JP2020038504A - ボルテージレギュレータ及びボルテージレギュレータの試験方法 - Google Patents

ボルテージレギュレータ及びボルテージレギュレータの試験方法 Download PDF

Info

Publication number
JP2020038504A
JP2020038504A JP2018165406A JP2018165406A JP2020038504A JP 2020038504 A JP2020038504 A JP 2020038504A JP 2018165406 A JP2018165406 A JP 2018165406A JP 2018165406 A JP2018165406 A JP 2018165406A JP 2020038504 A JP2020038504 A JP 2020038504A
Authority
JP
Japan
Prior art keywords
voltage
phase compensation
output voltage
test
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018165406A
Other languages
English (en)
Other versions
JP7115939B2 (ja
Inventor
薫 坂口
Kaoru Sakaguchi
薫 坂口
靖彦 小倉
Yasuhiko Ogura
靖彦 小倉
宗高 吉村
Munetaka Yoshimura
宗高 吉村
大樹 高橋
Daiki Takahashi
大樹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ablic Inc
Original Assignee
Ablic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ablic Inc filed Critical Ablic Inc
Priority to JP2018165406A priority Critical patent/JP7115939B2/ja
Priority to US16/552,733 priority patent/US10915126B2/en
Priority to CN201910822504.4A priority patent/CN110928348B/zh
Publication of JP2020038504A publication Critical patent/JP2020038504A/ja
Priority to JP2022120120A priority patent/JP7289973B2/ja
Application granted granted Critical
Publication of JP7115939B2 publication Critical patent/JP7115939B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/461Regulating voltage or current wherein the variable actually regulated by the final control device is dc using an operational amplifier as final control device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/575Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/462Regulating voltage or current wherein the variable actually regulated by the final control device is dc as a function of the requirements of the load, e.g. delay, temperature, specific voltage/current characteristic
    • G05F1/466Sources with reduced influence on propagation delay
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Amplifiers (AREA)

Abstract

【課題】ボルテージレギュレータの定常状態の消費電流に比較して微少な放電電流となる容量値の位相補償容量に対しても、接続不良や、容量値の推定を行なうことが可能なボルテージレギュレータを提供する。【解決手段】ボルテージレギュレータ1は、所定の出力電圧VOUTを出力する出力電圧端子TVOUTと、出力電圧VOUTを検知するための電圧調整端子TVADJと、出力電圧VOUT及び基準電圧Vrefの各々を比較して出力電圧VOUTを制御する誤差増幅器12と、位相補償容量C2と、の各々を備える。位相補償容量C2を有効あるいは無効とするスイッチSW2と、ボルテージレギュレータ1が通常に出力電圧を出力する通常モードに比較して、位相補償容量C1の試験を行なうテストモードにおける誤差増幅器12のバイアス電流を低下させる定電流源18とを備える。【選択図】図1

Description

本発明は、ボルテージレギュレータ及びボルテージレギュレータの試験方法に関する。
一般的にボルテージレギュレータは、入力電圧(電源電圧)VINを受けて出力端子に一定の出力電圧VOUTを発生する。この際、ボルテージレギュレータは、負荷の変動に応じて電流を供給し、出力電圧VOUTを常に一定に保つ動作を行なう。
通常、ボルテージレギュレータには、形成されるゼロ点の周波数を調整することにより、応答性を向上させ、かつ、少ない出力容量でも発振などの誤動作を起こさずに安定動作させる位相補償回路が設けられている。
この位相補償回路が設計に対応して形成されていなければ、上述した安定動作するという効果が得られないため、製造工程において位相補償回路のテストを行なう必要がある。
しかし、ボルテージレギュレータは、製造工程で実施されるテストにおいて、回路内部にある位相補償回路におけるコンデンサなどが問題なく形成されているか否か、すなわち酸化膜異常、コンタクト接続不良などの素子単体の不良の有無を直接に観察してテストを行なうことが困難である。
例えば、位相補償回路の各素子をテストするためのテスト用パッド端子を設ける場合、このテスト用パッドによってチップ面積が増加したり、テスト用パッドによる寄生容量成分のため、位相補償回路における位相補償容量(コンデンサ)の容量値が変化し、位相補償回路の性能が損なわれる、という課題があった。
そこで、位相補償回路における位相補償容量の接続不良や、この位相補償容量の容量値が設計仕様の範囲にあるか否かなどの判定を間接的に行なうテスト方法がある。このテスト方法においては、位相補償容量に蓄積される電荷の放電時間あるいは放電電流を計測することにより、位相補償容量の接続不良及び容量値の判定を行なっている(例えば、特許文献1参照)。
図5は、特許文献1のボルテージレギュレータの回路図を示している。位相補償回路110は、位相補償容量111及び抵抗112の各々を備えている。
また、このボルテージレギュレータには、位相補償回路110における位相補償容量111のテストを行なうテスト回路120が備えられている。テスト回路120は、pチャネル型MOSトランジスタ121及びnチャネル型MOSトランジスタ122の各々と、定電流源123とが備えられている。
位相補償容量111のテストを行う際、第1段階として、pチャネル型MOSトランジスタ121をオンとし、nチャネル型MOSトランジスタ122をオフのままとして、位相補償容量111に電荷を十分に蓄積させる。
そして、第2段階として、pチャネル型MOSトランジスタ121及びnチャネル型MOSトランジスタ122の各々をオフとして、ボルテージレギュレータの消費電流ICS1を測定する。
第3段階として、pチャネル型MOSトランジスタ121をオフのままとし、nチャネル型MOSトランジスタ122の各々をオンとして、定電流源123を介して、位相補償容量111に蓄積された電荷を放電させる。
このとき、ボルテージレギュレータの消費電流ICS2は、上記消費電流ICS1に対して位相補償容量111の電荷を放電する放電電流が加わり、消費電流ICS1より大きな電流となっている。そして、位相補償容量111の放電を開始してから、消費電流ICS2がの測定を行ない、消費電流ICS2が消費電流ICS1と同等となるまでの時間Tを計測することにより、位相補償容量111の接続不良の判定及び容量値の推定を行なうことができる。
特開2017−174116号公報
しかしながら、特許文献1によるテスト方法においては、位相補償容量111の容量値が微少な場合、位相補償容量111に蓄積される電荷も少なく、電荷の放電の際に流れる放電電流の電流値も微少となる。
また、位相補償容量111の容量値が微少でなくとも、ボルテージレギュレータの他の回路における消費電流が非常に大きい場合、位相補償容量111の放電電流が相対的に微少な電流となる。
上述した放電電流が消費電流ICS1に比較して微少である場合、ボルテージレギュレータ消費電流の測定における誤差範囲に含まれてしまう。
これにより、消費電流ICS1及びICS2の違いを十分に検出できず、すなわち放電電流を検出することができず、上述した時間Tを正確にあるいは全く測定できない可能性がある。
本発明は、このような事情に鑑みてなされたもので、ボルテージレギュレータの定常状態の消費電流に比較して微少な放電電流となる容量値の位相補償容量に対しても、接続不良や、容量値の推定を行なうことが可能なボルテージレギュレータ及びボルテージレギュレータの試験方法を提供することを目的とする。
本発明のボルテージレギュレータは、所定の出力電圧を出力する出力電圧端子と、前記出力電圧を検知するための電圧調整端子と、前記出力電圧及び基準電圧の各々を比較して前記出力電圧を制御する誤差増幅器と、位相補償容量との各々を備えたボルテージレギュレータであって、前記位相補償容量を有効あるいは無効とするスイッチと、前記ボルテージレギュレータが通常に前記出力電圧を出力する通常モードに比較して、前記位相補償容量の試験を行なうテストモードにおける前記誤差増幅器のバイアス電流を低下させる定電流源とを備えることを特徴とする。
本発明のボルテージレギュレータは、所定の出力電圧を出力する出力電圧端子と、前記出力電圧を検知するための電圧調整端子と、前記出力電圧及び基準電圧の各々を比較して前記出力電圧を制御する誤差増幅器と、位相補償容量との各々を備えたボルテージレギュレータであって、前記位相補償容量を有効あるいは無効とするスイッチと、前記電圧調整端子より試験信号を入力させ、前記位相補償容量を有効あるいは無効の場合のそれぞれにおける前記出力電圧の位相の変化を計測することで当該位相補償容量のテストを行なうテストモードにおいて、前記スイッチを有効あるいは無効のいずれかに制御するテスト回路とを備えることを特徴とする。
本発明のボルテージレギュレータの試験方法は、所定の出力電圧を出力する出力電圧端子と、前記出力電圧を検知するための電圧調整端子と、前記出力電圧及び基準電圧の各々を比較して前記出力電圧を制御する誤差増幅器と、位相補償容量との各々を備えたボルテージレギュレータの試験を行なう試験方法であって、前記位相補償容量の試験を行なうテストモードにおいて、前記位相補償容量を有効とし、前記電圧調整端子に対して試験信号を供給し、当該試験信号の変動に対応して出力される前記出力電圧の第1電圧波形を計測する過程と、前記位相補償容量を無効とし、前記電圧調整端子に対して前記試験信号を供給し、当該試験信号の変動に対応して出力される前記出力電圧の第2電圧波形を計測する過程と、前記第1電圧波形と前記第2電圧波形との位相を比較し、前記位相補償容量の試験を行なう過程とを含むことを特徴とする。
この発明によれば、ボルテージレギュレータの定常状態の消費電流に比較して微少な放電電流となる容量値の位相補償容量に対しても、接続不良や、容量値の推定を行なうことが可能なボルテージレギュレータ及びボルテージレギュレータの試験方法を提供することができる。
本発明の一実施形態によるボルテージレギュレータの構成例を示す回路図である。 位相補償容量C1のテストを行なった際における、試験パルスとこの試験パルスに対応した出力電圧VOUTの変化の位相との対応を示す波形を示す図である。 図1のボルテージレギュレータ1における位相補償回路13の変形例を示す回路図である。 出力トランジスタ14の前段に1個の増幅回路を追加した出力段の変形例を示す回路図である。 特許文献1のボルテージレギュレータの回路図を示している。
以下、図面を参照して、本発明の一実施形態について説明する。図1は、本発明の一実施形態によるボルテージレギュレータの構成例を示す回路図である。
図1において、ボルテージレギュレータ1は、基準電源11、誤差増幅器12、位相補償回路13、出力トランジスタ14、帰還位相補償回路15、抵抗16、17、可変定電流源18、テスト回路19及び状態制限回路20の各々を備えている。
また、位相補償回路13は、抵抗R1、スイッチSW1及び位相補償容量C1の各々を備えている。帰還位相補償回路15は、スイッチSW2及び位相補償容量C2の各々を備えている。
基準電源11は、基準電圧Vrefを生成し、この基準電圧Vrefを誤差増幅器12の反転入力端子(−)に対して出力する。
誤差増幅器12は、接続点P2から非反転入力端子(+)に供給される帰還電圧Vfbと、反転入力端子(−)に供給される基準電圧Vrefとの差分の電圧を増幅し、出力端子から増幅電圧Vcmpを出力する。
抵抗R1は、一端が誤差増幅器12の出力端子と接続点P1に接続され、他端がスイッチSW1の一端と接続されている。
スイッチSW1は、2端子のスイッチであり、他端が位相補償容量C1の一端と接続されている。
位相補償容量C1は、誤差増幅器12の出力端子から出力される信号波形の位相を遅延させる位相補償を行なうコンデンサであり、他端が出力電圧端子TVOUTと接続されている。
また、本実施形態においては、接続点P1から抵抗R1、スイッチSW1、位相補償容量C1の順番で接続する構成としているが、それぞれが直列に接続されていれば順番をどのように構成しても良い。
出力トランジスタ14は、pチャネル型MOSトランジスタであり、ソースが入力電圧(電源電圧)VINの配線に接続され、ゲートが接続点P1に接続され、ドレインが出力電圧端子TVOUTに接続されている。
スイッチSW2は、2端子のスイッチであり、一端が電圧調整端子TVADJに接続され、他端が位相補償容量C2の一端に接続されている。
位相補償容量C2は、電圧調整端子TVADJから供給される調整電圧VADJが抵抗16及び17で分圧された帰還電圧Vfbの波形の位相を進める位相補償を行なうコンデンサであり、他端が接続点P2に接続されている。
また、本実施形態においては、電圧調整端子TVADJからスイッチSW2、位相補償容量C2の順番で接続する構成としているが、それぞれが直列に接続されていれば順番をどのように構成しても良い。
抵抗16は、一端が電圧調整端子TVADJに接続され、他端が接続点P2に接続されている。
抵抗17は、一端が接続点P2に接続され、他端が入力電圧(接地電圧)VSSの配線に接続されている。
ここで、抵抗16及び17の各々は、分圧回路を構成しており、電圧調整端子TVADJから入力される調整電圧VADJを抵抗比で分圧し、分圧された電圧を接続点P2から帰還電圧Vfbとして出力する。
可変定電流源18は、誤差増幅器12の駆動に用いるバイアス電流I1を調整する電流源であり、誤差増幅器12の負側電源端子と入力電圧VSSの配線との間に介挿されている。
また、この可変定電流源18は、入力電圧VINの配線と誤差増幅器12の正側電源端子との間に介挿される構成としても良い。
テスト回路19は、位相補償容量C1及びC2の試験を行なうテストモードにおいて、スイッチSW1、SW2のオン/オフ制御、及び可変定電流源18のバイアス電流I1の制御を行なう。
ここで、テスト回路19は、テスト信号として、例えばテスト信号SG1、SG2及びSG3の各々が供給される。テスト信号SG1がLレベルの場合に通常モードであり、一方、テスト信号SG1がHレベルの場合にテストモードとなる。
テスト回路19は、テスト信号SG1がLレベルの場合、可変定電流源18に対して、通常モードにおけるバイアス電流I1を流すことを指示する制御信号SIB(例えばLレベル)を出力する。
一方、テスト回路19は、テスト信号SG1がHレベルの場合、可変定電流源18に対して、通常モードに比較して少ない電流量のバイアス電流I1を流すことを指示する制御信号SIB(例えばHレベル)を出力する。
また、テスト回路19は、テスト信号SG1がLレベルの場合、スイッチSW1及びSW2の各々をオン状態とする制御信号S1A、S2Aそれぞれ(例えば、Hレベル)を出力する。
また、テスト信号SG2及びSG3の各々は、テスト信号SG1がHレベルのテストモードの際に、入力が有効となる信号である。
テスト回路19は、テスト信号SG2がLレベルの場合に、オフ状態とすることを指示する制御信号S1A(例えば、Lレベル)を、スイッチSW1に対して出力し、スイッチSW1をオフ状態とする。
一方、テスト信号SG2がHレベルの場合に、オン状態とすることを指示する制御信号S1A(例えば、Hレベル)を、スイッチSW1に対して出力し、スイッチSW1をオン状態とする。
同様に、テスト回路19は、テスト信号SG3がLレベルの場合に、オフ状態とすることを指示する制御信号S2A(例えば、Lレベル)を、スイッチSW2に対して出力し、スイッチSW2をオフ状態とする。
一方、テスト信号SG3がHレベルの場合に、オン状態とすることを指示する制御信号S2A(例えば、Hレベル)を、スイッチSW2に対して出力し、スイッチSW2をオン状態とする。
以下に、ボルテージレギュレータ1における通常モードについての説明を行なう。
通常モードの場合、出力電圧端子TVOUT及び電圧調整端子TVADJの各々が接続され、スイッチSW1及びSW2の各々はオン状態である。ボルテージレギュレータ1は、所定の出力電圧を出力電圧端子TVOUTから出力する動作を行なう。これにより、出力電圧VOUTが抵抗R16及びR17の抵抗比により分圧され、接続点P1から帰還電圧Vfbとして誤差増幅器12の正側入力端子(+)に供給される。
そして、誤差増幅器12は、帰還電圧Vfbと基準電圧Vrefとの各々を比較し、帰還電圧Vfb、基準電圧Vrefそれぞれの差分に対応した増幅電圧Vcmpを出力する。
このときの位相補償において、スイッチSW1はオン状態のため、出力電圧端子TVOUTに出力される出力電圧VOUTが位相補償回路C1に供給される。
そして、出力電圧VOUTの波形が位相補償容量C1により微分され、この微分により生成された微分波形信号がスイッチSW1及び抵抗R1を介して接続点P1へ供給される。
上記増幅電圧Vcmpの電圧波形に対し、微分波形信号の位相が反転しているため、接続点P1における増幅電圧Vcmpによる電圧変化を妨げることになり、出力トランジスタ14にゲートに供給される増幅電圧Vcmpの位相を遅延させる。
また、位相補償において、スイッチSW2はオン状態のため、電圧調整端子TVADJに対して、出力電圧端子TVOUTから出力電圧VOUTが供給される。
そして、出力電圧VOUTの波形が位相補償容量C2により微分され、この微分により生成された微分波形信号がスイッチSW2を介して、接続点P2へ供給される。
この接続点P2においては、抵抗16及び17の抵抗比により、帰還電圧Vfbが生成される。この帰還電圧Vfbの電圧波形に対し、微分波形信号の位相が同相のため、接続点P2における帰還電圧Vfbによる電圧変化を早くすることになり、誤差増幅器12の正側入力端子(+)に供給される帰還電圧Vfbの位相を進める。
次に、ボルテージレギュレータ1における位相補償容量のテストモードについての説明を行なう。このとき、出力電圧端子TVOUTと電圧調整端子TVADJは、接続されない。位相補償容量のテストは、ボルテージレギュレータ1の製造過程で行なわれる良否判定の試験の一つである。
位相補償容量C1及びC2のテストは、位相補償容量C1、C2の各々を個別に接続の有無及び容量値の判定を行なう必要があるため、それぞれ独立して行なう。
以下のテストモードの説明を、便宜的に、位相補償容量C1のテストを行なった後に、位相補償容量C2のテストを行なう順番で行うが、いずれを先にテストしても良い。
位相補償容量C1のテストを行なう場合、テスト信号SG1がHレベルに、テスト信号SG3がLレベルに固定される。すなわち、位相補償容量C1のテストを行なう場合、テスト信号SG3をLレベルとすることで、テスト回路19は、制御信号S2AをLレベルとしてスイッチSW2をオフ状態とし、位相補償容量C2を位相補償の動作において無効とする。
また、テスト信号SG2をLレベルとすることで、テスト回路19は、制御信号S1AをLレベルとしてスイッチSW1をオフ状態とし、位相補償容量C1を位相補償の動作において無効とする。
この状態で、電圧調整端子TVADJに対して試験パルスを供給する。この試験パルスは、抵抗16及び17で分圧されて帰還電圧Vfbとなった際、基準電圧Vrefを交差する電圧レベルで変化するパルスである。
そして、試験パルスの位相と、この試験パルスに対応して変化する出力電圧VOUTとの位相とを計測し、試験パルスの位相と出力電圧VOUTとの位相差Pdiff1Aを求める。
次に、テスト信号SG2をHレベルとすることで、テスト回路19は、制御信号S1AをHレベルとしてスイッチSW1をオン状態とし、位相補償容量C1を位相補償の動作において有効とする。
この状態で、電圧調整端子TVADJに対して、上述した位相補償容量C1を位相補償の動作において無効とした場合と同様の試験パルスを供給する。
そして、試験パルスの位相と、この試験パルスに対応して変化する出力電圧VOUTとの位相とを計測し、試験パルスの位相と出力電圧VOUTとの位相差Pdiff2Aを求める。
上述した位相補償容量C1を位相補償に対して有効/無効とした場合の位相の差分、すなわち、位相差Pdiff2A及びPdiff1Aの差分の大きさにより、位相補償容量C1の製造工程における接続の有無、あるいは容量値を推定することができる。
また、可変定電流源18によりバイアス電流を通常モードモードに比較して、テストモードにおいては減少させている。このため、誤差増幅器12が出力する電流が減少することにより、通常モードに比較して増幅電圧Vcmpの電圧変化の傾きが緩やかになる。通常モードのバイアス電流I1の場合に比較して、位相差Pdiff2A及びPdiff1Aの差分の大きさ(絶対値)を拡大することができ、位相補償容量C1の製造工程における接続の有無、あるいは容量値を推定を容易に高い精度で行なうことができる。
次に、位相補償容量C2のテストを行なう場合、テスト信号SG1がHレベルに、テスト信号SG2がLレベルに固定される。すなわち、位相補償容量C2のテストを行なう場合、テスト信号SG2をLレベルとすることで、テスト回路19は、制御信号S1AをLレベルとしてスイッチSW1をオフ状態とし、位相補償容量C1を位相補償の動作において無効とする。
また、テスト信号SG3をLレベルとすることで、テスト回路19は、制御信号S2AをLレベルとしてスイッチSW2をオフ状態とし、位相補償容量C2を位相補償の動作において無効とする。
この状態で、位相補償容量C1のテストの場合と同様の試験パルスを、電圧調整端子TVADJに対して試験パルスを供給する。
そして、試験パルスの位相と、この試験パルスに対応して変化する出力電圧VOUTとの位相とを計測し、試験パルスの位相と出力電圧VOUTとの位相差Pdiff1Bを求める。
次に、テスト信号SG3をHレベルとすることで、テスト回路19は、制御信号S2AをHレベルとしてスイッチSW2をオン状態とし、位相補償容量C2を位相補償の動作において有効とする。
この状態で、電圧調整端子TVADJに対して、上述した位相補償容量C2を位相補償の動作において無効とした場合と同様の試験パルスを供給する。
そして、試験パルスの位相と、この試験パルスに対応して変化する出力電圧VOUTとの位相とを計測し、試験パルスの位相と出力電圧VOUTとの位相差Pdiff2Bを求める。
上述した位相補償容量C1を位相補償に対して有効/無効とした場合の位相の差分、すなわち、位相差Pdiff2B及びPdiff1Bの差分の大きさにより、位相補償容量C1の製造工程における接続の有無、あるいは容量値を推定することができる。
また、可変定電流源18によりバイアス電流を通常モードモードに比較して、テストモードにおいては減少させている。このため、誤差増幅器12が出力する電流が減少することにより、通常モードに比較して増幅電圧Vcmpの電圧変化の傾きが緩やかになる。これにより、通常モードのバイアス電流I1の場合に比較して、位相差Pdiff2B及びPdiff1Bの差分の大きさ(絶対値)を拡大させることができ、位相補償容量C2の製造工程における接続の有無、あるいは容量値を推定を容易に高い精度で行なうことができる。
また、上述した実施形態においては、位相補償容量C1及びC2の各々の製造工程における接続の有無、あるいは容量値の推定を容易に高い精度で行なうため、可変定電流源18を設けている。
しかしながら、位相補償容量C1及びC2の容量値の推定に精度を必要としない場合や、製造工程における接続の有無のみの試験を行う場合など、可変定電流源18の代わりに誤差増幅器12の動作電流のみを流す定電流源としても良い。
また、上述した実施形態においては、ボルテージレギュレータ1を位相補償容量C1及びC2の各々が設けられている構成として説明したが、位相補償容量C1あるいはC2のいずれか一方のみが設けられている他の構成としても良い。
この構成の場合、テスト回路19におけるテスト信号は、テスト信号SG1及びSG2の各々となり、テスト信号SG1の動作については、上記実施形態の説明と同様である。
ここで、位相補償容量C1のみが設けられている場合、テスト回路19は、テスト信号SG1がHレベルで供給された場合、制御信号S1AをLレベルでスイッチSW1へ供給し、スイッチSW1をオフ状態とする。
一方、テスト回路19は、テスト信号SG2がHレベルで供給された場合、制御信号S1AをHレベルでスイッチSW1へ供給し、スイッチSW1をオン状態とする。
位相差Pdiff2A及びPdiff1Aの差分による位相補償容量C1の接続の判定及び容量値の推定ついては上述した説明と同様である。
また、位相補償容量C2のみが設けられている場合、テスト回路19は、テスト信号SG1がHレベルで供給された場合、テスト信号SG2AをLレベルでスイッチSW2へ供給し、スイッチSW2をオフ状態とする。
一方、テスト回路19は、テスト信号SG2がHレベルで供給された場合、制御信号S2AをHレベルでスイッチSW2へ供給し、スイッチSW2をオン状態とする。
位相差Pdiff2B及びPdiff1Bの差分による位相補償容量C2の接続の判定及び容量値の推定ついては上述した説明と同様である。
また、上述した実施形態においては、テスト回路19の動作をテストモードに移行することなく、通常モードに固定する状態制限回路20が設けられている。状態制限回路20は、例えば内部にメモリなどの記憶素子が設けられており、出荷時などにテスト回路19が通常モードに固定され、どのようなテスト信号(SG1、SG2及びSG3)が入力された場合においても、通常モードの動作に制限する。
しかしながら、出荷時において、テスト端子TTESTがパッケージの端子として外部に出ない場合においては、状態制限回路20を設けない構成としても良い。
図2は、位相補償容量C1のテストを行なった際における、試験パルスとこの試験パルスに対応した出力電圧VOUTの変化の位相との対応を示す波形を示す図である。
ここで、図2(a)は、電圧調整端子TVADJに入力する試験パルスの波形を示しており、縦軸が電圧を示し、横軸が時間を示している。
また、図2(b)は、誤差増幅器12の正側入力端子(+)に供給される、上記試験パルスの電圧が抵抗16及び17により分圧された帰還電圧Vfbの変化波形を示しており、縦軸が電圧を示し、横軸が時間を示している。
また、図2(c)は、接続点P1における増幅電圧Vcmpの変化波形を示しており、縦軸が電圧を示し、横軸が時間を示している。
また、図2(d)は、出力電圧端子TVOUTから出力される出力電圧VOUTの変化波形を示しており、縦軸が電圧を示し、横軸が時間を示している。
すでに述べたように、位相補償容量C1のテストを行なう場合、位相補償容量C1を位相補償に対して有効及び無効の各々の状態毎に、電圧調整端子TVADJに対して試験パルスを供給する。そして、供給した試験パルスの位相と、この試験パルスに対応した出力電圧VOUTの変化の位相とを比較する。
図2(c)及び図2(d)の各々において、実線で示されている増幅電圧Vcmpの変化波形、出力電圧VOUTの変化波形のそれぞれが、テスト回路19に供給されるテスト信号SG1がLレベル、すなわち通常モードにおける場合を示している(位相補償容量C1及びC2の各々が位相補償に対して有効)。
また、図2(c)及び図2(d)の各々において、一点鎖線で示されている増幅電圧Vcmpの変化波形、出力電圧VOUTの変化波形のそれぞれが、テスト回路19に供給されるテスト信号SG1がHレベルであり、かつテスト信号SG2及びSG3がLレベル、すなわちテストモードにおいてスイッチSW1及びSW2がオフ状態における場合を示している(位相補償容量C1及びC2の各々が位相補償に対して無効)。
また、図2(c)及び図2(d)の各々において、二点鎖線で示されている増幅電圧Vcmpの変化波形、出力電圧VOUTの変化波形のそれぞれが、テスト回路19に供給されるテスト信号SG1がHレベルであり、かつテスト信号SG2がHレベル及びテスト信号SG3がLレベル、すなわちテストモードにおいてスイッチSW1がオン状態及びスイッチSW2がオフ状態における場合を示している(位相補償容量C1が位相補償に対して有効、位相補償容量C2が位相補償に対して無効)。
時刻t1:図2(a)に示す様に、電圧調整端子TVADJに対して、外部装置から供給される試験パルスが立ち上がる(LレベルからHレベルへ遷移)。ここで、図2(b)における帰還電圧Vfbが基準電圧Vref未満の電圧から、基準電圧Vrefを超える電圧に変化する。また、図2(c)に示す様に、通常モードにおける実線の増幅電圧Vcmpの電圧上昇の速度に対して、バイアス電流が低減されるために、テストモードにおける一点鎖線及び二点鎖線の増幅電圧Vcmpの電圧上昇の速度は低下する。
時刻t2:図2(d)に示す様に、試験パルスの立ち上がりに対応して、実線の出力電圧VOUTの電圧波形がHレベルからLレベルに変化する。この際の試験パルスと出力電圧VOUTの電圧波形との位相差Pdiff1は、時間tf1である。
時刻t3:図2(d)に示す様に、試験パルスの立ち上がりに対応して、一点鎖線の出力電圧VOUTの電圧波形がHレベルからLレベルに変化する。この際の試験パルスと出力電圧VOUTの電圧波形との位相差Pdiff1Aは、時間tf2である。
時刻t4:図2(d)に示す様に、試験パルスの立ち上がりに対応して、二点鎖線の出力電圧VOUTの電圧波形がHレベルからLレベルに変化する。この際の試験パルスと出力電圧VOUTの電圧波形との位相差Pdiff2Aは、時間tf3である。
図2(d)に示す位相差Pdiff2Aと位相差Pdiff1Aとの差分、すなわち時間tf3と時間tf2の差分の大きさにより、位相補償容量C1の接続の判定及び容量値の推定が行なわれる。ここで、時間tf3と時間tf2の差分による接続の判定及び容量値の推定は、実際の試験を行い、通常モードで正常動作をしたボルテージレギュレータ1の時間tf3と時間tf2の差分を、統計的に処理して設定された許容範囲に基づいて行なわれる。
また、時刻t5、t6、t7及びt8の各々においても、上述した時刻t1、t2、t3、t4それぞれと同様である。
図3は、図1のボルテージレギュレータ1における位相補償回路13の変形例を示す回路図である。図3において、図1の位相補償回路13における抵抗R1に換えて、所定のゲインを有する増幅器A1が設けられている。位相補償容量C1及びスイッチSW1の各々は、図1の位相補償回路13と同様の構成である。
出力電圧端子TVOUTから接続点P1へ信号の伝搬方向に対して、位相補償容量C1の後段に増幅器A1が配置されれば、スイッチSW1を直列接続におけるいずれの位置に配置する構成としても良い。
図3の位相補償回路の動作において、スイッチSW1がオン状態(位相補償容量C1が位相補償に有効な状態)である場合、出力トランジスタ14が出力する出力電圧VOUTの電圧波形がスイッチSW1を介して位相補償容量C1に供給されると、その出力電圧VOUTの電圧波形の微分波形が増幅器A1へ供給される。増幅器A1は、その微分波形を所定のゲインで増幅して、接続点P1へ出力する。これにより、誤差増幅器12から出力される増幅電圧Vcmpの変化と位相が逆の微分波形が接続点P1に供給され、増幅電圧Vcmpの変化を抑制する位相補償が行なわれる。
図4は、出力トランジスタ14の前段に1個の増幅回路を追加した出力段の変形例を示す回路図である。図4において、pチャネル型MOSトランジスタであるトランジスタ21と、バイアス電流I2を流す定電流源22とが増幅回路として設けられている。
トランジスタ21は、ソースが入力電圧VINの配線に接続され、ゲートが接続点P1に接続され、ドレインが接続点P3(出力トランジスタ14のゲート)に接続されている。
定電流源22は、一端がトランジスタ21のドレインに接続され、他端が電源VSSの配線に接続されている。
トランジスタ21及び定電流源22の各々は、誤差増幅器12から出力される増幅電圧Vcmpをさらに増幅する増幅回路を構成している。
また、図4の増幅回路を用いる場合、出力電圧VOUTの位相と増幅電圧Vcmpとの電圧波形が同相となるため、誤差増幅器12の動作を出力電圧Voutの位相に対応させる必要がある。このため、誤差増幅器12において、基準電圧Vrefが正側入力端子(+)に供給され、帰還電圧Vfbが負側入力端子(−)に供給される接続とする。
この構成以外の、テストモードにおける動作については、図1における説明と同様である。
上述したように、本実施形態によれば、ボルテージレギュレータの定常状態の消費電流に比較して微少な放電電流となる容量値の位相補償容量に対しても、位相補償容量を有効及び無効にした状態における、試験パルスに対する出力電圧VOUTの位相差それぞれを比較することにより、位相補償容量の計測を行なっているため、位相補償容量を直接測定する端子を設ける必要が無く、容易かる簡易に位相補償容量の接続不良や、容量値が異常値であるか否かの推定を行なうことが可能となる。
また、本実施形態によれば、可変定電流源18により、通常モードに比較してテストモードにおける誤差増幅器12のバイアス電流を低減させ、誤差増幅器12の出力電流を少なくしているため、テストモードにおける増幅電圧Vcmpの電圧変化を緩やかにすることができ、試験パルスに対する出力電圧VOUTの位相差を拡大することができ、位相補償容量の容量が微少であっても位相差の比較の精度を向上させることが可能となる。
また、本実施形態においては、位相補償容量C1のテストを行なう場合、テスト信号SG1をHレベルかつテスト信号SG3をLレベルとし、位相補償容量C2のテストを行なう場合、テスト信号SG1をHレベルかつテスト信号SG2をLレベルとする信号レベルの組合せの設定で説明した。しかしながら、上述した信号レベルの組合せに限定されず、位相補償容量C1、C2のいずれをテストの対象とするかが区別できれば、どのような信号レベルの組合せとして設定してもよい。例えば、信号レベルの組合せは、位相補償容量C1のテストを行なう場合、テスト信号SG1をHレベルかつテスト信号SG3をHレベルとし、位相補償容量C2のテストを行なう場合、テスト信号SG1をHレベルかつテスト信号SG2をHレベルと設定しても良い。
また、本実施形態においては、位相補償容量C1及び位相補償容量C2のテストを行なう際、電圧調整端子TVADJに対して試験パルスを試験信号として供給する説明を行なった。しかしながら、試験信号の伝搬遅延を検出するので、信号レベルの立ち上がり波形あるいは立ち下がり波形のいずれかが有れば検出可能であるため、立ち上がり及び立ち下がりの双方を有する試験パルスではなく、立ち上がりあるいは立ち下がりのいずれかの波形を有する信号を試験信号として供給し、試験信号の伝搬遅延を検出するテストを行なっても良い。
以上、この発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
1…ボルテージレギュレータ
11…基準電源
12…誤差増幅器
13…位相補償回路
14…出力トランジスタ
15…帰還位相補償回路
16,17,R1…抵抗
18…可変定電流源
19…テスト回路
20…状態制限回路
21…トランジスタ
22…定電流源
C1,C2…位相補償容量

Claims (8)

  1. 所定の出力電圧を出力する出力電圧端子と、前記出力電圧を検知するための電圧調整端子と、前記出力電圧及び基準電圧の各々を比較して前記出力電圧を制御する誤差増幅器と、位相補償容量との各々を備えたボルテージレギュレータであって、
    前記位相補償容量を有効あるいは無効とするスイッチと、
    前記ボルテージレギュレータが通常に前記出力電圧を出力する通常モードに比較して、前記位相補償容量の試験を行なうテストモードにおける前記誤差増幅器のバイアス電流を低下させる定電流源と
    を備えることを特徴とするボルテージレギュレータ。
  2. 所定の出力電圧を出力する出力電圧端子と、前記出力電圧を検知するための電圧調整端子と、前記出力電圧及び基準電圧の各々を比較して前記出力電圧を制御する誤差増幅器と、位相補償容量との各々を備えたボルテージレギュレータであって、
    前記位相補償容量を有効あるいは無効とするスイッチと、
    前記電圧調整端子より試験信号を入力させ、前記位相補償容量を有効あるいは無効の場合のそれぞれにおける前記出力電圧の位相の変化を計測することで当該位相補償容量のテストを行なうテストモードにおいて、前記スイッチを有効あるいは無効のいずれかに制御するテスト回路と
    を備えることを特徴とするボルテージレギュレータ。
  3. 前記ボルテージレギュレータが通常に前記出力電圧を出力する通常モードに比較して、前記位相補償容量の試験を行なう前記テストモードにおける前記誤差増幅器のバイアス電流を低下させる定電流源を
    さらに備えることを特徴とする請求項2に記載のボルテージレギュレータ。
  4. 前記テストモードではない通常モードの際、前記スイッチを前記位相補償容量を有効とした状態に固定し、前記定電流源を通常モードにおける前記バイアス電流に固定する状態制限回路をさらに備える
    ことを特徴とする請求項1または請求項3に記載のボルテージレギュレータ。
  5. 前記位相補償容量が前記出力電圧端子と前記誤差増幅器の出力端子との間に設けられており、前記誤差増幅器から出力される出力電圧の位相を遅延させる
    ことを特徴とする請求項1から請求項4のいずれか一項に記載のボルテージレギュレータ。
  6. 前記位相補償容量が前記電圧調整端子と前記誤差増幅器の前記基準電圧と比較する電圧が入力される入力端子との間に設けられており、前記誤差増幅器に入力される出力電圧の位相を早める
    ことを特徴とする請求項1から請求項5のいずれか一項に記載のボルテージレギュレータ。
  7. 所定の出力電圧を出力する出力電圧端子と、前記出力電圧を検知するための電圧調整端子と、前記出力電圧及び基準電圧の各々を比較して前記出力電圧を制御する誤差増幅器と、位相補償容量との各々を備えたボルテージレギュレータであって、
    前記位相補償容量の試験を行なうテストモードにおいて、
    前記位相補償容量を有効とし、前記電圧調整端子に対して試験信号を供給し、当該試験信号の変動に対応して出力される前記出力電圧の第1電圧波形を計測する過程と、
    前記位相補償容量を無効とし、前記電圧調整端子に対して前記試験信号を供給し、当該試験信号の変動に対応して出力される前記出力電圧の第2電圧波形を計測する過程と、
    前記第1電圧波形と前記第2電圧波形との位相を比較し、前記位相補償容量の試験を行なう過程と
    を含む試験を製造工程において行ない、前記位相補償容量に対して良品と判定された
    ことを特徴とするボルテージレギュレータ。
  8. 所定の出力電圧を出力する出力電圧端子と、前記出力電圧を検知するための電圧調整端子と、前記出力電圧及び基準電圧の各々を比較して前記出力電圧を制御する誤差増幅器と、位相補償容量との各々を備えたボルテージレギュレータの試験を行なう試験方法であって、
    前記位相補償容量の試験を行なうテストモードにおいて、
    前記位相補償容量を有効とし、前記電圧調整端子に対して試験信号を供給し、当該試験信号の変動に対応して出力される前記出力電圧の第1電圧波形を計測する過程と、
    前記位相補償容量を無効とし、前記電圧調整端子に対して前記試験信号を供給し、当該試験信号の変動に対応して出力される前記出力電圧の第2電圧波形を計測する過程と、
    前記第1電圧波形と前記第2電圧波形との位相を比較し、前記位相補償容量の試験を行なう過程と
    を含むことを特徴とするボルテージレギュレータの試験方法。
JP2018165406A 2018-09-04 2018-09-04 ボルテージレギュレータ Active JP7115939B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018165406A JP7115939B2 (ja) 2018-09-04 2018-09-04 ボルテージレギュレータ
US16/552,733 US10915126B2 (en) 2018-09-04 2019-08-27 Voltage regulator and method of testing the same
CN201910822504.4A CN110928348B (zh) 2018-09-04 2019-09-02 电压调节器和电压调节器的测试方法
JP2022120120A JP7289973B2 (ja) 2018-09-04 2022-07-28 ボルテージレギュレータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018165406A JP7115939B2 (ja) 2018-09-04 2018-09-04 ボルテージレギュレータ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022120120A Division JP7289973B2 (ja) 2018-09-04 2022-07-28 ボルテージレギュレータ

Publications (2)

Publication Number Publication Date
JP2020038504A true JP2020038504A (ja) 2020-03-12
JP7115939B2 JP7115939B2 (ja) 2022-08-09

Family

ID=69639849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018165406A Active JP7115939B2 (ja) 2018-09-04 2018-09-04 ボルテージレギュレータ

Country Status (3)

Country Link
US (1) US10915126B2 (ja)
JP (1) JP7115939B2 (ja)
CN (1) CN110928348B (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11650248B2 (en) * 2020-07-28 2023-05-16 Medtronic Minimed, Inc. Electrical current measurement system
US11960311B2 (en) 2020-07-28 2024-04-16 Medtronic Minimed, Inc. Linear voltage regulator with isolated supply current
DE102020213559B4 (de) * 2020-10-28 2022-05-05 Infineon Technologies Ag Bestimmung einer Information über eine Verbindung einer Schaltungskomponente
US11803203B2 (en) * 2021-09-13 2023-10-31 Silicon Laboratories Inc. Current sensor with multiple channel low dropout regulator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003143836A (ja) * 2001-07-16 2003-05-16 Matsushita Electric Ind Co Ltd 電源装置
JP2005346430A (ja) * 2004-06-03 2005-12-15 Sony Corp 定電圧電源回路
JP2009074850A (ja) * 2007-09-19 2009-04-09 Denso Corp 半導体集積回路の検査方法及び半導体集積回路
JP2017175073A (ja) * 2016-03-25 2017-09-28 エスアイアイ・セミコンダクタ株式会社 半導体集積回路
JP2017174116A (ja) * 2016-03-23 2017-09-28 エスアイアイ・セミコンダクタ株式会社 ボルテージレギュレータ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007001946T5 (de) * 2006-08-16 2009-07-02 Advantest Corp. Lastschwankung-Kompensationsschaltung, elektronische Vorrichtung, Prüfvorrichtung, Taktgeneratorschaltung und Lastschwankungs-Kompensationsverfahren
JP2012156700A (ja) * 2011-01-25 2012-08-16 Ricoh Co Ltd 誤差増幅回路及びスイッチングレギュレータ
JP2013181831A (ja) * 2012-03-01 2013-09-12 Advantest Corp 試験装置
US8786268B2 (en) * 2012-06-28 2014-07-22 Linear Technology Corporation Current mode voltage regulator with auto-compensation
CN102981111B (zh) * 2012-12-24 2014-11-26 宁波电业局 干空式电抗器匝间绝缘检测仪
US9146569B2 (en) * 2013-03-13 2015-09-29 Macronix International Co., Ltd. Low drop out regulator and current trimming device
JP2015005054A (ja) * 2013-06-19 2015-01-08 セイコーインスツル株式会社 ボルテージレギュレータ
JP6211916B2 (ja) * 2013-12-24 2017-10-11 エスアイアイ・セミコンダクタ株式会社 スイッチングレギュレータ
JP6321967B2 (ja) * 2014-01-17 2018-05-09 ルネサスエレクトロニクス株式会社 半導体集積回路およびその動作方法
JP6271285B2 (ja) * 2014-02-18 2018-01-31 新電元工業株式会社 半導体試験装置
JP6097797B2 (ja) * 2015-08-07 2017-03-15 力晶科技股▲ふん▼有限公司 半導体装置、テスタ装置及びテスタシステム
CN106707140B (zh) * 2017-01-04 2019-10-22 上海东软载波微电子有限公司 Lcd驱动芯片的测试系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003143836A (ja) * 2001-07-16 2003-05-16 Matsushita Electric Ind Co Ltd 電源装置
JP2005346430A (ja) * 2004-06-03 2005-12-15 Sony Corp 定電圧電源回路
JP2009074850A (ja) * 2007-09-19 2009-04-09 Denso Corp 半導体集積回路の検査方法及び半導体集積回路
JP2017174116A (ja) * 2016-03-23 2017-09-28 エスアイアイ・セミコンダクタ株式会社 ボルテージレギュレータ
JP2017175073A (ja) * 2016-03-25 2017-09-28 エスアイアイ・セミコンダクタ株式会社 半導体集積回路

Also Published As

Publication number Publication date
CN110928348A (zh) 2020-03-27
CN110928348B (zh) 2023-03-17
JP7115939B2 (ja) 2022-08-09
US10915126B2 (en) 2021-02-09
US20200073424A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
CN110928348B (zh) 电压调节器和电压调节器的测试方法
US7667442B2 (en) Constant voltage power supply circuit and method of testing the same
JP4630764B2 (ja) ハイ側のスイッチにおいて正および負のピークインダクタ電流を損失無くセンスする方法及び装置
KR101771725B1 (ko) 볼티지 레귤레이터
WO2006090752A1 (ja) 電流測定装置、試験装置、電流測定方法、および試験方法
US8354835B2 (en) Wide range current sensing
KR970008141B1 (ko) 반도체장치의 번인회로
KR102275666B1 (ko) 전압 레귤레이터
JP5987819B2 (ja) 電源装置
JP5186925B2 (ja) 半導体装置及びその製造方法
JP2013152181A (ja) 電流検出回路
KR102506362B1 (ko) 동작 속도에 기반하여 제어되는 조정기를 구비한 집적 회로
JP7289973B2 (ja) ボルテージレギュレータ
KR100985759B1 (ko) 반도체 메모리 장치의 입력 버퍼 회로
CN109387768B (zh) 参考电压电路的测试系统及测试方法
JP5608328B2 (ja) 定電流回路、及び試験装置
KR100364428B1 (ko) 고전압 레귤레이션 회로
JP4855913B2 (ja) ボルテージレギュレータ
JP2009140957A (ja) レギュレータ回路、集積回路、及び集積回路のテスト方法
JP2022044133A (ja) 電源用半導体集積回路
JP4774879B2 (ja) 電源制御集積回路装置の試験方法および試験回路
JP7126931B2 (ja) 過熱保護回路及び半導体装置
US20220050486A1 (en) Constant voltage circuit
JP5098889B2 (ja) 半導体集積回路装置及び半導体集積回路装置の試験方法
JP2014211360A (ja) 半導体試験装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220728

R150 Certificate of patent or registration of utility model

Ref document number: 7115939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350