JP2015071964A - 内燃機関の異常診断装置 - Google Patents

内燃機関の異常診断装置 Download PDF

Info

Publication number
JP2015071964A
JP2015071964A JP2013207666A JP2013207666A JP2015071964A JP 2015071964 A JP2015071964 A JP 2015071964A JP 2013207666 A JP2013207666 A JP 2013207666A JP 2013207666 A JP2013207666 A JP 2013207666A JP 2015071964 A JP2015071964 A JP 2015071964A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
purification catalyst
exhaust purification
rich
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013207666A
Other languages
English (en)
Other versions
JP6110270B2 (ja
Inventor
北浦 浩一
Koichi Kitaura
浩一 北浦
寛史 宮本
Hiroshi Miyamoto
寛史 宮本
靖志 岩崎
Yasushi Iwasaki
靖志 岩崎
久保 雅裕
Masahiro Kubo
雅裕 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013207666A priority Critical patent/JP6110270B2/ja
Priority to US14/504,516 priority patent/US9677490B2/en
Publication of JP2015071964A publication Critical patent/JP2015071964A/ja
Application granted granted Critical
Publication of JP6110270B2 publication Critical patent/JP6110270B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0864Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/03Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1624Catalyst oxygen storage capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Emergency Medicine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Analytical Chemistry (AREA)

Abstract

【課題】排気浄化触媒の異常を正確に診断することができる異常診断装置を提供する。【解決手段】内燃機関は、酸素を吸蔵可能な排気浄化触媒20と、排気浄化触媒に流入する排気ガスの空燃比が目標空燃比となるように制御する空燃比制御手段とを具備する。異常診断装置は、下流側空燃比センサ41と、目標空燃比を所定間隔でリッチ空燃比とリーン空燃比とに交互に制御するアクティブ空燃比制御を実行する目標空燃比制御手段と、下流側空燃比センサの出力空燃比に基づいて前記排気浄化触媒の異常を診断する異常診断手段とを具備する。異常診断手段は、アクティブ空燃比制御中に、下流側空燃比センサの出力空燃比がリッチ判定空燃比以下にもリーン判定空燃比以上にも到達するときには、排気浄化触媒に異常が発生していると判定し、いずれか一方のみに到達するときには、空燃比制御手段に異常が発生していると判定する。【選択図】図9

Description

本発明は、内燃機関の異常診断装置に関する。
一般に、内燃機関の排気通路には、内燃機関から排出する排気ガスを浄化するための排気浄化触媒が設けられている。斯かる排気浄化触媒としては、例えば、酸素吸蔵能力を有する排気浄化触媒が用いられる。酸素吸蔵能力を有する排気浄化触媒は、酸素吸蔵量が最大吸蔵可能酸素量(排気浄化触媒によって吸蔵可能な酸素の最大量)よりも少ない適当な量であるときには、排気浄化触媒に流入する排気ガス中の未燃ガス(HCやCO等)やNOx等を浄化することができる。すなわち、排気浄化触媒に理論空燃比よりもリッチな空燃比(以下、「リッチ空燃比」ともいう)の排気ガスが流入すると、排気浄化触媒に吸蔵されている酸素により排気ガス中の未燃ガスが酸化浄化される。一方、排気浄化触媒に理論空燃比よりもリーンな空燃比(以下、「リーン空燃比」ともいう)の排気ガスが流入すると、排気ガス中の酸素が排気浄化触媒に吸蔵される。これにより、排気浄化触媒表面上で酸素不足状態となり、これに伴って排気ガス中のNOxが還元浄化される。その結果、排気浄化触媒は、酸素吸蔵量が適当な量である限り、排気浄化触媒に流入する排気ガスの空燃比に関わらず、排気ガスを浄化することができる。
ところで、排気浄化触媒はその使用期間が長くなると劣化する。このように排気浄化触媒が劣化すると、これに伴って排気浄化触媒の最大吸蔵可能酸素量が減少することが知られている。このため、排気浄化触媒の最大吸蔵可能酸素量を検出することにより、排気浄化触媒の劣化度合いを検出することができる。このような最大吸蔵可能酸素量の検出方法としては、例えば、排気浄化触媒に流入する排気ガスの目標空燃比をリッチ空燃比とリーン空燃比とに周期的に交互に切り替えるアクティブ空燃比制御行うことが知られている。この方法では、排気浄化触媒の排気流れ方向下流側に設けられた酸素センサのアクティブ空燃比制御実行中の出力に基づいて、排気浄化触媒の劣化診断が行われる。
例えば、特許文献1に記載された異常診断装置では、目標空燃比をリッチ空燃比又はリーン空燃比に設定している期間中に排気浄化触媒に流入する排気ガス中の未燃ガス量又は酸素量の積算値が、排気浄化触媒が正常である場合(劣化度合いが小さい場合)の最大吸蔵可能酸素量(破過量)と排気浄化触媒の劣化度合いが大きい場合の最大吸蔵可能酸素量との間の量になるように、アクティブ空燃比制御における周期を設定している。そして、下流側の酸素センサの出力が大きく振動する場合には排気浄化触媒に劣化が生じていると判定し、振動が小さい場合には排気浄化触媒には劣化が生じていないと判定するようにしている。
特開2002−130018号公報 特開2007−278075号公報 特開2007−285288号公報
ところで、一般に、排気浄化触媒に流入する排気ガスの空燃比は、排気浄化触媒の排気流れ方向上流側に設けられた上流側空燃比センサの出力に基づいて目標空燃比となるようにフィードバック制御されている。このため、上流側空燃比センサの出力空燃比が実際の空燃比に対してずれているような場合には、上述したようにフィードバック制御を行っても、排気浄化触媒に流入する排気ガスの実際の空燃比は目標空燃比からずれたものとなってしまう。このように、排気浄化触媒に流入する排気ガスが目標空燃比となるように制御する空燃比制御手段に異常が生じると、異常診断装置により排気浄化触媒の劣化診断を適切に行うことができなくなる。
例えば、特許文献1に記載された異常診断装置では、排気浄化触媒が正常である場合には、下流側の酸素センサの出力はリッチ空燃比及びリーン空燃比のいずれか一方に相当する値に維持される。すなわち、排気浄化触媒が正常である場合には、排気浄化触媒から排出される排気ガスの空燃比はほぼ理論空燃比となる。しかしながら、酸素センサにはヒステリシスがあるため、実際の排気ガスの空燃比がリッチ空燃比からリーン空燃比又はリーン空燃比からリッチ空燃比に変化しないとその出力も変化しない。その結果、排気浄化触媒から排出される排気ガスの空燃比はほぼ理論空燃比になっても、酸素センサの出力はリッチ空燃比及びリーン空燃比のいずれか一方に相当する値に維持されることになる。したがって、特許文献1に記載された異常診断装置では、酸素センサの出力がリッチ空燃比及びリーン空燃比のいずれか一方に相当する値に維持されて、その出力変動が小さい場合に排気浄化触媒が正常であると判定するようにしている。
ところが、排気浄化触媒に流入する排気ガスが目標空燃比となるように制御する空燃比制御手段に異常が生じると、排気浄化触媒が劣化している場合であっても、下流側の酸素センサの出力がリッチ空燃比及びリーン空燃比のいずれか一方に相当する値に維持される場合がある。例えば、上流側空燃比センサの出力空燃比が実際の空燃比に対してリッチ側にずれているような場合、アクティブ空燃比制御では、実際の排気ガスの空燃比は目標空燃比よりもリーンとなっている。この結果、アクティブ空燃比制御において目標空燃比をリッチ空燃比としているときには、実際には想定しているよりもリッチ度合いの低いリッチ空燃比の排気ガスが排気浄化触媒に流入することになる。
この場合、排気浄化触媒が劣化していて最大吸蔵可能酸素量が少なくなっている場合でも、排気浄化触媒の酸素吸蔵量がゼロにまでは減少しなくなり、この結果、排気浄化触媒からリッチ空燃比の排気ガスが流出しなくなる。このように排気浄化触媒からリッチ空燃比の排気ガスが流出しなくなると、酸素センサの出力はリーン空燃比に相当する値に維持され、よって酸素センサの出力変動は小さなものとなってしまう。すなわち、排気浄化触媒に劣化が生じているにもかかわらず、排気浄化触媒が正常であると判定されてしまうことになる。
そこで、上記問題点に鑑みて、本発明の目的は、排気浄化触媒の異常を正確に診断することができる異常診断装置を提供することにある。
上記課題を解決するために、第1の発明では、内燃機関の排気通路に配置されると共に酸素を吸蔵可能な排気浄化触媒と、該排気浄化触媒に流入する排気ガスの空燃比が目標空燃比となるように制御する空燃比制御手段とを具備する内燃機関の異常診断装置であって、前記排気浄化触媒の排気流れ方向下流側に配置されて該排気浄化触媒から排出された排気ガスの空燃比を検出することができる下流側空燃比センサと、前記目標空燃比を所定間隔で理論空燃比よりもリッチなリッチ空燃比と理論空燃比よりもリーンなリーン空燃比とに交互に制御するアクティブ空燃比制御を実行する目標空燃比制御手段と、前記アクティブ空燃比制御の実行中における前記下流側空燃比センサの出力空燃比に基づいて前記排気浄化触媒の異常を診断する異常診断手段とを具備し、前記異常診断手段は、前記アクティブ空燃比制御により前記目標空燃比を連続してリッチ空燃比及びリーン空燃比とした期間中に、前記下流側空燃比センサの出力空燃比が理論空燃比よりもリッチなリッチ判定空燃比以下にも、理論空燃比よりもリーンなリーン判定空燃比以上にも到達するときには、前記排気浄化触媒に異常が発生していると判定し、前記アクティブ空燃比制御により前記目標空燃比を連続してリッチ空燃比及びリーン空燃比とした期間中に、前記下流側空燃比センサの出力空燃比が前記リッチ判定空燃比以下又は前記リーン判定空燃比以上のいずれか一方のみに到達するときには、前記空燃比制御手段に異常が発生していると判定する、内燃機関の異常診断装置が提供される。
第2の発明では、第1の発明において、前記異常診断手段は、前記アクティブ空燃比制御により前記目標空燃比を連続してリッチ空燃比及びリーン空燃比とした期間中に、前記下流側空燃比センサの出力空燃比がリッチ判定空燃比よりもリーンであって前記リーン判定空燃比よりもリッチである範囲内に維持されたときには、前記排気浄化触媒に異常は発生していないと判定する。
第3の発明では、第1又は第2の発明において、前記異常診断手段は、前記空燃比制御手段に異常が発生していると判定されたときには、前記排気浄化触媒の異常診断を中止する。
第4の発明では、第1〜第3のいずれか一つの発明において、前記目標空燃比制御手段は、前記異常診断手段により前記空燃比制御手段に異常が発生していると判定されたときには、前記アクティブ空燃比制御を中止する。
第5の発明では、第1〜第4のいずれか一つの発明において、前記排気浄化触媒の排気流れ方向上流側に配置されて該排気浄化触媒に流入する排気ガスの空燃比を検出することができる上流側空燃比センサと、前記上流側空燃比センサの出力空燃比に基づいて、前記排気浄化触媒に流入する排気ガスの空燃比を理論空燃比にしようとしたときに過剰となる酸素又は不足する酸素の量を酸素過不足量として算出する酸素過不足量推定手段とを更に具備し、前記目標空燃比制御手段における前記所定間隔は、前記目標空燃比をリッチ空燃比からリーン空燃比又はリーン空燃比からリッチ空燃比に切り替えてから前記酸素過不足量推定手段によって積算された積算酸素過不足量の絶対値が予め定められた量になるまでの間隔とされる。
第6の発明では、第5の発明において、前記上流側空燃比センサの出力空燃比又は目標空燃比を補正する空燃比補正手段を更に具備し、該空燃比補正手段は、前記異常診断手段により前記空燃比制御手段に異常が発生していると判定されたときには、前記上流側空燃比センサの出力空燃比又は前記目標空燃比を補正する。
第7の発明では、第6の発明において、前記空燃比補正手段は、前記アクティブ空燃比制御により前記目標空燃比を連続してリッチ空燃比及びリーン空燃比とした期間中に、前記下流側空燃比センサの出力空燃比が前記リッチ判定空燃比以下のみに到達する場合には、目標空燃比又は前記下流側空燃比センサの出力空燃比をリーン側に補正し、前記下流側空燃比センサの出力空燃比が前記リーン判定空燃比以上のみに到達する場合には、目標空燃比又は前記下流側空燃比センサの出力空燃比をリッチ側に補正する。
第8の発明では、第6の発明において、前記空燃比補正手段は、前記目標空燃比をリッチ空燃比からリーン空燃比に切り替えてから再びリッチ空燃比に切り替えるまで又は前記下流側空燃比センサの出力空燃比がリーン判定空燃比以上になるまでに前記酸素過不足量推定手段によって積算された積算酸素過不足量の絶対値と、前記目標空燃比をリーン空燃比からリッチ空燃比に切り替えてから再びリーン空燃比に切り替えるまで又は前記下流側空燃比センサの出力空燃比がリッチ判定空燃比以下になるまでに前記酸素過不足量推定手段によって積算された積算酸素過不足量の絶対値との差が小さくなるように、前記上流側空燃比センサの出力空燃比又は前記目標空燃比を補正する。
第9の発明では、第1〜第8のいずれか一つの発明において、前記下流側空燃比センサは限界電流式の空燃比センサである。
本発明によれば、排気浄化触媒に流入する排気ガスが目標空燃比となるように制御する空燃比制御手段に異常が生じることを考慮して、排気浄化触媒の異常を正確に診断することができる異常診断装置が提供される。
図1は、本発明の第一実施形態に係る異常診断装置が用いられる内燃機関を概略的に示す図である。 図2は、酸素吸蔵量と上流側排気浄化触媒から流出する排気ガス中の各種成分の濃度との関係を示す図である。 図3は、空燃比センサの概略的な断面図である。 図4は、各排気空燃比におけるセンサ印加電圧と出力電流との関係を示す図である。 図5は、印加電圧を一定にしたときの排気空燃比と出力電流との関係を示す図である。 図6は、内燃機関の通常運転時における、上流側排気浄化触媒の酸素吸蔵量等のタイムチャートである。 図7は、アクティブ空燃比制御を実行した際の酸素吸蔵量等のタイムチャートである。 図8は、アクティブ空燃比制御を実行した際の酸素吸蔵量等のタイムチャートである。 図9は、アクティブ空燃比制御を実行した際の酸素吸蔵量等のタイムチャートである。 図10は、アクティブ空燃比制御の制御ルーチンを示すフローチャートである。 図11は、異常診断制御の制御ルーチンを示すフローチャートである。 図12は、アクティブ空燃比制御を実行した際の酸素吸蔵量等のタイムチャートである。
以下、図面を参照して本発明の実施形態について詳細に説明する。なお、以下の説明では、同様な構成要素には同一の参照番号を付す。
<内燃機関全体の説明>
図1は、本発明の第一実施形態に係る異常診断装置が用いられる内燃機関を概略的に示す図である。図1を参照すると1は機関本体、2はシリンダブロック、3はシリンダブロック2内で往復動するピストン、4はシリンダブロック2上に固定されたシリンダヘッド、5はピストン3とシリンダヘッド4との間に形成された燃焼室、6は吸気弁、7は吸気ポート、8は排気弁、9は排気ポートをそれぞれ示す。吸気弁6は吸気ポート7を開閉し、排気弁8は排気ポート9を開閉する。
図1に示したようにシリンダヘッド4の内壁面の中央部には点火プラグ10が配置され、シリンダヘッド4の内壁面周辺部には燃料噴射弁11が配置される。点火プラグ10は、点火信号に応じて火花を発生させるように構成される。また、燃料噴射弁11は、噴射信号に応じて、所定量の燃料を燃焼室5内に噴射する。なお、燃料噴射弁11は、吸気ポート7内に燃料を噴射するように配置されてもよい。また、本実施形態では、燃料として理論空燃比が14.6であるガソリンが用いられる。しかしながら、本発明の診断装置が用いられる内燃機関では、他の燃料を用いても良い。
各気筒の吸気ポート7はそれぞれ対応する吸気枝管13を介してサージタンク14に連結され、サージタンク14は吸気管15を介してエアクリーナ16に連結される。吸気ポート7、吸気枝管13、サージタンク14、吸気管15は吸気通路を形成する。また、吸気管15内にはスロットル弁駆動アクチュエータ17によって駆動されるスロットル弁18が配置される。スロットル弁18は、スロットル弁駆動アクチュエータ17によって回動せしめられることで、吸気通路の開口面積を変更することができる。
一方、各気筒の排気ポート9は排気マニホルド19に連結される。排気マニホルド19は、各排気ポート9に連結される複数の枝部とこれら枝部が集合した集合部とを有する。排気マニホルド19の集合部は上流側排気浄化触媒20を内蔵した上流側ケーシング21に連結される。上流側ケーシング21は、排気管22を介して下流側排気浄化触媒24を内蔵した下流側ケーシング23に連結される。排気ポート9、排気マニホルド19、上流側ケーシング21、排気管22及び下流側ケーシング23は、排気通路を形成する。
電子制御ユニット(ECU)31はデジタルコンピュータからなり、双方向性バス32を介して相互に接続されたRAM(ランダムアクセスメモリ)33、ROM(リードオンリメモリ)34、CPU(マイクロプロセッサ)35、入力ポート36および出力ポート37を具備する。吸気管15には、吸気管15内を流れる空気流量を検出するためのエアフロメータ39が配置され、このエアフロメータ39の出力は対応するAD変換器38を介して入力ポート36に入力される。また、排気マニホルド19の集合部には排気マニホルド19内を流れる排気ガス(すなわち、上流側排気浄化触媒20に流入する排気ガス)の空燃比を検出する上流側空燃比センサ40が配置される。加えて、排気管22内には排気管22内を流れる排気ガス(すなわち、上流側排気浄化触媒20から流出して下流側排気浄化触媒24に流入する排気ガス)の空燃比を検出する下流側空燃比センサ41が配置される。これら空燃比センサ40、41の出力も対応するAD変換器38を介して入力ポート36に入力される。なお、これら空燃比センサ40、41の構成については後述する。
また、アクセルペダル42にはアクセルペダル42の踏込み量に比例した出力電圧を発生する負荷センサ43が接続され、負荷センサ43の出力電圧は対応するAD変換器38を介して入力ポート36に入力される。クランク角センサ44は例えばクランクシャフトが15度回転する毎に出力パルスを発生し、この出力パルスが入力ポート36に入力される。CPU35ではこのクランク角センサ44の出力パルスから機関回転数が計算される。一方、出力ポート37は対応する駆動回路45を介して点火プラグ10、燃料噴射弁11及びスロットル弁駆動アクチュエータ17に接続される。なお、ECU31は、内燃機関(特に、上流側排気浄化触媒20及び上流側空燃比センサ40)の異常診断を行う診断装置(手段)、上流側排気浄化触媒20に流入する排気ガスの空燃比制御装置(手段)、後述する目標空燃比を制御する目標空燃比制御装置(手段)として機能する。
<排気浄化触媒の説明>
上流側排気浄化触媒20及び下流側排気浄化触媒24は、いずれも同様な構成を有する。以下では、上流側排気浄化触媒20についてのみ説明するが、下流側排気浄化触媒24も同様な構成及び作用を有する。
上流側排気浄化触媒20は、酸素吸蔵能力を有する三元触媒である。具体的には、上流側排気浄化触媒20は、セラミックから成る担体に、触媒作用を有する貴金属(例えば、白金(Pt))及び酸素吸蔵能力を有する物質(例えば、セリア(CeO2))を担持させたものである。上流側排気浄化触媒20は、所定の活性温度に達すると、未燃ガス(HCやCO等)と窒素酸化物(NOx)とを同時に浄化する触媒作用に加えて、酸素吸蔵能力を発揮する。
上流側排気浄化触媒20の酸素吸蔵能力によれば、上流側排気浄化触媒20は、上流側排気浄化触媒20に流入する排気ガスの空燃比が理論空燃比よりもリーン(リーン空燃比)であるときには排気ガス中の酸素を吸蔵する。一方、上流側排気浄化触媒20は、流入する排気ガスの空燃比が理論空燃比よりもリッチ(リッチ空燃比)であるときには、上流側排気浄化触媒20に吸蔵されている酸素を放出する。
上流側排気浄化触媒20は、触媒作用及び酸素吸蔵能力を有することにより、酸素吸蔵量に応じてNOx及び未燃ガスの浄化作用を有する。すなわち、図2(A)に示したように、上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比である場合、酸素吸蔵量が少ないときには上流側排気浄化触媒20により排気ガス中の酸素が吸蔵され、NOxが還元浄化される。また、酸素吸蔵量が多くなると、最大吸蔵可能酸素量Cmax近傍の或る吸蔵量(図中のCuplim)を境に排気浄化触媒から流出する排気ガス中の酸素及びNOxの濃度が急激に上昇する。
一方、図2(B)に示したように、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比である場合、酸素吸蔵量が多いときには上流側排気浄化触媒20に吸蔵されている酸素が放出され、排気ガス中の未燃ガスは酸化浄化される。また、酸素吸蔵量が少なくなると、ゼロ近傍の或る吸蔵量(図中のClowlim)を境に排気浄化触媒から流出する排気ガス中の未燃ガスの濃度が急激に上昇する。
以上のように、本実施形態において用いられる排気浄化触媒20、24によれば、排気浄化触媒に流入する排気ガスの空燃比及び酸素吸蔵量に応じて排気ガス中のNOx及び未燃ガスの浄化特性が変化する。なお、触媒作用及び酸素吸蔵能力を有していれば、排気浄化触媒20、24は三元触媒とは異なる触媒であってもよい。
<空燃比センサの構成>
次に、図3を参照して、本実施形態における空燃比センサ40、41の構成について説明する。図3は、空燃比センサ40、41の概略的な断面図である。図3から分かるように、本実施形態における空燃比センサ40、41は、固体電解質層及び一対の電極から成るセルが1つである1セル型の空燃比センサである。
図3に示したように、空燃比センサ40、41は、固体電解質層51と、固体電解質層51の一方の側面上に配置された排気側電極(第一電極)52と、固体電解質層51の他方の側面上に配置された大気側電極(第二電極)53と、通過する排気ガスの拡散律速を行う拡散律速層54と、拡散律速層54を保護する保護層55と、空燃比センサ40、41の加熱を行うヒータ部56とを具備する。
固体電解質層51の一方の側面上には拡散律速層54が設けられ、拡散律速層54の固体電解質層51側の側面とは反対側の側面上には保護層55が設けられる。本実施形態では、固体電解質層51と拡散律速層54との間には被測ガス室57が形成される。この被測ガス室57内には排気側電極52が配置され、拡散律速層54を介して排気ガスが導入せしめられる。固体電解質層51の他方の側面上にはヒータ部56が設けられる。固体電解質層51とヒータ部56との間には基準ガス室58が形成され、この基準ガス室58内には基準ガス(例えば、大気ガス)が導入される。大気側電極53は、基準ガス室58内に配置される。
固体電解質層51は、ZrO2(ジルコニア)、HfO2、ThO2、Bi23等にCaO、MgO、Y23、Yb23等を安定剤として配当した酸素イオン伝導性酸化物の焼結体により形成されている。また、拡散律速層54は、アルミナ、マグネシア、けい石質、スピネル、ムライト等の耐熱性無機物質の多孔質焼結体により形成されている。さらに、排気側電極52及び大気側電極53は、白金等の触媒活性の高い貴金属により形成されている。
また、排気側電極52と大気側電極53との間には、ECU31に搭載された電圧印加装置60によりセンサ印加電圧Vrが印加される。加えて、ECU31には、電圧印加装置60によってセンサ印加電圧Vrを印加したときに固体電解質層51を介してこれら電極52、53間に流れる電流を検出する電流検出装置61が設けられる。この電流検出装置61によって検出される電流が空燃比センサ40、41の出力電流である。
このように構成された空燃比センサ40、41は、図4に示したような電圧−電流(V−I)特性を有する。図4からわかるように、出力電流Iは、排気空燃比が高くなるほど(リーンになるほど)、大きくなる。また、各排気空燃比におけるV−I線には、V軸に平行な領域、すなわちセンサ印加電圧が変化しても出力電流がほとんど変化しない領域が存在する。この電圧領域は限界電流領域と称され、このときの電流は限界電流と称される。図4では、排気空燃比が18であるときの限界電流領域及び限界電流をそれぞれW18、I18で示している。
図5は、印加電圧を0.45V程度で一定にしたときの、排気空燃比と出力電流Iとの関係を示す図である。図5からわかるように、空燃比センサ40、41では、排気空燃比が高くなるほど(すなわち、リーンになるほど)、空燃比センサ40、41からの出力電流Iが大きくなる。加えて、空燃比センサ40、41は、排気空燃比が理論空燃比であるときに出力電流Iが零になるように構成される。また、排気空燃比が一定以上に大きくなったとき、或いは一定以下に小さくなったときには、排気空燃比の変化に対する出力電流の変化の割合が小さくなる。
なお、上記例では、空燃比センサ40、41として図3に示した構造の限界電流式の空燃比センサを用いている。しかしながら、上流側空燃比センサ40としては例えば積層型の限界電流式空燃比センサ等の他の構造の限界電流式の空燃比センサや、限界電流式ではない空燃比センサ等、如何なる空燃比センサを用いてもよい。
<基本的な制御>
このように構成された内燃機関では、上流側空燃比センサ40及び下流側空燃比センサ41の出力に基づいて、上流側排気浄化触媒20に流入する排気ガスの空燃比が機関運転状態に基づいた最適な目標空燃比となるように、燃料噴射弁11からの燃料噴射量が設定される。このような燃料噴射量の設定方法としては、上流側空燃比センサ40の出力に基づいて上流側排気浄化触媒20に流入する排気ガスの空燃比(或いは、機関本体から流出する排気ガスの空燃比)が目標空燃比となるように制御すると共に、下流側空燃比センサ41の出力に基づいて上流側空燃比センサ40の出力を補正したり、目標空燃比を変更したりする方法が挙げられる。
図6を参照して、このような目標空燃比の制御の例について、簡単に説明する。図6は、内燃機関の通常運転(通常制御)時における、上流側排気浄化触媒の酸素吸蔵量、目標空燃比、上流側空燃比センサの出力空燃比及び下流側空燃比センサの出力空燃比のタイムチャートである。なお、「出力空燃比」は、空燃比センサの出力に相当する空燃比を意味する。また、「通常運転(通常制御)時」は、内燃機関の特定の運転状態に応じて燃料噴射量を調整する制御(例えば、内燃機関を搭載した車両の加速時に行われる燃料噴射量の増量補正や、燃料カット制御、後述するアクティブ空燃比制御等)を行っていない運転状態(制御状態)を意味する。
図6に示した例では、下流側空燃比センサ41の出力空燃比が理論空燃比よりもリッチなリッチ判定空燃比AFrefr(理論空燃比よりもリッチな空燃比。例えば、14.55)以下となったときに、目標空燃比はリーン設定空燃比AFTl(例えば、15)に設定され、維持される。その後、上流側排気浄化触媒20の酸素吸蔵量が推定され、この推定値が予め定められた判定基準吸蔵量Cref(最大吸蔵可能酸素量Cmaxよりも少ない量)以上になると、目標空燃比はリッチ設定空燃比AFTr(例えば、14.4)に設定され、維持される。図6に示した例では、このような操作が繰り返し行われる。
具体的には、図6に示した例では、時刻t1前において、目標空燃比がリッチ設定空燃比AFTrとされ、これに伴って、上流側空燃比センサ40の出力空燃比もリッチ空燃比となっている。また、上流側排気浄化触媒20には酸素が吸蔵されていることから、下流側空燃比センサ41の出力空燃比はほぼ理論空燃比(14.6)となっている。このとき、上流側排気浄化触媒20に流入する排気ガスの空燃比はリッチ空燃比となっていることから、上流側排気浄化触媒20の酸素吸蔵量は徐々に低下する。
その後、時刻t1においては、上流側排気浄化触媒20の酸素吸蔵量がゼロに近づくことにより、上流側排気浄化触媒20に流入した未燃ガスの一部は上流側排気浄化触媒20で浄化されずに流出し始める。その結果、時刻t2において、下流側空燃比センサ41の出力空燃比がリッチ判定空燃比AFrefrとなり、このとき目標空燃比はリッチ設定空燃比AFTrからリーン設定空燃比AFTlへ切り替えられる。
目標空燃比の切替により、上流側排気浄化触媒20に流入する排気ガスの空燃比はリーン空燃比になり、未燃ガスの流出は減少、停止する。また、上流側排気浄化触媒20の酸素吸蔵量は徐々に増加し、時刻t3において、判定基準吸蔵量Crefに到達する。このように、酸素吸蔵量が判定基準吸蔵量Crefに到達すると、目標空燃比は、再びリーン設定空燃比AFTlからリッチ設定空燃比AFTrへと切り替えられる。この目標空燃比の切替により、上流側排気浄化触媒20に流入する排気ガスの空燃比は再びリーン空燃比となり、その結果、上流側排気浄化触媒20の酸素吸蔵量は徐々に減少し、以降は、このような操作が繰り返し行われる。このような制御を行うことにより、上流側排気浄化触媒20からNOxが流出するのを防止することができる。
なお、上流側空燃比センサ40及び下流側空燃比センサ41の出力に基づく目標空燃比の制御は上述したような制御に限定されるものではない。これら空燃比センサ40、41の出力に基づく制御であれば、如何なる制御であってもよい。
<排気浄化触媒の異常診断>
次に、図7及び図8を参照して、上流側排気浄化触媒20の異常診断について説明する。本実施形態では、上流側排気浄化触媒20の異常診断を行うにあたって、上流側排気浄化触媒20に流入する排気ガスの目標空燃比をリッチ空燃比とリーン空燃比とに周期的に交互に切り替えるアクティブ空燃比制御が行われる。なお、以下の説明では、アクティブ空燃比制御の実行により、目標空燃比をリッチ空燃比からリーン空燃比に切り替えてから、リッチ空燃比に切り替え、再度リーン空燃比に切り替えるまでを1周期とする。或いは、目標空燃比をリーン空燃比からリッチ空燃比に切り替えてから、リーン空燃比に切り替え、再度リッチ空燃比に切り替えるまでを1周期としてもよい。すなわち、1周期は、目標空燃比を連続してリッチ空燃比及びリーン空燃比とした期間を意味する。
また、このアクティブ空燃比制御の実行中には、上流側排気浄化触媒20に吸蔵された酸素の量又は上流側排気浄化触媒20から放出された酸素の量が推定され、推定された酸素の量の積算値に基づいて目標空燃比の切り替えが行われる。より詳細には、目標空燃比をリッチ空燃比からリーン空燃比へ切り替えた時から上流側排気浄化触媒20に吸蔵された酸素の推定量を積算した積算値が予め定められた基準量に到達すると、目標空燃比がリーン空燃比からリッチ空燃比へ切り替えられる。同様に、目標空燃比をリーン空燃比からリッチ空燃比へ切り替えた時から上流側排気浄化触媒20から放出された酸素の推定量を積算した積算値が予め定められた基準量に到達すると、目標空燃比がリーン空燃比からリッチ空燃比へ切り替えられる。この基準量は、上流側排気浄化触媒20に劣化が生じていないときの最大吸蔵可能酸素量よりも少なく且つ上流側排気浄化触媒20の劣化度合いが大きいときの最大吸蔵可能酸素量よりも多い量とされる。
本実施形態では、上流側排気浄化触媒20に吸蔵された酸素及び上流側排気浄化触媒20から放出された酸素の量(流量)は、上流側空燃比センサ40の出力空燃比及び内燃機関の吸入空気量等に基づいて算出される。具体的には、ECU31は、斯かる酸素の量を、上流側排気浄化触媒20に流入する排気ガスの空燃比を理論空燃比にしようとしたときに過剰となる酸素又は不足する酸素の量を酸素過不足量として算出する。
すなわち、ECU31は、上流側排気浄化触媒20に流入する排気ガス中の酸素及び未燃ガス等が完全に反応したと仮定したときに、この排気ガス中に含まれる酸素の量又はこの排気ガス中に含まれる未燃ガス等を燃焼させるのに必要な酸素の量を算出する。より具体的には、エアフロメータ39等に基づいて算出された内燃機関の吸入空気量と、上流側空燃比センサ40の出力空燃比の理論空燃比に対する差(又は比)とに基づいて、酸素過不足量を算出している。そして、ECU31は、目標空燃比の切替を行ってから、酸素過不足量を積算した積算値(絶対値)が予め定められた基準量に到達すると、目標空燃比を再度切り替えるようにしている。
そして、このようなアクティブ空燃比制御を行った結果、1周期の間に、下流側空燃比センサ41の出力空燃比がリッチ判定空燃比以下にもリーン判定空燃比以上にもなった場合には、上流側排気浄化触媒20には劣化による異常が生じていると判定する。一方、1周期の間に、下流側空燃比センサの出力空燃比がリッチ判定空燃比よりも大きく且つリーン判定空燃比よりも小さい範囲内に維持されていた場合には、上流側排気浄化触媒20には劣化による異常が生じていない(正常である)と判定する。
1周期からのみではなく、複数の周期により異常診断を行うこともできる。この場合には、1周期の間に下流側空燃比センサ41の出力空燃比がリッチ判定空燃比以下にもリーン判定空燃比以上にもなった周期の数が多い場合に、上流側排気浄化触媒20には劣化による異常が生じていると判定する。一方、1周期の間に下流側空燃比センサの出力空燃比がリッチ判定空燃比よりも大きく且つリーン判定空燃比よりも小さい範囲内に維持されていた周期の数が多い場合に、上流側排気浄化触媒20には劣化による異常が生じていない(正常である)と判定する。
図7は、上流側排気浄化触媒20の異常診断を行うにあたってアクティブ空燃比制御を実行した際の、酸素吸蔵量、目標空燃比、上流側空燃比センサ40の出力空燃比、下流側空燃比センサ41の出力空燃比、及び酸素過不足量の積算値(絶対値)のタイムチャートである。特に、図7は、上流側排気浄化触媒20の劣化度合いが小さい場合、すなわち上流側排気浄化触媒20には劣化による異常が生じていない場合を示している。
図7に示した例では、時刻t4以前において、上流側排気浄化触媒20に流入する排気ガスの目標空燃比がリッチ設定空燃比AFTrとされている。このため、上流側空燃比センサ40の出力空燃比がリッチ空燃比となっている。これに伴って、上流側排気浄化触媒20の酸素吸蔵量も徐々に減少する。このとき、上流側排気浄化触媒20に流入した排気ガス中の未燃ガスは、上流側排気浄化触媒20に吸蔵されていた酸素により酸化浄化される。このため、下流側空燃比センサ41の出力空燃比は理論空燃比となっている。
時刻t4において、アクティブ空燃比制御が開始されると、図7に示した例では、目標空燃比がアクティブ制御時リーン空燃比AFTalに変更される。本実施形態では、アクティブ制御時リーン空燃比AFTalは、リーン設定空燃比AFTlとほぼ同一の空燃比とされるが、これとは異なる空燃比であってもよい。
時刻t4において、目標空燃比がアクティブ制御時リーン空燃比AFTalに変更されると、上流側空燃比センサ40の出力空燃比もリーン空燃比に変化する。また、上流側排気浄化触媒20の酸素吸蔵量が徐々に増加する。このとき、上流側排気浄化触媒20に流入した排気ガス中のNOxは酸素が吸蔵されるのに伴って、還元浄化される。このため、下流側空燃比センサ41の出力空燃比は理論空燃比のままとなる。
一方、時刻t4において、アクティブ空燃比制御が開始されると、酸素過不足量の積算値が算出される。上述したように、時刻t4以降は、上流側空燃比センサ40の出力空燃比がリーン空燃比となっている。このため、時刻t4以降は、上流側排気浄化触媒20に流入する排気ガスの空燃比を理論空燃比にしようとしたときに酸素が過剰であるといえる。このため、図7に示したように、上流側排気浄化触媒20に流入する排気ガスにおける酸素過不足量の積算値は徐々に増大していく。
その後、時刻t5において、酸素過不足量の積算値が基準量Refに到達すると、目標空燃比がアクティブ制御時リーン空燃比AFTalからアクティブ制御時リッチ空燃比AFTarに切り替えられる。本実施形態では、アクティブ制御時リッチ空燃比AFTarは、リッチ設定空燃比AFTrよりもリッチな空燃比とされるが、リッチ設定空燃比とほぼ同一又はこれよりもリーンな空燃比とされてもよい。なお、アクティブ制御時リッチ空燃比AFTarの理論空燃比からの差とアクティブ制御時リーン空燃比AFTalの理論空燃比からの差は等しいものとされる。また、時刻t5においては、酸素過不足量の積算値は0にリセットされる。
図7に示した例では、上流側排気浄化触媒20の劣化度合いが小さく、したがって最大吸蔵可能酸素量Cmaxが大きいため、時刻t5において酸素吸蔵量は最大吸蔵可能酸素量Cmaxに到達していない。このため、時刻t4から時刻t5の間においては、上流側排気浄化触媒20からNOxや酸素が流出することはなく、よって下流側空燃比センサの出力空燃比は理論空燃比のままとなっている。
時刻t5において、目標空燃比が切り替えられると、上流側空燃比センサ40の出力空燃比もリッチ空燃比に変化する。また、上流側排気浄化触媒20の酸素吸蔵量が徐々に減少する。このとき、上流側排気浄化触媒20に流入した排気ガス中の未燃ガスは上流側排気浄化触媒20において酸化浄化されるため、下流側空燃比センサの出力空燃比は理論空燃比となっている。加えて、上流側空燃比センサ40の出力空燃比はリッチ空燃比となっているため、上流側排気浄化触媒20に流入する排気ガスの空燃比を理論空燃比にしようとしたときに酸素が不足しているといえる。このため、上流側排気浄化触媒20に流入する排気ガスにおける酸素過不足量の積算値は徐々に減少していく。特に、図7では酸素過不足量の積算値が絶対値で示されているため、図7の酸素過不足量の積算値は徐々に増大していく。
その後、時刻t6において、酸素過不足量の積算値(絶対値)が基準量Refに到達すると、目標空燃比がアクティブ制御時リッチ空燃比AFTarからアクティブ制御時リーン空燃比AFTalに切り替えられる。図7に示した例では上述したように最大吸蔵可能酸素量Cmaxが大きいため、時刻t6において酸素吸蔵量はゼロに到達していない。このため、時刻t5から時刻t6の間においては、上流側排気浄化触媒20から未燃ガスが流出することはなく、よって下流側空燃比センサの出力空燃比は理論空燃比のままとなっている。その後は、同様な操作が繰り返し行われることになる。なお、図7に示した例では、目標空燃比がリーン空燃比に切り替えられてから(時刻t4)再びリーン空燃比に切り替えられる(時刻t6)までを1周期としている。
このように、上流側排気浄化触媒20の劣化度合いが低い場合には、上流側排気浄化触媒20の最大吸蔵可能酸素量が基準量Ref以上となる。このため、アクティブ空燃比制御を実行している間、上流側排気浄化触媒20に流入する未燃ガスは全て除去され、酸素は全て吸蔵される。この結果、下流側空燃比センサ41の出力空燃比はほぼ理論空燃比に維持されることになる。したがって、本実施形態では、アクティブ空燃比制御の実行中に下流側空燃比センサ41の出力空燃比がリッチ判定空燃比AFrefrとリーン判定空燃比AFreflとの間の範囲内に維持されるときには、上流側排気浄化触媒20には劣化が生じておらず、正常であると判定される。
図8も、アクティブ空燃比制御を実行した際の酸素吸蔵量等のタイムチャートであり、図7と同様な図である。特に、図8は、上流側排気浄化触媒20の劣化度合いが大きい場合、すなわち上流側排気浄化触媒20に劣化による異常が生じている場合を示している。
図8に示した例においても、時刻t4以前は、図7に示した例と同様に制御されている。時刻t4においてアクティブ空燃比制御が開始されると、目標空燃比がアクティブ制御時リーン空燃比AFTalに変更される。これにより、上流側空燃比センサ40の出力空燃比の出力空燃比もリーン空燃比に変化し、上流側排気浄化触媒20の酸素吸蔵量が徐々に増加する。しかしながら、このときは下流側空燃比センサ41の出力空燃比は理論空燃比のままとなっている。
図8に示した例では、上流側排気浄化触媒20の劣化度合い高いため、時刻t5に到達する前に、上流側排気浄化触媒20の酸素吸蔵量が最大吸蔵可能酸素量Cmax’に到達する。このため、上流側排気浄化触媒20はそれ以上酸素を吸蔵することができなくなり、この結果、上流側排気浄化触媒20からは酸素が流出し始める。そして、時刻t4.5において、下流側空燃比センサの出力空燃比がリーン判定空燃比AFreflに達し、その後、リーン判定空燃比AFrefl以上に維持される。
時刻t5において、酸素過不足量の積算値が基準量Refに到達すると、目標空燃比がアクティブ制御時リーン空燃比AFTalからアクティブ制御時リッチ空燃比AFTarに切り替えられる。これにより、上流側空燃比センサ40の出力空燃比もリッチ空燃比に変化し、上流側排気浄化触媒20の酸素吸蔵量が徐々に減少する。これに伴って、下流側空燃比センサの出力空燃比は理論空燃比に収束していく。
上述したように、図8に示した例では、上流側排気浄化触媒20の劣化度合いが高い。このため、時刻t6に到達する前に、上流側排気浄化触媒20の酸素吸蔵量がゼロに到達する。このため、上流側排気浄化触媒20はそれ以上未燃ガスを酸化除去することができなくなり、この結果、上流側排気浄化触媒20からは未燃ガスが流出し始める。そして、時刻t5.5において、下流側空燃比センサの出力空燃比がリッチ判定空燃比AFrefrに達し、その後、リッチ判定空燃比AFrefr以上に維持される。
このように、上流側排気浄化触媒20の劣化度合いが高い場合には、上流側排気浄化触媒20の最大吸蔵可能酸素量が基準量Refよりも少ないものとなる。このため、アクティブ空燃比制御を実行している間、上流側排気浄化触媒20からは未燃ガス及び酸素が流出する。この結果、下流側空燃比センサ41の出力空燃比はリッチ空燃比及びリーン空燃比に振れることになる。したがって、本実施形態では、アクティブ空燃比制御の実行中に下流側空燃比センサの出力空燃比がリッチ判定空燃比以下にも、リーン判定空燃比以上にも到達するときには、上流側排気浄化触媒20には劣化による異常が生じていると判定される。
以上のように、本実施形態によれば、アクティブ空燃比制御を実行した際における下流側空燃比センサ41の出力空燃比に基づいて上流側排気浄化触媒20の異常を診断することができる。
なお、図7及び図8に示した例では、アクティブ空燃比制御が複数の周期に亘って実行されている。しかしながら、上流側排気浄化触媒20の異常診断は少なくとも1周期のアクティブ空燃比制御を行えば実行することができるため、アクティブ空燃比制御は1周期のみ行ってもよい。
一方、図7及び図8に示したように、アクティブ空燃比制御を複数の周期に亘って実行する場合には、複数の周期のうち、1周期の間に下流側空燃比センサ41の出力空燃比がリッチ判定空燃比以下にもリーン判定空燃比以上にもなった周期(異常判定周期)の数を算出する。そして、この異常判定周期の数が一定以上であった場合、或いはアクティブ空燃比制御中の全ての周期の数に対する異常判定周期の数の割合が一定以上であった場合に、上流側排気浄化触媒20には劣化による異常が生じていると判定するようにしてもよい。加えて、アクティブ空燃比制御を複数の周期に亘って実行する場合には、複数の周期のうち、1周期の間に下流側空燃比センサ41の出力空燃比がリッチ判定判定空燃比よりも大きく且つリーン判定空燃比よりも小さい範囲内に維持されていた周期(正常判定周期)の数を算出する。そして、この正常判定周期の数が一定以上であった場合、或いはアクティブ空燃比制御中の全ての周期の数に対する正常判定周期の数の割合が一定以上であった場合に、上流側排気浄化触媒20は正常であると判定するようにしてもよい。
また、図7及び図8に示した例では、アクティブ空燃比制御を開始してから最初の周期(t4〜t6)における下流側空燃比センサ41の出力空燃比に基づいて上流側排気浄化触媒20の異常診断を行っている。しかしながら、アクティブ空燃比制御の開始直後は、制御開始時の酸素吸蔵量等により、下流側空燃比センサ41の出力空燃比が不適切なものになる場合がある。そこで、アクティブ空燃比制御の開始後、少なくとも1周期が経過してから(すなわち、図7及び図8の例では時刻t6以降)における下流側空燃比センサ41の出力空燃比に基づいて診断を行うようにしてもよい。
<センサのずれを考慮した異常診断>
ところで、上述したように、上流側排気浄化触媒20に流入する排気ガスの空燃比は、上流側空燃比センサ40の出力空燃比に基づいて目標空燃比になるようにフィードバック制御されている。ところが、上流側空燃比センサ40の出力空燃比は、実際の空燃比に対してずれが生じる場合がある。例えば、上流側空燃比センサ40として上述したような構成の限界電流式空燃比センサを用いている場合、排気ガス中に含まれる水素の比率が増大すると、それに伴って出力空燃比がリッチ側にずれてしまう。このように、上流側空燃比センサ40の出力空燃比にずれが生じると、上述したフィードバック制御を行っても、上流側排気浄化触媒20に流入する排気ガスの実際の空燃比は目標空燃比からずれたものとなってしまう。
図9は、アクティブ空燃比制御を実行した際の酸素吸蔵量等のタイムチャートであり、図8と同様な図である。特に、図9は、上流側空燃比センサ40の出力空燃比がリッチ側にずれている場合を示している。また、図9は、図8と同様に、上流側排気浄化触媒20の劣化度合いが大きい場合を示している。なお、図9では、図8の上流側空燃比センサ40の出力空燃比の代わりに、上流側排気浄化触媒20に流入する排気ガスの実際の空燃比(以下、「流入排気ガスの実空燃比」という)が示されている。また、図9中の破線は、上流側空燃比センサ40の出力空燃比を示している。
図9に示した例においても、時刻t4以前は、図7、8に示した例と同様に制御されている。しかしながら、上流側空燃比センサ40の出力空燃比にずれが生じているため、流入排気ガスの実空燃比は、目標空燃比よりもリーンとなっている。時刻t4においてアクティブ空燃比制御が開始されると、目標空燃比がアクティブ制御時リーン空燃比AFTalに変更される。上流側空燃比センサ40の出力空燃比にずれが生じているため、流入排気ガスの実空燃比はアクティブ制御時リーン空燃比AFTalよりもリーンとなっている。この結果、上流側排気浄化触媒20の酸素吸蔵量は急激に増大し、すぐに最大吸蔵可能酸素量Cmax’に到達する。この結果、時刻t4.5において、下流側空燃比センサ41の出力空燃比リーン判定空燃比AFreflに達し、その後、リーン判定空燃比AFrefl以上に維持される。
時刻t5において、酸素過不足量の積算値が基準量Refに到達すると、目標空燃比がアクティブ制御時リーン空燃比AFTalからアクティブ制御時リッチ空燃比AFTarに切り替えられる。しかしながら、上流側空燃比センサ40の出力空燃比にずれが生じているため、流入排気ガスの実空燃比はアクティブ制御時リッチ空燃比AFTarよりもリーンとなっている。すなわち、流入排気ガスの実空燃比は、リッチ度合いの小さいリッチ空燃比となっている。この結果、上流側排気浄化触媒20の酸素吸蔵量は非常にゆっくりと減少する。
このように、上流側排気浄化触媒20の酸素吸蔵量がゆっくりと減少すると、上流側排気浄化触媒20の劣化度合いが高くて最大吸蔵可能酸素量が少なくなっているにもかかわらず、時刻t6になっても酸素吸蔵量はゼロに到達しない。したがって、時刻t6になっても、下流側空燃比センサ41の出力空燃比はほぼ理論空燃比に維持される。このため、時刻t6においては、下流側空燃比センサ41の出力空燃比がリッチ判定空燃比AFrefrに到達する前に、目標空燃比がアクティブ制御時リッチ空燃比AFTarからアクティブ制御時リーン空燃比AFTalに切り替えられる。その後は、同様な操作が繰り返し行われることになる。
図9からわかるように、上流側空燃比センサ40の出力空燃比にずれが生じている場合には、アクティブ空燃比制御において目標空燃比をリッチ空燃比とした時の実際の空燃比のリッチ度合いと、目標空燃比をリーン空燃比とした時の実際の空燃比のリーン度合いとが等しくならない。このため、下流側空燃比センサ41の出力空燃比はリッチ空燃比及びリーン空燃比のうちいずれか一方にのみ振れることになる。特に、図9に示した例では、下流側空燃比センサ41の出力空燃比がリッチ側にずれている場合を示しているため、その出力空燃比はリーン側のみに振れている。一方、下流側空燃比センサ41の出力空燃比がリーン側にずれている場合にはその出力空燃比はリッチ側のみに振れることになる。また、図9に示した例では、上流側排気浄化触媒20の劣化度合いが高い場合を示しているが、上流側排気浄化触媒20の劣化度合いが低い場合であっても、同様な現象が生じる。
そこで、本実施形態では、アクティブ空燃比制御の実行中に、下流側空燃比センサ41の出力空燃比がリッチ判定空燃比以下又はリーン判定空燃比以上のいずれか一方のみに到達するときには、下流側空燃比センサ41の出力空燃比に異常が生じていると判定するようにしている。そして、このように判定されたときには、本実施形態では、上流側排気浄化触媒20の異常診断を中止し、さらに、アクティブ空燃比制御を中止するようにしている。
上述したように、下流側空燃比センサ41の出力空燃比にずれが生じているときには、上流側排気浄化触媒20の劣化度合いに関わらず、アクティブ空燃比制御中に下流側空燃比センサ41の出力空燃比がリッチ空燃比側又はリーン空燃比側の一方のみに振れる。このため、出力空燃比が一方のみに振れた場合には、上流側排気浄化触媒20の劣化度合いがどの程度であるのかを判断することができない。本実施形態によれば、このような場合には上流側排気浄化触媒20の異常診断が中止されるため、上流側排気浄化触媒20の劣化度合いを誤判定してしまうことが防止される。
なお、図9に示した例では、アクティブ空燃比制御が複数の周期に亘って実行されている。しかしながら、上流側空燃比センサ40の異常診断も、上流側排気浄化触媒20の異常診断と同様に、少なくとも1周期のアクティブ空燃比制御を行えば実行することができるため、アクティブ空燃比制御は1周期のみ行ってもよい。また、アクティブ空燃比制御が複数の周期に亘って実行されている場合には、上流側排気浄化触媒20の異常診断と同様に、下流側空燃比センサ41の出力空燃比がリッチ空燃比及びリーン空燃比の一方に振れた異常判定周期の数又はその割合に基づいて判定を行ってもよい。
なお、上記実施形態では、上流側排気浄化触媒20に流入する排気ガスの空燃比が目標空燃比となるようにする制御として、上流側空燃比センサ41を用いたフィードバック制御を用いている。しかしながら、例えば、エアフロメータ39によって検出された吸入空気量と燃料噴射弁11からの燃料噴射量とに基づいて算出される排気ガスの空燃比が目標空燃比となるように燃料噴射量を制御するようにしてもよい。このような場合にも算出された排気ガスの空燃比と実際の空燃比との間にはずれが生じる場合がある。したがって、このような場合であっても、アクティブ空燃比制御中に、下流側空燃比センサ41の出力空燃比がリッチ空燃比及びリーン空燃比の一方に振れたときには、空燃比制御手段に異常が発生していると判定される。
<フローチャート>
図10は、アクティブ空燃比制御の制御ルーチンを示すフローチャートである。図示した制御ルーチンは一定時間間隔の割り込みによって行われる。
図10に示したように、まず、ステップS11では、アクティブフラグXaがOFFであるか否かが判定される。アクティブフラグXaは、アクティブ空燃比制御が実行されているときにはONとされ、実行されていないときにはOFFとされるフラグである。ステップS11において、アクティブフラグXaがOFFであると判定された場合にはステップS12へと進む。ステップS12では、アクティブ空燃比制御の実行条件が成立しているか否かが判定される。アクティブ空燃比制御の実行条件は、例えば、上流側排気浄化触媒20及び空燃比センサ40、41が活性しており、且つ内燃機関の始動後(或いは、内燃機関を搭載した車両のイグニッションキーをONにした後)未だ異常診断が行われていないときに成立する。ステップS12においてアクティブ空燃比制御の実行条件が成立していないと判定されたときには制御ルーチンが終了せしめられる。一方、アクティブ空燃比制御の実行条件が成立していると判定されたときには、ステップS13へと進む。
ステップS13では、目標空燃比が反転せしめられる。したがって、現在の目標空燃比がリッチ空燃比であるときには、目標空燃比はアクティブ制御時リーン空燃比AFTalに切り替えられる。一方、現在の目標空燃比がリーン空燃比であるときには、目標空燃比はアクティブ制御時リッチ空燃比AFTarに切り替えられる。次いで、ステップS14では、酸素過不足量OSAの積算値ΣOSAがゼロにリセットされる。ステップS15では、アクティブフラグXaがONにセットされる。
ステップS15において、アクティブフラグXaがONにセットされた後の制御ルーチンでは、ステップS11においてアクティブフラグXaがONであると判定され、ステップS16へと進む。ステップS16では、上流側空燃比センサ40の出力空燃比及びエアフロメータ39によって検出された吸入空気量に基づいて、酸素過不足量OSAが算出される。次いで、ステップS17では、ステップS16において算出された酸素過不足量OSAを前回の制御ルーチンで算出された酸素過不足量の積算値ΣOSAに加算したものが、新たな酸素過不足量ΣOSAとされる(ΣOSA=ΣOSA+OSA)。
次いで、ステップS18では、ステップS17で算出された酸素過不足量の積算値ΣOSAの絶対値が基準量Ref以上であるか否かが判定される。ステップS18において、積算値ΣOSAの絶対値が基準量Refよりも少ないと判定された場合にはステップS21へと進む。一方、ステップS18において、積算値ΣOSAの絶対値が基準量Ref以上であると判定された場合には、ステップS19へと進む。
ステップS19では、目標空燃比が反転せしめられる。したがって、現在の目標空燃比がアクティブ制御時リッチ空燃比AFTarであるときには、目標空燃比はアクティブ制御時リーン空燃比AFTalに切り替えられる。一方、現在の目標空燃比がアクティブ制御時リーン空燃比AFTalであるときには、目標空燃比はアクティブ制御時リッチ空燃比AFTarに切り替えられる。次いで、ステップS20において、酸素過不足量の積算値ΣOSAがゼロにリセットされる。
ステップS21では、アクティブ空燃比制御を開始してからの経過時間が所定時間以上となっているか否かが判定される。経過時間が所定時間よりも短いと判定された場合には制御ルーチンが終了せしめられる。一方、経過時間が所定時間以上であると判定された場合には、ステップS22へと進む。ステップS22では、アクティブ空燃比制御が終了せしめられ、通常制御が再開される。次いで、ステップS23では、アクティブフラグXaがOFFにセットされる。
なお、上記例では、アクティブ空燃比制御の終了タイミングを、開始してからの経過時間が所定時間以上となったタイミングとしている。しかしながら、アクティブ空燃比制御の終了タイミングは他のタイミングであってもよい。このような他のタイミングとしては、例えば、アクティブ空燃比制御を開始してからの目標空燃比の反転回数が所定回数以上となったタイミングや、上流側排気浄化触媒20の異常診断が終了したタイミング等があげられる。
図11は、異常診断制御の制御ルーチンを示すフローチャートである。図示した制御ルーチンは、アクティブ空燃比制御の1周期が終了したタイミングで実行される。
図11に示したように、まずステップS31において、今回の1周期における下流側空燃比センサ41の出力空燃比の最小値AFminがリッチ判定空燃比AFrefr以下であるか否かが判定される。ステップS31において、出力空燃比の最小値AFminがリッチ判定空燃比AFrefr以下であると判定された場合には、ステップS32へと進む。ステップS32では、リッチフラグXrがONにセットされる。リッチフラグXrは、各周期において下流側空燃比センサ41の出力空燃比がリッチ判定空燃比AFrefr以下になったときにONとされ、それ以外のときにはOFFとされるフラグである。一方、ステップS31において、出力空燃比の最小値AFminがリッチ判定空燃比AFrefrよりも大きいと判定された場合には、ステップS32がスキップされる。
次いで、ステップS33では、今回の1周期における下流側空燃比センサ41の出力空燃比の最大値AFmaxがリーン判定空燃比AFrefl以上であるか否かが判定される。ステップS31において、出力空燃比の最小値AFmaxがリッチ判定空燃比AFrefr以上であると判定された場合には、ステップS34へと進む。ステップS34では、リーンフラグXlがONにセットされる。リッチフラグXlは、各周期において下流側空燃比センサ41の出力空燃比がリーン判定空燃比AFrefl以上になったときにONとされ、それ以外のときにはOFFとされるフラグである。一方、ステップS33において、出力空燃比の最大値AFmaxがリッチ判定空燃比AFreflよりも小さいと判定された場合には、ステップS34がスキップされる。
次いで、ステップS35では、リッチフラグXr及びリーンフラグXlが共にONになっているか否かが判定される。ステップS35において、両フラグXr、Xlが共にONなっていると判定された場合には、ステップS36へと進む。ステップS36では、異常カウンタCbに1が加算される。異常カウンタCbは、1周期において下流側空燃比センサ41の出力空燃比がリッチ空燃比及びリーン空燃比の両方に大きく振れた回数を表すカウンタである。次いで、ステップS37では、異常カウンタCbが予め定められた所定回数Cbref以上であるか否かが判定される。所定回数Cbrefよりも少ない場合には制御ルーチンが終了せしめられる。一方、所定回数Cbref以上である場合には、ステップS38へと進む。ステップS38では、上流側排気浄化触媒20に異常が生じていると判定され、制御ルーチンが終了せしめられる。
一方、ステップS35において、リッチフラグXr及びリーンフラグXlの少なくともいずれか一方がOFFになっていると判定された場合には、ステップS39、S40へと進む。ステップS39、S40では、リッチフラグXr及びリーンフラグXlのうちいずれか一方がONになっているか否かが判定される。リッチフラグXrのみONになっていると判定された場合にはS41へと進む。ステップS41では、リッチカウンタCrに1が加算され、その後ステップS43へと進む。リッチカウンタCrは、1周期において下流側空燃比センサ41の出力空燃比がリッチ空燃比にのみ大きく振れた回数を表すカウンタである。
一方、ステップS39、S40において、リーンフラグXlのみONになっていると判定された場合にはS42へと進む。ステップS42では、リーンカウンタClに1が加算され、その後ステップS43へと進む。リーンカウンタClは、1周期において下流側空燃比センサ41の出力空燃比がリーン空燃比にのみ大きく振れた回数を表すカウンタである。
ステップS43では、リッチカウンタCr及びリーンカウンタClが予め定められた所定回数Cref以上であるか否かが判定される。所定回数Crefよりも少ない場合には制御ルーチンが終了せしめられる。一方、所定回数Cref以上である場合には、ステップS44へと進む。ステップS44では、上流側空燃比センサ40の出力空燃比に異常が生じていると判定され、制御ルーチンが終了せしめられる。一方、ステップS39、S40において、リッチフラグXr及びリーンフラグXlのいずれもOFFであると判定された場合には、制御ルーチンが終了せしめられる。
<第二実施形態>
次に、図12を参照して、本発明の第二実施形態の異常診断装置について説明する。第二実施形態の異常診断装置の構成等は、基本的に第一実施形態の異常診断装置と同様である。しかしながら、第一実施形態の異常診断装置では、下流側空燃比センサ41の出力空燃比に異常が生じていると判定された場合には、上流側排気浄化触媒20の異常診断及びアクティブ空燃比制御が中止されていた。これに対して、第二実施形態の異常診断装置では、このような場合に、上流側空燃比センサ41の出力空燃比又は目標空燃比が補正される。
図12は、アクティブ空燃比制御を実行した際の、上流側排気浄化触媒20の酸素吸蔵量、上流側排気浄化触媒20に流入する排気ガスの実際の空燃比、下流側空燃比センサ41の出力空燃比、酸素過不足量の積算値(絶対値)、出力空燃比の補正量のタイムチャートである。図12は、図9と同様に上流側空燃比センサ40の出力空燃比がリッチ側にずれている場合を示している。
図12に示した例では、時刻t6以前に既に1周期以上のアクティブ空燃比制御が行われている。図12に示した例では、時刻t6、t8において、目標空燃比がアクティブ制御時リーン空燃比AFTalに切り替えられ、時刻t7、t9において、目標空燃比がアクティブ制御時リッチ空燃比AFTarに切り替えられている。加えて、図12に示した例では、時刻t6.5、t8.5において、下流側空燃比センサ41の出力空燃比がリーン判定空燃比AFrefl以上となっている。
ここで、図12に示したように、時刻t6〜t6.5の間に、上流側排気浄化触媒20に吸蔵される酸素の量と、時刻t7〜t8の間に、上流側排気浄化触媒20から放出される酸素の量は等しいものとなっている。一方、時刻t6〜t6.5の間における酸素過不足量の積算値と、時刻t7〜t8の間における酸素過不足量の積算値とは異なる値となっている。上流側空燃比センサ40の出力空燃比にずれが生じていなければ、これら酸素過不足量の積算値は等しいものとなっているはずである。換言すると、これら酸素過不足量の積算値の差ΔΣOSCは、上流側空燃比センサ40の出力空燃比のずれ量を表しているといえる。
そこで、本実施形態では、下流側空燃比センサ41の出力空燃比に異常が生じていると判定された場合には、アクティブ空燃比制御を中止せずに継続し、酸素過不足量の積算値の差ΔΣOSCに基づいて上流側空燃比センサ40の出力空燃比のずれを補正することとしている。特に、本実施形態では、時刻t6〜t6.5の間における酸素過不足量の積算値と、時刻t7〜t8の間における酸素過不足量の積算値とが等しくなるように、すなわち酸素過不足量の積算値の差ΣOSCがゼロに近づくように出力空燃比のずれを補正している。
ここで、ΔΣOSCは、下流側空燃比センサ41の出力空燃比におけるずれ率をkとすると、下記式(1)のように表すことができる。なお、下記式(1)において、Gaは、上流側排気浄化触媒20に流入する排気ガスの量(g/sec)、0.23は大気中の酸素の質量割合、AFstは制御中心となる空燃比(本実施形態では、理論空燃比)、AFは上流側空燃比センサ40の出力空燃比をそれぞれ意味する。また、下記式(1)のΣは、1周期又は複数周期における積算を意味する。
Figure 2015071964
一方、時刻t6〜t7における酸素過不足量(過剰量)の積算値と、時刻t7〜t8における酸素過不足量(不足量)の積算値は等しいことから、時刻t6〜t8における酸素過不足量の積算値は0になる。このため、下記式(2)が成立する。
Figure 2015071964
そして、上記式(1)及び式(2)を連立させて解くと、下記式(3)を導き出すことができる。
Figure 2015071964
したがって、式(3)によれば、時刻t6〜t6.5における酸素過不足量の積算値と、時刻t7〜t8における酸素過不足量の積算値(絶対値)との差分ΔΣOSAに基づいて、下流側空燃比センサ41の出力空燃比のずれ率kを算出することができる。
そこで、本実施形態では、このようにして算出された出力空燃比のずれ率kに基づいて、目標空燃比を補正するようにしている。具体的には、目標空燃比AFTは、下記式(4)及び(5)に基づいて補正される。
AFT=AFTbase(1+sfbg(k)) …(4)
sfbg(k)=sfbg(k−1)+gain・k(k) …(5)
なお、上記式(4)において、目標基礎空燃比AFTbaseは、上述した目標空燃比の制御に基づいて決定される空燃比であり、制御の状況に応じてアクティブ制御時リーン空燃比AFTal等が代入される。また、sfbg(k)は、今回の計算における目標空燃比補正量である。上記式(5)におけるgainは、算出されたずれ率kを目標空燃比に反映させる程度を表すゲインである。gainは、0と1の間の予め定められた値とされる。
時刻t8において、上述したように目標空燃比を補正することにより、時刻t8以降は、上流側空燃比センサ40の出力空燃比のずれの影響が小さくなる。図12に示したように、時刻t8以降では、流入排気ガスの実空燃比が上流側空燃比センサ40の出力空燃比に近づく。この結果、アクティブ空燃比制御において目標空燃比をリッチ空燃比とした時の実際の空燃比のリッチ度合いと、目標空燃比をリーン空燃比とした時の実際の空燃比のリーン度合いとの差が小さくなる。
このような操作を時刻t8以降においても繰り返すことにより、酸素過不足量の積算値の差ΣOSCも徐々に小さくなっていく(ΣOSC1>ΣOSC2>ΣOSC3)。そして、最終的には、上流側空燃比センサ40の出力空燃比のずれの影響を小さくすることができる。この段階で、再度、上述した上流側排気浄化触媒20の異常診断を行うことにより、上流側排気浄化触媒20の異常をより正確に診断することができるようになる。
なお、上記実施形態では、算出したずれ率kに基づいて、目標空燃比を補正しているが、上流側空燃比センサ40の出力空燃比を補正するようにしてもよい。また、上記実施形態では、上流側空燃比センサ40の出力空燃比がリッチ側にずれている場合を示しているが、リーン側にずれている場合にも同様な制御を行うことができる。したがって、本実施形態では、目標空燃比をリッチ空燃比からリーン空燃比に切り替えてから再びリッチ空燃比に切り替えるまで又は下流側空燃比センサ41の出力空燃比がリーン判定空燃比以上になるまでに酸素過不足量推定手段によって積算された積算酸素過不足量の絶対値と、目標空燃比をリーン空燃比からリッチ空燃比に切り替えてから再びリーン空燃比に切り替えるまで又は下流側空燃比センサ41の出力空燃比がリッチ判定空燃比以下になるまでに酸素過不足量推定手段によって積算された積算酸素過不足量の絶対値との差が小さくなるように、上流側空燃比センサ40の出力空燃比又は目標空燃比を補正しているといえる。
また、図12に示した例では、下流側空燃比センサ41の出力空燃比がリッチ判定空燃比AFrefr以下にはならずにリーン判定空燃比AFrefl以上にのみなる場合を示している。この場合には、上述したように、目標空燃比をリッチ側に補正している。或いは、下流側空燃比センサ41の出力空燃比をリッチ側に補正してもよい。一方、下流側空燃比センサ41の出力空燃比がリーン判定空燃比AFrefl以上にはならずにリッチ判定空燃比AFrefr以下にのみなる場合には、目標空燃比をリーン側に補正することになる。或いは、下流側空燃比センサ41の出力空燃比をリーン側に補正してもよい。
1 機関本体
5 燃焼室
7 吸気ポート
9 排気ポート
19 排気マニホルド
20 上流側排気浄化触媒
24 下流側排気浄化触媒
31 ECU
40 上流側空燃比センサ
41 下流側空燃比センサ

Claims (9)

  1. 内燃機関の排気通路に配置されると共に酸素を吸蔵可能な排気浄化触媒と、該排気浄化触媒に流入する排気ガスの空燃比が目標空燃比となるように制御する空燃比制御手段とを具備する内燃機関の異常診断装置であって、
    前記排気浄化触媒の排気流れ方向下流側に配置されて該排気浄化触媒から排出された排気ガスの空燃比を検出することができる下流側空燃比センサと、前記目標空燃比を所定間隔で理論空燃比よりもリッチなリッチ空燃比と理論空燃比よりもリーンなリーン空燃比とに交互に制御するアクティブ空燃比制御を実行する目標空燃比制御手段と、前記アクティブ空燃比制御の実行中における前記下流側空燃比センサの出力空燃比に基づいて前記排気浄化触媒の異常を診断する異常診断手段とを具備し、
    前記異常診断手段は、前記アクティブ空燃比制御により前記目標空燃比を連続してリッチ空燃比及びリーン空燃比とした期間中に、前記下流側空燃比センサの出力空燃比が理論空燃比よりもリッチなリッチ判定空燃比以下にも、理論空燃比よりもリーンなリーン判定空燃比以上にも到達するときには、前記排気浄化触媒に異常が発生していると判定し、
    前記アクティブ空燃比制御により前記目標空燃比を連続してリッチ空燃比及びリーン空燃比とした期間中に、前記下流側空燃比センサの出力空燃比が前記リッチ判定空燃比以下又は前記リーン判定空燃比以上のいずれか一方のみに到達するときには、前記空燃比制御手段に異常が発生していると判定する、内燃機関の異常診断装置。
  2. 前記異常診断手段は、前記アクティブ空燃比制御により前記目標空燃比を連続してリッチ空燃比及びリーン空燃比とした期間中に、前記下流側空燃比センサの出力空燃比がリッチ判定空燃比よりもリーンであって前記リーン判定空燃比よりもリッチである範囲内に維持されたときには、前記排気浄化触媒に異常は発生していないと判定する、請求項1に記載の内燃機関の異常診断装置。
  3. 前記異常診断手段は、前記空燃比制御手段に異常が発生していると判定されたときには、前記排気浄化触媒の異常診断を中止する、請求項1又は2に記載の内燃機関の異常診断装置。
  4. 前記目標空燃比制御手段は、前記異常診断手段により前記空燃比制御手段に異常が発生していると判定されたときには、前記アクティブ空燃比制御を中止する、請求項1〜3のいずれか1項に記載の内燃機関の異常診断装置。
  5. 前記排気浄化触媒の排気流れ方向上流側に配置されて該排気浄化触媒に流入する排気ガスの空燃比を検出することができる上流側空燃比センサと、前記上流側空燃比センサの出力空燃比に基づいて、前記排気浄化触媒に流入する排気ガスの空燃比を理論空燃比にしようとしたときに過剰となる酸素又は不足する酸素の量を酸素過不足量として算出する酸素過不足量推定手段とを更に具備し、
    前記目標空燃比制御手段における前記所定間隔は、前記目標空燃比をリッチ空燃比からリーン空燃比又はリーン空燃比からリッチ空燃比に切り替えてから前記酸素過不足量推定手段によって積算された積算酸素過不足量の絶対値が予め定められた量になるまでの間隔とされる、請求項1〜4のいずれか1項に記載の内燃機関の異常診断装置。
  6. 前記上流側空燃比センサの出力空燃比又は目標空燃比を補正する空燃比補正手段を更に具備し、該空燃比補正手段は、前記異常診断手段により前記空燃比制御手段に異常が発生していると判定されたときには、前記上流側空燃比センサの出力空燃比又は前記目標空燃比を補正する、請求項5に記載の内燃機関の異常診断装置。
  7. 前記空燃比補正手段は、前記アクティブ空燃比制御により前記目標空燃比を連続してリッチ空燃比及びリーン空燃比とした期間中に、前記下流側空燃比センサの出力空燃比が前記リッチ判定空燃比以下のみに到達する場合には、目標空燃比又は前記下流側空燃比センサの出力空燃比をリーン側に補正し、前記下流側空燃比センサの出力空燃比が前記リーン判定空燃比以上のみに到達する場合には、目標空燃比又は前記下流側空燃比センサの出力空燃比をリッチ側に補正する、請求項6に記載の内燃機関の以上診断装置。
  8. 前記空燃比補正手段は、前記目標空燃比をリッチ空燃比からリーン空燃比に切り替えてから再びリッチ空燃比に切り替えるまで又は前記下流側空燃比センサの出力空燃比がリーン判定空燃比以上になるまでに前記酸素過不足量推定手段によって積算された積算酸素過不足量の絶対値と、前記目標空燃比をリーン空燃比からリッチ空燃比に切り替えてから再びリーン空燃比に切り替えるまで又は前記下流側空燃比センサの出力空燃比がリッチ判定空燃比以下になるまでに前記酸素過不足量推定手段によって積算された積算酸素過不足量の絶対値との差が小さくなるように、前記上流側空燃比センサの出力空燃比又は前記目標空燃比を補正する、請求項6に記載の内燃機関の異常診断装置。
  9. 前記下流側空燃比センサは限界電流式の空燃比センサである、請求項1〜8のいずれか1項に記載の内燃機関の異常診断装置。
JP2013207666A 2013-10-02 2013-10-02 内燃機関の異常診断装置 Active JP6110270B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013207666A JP6110270B2 (ja) 2013-10-02 2013-10-02 内燃機関の異常診断装置
US14/504,516 US9677490B2 (en) 2013-10-02 2014-10-02 Abnormality diagnosis system of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013207666A JP6110270B2 (ja) 2013-10-02 2013-10-02 内燃機関の異常診断装置

Publications (2)

Publication Number Publication Date
JP2015071964A true JP2015071964A (ja) 2015-04-16
JP6110270B2 JP6110270B2 (ja) 2017-04-05

Family

ID=52738742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013207666A Active JP6110270B2 (ja) 2013-10-02 2013-10-02 内燃機関の異常診断装置

Country Status (2)

Country Link
US (1) US9677490B2 (ja)
JP (1) JP6110270B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020118084A (ja) * 2019-01-23 2020-08-06 トヨタ自動車株式会社 内燃機関の制御装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6308150B2 (ja) * 2015-03-12 2018-04-11 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6287939B2 (ja) * 2015-04-13 2018-03-07 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO2017168580A1 (ja) * 2016-03-29 2017-10-05 本田技研工業株式会社 触媒診断装置
JP7169826B2 (ja) * 2018-09-21 2022-11-11 日本碍子株式会社 触媒劣化診断システムおよび触媒劣化診断方法
JP7264120B2 (ja) * 2020-06-26 2023-04-25 トヨタ自動車株式会社 排気浄化触媒の劣化診断装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05171923A (ja) * 1991-12-19 1993-07-09 Toyota Motor Corp 内燃機関の触媒劣化判別装置
DE4331153A1 (de) * 1992-09-26 1994-03-31 Volkswagen Ag Verfahren zur Gewinnung von fehlerspezifischen Beurteilungskriterien eines Abgaskatalysators und einer Regel-Lambdasonde
JP2005098205A (ja) * 2003-09-25 2005-04-14 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2007046517A (ja) * 2005-08-09 2007-02-22 Mitsubishi Electric Corp 内燃機関の制御装置
JP2007327351A (ja) * 2006-06-06 2007-12-20 Mitsubishi Electric Corp 空燃比フィードバック制御装置
JP2013100750A (ja) * 2011-11-08 2013-05-23 Mitsubishi Electric Corp 内燃機関の制御装置および触媒コンバータの劣化診断方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417758A (ja) * 1990-05-08 1992-01-22 Honda Motor Co Ltd 内燃機関の三元触媒の劣化検出方法
US6244046B1 (en) * 1998-07-17 2001-06-12 Denso Corporation Engine exhaust purification system and method having NOx occluding and reducing catalyst
JP3962892B2 (ja) * 2000-10-26 2007-08-22 三菱自動車工業株式会社 排気浄化装置
JP4042690B2 (ja) * 2003-12-16 2008-02-06 トヨタ自動車株式会社 内燃機関の触媒劣化診断装置
JP2005194981A (ja) * 2004-01-09 2005-07-21 Toyota Motor Corp 触媒劣化判定装置
JP4679335B2 (ja) * 2005-11-01 2011-04-27 日立オートモティブシステムズ株式会社 内燃機関の制御装置
JP2007285288A (ja) 2006-03-24 2007-11-01 Honda Motor Co Ltd 触媒劣化検出装置
JP4226612B2 (ja) 2006-04-03 2009-02-18 本田技研工業株式会社 内燃機関の空燃比制御装置
JP4198718B2 (ja) * 2006-04-03 2008-12-17 本田技研工業株式会社 内燃機関の空燃比制御装置
JP2008063995A (ja) 2006-09-06 2008-03-21 Toyota Motor Corp 内燃機関の空燃比制御装置
JP4329799B2 (ja) 2006-09-20 2009-09-09 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP2010138791A (ja) * 2008-12-11 2010-06-24 Daihatsu Motor Co Ltd 空燃比制御装置
JP2011231626A (ja) * 2010-04-23 2011-11-17 Toyota Motor Corp 触媒異常診断装置
JP6237460B2 (ja) * 2013-09-26 2017-11-29 トヨタ自動車株式会社 内燃機関の異常診断装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05171923A (ja) * 1991-12-19 1993-07-09 Toyota Motor Corp 内燃機関の触媒劣化判別装置
DE4331153A1 (de) * 1992-09-26 1994-03-31 Volkswagen Ag Verfahren zur Gewinnung von fehlerspezifischen Beurteilungskriterien eines Abgaskatalysators und einer Regel-Lambdasonde
JP2005098205A (ja) * 2003-09-25 2005-04-14 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2007046517A (ja) * 2005-08-09 2007-02-22 Mitsubishi Electric Corp 内燃機関の制御装置
JP2007327351A (ja) * 2006-06-06 2007-12-20 Mitsubishi Electric Corp 空燃比フィードバック制御装置
JP2013100750A (ja) * 2011-11-08 2013-05-23 Mitsubishi Electric Corp 内燃機関の制御装置および触媒コンバータの劣化診断方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020118084A (ja) * 2019-01-23 2020-08-06 トヨタ自動車株式会社 内燃機関の制御装置
JP7115335B2 (ja) 2019-01-23 2022-08-09 トヨタ自動車株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
US20150089927A1 (en) 2015-04-02
JP6110270B2 (ja) 2017-04-05
US9677490B2 (en) 2017-06-13

Similar Documents

Publication Publication Date Title
JP6237460B2 (ja) 内燃機関の異常診断装置
JP6020739B2 (ja) 空燃比センサの異常診断装置
JP6179371B2 (ja) 空燃比センサの異常診断装置
KR101822562B1 (ko) 내연 기관의 배기 정화 장치
JP6311578B2 (ja) 空燃比センサの異常診断装置
JP6036853B2 (ja) 内燃機関の制御装置
WO2014118889A1 (ja) 内燃機関の制御装置
JP5360312B1 (ja) 内燃機関の制御装置
JP6288011B2 (ja) 内燃機関
JPWO2014118892A1 (ja) 内燃機関の制御装置
JP6110270B2 (ja) 内燃機関の異常診断装置
JP6358148B2 (ja) 内燃機関の排気浄化装置
JP2016056731A (ja) 空燃比センサの異常診断装置
JP6090092B2 (ja) 空燃比センサの異常診断装置
JP6107674B2 (ja) 内燃機関の制御装置
JP5949958B2 (ja) 内燃機関の制御装置
JP5915779B2 (ja) 内燃機関の制御装置
JP6268976B2 (ja) 内燃機関の制御装置
JP6361699B2 (ja) 内燃機関の制御装置
JP2015071959A (ja) 内燃機関の制御装置
WO2014118888A1 (ja) 内燃機関の制御装置
JP6217739B2 (ja) 内燃機関の排気浄化装置
JP6733648B2 (ja) 触媒劣化検出装置
JP2016211429A (ja) 下流側空燃比センサの異常診断装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170309

R151 Written notification of patent or utility model registration

Ref document number: 6110270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250