JP2019174324A - 磁気センサ - Google Patents

磁気センサ Download PDF

Info

Publication number
JP2019174324A
JP2019174324A JP2018063795A JP2018063795A JP2019174324A JP 2019174324 A JP2019174324 A JP 2019174324A JP 2018063795 A JP2018063795 A JP 2018063795A JP 2018063795 A JP2018063795 A JP 2018063795A JP 2019174324 A JP2019174324 A JP 2019174324A
Authority
JP
Japan
Prior art keywords
magnetic
compensation coil
sensor
magnetosensitive
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018063795A
Other languages
English (en)
Other versions
JP7069960B2 (ja
Inventor
剛男 五木田
Takeo Gokita
剛男 五木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2018063795A priority Critical patent/JP7069960B2/ja
Priority to US16/981,146 priority patent/US11442120B2/en
Priority to EP19775807.1A priority patent/EP3779490A4/en
Priority to PCT/JP2019/009672 priority patent/WO2019188186A1/ja
Priority to CN201980023034.3A priority patent/CN112005126A/zh
Publication of JP2019174324A publication Critical patent/JP2019174324A/ja
Application granted granted Critical
Publication of JP7069960B2 publication Critical patent/JP7069960B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0017Means for compensating offset magnetic fields or the magnetic flux to be measured; Means for generating calibration magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0011Arrangements or instruments for measuring magnetic variables comprising means, e.g. flux concentrators, flux guides, for guiding or concentrating the magnetic flux, e.g. to the magnetic sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/025Compensating stray fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/183Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core
    • G01R15/185Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core with compensation or feedback windings or interacting coils, e.g. 0-flux sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/007Environmental aspects, e.g. temperature variations, radiation, stray fields
    • G01R33/0076Protection, e.g. with housings against stray fields
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

【課題】測定対象となる磁界が微弱であってもクローズドループ制御によって磁界を検出可能な磁気センサを提供する。【解決手段】磁気ギャップG1を介して互いに対向する磁性体層41,42と、磁気ギャップG1によって形成される磁路上に配置された感磁素子R1と、感磁素子R1に印加される磁束φ2を打ち消すキャンセル磁束φ4を生成する補償コイル60とを備える。本発明によれば、ヨークとして機能する磁性体層41,42に流れる磁束φ2が感磁素子R1に印加されることから、測定対象となる磁界が微弱であっても、これを検出することが可能となる。しかも、磁束φ2を打ち消す補償コイル60を備えていることから、クローズドループ制御を行うことも可能となる。【選択図】図5

Description

本発明は磁気センサに関し、特に、感磁素子に印加される磁束を打ち消す補償コイルを備えた磁気センサに関する。
磁気センサの中には、感磁素子に印加される磁束を打ち消す補償コイルを設けることによって、クローズドループ制御を行うタイプの磁気センサが存在する。例えば、特許文献1に記載された磁気センサは、感磁素子と、測定対象となる磁界をシールドする磁気シールドと、磁気シールドと感磁素子の間に配置された補償コイルとを備えている。磁気シールドは、感磁素子に印加される磁界を減衰させる役割を果たし、これにより、測定対象となる磁界が強い場合であっても、補償コイルに流す電流を小さく抑えることができる。
特許第5572208号公報
しかしながら、特許文献1に記載された磁気センサは、測定対象となる磁界が磁気シールドによって減衰されることから、測定対象となる磁界が微弱である場合には測定が困難であるという問題があった。
したがって、本発明は、測定対象となる磁界が微弱であってもクローズドループ制御によって磁界を検出可能な磁気センサを提供することを目的とする。
本発明による磁気センサは、第1の磁気ギャップを介して互いに対向する第1及び第2の磁性体層と、第1の磁気ギャップによって形成される磁路上に配置された第1の感磁素子と、第1の感磁素子に印加される磁束を打ち消す補償コイルとを備えることを特徴とする。
本発明によれば、ヨークとして機能する第1及び第2の磁性体層に流れる磁束が感磁素子に印加されることから、測定対象となる磁界が微弱であっても、これを検出することが可能となる。しかも、磁束を打ち消す補償コイルを備えていることから、クローズドループ制御を行うことも可能となる。
本発明において、第1の磁性体層は、平面視で補償コイルの内径領域と重なる位置に配置され、第2の磁性体層は、平面視で補償コイルの外側領域と重なる位置に配置されるものであっても構わない。これによれば、補償コイルに電流を流すことによって、第1の磁気ギャップを介して第1の磁性体層から第2の磁性体層へ、或いは、第1の磁気ギャップを介して第2の磁性体層から第1の磁性体層へキャンセル磁界を発生させることが可能となる。
本発明による磁気センサは、測定対象となる外部磁束を第1の磁性体層に集磁する外部磁性体をさらに備えるものであっても構わない。これによれば、外部磁束を効率よく第1の磁性体層に集磁することが可能となる。
本発明による磁気センサは、第2の磁気ギャップを介して第1の磁性体層と対向する第3の磁性体層と、第2の磁気ギャップによって形成される磁路上に配置された第2の感磁素子とをさらに備え、補償コイルは、第2の感磁素子に印加される磁束を打ち消し、第3の磁性体層は、平面視で補償コイルの外側領域と重なる位置に配置されるものであっても構わない。これによれば、第1の感磁素子と第2の感磁素子に対して互いに逆方向の磁界が与えられることから、第1の感磁素子と第2の感磁素子をブリッジ接続することによってより高い検出感度を得ることが可能となる。
本発明において、第1乃至第3の磁性体層、第1及び第2の感磁素子、並びに、補償コイルは、いずれもセンサ基板上に集積されていても構わない。これによれば、センサ基板上に外部磁性体を配置するだけで、高い検出感度を有する磁気センサを構成することが可能となる。
本発明において、第1及び第2の感磁素子は、センサ基板上の積層方向において、補償コイルと第1乃至第3の磁性体層の間に形成されていても構わない。これによれば、第1乃至第3の磁性体層と第1及び第2の感磁素子の距離を短くすることができるとともに、外部磁性体と第1の磁性体層との間に形成される磁気ギャップを小さくすることが可能となる。
本発明において、第1乃至第3の磁性体層は、センサ基板上の積層方向において、補償コイルと第1及び第2の感磁素子の間に形成されていても構わない。これによれば、第1乃至第3の磁性体層と第1及び第2の感磁素子の距離を短くすることができるとともに、補償コイルと第1乃至第3の磁性体層の距離を短くすることができることから、補償コイルに流す電流をより小さくすることが可能となる。
本発明において、補償コイルは、センサ基板上の複数の配線層に亘って巻回されていても構わない。これによれば、補償コイルを構成する導体パターンのレイアウト自由度を高めることが可能となる。
このように、本発明によれば、測定対象となる磁界が微弱であってもクローズドループ制御によって高感度に磁界を検出することが可能となる。
図1は、本発明の好ましい実施形態による磁気センサ10の構造を説明するための略平面図である。 図2は、図1に示すA−A線に沿った略断面図である。 図3は、補償コイル60の形状を説明するための略平面図である。 図4は、端子電極51〜56と感磁素子R1〜R4及び補償コイル60との接続関係を説明するための回路図である。 図5は、外部磁束とキャンセル磁束との関係を説明するための模式図である。 図6は、第1の変形例による磁気センサ11の主要部の構成を示す略断面図である。 図7は、下層の導体パターン60Aと上層の導体パターン60Bからなる補償コイル60の形状を説明するための略平面図である。 図8は、第2の変形例による磁気センサ12の主要部の構成を示す略断面図である。 図9は、第3の変形例による磁気センサ13の主要部の構成を示す略断面図である。
以下、添付図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。
図1は、本発明の好ましい実施形態による磁気センサ10の構造を説明するための略平面図である。また、図2は、図1に示すA−A線に沿った略断面図である。
図1及び図2に示すように、本実施形態による磁気センサ10は、センサ基板20と外部磁性体31〜33を備えている。センサ基板20は、略直方体形状を有するチップ部品であり、その素子形成面20aには感磁素子R1〜R4、磁性体層41〜43、端子電極51〜56及び補償コイル60が設けられている。端子電極51〜56は、ボンディングワイヤなどを介して図示しない回路基板に接続される。
本実施形態においては、素子形成面20a上に補償コイル60、感磁素子R1〜R4及び磁性体層41〜43がこの順に積層されている。そして、補償コイル60と感磁素子R1〜R4は絶縁膜21によって分離され、感磁素子R1〜R4と磁性体層41〜43は絶縁膜22によって分離されている。
外部磁性体31〜33は、フェライトなど透磁率の高い軟磁性材料からなるブロックである。外部磁性体31は素子形成面20aの略中央部に配置され、z方向に突出する形状を有している。これに対し、外部磁性体32,33は、センサ基板20のx方向における両側にそれぞれ配置され、その先端はL字状に折れ曲がって素子形成面20aを覆っている。
センサ基板20の絶縁膜22上には、第1〜第3の磁性体層41〜43が形成されている。第1の磁性体層41は、素子形成面20aの略中央に位置し、そのx方向における両側に第2及び第3の磁性体層42,43が配置される。特に限定されるものではないが、磁性体層41〜43としては、樹脂材料に磁性フィラーが分散された複合磁性材料からなる膜であっても構わないし、ニッケル又はパーマロイなどの軟磁性材料からなる薄膜もしくは箔であっても構わないし、フェライトなどからなる薄膜又はバルクシートであっても構わない。
第1の磁性体層41は、中央に位置し、外部磁性体31によって覆われる主領域M1と、主領域M1からx方向に離れるに従ってy方向における幅が狭くなる収束領域S1〜S4を含む。図1に示すように、収束領域S1,S3は主領域M1に対してx方向マイナス側(左側)に位置し、収束領域S2,S4は主領域M1に対してx方向プラス側(右側)に位置する。第1の磁性体層41と外部磁性体31は、直接接触していても構わないし、両者間に薄い絶縁膜や接着層が介在していても構わない。
一方、第2の磁性体層42は、外部磁性体32によって覆われる主領域M2と、主領域M2からx方向(プラス側)に離れるに従ってy方向における幅が狭くなる収束領域S5,S7を含む。同様に、第3の磁性体層43は、外部磁性体33によって覆われる主領域M3と、主領域M3からx方向(マイナス側)に離れるに従ってy方向における幅が狭くなる収束領域S6,S8を含む。
外部磁性体31は、z方向の外部磁束を取り込む役割を果たす。外部磁性体31を介して取り込まれた磁束は、第1の磁性体層41の主領域M1に入射され、収束領域S1〜S4に対してほぼ均等に分配される。収束領域S1〜S4に達した磁束は、それぞれy方向に延在する磁気ギャップG1〜G4を介して、収束領域S5〜S8に供給される。収束領域S5,S7に到達した磁束は、主領域M2を介して外部磁性体32に回収される。同様に、収束領域S6,S8に到達した磁束は、主領域M3を介して外部磁性体33に回収される。
図1に示すように、磁気ギャップG1〜G4によって形成される磁路上には、それぞれy方向を長手方向とする感磁素子R1〜R4が配置されている。感磁素子R1〜R4は、磁気ギャップG1〜G4内に配置されていても構わないが、磁気ギャップG1〜G4外であっても、当該磁気ギャップによって形成される磁路上に配置されていれば足りる。また、磁気ギャップG1〜G4の幅方向はx方向であっても構わないし、感磁素子R1〜R4にx方向成分を有する磁束を印加可能である限り、磁気ギャップG1〜G4の幅方向がz方向成分を有していても構わない。
感磁素子R1〜R4は、磁束密度によって物理特性の変化する素子であれば特に限定されないが、磁界の向きに応じて電気抵抗が変化する磁気抵抗素子であることが好ましい。本実施形態においては、感磁素子R1〜R4の感磁方向(固定磁化方向)は、図1の矢印Pが示す方向(x方向におけるプラス側)に全て揃えられている。
かかる構成により、外部磁性体31を介して第1の磁性体層41の主領域M1に集められた磁束は、感磁素子R1〜R4を介してほぼ均等に分配される。このため、感磁素子R1,R3と感磁素子R2,R4には、互いに逆方向の磁束が与えられることになる。上述の通り、感磁素子R1〜R4の磁化固定方向は、矢印Pが示すxプラス方向に向けられていることから、磁束のx方向における成分に対して感度を持つ。
さらに、感磁素子R1〜R4の下方には、補償コイル60が設けられている。補償コイル60は、感磁素子R1〜R4に印加される磁束を打ち消すことによって、クローズドループ制御を行うために設けられる。
図3は、補償コイル60の形状を説明するための略平面図である。
図3に示すように、補償コイル60は5ターンの導体パターンによって構成され、y方向に延在する導体パターン61,62と、x方向に延在する導体パターン63,64とを有している。また、補償コイル60の一端は端子電極51に接続され、補償コイル60の他端は端子電極52に接続される。但し、補償コイル60のターン数がこれに限定されるものではない。
平面視における補償コイル60と第1〜第3の磁性体層41〜43の位置関係は、図1に示すとおりである。つまり、第1の磁性体層41は、平面視で補償コイル60の内径領域60aと重なる位置に配置され、第2及び第3の磁性体層42,43は、平面視で補償コイル60の外側領域と重なる位置に配置されている。また、磁気ギャップG1,G3及び感磁素子R1,R3は、平面視で補償コイル60の導体パターン61と重なる位置に配置され、磁気ギャップG2,G4及び感磁素子R2,R4は、平面視で補償コイル60の導体パターン62と重なる位置に配置される。
図4は、端子電極51〜56と感磁素子R1〜R4及び補償コイル60との接続関係を説明するための回路図である。
図4に示すように、感磁素子R1は端子電極53,56間に接続され、感磁素子R2は端子電極53,54間に接続され、感磁素子R3は端子電極54,55間に接続され、感磁素子R4は端子電極55,56間に接続されている。端子電極56には電源電位Vccが与えられ、端子電極54には接地電位GNDが与えられる。そして、感磁素子R1〜R4は全て同一の磁化固定方向を有していることから、外部磁性体31からみて一方側に位置する感磁素子R1,R3の抵抗変化量と、外部磁性体31からみて他方側に位置する感磁素子R2,R4の抵抗変化量との間には差が生じる。これにより、感磁素子R1〜R4は差動ブリッジ回路を構成し、磁束密度に応じた感磁素子R1〜R4の電気抵抗の変化が端子電極53,55に現れることになる。
端子電極53,55から出力される差動信号は、本実施形態による磁気センサ10が搭載される実装基板に設けられた差動アンプ71に入力される。差動アンプ71の出力信号は、端子電極52にフィードバックされる。図4に示すように、端子電極51と端子電極52との間には補償コイル60が接続されており、これにより、補償コイル60は差動アンプ71の出力信号に応じたキャンセル磁界を発生させる。かかる構成により、外部磁束の磁束密度に応じた感磁素子R1〜R4の電気抵抗の変化が端子電極53,55に現れると、これに応じた電流が補償コイル60に流れ、逆方向の磁束を発生させる。これにより、外部磁束が打ち消される。そして、差動アンプ71から出力される電流を検出回路72によって電流電圧変換すれば、外部磁束の強さを検出することが可能となる。
図5は、外部磁束とキャンセル磁束との関係を説明するための模式図である。
図5に示す例では、z方向の外部磁束φ1が外部磁性体31に取り込まれ、これが第1の磁性体層41を介して左右に分配されている。そして、左側に分配された磁束φ2は磁気ギャップG1,G3を介して第2の磁性体層42に流れ、右側に分配された磁束φ3は磁気ギャップG2,G4を介して第3の磁性体層43に流れる。この時、磁気ギャップG1,G3を介して流れる磁束φ2の一部は感磁素子R1,R3に印加され、磁気ギャップG2,G4を介して流れる磁束φ3の一部は感磁素子R2,R4に印加される。これにより、図4を用いて説明したとおり、感磁素子R1〜R4からなる差動ブリッジ回路によって端子電極53,55に電位差が現れる。
端子電極53,55の電位差は端子電極52にフィードバックされ、これにより補償コイル60に電流が流れる。図5に示す例では、補償コイル60の導体パターン61を中心に右回り(時計回り)のキャンセル磁束φ4が発生し、補償コイル60の導体パターン62を中心に左回り(反時計回り)のキャンセル磁束φ5が発生する。キャンセル磁束φ4は、磁気ギャップG1,G3を介して第2の磁性体層42から第1の磁性体層41へと流れ、これにより外部磁束φ2が打ち消される。同様に、キャンセル磁束φ5は、磁気ギャップG2,G4を介して第3の磁性体層43から第1の磁性体層41へと流れ、これにより外部磁束φ3が打ち消される。
このようなクローズドループ制御により、外部磁性体31に取り込まれた外部磁束φ1がキャンセルされることから、補償コイル60に流れる電流、つまり、検出回路72に現れる電圧をモニタすることによって、外部磁束φ1の強さを検出することが可能となる。
そして、本実施形態においては、補償コイル60、感磁素子R1〜R4及び磁性体層41〜43がセンサ基板20上にこの順に積層されていることから、磁性体層41〜43と感磁素子R1〜R4のz方向における距離を短くすることができる。これにより、磁気ギャップG1〜G4を通過する磁束が効率よく感磁素子R1〜R4に印加されることから、高い検出感度を得ることが可能となる。しかも、外部磁性体31と第1の磁性体層41との間に形成される磁気ギャップを小さくすることができるため、外部磁性体31に取り込まれた外部磁束φ1を効率よく第1の磁性体層41に供給することが可能となる。
以上説明したように、本実施形態による磁気センサ10は、磁気ギャップG1〜G4によって形成される磁路上に感磁素子R1〜R4が配置されていることから、測定対象となる磁界が微弱であっても、これを高感度に検出することが可能となる。しかも、感磁素子R1〜R4及び磁性体層41〜43だけでなく、補償コイル60もセンサ基板20上に集積されていることから、センサ基板20上に外部磁性体31を配置するだけで、高い検出感度を有する磁気センサを構成することが可能となる。
図6は、第1の変形例による磁気センサ11の主要部の構成を示す略断面図である。
図6に示す磁気センサ11は、補償コイル60が複数の配線層に亘って巻回されている点において、上記実施形態による磁気センサ10と相違している。具体的には、補償コイル60が下層の導体パターン60Aと上層の導体パターン60Bによって構成されている。下層の導体パターン60Aは絶縁膜21によって覆われ、上層の導体パターン60Bは絶縁膜22によって覆われ、感磁素子R1〜R4は絶縁膜23によって覆われている。これによれば、補償コイル60を構成する導体パターンのレイアウト自由度を高めることが可能となる。例えば、図7に示すように、下層の導体パターン60Aと上層の導体パターン60Bの巻回方向を互いに逆とし、且つ、互いの内周端を接続すれば、補償コイル60の両端を端子電極51,52に容易に接続することが可能となる。尚、図7に示す例では、端子電極51から端子電極52に電流を流すと、反時計回り(左回り)に電流が流れるが、図3に示した例と同様、時計回り(右回り)に電流が流れるよう巻回しても構わない。
図8は、第2の変形例による磁気センサ12の主要部の構成を示す略断面図である。
図8に示す磁気センサ12は、下層の導体パターン60Aと上層の導体パターン60Bの間に感磁素子R1〜R4が積層されている点において、第1の変形例による磁気センサ11と相違している。ここで、下層の導体パターン60Aは絶縁膜21によって覆われ、感磁素子R1〜R4は絶縁膜22によって覆われ、上層の導体パターン60Bは絶縁膜23によって覆われている。このように、補償コイル60を複数の配線層に亘って巻回する場合、補償コイル60によって感磁素子R1〜R4を積層方向に挟み込む構成としても構わない。
図9は、第3の変形例による磁気センサ13の主要部の構成を示す略断面図である。
図9に示す磁気センサ13は、感磁素子R1〜R4と磁性体層41〜43の位置関係が逆転している点において、上記実施形態による磁気センサ10と相違している。ここで、補償コイル60は絶縁膜21によって覆われ、磁性体層41〜43は絶縁膜22によって覆われ、感磁素子R1〜R4は絶縁膜23によって覆われている。これによれば、補償コイル60と磁性体層41〜43のz方向における距離を短くすることができることから、補償コイル60に流す電流をより小さくすることが可能となる。
以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
10〜13 磁気センサ
20 センサ基板
20a 素子形成面
21〜23 絶縁膜
31〜33 外部磁性体
41 第1の磁性体層
42 第2の磁性体層
43 第3の磁性体層
51〜56 端子電極
60 補償コイル
60A 導体パターン
60B 導体パターン
60a 内径領域
61〜64 導体パターン
71 差動アンプ
72 検出回路
G1〜G4 磁気ギャップ
M1〜M3 主領域
R1〜R4 感磁素子
S1〜S8 収束領域
φ1〜φ3 外部磁束
φ4,φ5 キャンセル磁束

Claims (8)

  1. 第1の磁気ギャップを介して互いに対向する第1及び第2の磁性体層と、
    前記第1の磁気ギャップによって形成される磁路上に配置された第1の感磁素子と、
    前記第1の感磁素子に印加される磁束を打ち消す補償コイルと、を備えることを特徴とする磁気センサ。
  2. 前記第1の磁性体層は、平面視で前記補償コイルの内径領域と重なる位置に配置され、
    前記第2の磁性体層は、平面視で前記補償コイルの外側領域と重なる位置に配置されることを特徴とする請求項1に記載の磁気センサ。
  3. 測定対象となる外部磁束を前記第1の磁性体層に集磁する外部磁性体をさらに備えることを特徴とする請求項2に記載の磁気センサ。
  4. 第2の磁気ギャップを介して前記第1の磁性体層と対向する第3の磁性体層と、
    前記第2の磁気ギャップによって形成される磁路上に配置された第2の感磁素子と、をさらに備え、
    前記補償コイルは、前記第2の感磁素子に印加される磁束を打ち消し、
    前記第3の磁性体層は、平面視で前記補償コイルの外側領域と重なる位置に配置されることを特徴とする請求項3に記載の磁気センサ。
  5. 前記第1乃至第3の磁性体層、前記第1及び第2の感磁素子、並びに、前記補償コイルは、いずれもセンサ基板上に集積されていることを特徴とする請求項4に記載の磁気センサ。
  6. 前記第1及び第2の感磁素子は、前記センサ基板上の積層方向において、前記補償コイルと前記第1乃至第3の磁性体層の間に形成されていることを特徴とする請求項5に記載の磁気センサ。
  7. 前記第1乃至第3の磁性体層は、前記センサ基板上の積層方向において、前記補償コイルと前記第1及び第2の感磁素子の間に形成されていることを特徴とする請求項5に記載の磁気センサ。
  8. 前記補償コイルは、前記センサ基板上の複数の配線層に亘って巻回されていることを特徴とする請求項5乃至7のいずれか一項に記載の磁気センサ。
JP2018063795A 2018-03-29 2018-03-29 磁気センサ Active JP7069960B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018063795A JP7069960B2 (ja) 2018-03-29 2018-03-29 磁気センサ
US16/981,146 US11442120B2 (en) 2018-03-29 2019-03-11 Magnetic sensor with compensation coil for cancelling magnetic flux applied to a magneto-sensitive element
EP19775807.1A EP3779490A4 (en) 2018-03-29 2019-03-11 MAGNETIC SENSOR
PCT/JP2019/009672 WO2019188186A1 (ja) 2018-03-29 2019-03-11 磁気センサ
CN201980023034.3A CN112005126A (zh) 2018-03-29 2019-03-11 磁传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018063795A JP7069960B2 (ja) 2018-03-29 2018-03-29 磁気センサ

Publications (2)

Publication Number Publication Date
JP2019174324A true JP2019174324A (ja) 2019-10-10
JP7069960B2 JP7069960B2 (ja) 2022-05-18

Family

ID=68061478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018063795A Active JP7069960B2 (ja) 2018-03-29 2018-03-29 磁気センサ

Country Status (5)

Country Link
US (1) US11442120B2 (ja)
EP (1) EP3779490A4 (ja)
JP (1) JP7069960B2 (ja)
CN (1) CN112005126A (ja)
WO (1) WO2019188186A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020193964A (ja) * 2019-05-24 2020-12-03 メレキシス テクノロジーズ エス エーMelexis Technologies SA 埋め込み磁束コンセントレータを有する半導体デバイス
US20210193372A1 (en) * 2019-12-18 2021-06-24 The United States Of America As Represented By The Secretary Of The Navy Electronic Package for an Electrically Small Device with Integrated Magnetic Field Bias
JP2022037688A (ja) * 2020-08-25 2022-03-09 株式会社東芝 磁気センサ及び検査装置
JP2022041644A (ja) * 2020-09-01 2022-03-11 株式会社東芝 磁気センサ及び診断装置
US11422208B2 (en) * 2018-11-27 2022-08-23 Ablic Inc. Magnetic sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7354836B2 (ja) * 2019-12-25 2023-10-03 Tdk株式会社 磁気センサ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012247420A (ja) * 2011-05-30 2012-12-13 Melexis Technologies Nv 電線を流れる電流を測定するための装置
WO2017169156A1 (ja) * 2016-03-30 2017-10-05 アルプス電気株式会社 平衡式磁界検知装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3266587B2 (ja) * 1999-08-27 2002-03-18 忠徳 宮内 磁性体探知器
US7259545B2 (en) * 2003-02-11 2007-08-21 Allegro Microsystems, Inc. Integrated sensor
JP3933191B1 (ja) * 2006-03-13 2007-06-20 株式会社村田製作所 携帯電子機器
JP5572208B2 (ja) 2010-03-12 2014-08-13 アルプス電気株式会社 磁気センサ及びそれを用いた磁気平衡式電流センサ
WO2013129276A1 (ja) * 2012-03-02 2013-09-06 Tdk株式会社 磁気センサ素子
US9341684B2 (en) * 2013-03-13 2016-05-17 Plures Technologies, Inc. Magnetic field sensing apparatus and methods
EP2963435B1 (en) * 2014-07-01 2017-01-25 Nxp B.V. Differential lateral magnetic field sensor system with offset cancelling and implemented using silicon-on-insulator technology
DE112016000263T5 (de) * 2015-12-11 2017-09-28 Asahi Kasei Microdevices Corporation Magnetsensor
WO2017204151A1 (ja) 2016-05-24 2017-11-30 Tdk株式会社 磁気センサ
CN107479010B (zh) * 2016-06-07 2019-06-04 江苏多维科技有限公司 一种具有补偿线圈的磁电阻传感器
JP6822127B2 (ja) * 2016-06-23 2021-01-27 Tdk株式会社 磁気センサ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012247420A (ja) * 2011-05-30 2012-12-13 Melexis Technologies Nv 電線を流れる電流を測定するための装置
WO2017169156A1 (ja) * 2016-03-30 2017-10-05 アルプス電気株式会社 平衡式磁界検知装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11422208B2 (en) * 2018-11-27 2022-08-23 Ablic Inc. Magnetic sensor
JP2020193964A (ja) * 2019-05-24 2020-12-03 メレキシス テクノロジーズ エス エーMelexis Technologies SA 埋め込み磁束コンセントレータを有する半導体デバイス
JP7444695B2 (ja) 2019-05-24 2024-03-06 メレクシス・テクノロジーズ・ソシエテ・アノニム 埋め込み磁束コンセントレータを有する半導体デバイス
US20210193372A1 (en) * 2019-12-18 2021-06-24 The United States Of America As Represented By The Secretary Of The Navy Electronic Package for an Electrically Small Device with Integrated Magnetic Field Bias
US11776736B2 (en) * 2019-12-18 2023-10-03 United States Of America As Represented By The Secretary Of The Navy Electronic package for an electrically small device with integrated magnetic field bias
JP2022037688A (ja) * 2020-08-25 2022-03-09 株式会社東芝 磁気センサ及び検査装置
JP7316719B2 (ja) 2020-08-25 2023-07-28 株式会社東芝 磁気センサ及び検査装置
JP2022041644A (ja) * 2020-09-01 2022-03-11 株式会社東芝 磁気センサ及び診断装置
JP7319683B2 (ja) 2020-09-01 2023-08-02 株式会社東芝 磁気センサ及び診断装置

Also Published As

Publication number Publication date
US20210116518A1 (en) 2021-04-22
EP3779490A1 (en) 2021-02-17
EP3779490A4 (en) 2021-12-22
CN112005126A (zh) 2020-11-27
JP7069960B2 (ja) 2022-05-18
WO2019188186A1 (ja) 2019-10-03
US11442120B2 (en) 2022-09-13

Similar Documents

Publication Publication Date Title
JP7069960B2 (ja) 磁気センサ
JP7522129B2 (ja) 磁気センサ
WO2019167598A1 (ja) 磁気センサ
WO2019239933A1 (ja) 磁気センサ
JP7115224B2 (ja) 磁気センサ
WO2021131606A1 (ja) 磁気センサ
JP6981299B2 (ja) 磁気センサ
CN110709720B (zh) 磁传感器
JP2008215970A (ja) バスバー一体型電流センサ
JP2019215311A (ja) 磁気センサ
JP7095350B2 (ja) 磁気センサ
JP2020187084A (ja) 磁気センサ
JP6972900B2 (ja) 磁気センサ
JP2022143682A (ja) 磁気センサ
WO2011111747A1 (ja) 磁気検出素子を備えた電流センサ
WO2017163471A1 (ja) 磁気センサ
WO2012060069A1 (ja) 電流センサ
JP2022125801A (ja) 磁気センサ
WO2024047726A1 (ja) 磁気センサ
JP2019158508A (ja) 磁気センサ
JP2020187085A (ja) 磁気センサ
JP2021101168A (ja) 磁気センサ
JP2023060610A (ja) 磁気センサ
JP2023119633A (ja) 磁気センサ
JP2024076479A (ja) 磁気センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220418

R150 Certificate of patent or registration of utility model

Ref document number: 7069960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150