JP2020065026A - 光電変換装置 - Google Patents

光電変換装置 Download PDF

Info

Publication number
JP2020065026A
JP2020065026A JP2018197687A JP2018197687A JP2020065026A JP 2020065026 A JP2020065026 A JP 2020065026A JP 2018197687 A JP2018197687 A JP 2018197687A JP 2018197687 A JP2018197687 A JP 2018197687A JP 2020065026 A JP2020065026 A JP 2020065026A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
semiconductor region
filter
view
plan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018197687A
Other languages
English (en)
Other versions
JP7271127B2 (ja
Inventor
太朗 加藤
Taro Kato
太朗 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018197687A priority Critical patent/JP7271127B2/ja
Priority to US16/594,810 priority patent/US11107853B2/en
Priority to CN201910994771.XA priority patent/CN111081727B/zh
Publication of JP2020065026A publication Critical patent/JP2020065026A/ja
Application granted granted Critical
Publication of JP7271127B2 publication Critical patent/JP7271127B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】 IR光を透過するフィルタと、可視光を透過するフィルタと、を備える光電変換装置において、特性を向上させることを目的とする。【解決手段】 半導体基板と、第1及び第2のマイクロレンズと、可視光よりも赤外光の透過率が高い第1のフィルタと、赤外光よりも可視光の透過率が高い第2のフィルタと、を有し、第1のフィルタに平面視において重なって配される少なくとも一つの光電変換部及び第2のフィルタに平面視において重なって配される複数の光電変換部のそれぞれは、信号電荷を蓄積する第1半導体領域と、第2半導体領域と、を有し、前記少なくとも一つの光電変換部の第2半導体領域の少なくとも一部分の不純物濃度は、前記複数の光電変換部のうち、前記少なくとも一部分と同じ深さに配されている部分の第2半導体領域の不純物濃度よりも低い。【選択図】 図8

Description

本発明は、光電変換装置に関する。
従来、赤外光(以下「IR光」ともいう。)を透過するフィルタと、可視光を透過するフィルタと、を備える光電変換装置が知られている。例えば、特許文献1には、IR光を透過するフィルタと、可視光を透過するフィルタと、を備える光電変換装置が開示されている。
一方で、複数の光電変換部が1つのマイクロレンズを共有する光電変換装置が知られている。例えば、特許文献2には、複数の光電変換部が1つのマイクロレンズを共有しており、複数の光電変換部に対応して可視光を透過するフィルタが配されている構成が開示されている。特許文献2には、各光電変換部が信号電荷を収集する複数のN型半導体領域を含み、N型半導体領域の間に、分離のためのP型半導体領域が配されることが開示されている。
米国特許出願公開第2018/219040号明細書 特開2014−204043号公報
特許文献1及び特許文献2は、IR光を透過するフィルタと、可視光を透過するフィルタと、を備える光電変換装置において特性を向上させる余地がある。
本発明は、IR光を透過するフィルタと、可視光を透過するフィルタと、を備える光電変換装置において特性を向上することを目的とする。
本発明の一形態に係る光電変換装置は、複数の光電変換部を含む半導体基板と、第1及び第2のマイクロレンズと、可視光よりも赤外光の透過率が高い第1のフィルタと、赤外光よりも可視光の透過率が高い第2のフィルタと、を有し、前記複数の光電変換部は、前記第1のマイクロレンズ及び前記第1のフィルタに、平面視において重なって配される少なくとも一つの光電変換部と、前記第2のマイクロレンズ及び前記第2のフィルタに、平面視において重なって配される複数の光電変換部と、を含み、前記第1のフィルタに平面視において重なって配される少なくとも一つの光電変換部及び前記第2のフィルタに平面視において重なって配される複数の光電変換部のそれぞれは、信号電荷を蓄積する第1導電型の第1半導体領域と、前記第1導電型と反対導電型である第2導電型であり、前記第1半導体領域の前記第1のフィルタ側とは反対側に配され且つ前記第1半導体領域と平面視において重なって配され、前記第1半導体領域とPN接合を構成する第2半導体領域と、を有し、前記少なくとも一つの光電変換部の第2半導体領域の少なくとも一部分の不純物濃度は、前記複数の光電変換部の第2半導体領域のうち、前記少なくとも一部分と同じ深さに配されている部分の不純物濃度よりも低い。
本発明の一形態に係る光電変換装置は、複数の光電変換部を含む半導体基板と、可視光よりも赤外光の透過率が高い第1及び第3のフィルタと、赤外光よりも可視光の透過率が高い第2及び第4のフィルタと、を有し、前記第1のフィルタに平面視において重なって配される光電変換部、前記第3のフィルタに平面視において重なって配される光電変換部、前記第2のフィルタに平面視において重なって配される光電変換部、及び前記第4のフィルタに平面視において重なって配される光電変換部が、一方向に隣り合って配されており、前記第1のフィルタに平面視において重なって配される光電変換部は、信号電荷を蓄積する第1導電型の第1半導体領域を有し、前記第2のフィルタに平面視において重なって配される光電変換部は、前記第1導電型の第2半導体領域を有し、前記第3のフィルタに平面視において重なって配される光電変換部は、前記第1導電型の第3半導体領域を有し、前記第4のフィルタに平面視において重なって配される光電変換部は、前記第1導電型の第4半導体領域を有し、前記第2半導体領域と前記第3半導体領域との間には、前記第1導電型と反対導電型である第2導電型の第5半導体領域が配され、前記第1半導体領域と前記第2半導体領域との間には、前記第2導電型の第6半導体領域が配され、前記第3半導体領域と前記第4半導体領域との間には、前記第2導電型の第7半導体領域が配され、前記第5半導体領域、前記第6半導体領域、及び前記第7半導体領域はそれぞれ少なくとも1つの不純物濃度のピークを有し、前記第6半導体領域が有するピークのうちの前記半導体基板の前記第1のフィルタの側の面から最も離れたピークの位置は、前記第7半導体領域が有するピークのうちの前記半導体基板の前記第1のフィルタの側の面から最も離れたピークの位置よりも前記半導体基板の前記第1のフィルタの側の面から離れており、前記第5半導体領域が有するピークのうちの前記半導体基板の前記第1のフィルタの側の面から最も離れたピークの位置は、前記第6半導体領域が有するピークのうちの前記半導体基板の前記第1のフィルタの側の面から最も離れたピークの位置よりも前記半導体基板の前記第1のフィルタの側の面から離れている。
本発明によれば、IR光を透過するフィルタと、可視光を透過するフィルタと、を備える光電変換装置において特性を向上させることができる。
第1実施形態に係る光電変換装置のブロック図である。 第1実施形態の画素領域の一部のカラーフィルタの配置を示す図である。 図2のIII−III’に対応する断面図である。 図3の基板を平面視した図である。 第1実施形態の変形例に係る画素領域の一部の断面図である。 第1実施形態の変形例に係る画素領域の一部の断面図である。 カラーフィルタの配置のバリエーションを示す図である。 第2実施形態に係る画素領域の一部の断面図である。 第2実施形態の変形例に係る画素領域の一部の断面図である。 第2実施形態の変形例に係る画素領域の一部の断面図である。 第3実施形態に係る画素領域の一部の断面図である。 第4実施形態に係る画素領域の一部の断面図である。 第5実施形態に係る画素領域の一部の断面図である。 第6実施形態に係る画素領域の一部の断面図である。 第7実施形態に係る光電変換装置の概略斜視図である。 図15のA−A‘の断面図である。 第8実施形態に係る光電変換システム概略図である。 第9実施形態に係る移動体の概略図である。 カラーフィルタの透過率を示すグラフである。 IRカットフィルタを配さない場合の各色の透過率を示すグラフである。 光電変換装置の分光図である。
本発明を実施するための形態を、以下に図面を参照しながら説明する。ただし、以下に示す形態は、本発明の技術思想を具体化するためのものであって、本発明を限定するものではない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするために誇張していることがある。
以下では、第1極性を負の極性、第2極性を正の極性として説明するが、第1極性を正の極性、第2極性を負の極性とする場合でも同様の効果を得ることができる。説明の便宜上、半導体基板100(以下、「基板100」ともいう。)の受光面側を上側とし、基板100の受光面と対向する面側を下側とする。
以下の実施形態においては、信号電荷として電子を用いるものを例として説明している。以下の実施形態においては、第1の極性のキャリアを多数キャリアとする第1導電型の半導体領域はP型半導体領域であり、第2の極性のキャリアを多数キャリアとする第2導電型の半導体領域はN型半導体領域である。しかしながら、本発明は信号電荷として正孔を用いるものであっても成り立つ。この場合、N型とP型とは逆になる。
<第1実施形態>
図1〜図4を参照しながら、本実施形態に係る光電変換装置10について説明する。図1は、光電変換装置10のブロック図である。図2は、光電変換装置10に含まれる画素領域の一部のカラーフィルタの配置を示す図である。図3は、図2のIII−III’断面図である。図4は、基板100の平面図である。
図1に示すように、光電変換装置10は、行方向及び列方向に複数の画素20が連続して配された画素領域21を含む。本明細書では、複数の画素20が連続的に配された領域を画素領域21といい、それ以外の領域を周辺回路領域という。
まず、図1の画素領域21について説明する。図2に画素領域21に含まれるカラーフィルタの配置の一例を示す。カラーフィルタ103、104は、例えば、染料や顔料で形成される。
図19Aにカラーフィルタの透過率を示す。図19において、IR線がカラーフィルタ103の透過率を示しており、BL線、GR線、RE線がカラーフィルタ104の透過率を示す。図19Aにおいて、カラーフィルタ104はIRカットフィルタを含み、カラーフィルタ103はIRカットフィルタを含まない。図19Bに、IRカットフィルタが配される前の状態のフィルタの透過率を示す。図19Bの状態では、赤外領域(波長λ≧650nm)においてもBL線、GR線、RE線の透過率が高くなっている。これに対し、IRカットフィルタを配することにより、図19Aに示すようにカラーフィルタ104へのIR光の入射を低減することができ、カラーフィルタ103のみからIR光を透過することができる。IRカットフィルタとは、例えば、波長λ≧670nmの光を反射又は吸収するフィルタである。図20に光電変換装置の分光図を示す。
カラーフィルタ103は、可視光よりも赤外光の透過率が高いフィルタである。カラーフィルタ103を通過して光電変換部に入射する光は赤外領域(波長λ≧650nm)にピーク波長を有する。
また、カラーフィルタ104は、赤外光よりも可視光の透過率が高いフィルタである。カラーフィルタ104を透過して光電変換部に入射する光は可視領域(波長λ<650nm)にピーク波長を有する。カラーフィルタ104は、例えば、青色光、赤色光、又は緑色光を透過するカラーフィルタである。また、カラーフィルタ104は、シアン光、マゼンダ光、及びイエロー光の少なくともいずれかを透過するカラーフィルタであってもよい。
図3に図2のIII−III’における画素領域21の断面図を示す。図2では平面視において3つのカラーフィルタ103、104に重なる領域に配された光電変換部のみを破線で示しているが、他のカラーフィルタに重なる領域にも同様に光電変換部が配されている。
基板100は、例えばシリコン基板である。図2に示すように、基板100は、平面視においてカラーフィルタ103に重なる領域に、IR光を光電変換する複数の光電変換部106a、106bを含む。また、基板100は、平面視においてカラーフィルタ104に重なる領域に、可視光を光電変換する複数の光電変換部106c、106dを含む。光電変換部106a、106b、106c、106dは一方向に隣り合って配される。本明細書では、2つの光電変換部106c、106dが並ぶ方向に沿った軸をX軸とし、基板100のフィルタが配された側の面と平行な面において、X軸と垂直な軸をY軸とする。また、X軸及びY軸に垂直な軸をZ軸とする。光はマイクロレンズ107のフィルタが配された側とは反対側の面から入射する。以下において、説明が共通する場合は、a,b,c,d等の添字を省略して説明する。
図3では、1つのマイクロレンズ107を、光電変換部106a及び106bが共有している。また、1つのマイクロレンズ107を、光電変換部106c及び106dが共有している。以下では、1つのマイクロレンズ107を共有した複数の光電変換部をまとめて「光電変換ユニット」という場合がある。
各光電変換部106は、基板100の上面側より基板100に不純物を注入することによって形成される。各光電変換部106は、少なくとも信号電荷を蓄積する第1導電型の半導体領域であるN型半導体領域202(第1半導体領域)を有する。図3では、各光電変換部106はさらに、第1導電型と反対導電型である第2導電型のP型半導体領域203(第2半導体領域)を有する。P型半導体領域203は、N型半導体領域202のカラーフィルタ側とは反対側に配され、N型半導体領域202とPN接合を構成する。
図3に示すように、N型半導体領域202のカラーフィルタ側の面には、P型半導体領域201が配されることが好ましい。これにより、基板100の上面付近で発生する暗電流成分を抑制することができる。
光電変換部106bのN型半導体領域202と光電変換部106cのN型半導体領域202との間には、P型半導体領域110が配されている。光電変換部106aのN型半導体領域202と光電変換部106bのN型半導体領域202との間には、P型半導体領域112が配されている。光電変換部106cのN型半導体領域202と光電変換部106dのN型半導体領域202との間には、P型半導体領域111が配されている。P型半導体領域110、111、112の不純物濃度は、それぞれ、P型半導体領域203、205の不純物濃度よりも高い。P型半導体領域110、111、112は、それぞれ、N型半導体領域で蓄積された信号を分離するための分離部として機能する。
各P型半導体領域110、111、112は、少なくとも1つの不純物濃度のピークを有する。そして、P型半導体領域112の有するピークのうちの基板100の上面から最も離れた位置にある不純物濃度のピークの位置は、P型半導体領域111の有するピークのうちの基板100の上面から最も離れた位置にある不純物濃度のピークの位置よりも低い。また、P型半導体領域110の有するピークのうちの基板100の上面から最も離れた位置にある不純物濃度のピークの位置は、P型半導体領域112の有するピークのうちの基板100の上面から最も離れた位置にある不純物濃度のピークの位置よりも低い。これにより、画素性能の低下を低減することができる。以下で詳細を述べる。
可視光に比べて、IR光により発生する電荷は、基板100の深い位置で発生する比重が高い。P型半導体領域111、112の深さを設定する場合に、P型半導体領域111、112の深さを同じにするとする。例えばIR光を光電変換する複数の光電変換部の間に配されたP型半導体領域の深さを、可視光を光電変換する複数の光電変換部の間に配されたP型半導体領域の深さと同じにするとする。この場合は、IR光を光電変換する複数の光電変換部間で電荷が分離されずに混合する。一方で、可視光を光電変換する複数の光電変換部の間に配されたP型半導体領域の深さをIR光を光電変換する複数の光電変換部の間に配されたP型半導体領域の深さと同じにするとする。この場合は、可視光を光電変換する複数の光電変換部で、ニー特性が悪化し、画素性能が低下する可能性がある。
ここで、ニー特性が悪化するとは、横軸:画素への入射光量、縦軸:画素の飽和電子数のグラフを描くと、グラフの線が途中で折れ曲がってしまうことをいう。ニー特性が悪化すると入出力特性が悪化する。ニー特性の悪化は、例えば、光電変換部106aで飽和した電荷は、光電変換部106bだけでなく、光電変換部106cへ漏れてしまうことにより生じる。ニー特性の悪化は、光電変換部106a、106bで飽和した電荷が同一画素内の光電変換部106a、106bに流れるようにすることにより防ぐことができる。
本実施形態によれば、光電変換部の特性に合わせてP型半導体領域の深さを変えているため、各画素において、ニー特性の悪化を防ぎながら、高精度な焦点検出を行うことができる。
図4に示すように、基板100の上面には光電変換部106aの電荷を転送するための転送トランジスタのゲート電極130aと、光電変換部106bの電荷を転送するための転送トランジスタのゲート電極130bが配されている。各転送トランジスタにより、フローティングディフュージョン(FD)131a、131bに電荷を転送する。
図3に示すように、基板100の上面には、絶縁膜109及び配線113を含む配線層150を介してカラーフィルタ103、104及びマイクロレンズ107が配されている。
配線層150に含まれる絶縁膜109は、透光性を有する。絶縁膜109は、単層であってもよいし、異なる材料からなる複数の層が積層された多層膜であってよい。単層の場合は、例えば、酸化シリコン(SiO)からなる。また、多層膜の場合は、例えば、樹脂、酸化シリコン(SiO)、窒化シリコン(Si)、及び炭化シリコン(SiC)のいずれかからなる層を含む。マイクロレンズ107の材料は、例えば、樹脂である。
図1を参照しながら、周辺回路領域について説明する。図1に示すように、周辺回路領域は、垂直走査回路22、読み出し回路23、水平走査回路24、出力アンプ25を備える。
垂直走査回路22は、画素領域21に配された複数の画素20に接続されている。複数の画素20とは、例えば、列方向に配された複数の画素20である。垂直走査回路22は、画素20から得られる信号を出力する行を選択して走査する。
画素領域21に配された複数の画素20は、垂直信号線を介して読み出し回路23に接続されている。読み出し回路23は、例えば、列アンプ、相関二重サンプリング(CDS)回路、加算回路を含む。読み出し回路23は、垂直走査回路22によって選択された複数の画素20から信号を読み出す。複数の画素20とは、例えば、行方向に配された複数の画素20である。
水平走査回路24は、読み出し回路23に接続されている。水平走査回路24は、読み出し回路23から画素信号に基づく信号を順番に読み出すための信号を生成する。
出力アンプ25は、読み出し回路23に接続されており、水平走査回路24によって選択された複数の信号を増幅して出力する。水平走査回路24によって選択された複数の信号とは、例えば、列方向に配された複数の画素20の信号である。
本実施形態に係る光電変換装置10の構成は上記の構成に限られない。例えば、以下に本実施形態に係る光電変換装置10の変形例を示す。
図3では、1つの光電変換ユニット101、102が2つの光電変換部106a、106bを有するが、1つの光電変換ユニットが3つ以上の光電変換部を含んでいてもよい。この場合は、平面視において1つのマイクロレンズに重なる領域に3つ以上の光電変換部が配されている。また、光電変換装置は、光電変換部を1つだけ備える光電変換ユニットを含んでいてもよい。この場合は、平面視において1つのマイクロレンズに重なる領域に1つの光電変換部が配される。
図3では、複数の光電変換部が1つのマイクロレンズを共有しているが、図5に示すように、平面視で1つのマイクロレンズに重なる領域に1つの光電変換部が配されていてもよい。この場合であっても、生成された電荷が光電変換部間で混合されにくくなるとともに、異なる色の光に基づき生成された電荷が混合することを防ぐことができる。
図6に示すように、N型半導体領域は、N型半導体領域202Aと、N型半導体領域202Aよりも添加不純物濃度の低いN型半導体領域202Bとを含んでもよい。N型半導体領域202Bは、N型半導体領域202AとP型半導体領域203との間に配されている。この場合に、P型半導体領域110、112の深さをPN接合面よりも深くしてもよい。これにより、P型半導体領域203で生成される電荷が、異なる色の光を光電変換する光電変換部へと漏れる割合を少なくすることができる。
ここで本明細書において「添加不純物濃度」と記載されている場合には、実際に添加されている不純物の濃度を意味する。上述した添加不純物濃度の測定は、例えば、SIMS法やSCM法で行うことができる。これらの方法によれば、単位体積あたり、その不純物がどの程度存在しているかを検証することが出来る。
これに対して、本明細書において、単に「不純物濃度」と記載されている場合には、添加不純物濃度が逆導電型の不純物によって補償された正味の不純物濃度を意味する。例えば、所定の領域において、N型の添加不純物濃度がP型の添加不純物濃度よりも高ければその領域はN型半導体領域となる。また所定の領域において、P型の添加不純物濃度がN型の添加不純物濃度よりも高ければその領域はP型の半導体領域となる。
なお、図6において、平面視においてカラーフィルタ103に重なって配される光電変換部のPN接合面の深さを、平面視においてカラーフィルタ104に重なって配される光電変換部のPN接合面の深さよりも低くしてもよい。
カラーフィルタの配置のバリエーションを、図7(a)〜図7(c)に示す。図3及び図6に示すように、光電変換ユニット101の両端には同じ構成の光電変換ユニットが配されることが好ましい。言い換えると、2つの光電変換ユニット101の間に光電変換ユニット101が配される、又は2つの光電変換ユニット102の間に光電変換ユニット101が配される、ことが好ましい。これにより、移動する電荷量が非対称になることを低減することができ、焦点検出性能が悪化しにくくなる。
カラーフィルタは4色や5色に限らず6色以上のマルチバンドとしてもよい。マルチバンドとすることにより、被写体の分校情報を詳細に取得することができる。
<第2実施形態>
図8に本実施形態に係る光電変換装置の画素領域21の一部の断面図を示す。本実施形態に係る光電変換装置は、カラーフィルタ104に平面視において重なって配されるP型半導体領域が、カラーフィルタ103に平面視において重なって配されるP型半導体領域よりも不純物濃度の低い部分を含む点で第1実施形態に係る光電変換装置と異なる。以下では、第1実施形態に係る光電変換装置と同様の構成の説明は省略する。
本実施形態は、第1実施形態と同様に、N型半導体領域202のカラーフィルタ103側とは反対側に配され且つN型半導体領域202と平面視において重なって配され、N型半導体領域202とPN接合を構成する第2半導体領域(P型半導体領域)を備える。そして、本実施形態では、少なくとも一つの光電変換部のP型半導体領域の少なくとも一部分の不純物濃度は、複数の光電変換部のP型半導体領域のうち、少なくとも一部分と同じ深さに配されている部分の不純物濃度よりも低くなっている。具体的には、図8において、P型半導体領域203cの添加不純物濃度は、N型半導体領域202とPN接合を構成するP型半導体領域203の添加不純物濃度よりも高い。P型半導体領域203cは、カラーフィルタ104に対応する光電変換部のP型半導体領域に含まれる。本実施形態では、図8に示すように、基板100のカラーフィルタ103、104側の面から所定の深さにおいて、光電変換部106aのP型半導体領域203の添加不純物濃度が、光電変換部106c、106dのP型半導体領域203cの添加不純物濃度よりも低い。つまり、P型半導体領域203cと同じ深さにおいて、カラーフィルタ103に対応する光電変換部にはP型半導体領域203cが配されていない。したがって、P型半導体領域203cと同じ深さにおいて、カラーフィルタ104に重なって配されるP型半導体領域203cの不純物濃度は、カラーフィルタ104に重なって配されるP型半導体領域203の不純物濃度よりも低い。所定の深さは、例えば基板100のカラーフィルタ側の面から2.0μm以上離れた位置にある。2.0μm以上離れた位置にP型半導体領域203cを配することで、赤色光により発生した電荷を光電変換部106c、106dに含まれるN型半導体領域202で収集することができる。
P型半導体領域203cはIR光により光電変換された電荷に対するバリア層として機能する。P型半導体領域203cが配されることにより、カラーフィルタ103を透過した光によりP型半導体領域203cの下で光電変換されても、可視光を光電変換する光電変換部106c、106dに電荷が混ざることを防ぐことができる。また、IR光により、P型半導体領域203cの下で生成された電荷を光電変換部106aのN型半導体領域202に移動させることができるため、IR光の感度を向上させることができる。また、カラーフィルタ103に平面視で重なる領域に配される光電変換部を1つすることにより、第1実施形態に比べてFDの数を少なくすることができるため、ノイズを低下することができる。
本実施形態に係る光電変換装置の構成は上記の構成に限られない。例えば、以下に本実施形態に係る光電変換装置の変形例を示す。
P型半導体領域110、111、112は、それぞれ絶縁体の周りに配されていてもよい。
P型半導体領域203cは、用途に応じて、2.0μmよりも浅い位置に配しても良い。例えば、カラーフィルタ103が、青色光を透過するカラーフィルタ又は緑色光を透過するカラーフィルタとである場合は、P型半導体領域203cは2.0μmより浅い位置に配しても良い。
図8では、各P型半導体領域110の深さを同じ深さとしている。これに限らず、図9に示すように、IR光を光電変換する光電変換部の周囲に配されたP型半導体領域110aの深さを、IR光を光電変換する光電変換部と可視光を光電変換する光電変換部との間に配されたP型半導体領域110bの深さよりも浅くしてもよい。そして、P型半導体領域110bの下端がP型半導体領域203cの下面よりも基板100の上面から離れた位置に配されてもよい。P型半導体領域203cの下で発生した電荷は拡散する。このときに、P型半導体領域110bがあることにより、電荷がIR光を光電変換する光電変換部のN型半導体領域に移動しやすくなり、IR光の感度を向上させることができる。
図10に示すように、P型半導体領域203cの下にZ軸に平行なP型半導体領域204が配されていてもよい。P型半導体領域204の添加不純物濃度は、P型半導体領域203の添加不純物濃度よりも高い。この場合であっても、IR光の感度を向上させることができる。
図8ではカラーフィルタ103に平面視において重なって配される光電変換部は1つであるが、図9に示すようにカラーフィルタ103に平面視において重なって配される光電変換部が複数であってもよい。
図8では、P型半導体領域が第3部分であるP型半導体領域203と第4部分であるP型半導体領域203cとを含み、第3部分とN型半導体領域202とによりPN接合が構成される。これに限らず、光電変換部がN型半導体領域202a、202bを含み、N型半導体領域202bとP型半導体領域203cとによりPN接合が構成されていてもよい。この場合は、N型半導体領域202bとP型半導体領域203とによりPN接合が構成される。
<第3実施形態>
図11に、本実施形態に係る光電変換装置の画素領域21の断面図を示す。本実施形態に係る光電変換装置は、基板100の上面からのP型半導体領域203cの深さがIR光を光電変換する光電変換部に近づくにつれて浅くなる点で第2実施形態に係る光電変換装置と異なる。以下では、第2実施形態に係る光電変換装置と同様の構成の説明は省略する。
P型半導体領域203cをX軸に平行に配すると、P型半導体領域110とP型半導体領域203cとによるポテンシャル障壁ができる場合がある。ポテンシャル障壁ができると、P型半導体領域203cの下で光電変換された電荷がIR光を光電変換する光電変換部に移動しにくくなる。これに対して、図11に示すように、P型半導体領域203cを浅くすることにより、ポテンシャル障壁ができにくくなる。したがって、P型半導体領域203cの下で光電変換された電荷を効率よくIR光を光電変換する光電変換部に移動させることができ、赤外光に対する感度を向上させることができる。
図11は、1つのマイクロレンズ107及びカラーフィルタ103に平面視で重なる領域に1つの光電変換部が配されているが、1つのマイクロレンズ107及びカラーフィルタ103に平面視で重なる領域に複数の光電変換部が配されていてもよい。
<第4実施形態>
図12に本実施形態に係る光電変換装置の画素領域21の断面図を示す。本実施形態に係る光電変換装置は、基板100の上面から下面に向かってP型半導体領域203の不純物濃度が濃くなる領域を含む点で第1実施形態に係る光電変換装置と異なる。図12に、図12の破線の不純物濃度のプロファイルを示す。以下では、第1実施形態に係る光電変換装置と同様の構成の説明は省略する。
本実施形態に係る基板100は、例えば、以下の方法により形成することができる。まず、P型のシリコン基板の上面にエピタキシャル成長法によってP型半導体領域を形成する。図11では、基板100の下面を示す線と長鎖線との間がP型のシリコン基板であり、長鎖線と一点鎖線との間がエピタキシャル成長法によって形成されたP型半導体領域である。エピタキシャル成長法によって形成されたP型半導体領域は、第1部分と、第1部分よりも添加不純物濃度の高い第2部分と、を有する。第2部分は、第1部分よりも基板100のフィルタ側の面から離れて配されている。エピタキシャル成長法によって形成されたP型半導体領域は、不純物濃度が徐々に低くなるように成長させる。次に、エピタキシャル成長法によって形成されたN型半導体領域にP型の不純物イオンを注入し、その後N型の不純物イオンを注入する。図11では、一点鎖線と基板100の上面とを示す線との間が、P型の不純物イオン、N型の不純物イオンが注入された領域である。N型半導体領域にP型の不純物イオンを注入するときは、エピタキシャル成長法によって形成されたP型半導体領域とエピタキシャル成長法によって形成されたN型半導体領域との接合面にポテンシャル障壁が生じないようにP型の不純物イオンを注入する。基板100の上面に向かって不純物濃度が低くなるように不純物イオンを注入する。これにより、基板100の上面から離れた位置で発生した電荷も収集することができるため、IR光の感度を向上させることができる。
なお、図11では、N型の不純物イオンを注入した後に、さらにP型の不純物イオンを注入している。これにより、基板100の上面の近傍で発生する暗電流を抑制することができる。
エピタキシャル成長法により形成されるP型半導体領域の厚さは、例えば1μm以上50μm以下の範囲にあり、エピタキシャル成長法により形成されるN型半導体領域の厚さは、例えば、1μm以上5μm以下の範囲にある。
<第5実施形態>
図13に本実施形態に係る光電変換装置の画素領域21の断面図を示す。本実施形態に係る光電変換装置は、基板100の上面から下面に向かってP型半導体領域203の不純物濃度が濃くなる領域を含む点で第2実施形態に係る光電変換装置と異なる。図13に、図13の破線の不純物濃度のプロファイルを示す。
本実施形態に係る基板100の製造方法は、P型半導体領域203cに相当する領域にP型のイオンを注入している点以外は第4実施形態に係る基板100の製造方法と同様であるため説明を省略する。
<第6実施形態>
図14に本実施形態に係る光電変換装置の断面図を示す。本実施形態に係る光電変換装置は、カラーフィルタ103が透過する波長の光よりも長波側の波長の光を透過するカラーフィルタ402を含む点で第1実施形態に係る光電変換装置と異なる。以下では、第1実施形態に係る光電変換装置と同様の構成の説明は省略する。
本実施形態において、例えば、カラーフィルタ103は透過ピーク波長が650nm≦波長λ<700nmにあるフィルタであり、カラーフィルタ402は透過ピーク波長がλ≧700nmにあるフィルタである。カラーフィルタ402に平面視において重なる領域において、複数の光電変換部の間に配されたP型半導体領域403の深さは、P型半導体領域112の深さよりも深く、P型半導体領域110よりも浅い。これにより、カラーフィルタ402を透過した光を光電変換する複数の光電変換部の間で電荷を分離しながら、隣接画素への電荷の漏れを防ぐことができる。
<第7実施形態>
図15に本実施形態に係る光電変換装置の概略図を示し、図16に図15のA−A‘断面図を示す。本実施形態に係る光電変換装置は、光電変換部を含む基部360と、周辺回路領域の少なくとも一部の回路を含む基部370と、を積層して構成されている点で第1実施形態に係る光電変換装置と異なる。図15及び図16に示す光電変換装置は、光電変換部を含む半導体基板100Aが配線層とマイクロレンズ107との間に配された、いわゆる裏面照射型の光電変換装置である。裏面照射型の光電変換装置とすることにより、感度を向上させることができる。
図15に示すように、光電変換部を含む第1半導体基板100Aの下面に、転送トランジスタ、ソースフォロアトランジスタ、リセットトランジスタ等のトランジスタのゲート電極や金属の配線層が配されている。トランジスタのゲート電極は、プラグを介して配線層に接続されている。プラグはタングステンを主成分として一体的に形成することができる。また、プラグおよび配線113は銅を主成分とし、デュアルダマシン法によって一体的に形成することができる。
基部360は第1半導体基板100Aと第1配線層150aとを含み、基部370は第2半導体基板100Bと第2配線層150bとを含む。基部360と基部370とは、接合面において貼り合わされる。接合面は、銅などの金属と酸化膜などの絶縁体とによって構成される。接合面を成す金属は、光電変換部106a、106bなど第1半導体基板100Aに配される素子と、第2半導体基板100Bに配される読み出し回路23とを接続する配線を構成してもよい。
<第8実施形態>
本実施形態による光電変換システムについて、図17を用いて説明する。上述した各実施形態の光電変換装置と同様の構成要素には同一の符号を付し説明を省略し或いは簡潔にする。図17は、本実施形態による光電変換システムの概略構成を示すブロック図である。
上記の各実施形態で述べた光電変換装置は、図17の光電変換装置として種々の光電変換システムに適用可能である。適用可能な光電変換システムの例としては、デジタルスチルカメラ、デジタルカムコーダ、監視カメラ、複写機、ファックス、携帯電話、車載カメラ、観測衛星などが挙げられる。また、レンズなどの光学系と光電変換装置とを備えるカメラモジュールも、光電変換システムに含まれる。図17には、これらのうちの一例として、デジタルスチルカメラのブロック図を例示している。
図17に例示した光電変換システム1は、被写体像を結像する光学系11としてのレンズが装着される。このレンズを含む光学系11は、制御部12によってフォーカス位置が制御される。光電変換システム1は、レンズを通過する光量を可変にするための絞り13と、その開口径を変化させて(絞り値を可変として)光量調節を行う絞り機能を備えた制御部14と、を有する。光学系11の像空間には、光学系11により結像された被写体像を光電変換する光電変換装置10の撮像面が配置される。光電変換装置10は、第1乃至第7実施形態で説明した光電変換装置であって、レンズにより結像された光学像を画像データに変換する。
CPU15は、カメラの種々の動作の制御を司るコントローラである。CPU15は、演算部、ROM、RAM、A/Dコンバータ、D/Aコンバータおよび通信インターフェイス回路等を有する。CPU15は、ROMに記憶されたコンピュータプログラムに従ってカメラ内の各部の動作を制御し、光学系の焦点状態の検出(焦点検出)を含むAF、撮像、画像処理および記録等の一連の撮影動作を実行させる。CPU15は、演算手段に相当する。
制御部16は、光電変換装置10の動作を制御するとともに、光電変換装置10から出力された画素信号(撮像信号)をA/D変換してCPU15に送信する。なお、光電変換装置10がA/D変換機能を有していてもかまわない。画像処理部17は、A/D変換された撮像信号に対してγ変換やカラー補間等の画像処理を行って画像信号を生成する。表示部18は、液晶表示装置(LCD)等の表示部であり、カメラの撮影モードに関する情報、撮影前のプレビュー画像、撮影後の確認用画像および焦点検出時の合焦状態等を表示する。そして、操作スイッチ19、着脱可能な記録媒体26で、撮影済み画像を記録する。
装着したレンズ、更には撮影条件に応じ、カメラCPUが複数種の遮光形状のうち最適な形状の画素の出力値を選択して、焦点検出を行う。この結果、多様なレンズに応じ、より焦点検出精度の高いカメラシステムを提供することができる。例えば、赤外光の透過率の高いレンズを使用することにより、赤外光に対し焦点検出精度を高めることができる。
<第9実施形態>
本実施形態による光電変換システム及び移動体について、図18を用いて説明する。
図18(a)は、車戴カメラに関する光電変換システムの一例を示したものである。光電変換システム300は、光電変換装置10を有する。光電変換装置10は、上記第1乃至第7実施形態のいずれかに記載の光電変換装置である。光電変換システム300は、光電変換装置10により取得された複数の画像データに対し、画像処理を行う画像処理部312と、光電変換システム300により取得された複数の画像データから視差(視差画像の位相差)の算出を行う視差算出部314を有する。また、光電変換システム300は、算出された視差に基づいて対象物までの距離を算出する距離計測部316と、算出された距離に基づいて衝突可能性があるか否かを判定する衝突判定部318と、を有する。ここで、視差算出部314や距離計測部316は、対象物までの距離情報を取得する距離情報取得手段の一例である。すなわち、距離情報とは、視差、デフォーカス量、対象物までの距離等に関する情報である。衝突判定部318はこれらの距離情報のいずれかを用いて、衝突可能性を判定してもよい。距離情報取得手段は、専用に設計されたハードウェアによって実現されてもよいし、ソフトウェアモジュールによって実現されてもよい。また、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated circuit)等によって実現されてもよいし、これらの組合せによって実現されてもよい。
光電変換システム300は車両情報取得装置320と接続されており、車速、ヨーレート、舵角などの車両情報を取得することができる。また、光電変換システム300は、衝突判定部318での判定結果に基づいて、車両に対して制動力を発生させる制御信号を出力する制御装置である制御ECU330が接続されている。また、光電変換システム300は、衝突判定部318での判定結果に基づいて、ドライバーへ警報を発する警報装置340とも接続されている。例えば、衝突判定部318の判定結果として衝突可能性が高い場合、制御ECU330はブレーキをかける、アクセルを戻す、エンジン出力を抑制するなどして衝突を回避、被害を軽減する車両制御を行う。警報装置340は音等の警報を鳴らす、カーナビゲーションシステムなどの画面に警報情報を表示する、シートベルトやステアリングに振動を与えるなどしてユーザに警告を行う。
本実施形態では、車両の周囲、例えば前方又は後方を光電変換システム300で撮像する。図18(b)に、車両前方(撮像範囲350)を撮像する場合の光電変換システムを示した。車両情報取得装置320が、所定の動作を行うように光電変換システム300ないしは光電変換装置10に指示を送る。このような構成により、測距の精度をより向上させることができる。
上記では、他の車両と衝突しないように制御する例を説明したが、他の車両に追従して自動運転する制御や、車線からはみ出さないように自動運転する制御などにも適用可能である。さらに、光電変換システムは、自車両等の車両に限らず、例えば、船舶、航空機あるいは産業用ロボットなどの移動体(移動装置)に適用することができる。加えて、移動体に限らず、高度道路交通システム(ITS)等、広く物体認識を利用する機器に適用することができる。
[変形実施形態]
本発明は、上記実施形態に限らず種々の変形が可能である。例えば、いずれかの実施形態の一部の構成を他の実施形態に追加した例や、他の実施形態の一部の構成と置換した例も、本発明の実施形態である。
なお、上記実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。

Claims (11)

  1. 複数の光電変換部を含む半導体基板と、
    第1及び第2のマイクロレンズと、
    可視光よりも赤外光の透過率が高い第1のフィルタと、
    赤外光よりも可視光の透過率が高い第2のフィルタと、を有し、
    前記複数の光電変換部は、
    前記第1のマイクロレンズ及び前記第1のフィルタに、平面視において重なって配される少なくとも一つの光電変換部と、
    前記第2のマイクロレンズ及び前記第2のフィルタに、平面視において重なって配される複数の光電変換部と、を含み、
    前記第1のフィルタに平面視において重なって配される少なくとも一つの光電変換部及び前記第2のフィルタに平面視において重なって配される複数の光電変換部のそれぞれは、
    信号電荷を蓄積する第1導電型の第1半導体領域と、
    前記第1導電型と反対導電型である第2導電型であり、前記第1半導体領域の前記第1のフィルタ側とは反対側に配され且つ前記第1半導体領域と平面視において重なって配され、前記第1半導体領域とPN接合を構成する第2半導体領域と、を有し、
    前記少なくとも一つの光電変換部の第2半導体領域の少なくとも一部分の不純物濃度は、前記複数の光電変換部の第2半導体領域のうち、前記少なくとも一部分と同じ深さに配されている部分の不純物濃度よりも低いことを特徴とする光電変換装置。
  2. 前記第1のマイクロレンズに平面視において重なって配される光電変換部は一つであることを特徴とする請求項1に記載の光電変換装置。
  3. 前記第1のマイクロレンズに平面視において重なって配される光電変換部は複数であることを特徴とする請求項1に記載の光電変換装置。
  4. 前記少なくとも一部分は、前記半導体基板の前記第1のフィルタ側の面から2.0μm以上離れた位置にあることを特徴とする請求項1〜3のいずれか1項に記載の光電変換装置。
  5. 前記少なくとも一部分よりも前記半導体領域の前記第1のフィルタ側の面から離れた位置において、前記第2半導体領域は、第1部分と、前記第1部分よりも前記半導体基板の前記第1のフィルタ側の面から離れた位置に配され、前記第1部分よりも添加不純物濃度の高い第2部分を有することを特徴とする請求項1〜4のいずれか1項に記載の光電変換装置。
  6. 前記第2のフィルタに平面視において重なって配される複数の光電変換部のそれぞれに含まれる第2半導体領域は、第3部分と、前記第3部分の前記第1半導体領域の側とは反対の側にあり、前記第3部分よりも添加不純物濃度の高い第4部分と、を有し、
    前記第4部分と同じ深さにおいて、前記少なくとも一部分の添加不純物濃度が前記第4部分の添加不純物濃度よりも低いことを特徴とする請求項1〜5のいずれか1項に記載の光電変換装置。
  7. 前記第3部分は、前記半導体基板の前記第2のフィルタ側の面に近づくにつれて不純物濃度が低くなる部分を含むことを特徴とする請求項6に記載の光電変換装置。
  8. 前記第2半導体領域は、エピタキシャル成長法により形成された部分と、不純物イオンを注入することにより形成された部分とを含むことを特徴とする請求項1〜7のいずれか1項に記載の光電変換装置。
  9. 複数の光電変換部を含む半導体基板と、
    可視光よりも赤外光の透過率が高い第1及び第3のフィルタと、
    赤外光よりも可視光の透過率が高い第2及び第4のフィルタと、を有し、
    前記第1のフィルタに平面視において重なって配される光電変換部、前記第3のフィルタに平面視において重なって配される光電変換部、前記第2のフィルタに平面視において重なって配される光電変換部、及び前記第4のフィルタに平面視において重なって配される光電変換部が、一方向に隣り合って配されており、
    前記第1のフィルタに平面視において重なって配される光電変換部は、信号電荷を蓄積する第1導電型の第1半導体領域を有し、
    前記第2のフィルタに平面視において重なって配される光電変換部は、前記第1導電型の第2半導体領域を有し、
    前記第3のフィルタに平面視において重なって配される光電変換部は、前記第1導電型の第3半導体領域を有し、
    前記第4のフィルタに平面視において重なって配される光電変換部は、前記第1導電型の第4半導体領域を有し、
    前記第2半導体領域と前記第3半導体領域との間には、前記第1導電型と反対導電型である第2導電型の第5半導体領域が配され、
    前記第1半導体領域と前記第2半導体領域との間には、前記第2導電型の第6半導体領域が配され、
    前記第3半導体領域と前記第4半導体領域との間には、前記第2導電型の第7半導体領域が配され、
    前記第5半導体領域、前記第6半導体領域、及び前記第7半導体領域はそれぞれ少なくとも1つの不純物濃度のピークを有し、
    前記第6半導体領域が有するピークのうちの前記半導体基板の前記第1のフィルタの側の面から最も離れたピークの位置は、前記第7半導体領域が有するピークのうちの前記半導体基板の前記第1のフィルタの側の面から最も離れたピークの位置よりも前記半導体基板の前記第1のフィルタの側の面から離れており、
    前記第5半導体領域が有するピークのうちの前記半導体基板の前記第1のフィルタの側の面から最も離れたピークの位置は、前記第6半導体領域が有するピークのうちの前記半導体基板の前記第1のフィルタの側の面から最も離れたピークの位置よりも前記半導体基板の前記第1のフィルタの側の面から離れていることを特徴とする光電変換装置。
  10. 前記半導体基板の前記第1のフィルタの側の面から最も離れた前記第6半導体領域の不純物濃度のピークの位置は、2.0μm以下であることを特徴とする請求項9に記載の光電変換装置。
  11. 前記第1の光電変換部及び前記第2の光電変換部は第1のマイクロレンズを共有しており、
    前記第3の光電変換部及び前記第4の光電変換部は第2のマイクロレンズを共有していることを特徴とする請求項9又は10に記載の光電変換装置。
JP2018197687A 2018-10-19 2018-10-19 光電変換装置 Active JP7271127B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018197687A JP7271127B2 (ja) 2018-10-19 2018-10-19 光電変換装置
US16/594,810 US11107853B2 (en) 2018-10-19 2019-10-07 Photoelectric conversion apparatus
CN201910994771.XA CN111081727B (zh) 2018-10-19 2019-10-18 光电转换设备、光电转换系统和能够移动的物体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018197687A JP7271127B2 (ja) 2018-10-19 2018-10-19 光電変換装置

Publications (2)

Publication Number Publication Date
JP2020065026A true JP2020065026A (ja) 2020-04-23
JP7271127B2 JP7271127B2 (ja) 2023-05-11

Family

ID=70387570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018197687A Active JP7271127B2 (ja) 2018-10-19 2018-10-19 光電変換装置

Country Status (1)

Country Link
JP (1) JP7271127B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145606A1 (ja) * 2022-01-26 2023-08-03 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
WO2023218852A1 (ja) * 2022-05-11 2023-11-16 キヤノン株式会社 撮像素子及び撮像装置
WO2023218853A1 (ja) * 2022-05-12 2023-11-16 キヤノン株式会社 撮像素子及び撮像装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004152819A (ja) * 2002-10-29 2004-05-27 Toshiba Corp 固体撮像装置及びその製造方法
JP2006210919A (ja) * 2005-01-24 2006-08-10 Samsung Electronics Co Ltd 光の波長に応じて異なる厚さの埋没バリヤ層を具備するイメージセンサ及びその形成方法
JP2007189131A (ja) * 2006-01-16 2007-07-26 Nikon Corp 固体撮像素子
JP2008098601A (ja) * 2006-10-13 2008-04-24 Magnachip Semiconductor Ltd 改善されたカラークロストークを有するイメージセンサ
US20100102366A1 (en) * 2008-10-24 2010-04-29 Jong-Jan Lee Integrated Infrared and Color CMOS Imager Sensor
US20100102206A1 (en) * 2008-10-27 2010-04-29 Stmicroelectronics S.A. Near infrared/color image sensor
JP2014168016A (ja) * 2013-02-28 2014-09-11 Nikon Corp 撮像素子および撮像素子を備えた撮像装置
JP2015005699A (ja) * 2013-06-24 2015-01-08 キヤノン株式会社 撮像装置、および、撮像システム
JP2015095484A (ja) * 2013-11-08 2015-05-18 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US20160027837A1 (en) * 2014-07-25 2016-01-28 Omnivision Technologies, Inc. Visible and infrared image sensor
JP2016076679A (ja) * 2014-10-03 2016-05-12 力晶科技股▲ふん▼有限公司 深井戸構造を備えるイメージセンサ及びその製造方法
JP2017005145A (ja) * 2015-06-11 2017-01-05 キヤノン株式会社 固体撮像素子
JP2017111347A (ja) * 2015-12-17 2017-06-22 キヤノン株式会社 撮像装置及びカメラ
WO2017122436A1 (ja) * 2016-01-15 2017-07-20 パナソニック・タワージャズセミコンダクター株式会社 固体撮像装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004152819A (ja) * 2002-10-29 2004-05-27 Toshiba Corp 固体撮像装置及びその製造方法
JP2006210919A (ja) * 2005-01-24 2006-08-10 Samsung Electronics Co Ltd 光の波長に応じて異なる厚さの埋没バリヤ層を具備するイメージセンサ及びその形成方法
JP2007189131A (ja) * 2006-01-16 2007-07-26 Nikon Corp 固体撮像素子
JP2008098601A (ja) * 2006-10-13 2008-04-24 Magnachip Semiconductor Ltd 改善されたカラークロストークを有するイメージセンサ
US20100102366A1 (en) * 2008-10-24 2010-04-29 Jong-Jan Lee Integrated Infrared and Color CMOS Imager Sensor
US20100102206A1 (en) * 2008-10-27 2010-04-29 Stmicroelectronics S.A. Near infrared/color image sensor
JP2014168016A (ja) * 2013-02-28 2014-09-11 Nikon Corp 撮像素子および撮像素子を備えた撮像装置
JP2015005699A (ja) * 2013-06-24 2015-01-08 キヤノン株式会社 撮像装置、および、撮像システム
JP2015095484A (ja) * 2013-11-08 2015-05-18 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US20160027837A1 (en) * 2014-07-25 2016-01-28 Omnivision Technologies, Inc. Visible and infrared image sensor
JP2016076679A (ja) * 2014-10-03 2016-05-12 力晶科技股▲ふん▼有限公司 深井戸構造を備えるイメージセンサ及びその製造方法
JP2017005145A (ja) * 2015-06-11 2017-01-05 キヤノン株式会社 固体撮像素子
JP2017111347A (ja) * 2015-12-17 2017-06-22 キヤノン株式会社 撮像装置及びカメラ
WO2017122436A1 (ja) * 2016-01-15 2017-07-20 パナソニック・タワージャズセミコンダクター株式会社 固体撮像装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145606A1 (ja) * 2022-01-26 2023-08-03 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
WO2023218852A1 (ja) * 2022-05-11 2023-11-16 キヤノン株式会社 撮像素子及び撮像装置
WO2023218853A1 (ja) * 2022-05-12 2023-11-16 キヤノン株式会社 撮像素子及び撮像装置

Also Published As

Publication number Publication date
JP7271127B2 (ja) 2023-05-11

Similar Documents

Publication Publication Date Title
US9686462B2 (en) Solid-state imaging device and electronic apparatus
KR102306670B1 (ko) 이미지 센서 및 그 제조 방법
JP2018201015A (ja) 固体撮像装置、及び電子機器
KR102197476B1 (ko) 이미지 센서
US10158821B2 (en) Imaging sensor and moving body
JP7271127B2 (ja) 光電変換装置
US9313431B2 (en) Image sensor
TW201505163A (zh) 固態影像感測裝置及固態影像感測裝置之製造方法
WO2018221443A1 (ja) 固体撮像装置、及び電子機器
TWI822909B (zh) 固態攝像裝置及電子機器
WO2018003501A1 (ja) 固体撮像装置、電子機器、レンズ制御方法および車両
US20180376089A1 (en) Image sensing device
US20200343287A1 (en) Photoelectric conversion apparatus, imaging system, and moving body
US10708556B2 (en) Imaging device and imaging system
KR20110121531A (ko) 고체 촬상 소자 및 촬상 장치
JPWO2010100896A1 (ja) 撮像装置および両面照射型固体撮像素子
TW202127649A (zh) 攝像裝置及電子機器
JP7214373B2 (ja) 固体撮像素子及び固体撮像素子の製造方法、撮像システム
JP2020088293A (ja) 光電変換装置、光電変換システム、移動体
US11631712B2 (en) Photoelectric conversion device, imaging system, and moving body with upper electrode and conductive layer at same potential or connected to each other
JP7305343B2 (ja) 光電変換素子、光電変換素子の製造方法
US11107853B2 (en) Photoelectric conversion apparatus
JP2011061081A (ja) イメージセンサ
JP2020113573A (ja) 光電変換装置
US20190228534A1 (en) Image pickup device, image pickup system, and moving apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230426

R151 Written notification of patent or utility model registration

Ref document number: 7271127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151