理論空燃比となる。このため、空燃比制御部82は、上流側触媒20の酸素吸蔵量がゼロと最大酸素吸蔵量との間で変化するように混合気の空燃比を制御する。
また、流入排気ガスの空燃比が理論空燃比であるとき、下流側空燃比センサ41の出力電流の変化量が小さくなる。このため、電圧制御部81は、下流側空燃比センサ41の出力電流の所定時間当たりの変化量が所定値以下であるときに電流検出装置61によって検出された下流側空燃比センサ41の出力電流がゼロになるように基準電圧を補正する。このことによって、流入排気ガスの空燃比が理論空燃比であるときの出力電流に基づいて、下流側空燃比センサ41に印加される基準電圧を精度良く補正することができる。
本実施形態では、空燃比制御部82は、所定の実行条件が成立しているときに、燃焼室5への燃料供給を停止する燃料カット制御を実行する。空燃比制御部82は、燃料カット制御において、燃料噴射弁11からの燃料噴射を停止することで燃焼室5への燃料供給を停止する。所定の実行条件は、例えば、アクセルペダル42の踏込み量がゼロ又はほぼゼロ(すなわち、機関負荷がゼロ又はほぼゼロ)であり且つ機関回転数がアイドリング時の回転数よりも高い所定の回転数以上であるときに成立する。
燃料カット制御が実行されると、空気又は空気と同様なガスが排気通路に排出されて上流側触媒20に流入する。この結果、上流側触媒20に多量の酸素が流入し、上流側触媒20の酸素吸蔵量が最大酸素吸蔵量に達する。また、上流側触媒20の酸素吸蔵量が最大酸素吸蔵量に達すると、下流側触媒23にも多量の酸素が流入し、下流側触媒23の酸素吸蔵量も最大酸素吸蔵量に達する。
このため、燃料カット制御が所定時間以上継続されると、上流側触媒20及び下流側触媒23の酸素吸蔵量が最大酸素吸蔵量となる。上流側触媒20及び下流側触媒23の酸素吸蔵量が最大酸素吸蔵量であるとき、上流側触媒20及び下流側触媒23は排気ガス中の過剰な酸素を吸蔵することができない。このため、燃料カット制御後に理論空燃比比よりもリーンな排気ガスが上流側触媒20及び下流側触媒23に流入すると、上流側触媒20及び下流側触媒23において排気ガス中のNoxが浄化されず、排気エミッションが悪化するおそれがある。
そこで、本実施形態では、空燃比制御部82は、燃料カット制御後に、上流側触媒20の酸素吸蔵量がゼロになるように混合気の空燃比を理論空燃比よりもリッチにするリッチ制御を実行する。このことによって、上流側触媒20及び下流側触媒23の酸素吸蔵量を減少させることができ、燃料カット制御後に排気エミッションが悪化することを抑制することができる。
空燃比制御部82は、リッチ制御において、混合気の目標空燃比を理論空燃比よりもリッチなリッチ設定空燃比に設定し、上流側空燃比センサ40によって検出される空燃比が目標空燃比に一致するように、燃焼室5に供給される燃料量をフィードバック制御する。なお、空燃比制御部82は、上流側空燃比センサ40を用いることなく、流入排気ガスの空燃比が目標空燃比に一致するように、燃焼室5に供給される燃料量を制御してもよい。この場合、空燃比制御部82は、燃焼室5に供給される燃料と空気との比率が混合気の目標空燃比に一致するように、エアフロメータ39によって検出された吸入空気量と混合気の目標空燃比とから算出された燃料量を燃焼室5に供給する。
また、空燃比制御部82は、リッチ制御を開始したときからの吸入空気量の合計が所定量に達したと判定したときに、リッチ制御を終了する。所定量は、上流側触媒20の酸素吸蔵量が最大酸素吸蔵量からゼロまで減少するのに必要な量よりも多くされる。なお、空燃比制御部82は、下流側空燃比センサ41によって検出された空燃比が理論空燃比よりもリッチなリッチ判定空燃比に達したときにリッチ制御を終了してもよい。
リッチ制御によって流入排気ガスの空燃比は理論空燃比よりもリーンな空燃比から理論空燃比に向かって変化する。上流側触媒20の酸素吸蔵量が適切な範囲である間、流入排気ガスの空燃比が理論空燃比に維持され、下流側空燃比センサ41の出力電流はほぼ一定となる。このため、電圧制御部81は、リッチ制御が実行され且つ下流側空燃比センサ41の出力電流の所定時間当たりの変化量が所定値以下であるときに電流検出装置61によって検出された下流側空燃比センサ41の出力電流がゼロになるように基準電圧を補正する。
<タイムチャートを用いた制御の説明>
図11は、燃料カット制御後にリッチ制御が実行されるときの空燃比制御の種類及び下流側空燃比センサ41の出力電流のタイムチャートである。下流側空燃比センサ41には、流入排気ガスの空燃比が理論空燃比であるときに下流側空燃比センサ41の出力電流がゼロになるように定められた基準電圧が印加されている。本実施形態では、図8から分かるように、基準電圧の初期値は0.45Vである。
図11の例では、時刻t0において燃料カット制御が実行されている。時刻t0では、燃料カット制御によって下流側空燃比センサ41の出力電流が非常に大きい値になっている。すなわち、流入排気ガスの空燃比のリーン度合が大きくなっている。
図11の例では、時刻t1において燃料カット制御が終了し、リッチ制御が開始される。この結果、時刻t1の後、下流側空燃比センサ41の出力電流がゼロに向かって減少する。すなわち、流入排気ガスの空燃比が理論空燃比に向かって変化する。その後、時刻t2において、下流側空燃比センサ41の出力電流の所定時間当たりの変化量が所定値以下となる。この結果、時刻t2〜時刻t3において流入排気ガスの空燃比が理論空燃比であると判定される。
下流側空燃比センサ41に基準電圧が印加されているため、下流側空燃比センサ41の出力電流にずれが生じていない場合には、流入排気ガスの空燃比が理論空燃比であると判定されている時間Tstに検出される下流側空燃比センサ41の出力電流Istはゼロになる。一方、下流側空燃比センサ41の出力電流にずれが生じている場合、下流側空燃比センサ41の出力電流Istはゼロ以外の値になる。
図11の例では、下流側空燃比センサ41の出力電流Istがゼロよりも大きい。このため、下流側空燃比センサ41の出力電流Istがゼロになるように基準電圧が補正される。図8から分かるように、基準電圧を高くすることによって下流側空燃比センサ41の出力電流を大きくすることができ、基準電圧を低くすることによって下流側空燃比センサ41の出力電流を小さくすることができる。このため、図11の例では、基準電圧が低くされる。
<電圧補正処理>
以下、図12のフローチャートを参照して、本実施形態において基準電圧を補正するための制御について詳細に説明する。図12は、本発明の第一実施形態における電圧補正処理の制御ルーチンを示すフローチャートである。本制御ルーチンは、内燃機関の始動後、ECU31によって所定の時間間隔で繰り返し実行される。本制御ルーチンにおいて下流側空燃比センサ41の出力電流が検出されるときには、印加電圧が基準電圧に設定され、下流側空燃比センサ41に基準電圧が印加される。基準電圧の初期値は、予め定められ、0.45Vに設定される。
最初に、ステップS101において、電圧制御部81は、基準電圧を補正するための実行条件が成立しているか否かを判定する。実行条件は、例えば、下流側空燃比センサ41のセンサ素子の温度が活性温度以上であり且つ基準電圧が前回補正されたときから所定時間が経過しているときに成立する。下流側空燃比センサ41のセンサ素子の温度は例えばセンサ素子のインピーダンスに基づいて算出される。ステップS101において実行条件が成立していないと判定された場合、本制御ルーチンは終了する。一方、ステップS101において実行条件が成立していると判定された場合、本制御ルーチンはステップS102に進む。
ステップS102では、電圧制御部81は、燃料カット制御後のリッチ制御が実行されているか否かを判定する。燃料カット制御後のリッチ制御が実行されていないと判定された場合、本制御ルーチンは終了する。一方、燃料カット制御後のリッチ制御が実行されていると判定された場合、本制御ルーチンはステップS103に進む。
ステップS103では、電圧制御部81は、下流側空燃比センサ41の出力電流Idwnが基準値Iref以下であるか否かが判定される。下流側空燃比センサ41の出力電流Idwnは電流検出装置61によって検出される。基準値Irefは、予め定められ、図11に示されるように、燃料カット制御中に検出される下流側空燃比センサ41の出力電流未満の値に設定される。ステップS103において出力電流Idwnが基準値Irefよりも大きいと判定された場合、本制御ルーチンは終了する。一方、ステップS103において出力電流Idwnが基準値Iref以下であると判定された場合、本制御ルーチンはステップS104に進む。
ステップS104では、電圧制御部81は、出力電流Idwnの所定時間当たりの変化量ΔIdwnが所定値A以下であるか否かを判定する。所定値Aは、予め定められ、例えば、流入排気ガスの空燃比が理論空燃比に維持されるときに検出される変化量ΔIdwnの最大値に設定される。ステップS104において変化量ΔIdwnが所定値Aよりも大きいと判定された場合、本制御ルーチンは終了する。一方、ステップS104において変化量ΔIdwnが所定値A以下であると判定された場合、本制御ルーチンはステップS105に進む。この場合、流入排気ガスの空燃比が理論空燃比であると判定される。
ステップS105では、電圧制御部81は下流側空燃比センサ41の積算出力電流ΣIdwnを更新する。具体的には、電圧制御部81は、新たに検出された出力電流Idwnを現在の積算出力電流ΣIdwnに加算した値を新たな積算出力電流ΣIdwnに設定する。
次いで、ステップS106において、電圧制御部81は検出回数Nに1を加算する。検出回数Nの初期値はゼロである。
次いで、ステップS107において、電圧制御部81は、検出回数Nが基準回数Nref以上であるか否かを判定する。基準回数Nrefは予め定められる。ステップS107において検出回数Nが基準回数Nref未満であると判定された場合、本制御ルーチンは終了する。一方、ステップS107において検出回数Nが基準回数Nref以上であると判定された場合、本制御ルーチンはステップS108に進む。
ステップS108では、電圧制御部81は、流入排気ガスの空燃比が理論空燃比であると判定されているときに検出された下流側空燃比センサ41の出力電流Istを算出する。電圧制御部81は、ステップS105において加算された複数の出力電流Idwnを平均化することによって出力電流Istを算出する。具体的には、電圧制御部81は、下流側空燃比センサ41の積算出力電流ΣIdwnを基準回数Nrefで除算することによって出力電流Istを算出する。なお、複数の出力電流Idwnから最大値及び最小値を除いた値を用いて出力電流Istが算出されてもよい。
次いで、ステップS109において、電圧制御部81は出力電流Istに基づいて基準電圧を補正する。具体的には、電圧制御部81は出力電流Istがゼロになるように基準電圧を補正する。例えば、電圧制御部81は、図13に示されるようなマップを用いて、基準電圧の補正量を算出する。電圧制御部81は、出力電流Istが正である場合には、負の補正量を基準電圧に加算し、基準電圧を低くする。一方、電圧制御部81は、出力電流Istが負である場合には、正の補正量を基準電圧に加算し、基準電圧を高くする。図13から分かるように、補正後の基準電圧は、出力電流Istが大きいほど低くなる。
なお、基準電圧が限界電流領域から外れないように、基準電圧の上限値及び下限値が予め定められる。本実施形態では、上限値が0.8Vに設定され、下限値が0.1Vに設定される。すなわち、基準電圧は0.45V±0.35Vの範囲に設定される。補正によって基準電圧が上限値又は下限値に達する場合には、電圧制御部81は基準電圧の補正を中止する。この場合、出力電流Istが補正量に設定され、実際に検出された下流側空燃比センサ41の出力電流から出力電流Istを減算した値に基づいて流入排気ガスの空燃比が算出されてもよい。すなわち、下流側空燃比センサ41の出力電流が演算によって補正されてもよい。
基準電圧の補正によって基準電圧の値が更新され、印加電圧が補正後の基準電圧の値に変更される。印加電圧が変更されるタイミングは、例えば、基準電圧が補正されたとき、又は基準電圧の補正後に内燃機関が再始動されたときである。
次いで、ステップS110において、電圧制御部81は積算出力電流ΣIdwn及び検出回数Nをゼロにリセットする。ステップS110の後、本制御ルーチンは終了する。
なお、ステップS105及びステップS106が省略され、ステップS108において、電圧制御部81は、電流検出装置61によって検出された下流側空燃比センサ41の出力電流Idwnを出力電流Istとして取得してもよい。すなわち、複数の出力電流Idwnの平均値として出力電流Istが算出されなくてもよい。
また、本実施形態では、電圧制御部81は、一回の補正によって出力電流Istがゼロになるように基準電圧を補正する。しかしながら、電圧制御部81は、複数回の補正によって出力電流Istがゼロになるように基準電圧を補正してもよい。この場合、例えば、出力電流Istを所定値で除算した値に基づいて基準電圧の補正量が算出され、又は出力電流Istに基づいて算出された基準電圧の補正量を所定値で除算した値が最終的な補正量に設定される。このことによって、出力電流Istに誤差が生じた場合に、基準電圧の補正によって下流側空燃比センサ41による空燃比の検出精度が悪化することを抑制することができる。
<第二実施形態>
第二実施形態に係る内燃機関の制御装置の構成及び制御は、以下に説明する点を除いて、基本的に第一実施形態に係る内燃機関の制御装置と同様である。このため、以下、本発明の第二実施形態について、第一実施形態と異なる部分を中心に説明する。
第二実施形態では、基準電圧を補正するために、第一実施形態とは異なる空燃比制御によって流入排気ガスの空燃比が理論空燃比にされる。具体的には、空燃比制御部82は、上流側触媒20の酸素吸蔵量がゼロと最大酸素吸蔵量との間で変化するように混合気の空燃比を理論空燃比よりもリッチな空燃比と理論空燃比よりもリーンな空燃比とに切り替えるアクティブ制御を実行する。
空燃比制御部82は、アクティブ制御において、下流側空燃比センサ41によって検出された空燃比がリッチ判定空燃比に達したときに混合気の目標空燃比をリッチ設定空燃比からリーン設定空燃比に切り替え、下流側空燃比センサ41によって検出された空燃比がリーン判定空燃比に達したときに混合気の目標空燃比をリーン設定空燃比からリッチ設定空燃比に切り替える。
リッチ設定空燃比は、予め定められ、理論空燃比よりもリッチな空燃比に設定される。リーン設定空燃比は、予め定められ、理論空燃比よりもリーンな空燃比に設定される。リッチ判定空燃比は、予め定められ、理論空燃比よりもリッチであり且つリッチ設定空燃比よりもリーンな空燃比に設定される。このため、下流側空燃比センサ41によって検出された空燃比がリッチ判定空燃比に達したときの上流側触媒20の酸素吸蔵量はゼロになる。リーン判定空燃比は、予め定められ、理論空燃比よりもリーンであり且つリーン設定空燃比よりもリッチな空燃比に設定される。このため、下流側空燃比センサ41によって検出された空燃比がリーン判定空燃比に達したときの上流側触媒20の酸素吸蔵量は最大酸素吸蔵量になる。
また、空燃比制御部82は、アクティブ制御において、上流側空燃比センサ40によって検出される空燃比が混合気の目標空燃比に一致するように、燃焼室5に供給される燃料量をフィードバック制御する。なお、空燃比制御部82は、上流側空燃比センサ40を用いることなく、流入排気ガスの空燃比が混合気の目標空燃比に一致するように、燃焼室5に供給される燃料量を制御してもよい。この場合、空燃比制御部82は、燃焼室5に供給される燃料と空気との比率が混合気の目標空燃比に一致するように、エアフロメータ39によって検出された吸入空気量と混合気の目標空燃比とから算出された燃料量を燃焼室5に供給する。
目標空燃比をリッチ設定空燃比からリーン設定空燃比に切り替えることによって流入排気ガスの空燃比は理論空燃比よりもリッチな空燃比から理論空燃比に向かって変化する。一方、目標空燃比をリーン設定空燃比からリッチ設定空燃比に切り替えることによって流入排気ガスの空燃比は理論空燃比よりもリーンな空燃比から理論空燃比に向かって変化する。上流側触媒20の酸素吸蔵量が適切な範囲である間、流入排気ガスの空燃比が理論空燃比に維持され、下流側空燃比センサ41の出力電流はほぼ一定となる。このため、電圧制御部81は、アクティブ制御が実行され且つ下流側空燃比センサ41の出力電流の所定時間当たりの変化量が所定値以下であるときに電流検出装置61によって検出された下流側空燃比センサ41の出力電流がゼロになるように基準電圧を補正する。
<タイムチャートを用いた制御の説明>
図14は、アクティブ制御が実行されるときの混合気の目標空燃比及び下流側空燃比センサ41の出力電流のタイムチャートである。下流側空燃比センサ41には基準電圧が印加され、基準電圧の初期値は0.45Vである。
時刻t0では、目標空燃比がリーン設定空燃比AFLに設定されている。リーン設定空燃比AFLは例えば15.1に設定される。時刻t0の後、時刻t1において、下流側空燃比センサ41の出力電流がリーン判定電流Ileanに達する。リーン判定電流Ileanは、リーン判定空燃比(例えば14.65)に対応する出力電流である。
時刻t1において、下流側空燃比センサ41によって検出された空燃比がリーン判定空燃比に達したため、目標空燃比がリーン設定空燃比AFLからリッチ設定空燃比AFRに切り替えられる。リッチ設定空燃比AFRは例えば14.1に設定される。
目標空燃比の切替によって下流側空燃比センサ41の出力電流がゼロに向かって減少する。すなわち、流入排気ガスの空燃比が理論空燃比に向かって変化する。その後、時刻t2において、下流側空燃比センサ41の出力電流の所定時間当たりの変化量が所定値以下となる。この結果、時刻t2〜時刻t3において流入排気ガスの空燃比が理論空燃比であると判定される。
図14の例では、目標空燃比がリッチ設定空燃比AFRに設定されているときに流入排気ガスの空燃比が理論空燃比であると判定されている時間Tst1に検出される下流側空燃比センサ41の出力電流はゼロである。この場合、下流側空燃比センサ41の出力電流にずれが生じていないため、基準電圧が補正されない。
時刻t3の後、時刻t4において、下流側空燃比センサ41の出力電流がリッチ判定電流Irichに達する。リッチ判定電流Irichは、リッチ判定空燃比(例えば14.55)に対応する出力電流である。
時刻t4において、下流側空燃比センサ41によって検出された空燃比がリッチ判定空燃比に達したため、目標空燃比がリッチ設定空燃比AFLからリーン設定空燃比AFLに切り替えられる。
目標空燃比の切替によって下流側空燃比センサ41の出力電流がゼロに向かって増大する。すなわち、流入排気ガスの空燃比が理論空燃比に向かって変化する。その後、時刻t5において、下流側空燃比センサ41の出力電流の所定時間当たりの変化量が所定値以下となる。この結果、時刻t5〜時刻t6において流入排気ガスの空燃比が理論空燃比であると判定される。
図14の例では、目標空燃比がリーン設定空燃比AFLに設定されているときに流入排気ガスの空燃比が理論空燃比であると判定されている時間Tst2に検出される下流側空燃比センサ41の出力電流はゼロである。この場合、下流側空燃比センサ41の出力電流にずれが生じていないため、基準電圧が補正されない。
時刻t6の後、時刻t7において、下流側空燃比センサ41の出力電流が再びリーン判定電流Ileanに達し、目標空燃比がリーン設定空燃比AFLからリッチ設定空燃比AFRに切り替えられる。
<電圧補正処理>
図15は、本発明の第二実施形態における電圧補正処理の制御ルーチンを示すフローチャートである。本制御ルーチンは、内燃機関の始動後、ECU31によって所定の時間間隔で繰り返し実行される。本制御ルーチンにおいて下流側空燃比センサ41の出力電流が検出されるときには、印加電圧が基準電圧に設定され、下流側空燃比センサ41に基準電圧が印加される。基準電圧の初期値は、予め定められ、0.45Vに設定される。
最初に、ステップS201において、図12のステップS101と同様に、電圧制御部81は、基準電圧を補正するための実行条件が成立しているか否かを判定する。ステップS101において実行条件が成立していないと判定された場合、本制御ルーチンは終了する。一方、ステップS101において実行条件が成立していると判定された場合、本制御ルーチンはステップS102に進む。
ステップS202では、空燃比制御部82はアクティブ制御を実行する。次いで、ステップS203において、図12のステップS104と同様に、電圧制御部81は、出力電流Idwnの所定時間当たりの変化量ΔIdwnが所定値A以下であるか否かを判定する。ステップS203において変化量ΔIdwnが所定値Aよりも大きいと判定された場合、本制御ルーチンは終了する。一方、ステップS203において変化量ΔIdwnが所定値A以下であると判定された場合、本制御ルーチンはステップS204に進む。
ステップS204〜ステップS209は、図12のステップS105〜ステップS110と同様であることから説明を省略する。なお、本制御ルーチンは図12の制御ルーチンと同様に変形可能である。
<第三実施形態>
第三実施形態に係る内燃機関の制御装置の構成及び制御は、以下に説明する点を除いて、基本的に第一実施形態に係る内燃機関の制御装置と同様である。このため、以下、本発明の第三実施形態について、第一実施形態と異なる部分を中心に説明する。
第三実施形態では、電圧制御部81は、基準電圧と、基準電圧とは異なる切替電圧との間で印加電圧を切り替える。下流側空燃比センサ41によって所定の空燃比を精度良く検出するためには、所定の空燃比に対応する下流側空燃比センサ41の出力電流をゼロに近付けることが望ましい。
図8から分かるように、印加電圧を高くすることによって、ゼロの出力電流に対応する空燃比をリッチ側にずらすことができる。一方、印加電圧を低くすることによって、ゼロの出力電流に対応する空燃比をリーン側にずらずことができる。このため、例えば、電圧制御部81は、混合気の目標空燃比が理論空燃比よりもリッチな空燃比である場合には印加電圧を第1切替電圧に設定し、混合気の目標空燃比が理論空燃比である場合には印加電圧を基準電圧に設定し、混合気の目標空燃比が理論空燃比よりもリーンな空燃比である場合には印加電圧を第2切替電圧に設定する。第1切替電圧は基準電圧よりも高く、第2切替電圧は基準電圧よりも低い。なお、切替電圧の数は2以外であってもよい。
下流側空燃比センサ41の出力のずれを補正すべく基準電圧を補正する場合、切替電圧も補正する必要がある。しかしながら、切替電圧を補正するために基準電圧の補正量が切替電圧にも加算される場合、出力電流がゼロであるときに基準電圧に対応する空燃比と、出力電流がゼロであるときに切替電圧に対応する空燃比との対応関係が補正によって変化するおそれがある。
図16は、出力電流がゼロのときのセンサ印加電圧Vrと排気側電極上の酸素濃度(以下、単に「酸素濃度」という)との関係を示すグラフである。図16は図9と同様の図であるが、図16ではy軸(排気側電極上の酸素濃度)が対数表示されていない。図17は、図16のY領域の概略的な拡大図である。
図17には、出力電流がゼロであるときに補正前の基準電圧Vrefに対応する酸素濃度が白い丸で示され、出力電流がゼロであるときに補正後の基準電圧Vrefcに対応する酸素濃度が黒い丸で示されている。この例では、補正によって基準電圧が低くされる。
また、図17には、出力電流がゼロであるときに補正前の切替電圧Vswに対応する酸素濃度が白い四角で示され、出力電流がゼロであるときに補正後の切替電圧Vswcに対応する酸素濃度が黒い四角で示されている。
電圧制御部81は、基準電圧を補正する場合、出力電流がゼロであるときに基準電圧に対応する酸素濃度と、出力電流がゼロであるときに切替電圧に対応する酸素濃度との差が一定となるように切替電圧を補正する。このことによって、基準電圧において精度良く検出される空燃比(理論空燃比)と、切替電圧において精度良く検出される空燃比との対応関係が補正によって変化することを抑制することができる。
図17には、出力電流がゼロであるときに補正前の基準電圧Vrefに対応する酸素濃度と、出力電流がゼロであるときに補正後の基準電圧Vrefcに対応する酸素濃度との差ODrefと、出力電流がゼロであるときに補正前の切替電圧Vswに対応する酸素濃度と、出力電流がゼロであるときに補正後の切替電圧Vswcに対応する酸素濃度との差ODswとが示されている。上記のように切替電圧を補正することによって、差ODswは差ODrefと等しくなる。
<電圧補正処理>
図18は、本発明の第三実施形態における電圧補正処理の制御ルーチンを示すフローチャートである。本制御ルーチンは、内燃機関の始動後、ECU31によって所定の時間間隔で繰り返し実行される。本制御ルーチンにおいて下流側空燃比センサ41の出力電流が検出されるときには、印加電圧が基準電圧に設定され、下流側空燃比センサ41に基準電圧が印加される。基準電圧の初期値は、予め定められ、0.45Vに設定される。
ステップS301〜ステップS309は、図12のステップS101〜ステップS109と同様であることから説明を省略する。
本制御ルーチンでは、ステップS309の後、ステップS310において、電圧制御部81は、出力電流がゼロであるときに基準電圧に対応する酸素濃度と、出力電流がゼロであるときに切替電圧に対応する酸素濃度との差が一定となるように切替電圧を補正する。
具体的には、電圧制御部81は、マップ又は計算式を用いて、出力電流がゼロであるときに補正後の基準電圧に対応する酸素濃度を算出する。次いで、電圧制御部81は、出力電流がゼロであるときに補正後の基準電圧に対応する酸素濃度に初期濃度差を加算することによって目標酸素濃度を算出する。初期濃度差は、出力電流がゼロであるときに基準電圧の初期値に対応する酸素濃度と、出力電流がゼロであるときに切替電圧の初期値に対応する酸素濃度との差であり、実験、シミュレーション等によって予め定められる。最後に、電圧制御部81は、マップ又は計算式を用いて、出力電流がゼロであるときに酸素濃度が目標酸素濃度になる印加電圧を補正後の切替電圧として算出する。
次いで、ステップS311において、電圧制御部81は積算出力電流ΣIdwn及び検出回数Nをゼロにリセットする。ステップS311の後、本制御ルーチンは終了する。なお、本制御ルーチンは図12の制御ルーチンと同様に変形可能である。
以上、本発明に係る好適な実施形態を説明したが、本発明はこれら実施形態に限定されるものではなく、特許請求の範囲の記載内で様々な修正及び変更を施すことができる。
空燃比制御の種類に関わらず、下流側空燃比センサ41の出力電流が所定範囲内にあり且つ下流側空燃比センサ41の出力電流の所定時間当たりの変化量が所定値以下であるときには、上流側触媒20による排気ガスの浄化によって流入排気ガスの空燃比が理論空燃比になっている可能性が高い。このため、電圧制御部81は、下流側空燃比センサ41の出力電流が所定範囲内にあり且つ下流側空燃比センサ41の出力電流の所定時間当たりの変化量が所定値以下であるときに電流検出装置61によって検出された下流側空燃比センサ41の出力電流がゼロになるように基準電圧を補正してもよい。この場合、基準電圧を補正するために必ずしも空燃比制御部82によって所定の空燃比制御が実行される必要はない。
また、下流側空燃比センサ41は下流側触媒23の下流側に配置されてもよい。また、内燃機関の制御装置は下流側空燃比センサ41に加えて又は下流側空燃比センサ41の代わりに上流側空燃比センサ40を備えていてもよい。すなわち、下流側空燃比センサ41と同様に、上流側空燃比センサ40に印加される基準電圧及び切替電圧が補正されてもよい。この場合、例えば、空燃比制御部82は混合気の目標空燃比を理論空燃比に設定し、電圧制御部81は、上流側空燃比センサ40の出力電流の所定時間当たりの変化量が所定値以下であるときに検出された上流側空燃比センサ40の出力電流がゼロになるように基準電圧を補正する。
20 上流側触媒
22 排気管
31 電子制御ユニット(ECU)
40 上流側空燃比センサ
41 下流側空燃比センサ
60 電圧印加装置
61 電流検出装置
81 電圧制御部
82 空燃比制御部

Claims (6)

  1. 内燃機関の排気通路に配置されると共に排気ガスの空燃比を検出する空燃比センサと、
    前記空燃比センサの出力電流を検出する電流検出装置と、
    前記空燃比センサに電圧を印加する電圧印加装置と、
    前記電圧印加装置を介して前記空燃比センサへの印加電圧を制御する電圧制御部と
    を備え、
    前記電圧制御部は、前記空燃比センサに流入する流入排気ガスの空燃比が理論空燃比であるときに前記出力電流がゼロになるように定められた基準電圧に前記印加電圧を設定し、前記流入排気ガスの空燃比が理論空燃比であると判定されているときに前記電流検出装置によって検出された前記出力電流がゼロになるように前記基準電圧を補正する、内燃機関の制御装置。
  2. 酸素を吸蔵可能な触媒が前記排気通路に配置され、前記空燃比センサは前記触媒の下流側に配置される、請求項1に記載の内燃機関の制御装置。
  3. 前記内燃機関の燃焼室に供給される混合気の空燃比を制御する空燃比制御部を更に備え、
    前記空燃比制御部は、前記触媒の酸素吸蔵量がゼロと最大酸素吸蔵量との間で変化するように前記混合気の空燃比を制御し、
    前記電圧制御部は、前記出力電流の所定時間当たりの変化量が所定値以下であるときに前記電流検出装置によって検出された前記出力電流がゼロになるように前記基準電圧を補正する、請求項2に記載の内燃機関の制御装置。
  4. 前記空燃比制御部は、前記燃焼室への燃料供給を停止する燃料カット制御を実行し、該燃料カット制御後に、前記触媒の酸素吸蔵量がゼロになるように前記混合気の空燃比を理論空燃比よりもリッチな空燃比にするリッチ制御を実行し、
    前記電圧制御部は、前記リッチ制御が実行され且つ前記出力電流の所定時間当たりの変化量が所定値以下であるときに前記電流検出装置によって検出された前記出力電流がゼロになるように前記基準電圧を補正する、請求項3に記載の内燃機関の制御装置。
  5. 前記空燃比制御部は、前記触媒の酸素吸蔵量がゼロと最大酸素吸蔵量との間で変化するように前記混合気の空燃比を理論空燃比よりもリッチな空燃比と理論空燃比よりもリーンな空燃比とに切り替えるアクティブ制御を実行し、
    前記電圧制御部は、前記アクティブ制御が実行され且つ前記出力電流の所定時間当たりの変化量が所定値以下であるときに前記電流検出装置によって検出された前記出力電流がゼロになるように前記基準電圧を補正する、請求項3に記載の内燃機関の制御装置。
  6. 前記電圧制御部は、前記基準電圧と、該基準電圧とは異なる切替電圧との間で前記印加電圧を切り替え、前記基準電圧を補正する場合、前記出力電流がゼロであるときに前記基準電圧に対応する前記空燃比センサの排気側電極上の酸素濃度と、前記出力電流がゼロであるときに前記切替電圧に対応する前記空燃比センサの排気側電極上の酸素濃度との差が一定となるように前記切替電圧を補正する、請求項1から5のいずれか1項に記載の内燃機関の制御装置。
JP2019009564A 2019-01-23 2019-01-23 内燃機関の制御装置 Active JP7115335B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019009564A JP7115335B2 (ja) 2019-01-23 2019-01-23 内燃機関の制御装置
US16/733,289 US11092100B2 (en) 2019-01-23 2020-01-03 Control system of internal combustion engine
CN202010068677.4A CN111472894B (zh) 2019-01-23 2020-01-21 内燃机的控制装置
EP20153044.1A EP3686416A1 (en) 2019-01-23 2020-01-22 Control system of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019009564A JP7115335B2 (ja) 2019-01-23 2019-01-23 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2020118084A true JP2020118084A (ja) 2020-08-06
JP7115335B2 JP7115335B2 (ja) 2022-08-09

Family

ID=69187611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019009564A Active JP7115335B2 (ja) 2019-01-23 2019-01-23 内燃機関の制御装置

Country Status (4)

Country Link
US (1) US11092100B2 (ja)
EP (1) EP3686416A1 (ja)
JP (1) JP7115335B2 (ja)
CN (1) CN111472894B (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145308A (ja) * 2013-01-29 2014-08-14 Toyota Motor Corp 内燃機関の制御装置
WO2015029166A1 (ja) * 2013-08-28 2015-03-05 トヨタ自動車株式会社 内燃機関の制御装置
JP2015071964A (ja) * 2013-10-02 2015-04-16 トヨタ自動車株式会社 内燃機関の異常診断装置
JP2015155665A (ja) * 2014-02-20 2015-08-27 トヨタ自動車株式会社 内燃機関の制御装置
JP2016031055A (ja) * 2014-07-29 2016-03-07 トヨタ自動車株式会社 空燃比センサの異常診断装置
JP2016089799A (ja) * 2014-11-11 2016-05-23 トヨタ自動車株式会社 空燃比センサの異常診断装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4317942C2 (de) 1992-06-01 1995-02-23 Hitachi Ltd Anordnung und Verfahren zur Erfassung des Verbrennungsluftverhältnisses für Verbrennungskraftmaschinen
JP3257319B2 (ja) * 1995-01-30 2002-02-18 トヨタ自動車株式会社 空燃比検出装置および方法
JPH09196889A (ja) * 1996-01-16 1997-07-31 Toyota Motor Corp 空燃比検出装置
JP3304763B2 (ja) * 1996-06-06 2002-07-22 トヨタ自動車株式会社 内燃機関の空燃比検出装置
JP4012153B2 (ja) * 2004-01-15 2007-11-21 三菱電機株式会社 車載電子制御装置
JP4577160B2 (ja) * 2005-09-01 2010-11-10 トヨタ自動車株式会社 排気ガスセンサの故障検出装置
DE102012220567A1 (de) * 2012-11-12 2014-06-12 Robert Bosch Gmbh Verfahren zum Betrieb eines Sensorelements
CA2899221C (en) * 2013-01-29 2018-05-15 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
CN104956053B (zh) * 2013-01-29 2020-07-24 丰田自动车株式会社 内燃机的控制装置
JP5915779B2 (ja) * 2013-01-29 2016-05-11 トヨタ自動車株式会社 内燃機関の制御装置
JP6256240B2 (ja) 2014-07-28 2018-01-10 トヨタ自動車株式会社 内燃機関の制御装置
JP6222020B2 (ja) * 2014-09-09 2017-11-01 トヨタ自動車株式会社 空燃比センサの異常診断装置
JP6287980B2 (ja) * 2015-07-03 2018-03-07 トヨタ自動車株式会社 内燃機関の制御装置
US10102690B2 (en) * 2016-03-04 2018-10-16 Deere & Company Non-starting engine remote diagnostic

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145308A (ja) * 2013-01-29 2014-08-14 Toyota Motor Corp 内燃機関の制御装置
WO2015029166A1 (ja) * 2013-08-28 2015-03-05 トヨタ自動車株式会社 内燃機関の制御装置
JP2015071964A (ja) * 2013-10-02 2015-04-16 トヨタ自動車株式会社 内燃機関の異常診断装置
JP2015155665A (ja) * 2014-02-20 2015-08-27 トヨタ自動車株式会社 内燃機関の制御装置
JP2016031055A (ja) * 2014-07-29 2016-03-07 トヨタ自動車株式会社 空燃比センサの異常診断装置
JP2016089799A (ja) * 2014-11-11 2016-05-23 トヨタ自動車株式会社 空燃比センサの異常診断装置

Also Published As

Publication number Publication date
US20200232407A1 (en) 2020-07-23
US11092100B2 (en) 2021-08-17
JP7115335B2 (ja) 2022-08-09
CN111472894B (zh) 2022-07-29
EP3686416A1 (en) 2020-07-29
CN111472894A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
JP6075394B2 (ja) 内燃機関の制御装置
KR101822562B1 (ko) 내연 기관의 배기 정화 장치
JP5949957B2 (ja) 内燃機関の制御装置
JP6015629B2 (ja) 内燃機関の制御装置
WO2014118890A1 (ja) 内燃機関の制御装置
JP5360312B1 (ja) 内燃機関の制御装置
JP5949958B2 (ja) 内燃機関の制御装置
JP6110270B2 (ja) 内燃機関の異常診断装置
JP5915779B2 (ja) 内燃機関の制御装置
JP5949959B2 (ja) 内燃機関の制御装置
CN109386354B (zh) 内燃机的排气净化装置
WO2014118888A1 (ja) 内燃機関の制御装置
JP7115335B2 (ja) 内燃機関の制御装置
JP6733648B2 (ja) 触媒劣化検出装置
JP2018003777A (ja) 内燃機関の制御装置
JP2015071985A (ja) 内燃機関の制御装置
JP2018003776A (ja) 内燃機関の制御装置
JP2020197201A (ja) 空燃比検出システム
JP6255909B2 (ja) 内燃機関の制御装置
JP2021143665A (ja) 排気センサの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220711

R151 Written notification of patent or utility model registration

Ref document number: 7115335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151