JP2019206961A - 車両システム - Google Patents

車両システム Download PDF

Info

Publication number
JP2019206961A
JP2019206961A JP2018103810A JP2018103810A JP2019206961A JP 2019206961 A JP2019206961 A JP 2019206961A JP 2018103810 A JP2018103810 A JP 2018103810A JP 2018103810 A JP2018103810 A JP 2018103810A JP 2019206961 A JP2019206961 A JP 2019206961A
Authority
JP
Japan
Prior art keywords
fuel
torque
torque rate
engine
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018103810A
Other languages
English (en)
Inventor
啓介 佐々木
Keisuke Sasaki
啓介 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018103810A priority Critical patent/JP2019206961A/ja
Priority to US16/372,327 priority patent/US11149671B2/en
Priority to CN201910421673.7A priority patent/CN110552802A/zh
Publication of JP2019206961A publication Critical patent/JP2019206961A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0605Throttle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0616Position of fuel or air injector
    • B60W2710/0622Air-fuel ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0616Position of fuel or air injector
    • B60W2710/0627Fuel flow rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • B60W2710/0672Torque change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • B60W2710/085Torque change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/192Power-up or power-down of the driveline, e.g. start up of a cold engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

【課題】この発明は、車両システムに関し、エンジン始動時にエンジントルクの時間増加率(トルクレート)が低いことに起因する空燃比のリッチ化を抑制できるようにする。【解決手段】車両システム10は、吸気ポート26aに燃料を噴射する燃料噴射弁22と、エンジントルクTeの制御のために吸入空気量を制御するスロットル弁30とを含み、車両に搭載された内燃機関20と、車両を制御する制御装置60とを備える。制御装置60は、エンジン始動時の燃料噴射開始サイクルcyc1から始まる複数サイクルを対象として、空燃比を理論空燃比よりもリッチとする燃料増量制御を実行する燃料増量制御部64を含む。燃料増量制御部64は、エンジントルクTeの時間増加率であるトルクレートに相関するトルクレート相関値が低いほど、複数サイクル中の総燃料噴射量を減少させる。【選択図】図5

Description

この発明は、車両システムに関し、より詳細には、内燃機関を搭載する車両を制御する車両システムに関する。
例えば、特許文献1には、エンジン始動時に燃料噴射量を増やす始動増量制御を行うエンジン用燃料噴射制御装置が開示されている。
特開2003−097318号公報
車両に搭載された内燃機関は、エンジン始動後に直ちに所望のエンジントルクを発生させることを要求される場合がある。エンジントルクの制御のためにスロットル弁を用いて吸入空気量が制御される内燃機関では、エンジン始動時にエンジントルクの時間増加率(以下、「トルクレート」と称する)が低いということは、スロットル開度の時間増加率が低くなること(吸入空気量の時間増加率が低くなること)を意味する。このため、エンジントルクの増加期間中には、トルクレートが低いほど、スロットル弁の下流の吸気負圧が高くなり、かつ、吸気負圧が高くなる期間が長くなる。吸気負圧が高くなると、吸気ポートに付着している燃料の霧化が促進される。霧化した燃料は吸気とともに気筒内に流入する。したがって、トルクレートが低いほど、空燃比がより大きくリッチ化し、その結果として排気エミッション性能が低下することが懸念される。
本発明は、上述のような課題に鑑みてなされたものであり、エンジン始動時にエンジントルクの時間増加率(トルクレート)が低いことに起因する空燃比のリッチ化を抑制できるようにした車両システムを提供することを目的とする。
本発明に係る車両システムは、内燃機関と制御装置とを備える。前記内燃機関は、吸気ポートに燃料を噴射する燃料噴射弁と、エンジントルクの制御のために吸入空気量を制御するスロットル弁とを含み、車両に搭載されている。前記制御装置は、前記車両を制御する。
前記制御装置は、エンジン始動時の燃料噴射開始サイクルから始まる複数サイクルを対象として、空燃比を理論空燃比よりもリッチとする燃料増量制御を実行する燃料増量制御部を含む。
前記燃料増量制御部は、エンジントルクの時間増加率であるトルクレートに相関するトルクレート相関値が低いほど、前記複数サイクル中の総燃料噴射量を減少させる。
前記車両システムは、前記車両を駆動する電動機を含むハイブリッド車両システムであってもよい。前記制御装置は、エンジン始動時に前記トルクレートを可変とするトルクレート制御を行うトルクレート制御部を含んでいてもよい。そして、前記トルクレート相関値は、前記トルクレート制御部によって設定される前記トルクレートであってもよい。
前記燃料増量制御部は、前記トルクレート相関値が低いほど、前記複数サイクルの少なくとも1つにおける1サイクル当たりの燃料噴射量を減少させてもよい。
前記燃料増量制御部による前記複数サイクルの少なくとも1つにおける1サイクル当たりの燃料噴射量の減少は、前記空燃比を理論空燃比よりもリーンとするリーン補正を含んでいてもよい。
前記燃料増量制御部は、前記総燃料噴射量の減少のために1サイクル当たりの燃料噴射量を、前記空燃比を理論空燃比よりもリッチとする量の範囲内で制御している場合には、前記トルクレート相関値が低いほど、前記複数サイクルの数をより少なくしてもよい。
前記燃料増量制御部は、前記総燃料噴射量の減少のために1サイクル当たりの燃料噴射量を、前記空燃比を理論空燃比よりもリーンとする量の範囲内で制御している場合には、前記トルクレート相関値が低いほど、前記複数サイクルの数をより多くしてもよい。
本発明によれば、燃料増量制御部は、エンジントルクの時間増加率であるトルクレートに相関するトルクレート相関値が低いほど、エンジン始動時の燃料噴射開始サイクルから始まる複数サイクル中の総燃料噴射量を減少させる。これにより、エンジン始動時に低トルクレート相関値の下で燃料増量が実行されることに起因する空燃比のリッチ化を抑制できるようになる。
本発明の実施の形態1に係る車両システムの構成例を模式的に説明するための図である。 エンジン始動時の燃料増量制御の基本動作を説明するためのグラフである。 トルクレート制御の基本的な動作を説明するためのタイムチャートである。 エンジン始動時にトルクレート制御を実施する際の課題を説明するためのタイムチャートである。 本発明の実施の形態1に係るエンジン始動時の燃料増量制御の一例を説明するためのグラフである。 第3サイクルcyc3の増量係数K(3)とトルクレートとの関係を表した図である。 本発明の実施の形態1に係るエンジン始動時の燃料増量制御に関する処理のルーチンを示すフローチャートである。 本発明の実施の形態1に係る総燃料噴射量QTTLの減量補正手法の第1変形例を説明するためのグラフである。 本発明の実施の形態1に係る総燃料噴射量QTTLの減量補正手法の第2変形例を説明するためのグラフである。 本発明の実施の形態2において用いられる第3サイクルcyc3の増量係数K(3)とトルクレートとの関係を表した図である。 本発明の実施の形態2に係るエンジン始動時の燃料増量制御の一例を説明するためのグラフである。 本発明の実施の形態2に係る総燃料噴射量QTTLの減量補正手法の変形例を説明するためのグラフである。
以下、本発明の実施の形態について説明する。ただし、以下に示す実施の形態において各要素の個数、数量、量、範囲等の数に言及した場合、特に明示した場合や原理的に明らかにその数に特定される場合を除いて、その言及した数に、この発明が限定されるものではない。また、以下に示す実施の形態において説明する構造やステップ等は、特に明示した場合や明らかに原理的にそれに特定される場合を除いて、この発明に必ずしも必須のものではない。
1.実施の形態1
まず、図1〜図9を参照して、本発明の実施の形態1及びその変形例について説明する。
1−1.車両システムの構成例
図1は、本発明の実施の形態1に係る車両システム10の構成例を模式的に説明するための図である。図1に示す車両システム10は、複数の動力装置を備えたスプリット方式のハイブリッド車両のシステムである。
車両システム10は、車輪12を回転駆動するための動力装置の1つとして、内燃機関20を備えている。内燃機関20は、一例として、火花点火式の直列3気筒エンジンである。内燃機関20は、燃料噴射弁22と点火装置24(点火プラグのみ図示)とを備えている。燃料噴射弁22は、気筒毎に配置され、吸気通路26の吸気ポート26a内に燃料を噴射するポート噴射弁である。点火装置24は、各気筒に配置された点火プラグを用いて、気筒内の混合気に点火する。なお、内燃機関20は、燃料噴射弁22とともに、気筒内に直接燃料を噴射する筒内噴射弁を備えていてもよい。
吸気通路26の入口付近には、吸気通路26に取り入れられた空気の流量に応じた信号を出力するエアフローセンサ28が設けられている。エアフローセンサ28よりも下流側の吸気通路26には、電子制御式のスロットル弁30が配置されている。また、内燃機関20の排気通路32には、排気ガスを浄化するための排気浄化触媒34が設けられている。排気浄化触媒34には、触媒温度に応じた信号を出力する触媒温度センサ36が取り付けられている。さらに、内燃機関20はクランク角センサ38を備えている。クランク角センサ38は、クランク角に応じた信号を出力する。
車両システム10は、動力装置の他の1つとして、発電可能な電動機である第1モータジェネレータ(M/G1)40及び第2モータジェネレータ(M/G2)42を備えている。第1モータジェネレータ40及び第2モータジェネレータ42は、供給された電力によりトルクを出力する電動機としての機能と、入力された機械的動力を電力に変換する発電機としての機能とを兼ね備える交流同期型の発電電動機である。第1モータジェネレータ40は主に発電機として用いられ、第2モータジェネレータ42は主に電動機として用いられる。
内燃機関20、第1モータジェネレータ40、及び第2モータジェネレータ42は、動力分割機構44及び減速機構46を介して車輪12と連結されている。動力分割機構44は、例えばプラネタリギヤユニットであり、内燃機関20から出力されるトルク(エンジントルクTe)を第1モータジェネレータ40と車輪12とに分割する。内燃機関20から出力されるトルク又は第2モータジェネレータ42から出力されるトルクは、減速機構46を介して車輪12に伝達される。第1モータジェネレータ40は、動力分割機構44を介して内燃機関20から供給されたトルクにより電力を回生発電する。また、内燃機関20の始動のためのクランキングは、電動機として機能する第1モータジェネレータ40を利用して行うことができる。
第1モータジェネレータ40及び第2モータジェネレータ42は、インバータ48とコンバータ50とを介してバッテリ52と電力の授受を行う。インバータ48は、バッテリ52に蓄えられた電力を直流から交流に変換して第2モータジェネレータ42に供給するとともに、第1モータジェネレータ40によって発電される電力を交流から直流に変換してバッテリ52に蓄える。このため、バッテリ52は、第1モータジェネレータ40と第2モータジェネレータ42のいずれかで生じた電力又は消費される電力により充放電される。
本実施形態の車両システム10は、内燃機関20、第1モータジェネレータ40、及び第2モータジェネレータ42を備える車両(パワートレーン)を制御するための制御装置60を備えている。制御装置60は、少なくとも1つのプロセッサと少なくとも1つのメモリと入出力インターフェースとを有するECU(Electronic Control Unit)である。
入出力インターフェースは、内燃機関20及びこれを搭載するハイブリッド車両に搭載された各種センサからセンサ信号を取り込むとともに、内燃機関20及びハイブリッド車両の運転を制御するための各種アクチュエータに対して操作信号を出力する。上記の各種センサは、上述したエアフローセンサ28、触媒温度センサ36及びクランク角センサ38に加え、アクセルポジションセンサ62を含む。アクセルポジションセンサ62は、ハイブリッド車両のアクセルペダルの踏み込み量(アクセル開度)に応じた信号を出力する。制御装置60は、クランク角センサ38からの信号を用いてエンジン回転速度NEを算出できる。
また、上記の各種アクチュエータは、上述した燃料噴射弁22、点火装置24、スロットル弁30、第1モータジェネレータ40、及び第2モータジェネレータ42を含む。制御装置60のメモリには、ハイブリッド車両の制御のための各種のプログラムや各種のデータ(マップを含む)が記憶されている。メモリに記憶されているプログラムがプロセッサで実行されることで、制御装置60の様々な機能(各種エンジン制御及びモータジェネレータ制御など)が実現される。より具体的には、制御装置60は、機能ブロックとして、後述される燃料増量制御部64とトルクレート制御部66とを含んで構成されている。なお、制御装置60は、複数のECUから構成されていてもよい。
1−2.車両システムの制御
1−2−1.エンジン始動時の燃料増量制御の基本動作
燃料増量制御部64は、エンジン始動時の燃料噴射開始サイクル(後述のcyc1)から始まる複数サイクル(例えば、図2中のcyc1〜cyc10)を対象として、空燃比を理論空燃比よりもリッチとする「燃料増量制御」を実行する。
図2は、エンジン始動時の燃料増量制御の基本動作を説明するためのグラフである。図2の縦軸は燃料噴射量Q(i)を、横軸は燃料噴射開始からのサイクル数をそれぞれ示している。なお、図2は、同一気筒における燃料噴射量Q(i)の推移を示している。また、ハイブリッド車両におけるエンジン始動は、車両システム10の起動中に内燃機関20が間欠的に停止した後にエンジントルクTeの発生が要求される度に繰り返し実行される。
燃料噴射弁22による燃料噴射は、クランキングの開始後にエンジン回転速度NEが所定の閾値にまで上昇した時に、点火装置24による点火とともに開始される。図2に示す一例では、燃料増量制御は、燃料開始サイクル(第1サイクルcyc1)から第10サイクルcyc10までの10サイクルを対象として実行されている。図2中の「ベース噴射量Qb」は、現在の吸入空気量(筒内充填空気量)の下で理論空燃比を実現するために必要な燃料量のことである。吸入空気量はサイクル間で変化し得るが、図2に示す例では、説明の便宜上、ベース噴射量Qbを一定としている。燃料増量制御は、燃料性状などの各種影響を考慮して良好な始動性を確保するために、始動時の燃料噴射量Qをベース噴射量Qbに対して増やすものである。
より詳細には、第1サイクルcyc1における燃料噴射及び点火に伴って、燃焼が開始される(初爆が行われる)。図2に示す例では、第2サイクルcyc2の燃料噴射量Q(2)は第1サイクルcyc1のそれと同じである。その後の第3サイクルcyc3から第10サイクルcyc10では、燃料噴射量Q(4)〜Q(10)は、ベース噴射量Qbに近づくようにサイクル毎に徐々に減らされている。なお、その後の第11サイクルcyc11は、燃料増量制御の対象ではないため、本燃料増量制御による補正は行われない。このため、図2に示す例では、第11サイクルcyc11の燃料噴射量はベース噴射量Qbと等しくなっている。図2中の白丸印は、燃料増量制御の終了後の初回のサイクル(図2の例では、cyc11)を示している。このことは、後述の図5、8、11及び12も同様である。
なお、上述の燃料増量制御について補足する。まず、燃料増量制御の対象となる複数サイクルは、上記の10サイクルの例に限られず、他の任意の複数サイクルであってもよい。また、図2に示す例では、サイクルcyc1、cyc2の燃料噴射量が同じとされているが、燃料増量制御中の燃料噴射量は第2サイクルcyc2から減らされ始めてもよい。逆に、燃料増量制御の初期において燃料噴射量が同じとされるサイクルは、3以上の任意のサイクルであってもよい。さらに、ベース噴射量Qbに対する増量補正値は、所定の点火順序に従って順に行われる内燃機関20の全気筒のすべての噴射中の1噴射毎に徐々に減らされてもよい。
1−2−2.トルクレート制御
内燃機関20の軸トルク(エンジントルクTe)の制御は、基本的には、要求トルクに応じた目標吸入空気量が得られるようにスロットル弁30を用いて吸入空気量を制御することによって行われる。制御装置60による車両システム10の制御は、トルクレート制御部66により行われるトルクレート制御を含む。ここでいうトルクレートとは、エンジントルクTeの時間増加率(dTe/dt[Nm/sec])のことである。
具体的には、トルクレート制御は、「所定の目的」を達成するために、必要に応じてトルクレートを低く制限する制御である。図3は、トルクレート制御の基本的な動作を説明するためのタイムチャートである。なお、図3において1段目のチャートは車速の時間変化を、2段目のチャートはアクセル開度の時間変化を、3段目のチャートはエンジントルクTeの時間変化を、4段目のチャートはモータトルクTmの時間変化を、それぞれ示している。モータトルクTmとは、第2モータジェネレータ42から出力されるトルクのことである。
図3は、モータトルクTmのみを車両駆動トルクとして利用する車両走行中に、時点t1において、運転者がアクセルペダルを踏み込んで車両の急加速を要求した例を示している。アクセル開度が増大側に変化すると、アクセル開度に対応した車両要求駆動トルクを実現するために、エンジントルクTe及びモータトルクTmがそれぞれ増大側に変化する。図3中に破線で示されるエンジントルクTe及びモータトルクTmの波形は、トルクレート制御によるトルクレート制限のない例に対応している。
一方、図3中に実線で示されるエンジントルクTe及びモータトルクTmの波形は、トルクレート制限のある例に対応している。この例では、図3に示すように、エンジントルクTeが破線の例と比べて緩やかに上昇している。このように、トルクレートが下げられると、エンジントルクTeが加速開始後に要求トルクに到達するまでの期間(t1−t2)におけるエンジントルクTeが低くなる。そこで、本実施形態のトルクレート制御は、このようにエンジントルクTeが小さくなった分をモータトルクTmによって補完するためのモータトルクの制御を含んでいる。すなわち、図3に示す例では、エンジントルクTeが変化している時点t1から時点t2にかけての過渡運転中において、エンジントルクTeとモータトルクTmとの合算値が車両要求駆動トルクを満たすように、モータトルクTmが制御されている。これにより、過渡運転中のモータトルクTmは、破線で示す例と比較して大きな値になっている。
上記の「所定の目的」の一例としては、排気エミッション性能の低下抑制とエンジントルクTeの応答性の向上との両立を図ることが相当する。具体的には、トルクレートが高いときには、吸入空気量の時間変化率も高くなり、その結果、空燃比の変動が生じ易くなったり、排気ガス流量が増加したりする。また、排気浄化触媒34の浄化性能は、触媒温度が低いと低くなる。このため、触媒温度が低い状況下で高いトルクレートでエンジントルクTeが増加すると、空燃比の変動及び排気ガス流量の増加に起因して排気エミッション性能が低下してしまう。一方、エンジントルクTeの応答性を高める観点からは、トルクレートは排気エミッション性能の低下を抑制できる限りにおいて極力高くすることが望ましい。
そこで、本実施形態のトルクレート制御では、トルクレートは触媒温度に応じた値に設定される。具体的には、トルクレートは、例えば、触媒温度が高いほど大きくなるように設定される。このような設定によれば、排気浄化触媒34の浄化性能が上がるにつれてトルクレートを高めることが可能となる。これにより、排気エミッション性能の低下抑制とエンジントルクTeの応答性の向上とを好適に両立させられる。また、本実施形態のトルクレート制御によれば、上述のように、車両要求駆動トルクに対して不足するトルクをモータトルクTmの増大によって補完することができる。これにより、排気浄化触媒34の浄化性能が低い状態であっても、排気エミッション性能の低下を抑制しつつ車両が出力するトルクを車両要求駆動トルクに近づけることが可能となる。
なお、トルクレートは、触媒温度に代え、例えば、バッテリ52の温度に応じて異なるように設定されてもよい。具体的には、ここで、モータトルクTmは、その特性上、エンジントルクTeよりもトルク応答性が良いことが知られている。このため、車両の加速性能の観点からは、エンジントルクTeを制限してモータトルクTmの利用度合いを高めることが好ましい。しかしながら、その一方で、バッテリ52は、例えば0℃以下となるような低温環境下において出力性能が低下することも知られている。このため、このような低温環境下においてモータトルクTmの利用度合いを高めると、車両要求駆動トルクを高応答に発揮できないおそれがある。そこで、トルクレートは、例えば、バッテリ52の温度が低いほど高くなるように設定されてもよい。このような設定によれば、バッテリ52の出力性能が低下している状況では、エンジントルクTeの応答性を高めることができる。このため、上記状況においても、車両のトルク応答性の低下を抑制することが可能となる。また、低温環境下においても車両の加速応答性の低下を抑制できるようにすることは、トルクレート制御の「所定の目的」の他の例に相当する。
1−2−3.エンジン始動時にトルクレート制御を実施する際の課題
ハイブリッド車両では、図3に例示されるように、モータトルクTmのみを車両駆動トルクとして利用する車両走行中に、車両加速要求を受けてエンジン始動がなされることがある。本実施形態は、このようなエンジン始動時にトルクレート制御を行うこととしている。その結果、エンジン始動時の触媒温度に応じて、エンジン始動時のトルクレートが異なるものとなる。したがって、トルクレート制御は、燃料増量制御が実行されるエンジン始動時に、トルクレートを可変とするために実行されることになる。エンジン始動時におけるトルクレート制御の実施には、次のような課題がある。
図4は、エンジン始動時にトルクレート制御を実施する際の課題を説明するためのタイムチャートである。なお、図4において1段目のチャートは車速の時間変化を、2段目のチャートは排気ガス中のTHC(Total Hydro Carbon)濃度(より詳細には、排気浄化触媒34の下流位置におけるTHC濃度)の時間変化を、それぞれ示している。また、3段目のチャートは空燃比(より詳細には、排気浄化触媒34の上流の排気通路32に配置される空燃比センサ(図示省略)を用いて取得された値)の時間変化を、4段目のチャートはエンジントルクTeの時間変化を、それぞれ示している。
図4中の時点t3は、モータトルクTmのみを車両駆動トルクとして利用する車両走行中に、車両の急加速要求を受けて内燃機関20が始動した時点に相当する。図4中に破線で示すエンジントルクTe及び空燃比の波形は、トルクレート制御によるトルクレート制限を伴わない例に対応している。この例では、内燃機関20は、始動後に直ちにアクセル開度に応じたエンジントルクTeを発生させるように制御されている。
一方、図4中に実線で示すエンジントルクTe及び空燃比の波形は、トルクレート制限を伴う例に対応している。この例では、内燃機関20は、触媒温度に応じた値に制限されたトルクレートでエンジントルクTeを発生させるように制御されている。トルクレートが低いということは、スロットル開度の時間増加率が低くなること(吸入空気量の時間増加率が低くなること)を意味する。このため、エンジントルクTeの増加期間中には、トルクレートが低いほど、スロットル弁30の下流の吸気負圧が高くなり、かつ、吸気負圧が高くなる期間が長くなる。吸気負圧が高くなると、吸気ポート26aに付着している燃料の霧化が促進される。霧化した燃料は吸気とともに気筒内に流入する。したがって、トルクレートが低いほど、空燃比がより大きくリッチ化する。
図4には、上記要因によってエンジン始動直後の空燃比がトルクレート制御の有無によって異なる点が表されている(丸で囲んだ部位参照)。具体的には、トルクレート制限を伴う例(実線)では、エンジン始動直後の空燃比が、トルクレート制限を伴わない例(破線)と比べて、大きくリッチ化し、かつ、リッチ化が生じる期間が長くなる。その結果、エンジン始動直後の空燃比のリッチ化に伴うTHC濃度の増加の仕方が、トルクレート制御の有無に応じたリッチ化の大きさ及び期間の相違に起因して異なるものとなる。具体的には、図4中に矢印を付して示すように、トルクレート制限を伴う例(実線)では、トルクレート制限を伴わない例(破線)と比べて、THC濃度(THC排出量)が多くなる。
1−2−4.エンジン始動時の燃料増量制御の特徴
上述の課題に鑑み、本実施形態では、エンジン始動時の燃料増量制御が次のように実行される。すなわち、燃料増量制御部64は、トルクレートに相関するトルクレート相関値が低いほど、燃料増量制御の対象となる上記複数サイクル(例えば、10サイクル)中の総燃料噴射量QTTLを減少させるように構成されている。なお、本実施形態では、トルクレート相関値の一例として、トルクレート自体が利用される。
図5は、本発明の実施の形態1に係るエンジン始動時の燃料増量制御の一例を説明するためのグラフである。図5に示す例では、燃料増量制御の対象となるサイクル(cyc1〜cyc10)のうちのサイクルcyc1、cyc2の燃料噴射量Q(i)は、トルクレートの大きさによらずに一定である。そして、この例では、図5に示すように、サイクルcyc3〜cyc10の燃料噴射量Q(i)のそれぞれは、トルクレートが低いほど少なくなるように設定されている。このような設定例によれば、トルクレートが低いほど、燃料増量制御の対象サイクル中の総燃料噴射量QTTLを減少させることができる。
サイクルcyc1〜cyc10の燃料噴射量Q(i)の算出は、例えば、次の手法によって行うことができる。すなわち、サイクルcyc1〜cyc10の燃料噴射量Q(i)は、以下の(1)式に示すように、ベース噴射量Qbと、1と増量係数K(i)との和(1+K(i))との積によって表される。増量係数K(i)は、0よりも大きい値である。添え字iは、燃料増量制御の対象となるサイクルを示す番号と対応している。
Q(i)=Qb×(1+K(i)) ・・・(1)
サイクルcyc1、cyc2の増量係数K(1)、K(2)は、事前に適合された値であり、一例として同じ大きさである。図6は、第3サイクルcyc3の増量係数K(3)とトルクレートとの関係を表した図である。図6に示すように、第3サイクルcyc3の増量係数K(3)は、トルクレートが低いほど小さくなるように設定されている。なお、増量係数K(3)とトルクレートとの関係は、トルクレートが低いほど増量係数K(3)を小さくするものである限り、図6に示すような曲線に限られず、例えば、他の任意の曲率を有する曲線又は直線によって表されてもよい。
サイクルcyc4〜cyc10の増量係数K(4)〜K(10)は、以下の(2)式に示すように、増量係数の前回値K(i−1)と減衰係数Bとの積によって表される。減衰係数Bは、0より大きく1より小さい値であって、図5に示す一例では固定値である。
K(i)=K(i−1)×B ・・・(2)
付け加えると、図6に示す設定例では、増量係数K(3)の最小値はゼロである。したがって、上記(2)式の関係によれば、サイクルcyc4〜cyc10の増量係数K(4)〜K(10)は何れもゼロとなる。このため、トルクレートが小さいために増量係数K(3)となる場合には、サイクルcyc3〜cyc10では燃料増量が行われなくなり、燃料噴射量Q(3)〜Q(10)はベース噴射量Qbと等しくなる。
1−2−5.エンジン始動時の燃料増量制御に関する制御装置の処理
図7は、本発明の実施の形態1に係るエンジン始動時の燃料増量制御に関する処理のルーチンを示すフローチャートである。モータトルクTmのみを車両駆動トルクとして利用する車両走行中に、制御装置60は、エンジン始動要求を伴うエンジントルク要求があるか否かを判定している。この判定は、例えば、アクセルポジションセンサ62により検出されるアクセル開度に応じて算出した車両要求駆動トルクに基づいて行うことができる。本ルーチンは、エンジン始動要求を伴うエンジントルク要求があると判定したときに起動される。本ルーチンの処理は、燃料増量制御の対象サイクル(cyc1〜cyc10)の燃料噴射量Q(i)を決定するために繰り返し実行される。
図7に示すルーチンでは、まず、制御装置60は、トルクレートを算出する(ステップS100)。トルクレートは、図3を参照して既述したように、一例として触媒温度に応じた値として算出される。なお、制御装置60は、図示省略するルーチンの処理によって上述したトルクレート制御を実行し、最新のトルクレートに従うようにエンジントルクTe及びモータトルクTmを制御している。
次に、制御装置60は、吸入空気量(筒内充填空気量)を算出する(ステップS102)。この吸入空気量は、例えば、エアフローセンサ28により検出される吸入空気流量と、クランク角センサ38を用いて算出されるエンジン回転速度NEとを含む所定のパラメータを公知の吸気系の物理モデルに入力することにより算出可能である。
次に、制御装置60は、ベース噴射量Qbを算出する(ステップS104)。ベース噴射量Qbは、ステップS102において算出された吸入空気量を理論空燃比で除することにより算出できる。
次に、制御装置60は、現在のサイクルcyc(i)に対応する増量係数K(i)を算出する(ステップS106)。既述したように、サイクルcyc1、2の増量係数K(1)、K(2)は、事前に適合された値である。制御装置60は、図6に示すように第3サイクルcyc3の増量係数K(3)とトルクレートとの関係を定めたマップ(図示省略)を記憶している。増量係数K(3)は、そのようなマップを参照して、トルクレートに応じた値として算出される。サイクルcyc4〜10の増量係数K(4)〜K(10)は、所定の減衰係数Bを用いて、上記(2)式の関係に従って算出される。
次に、制御装置60は、現在のサイクルcyc(i)に対応する燃料噴射量Q(i)を算出する(ステップS108)。燃料噴射量Q(i)は、ベース噴射量Qbと増量係数K(i)とを用いて、上記(1)式の関係に従って算出される。
1−3.効果
以上説明したように、本実施形態におけるエンジン始動時の燃料増量制御によれば、トルクレートが低いほど、燃料増量制御の対象サイクル中の総燃料噴射量QTTLが減らされる。これにより、エンジン始動時に低トルクレートの下で燃料増量が実行されることに起因する空燃比のリッチ化が抑制される。このため、低トルクレートの下でエンジン始動が実行される場合に、排気エミッション性能の低下(より詳細には、THC排出量の増加)を抑制することができる。より詳細には、図5、6に示す例によれば、サイクルcyc3〜cyc10の燃料噴射量Q(i)がトルクレートの低下に応じて減量されるので、空燃比のリッチ化の程度(リッチ深さ)を抑制できる。
付け加えると、本実施形態は、エンジン始動時にトルクレート制御によってトルクレートを積極的に制限する例に対応している。このため、上述の燃料増量制御によれば、空燃比の上記リッチ化に起因するTHC排出量の増加を抑制しつつエンジン始動時にトルクレート制御を実行できるようになるともいえる。付け加えると、触媒温度に応じたトルクレートを利用するトルクレート制御の例では、空燃比のリッチ化に起因するTHC排出量の増加を抑制しつつ、このトルクレート制御における本来的な目的である空燃比の変動及び排気ガス流量の増加の抑制による排気エミッション性能の低下抑制を実現できるようになる。
1−4.総燃料噴射量QTTLの減量補正手法の変形例
図8は、本発明の実施の形態1に係る総燃料噴射量QTTLの減量補正手法の第1変形例を説明するためのグラフである。上述した実施の形態1においては、総燃料噴射量QTTLの減量補正のために、図5に示すように、トルクレートが低いほど、サイクルcyc3〜cyc10の燃料噴射量Q(i)のそれぞれがより大きく減らされる。これに対し、この第1変形例では、図8に示すように、第3サイクルcyc3以降の対象サイクルcyc(i)の燃料噴射量Q(i)のそれぞれが、トルクレートが低いほどより大きく減らされるだけでなく、トルクレートが低いほど燃料増量制御の対象サイクル数がより多く減らされる。このような第1変形例に従う総燃料噴射量QTTLの減量補正によれば、空燃比のリッチ化の程度(リッチ深さ)の抑制に加え、空燃比のリッチ化の期間を短く抑制できる。制御装置60は、例えば、図8に示すような関係、すなわち、トルクレート及びサイクル数と燃料噴射量Q(i)との関係を定めたマップを利用することで、第1変形例に係る総燃料噴射量QTTLの減量補正を行うことができる。
図9は、本発明の実施の形態1に係る総燃料噴射量QTTLの減量補正手法の第2変形例を説明するためのグラフである。この第2変形例では、図9に示すように、第3サイクルcyc3以降の対象サイクルcyc(i)の燃料噴射量Q(i)はトルクレートに応じて変更されないが、トルクレートが低いほど燃料増量制御の対象サイクル数がより多く減らされる。このような第2変形例に従う総燃料噴射量QTTLの減量補正によれば、空燃比のリッチ化の期間を短く抑制できる。第1変形例と同様に、制御装置60は、例えば、図9に示すような関係を定めたマップを利用することで、第2変形例に係る総燃料噴射量QTTLの減量補正を行うことができる。
また、上述した図5及び図8に示す例では、サイクルcyc3〜cyc10の燃料噴射量Q(i)のそれぞれが、トルクレートが低いほど少なくなるように設定されている。しかしながら、トルクレート(トルクレート相関値)が低いほど1サイクル当たりの燃料噴射量を減少させるサイクルは、上記の例以外であって、サイクルcyc1〜cyc10中の任意の1以上のサイクルであってもよい。
2.実施の形態2
次に、図10〜図12を参照して、本発明の実施の形態2及びその変形例について説明する。以下の説明では、実施の形態2に係る車両システムのハードウェア構成の一例として、図1に示す構成が用いられているものとする。
2−1.エンジン始動時の燃料増量制御の特徴
上述した実施の形態1に係る燃料増量制御では、トルクレートに基づく総燃料噴射量QTTLの減量補正は、ベース噴射量Qbを下回らない範囲内で実行される。これに対し、本実施形態に係る燃料増量制御では、トルクレートが極めて低い場合には、ベース噴射量Qbよりも少なくなるように燃料噴射量Q(i)が補正される。
図10は、本発明の実施の形態2において用いられる第3サイクルcyc3の増量係数K(3)とトルクレートとの関係を表した図である。図10に示すように、本実施形態では、トルクレートが極めて低い場合には、増量係数K(3)は負の値をとることがある。すなわち、本実施形態では、増量係数K(3)は、負の領域を含めて、トルクレートが低いほど小さくなるように設定されている。
図11は、本発明の実施の形態2に係るエンジン始動時の燃料増量制御の一例を説明するためのグラフである。図11に示す例における各サイクルcyc(i)の燃料噴射量Q(i)の算出方法は、図6に示す増量係数K(3)の設定例に代えて図10に示す増量係数K(3)の設定例を用いる点を除き、図5に示す例のそれと同じである。
図11に示す例では、増量係数K(3)が負となる場合には、第3サイクルcyc3の燃料噴射量Q(3)はベース噴射量Qbよりも少ない値となり、燃料噴射量Q(3)は、トルクレートが低いほどより少なくなる。また、この例では、第4サイクルcyc4以降のサイクルcyc(i)では、燃料噴射量Q(i)は、サイクルの経過とともに徐々にベース噴射量Qbに近づいていく。このような総燃料噴射量QTTLの減量補正手法によれば、増量係数K(3)が負となるトルクレート範囲を含めて、トルクレートが低いほど、総燃料噴射量QTTLをより大きく減らすことができる。付け加えると、このような減量補正手法の利用により、燃料増量制御部64によるサイクルcyc3〜cyc10についての1サイクル当たりの燃料噴射量の減少は、空燃比(筒内空燃比)を理論空燃比よりもリーンとするリーン補正を含んでいる。
上述した本実施形態に係る燃料増量制御は、図10に示すような第3サイクルcyc3の増量係数K(3)とトルクレートとの関係を定めたマップ(図示省略)を制御装置60に記憶させておくことにより、上述の図7に示すルーチンと同様のルーチンによって実現することができる。
2−2.効果
以上説明したように、本実施形態の燃料増量制御によれば、トルクレートが極めて低い場合には、ベース噴射量Qbよりも少ない量とするための補正(すなわち、理論空燃比よりもリーンな空燃比を得るためのリーン補正)が実行される。これにより、トルクレートが極めて低いために大きなリッチ化が生じ得る状況下においても、空燃比のリッチ化を適切に抑制できるようになる。
2−3.総燃料噴射量QTTLの減量補正手法の変形例
図12は、本発明の実施の形態2に係る総燃料噴射量QTTLの減量補正手法の変形例を説明するためのグラフである。この変形例では、上述の図11に示す例と同様に、増量係数K(3)が負となるトルクレート範囲を含めて、第3サイクルcyc3以降のサイクルcyc(i)の燃料噴射量Q(i)のそれぞれが、トルクレートが低いほどより大きく減らされる。
さらに、この変形例では、ベース噴射量Qbよりも多い量とするための補正(理論空燃比よりもリッチな空燃比を得るためのリッチ補正)を行うトルクレート範囲では(換言すると、総燃料噴射量QTTLの減少のために1サイクル当たりの燃料噴射量を、空燃比(筒内空燃比)を理論空燃比よりもリッチとする量の範囲内で制御している場合には)、トルクレートが低いほどリッチ補正(燃料増量)を行うサイクル数がより多く減らされる(図8に示す第1変形例と同様)。
一方、リーン補正を行うトルクレート範囲では(換言すると、総燃料噴射量QTTLの減少のために1サイクル当たりの燃料噴射量を、空燃比(筒内空燃比)を理論空燃比よりもリーンとする量の範囲内で制御している場合には)、図12に示すように、トルクレートが低いほどリーン補正(燃料減量)を行うサイクル数がより多く増やされる。
制御装置60は、例えば、図12に示すような関係、すなわち、トルクレート及びサイクル数と燃料噴射量Q(i)との関係を定めたマップを利用することで、この変形例に係る総燃料噴射量QTTLの減量補正を行うことができる。
また、ここでは図示を省略するが、リーン補正を行うトルクレート範囲では、リーン補正(燃料減量)を行うサイクルcyc(i)の燃料噴射量Q(i)はトルクレートに応じて変更せずに、リーン補正を行うサイクル数のみが、トルクレートが低いほどより多く増やされてもよい。
3.他の実施の形態
3−1.他のハイブリッド方式の例
上述した実施の形態1及び2においては、内燃機関20と第1モータジェネレータ40及び第2モータジェネレータ42からのトルクを自由に合成或いは分割することが可能なスプリット方式のハイブリッド車両を例に挙げた。しかしながら、本発明に係る車両システムに採用可能なハイブリッド方式は、スプリット方式に限られない。すなわち、他のハイブリッド方式は、例えば、内燃機関及びモータジェネレータの双方を車輪の駆動に用いるいわゆるパラレル方式であってもよい。また、他のハイブリッド方式は、例えば、内燃機関を発電のみに使用し、モータジェネレータを車輪の駆動と回生に用いるいわゆるシリーズ方式であってもよい。
3−2.トルクレート制御を伴わない例
本発明に係る車両システムの対象は、ハイブリッド車両に限られない。すなわち、本車両システムの対象は、車輪を駆動するための動力装置として内燃機関のみを搭載した車両であってもよい。そして、この車両を対象とする例では、トルクレートに基づく総燃料噴射量QTTLの減量補正は、トルクレート制御を伴わずに実行されてもよい。すなわち、この例で用いられる「トルクレート相関値」は、実施の形態1及び2において説明したようなトルクレート制御により設定されるトルクレート自体に限られない。具体的には、この例のトルクレート相関値は、例えば、エンジン始動時におけるアクセル開度の時間増加率、スロットル開度の時間増加率、吸入空気量の時間増加率、又はスロットル弁の下流の吸気圧の時間増加率であってもよい。
例えば、動力装置として内燃機関のみを搭載した車両がS&S(Stop & Start)制御を実行可能に構成されている場合には、S&S制御によるエンジン停止中にアクセルペダルが踏み込まれると、エンジン始動要求を伴うエンジントルク要求が出されることがある。そして、この際のアクセルペダルの踏まれ方に応じて、エンジン始動時に要求されるエンジントルクTeは異なるものとなる。このため、車両システムの燃料増量制御部は、エンジン始動後の燃料増量制御の実行中に、例えば、上記のアクセル開度などの時間増加率をトルクレート相関値として算出し、算出したトルクレート相関値が低いほど、複数サイクル中の総燃料噴射量QTTLを減少させてもよい。
以上説明した各実施の形態に記載の例及び他の各変形例は、明示した組み合わせ以外にも可能な範囲内で適宜組み合わせてもよいし、また、本発明の趣旨を逸脱しない範囲で種々変形してもよい。
10 車両システム
12 車輪
20 内燃機関
22 燃料噴射弁
24 点火装置
26a 吸気ポート
28 エアフローセンサ
30 スロットル弁
38 クランク角センサ
40 第1モータジェネレータ(M/G1)
42 第2モータジェネレータ(M/G2)
44 動力分割機構
60 制御装置
62 アクセルポジションセンサ
64 燃料増量制御部
66 トルクレート制御部

Claims (6)

  1. 吸気ポートに燃料を噴射する燃料噴射弁と、エンジントルクの制御のために吸入空気量を制御するスロットル弁とを含み、車両に搭載された内燃機関と、
    前記車両を制御する制御装置と、
    を備える車両システムであって、
    前記制御装置は、エンジン始動時の燃料噴射開始サイクルから始まる複数サイクルを対象として、空燃比を理論空燃比よりもリッチとする燃料増量制御を実行する燃料増量制御部を含み、
    前記燃料増量制御部は、エンジントルクの時間増加率であるトルクレートに相関するトルクレート相関値が低いほど、前記複数サイクル中の総燃料噴射量を減少させる
    ことを特徴とする車両システム。
  2. 前記車両システムは、前記車両を駆動する電動機を含むハイブリッド車両システムであって、
    前記制御装置は、エンジン始動時に前記トルクレートを可変とするトルクレート制御を行うトルクレート制御部を含み、
    前記トルクレート相関値は、前記トルクレート制御部によって設定される前記トルクレートである
    ことを特徴とする請求項1に記載の車両システム。
  3. 前記燃料増量制御部は、前記トルクレート相関値が低いほど、前記複数サイクルの少なくとも1つにおける1サイクル当たりの燃料噴射量を減少させる
    ことを特徴とする請求項1又は2に記載の車両システム。
  4. 前記燃料増量制御部による前記複数サイクルの少なくとも1つにおける1サイクル当たりの燃料噴射量の減少は、前記空燃比を理論空燃比よりもリーンとするリーン補正を含む
    ことを特徴とする請求項3に記載の車両システム。
  5. 前記燃料増量制御部は、前記総燃料噴射量の減少のために1サイクル当たりの燃料噴射量を、前記空燃比を理論空燃比よりもリッチとする量の範囲内で制御している場合には、前記トルクレート相関値が低いほど、前記複数サイクルの数をより少なくする
    ことを特徴とする請求項1〜4の何れか1つに記載の車両システム。
  6. 前記燃料増量制御部は、前記総燃料噴射量の減少のために1サイクル当たりの燃料噴射量を、前記空燃比を理論空燃比よりもリーンとする量の範囲内で制御している場合には、前記トルクレート相関値が低いほど、前記複数サイクルの数をより多くする
    ことを特徴とする請求項1〜5の何れか1つに記載の車両システム。
JP2018103810A 2018-05-30 2018-05-30 車両システム Pending JP2019206961A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018103810A JP2019206961A (ja) 2018-05-30 2018-05-30 車両システム
US16/372,327 US11149671B2 (en) 2018-05-30 2019-04-01 Vehicle system
CN201910421673.7A CN110552802A (zh) 2018-05-30 2019-05-21 车辆系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018103810A JP2019206961A (ja) 2018-05-30 2018-05-30 車両システム

Publications (1)

Publication Number Publication Date
JP2019206961A true JP2019206961A (ja) 2019-12-05

Family

ID=68694476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018103810A Pending JP2019206961A (ja) 2018-05-30 2018-05-30 車両システム

Country Status (3)

Country Link
US (1) US11149671B2 (ja)
JP (1) JP2019206961A (ja)
CN (1) CN110552802A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3140050A1 (fr) * 2022-09-28 2024-03-29 Psa Automobiles Sa Procede de refroidissement d’un catalyseur d’une ligne de gaz d’echappement d’un vehicule hybride

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146826A (ja) * 2005-10-28 2007-06-14 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2011163267A (ja) * 2010-02-12 2011-08-25 Toyota Motor Corp 内燃機関の制御装置
JP2013155605A (ja) * 2012-01-26 2013-08-15 Hitachi Automotive Systems Ltd エンジンの制御装置
JP2016148303A (ja) * 2015-02-13 2016-08-18 トヨタ自動車株式会社 車両
US20170037803A1 (en) * 2015-08-04 2017-02-09 Ford Global Technologies, Llc Engine cold-start control

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3982159B2 (ja) * 2000-08-29 2007-09-26 三菱自動車エンジニアリング株式会社 希薄燃焼エンジンの制御装置
JP2003097318A (ja) 2001-09-26 2003-04-03 Suzuki Motor Corp エンジン用燃料噴射制御装置
JP3894198B2 (ja) * 2004-02-17 2007-03-14 三菱自動車工業株式会社 ハイブリッド自動車の制御装置
US8499734B2 (en) * 2009-10-21 2013-08-06 GM Global Technology Operations LLC System and method for controlling torque during engine start operations in hybrid vehicles
JP5494821B2 (ja) * 2010-11-25 2014-05-21 トヨタ自動車株式会社 ハイブリッド車両の制御装置および制御方法
CN104968913B (zh) * 2012-12-07 2018-04-06 乙醇推动系统有限责任公司 用于减少来自涡轮增压直喷式汽油发动机的颗粒的进气口喷射系统
CN104775941B (zh) * 2015-04-22 2017-03-01 济南大学 改善气体发动机瞬态响应性的控制方法
JP2017137772A (ja) * 2016-02-01 2017-08-10 トヨタ自動車株式会社 内燃機関の制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146826A (ja) * 2005-10-28 2007-06-14 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2011163267A (ja) * 2010-02-12 2011-08-25 Toyota Motor Corp 内燃機関の制御装置
JP2013155605A (ja) * 2012-01-26 2013-08-15 Hitachi Automotive Systems Ltd エンジンの制御装置
JP2016148303A (ja) * 2015-02-13 2016-08-18 トヨタ自動車株式会社 車両
US20170037803A1 (en) * 2015-08-04 2017-02-09 Ford Global Technologies, Llc Engine cold-start control

Also Published As

Publication number Publication date
CN110552802A (zh) 2019-12-10
US11149671B2 (en) 2021-10-19
US20190368438A1 (en) 2019-12-05

Similar Documents

Publication Publication Date Title
JP4442318B2 (ja) ハイブリッド車両におけるデュアル噴射型内燃機関の空燃比学習制御方法および空燃比学習制御装置
US10690065B2 (en) Control device of vehicle
JP2006291803A (ja) エンジンのトルク制御装置とそれを備えた車両制御システム
CN110159443B (zh) 内燃机的控制装置
CN107035555B (zh) 发动机的控制装置
JP2014015114A (ja) ハイブリッド車両の触媒暖機制御装置
CN109630296B (zh) 内燃机的控制装置及控制方法
JP2009047099A (ja) 車両制御方法および車両制御装置
JP2009030615A (ja) 車両におけるデュアル噴射型内燃機関の空燃比学習制御方法
JP2019206961A (ja) 車両システム
US9062620B2 (en) Vehicle and control method for vehicle
JP2008069701A (ja) 車両制御装置
JP2000291471A (ja) 空燃比学習制御装置
JP6296421B2 (ja) エンジンの制御装置
CN107023410B (zh) 发动机的控制装置
JP5018162B2 (ja) 車両の制御装置、制御方法およびその方法をコンピュータに実現させるプログラムならびにそのプログラムを記録した記録媒体
JP6308204B2 (ja) エンジンの制御装置
JP6296422B2 (ja) エンジンの制御装置
JP5206652B2 (ja) 内燃機関の燃料噴射制御装置
JP6052076B2 (ja) 内燃機関の燃料噴射制御装置
WO2023012918A1 (ja) ハイブリッド車両の制御方法及びハイブリッド車両の制御装置
JP2009270566A (ja) 内燃機関の制御装置
JP2011038477A (ja) エンジンの制御装置
JP6308203B2 (ja) エンジンの制御装置
JP2015086780A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220215