JP2020003156A - 冷凍サイクル装置およびそれを備えた液体加熱装置 - Google Patents

冷凍サイクル装置およびそれを備えた液体加熱装置 Download PDF

Info

Publication number
JP2020003156A
JP2020003156A JP2018124064A JP2018124064A JP2020003156A JP 2020003156 A JP2020003156 A JP 2020003156A JP 2018124064 A JP2018124064 A JP 2018124064A JP 2018124064 A JP2018124064 A JP 2018124064A JP 2020003156 A JP2020003156 A JP 2020003156A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
operation mode
side heat
expansion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018124064A
Other languages
English (en)
Other versions
JP7038277B2 (ja
Inventor
俊二 森脇
Shunji Moriwaki
俊二 森脇
由樹 山岡
Yoshiki Yamaoka
由樹 山岡
常子 今川
Tsuneko Imagawa
常子 今川
繁男 青山
Shigeo Aoyama
繁男 青山
和人 中谷
Kazuto Nakatani
和人 中谷
町田 和彦
Kazuhiko Machida
和彦 町田
一貴 小石原
Kazutaka Koishihara
一貴 小石原
季セン 徐
Ji Sen Xu
季セン 徐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2018124064A priority Critical patent/JP7038277B2/ja
Publication of JP2020003156A publication Critical patent/JP2020003156A/ja
Application granted granted Critical
Publication of JP7038277B2 publication Critical patent/JP7038277B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

【課題】熱源側熱交換器の除霜運転実行終了後の利用側熱交換器における加熱運転の実行時においても、利用側熱交換器における加熱運転時の加熱能力の低下を抑制できる冷凍サイクル装置およびそれを備えた液体加熱装置を提供すること。【解決手段】圧縮機構21の圧縮回転要素21bから吐出された冷媒により、利用側熱交換器22において利用側熱媒体を加熱する加熱運転モードと、圧縮回転要素21bから吐出された冷媒により、熱源側熱交換器24の除霜を行う除霜運転モードと、有し、除霜運転モードの実行終了後に実行される加熱運転モードにおいて、加熱運転モードの実行開始時より少なくとも所定期間は、第1膨張装置23を流れる冷媒流量が、第2膨張装置31を流れる冷媒流量より少なくなるそれぞれの所定開度に、制御装置4は、第1膨張装置23の開度と第2膨張装置31の開度とを設定している冷凍サイクル装置。【選択図】図1

Description

本発明は、冷凍サイクル装置およびそれを備えた液体加熱装置に関するものである。
従来、この種の冷凍サイクル装置として、二段圧縮機講を備え、利用側熱交換器の下流側から冷媒の一部を膨張させて、二段圧縮機講の圧縮途中に中間冷媒をバイパスする冷凍サイクル装置が開示されている(例えば、特許文献1参照)。
図4は、特許文献1に記載された従来の冷凍サイクル装置を示すものである。
図4に示すように、冷凍サイクル装置100は、冷媒を循環させる冷媒回路110と、後段側インジェクション管120とを備えている。冷媒回路110は、直列に接続された複数の圧縮回転要素を有する圧縮機構211、熱源側熱交換器112、膨張機構113a、113b、利用側熱交換器114が配管により環状に接続されるとともに、加熱運転と冷却運転を切り換えるための切替機構115で構成されている。
また、前段側の圧縮回転要素から吐出された冷媒を後段側の圧縮回転要素に吸入させるための中間冷媒管116に設けられ、前段側の圧縮回転要素から吐出されて後段側の圧縮回転要素に吸入される冷媒の冷却器として機能する中間冷却器117と、中間冷却器117をバイパスするように中間冷媒管116に接続されている中間冷却器バイパス管130が設けられている。
後段側インジェクション管120は、熱源側熱交換器112と利用側熱交換器114の間で冷媒回路110から分岐し、分岐した冷媒が圧縮機構211の後段側の圧縮回転要素に戻るように連通されている。また、インジェクション管120には、開度制御が可能な後段側インジェクション弁121が設けられている。
さらに、冷凍サイクル装置100は、切替機構115を冷却運転状態に切り換えることで熱源側熱交換器112の除霜を行う逆サイクル除霜運転を行う際に、熱源側熱交換器112、中間冷却器117及び後段側インジェクション管120に冷媒を流し、中間冷却器117の除霜が完了したことを検知した後に、中間冷却器バイパス管130を用いて、中間冷却器117に冷媒が流れないようにするとともに、後段側インジェクション弁121の開度が大きくなるように制御している。
特開2009-133581号公報
しかしながら、前記従来の冷凍サイクル装置においては、除霜能力による機器の性能低下は抑制できるが、熱源側熱交換器の除霜運転終了後の加熱運転開始時の運転制御については、一切開示していない。
本発明は、前記従来の課題を解決するもので、熱源側熱交換器の除霜運転実行終了後の利用側熱交換器における加熱運転の実行時においても、利用側熱交換器における加熱運転時の加熱能力の低下を抑制できる冷凍サイクル装置およびそれを備えた液体加熱装置を提供することを目的とする。
前記従来の課題を解決するために、本発明の冷凍サイクル装置は、圧縮回転要素から構成される圧縮機構、前記圧縮回転要素から吐出された冷媒により利用側熱媒体を加熱する利用側熱交換器、中間熱交換器、第1膨張装置、熱源側熱交換器が配管で順次接続されて形成される主冷媒回路と、前記利用側熱交換器から前記第1膨張装置までの間の前記配管から分岐され、第2膨張装置により減圧された後に、前記中間熱交換器で前記主冷媒回路を流れる冷媒と熱交換され、前記圧縮回転要素の圧縮途中の冷媒に合流されるバイパス冷媒回路と、制御装置と、を備え、前記圧縮回転要素から吐出された冷媒により、前記利用側熱交換器において前記利用側熱媒体を加熱する加熱運転モードと、前記圧縮回転要素から吐出された冷媒により、前記熱源側熱交換器の除霜を行う除霜運転モードと、有し、前記除霜運転モードの実行終了後に実行される前記加熱運転モードにおいて、前記加熱運転モードの実行開始時より少なくとも所定期間は、前記第1膨張装置を流れる冷媒流量が、前記第2膨張装置を流れる冷媒流量より少なくなるそれぞれの所定開度に、前記制御装置は、前記第1膨張装置の開度と前記第2膨張装置の開度とを設定していることを特徴とするものである。
これにより、第1膨張手段を流れる冷媒流量を少なくし、かつ、第2膨張手段を流れる冷媒流量を多くすることで、主冷媒回路における第1膨張手段による減圧量を減少させることができるため、熱源側熱交換器を流れる冷媒の圧力低下を抑制できるとともに、圧縮回転要素の圧縮途中の冷媒に合流されるバイパス冷媒回路の冷媒の圧力を上昇させて、圧縮回転要素の圧縮途中の冷媒に合流される冷媒の密度を増加させることができるため、利用側熱交換器を流れる冷媒流量を十分に確保することができる。
本発明によれば、熱源側熱交換器の除霜運転実行終了後の利用側熱交換器における加熱運転の実行時においても、利用側熱交換器における加熱運転時の加熱能力の低下を抑制できる冷凍サイクル装置およびそれを備えた液体加熱装置を提供できる。
本発明の実施の形態1における液体加熱装置の構成図 同冷凍サイクル装置の除霜運転モード実行後の加熱運転モード実行時のモリエル線図 同冷凍サイクル装置の除霜運転モード実行後の加熱運転モード実行制御のフローチャート 従来の冷凍サイクル装置の構成図
第1の発明は、圧縮回転要素から構成される圧縮機構、前記圧縮回転要素から吐出された冷媒により利用側熱媒体を加熱する利用側熱交換器、中間熱交換器、第1膨張装置、熱源側熱交換器が配管で順次接続されて形成される主冷媒回路と、前記利用側熱交換器から前記第1膨張装置までの間の前記配管から分岐され、第2膨張装置により減圧された後に、前記中間熱交換器で前記主冷媒回路を流れる冷媒と熱交換され、前記圧縮回転要素の圧縮途中の冷媒に合流されるバイパス冷媒回路と、制御装置と、を備え、前記圧縮回転要素から吐出された冷媒により、前記利用側熱交換器において前記利用側熱媒体を加熱する加熱運転モードと、前記圧縮回転要素から吐出された冷媒により、前記熱源側熱交換器の除霜を行う除霜運転モードと、有し、前記除霜運転モードの実行終了後に実行される前記加熱運転モードにおいて、前記加熱運転モードの実行開始時より少なくとも所定期間は、前記第1膨張装置を流れる冷媒流量が、前記第2膨張装置を流れる冷媒流量より少なくなるそれぞれの所定開度に、前記制御装置は、前記第1膨張装置の開度と前記第2膨張装置の開度とを設定していることを特徴とする冷凍サイクル装置である。
これにより、第1膨張手段を流れる冷媒流量を少なくすることで、蒸発器の冷媒流量が低下して、蒸発器出口の冷媒のエンタルピーが増大し、アキュムレーターを備えている場合には、アキュムレーターに滞留する冷媒の気化が促進される。
さらに、第2膨張手段を流れる冷媒量を多くすることで、主冷媒回路における第1膨張手段による減圧量を減少させることができるため、熱源側熱交換器を流れる冷媒の圧力低下を抑制できるとともに、圧縮回転要素の圧縮途中の冷媒に合流されるバイパス冷媒回路の冷媒の圧力を上昇させて、圧縮回転要素の圧縮途中の冷媒に合流される冷媒の密度を増加させることができるため、利用側熱交換器を流れる冷媒流量を十分に確保することができる。
したがって、着霜量が多い高湿度の外気温度条件下における除霜運転モード実行後の加熱運転モードにおいても、加熱能力を迅速に高めることでき、加熱運転の加熱能力の低下を抑制できる冷凍サイクル装置を提供できる。
第2の発明は、特に、第1の発明において、前記主冷媒回路の低圧側の冷媒の温度、または、前記主冷媒回路の低圧側の冷媒の圧力、を検出する低圧側検出部を備え、前記制御装置は、前記加熱運転モードの実行開始時より、前記低圧側検出部の検出値が所定値以下の期間は、前記第1膨張装置の開度と前記第2膨張装置の開度とを、前記第1膨張装置を流れる冷媒流量が、前記第2膨張装置を流れる冷媒流量より少なくなる開度に設定していることを特徴とするものである。
これにより、熱源側熱交換器において吸熱できる熱量が少ない場合に、バイパス冷媒回路を流れる冷媒流量は主冷媒回路を流れる冷媒流量より多くなり、かつ、バイパス冷媒回路を流れる冷媒は、熱源側熱交換器から圧縮機構へ吸入される主冷媒回路の冷媒よりも圧力が高いため冷媒密度も高くなり、バイパス冷媒回路を流れる冷媒の質量流量も増加するため、圧縮機構から吐出されて利用側熱交換器へ流入する全冷媒流量が増加するだけでなく、利用側熱交換器における加熱能力を高めることができる。
なお、アキュムレーターを備えている場合には、アキュムレーター内に滞留した液冷媒が蒸発し、主冷媒回路を循環すると、主冷媒回路の低圧側の圧力が上昇するので、主冷媒回路の低圧側の圧力が予め設定した所定値まで上昇した場合には、アキュムレーターの滞留液冷媒がなくなったことが判断でき、その場合には、通常の加熱運転モードにおける第1膨張装置の開度と第2膨張装置の開度に切り替えることができる。
第3の発明は、特に、第1の発明において、前記熱源側熱交換器を通過する空気の温度を検出する温度サーミスタを備え、前記制御装置は、前記加熱運転モードの実行開始時より所定時間以内は、前記第1膨張装置の開度と前記第2膨張装置の開度とを、前記第1膨張装置を流れる冷媒流量が、前記第2膨張装置を流れる冷媒流量より少なくなる開度に設定しているものである。
これにより、熱源側熱交換器において吸熱できる熱量が少ない場合に、バイパス冷媒回路を流れる冷媒流量は主冷媒回路を流れる冷媒流量より多くなり、かつ、バイパス冷媒回路を流れる冷媒は、熱源側熱交換器から圧縮機構へ吸入される主冷媒回路の冷媒よりも圧力が高いため冷媒密度も高くなり、バイパス冷媒回路を流れる冷媒の質量流量も増加するため、圧縮機構から吐出されて利用側熱交換器へ流入する全冷媒流量が増加するだけでなく、利用側熱交換器における加熱能力を高めることができる。
なお、アキュムレーターを備えている場合には、アキュムレーター内に滞留した液冷媒が蒸発し、主冷媒回路を循環すると、主冷媒回路の低圧側の圧力が上昇するので、加熱運転モードの実行開始時より予め設定した所定時間経過後には、アキュムレーターの滞留液冷媒がなくなったと推測でき、その場合には、通常の加熱運転モードにおける第1膨張装置の開度と第2膨張装置の開度に切り替えることができる。
第4の発明は、特に、第1〜第3のいずれかの発明において、前記除霜運転モードにおいて、前記圧縮回転要素から吐出された冷媒は、前記利用側熱交換器、前記第1膨張装置、前記熱源側熱交換器の順に流れることを特徴とするのである。
これにより、除霜運転モード実行中においても、利用側熱交換器に高温の吐出冷媒が流れるので、利用側熱交換器の温度低下が抑制され、除霜運転モードの実行終了後に実行される加熱運転モードにおいて、利用側熱交換器の温度上昇を促進でき、着霜量が多い高湿度の外気温度条件下における除霜運転モード実行後の加熱運転モードにおいても、加熱能力を早く高めることできる。
第5の発明は、特に、第1〜第4のいずれかの発明において、前記冷媒として、二酸化炭素を用いることを特徴とするものである。
これにより、利用側熱交換器において、冷媒で利用側熱媒体を加熱したときの、利用側熱媒体の高温化を実現できる。
第6の発明は、第1〜第5のいずれかの発明の冷凍サイクル装置と、搬送装置によって前記利用側熱媒体を循環させる利用側熱媒体回路とを備えたことを特徴とする液体加熱装置である。
これにより、冷媒で利用側熱媒体を加熱したときの、利用側熱媒体の高温化を実現できる液体加熱装置を提供できる。
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
(実施の形態1)
図1は、本発明の第1の実施の形態における液体加熱装置の構成図を示すものである。液体加熱装置は、冷凍サイクル装置1と、利用側熱媒体回路5と、液体加熱装置の運転動作を制御する制御装置4とから構成されている
また、冷凍サイクル装置1は、主冷媒回路2、バイパス冷媒回路3とから構成されている。
主冷媒回路2は、圧縮機構21、放熱器(利用側熱交換器)22、冷却用熱交換器(中間熱交換器)26、主膨張弁(第1膨張装置)23、蒸発器(熱源側熱交換器)24が、配管16で順次接続されて形成され、冷媒として二酸化炭素(CO2)を用いている。
なお、冷媒としては、二酸化炭素を用いるのが最適だが、例えば、R407C等の非共沸混合冷媒、R410A等の擬似共沸混合冷媒、または、R32等の単一冷媒を用いることもできる。
冷媒を圧縮する圧縮機構21は、低段側圧縮回転要素21aと高段側圧縮回転要素21bとで構成される。放熱器22は、高段側圧縮回転要素21bから吐出された冷媒により利用側熱媒体を加熱する。なお、圧縮機構21を構成する低段側圧縮回転要素21aと高段側圧縮回転要素21bとの容積比は一定で、駆動軸(図示せず)を共通化させ、1つの容器内に配置した1台の圧縮機で構成されている。
なお、本実施の形態では、圧縮回転要素が、低段側圧縮回転要素21aと高段側圧縮回転要素21bとで構成される圧縮機構21を用いて説明するが、単一の圧縮回転要素においても適用でき、単一の圧縮回転要素の場合には、バイパス冷媒回路3からの冷媒が合流する位置を圧縮回転要素の圧縮途中とし、バイパス冷媒回路3からの冷媒が合流する位置までの圧縮回転要素を低段側圧縮回転要素21aとし、バイパス冷媒回路3からの冷媒が合流する位置以降の圧縮回転要素を高段側圧縮回転要素21bとして適用することができる。
また、低段側圧縮回転要素21aと高段側圧縮回転要素21bとが、それぞれが独立した2台の圧縮機から構成されている圧縮機構21の構成でもよい。
バイパス冷媒回路3は、放熱器22から主膨張弁23までの間の配管16から分岐され、低段側圧縮回転要素21aと高段側圧縮回転要素21bとの間の配管16に接続されている。
バイパス冷媒回路3には、バイパス膨張弁(第2膨張装置)31を設けられている。放熱器22を通過後の一部の高圧冷媒、又は、冷却用熱交換器26を通過後の一部の高圧冷媒は、バイパス膨張弁31により減圧されて中間圧冷媒となった後に、冷却用熱交換器26で主冷媒回路2を流れる高圧冷媒と熱交換され、低段側圧縮回転要素21aと高段側圧縮回転要素21bとの間の冷媒と合流される。
また、蒸発器24の出口側と圧縮機構21の吸入側との間には、気液分離を行うアキュムレーター25が設けられている。また、主冷媒回路2には、主冷媒回路2において、圧縮機構21から吐出された高圧冷媒を放熱器22側に流すか、あるいは、蒸発器24側に流すかの流路を切り換えるための四方弁27が設けられている。
利用側熱媒体回路5においては、放熱器22に、熱媒体戻り管53と熱媒体往き管54とが接続されている。熱媒体戻り管53には、搬送ポンプ(搬送装置)55が設けられている。この搬送ポンプ55が動作することにより、熱媒体戻り管53を通じて放熱器22に利用側熱媒体が供給され、放熱器22で加熱された利用側熱媒体が、熱媒体往き管54から、例えば、床暖房等の暖房機(図示せず)や貯湯タンク(図示せず)に供給される。
これにより、暖房や給湯が行われる。その後、利用側熱媒体は、熱媒体戻り管53を介して再び放熱器22戻る構成となっている。なお、利用側熱媒体としては、水または不凍液が用いられている。
また、主冷媒回路2の主膨張弁23の下流側と圧縮機構21の吸入側とを接続する主冷媒回路2の低圧側の配管16には、低圧側検出部として、低圧側の蒸発圧力を検出する圧力センサー51が設けられている。
なお、低圧側検出部としては、主冷媒回路2の主膨張弁23の下流側と圧縮機構21の吸入側とを接続を接続する主冷媒回路2の低圧側の配管16に設けられ、低圧側の気液二層状態の冷媒の蒸発温度を検出する蒸発温度サーミスタ(図示せず)を用いてもよい。
また、蒸発器24の周辺には温度サーミスタ28が設けられており、ファン29が駆動することで、蒸発器24に熱を供給する空気の温度を、温度サーミスタ28を用いて検出している。
また、本実施の形態における冷凍サイクル装置1においては、通常運転モードであり、搬送ポンプ55を動作させ、利用側熱媒体を利用側熱媒体回路5において放熱器22を介して循環させ、圧縮機構21の高段側圧縮回転要素21bから吐出された冷媒により、放熱器22で循環する利用側熱媒体を加熱する加熱運転モードと、圧縮機構21の高段側圧縮回転要素21bから吐出された冷媒により、蒸発器24の除霜を行う除霜運転モードとを有している。
除霜運転モードは、圧力センサー51の検出圧力、または、蒸発温度サーミスタの検出温度がそれぞれ第1所定値以下となった場合や、あるいは、温度サーミスタ28が検出する蒸発器24に熱を供給する空気の温度が第1所定値以下で、その状態で加熱運転モードの実行時間が、所定時間以上継続した場合には、蒸発器24が着霜していると判断し、圧縮機構21の高段側圧縮回転要素21bから吐出された冷媒の熱により、蒸発器24の着霜している霜を融解して除去するものである。
図1において、通常の加熱運転モード実行時の冷媒の流れ方向を実線矢印で示している。以下、通常の加熱運転モード実行時における冷媒の状態変化について説明する。
圧縮機構21から吐出された高圧冷媒は、四方弁27を介して放熱器22に流入し、放熱器22を通過する利用側熱媒体に放熱する。放熱器22から流出した高圧冷媒は、冷却用熱交換器26側とバイパス膨張弁31側とに分配される。冷却用熱交換器26に流入した高圧冷媒は、バイパス膨張弁31で減圧された中間圧冷媒によって冷却される。
主膨張弁23側に分配された高圧冷媒は、主膨張弁23によって減圧されて膨張した後に、蒸発器24に流入する。蒸発器24に流入した低圧冷媒は、蒸発器24において空気から吸熱する。
一方、バイパス膨張弁31側に分配された高圧冷媒は、バイパス膨張弁31によって減圧されて膨張した後に、冷却用熱交換器26に流入する。冷却用熱交換器26に流入した中間圧冷媒は、放熱器22から流出した高圧冷媒によって加熱される。その後、冷却用熱交換器26から流出した中間圧冷媒は、圧縮機構21の低段側圧縮回転要素21aから吐出された中間圧冷媒と合流し、高段側圧縮回転要素21bに吸入される。
本実施の形態の冷凍サイクル装置1の構成は、加熱運転時に高圧冷媒の一部を、冷却用熱交換器26を経由してバイパスさせることにより、低段側圧縮回転要素21aの圧縮動力を低減させるとともに、圧縮機構21の高段側圧縮回転要素21bの吸込み冷媒のエンタルピーが低下することによる冷媒密度の増大で、放熱器22を流れる冷媒流量を増加させて、加熱能力または成績係数を向上させるためのものである。
しかし、このように加熱運転モードを実行させると、空気中の水分等が蒸発器24で氷結して着霜し、蒸発器24の伝熱性能低下による加熱能力低下や成績係数の低下が生じる。
このため、圧力センサー51の検出圧力、または、蒸発温度サーミスタの検出温度がそれぞれ第1所定値以下となった場合や、あるいは、温度サーミスタ28が検出する蒸発器24に熱を供給する空気の温度が第1所定値以下で、その状態で加熱運転モードの実行時間が、所定時間以上継続した場合には、蒸発器24が着霜していると判断し、圧縮機構21の高段側圧縮回転要素21bから吐出された冷媒の熱により、蒸発器24の着霜している霜を融解して除去する除霜運転モードを実行する必要がある。
除霜運転モードの方式の代表的なものとしては、加熱運転モードの実行時に対して四方弁27が連通する流路を切り替えて、冷媒の循環方向を逆転させ、圧縮機構21から吐出された高温高圧の冷媒を蒸発器24に流入させて、その凝縮熱で蒸発器24の霜を融解するリバースサイクル除霜方式がある。
一方、四方弁27を切り替えずに、加熱運転モード時と四方弁27が連通する流路は同様とし、圧縮機構21から吐出された高温高圧の冷媒を放熱器22に流入させ、主膨張弁23へと流し、主膨張弁23の開度を大きくして、圧縮機構21から吐出された高温高圧のガス冷媒を減圧せずに、主膨張弁23を通過させ、その後、蒸発器24に流入させて、蒸発器24の霜を融解するホットガス除霜方式もある。
本実施の形態においては、ホットガス除霜方式を用いて、除霜運転モードを実行するが、その場合の冷媒の状態変化について、図1を用いて説明する。
図1に記載の破線矢印は、ホットガス除霜方式を用いて、除霜運転モードを実行した場合の冷媒の流れ方向を示している。
圧縮機構21から吐出された高圧冷媒は四方弁27を介して放熱器22に流入し、放熱器22から流出した冷媒は、主膨張弁23を通過後、蒸発器24に流入し、堆積した霜に放熱して霜を融解する。蒸発器24で放熱し流出した気液二相冷媒は、アキュムレーター25に入り、ここで気液分離されて気相冷媒が、再び圧縮機構21に戻る。
この場合、除霜運転モード実行中においても、放熱器22に高温の吐出冷媒が流れるので、放熱器22の温度低下が抑制されて、除霜運転モード実行後に開始される加熱運転モードにおける加熱能力の上昇が、逆サイクル除霜運転と比較して速くなる。
また、除霜効率を向上させるために、放熱器22を流れる利用側熱媒体の循環、すなわち、搬送ポンプ55の運転動作を停止したり、または、搬送ポンプ55の運転回転数を低下させ利用側熱媒体の放熱器22を流れる流量を少なくして、利用側熱媒体に放熱する熱量を低減したり、蒸発器24に流入する冷媒の温度低下を抑制するために、主膨張弁23の開度を大きく開けて減圧量を小さくしたりして運転している。
このように除霜運転モードは、加熱運転モードを安定的に継続するためには必要不可欠ではあるが、一方で、除霜運転モード実行中においては、蒸発器24では冷媒を蒸発するための吸熱量がないため、蒸発器24で凝縮した液相の冷媒は、アキュムレーター25内に滞留してしまう。
その結果、除霜運転モード実行終了後の加熱運転モードの実行開始時においては、圧縮機構21の吸入圧力が低下し、放熱器22を流れる冷媒流量が十分に確保されないため、加熱能力が低下してしまう。この加熱能力に伴って生じる利用側熱媒体の温度低下により、利用側熱媒体による暖房能力や成績係数が低下するなどの課題が生じる。
これらの課題を解決するためには、除霜運転モード実行終了後の加熱運転モードの実行開始時において、除霜運転モード実行中にアキュムレーター25に滞留した液相の冷媒を、短時間で蒸発させるとともに、いち早く放熱器22に流れる冷媒流量を十分に確保することが必要となる。
そこで、本実施の形態では、制御装置4は、除霜運転モード実行終了後に、搬送ポンプ55が動作を開始する加熱運転モードの実行開始時において、主膨張弁23側を流れる冷媒流量がバイパス膨張弁31側を流れる冷媒流量より少なくなるように、主膨張弁23とバイパス膨張弁31の弁開度を調整している。
これにより、蒸発器24の出口の冷媒状態は、図2に示すように、a点からa′点のようにエンタルピーが増加するので、アキュムレーター25内に高エンタルピーの冷媒が流入する。よって、アキュムレーター25内で冷媒が混合されることにより、滞留した液相冷媒の蒸発が促進され、短時間で滞留冷媒が減少する。
また、主膨張弁23側を流れる冷媒流量を減少させることにより、バイパス冷媒回路3に流れる冷媒流量が増加し、図2に示すようの、b点からb′点のように圧縮機構21の高段側圧縮回転要素21bの吸入圧力が上昇し、冷媒密度が増大する。よって、高段側圧縮回転要素21bから吐出される冷媒流量が増加するとともに、図2に示すように、c点からc′点のように吐出圧力が上昇するので、放熱器22を流れる利用側熱媒体との温度差が拡大する。
このように、制御装置4が、主膨張弁23側を流れる冷媒流量とバイパス膨張弁31側を流れる冷媒流量との流量比率を適切に調整、すなわち、主膨張弁23の弁開度とバイパス膨張弁31の弁開度とを適切に調整することによって、蒸発器24出口の冷媒のエンタルピーが増加し、液冷媒の蒸発が促進されるとともに、高段側圧縮回転要素21bの吸入冷媒密度が増大することで、加熱能力が上昇するので、成績係数の低下が抑制された状態で、除霜運転モード実行終了後に実行される加熱運転モードにおける加熱能力をいち早く上昇させることができる。
以下、除霜運転モード実行終了後に実行される加熱運転モードにおける主膨張弁23およびバイパス膨張弁31の弁開度の動作について、図3に示すフローチャートに基づいて説明する。
まず、制御装置4は、除霜運転モードの実行により、蒸発器24に着霜している霜を融解し、その後、除霜運転モードの実行を終了する(ステップS1)。
そして、引き継続き圧縮機構21が運転している状態で、主膨張弁23の弁開度とバイパス膨張弁31の弁開度を、それぞれ予め制御装置4に設定されているOmとObとなるように設定する(ステップS2)。
なお、主膨張弁23の弁開度Omとバイパス膨張弁31の弁開度Obは、図1に示すように、主膨張弁23を流れる冷媒流量Gmが、バイパス膨張弁31を流れる冷媒流量Gbより少なくなる開度である(ステップS2)。
なお、除霜運転モード実行時には、圧縮機構21から吐出された高温高圧の冷媒を、主膨張弁23の弁開度を略最大の開度に、かつ、バイパス膨張弁31の弁開度を略最小の開度とし、圧縮機構21から吐出された高温高圧のガス冷媒を蒸発器24に流入させている。
したがって、ステップS2の搬送ポンプ55が動作を開始する加熱運転モードの実行開始時において、制御装置4は、主膨張弁23の弁開度は閉方向に動作させ、バイパス膨張弁31の弁開度は開方向に動作させることになる。
なお、主膨張弁23の弁開度とバイパス膨張弁31の弁開度を、それぞれ予め制御装置4に設定されているOmとObとなるように設定した直後に、搬送ポンプ55を動作させて、加熱運転モードの実行を開始してもよい。
次に、制御装置4は、低圧側検出部である圧力センサー51で、主冷媒回路2の低圧側圧力Psを検出する(ステップS3)。
そして、圧力センサー51で、主冷媒回路2の低圧側圧力Ps、すなわち、圧縮機構21の吸入圧力(低段側圧縮回転要素21aの吸入圧力)を検出し、その検出値が、予め設定された第2所定値(所定圧力Pst)以下か否かを監視しながら判断する(ステップS4)。
ステップS4でYESの場合、すなわち、吸入圧力Psが第2所定値であるPst以下の場合には、主膨張弁23の弁開度とバイパス膨張弁31の弁開度を、それぞれ予め制御装置4に設定されているOmとObのままとする。
すなわち、主膨張弁23を流れる冷媒流量Gmが、バイパス膨張弁31を流れる冷媒流量Gbより少なくなるようにする状態を継続する。
一方、ステップS4でNOの場合、すなわち、吸入圧力Psが第2所定値であるPstより高い場合は、主膨張弁23の弁開度とバイパス膨張弁31の弁開度を、それぞれ予め制御装置4に設定されているOmとObとする制御を解除し、通常の加熱運転モードにおける主膨張弁23の弁開度とバイパス膨張弁31の弁開度の動作制御に移行し、加熱運転モードの実行を継続する。
なお、低圧側検出部としては、圧力センサー51の代わりに、主冷媒回路2の主膨張弁23の下流側と圧縮機構21の吸入側とを接続を接続する主冷媒回路2の低圧側の配管16に設けられ、低圧側の気液二層状態の冷媒の蒸発温度を検出する蒸発温度サーミスタ(図示せず)を用いてもよい。
この場合、圧力センサー51を用いた図3に示すフローチャートと同様に、蒸発温度サーミスタの検出値が第2所定値以下の期間は、主膨張弁23の弁開度とバイパス膨張弁31の弁開度とを、主膨張弁23を流れる冷媒流量が、バイパス膨張弁31を流れる冷媒流量より少なくなる開度に設定することとなる。
また、蒸発器24の周辺には温度サーミスタ28が設けられており、ファン29が駆動することで、蒸発器24に熱を供給する空気の温度を、温度サーミスタ28を用いて検出している。
そして、低圧側検出部の代わりにその温度サーミスタ28を用いて、制御装置4は、加熱運転モードの実行開始時より所定時間以内は、主膨張弁23の弁開度とバイパス膨張弁31の弁開度とを、主膨張弁23を流れる冷媒流量が、バイパス膨張弁31を流れる冷媒流量より少なくなる開度に設定するようにしてもよい。
この場合、加熱運転モードの実行開始時より所定時間を経過した後には、通常の加熱運転モードにおける主膨張弁23の弁開度とバイパス膨張弁31の弁開度の動作制御に移行し、加熱運転モードの実行を継続することとなる。
なお、本実施の形態では、主膨張弁23の弁開度Omとバイパス膨張弁31の弁開度Obとを、制御装置4に予め設定しておく構成としたが、弁開度Omと弁開度Obは、実際に流量を検出して主冷媒流量Gm<バイパス冷媒流量Gbとなるように制御してもよい。
その場合の流量検出装置(図示せず)としては、例えば、主膨張弁23側の冷媒回路とバイパス路にそれぞれ流量計を設けてもよいし、各膨張弁の出入口の圧力差と開度の関数から、それぞれの冷媒流量を算出してもよい。
なお、バイパス冷媒回路3は、必ずしも放熱器22と冷却用熱交換器26の間で主冷媒回路2から分岐している必要はなく、冷却用熱交換器26と主膨張弁23の間で主冷媒回路2から分岐していてもよい。
さらに、本実施の形態の主膨張弁23およびバイパス膨張弁31は、必ずしも膨張弁である必要はなく、膨張する冷媒から動力を回収する膨張機でもよい。この場合、例えば、膨張機と連結された発電機によって負荷を変化させることにより、膨張機の回転数を制御すればよい。
以上のように、本発明にかかる冷凍サイクル装置は、中間熱交換器を備えた主冷媒回路とバイパス冷媒回路からなり、熱源側熱交換器の除霜運転実行終了後の加熱運転の実行時においても、加熱運転の加熱能力の低下を抑制できるので、冷凍サイクル装置を用いた冷凍、空調、給湯、暖房機器等に有用である。
1 冷凍サイクル装置
2 主冷媒回路
3 バイパス冷媒回路
4 制御装置
5 利用側熱媒体回路
16 配管
21 圧縮機構
21a 低段側圧縮回転要素
21b 高段側圧縮回転要素
22 放熱器(利用側熱交換器)
23 主膨張弁(第1膨張装置)
24 蒸発器(熱源側熱交換器)
25 アキュムレーター
26 冷却用熱交換器(中間熱交換器)
28 温度サーミスタ
29 ファン
31 バイパス膨張弁(第2膨張装置)
51 圧力センサー(低圧側検出部)
53 熱媒体戻り管
54 熱媒体往き管
55 搬送ポンプ(搬送装置)

Claims (6)

  1. 圧縮回転要素から構成される圧縮機構、前記圧縮回転要素から吐出された冷媒により利用側熱媒体を加熱する利用側熱交換器、中間熱交換器、第1膨張装置、熱源側熱交換器が配管で順次接続されて形成される主冷媒回路と、
    前記利用側熱交換器から前記第1膨張装置までの間の前記配管から分岐され、第2膨張装置により減圧された後に、前記中間熱交換器で前記主冷媒回路を流れる冷媒と熱交換され、前記圧縮回転要素の圧縮途中の冷媒に合流されるバイパス冷媒回路と、
    制御装置と、
    を備え、
    前記圧縮回転要素から吐出された冷媒により、前記利用側熱交換器において前記利用側熱媒体を加熱する加熱運転モードと、
    前記圧縮回転要素から吐出された冷媒により、前記熱源側熱交換器の除霜を行う除霜運転モードと、有し、
    前記除霜運転モードの実行終了後に実行される前記加熱運転モードにおいて、
    前記加熱運転モードの実行開始時より少なくとも所定期間は、
    前記第1膨張装置を流れる冷媒流量が、前記第2膨張装置を流れる冷媒流量より少なくなるそれぞれの所定開度に、
    前記制御装置は、前記第1膨張装置の開度と前記第2膨張装置の開度とを設定していることを特徴とする冷凍サイクル装置。
  2. 前記主冷媒回路の低圧側の冷媒の温度、または、前記主冷媒回路の低圧側の冷媒の圧力、を検出する低圧側検出部を備え、前記制御装置は、前記加熱運転モードの実行開始時より、前記低圧側検出部の検出値が所定値以下の期間は、前記第1膨張装置の開度と前記第2膨張装置の開度とを、前記第1膨張装置を流れる冷媒流量が、前記第2膨張装置を流れる冷媒流量より少なくなる開度に設定していることを特徴とする請求項1に記載の冷凍サイクル装置。
  3. 前記熱源側熱交換器を通過する空気の温度を検出する温度サーミスタを備え、前記制御装置は、前記加熱運転モードの実行開始時より所定時間以内は、前記第1膨張装置の開度と前記第2膨張装置の開度とを、前記第1膨張装置を流れる冷媒流量が、前記第2膨張装置を流れる冷媒流量より少なくなる開度に設定していることを特徴とする請求項1に記載の冷凍サイクル装置。
  4. 前記除霜運転モードにおいて、前記圧縮回転要素から吐出された冷媒は、前記利用側熱交換器、前記第1膨張装置、前記熱源側熱交換器の順に流れることを特徴とする請求項1〜3のいずれか1項に記載の冷凍サイクル装置。
  5. 前記冷媒として、二酸化炭素を用いることを特徴とする請求項1〜4のいずれか1項に記載の冷凍サイクル装置。
  6. 請求項1〜5のいずれか1項に記載の冷凍サイクル装置と、搬送装置によって前記利用側熱媒体を循環させる利用側熱媒体回路とを備えたことを特徴とする液体加熱装置。
JP2018124064A 2018-06-29 2018-06-29 冷凍サイクル装置およびそれを備えた液体加熱装置 Active JP7038277B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018124064A JP7038277B2 (ja) 2018-06-29 2018-06-29 冷凍サイクル装置およびそれを備えた液体加熱装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018124064A JP7038277B2 (ja) 2018-06-29 2018-06-29 冷凍サイクル装置およびそれを備えた液体加熱装置

Publications (2)

Publication Number Publication Date
JP2020003156A true JP2020003156A (ja) 2020-01-09
JP7038277B2 JP7038277B2 (ja) 2022-03-18

Family

ID=69099318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018124064A Active JP7038277B2 (ja) 2018-06-29 2018-06-29 冷凍サイクル装置およびそれを備えた液体加熱装置

Country Status (1)

Country Link
JP (1) JP7038277B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022259287A1 (ja) * 2021-06-07 2022-12-15 三菱電機株式会社 冷凍装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127871A (ja) * 1987-11-11 1989-05-19 Mitsubishi Electric Corp ヒートポンプ装置
JP2006112753A (ja) * 2004-10-18 2006-04-27 Mitsubishi Electric Corp 冷凍空調装置
JP2008138921A (ja) * 2006-11-30 2008-06-19 Mitsubishi Electric Corp 空気調和装置
JP2009133581A (ja) * 2007-11-30 2009-06-18 Daikin Ind Ltd 冷凍装置
JP2009186123A (ja) * 2008-02-08 2009-08-20 Mitsubishi Electric Corp 空気調和装置
JP2011137602A (ja) * 2009-12-28 2011-07-14 Daikin Industries Ltd ヒートポンプユニットおよび暖房システム
JP2014169854A (ja) * 2013-02-08 2014-09-18 Panasonic Corp 冷凍サイクル装置およびそれを備えた温水生成装置
US20150267957A1 (en) * 2014-03-20 2015-09-24 Lg Electronics Inc. Air conditioner and method for controlling an air conditioner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127871A (ja) * 1987-11-11 1989-05-19 Mitsubishi Electric Corp ヒートポンプ装置
JP2006112753A (ja) * 2004-10-18 2006-04-27 Mitsubishi Electric Corp 冷凍空調装置
JP2008138921A (ja) * 2006-11-30 2008-06-19 Mitsubishi Electric Corp 空気調和装置
JP2009133581A (ja) * 2007-11-30 2009-06-18 Daikin Ind Ltd 冷凍装置
JP2009186123A (ja) * 2008-02-08 2009-08-20 Mitsubishi Electric Corp 空気調和装置
JP2011137602A (ja) * 2009-12-28 2011-07-14 Daikin Industries Ltd ヒートポンプユニットおよび暖房システム
JP2014169854A (ja) * 2013-02-08 2014-09-18 Panasonic Corp 冷凍サイクル装置およびそれを備えた温水生成装置
US20150267957A1 (en) * 2014-03-20 2015-09-24 Lg Electronics Inc. Air conditioner and method for controlling an air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022259287A1 (ja) * 2021-06-07 2022-12-15 三菱電機株式会社 冷凍装置

Also Published As

Publication number Publication date
JP7038277B2 (ja) 2022-03-18

Similar Documents

Publication Publication Date Title
KR101873595B1 (ko) 캐스케이드 히트펌프 장치 및 그 구동 방법
JP5430667B2 (ja) ヒートポンプ装置
JP5627713B2 (ja) 空気調和装置
JP4675927B2 (ja) 空気調和装置
JP5984914B2 (ja) 空気調和装置
JP6161005B2 (ja) 冷凍サイクル装置およびそれを備えた温水生成装置
JP5409715B2 (ja) 空気調和装置
JP2009228979A (ja) 空気調和装置
JP5893151B2 (ja) 空調給湯複合システム
JP2013002744A (ja) 冷凍サイクル装置及びそれを備えた温水暖房装置
US20190360725A1 (en) Refrigeration apparatus
JP6057871B2 (ja) ヒートポンプシステム、及び、ヒートポンプ式給湯器
JP2015064169A (ja) 温水生成装置
WO2017037891A1 (ja) 冷凍サイクル装置
JP6433422B2 (ja) 冷凍サイクル装置
JP7038277B2 (ja) 冷凍サイクル装置およびそれを備えた液体加熱装置
JP2017166709A (ja) 冷凍サイクル装置及びそれを備えた温水暖房装置
JP2020115068A (ja) 冷凍サイクル装置及びそれを備えた液体加熱装置
JP7133817B2 (ja) 冷凍サイクル装置およびそれを備えた液体加熱装置
JP6042037B2 (ja) 冷凍サイクル装置
JP7117513B2 (ja) ヒートポンプシステム
JP2010112698A (ja) 冷凍装置
WO2019234986A1 (ja) 冷凍サイクル装置およびそれを備えた液体加熱装置
CN111912140B (zh) 制冷循环装置和具有其的液体加热装置
JP2009115336A (ja) 冷凍装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220131

R151 Written notification of patent or utility model registration

Ref document number: 7038277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151