JP2019190794A - エジェクタ式冷凍サイクル - Google Patents

エジェクタ式冷凍サイクル Download PDF

Info

Publication number
JP2019190794A
JP2019190794A JP2018087044A JP2018087044A JP2019190794A JP 2019190794 A JP2019190794 A JP 2019190794A JP 2018087044 A JP2018087044 A JP 2018087044A JP 2018087044 A JP2018087044 A JP 2018087044A JP 2019190794 A JP2019190794 A JP 2019190794A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
stage
outlet
inlet side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018087044A
Other languages
English (en)
Other versions
JP6939691B2 (ja
JP2019190794A5 (ja
Inventor
康太 武市
Kota Takeichi
康太 武市
尾形 豪太
Toshihiro Ogata
豪太 尾形
押谷 洋
Hiroshi Oshitani
洋 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018087044A priority Critical patent/JP6939691B2/ja
Priority to PCT/JP2019/016802 priority patent/WO2019208428A1/ja
Publication of JP2019190794A publication Critical patent/JP2019190794A/ja
Publication of JP2019190794A5 publication Critical patent/JP2019190794A5/ja
Application granted granted Critical
Publication of JP6939691B2 publication Critical patent/JP6939691B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

【課題】低段側蒸発器にて発揮される冷却能力の減少を招くことなく、成績係数(COP)を向上することのできるエジェクタ式冷凍サイクルを提供する。【解決手段】放熱器12から流出した冷媒の流れを分岐部13aにて分岐し、分岐された一方の冷媒を高段側膨張弁14aを介して高段側蒸発器15へ流入させて蒸発させ、エジェクタ16のノズル部16aへ流入させる。分岐された他方の冷媒を分離器側膨張弁14b、気液分離器17、および低段側蒸発器18を介して低段側蒸発器18へ流入させて蒸発させ、エジェクタ16の冷媒吸引口から吸引させる。そして、エンタルピ調整部を構成する分離器側膨張弁14bおよび気液分離器17によって低段側蒸発器18へ流入する冷媒のエンタルピを低下させることで、ノズル部16aへ流入する冷媒流量を減少させることなく、低段側冷却能力を増加させる。【選択図】図1

Description

本発明は、異なる温度帯で冷媒を蒸発させる複数の蒸発器を備えるエジェクタ式冷凍サイクルに関する。
従来、エジェクタを備える蒸気圧縮式の冷凍サイクル装置であるエジェクタ式冷凍サイクルが知られている。
この種のエジェクタ式冷凍サイクルでは、エジェクタのノズル部から噴射された高速度の噴射冷媒の吸引作用によって蒸発器から流出した冷媒をエジェクタの冷媒吸引口から吸引する。そして、エジェクタのディフューザ部(昇圧部)にて噴射冷媒と吸引冷媒との混合冷媒を昇圧させて、昇圧された混合冷媒を圧縮機へ吸入させる。
これにより、エジェクタ式冷凍サイクルでは、蒸発器における冷媒蒸発圧力と圧縮機の吸入冷媒圧力が略同等となる通常の冷凍サイクル装置よりも、圧縮機の消費動力を低減させてサイクルの成績係数(COP)を向上させることができる。
さらに、特許文献1には、異なる温度帯で冷媒を蒸発させる複数の蒸発器を備えるエジェクタ式冷凍サイクルが開示されている。
より具体的には、特許文献1のエジェクタ式冷凍サイクルは、凝縮器から流出した冷媒の流れを分岐する分岐部を備えている。そして、分岐部にて分岐された一方の冷媒を高段側減圧部にて減圧させて高段側蒸発器へ流入させる。さらに、高段側蒸発器から流出した冷媒をエジェクタのノズル部へ流入させる。また、分岐部にて分岐された他方の冷媒を低段側減圧部にて減圧させて低段側蒸発器へ流入させる。さらに、低段側蒸発器から流出した冷媒をエジェクタの冷媒吸引口から吸引させるサイクル構成になっている。
これにより、特許文献1のエジェクタ式冷凍サイクルでは、高段側蒸発器における冷媒蒸発温度と低段側蒸発器における冷媒蒸発温度とを異なる温度帯としている。
特開2012−149790号公報
ところで、特許文献1のエジェクタ式冷凍サイクルにおいて、高段側蒸発器にて発揮される冷却能力および低段側蒸発器にて発揮される冷却能力を調整するためには、高段側蒸発器へ流入させる冷媒の流量である高段側冷媒流量G_heと低段側蒸発器へ流入させる冷媒の流量である低段側冷媒流量G_leとの流量比を調整すればよい。
ここで、これらの冷媒の流量は、いずれも質量流量である。このことは、他の冷媒の流量についても同様である。また、蒸発器にて発揮される冷却能力とは、蒸発器の出口側冷媒のエンタルピから蒸発器の入口側冷媒のエンタルピを減算したエンタルピ差Δhと蒸発器を流通する冷媒の流量Gとの積算値Δh×Gによって定義することができる。なお、蒸発器を流通する冷媒の流量は、蒸発器へ流入させる冷媒の流量と等しい。
つまり、特許文献1のエジェクタ式冷凍サイクルでは、高段側冷媒流量G_heに対する低段側冷媒流量G_leの流量比G_le/G_heを大きくするに伴って、高段側蒸発器にて発揮される冷却能力を減少させることができるとともに、低段側蒸発器にて発揮される冷却能力を増加させることができる。逆に、流量比G_le/G_heを小さくするに伴って、高段側蒸発器にて発揮される冷却能力を増加させることができるとともに、低段側蒸発器にて発揮される冷却能力を減少させることができる。
また、一般的なエジェクタでは、ノズル部から噴射された噴射冷媒の吸引作用によって冷媒を吸引することで、ノズル部にて冷媒が減圧される際の速度エネルギの損失を回収している。そして、ディフューザ部にて噴射冷媒と吸引冷媒との混合冷媒の速度エネルギを圧力エネルギに変換することによって、混合冷媒を昇圧させている。
従って、特許文献1のエジェクタ式冷凍サイクルでは、エジェクタのノズル部へ流入させる冷媒の流量であるノズル部側流量Gnに対するエジェクタの冷媒吸引口へ吸引させる冷媒の流量である吸引側流量Geの流量比Ge/Gnを小さくするに伴って、エジェクタ式冷凍サイクルのCOP向上効果を得やすくなる。
その理由は、流量比Ge/Gnを小さくするに伴って、ノズル部へ流入する冷媒流量を増加させて、噴射冷媒の流速を増速させることができるからである。これにより、混合冷媒の速度エネルギを増加させて、ディフューザ部における昇圧量ΔPを増加させることができる。その結果、流量比Ge/Gnを小さくするに伴って、エジェクタ式冷凍サイクルのCOP向上効果を得やすくなる。
さらに、特許文献1のエジェクタ式冷凍サイクルのサイクル構成では、高段側冷媒流量G_heがノズル部側流量Gnと等しくなり、低段側冷媒流量G_leが吸引側流量Geと等しくなる。このため、特許文献1のエジェクタ式冷凍サイクルでは、COPを向上させるために、流量比Ge/Gn(すなわち、流量比G_le/G_he)を小さくすると、低段側蒸発器にて発揮される冷却能力が減少してしまう。
本発明は、上記点に鑑み、低段側蒸発器にて発揮される冷却能力の減少を招くことなく、成績係数(COP)を向上することのできるエジェクタ式冷凍サイクルを提供することを目的とする。
上記目的を達成するため、請求項1に記載の発明は、冷媒を圧縮して吐出する圧縮機(11)と、圧縮機から吐出された冷媒を放熱させる放熱器(12)と、放熱器から流出した冷媒を減圧させる高段側減圧部(14a)と、高段側減圧部にて減圧された冷媒を蒸発させる高段側蒸発器(15)と、放熱器から流出した冷媒を減圧させる低段側減圧部(14c)と、低段側減圧部にて減圧された冷媒を蒸発させる低段側蒸発器(18)と、放熱器の下流側の冷媒の流れを分岐して、分岐された一方の冷媒を高段側蒸発器の冷媒入口側へ流出させるとともに、分岐された他方の冷媒を低段側蒸発器の冷媒入口側へ流出させる分岐部(13a)と、冷媒を減圧させるノズル部(16a)から噴射される高速度の噴射冷媒の吸引作用によって、低段側蒸発器から流出した冷媒を冷媒吸引口(16c)から吸引し、噴射冷媒と冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させて圧縮機の吸入口側へ流出させる昇圧部(16d)を有するエジェクタ(16)と、を備え、
さらに、低段側蒸発器へ流入する冷媒のエンタルピを低下させるエンタルピ調整部(14b、17)を備えるエジェクタ式冷凍サイクルである。
これによれば、エンタルピ調整部(14b、17)を備えているので、低段側蒸発器(18)の出口側冷媒のエンタルピから入口側冷媒のエンタルピを減算した低段側エンタルピ差Δh_leを増大させることができる。
従って、成績係数(COP)を向上させるために、分岐部(13a)から高段側蒸発器(15)へ流入させる冷媒の流量である高段側冷媒流量G_heに対する分岐部(13a)から低段側蒸発器(18)へ流入させる冷媒の流量である低段側冷媒流量G_leの流量比G_le/G_heを小さくしても、低段側蒸発器(18)にて発揮される低段側冷却能力Δh_le×G_leの減少を抑制することができる。
すなわち、請求項1に記載の発明によれば、低段側冷却能力Δh_le×G_leの減少を招くことなく、成績係数(COP)を向上することのできるエジェクタ式冷凍サイクルを提供することができる。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
第1実施形態のエジェクタ式冷凍サイクルの全体構成図である。 第1実施形態のエジェクタ式冷凍サイクルを作動させた際の冷媒の状態を示すモリエル線図である。 第1実施形態のエジェクタ式冷凍サイクルにおける流量比の低減効果を示すグラフである。 第1実施形態のエジェクタ式冷凍サイクルにおけるエジェクタ効率ηeと成績係数COPとの関係を示すグラフである。 第2実施形態のエジェクタ式冷凍サイクルの全体構成図である。 第2実施形態のエジェクタ式冷凍サイクルを作動させた際の冷媒の状態を示すモリエル線図である。 第3実施形態のエジェクタ式冷凍サイクルの全体構成図である。 第3実施形態のエジェクタ式冷凍サイクルを作動させた際の冷媒の状態を示すモリエル線図である。 第4実施形態のエジェクタ式冷凍サイクルの全体構成図である。 第4実施形態のエジェクタ式冷凍サイクルを作動させた際の冷媒の状態を示すモリエル線図である。
(第1実施形態)
図1〜図4を用いて、本発明の第1実施形態について説明する。本実施形態のエジェクタ式冷凍サイクル10は、冷蔵車両に搭載された車両用冷凍サイクル装置に適用されている。車両用冷凍サイクル装置は、冷蔵車両において、車室内の空調を行うとともに、車両の荷台に配置された冷蔵庫内を冷却するものである。
エジェクタ式冷凍サイクル10は、車両用冷凍サイクル装置において、車室内へ送風される室内用送風空気を冷却する機能を果たすとともに、冷蔵庫内へ循環送風される庫内用送風空気を冷却する機能を果たす。
従って、本実施形態では、車室内空間および冷蔵庫内空間の双方が、エジェクタ式冷凍サイクル10の冷却対象空間となる。さらに、本実施形態では、車室内と冷蔵庫内の容積が略同等となっており、それぞれの冷却対象空間を冷却するために必要な冷却能力も同等となっている。
ここで、本実施形態における冷却能力は、エジェクタ式冷凍サイクル10が備える蒸発器の出口側冷媒のエンタルピから蒸発器の入口側冷媒のエンタルピを減算したエンタルピ差Δhと、当該蒸発器を流通する冷媒流量Gとの積算値Δh×Gによって定義される。
エジェクタ式冷凍サイクル10では、冷媒として自然冷媒(具体的には、R600a)を採用しており、高圧側の冷媒圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。さらに、冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
図1の全体構成図に示すエジェクタ式冷凍サイクル10において、圧縮機11は、冷媒を吸入し、圧縮して吐出するものである。圧縮機11は、ハウジングの内部に、固定容量型の圧縮機構および圧縮機構を回転駆動する電動モータを収容して構成された電動圧縮機である。圧縮機11は、後述する制御装置50から出力される制御信号によって、その作動が制御される。
圧縮機11の吐出口には、放熱器12の冷媒入口側が接続されている。放熱器12は、圧縮機11から吐出された高温高圧の吐出冷媒と冷却用送風機12aにより送風される車室外空気(外気)とを熱交換させて、高圧冷媒を放熱させて凝縮させる凝縮用熱交換器である。冷却用送風機12aは、制御装置50から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。
放熱器12の冷媒出口には、分岐部13aの冷媒流入口側が接続されている。分岐部13aは、放熱器12の下流側の冷媒の流れを分岐するものである。分岐部13aは、互いに連通する3つの冷媒流入出口を有する三方継手構造のもので、3つの冷媒流入出口のうち1つを冷媒流入口とし、残りの2つを冷媒流出口としたものである。
分岐部13aの一方の冷媒流出口には、高段側膨張弁14aの入口側が接続されている。また、分岐部13aの他方の冷媒流出口には、分離器側膨張弁14bの入口側が接続されている。
高段側膨張弁14aは、放熱器12にて放熱した冷媒のうち、分岐部13aにて分岐された一方の冷媒を減圧させる高段側減圧部である。さらに、高段側膨張弁14aは、その下流側に流出させる冷媒の流量を調整する高段側流量調整部である。
より具体的には、高段側膨張弁14aは、絞り開度を変更可能に構成された弁体と、この弁体の開度を変化させる電動アクチュエータ(具体的には、ステッピングモータ)とを有して構成される電気式の可変絞り機構である。高段側膨張弁14aは、制御装置50から出力される制御信号によって、その作動が制御される。
分離器側膨張弁14bは、分岐部13aにて分岐された他方の冷媒を気液二相状態となるように減圧させる分離器側減圧部である。分離器側膨張弁14bは、その下流側へ流出させる冷媒の流量を調整する分離器側流量調整部である。分離器側膨張弁14bの基本的構成は、高段側膨張弁14aと同様である。
高段側膨張弁14aの出口には、高段側蒸発器15の冷媒入口側が接続されている。高段側蒸発器15は、高段側膨張弁14aにて減圧された低圧冷媒と室内用送風機15aから車室内へ送風される室内用送風空気とを熱交換させて、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器である。室内用送風機15aは、制御装置50から出力される制御電圧によって回転数(送風空気量)が制御される電動送風機である。
高段側蒸発器15の冷媒出口には、合流部13bの一方の冷媒流入口側が接続されている。合流部13bは、高段側蒸発器15から流出した冷媒の流れと後述する気液分離器17から流出した気相冷媒の流れとを合流させるものである。合流部13bの基本的構成は、分岐部13aと同様である。合流部13bは、3つの冷媒流入出口のうち2つを冷媒流入口とし、残りの1つを冷媒流出口としたものである。
合流部13bの冷媒流出口には、エジェクタ16のノズル部16aの入口側が接続されている。エジェクタ16は、高段側蒸発器15から流出した冷媒を、さらに減圧させて噴射するノズル部16aを有し、冷媒減圧部としての機能を果たす。さらに、エジェクタ16は、ノズル部16aの冷媒噴射口から噴射された噴射冷媒の吸引作用によって、外部から冷媒を吸引して循環させる冷媒循環部としての機能を果たす。
これに加えて、エジェクタ16は、ノズル部16aから噴射された噴射冷媒と冷媒吸引口16cから吸引された吸引冷媒との混合冷媒の運動エネルギを圧力エネルギに変換し、混合冷媒を昇圧させるエネルギ変換部としての機能を果たす。
エジェクタ16は、ノズル部16aおよびボデー部16bを有している。ノズル部16aは、冷媒の流れ方向に向かって徐々に先細る略円筒状の金属(本実施形態では、ステンレス合金)で形成されている。ノズル部16aは、内部に形成された冷媒通路にて冷媒を等エントロピ的に減圧させるものである。
ノズル部16aの内部に形成された冷媒通路には、通路断面積を最も縮小させる喉部、および喉部から冷媒を噴射する冷媒噴射口へ向かうに伴って通路断面積が徐々に拡大する末広部が形成されている。つまり、本実施形態のノズル部16aは、ラバールノズルとして構成されている。
さらに、本実施形態では、ノズル部16aとして、エジェクタ式冷凍サイクル10の通常運転時に、冷媒噴射口から噴射される噴射冷媒の流速が音速以上となるように設定されたものが採用されている。もちろん、ノズル部16aを先細ノズルで構成してもよい。
ボデー部16bは、略円筒状の金属(本実施形態では、アルミニウム)で形成されている。ボデー部16bは、内部にノズル部16aを支持固定する固定部材として機能するとともに、内部に冷媒を流通させる冷媒通路を形成するものである。より具体的には、ノズル部16aは、ボデー部16bの長手方向一端側の内部に収容されるように圧入にて固定されている。ボデー部16bは、樹脂にて形成されていてもよい。
ボデー部16bの外周面のうち、ノズル部16aの外周側に対応する部位には、その内外を貫通してノズル部16aの冷媒噴射口と連通するように設けられた冷媒吸引口16cが形成されている。冷媒吸引口16cは、ノズル部16aから噴射される噴射冷媒の吸引作用によって、後述する低段側蒸発器18から流出した冷媒をエジェクタ16の内部へ吸引する貫通穴である。
ボデー部16bの内部には、吸引通路16eおよびディフューザ部16dが形成されている。吸引通路16eは、冷媒吸引口16cから吸引された吸引冷媒をノズル部16aの冷媒噴射口側へ導く冷媒通路である。ディフューザ部16dは、吸引冷媒と噴射冷媒とを混合させて昇圧させる昇圧部として機能する冷媒通路である。
より詳細には、吸引通路16eは、ノズル部16aの先細り形状の先端部周辺の外周側とボデー部16bの内周側との間の断面円環状の空間によって形成されている。吸引通路16eの通路断面積は、冷媒流れ下流側へ向かうに伴って縮小している。これにより、吸引通路16eを流通する吸引冷媒の流速を増速させて、ディフューザ部16dにて吸引冷媒と噴射冷媒が混合する際のエネルギ損失(いわゆる、混合損失)を減少させている。
ディフューザ部16dは、吸引通路16eの出口に連続するように配置された円錐台状に広がる冷媒通路である。ディフューザ部16dでは、通路断面積が冷媒流れ下流側に向かうに伴って拡大している。ディフューザ部16dは、このような通路形状によって、混合冷媒の運動エネルギを圧力エネルギに変換する。
本実施形態では、ディフューザ部16dを形成するボデー部16bの内周壁面の軸方向断面形状が、複数の曲線を組み合わせた形状に形成されている。そして、ディフューザ部16dの通路断面積の広がり度合が冷媒流れ方向に向かうに伴って大きくなった後に再び小さくなっていることで、冷媒を等エントロピ的に昇圧させることができる。ディフューザ部16dの出口には、圧縮機11の吸入口側が接続されている。
また、分離器側膨張弁14bの出口には、気液分離器17の入口側が接続されている。気液分離器17は、分離器側膨張弁14bにて減圧された冷媒の気液を分離する気液分離部である。このような気液分離部としては、遠心力の作用によって冷媒の気液を分離する遠心分離方式のものや、衝突板に衝突させることによって流速を低下させた冷媒の気液を重力の作用によって分離する衝突板方式のもの等を採用することができる。
気液分離器17の気相冷媒出口は、合流部13bの他方の冷媒流入口側が接続されている。換言すると、気液分離器17の気相冷媒出口は、エジェクタ16のノズル部16aの入口側に接続されている。また、気液分離器17の液相冷媒出口は、低段側膨張弁14cの入口側に接続されている。
低段側膨張弁14cは、放熱器12にて放熱した冷媒のうち、気液分離器17にて分離された液相冷媒を減圧させる低段側減圧部である。さらに、低段側膨張弁14cは、その下流側に流出させる冷媒の流量を調整する低段側流量調整部である。低段側膨張弁14cの基本的構成は、高段側膨張弁14aおよび分離器側膨張弁14bと同様である。
低段側膨張弁14cの出口には、低段側蒸発器18の冷媒入口側が接続されている。低段側蒸発器18は、低段側膨張弁14cにて減圧された低圧冷媒と庫内用送風機18aから冷蔵庫内を循環送風される庫内用送風空気とを熱交換させて、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器である。庫内用送風機18aは、制御装置50から出力される制御電圧によって回転数(送風空気量)が制御される電動送風機である。
低段側蒸発器18の冷媒出口には、前述の如く、エジェクタ16の冷媒吸引口16c側が接続されている。
以上の説明から明かなように、分岐部13aは、放熱器12の下流側の冷媒の流れを分岐している。そして、分岐された一方の冷媒を高段側減圧部を介して高段側蒸発器15の冷媒入口側へ流出させている。さらに、分岐された他方の冷媒を少なくとも低段側減圧部を介して低段側蒸発器18の冷媒入口側へ流出させている。
また、分離器側膨張弁14bは、分岐部13aにて分岐された他方の冷媒を気液二相冷媒となるように減圧させる。従って、気液分離器17では、冷媒の気液を確実に分離することができる。そして、気液分離器17の液相冷媒流出口から流出する冷媒のエンタルピを、気液分離器17へ流入する冷媒のエンタルピよりも確実に低下させることができる。
換言すると、気液分離器17の液相冷媒流出口から流出して低段側膨張弁14cを介して低段側蒸発器18へ流入する冷媒のエンタルピを、分岐部13aにて分岐される冷媒のエンタルピよりも低下させることができる。従って、本実施形態の分離器側膨張弁14bおよび気液分離器17は、低段側蒸発器18へ流入する冷媒のエンタルピを低下させるエンタルピ調整部を構成している。
また、エジェクタ式冷凍サイクル10において、圧縮機11から吐出された冷媒の流量を、吐出流量Gaと定義する。高段側蒸発器15へ流入させる冷媒の流量を、高段側冷媒流量G_heと定義する。低段側蒸発器18へ流入させる冷媒の流量を、低段側冷媒流量G_leと定義する。エジェクタ16のノズル部16aへ流入させる冷媒の流量を、ノズル側流量Gnと定義する。エジェクタ16の冷媒吸引口16cへ吸引させる冷媒の流量を、吸引側流量Geと定義する。気液分離器17の気相冷媒出口から流出する冷媒の流量を、気相冷媒流量G_gasと定義する。気液分離器17の液相冷媒出口から流出する冷媒の流量を、液相冷媒流量G_lqと定義する。これらの冷媒の流量は、いずれも質量流量である。
エジェクタ式冷凍サイクル10では、各流量について、以下数式F1〜F4に示す関係が成立している。
Ga=G_he+G_gas+G_lq …(F1)
Gn=G_he+G_gas …(F2)
Ge=G_lq …(F3)
Ge=G_le …(F4)
つまり、吐出流量Gは、高段側冷媒流量G_he、気相冷媒流量G_gasおよび液相冷媒流量G_lqの合計値と等しい。ノズル側流量Gnは、高段側冷媒流量G_heおよび気相冷媒流量G_gasの合計値と等しい。吸引側流量Geは、液相冷媒流量G_lqと等しい。さらに、吸引側流量Geは、低段側冷媒流量G_leと等しい。
次に、本実施形態の電気制御部について説明する。制御装置50は、CPU、ROM、RAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。制御装置50は、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御対象機器11、12a、14a〜14c、15a、18a等の作動を制御する。
制御装置50の入力側には、内気温センサ、外気温センサ、日射センサ、高段側蒸発器温度センサ、低段側蒸発器温度センサといった制御用のセンサ群51が接続されている。そして、制御装置50には、制御用のセンサ群51の検出信号が入力される。
内気温センサは、車室内温度(内気温)Trを検出する内気温検出部である。外気温センサは、車室外温度(外気温)Tamを検出する外気温検出部である。日射センサは、車室内へ照射される日射量Asを検出する日射量検出部である。高段側蒸発器温度センサは、高段側蒸発器15における冷媒蒸発温度(高段側蒸発器温度)Te_heを検出する蒸発器温度検出部である。低段側蒸発器温度センサは、低段側蒸発器18における高段側蒸発温度(低段側蒸発器温度)Te_leを検出する低段側蒸発器温度検出部である。
さらに、制御装置50の入力側には、車室内前部の計器盤付近に配置された操作パネル52が接続され、この操作パネル52に設けられた各種操作スイッチからの操作信号が制御装置50へ入力される。操作パネル52に設けられた各種操作スイッチとしては、車両用冷凍サイクル装置の作動あるいは停止を要求する作動スイッチ、車室内温度を設定する車室内温度設定スイッチ、庫内温度を設定する庫内温度設定スイッチ等が設けられている。
ここで、本実施形態の制御装置50は、その出力側に接続された各種の制御対象機器の作動を制御する制御部が一体に構成されたものである。そして、制御装置50のうち、各制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が各制御対象機器の制御部を構成している。
例えば、本実施形態では、圧縮機11の作動を制御する構成が圧縮機制御部を構成している。例えば、高段側膨張弁14aおよび低段側膨張弁14cの作動を制御する構成が、高段側冷媒流量G_heと低段側冷媒流量G_leとの流量比、あるいは、ノズル側流量Gnと吸引側流量Geとの流量比を制御する流量比制御部を構成している。
次に、図2のモリエル線図を用いて、本実施形態のエジェクタ式冷凍サイクル10の作動について説明する。まず、操作パネル52の作動スイッチが投入(ON)されると、制御装置50が各種制御対象機器を作動させる。これにより、圧縮機11が冷媒を吸入し、圧縮して吐出する。
圧縮機11から吐出された高温高圧の吐出冷媒(図2のa2点)は、放熱器12へ流入する。放熱器12へ流入した冷媒は、冷却用送風機12aから送風された外気と熱交換して、放熱して凝縮する(図2のa2点→b2点)。放熱器12から流出した冷媒の流れは、分岐部13aにて分岐される。
分岐部13aにて分岐された一方の冷媒は、高段側膨張弁14aへ流入して等エンタルピ的に減圧される(図2のb2点→c2点)。この際、高段側膨張弁14aの絞り開度は、高段側蒸発器15出口側冷媒(図2のd2点)の過熱度が予め定めた所定範囲内となるように調整される。
高段側膨張弁14aにて減圧された低圧冷媒は、高段側蒸発器15へ流入する。高段側蒸発器15へ流入した低圧冷媒は、室内用送風機15aから送風された室内用送風空気から吸熱して蒸発する(図2のc2点→d2点)。これにより、室内用送風空気が冷却される。ここで、図2のd2点とc2点とのエンタルピ差は、高段側蒸発器15の出口側冷媒のエンタルピから入口側冷媒のエンタルピを減算した高段側エンタルピ差Δh_heである。
高段側蒸発器15から流出した過熱度を有する気相冷媒(図2のd2点)は、合流部13bへ流入して、気液分離器17にて分離された気相冷媒(図2のj2点)と合流する(図2のd2点→e2点、j2点→e2点)。合流部13bから流出した気相冷媒(図2のe2点)は、エジェクタ16のノズル部16aへ流入する。
エジェクタ16のノズル部16aへ流入した冷媒は、等エントロピ的に減圧されて噴射される(図2のe2点→f2点)。そして、この噴射冷媒の吸引作用によって、低段側蒸発器18から流出した冷媒(図2のn2点)が、エジェクタ16の冷媒吸引口16cから吸引される。
冷媒吸引口16cから吸引された冷媒は、エジェクタ16の内部に形成された吸引通路16eを流通する際に、等エントロピ的に減圧されて僅かに圧力を低下させる(図2のn2点→o2点)。ノズル部16aから噴射された噴射冷媒および冷媒吸引口16cから吸引された吸引冷媒は、エジェクタ16のディフューザ部16dへ流入する(図2のf2→g2点、o2点→g2点)。
ディフューザ部16dでは、冷媒通路面積の拡大により、冷媒の速度エネルギが圧力エネルギに変換される。これにより、噴射冷媒と吸引冷媒との混合冷媒の圧力が上昇する(図2のg2点→h2点)。ディフューザ部16dから流出した冷媒は、圧縮機11へ吸入されて再び圧縮される(図2のh2点→a2点)。
一方、分岐部13aにて分岐された他方の冷媒は、分離器側膨張弁14bへ流入して等エンタルピ的に減圧される(図2のb2点→i2点)。この際、分離器側膨張弁14bの絞り開度は、気液分離器17内の冷媒圧力が高段側蒸発器15の冷媒出口側の冷媒圧力よりも高い範囲で、高段側蒸発器15の冷媒出口側の冷媒圧力に近づくように調整される。
このため、本実施形態の分離器側膨張弁14bにおける冷媒の減圧量は、高段側膨張弁14aにおける冷媒の減圧量と冷媒が高段側蒸発器15を流通する際に生じる圧力損失による減圧量との合計値に近づく。
分離器側膨張弁14bにて減圧された冷媒は、気液二相冷媒となって気液分離器17へ流入する。気液分離器17へ流入した冷媒は、気相冷媒と液相冷媒に分離される(図2のi2点→j2点、i2点→k2点)。気液分離器17にて分離された気相冷媒(図2のj2点)は、前述の如く、合流部13bへ流入して、高段側蒸発器15から流出した過熱度を有する気相冷媒(図2のd2点)と合流する。
気液分離器17にて分離された液相冷媒(図2のk2点)は、低段側膨張弁14cへ流入して等エンタルピ的に減圧される(図2のk2点→m2点)。この際、低段側膨張弁14cの絞り開度は、低段側蒸発器18における冷媒蒸発温度が庫内温度設定スイッチによって設定された目標庫内温度に近づくように調整される。
低段側膨張弁14cにて減圧された低圧冷媒は、低段側蒸発器18へ流入する。低段側蒸発器18へ流入した低圧冷媒は、庫内用送風機18aから循環送風された庫内用送風空気から吸熱して蒸発する(図2のm2点→n2点)。これにより、庫内用送風空気が冷却される。ここで、図2のn2点とm2点とのエンタルピ差は、低段側蒸発器18の出口側冷媒のエンタルピから入口側冷媒のエンタルピを減算した低段側エンタルピ差Δh_leである。
低段側蒸発器18から流出した冷媒は、前述の如く、エジェクタ16の冷媒吸引口16cから吸引される(図2のn2点→o2点→g2点)。
本実施形態のエジェクタ式冷凍サイクル10は、以上の如く作動するので、車室内へ送風される室内用送風空気、および冷蔵庫内へ循環送風される庫内用送風空気を冷却することができる。この際、低段側蒸発器18の冷媒蒸発圧力(冷媒蒸発温度)が、高段側蒸発器15の冷媒蒸発圧力(冷媒蒸発温度)よりも低くなるので、車室内および冷蔵庫内を異なる温度帯で冷却することができる。
さらに、本実施形態のエジェクタ式冷凍サイクル10では、エジェクタ16のディフューザ部16dにて昇圧された冷媒(図2のh2点)を圧縮機11に吸入させるので、圧縮機11の消費動力を低減させて、サイクルの成績係数(COP)を向上させることができる。
ところで、ディフューザ部16dにおける昇圧量ΔPを増加させるためには、ノズル部側流量Gnに対する吸引側流量Geの流量比Ge/Gnを小さくすればよい。その理由は、流量比Ge/Gnを小さくするに伴って、ノズル部16aへ流入する冷媒流量を増加させて、噴射冷媒の流速を増速させることができるからである。従って、エジェクタ式冷凍サイクル10では、流量比Ge/Gnを小さくするに伴って、COPを向上させやすい。
ところが、前述の数式F1、F2から明かなように、流量比Ge/Gnを小さくすることは、流量比G_le/(G_he+G_gas)を小さくすることと同義である。
このため、従って、COPを向上させるために、流量比Ge/Gnを小さくすると、低段側蒸発器18へ流入する冷媒の低段側冷媒流量G_leが減少してしまいやすい。つまり、流量比Ge/Gnを小さくすると、低段側蒸発器にて発揮される低段側冷却能力Δh_le×G_leが減少してしまうおそれがある。
さらに、本実施形態の車両用冷凍サイクル装置では、前述の如く、車室内を冷却するために必要な冷却能力と冷蔵庫内を冷却するために必要な冷却能力が同等となる。従って、低段側冷却能力Δh_le×G_leを、高段側蒸発器にて発揮される高段側冷却能力Δh_he×G_heに近づける必要がある。
これに対して、本実施形態のエジェクタ式冷凍サイクル10によれば、分離器側膨張弁14bおよび気液分離器17によって構成されるエンタルピ調整部を備えているので、低段側蒸発器18の出口側冷媒のエンタルピから入口側冷媒のエンタルピを減算した低段側エンタルピ差Δh_leを増大させることができる。
より具体的には、従来技術のエンタルピ調整部を備えていないエジェクタ式冷凍サイクル(以下、比較用サイクルと記載する。)の低段側蒸発器におけるエンタルピ差よりも、図2の+Δhに相当する分のエンタルピ差を増大させることができる。
従って、COPを向上させるために、流量比Ge/Gnを小さくして、低段側冷媒流量G_leが減少してしまっても、低段側冷却能力Δh_le×G_leが減少してしまうことを抑制することができる。換言すると、流量比Ge/Gnを1に近づけなくても低段側冷却能力Δh_le×G_leを高段側冷却能力Δh_he×G_heに近づけることができる。
本発明者らの検討によれば、図3に示すように、本実施形態のエジェクタ式冷凍サイクル10では、流量比Ge/Gnを0.791とすれば、比較用サイクルにて流量比Ge/Gnを1としたときと同様に、低段側冷却能力Δh_le×G_leと高段側冷却能力Δh_he×G_heとを近づけることができると確認されている。
また、数式F2に示すように、ノズル部側流量Gnが高段側冷媒流量G_heと気相冷媒流量G_gasとの合計値となる。従って、本実施形態のエジェクタ式冷凍サイクル10では、比較用サイクルのノズル部側流量よりも、ノズル部側流量Gnを気相冷媒流量G_gasの分だけ増加させることができる。
その結果、流量比G_le/(G_he+G_gas)を小さくすることができ、より一層、ディフューザ部16dにおける昇圧量ΔPを増加させて、COPを向上させることができる。
ここで、本発明者らの検討によれば、図4に示すように、本実施形態のエジェクタ式冷凍サイクル10では、流量比Ge/Gnを1とし、エジェクタ効率ηeが0.5となるエジェクタ16を採用した際に、比較用サイクルよりも3%程度のCOPの向上が図れることが確認されている。エジェクタ効率ηeは、エジェクタのエネルギ変換効率であって、エジェクタ式冷凍サイクル10の運転条件やエジェクタ16の寸法諸元等によって決定される値である。
すなわち、本実施形態のエジェクタ式冷凍サイクル10によれば、低段側蒸発器18にて発揮される冷却能力の減少を招くことなく、COPを向上させることができる。
また、本実施形態のエジェクタ式冷凍サイクル10では、分離器側膨張弁14bおよび気液分離器17によって、エンタルピ調整部を構成している。さらに、分岐部13aの一方の冷媒流出口に、高段側膨張弁14aの入口側を接続し、高段側蒸発器15の冷媒出口に、ノズル部16aの入口側を接続している。
さらに、分岐部13aの他方の冷媒流出口に、分離器側膨張弁14bの入口側を接続し。気液分離器17の気相冷媒出口に、ノズル部16aの入口側を接続するとともに、気液分離器17の液相冷媒出口に、低段側膨張弁14cの入口側を接続している。従って、簡素なサイクル構成で、上述したCOP向上効果を得ることができる。
また、本実施形態の分離器側膨張弁14bの絞り開度は、気液分離器17内の冷媒の圧力が高段側蒸発器15の冷媒出口側の冷媒圧力に近づくように調整される。
これによれば、合流部13bから気液分離器17側への冷媒の逆流等を招くことなく、合流部13bにて、高段側蒸発器15から流出した過熱度を有する気相冷媒の流れと気液分離器17の気相冷媒出口から流出した気相冷媒の流れとを適切に混合させてノズル部16aへ供給することができる。
(第2実施形態)
本実施形態では、第1実施形態に対して、図5の全体構成図に示すように、エジェクタ式冷凍サイクル10のサイクル構成を変更した例を説明する。なお、図5では、図示の明確化のため、制御装置50、制御用のセンサ群51、操作パネル52等を省略している。また、図5では、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面でも同様である。
本実施形態のエジェクタ式冷凍サイクル10の放熱器12の冷媒出口には、高段側膨張弁14aの入口側が接続されている。高段側膨張弁14aの出口には、分岐部13aの冷媒流入口側が接続されている。分岐部13aの一方の冷媒流出口には、高段側蒸発器15の冷媒入口側が接続されている。その他の構成は、第1実施形態と同様である。
次に、図6のモリエル線図を用いて、本実施形態のエジェクタ式冷凍サイクル10の作動について説明する。なお、図6では、第1実施形態で説明した図2のモリエル線図に対してサイクル構成上同等の箇所の冷媒の状態を、図2と同一の符号(アルファベット)で示し、添字(数字)のみを図番に合わせて変更している。このことは、以下で説明する他のモリエル線図においても同様である。
圧縮機11から吐出された高温高圧の吐出冷媒(図6のa6点)は、第1実施形態と同様に、放熱器12へ流入して凝縮する(図6のa6点→b6点)。放熱器12から流出した冷媒は、高段側膨張弁14aへ流入して等エンタルピ的に減圧される(図2のb6点→c6点)。この際、高段側膨張弁14aの絞り開度は、高段側蒸発器15出口側冷媒(図6のd6点)の過熱度が予め定めた所定範囲内となるように調整される。
高段側膨張弁14aから流出した低圧冷媒の流れは、分岐部13aにて分岐される。分岐部13aにて分岐された一方の冷媒は、高段側蒸発器15へ流入して、第1実施形態と同様に、室内用送風空気から吸熱して蒸発する(図6のc6点→d6点)。これにより、室内送風空気が冷却される。
分岐部13aにて分岐された他方の冷媒は、分離器側膨張弁14bへ流入して等エンタルピ的に減圧される(図6のb6点→i6点)。この際、分離器側膨張弁14bの絞り開度は、第1実施形態と同様に、気液分離器17内の冷媒圧力が高段側蒸発器15の冷媒出口側の冷媒圧力よりも高い範囲で、高段側蒸発器15の冷媒出口側の冷媒圧力に近づくように調整される。以降の作動は、第1実施形態と同様である。
従って、本実施形態のエジェクタ式冷凍サイクル10においても、第1実施形態と同様の効果を得ることができる。すなわち、低段側蒸発器18にて発揮される冷却能力の減少を招くことなく、エジェクタ式冷凍サイクル10のCOPを向上させることができる。
(第3実施形態)
本実施形態では、第1実施形態に対して、図7の全体構成図に示すように、サイクル構成を変更したエジェクタ式冷凍サイクル10aについて説明する。
具体的には、エジェクタ式冷凍サイクル10aの気液分離器17の気相冷媒出口には、エジェクタ16のノズル部16aの入口側が接続されている。エジェクタ16のディフューザ部16dの出口には、合流部13bの他方の冷媒流入口側が接続されている。合流部13bの冷媒流出口には、圧縮機11の吸入口側が接続されている。その他の構成は、第1実施形態と同様である。
従って、本実施形態のエジェクタ式冷凍サイクル10aでは、各流量について、第1実施形態で説明した、数式F1、F3、F4は成立するものの、数式F2は成立しない。そして、数式F2に代えて、以下数式F5に示す関係が成立している。
Gn=G_gas …(F5)
つまり、ノズル側流量Gnは、気相冷媒流量G_gasと等しい。
次に、図8のモリエル線図を用いて、本実施形態のエジェクタ式冷凍サイクル10aの作動について説明する。
圧縮機11から吐出された高温高圧の吐出冷媒(図8のa8点)は、第1実施形態と同様に、放熱器12へ流入して凝縮する(図8のa8点→b8点)。放熱器12から流出した冷媒の流れは、分岐部13aにて分岐され、分岐された一方の冷媒は、第1実施形態と同様に、高段側膨張弁14aを介して、高段側蒸発器15へ流入して蒸発する(図8のb8点→c8点→d8点)。これにより、室内送風空気が冷却される。
高段側蒸発器15から流出した冷媒は、合流部13bへ流入して、エジェクタ16のディフューザ部16dから流出した冷媒を合流する(図8のd8点→e8点、h8点→e8点)。合流部13bから流出した冷媒は、圧縮機11へ吸入されて再び圧縮される(図8のe8点→a8点)。
また、分岐された他方の冷媒は、第1実施形態と同様に、分離器側膨張弁14bにて減圧され、気液分離器17にて気液分離される(図8のb8点→i8点→j8点、b8点→i8点→k8点)。この際、分離器側膨張弁14bの絞り開度は、COPが極大値(ピーク値)に近づくように調整される。
ここで、気液分離器17へ流入する冷媒は、分離器側膨張弁14bにて等エンタルピ的に減圧された冷媒なので、圧力の低下に伴って乾き度が高くなる。このため、気液分離器17へ流入する冷媒の圧力の低下に伴って、気相冷媒流量G_gasが増加し、液相冷媒流量G_lqが減少する。さらに、エジェクタ式冷凍サイクル10aではく、気液分離器17の気相冷媒出口に、エジェクタ16のノズル部16aの入口側が接続されている。
従って、気液分離器17へ流入する冷媒の圧力の低下に伴って、気相冷媒流量G_gas(すなわち、ノズル側流量Gn)を増加させて、エジェクタ16のディフューザ部16dにおける昇圧量ΔPを増加させやすい。その一方で、気液分離器17へ流入する冷媒の圧力の低下に伴って、液相冷媒流量G_lq(すなわち、低段側冷媒流量G_le)が減少するので、低段側冷却能力Δh_le×G_leが減少しやすい。
このため、エジェクタ式冷凍サイクル10aでは、気液分離器17へ流入する冷媒の圧力の変化に対して、COPが極大値(ピーク値)に有するように変化する。そこで、本実施形態では、COPが極大値(ピーク値)に近づくように分離器側膨張弁14bの絞り開度を調整している。
気液分離器17にて分離された気相冷媒(図8のj8点)は、エジェクタ16のノズル部16aへ流入する。エジェクタ16のノズル部16aへ流入した冷媒は、第1実施形態と同様に、等エントロピ的に減圧されて噴射される(図8のj8点→f8点)。これにより、低段側蒸発器18から流出した冷媒(図8のn8点)が、エジェクタ16の冷媒吸引口16cから吸引される(図8のn8点→o8点)。
さらに、噴射冷媒と吸引冷媒は、第1実施形態と同様に、ディフューザ部16dにて昇圧されて、合流部13bの他方の冷媒流入口へ流入する(図8のf8点→g8点→h8点、図8のo8点→g8点→h8点)。
気液分離器17にて分離された液相冷媒(図8のk8点)は、第1実施形態と同様に、低段側膨張弁14cを介して、低段側蒸発器18へ流入して蒸発する(図8のm8点→n8点)。これにより、庫内用送風空気が冷却される。以降の作動は、第1実施形態と同様である。
従って、本実施形態のエジェクタ式冷凍サイクル10aにおいても、第1実施形態と同様に、低段側蒸発器18にて発揮される冷却能力の減少を招くことなく、エジェクタ式冷凍サイクル10aのCOPを向上させることができる。
ここで、図8では、分離器側膨張弁14bにて減圧された冷媒の圧力(図8のi8点)が、高段側膨張弁14aにて減圧された冷媒の圧力(図8のc8点)よりも低くなっている例を示しているが、両者の関係はこれに限定されない。
つまり、分離器側膨張弁14bの絞り開度が、エジェクタ式冷凍サイクル10aのCOPが極大値に近づくように調整されていれば、分離器側膨張弁14bにて減圧された冷媒の圧力(図8のi8点)が、高段側膨張弁14aにて減圧された冷媒の圧力(図8のc8点)以上となっていてもよい。
(第4実施形態)
本実施形態では、第3実施形態に対して、図9の全体構成図に示すように、エジェクタ式冷凍サイクル10aのサイクル構成を変更した例を説明する。
本実施形態のエジェクタ式冷凍サイクル10の放熱器12の冷媒出口には、高段側膨張弁14aの入口側が接続されている。高段側膨張弁14aの出口には、分岐部13aの冷媒流入口側が接続されている。分岐部13aの一方の冷媒流出口には、高段側蒸発器15の冷媒入口側が接続されている。その他の構成は、第3実施形態と同様である。
次に、図10のモリエル線図を用いて、本実施形態のエジェクタ式冷凍サイクル10の作動について説明する。
圧縮機11から吐出された高温高圧の吐出冷媒(図10のa10点)は、第3実施形態と同様に、放熱器12にて凝縮する(図10のa10点→b10点)。放熱器12から流出した冷媒は、高段側膨張弁14aへ流入して等エンタルピ的に減圧される(図10のb10点→c10点)。この際、高段側膨張弁14aの絞り開度は、高段側蒸発器1出口側冷媒(図10のd10点)の過熱度が予め定めた所定範囲内となるように調整される。
高段側膨張弁14aから流出した低圧冷媒の流れは、分岐部13aにて分岐される。分岐部13aにて分岐された一方の冷媒は、高段側蒸発器15へ流入して、第3実施形態と同様に、室内用送風空気から吸熱して蒸発する(図10のc10点→d10点)。これにより、室内送風空気が冷却される。
分岐部13aにて分岐された他方の冷媒は、分離器側膨張弁14bへ流入して等エンタルピ的に減圧される(図10のb10点→i10点)。この際、分離器側膨張弁14bの絞り開度は、第3実施形態と同様に、COPが極大値(ピーク値)に近づくように調整される。以降の作動は、第1実施形態と同様である。
従って、本実施形態のエジェクタ式冷凍サイクル10aにおいても、第3実施形態と同様に、低段側蒸発器18にて発揮される冷却能力の減少を招くことなく、エジェクタ式冷凍サイクル10aのCOPを向上させることができる。
(他の実施形態)
本発明は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
(1)上述の実施形態では、分離器側膨張弁14bおよび気液分離器17によってエンタルピ調整部を構成した例を説明したが、エンタルピ調整部は、これに限定されない。例えば、低段側蒸発器18へ流入する冷媒と、これよりも低温の冷媒とを熱交換させて、低段側蒸発器18へ流入する冷媒のエンタルピを低下させる内部熱交換器をエンタルピ調整部として採用してもよい。
(2)上述の各実施形態では、本発明に係るエジェクタ式冷凍サイクル10を冷蔵車両用の冷凍サイクル装置に適用した例を説明したが、本発明に係るエジェクタ式冷凍サイクル10の適用はこれに限定されない。
例えば、車両用に適用する場合は、高段側蒸発器15にて車両前席側へ送風される前席用送風空気を冷却し、低段側蒸発器18にて車両後席側へ送風される後席用送風空気を冷却する、いわゆるデュアルエアコンシステムに適用してもよい。
さらに、車両用に限定されることなく、据え置き型の冷蔵冷凍装置、ショーケース、空調装置等に適用してもよい。この際、複数の冷却対象空間のうち、最も温度を低くしたい低温側の冷却対象空間を低段側蒸発器18にて冷却し、低温側の冷却対象空間よりも高い温度帯で冷却される冷却対象空間を高段側蒸発器15にて冷却するようにしてもよい。
(3)エジェクタ式冷凍サイクル10を構成する構成機器は、上述の実施形態に開示されたものに限定されない。
例えば、圧縮機11として、プーリ、ベルト等を介してエンジン(内燃機関)から伝達された回転駆動力によって駆動されるエンジン駆動式の圧縮機を採用してもよい。この種のエンジン駆動式の圧縮機としては、吐出容量の変化により冷媒吐出能力を調整できる可変容量型圧縮機、電磁クラッチの断続により圧縮機の稼働率を変化させて冷媒吐出能力を調整する固定容量型圧縮機等を採用することができる。
また、放熱器12として、圧縮機11吐出冷媒と外気とを熱交換させて圧縮機11吐出冷媒を凝縮させる凝縮部、この凝縮部から流出した冷媒の気液を分離するモジュレータ部、およびモジュレータ部から流出した液相冷媒と外気とを熱交換させて液相冷媒を過冷却する過冷却部を有して構成される、いわゆるサブクール型の凝縮器を採用してもよい。
また、高段側膨張弁14aとして、高段側蒸発器15の出口側の冷媒の温度および圧力に応じて変形する変形部材(具体的には、ダイヤフラム)を有する感温部と、変形部材の変形に連動して絞り開度を変化させる機械的機構とを備える温度式膨張弁を採用してもよい。
分離器側膨張弁14bあるいは低段側膨張弁14cのいずれか一方に低段側蒸発器の出口側の冷媒の過熱度が予め定めた基準過熱度に近づくように絞り開度を調整する温度式膨張弁を採用し、他方を絞り開度の固定された固定絞り(具体的には、オリフィス、キャピラリチューブ)を採用してもよい。
さらに、高段側膨張弁14a、分離器側膨張弁14bおよび低段側膨張弁14cのいずれか1に可変絞り機構を採用し、残りのものを固定絞りとしてもよい。
また、上述の実施形態では、エジェクタ16としてノズル部16aの喉部(最小通路面積部)の通路断面積が変化しない固定ノズル部を有する固定エジェクタを採用した例を説明したが、エジェクタ16として、喉部の通路断面積を調整可能な可変ノズル部を有する可変エジェクタを用いてもよい。
また、上述の実施形態では、高段側蒸発器15および低段側蒸発器18を備えるエジェクタ式冷凍サイクル10、10aについて説明したが、さらに蒸発器を備えていてもよい。
例えば、第1実施形態のエジェクタ式冷凍サイクル10において、分岐部13aにて分岐された他方の冷媒を更に分岐する補助分岐部と、補助分岐部と圧縮機11の吸入口とを接続するバイパス通路を設け、このバイパス通路に補助減圧部と補助蒸発器とを配置してもよい。
例えば、第1実施形態のエジェクタ式冷凍サイクル10において、高段側膨張弁14aにて減圧された冷媒の流れを分岐する第1補助分岐部と、第1補助分岐部と圧縮機11の吸入口とを接続する第1バイパス通路を設け、この第1バイパス通路に補助高段側蒸発器と補助エジェクタとを配置する。
さらに、低段側膨張弁14cにて減圧された冷媒の流れを分岐する第2補助分岐部と、第2補助分岐部と補助エジェクタの冷媒吸引口とを接続する第2バイパス通路を設け、この第2バイパス通路に補助低段側蒸発器を配置する構成としてもよい。
(4)上述の実施形態では、冷媒としてR600aを採用した例を説明したが、冷媒はこれに限定されない。例えば、R134a、R1234yf、R410A、R404A、R32、R1234yfxf、R407C等を採用することができる。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。
10、10a エジェクタ式冷凍サイクル
11 圧縮機
12 放熱器
13a 分岐部
14a 高段側膨張弁(高段側減圧部)
14b 分離器側膨張弁(分離部側減圧部:エンタルピ調整部)
14c 低段側膨張弁(低段側減圧部)
15 高段側蒸発器
16 エジェクタ
17 気液分離器(気液分離部:エンタルピ調整部)
18 低段側蒸発器

Claims (6)

  1. 冷媒を圧縮して吐出する圧縮機(11)と、
    前記圧縮機から吐出された冷媒を放熱させる放熱器(12)と、
    前記放熱器にて放熱した冷媒を減圧させる高段側減圧部(14a)と、
    前記高段側減圧部にて減圧された冷媒を蒸発させる高段側蒸発器(15)と、
    前記放熱器にて放熱した冷媒を減圧させる低段側減圧部(14c)と、
    前記低段側減圧部にて減圧された冷媒を蒸発させる低段側蒸発器(18)と、
    前記放熱器の下流側の冷媒の流れを分岐して、分岐された一方の冷媒を前記高段側蒸発器の冷媒入口側へ流出させるとともに、分岐された他方の冷媒を前記低段側蒸発器の冷媒入口側へ流出させる分岐部(13a)と、
    冷媒を減圧させるノズル部(16a)から噴射される噴射冷媒の吸引作用によって、前記低段側蒸発器から流出した冷媒を冷媒吸引口(16c)から吸引し、前記噴射冷媒と前記冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させて前記圧縮機の吸入口側へ流出させる昇圧部(16d)を有するエジェクタ(16)と、を備え、
    さらに、前記低段側蒸発器へ流入する冷媒のエンタルピを低下させるエンタルピ調整部(14b、17)を備えるエジェクタ式冷凍サイクル。
  2. 前記エンタルピ調整部は、冷媒の気液を分離する気液分離部(17)および前記気液分離部へ流入する冷媒を減圧させる分離器側減圧部(14b)を有し、
    前記放熱器の冷媒出口は、前記分岐部の流入口側に接続されており、
    前記分岐部の一方の流出口は、前記高段側減圧部の入口側に接続されており、
    前記高段側蒸発器の冷媒出口は、前記ノズル部の入口側に接続されており、
    前記分岐部の他方の流出口は、前記分離器側減圧部の入口側に接続されており、
    前記気液分離部の気相冷媒出口は、前記ノズル部の入口側に接続されており、
    前記気液分離部の液相冷媒出口は、前記低段側減圧部の入口側に接続されている請求項1に記載のエジェクタ式冷凍サイクル。
  3. 前記エンタルピ調整部は、冷媒の気液を分離する気液分離部(17)および前記気液分離部へ流入する冷媒を減圧させる分離器側減圧部(14b)を有し、
    前記放熱器の冷媒出口は、前記高段側減圧部の入口側に接続されており、
    前記高段側減圧部の出口は、前記分岐部の流入口側に接続されており、
    前記分岐部の一方の流出口は、前記高段側蒸発器の冷媒入口側に接続されており、
    前記高段側蒸発器の冷媒出口は、前記ノズル部の入口側に接続されており、
    前記分岐部の他方の流出口は、前記分離器側減圧部(14b)の入口側に接続されており、
    前記気液分離部の気相冷媒出口は、前記ノズル部の入口側に接続されており、
    前記気液分離部の液相冷媒出口は、前記低段側減圧部の入口側に接続されている請求項1に記載のエジェクタ式冷凍サイクル。
  4. 前記分離器側減圧部は、前記気液分離部内の冷媒の圧力が前記高段側蒸発器(15)の出口側の冷媒の圧力に近づくように絞り開度を調整するものである請求項2または3に記載のエジェクタ式冷凍サイクル。
  5. 前記エンタルピ調整部は、冷媒の気液を分離する気液分離部(17)および前記気液分離部へ流入する冷媒を減圧させる分離器側減圧部(14b)を有し、
    前記放熱器の冷媒出口は、前記分岐部の流入口側に接続されており、
    前記分岐部の一方の流出口は、前記高段側減圧部の入口側に接続されており、
    前記高段側蒸発器の冷媒出口は、前記圧縮機の吸入口側に接続されており、
    前記分岐部の他方の流出口は、前記分離器側減圧部の入口側に接続されており、
    前記気液分離部の気相冷媒出口は、前記ノズル部の入口側に接続されており、
    前記気液分離部の液相冷媒出口は、前記低段側減圧部の入口側に接続されている請求項1に記載のエジェクタ式冷凍サイクル。
  6. 前記エンタルピ調整部は、冷媒の気液を分離する気液分離部(17)および前記気液分離部へ流入する冷媒を減圧させる分離器側減圧部(14b)を有し、
    前記放熱器の冷媒出口は、前記高段側減圧部の入口側に接続されており、
    前記高段側減圧部の出口は、前記分岐部の流入口側に接続されており、
    前記分岐部の一方の流出口は、前記高段側蒸発器の冷媒入口側に接続されており、
    前記高段側蒸発器の冷媒出口は、前記圧縮機の吸入口側に接続されており、
    前記分岐部の他方の流出口は、前記分離器側減圧部の入口側に接続されており、
    前記気液分離部の気相冷媒出口は、前記ノズル部の入口側に接続されており、
    前記気液分離部の液相冷媒出口は、前記低段側減圧部の入口側に接続されている請求項1に記載のエジェクタ式冷凍サイクル。
JP2018087044A 2018-04-27 2018-04-27 エジェクタ式冷凍サイクル Active JP6939691B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018087044A JP6939691B2 (ja) 2018-04-27 2018-04-27 エジェクタ式冷凍サイクル
PCT/JP2019/016802 WO2019208428A1 (ja) 2018-04-27 2019-04-19 エジェクタ式冷凍サイクル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018087044A JP6939691B2 (ja) 2018-04-27 2018-04-27 エジェクタ式冷凍サイクル

Publications (3)

Publication Number Publication Date
JP2019190794A true JP2019190794A (ja) 2019-10-31
JP2019190794A5 JP2019190794A5 (ja) 2020-08-06
JP6939691B2 JP6939691B2 (ja) 2021-09-22

Family

ID=68295287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018087044A Active JP6939691B2 (ja) 2018-04-27 2018-04-27 エジェクタ式冷凍サイクル

Country Status (2)

Country Link
JP (1) JP6939691B2 (ja)
WO (1) WO2019208428A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210061281A (ko) * 2019-11-18 2021-05-27 제주대학교 산학협력단 이젝터를 이용한 냉동장치
DE102022115627A1 (de) 2022-06-23 2023-12-28 HTM Automotive GmbH Steuersystem, Verfahren zum Steuern eines Thermometermanagementsystems eines Fahrzeugs, computerlesbares-Speichermedium und Fahrzeug

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308380A (ja) * 2004-02-18 2005-11-04 Denso Corp エジェクタサイクル
JP2007057156A (ja) * 2005-08-24 2007-03-08 Calsonic Kansei Corp 冷凍サイクル
JP2012149790A (ja) * 2011-01-17 2012-08-09 Mitsubishi Electric Corp 冷凍サイクル装置及び流路切替装置及び流路切替方法
JP2012220162A (ja) * 2011-04-13 2012-11-12 Takasago Thermal Eng Co Ltd 冷凍サイクル方法
JP2015224861A (ja) * 2014-05-30 2015-12-14 株式会社デンソー エジェクタ式冷凍サイクル
JP2017072291A (ja) * 2015-10-06 2017-04-13 株式会社デンソー 冷凍サイクル装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308380A (ja) * 2004-02-18 2005-11-04 Denso Corp エジェクタサイクル
JP2007057156A (ja) * 2005-08-24 2007-03-08 Calsonic Kansei Corp 冷凍サイクル
JP2012149790A (ja) * 2011-01-17 2012-08-09 Mitsubishi Electric Corp 冷凍サイクル装置及び流路切替装置及び流路切替方法
JP2012220162A (ja) * 2011-04-13 2012-11-12 Takasago Thermal Eng Co Ltd 冷凍サイクル方法
JP2015224861A (ja) * 2014-05-30 2015-12-14 株式会社デンソー エジェクタ式冷凍サイクル
JP2017072291A (ja) * 2015-10-06 2017-04-13 株式会社デンソー 冷凍サイクル装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210061281A (ko) * 2019-11-18 2021-05-27 제주대학교 산학협력단 이젝터를 이용한 냉동장치
KR102388766B1 (ko) * 2019-11-18 2022-04-22 제주대학교 산학협력단 이젝터를 이용한 냉동장치
DE102022115627A1 (de) 2022-06-23 2023-12-28 HTM Automotive GmbH Steuersystem, Verfahren zum Steuern eines Thermometermanagementsystems eines Fahrzeugs, computerlesbares-Speichermedium und Fahrzeug

Also Published As

Publication number Publication date
JP6939691B2 (ja) 2021-09-22
WO2019208428A1 (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
JP6299495B2 (ja) エジェクタ式冷凍サイクル
JP6277869B2 (ja) エジェクタ式冷凍サイクル
CN107407507B (zh) 喷射器式制冷循环
JP6547781B2 (ja) 冷凍サイクル装置
JP6115344B2 (ja) エジェクタ
JP6350108B2 (ja) エジェクタ、およびエジェクタ式冷凍サイクル
JP6115345B2 (ja) エジェクタ
JP6589537B2 (ja) 冷凍サイクル装置
US20150176606A1 (en) Ejector
WO2018198609A1 (ja) エジェクタ式冷凍サイクル
WO2019208428A1 (ja) エジェクタ式冷凍サイクル
WO2018159322A1 (ja) エジェクタモジュール、およびエジェクタ式冷凍サイクル
JP5962596B2 (ja) エジェクタ式冷凍サイクル
WO2017217142A1 (ja) 冷凍サイクル装置
JP6547698B2 (ja) エジェクタ式冷凍サイクル
JP6780567B2 (ja) 気液分離器、および冷凍サイクル装置
JP2019190795A (ja) エジェクタ式冷凍サイクル
WO2018186129A1 (ja) 気液分離器、および冷凍サイクル装置
JP7119785B2 (ja) エジェクタ式冷凍サイクル、およびエジェクタモジュール
JP2018146140A (ja) エジェクタ式冷凍サイクル
WO2018139417A1 (ja) エジェクタ
WO2019155806A1 (ja) エジェクタ式冷凍サイクル、およびエジェクタモジュール
WO2017187932A1 (ja) 減圧装置および冷凍サイクル装置
WO2017154603A1 (ja) 蒸発器ユニット

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200625

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210816

R151 Written notification of patent or utility model registration

Ref document number: 6939691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151