WO2017169156A1 - 平衡式磁界検知装置 - Google Patents
平衡式磁界検知装置 Download PDFInfo
- Publication number
- WO2017169156A1 WO2017169156A1 PCT/JP2017/004692 JP2017004692W WO2017169156A1 WO 2017169156 A1 WO2017169156 A1 WO 2017169156A1 JP 2017004692 W JP2017004692 W JP 2017004692W WO 2017169156 A1 WO2017169156 A1 WO 2017169156A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic field
- magnetic
- current
- coil
- coil conductor
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 225
- 238000001514 detection method Methods 0.000 title claims abstract description 127
- 239000004020 conductor Substances 0.000 claims abstract description 73
- 230000000694 effects Effects 0.000 claims abstract description 67
- 230000001939 inductive effect Effects 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 abstract description 18
- 239000010410 layer Substances 0.000 description 44
- 230000000052 comparative effect Effects 0.000 description 17
- 230000005415 magnetization Effects 0.000 description 17
- 230000007423 decrease Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 239000000758 substrate Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 230000005290 antiferromagnetic effect Effects 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910003271 Ni-Fe Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R15/00—Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
- G01R15/14—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
- G01R15/20—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
- G01R15/205—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/0023—Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
- G01R33/0041—Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration using feed-back or modulation techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/093—Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R15/00—Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
- G01R15/14—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
- G01R15/20—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
- G01R15/207—Constructional details independent of the type of device used
Definitions
- the present invention relates to a balanced magnetic field detector using a feedback coil.
- Patent Document 1 describes an invention related to a balanced magnetic field detection device that detects the magnitude of a current to be measured.
- a magnetoresistive element and a feedback coil are opposed to a conductor through which a current to be measured passes.
- the magnetic field excited by the current to be measured flowing through the conductor is detected by the magnetoresistive effect element, and the coil current corresponding to the magnitude of the detected output is controlled to be applied to the feedback coil.
- a cancel magnetic field opposite to the current magnetic field is given from the feedback coil to the magnetoresistive effect element, and when the current magnetic field detected by the magnetoresistive effect element and the cancel magnetic field are in an equilibrium state, the feedback coil The flowing current is detected, and the current detection output becomes the measured value of the current to be measured.
- the magnetic field detection device described in Patent Document 1 includes a magnetoresistive element in which a plurality of long patterns parallel to each other are connected in a so-called meander shape. Further, as shown in FIG. 5, one long pattern of the magnetoresistive effect element is opposed to one of the wiring patterns constituting the feedback coil.
- the magnetic field detection device described in Patent Document 1 has the following problems because the wiring pattern of the feedback coil and the long pattern of the magnetoresistive effect element face each other in a one-to-one relationship. .
- the arrangement pitch of the wiring pattern must match the arrangement pitch of the long pattern. Therefore, the width dimension of the wiring pattern is naturally reduced.
- the canceling magnetic field acts relatively strongly in the horizontal direction, which is the sensitivity axis direction, at the center of the long pattern in the width direction. On both sides of the pattern in the width direction, it tends to act in a direction intersecting with the sensitivity axis. As a result, the linearity of the detection output of the magnetoresistive element decreases, and the hysteresis of the detection output increases with respect to the alternating magnetic field.
- the feedback coil must be formed with a large number of wiring patterns having a small width dimension, the impedance rises and the power consumption increases.
- the present invention solves the above-mentioned conventional problems, and a balanced magnetic field that can solve the above-mentioned problems by making a plurality of magnetoresistive elements face one coil conductor of a feedback coil.
- the object is to provide a detection device.
- the present invention relates to a feedback coil in which a coil conductor is wound in a plane, a magnetic detector having a plurality of magnetoresistive elements formed in a long shape along the coil conductor, and the magnetic detector to be measured.
- a coil energization unit that applies a current that induces a magnetic field in a direction that cancels the measured magnetic field to the coil conductor according to a detection output when a magnetic field is detected; and a current detection unit that detects an amount of current flowing through the coil conductor;
- the balanced magnetic field detector provided with In one magnetic detection unit, a plurality of the magnetoresistive effect elements are arranged in parallel and connected in series, and the detection axes of the respective magnetoresistive effect elements are set in the same direction, A plurality of the magnetoresistive effect elements constituting the same magnetic detection unit are opposed to the one coil conductor.
- the magnetoresistive effect element is opposed to a linearly extending portion of the coil conductor.
- the cross-sectional shape of the coil conductor is a rectangular shape whose dimension in the height direction is shorter than the dimension in the width direction, and the long side extending in the width direction of the cross-section has the magnetic field. Resistive effect elements are facing each other.
- the magnetoresistive element does not protrude from the coil conductor in the width direction.
- the balanced magnetic field detector of the present invention can be configured as a magnetic shield layer that attenuates the magnetic field to be measured reaching the magnetoresistive element.
- the balanced magnetic field detection device of the present invention can be used for a so-called current detection device in which a current path is provided and the measured magnetic field induced in the current path is applied to the magnetoresistive element.
- a plurality of magnetoresistive elements constituting the magnetic detection unit are opposed to one coil conductor of the feedback coil. Therefore, the width dimension of each coil conductor can be widened. As a result, it becomes easier to give feedback magnetism to each magnetoresistive effect element in the direction along the sensitivity axis, and the linearity of the detection output of the magnetic detection unit is increased. The hysteresis when an alternating current is applied can also be lowered.
- the amount of current flowing through the feedback coil increases.
- the coil current when detecting the magnetic field to be measured can be increased, and the sensitivity can be improved.
- the coil conductor can be increased in width and the number of turns of the feedback coil can be reduced, so that impedance can be reduced and power consumption can be reduced.
- the top view which shows the electric current detection apparatus which uses the balance type magnetic field detection apparatus of embodiment of this invention The top view which shows the magnetic detection part with which the balance type magnetic field detection apparatus shown in FIG. 1 is equipped, and its wiring structure, A plan view showing one magnetic detection unit, (A) is sectional drawing which shows the feedback coil, the magnetic detection part, and the shield layer in the balanced type magnetic field detection apparatus of embodiment of this invention, and is sectional drawing equivalent to the IV-IV cross section shown in FIG. ) Is a partially enlarged view, (A) is the same sectional view as FIG.
- FIG. 4 which shows the balanced type magnetic field detection apparatus of a comparative example
- (B) is a partially enlarged view
- (A) is a diagram showing the strength of the feedback magnetic field at the position where the magnetic detection unit is arranged in the balanced magnetic field detection apparatus of the embodiment shown in FIG. 4, and
- (B) is a comparison shown in FIG.
- a diagram showing the strength of the feedback magnetic field at the position where the magnetic detection unit is disposed A circuit diagram of a current detector using a balanced magnetic field detector, (A) (B) (C) is a diagram showing the relationship with the strength of the feedback magnetic field when the width dimension of the coil conductor facing the three magnetoresistive elements is changed, (A) (B) (C) is a diagram showing the relationship with the strength of the feedback magnetic field when the width dimension of the coil conductor facing the three magnetoresistive elements is changed, (A) (B) (C) is a structural diagram when the width dimension of the coil conductor facing the three magnetoresistive elements is changed, Explanatory drawing which shows the sensitivity of the balanced type magnetic field detection apparatus of embodiment of this invention,
- the balanced magnetic field detection device 1 is used as a part of a current detection device that detects the amount of current I0 to be measured flowing through the current path 40 shown in FIGS. 1, 2, and 4. Yes.
- the balanced magnetic field detection device 1 includes magnetic detection units 11, 12, 13, 14, a feedback coil 30, and a shield layer 3.
- the current path 40 is disposed directly above the feedback coil 30 and the magnetic detection units 11, 12, 13, and 14 in the Z direction.
- the position of the current path 40 is such that the magnetic field generated by the measured current I0 flowing through the current path 40 can give a component in the sensitivity axis direction (Y direction) to the magnetic detectors 11, 12, 13, and 14. It may be a place other than the above embodiment.
- the balanced magnetic field detection device 1 has a substrate 2.
- the substrate 2 is a silicon (Si) substrate.
- the surface 2a of the substrate 2 is a flat surface, and the magnetic detectors 11, 12, 13, and 14 are formed on the surface 2a.
- 11 and 2 show the magnetic detectors 11, 12, 13, and 14 in plan view, and
- FIG. 4A shows a single magnetic detector 11 in cross-sectional view.
- the magnetic detectors 11, 12, 13, and 14 are arranged at equal intervals in the X direction.
- the current path 40 extends in the X direction.
- the measured current I0 is an alternating current (or a direct current) and flows in the X direction.
- FIGS. 1 and 2 show the arrangement structure and wiring structure of the magnetic detectors 11, 12, 13, and 14, and FIG. 7 shows a circuit diagram thereof.
- the current path 40 is shown side by side on the left side in the Y direction of the magnetic detection units 11, 12, 13, and 14 for convenience of explanation.
- the current path 40 is disposed directly above the magnetic detectors 11, 12, 13, and 14 in the Z direction.
- the wiring path 5 is connected to the magnetic detection unit 11 located at the left end of the drawing in FIGS. 1 and 3 and the magnetic detection unit 13 positioned at the right end of the drawing in FIG. Part 5a is formed.
- the magnetic detection unit 11 and the magnetic detection unit 12 are connected in series, and the magnetic detection unit 13 and the magnetic detection unit 14 are connected in series.
- a wiring path 6 is connected to each of the magnetic detection section 12 and the magnetic detection section 14 located in the center, and a connection land section 6 a is formed at the end of each wiring path 6.
- a wiring path 7 is connected between the magnetic detection unit 11 and the magnetic detection unit 12 connected in series, and a wiring path 8 is connected between the magnetic detection unit 13 and the magnetic detection unit 14 connected in series. Yes.
- a connection land portion 7 a is formed at the terminal portion of the wiring path 7, and a connection land portion 8 a is formed at the terminal of the wiring path 8.
- the wiring paths 5, 6, 7, and 8 are formed of a conductive layer such as gold or copper formed on the surface 2a of the substrate 2.
- the connection land portions 5a, 6a, 7a, 8a are also formed of a conductive layer such as gold.
- FIG. 3 shows an enlarged plan view of the magnetic detection unit 11.
- the magnetic detection unit 11 is composed of a plurality of stripe-shaped (long-shaped) magnetoresistive elements 11a having a longitudinal dimension in the X direction larger than a width dimension in the Y direction.
- a plurality of stripe-shaped magnetoresistive elements 11a are arranged in parallel to each other.
- the left end portions of the adjacent magnetoresistive effect elements 11a in the drawing are connected by the connection electrode 12a, the right end portion in the drawing is connected by the connection electrode 12b, and the magnetoresistive effect element 11a is connected in a so-called meander pattern. All the magnetoresistive effect elements 11a are connected in series in one magnetic detection unit 11.
- the magnetoresistive effect element 11 a located in the upper part of FIG. 3 is connected to the wiring path 7, and the magnetoresistive effect element 11 a located in the lower part of the figure is connected to the wiring path 5.
- the other magnetic detectors 12, 13, and 14 have the same planar shape as the magnetic detector 11, and stripe-shaped magnetoresistive elements 11a are connected to so-called meander patterns by connecting electrodes 12a and 12b, respectively.
- the magnetoresistive effect element 11 a provided in each of the magnetic detection units 11, 12, 13, 14 is a giant magnetoresistive effect element layer (GMR layer) that exhibits a giant magnetoresistive effect, and is formed on the surface of the substrate 2.
- GMR layer giant magnetoresistive effect element layer
- a pinned magnetic layer, a nonmagnetic layer, and a free magnetic layer are sequentially laminated, and the surface of the free magnetic layer is covered with a protective layer.
- These layers are formed by a CVD or sputtering process, and then formed into a stripe shape by etching.
- connection electrodes 12a, 12b and wiring paths 5, 6, 7, 8 for connecting the stripe-shaped magnetoresistive effect element to the meander pattern are formed.
- the pinned magnetic layer and the free magnetic layer have a stripe shape in which the longitudinal direction is directed in the X direction, and the magnetization of the pinned magnetic layer is pinned in the Y direction.
- the pinned magnetic layer has a self-pinned structure in which a first magnetic layer, a nonmagnetic intermediate layer, and a second magnetic layer are stacked.
- a structure in which a pinned magnetic layer is stacked on the antiferromagnetic layer and the magnetization of the pinned magnetic layer is fixed by antiferromagnetic coupling with the antiferromagnetic layer may be employed.
- the pinned direction P of the magnetization of the pinned magnetic layer is indicated by an arrow.
- the fixed direction P of magnetization is the sensitivity axis direction of each magnetoresistive effect element 11a, and is the sensitivity axis direction of the magnetic detectors 11, 12, 13, and 14.
- the magnetoresistive effect elements 11a provided in the magnetic detectors 11 and 14 have the same magnetization fixed direction P, and the magnetization fixed direction P is downward in the figure.
- the magnetoresistive effect element 11a provided in the magnetic detectors 12 and 13 has the same magnetization fixed direction P, and the magnetization fixed direction P is upward in the drawing.
- the magnetization F of the free layer is single-domained in the X direction and aligned by shape anisotropy or a bias magnetic field using an antiferromagnetic layer.
- the direction of the magnetization F aligned in the X direction in the free magnetic layer is changed to the Y direction. Tilted towards.
- the electrical resistance of the magnetoresistive effect element 11a decreases, and the angle between the magnetization vector of the free magnetic layer and the magnetization fixing direction P increases. Then, the resistance value of the magnetoresistive effect element 11b becomes large.
- the power supply Vdd is connected to the wiring path 5
- the wiring paths 6 and 6 are set to the ground potential
- the full bridge is configured by the magnetic detection units 11, 12, 13, and 14.
- a constant voltage is applied to the circuit.
- a midpoint voltage V1 is obtained from the wiring path 8
- a midpoint potential V2 is obtained from the wiring path 7.
- a lower insulating layer is formed on the surface of the magnetic detector 11 (12, 13, 14), and a feedback coil 30 is formed on the surface of the lower insulating layer as shown in FIG.
- a planar pattern of the feedback coil 30 is shown in FIG.
- the feedback coil 30 is formed by being wound in a clockwise spiral from one land portion 31 to the other land portion 32.
- an opposing detection unit 30 a of the feedback coil 30 is overlaid.
- FIG. 4 shows a cross-sectional shape of the feedback coil 30 in the opposing detection unit 30a.
- a plurality of strips are arranged with a certain interval in the coil conductor 35 in the Y direction.
- the coil conductor 35 is a plated layer and is formed of gold which is a low-resistance nonmagnetic metal layer. However, the coil conductor 35 may be formed of other metals such as copper. As shown in FIG. 4B, the cross-sectional shape of the coil conductor 35 is a rectangular shape in which the width dimension W1 in the Y direction is longer than the height dimension H1 in the Z direction. The width dimension W1 is about 20 to 60 ⁇ m, and the height dimension H1 is 1/3 or less of the width dimension W1.
- the magnetoresistive elements 11a constituting the magnetic detector 11 are arranged at a constant pitch in the Y direction.
- the opposing surface 35a which is the lower surface of the coil conductor 35, is a portion that appears as a long side in a cross-sectional shape.
- a plurality of (multiple) magnetoresistive elements 11a are opposed to the opposing surface 35a of the single (one) coil conductor in the Z direction. In the illustrated embodiment, three (three) magnetoresistive elements 11a are opposed to the opposed surface 35a.
- the three magnetoresistive elements 11 a are opposed to the facing surface 35 a of the single coil conductor 35.
- the upper side of the opposing detection part 30a of the feedback coil 30 is covered with an upper insulating layer, and the shield layer 3 is formed on the upper insulating layer.
- the shield layer 3 is a plating layer formed of a magnetic metal material such as a Ni—Fe alloy (nickel-iron alloy).
- the magnetic detection parts 11, 12, 13, and 14 constitute a bridge circuit, and the midpoint voltage V ⁇ b> 1 obtained by the wiring path 8 and the midpoint potential V ⁇ b> 2 obtained by the wiring path 7.
- the coil energization unit 15 includes a differential amplification unit 15a and a compensation circuit 15b.
- the differential amplifying unit 15a is composed mainly of an operational amplifier, and the difference (V1 ⁇ V2) between the inputted midpoint voltages V1 and V2 is obtained as the detection voltage Vd.
- the detection voltage Vd is applied to the compensation circuit 15b to generate a coil current Id that is a compensation current, and the coil current Id is applied to the feedback coil 30.
- differential amplifier 15a and the compensation circuit 15b may be called a compensation type differential amplifier.
- the land portion 31 of the feedback coil 30 is connected to the compensation circuit 15b, and the land portion 32 is connected to the current detection portion 17.
- the current detection unit 17 includes a resistor 17a connected to the feedback coil 30 and a voltage detection unit 17b that detects a voltage acting on the resistor 17a.
- the measured magnetic field H0 is induced by the measured current I0 flowing in the X direction in the current path 40.
- the measured current I0 is an alternating current or a direct current.
- the measured current I0 flows upward in the drawing in FIG. 7 and flows in the depth direction in FIG. 4A.
- the direction of the magnetic field H0 to be measured at this time is indicated by an arrow in FIGS. 4A and 7, and a component in the Y direction of the magnetic field is applied to the magnetic detectors 11, 12, 13, and 14.
- the fixed directions P of the magnetization of the fixed magnetic layer which is the sensitivity axis, are opposite to each other.
- the magnetic detector 11 and the magnetic detector 14 have the magnetoresistive effect element 11a.
- the resistance value of the magnetoresistive effect element 11a decreases in the magnetic detection unit 12 and the magnetic detection unit 13.
- the detection voltage Vd which is the output value of the differential amplifier 15a, increases as the measured current I0 increases.
- a coil current Id is given to the feedback coil 30, and a cancel current Id1 flows to the feedback coil 30.
- the opposite detection unit 30a the directions in which the measured current I0 and the cancellation current Id1 flow are opposite to each other, and the cancellation current Id1 causes the magnetic detection units 11, 12, 13, and 14 to cancel the measured magnetic field H0. Hd is given.
- the compensation circuit 15 b When the measured magnetic field H0 induced by the measured current I0 is larger than the canceling magnetic field Hd, the midpoint voltage V1 obtained in the wiring path 8 is high, and the midpoint potential V2 obtained in the wiring path 7 is low. As a result, the detection voltage Vd, which is the output of the differential amplifier 15a, increases. At this time, the compensation circuit 15 b generates a coil current Id for increasing the canceling magnetic field Hd to bring the detection voltage Vd close to zero, and this coil current Id is given to the feedback coil 30.
- the cancel magnetic field Hd acting on the magnetic detectors 11, 12, 13, and 14 and the measured magnetic field H0 are in an equilibrium state and the detected voltage Vd becomes a predetermined value or less, it flows through the feedback coil 30.
- the coil current Id (cancellation current Id1) is detected by the current detector 17 shown in FIG. 7, and this becomes the current measurement value of the current to be measured I0.
- the shield layer 3 is formed on the magnetic detectors 11, 12, 13, 14 and the feedback coil 30, and a part of the measured magnetic field H0 induced by the measured current I0. Is absorbed by the shield layer 3, the measured magnetic field H0 applied to the magnetic detectors 11, 12, 13, and 14 is attenuated. As a result, the range of change of the measured current I0 until the magnetoresistive effect element 11a of the magnetic detection units 11, 12, 13, and 14 is magnetically saturated can be expanded, and the dynamic range can be expanded.
- the three magnetoresistive elements 11 a are opposed to the opposing surface 35 a of the single coil conductor 35.
- the magnetic field component acting in parallel with the sensitivity axis can be increased for each magnetoresistive effect element 11a, and the linearity of the detection output in the magnetic detection units 11, 12, 13, and 14 can be increased. High linearity can be maintained.
- the coil current Id that is, the cancel current Id1 necessary for changing the resistance values of the magnetic detectors 11, 12, 13, and 14 is increased, the detection sensitivity of the magnetic detector can be increased.
- FIG. 5A shows a cross-sectional view of a balanced magnetic field detector 101 of a comparative example.
- FIG. 5A shows a cross section of the same portion as FIG.
- the magnetoresistive effect in the magnetic detectors 11, 12, 13, and 14 is the magnetic detector 1 of the embodiment shown in FIG. 4A and the balanced magnetic field detector 101 of the comparative example shown in FIG.
- the width SW of the element 11a in the Y direction and the arrangement pitch in the Y direction are the same.
- the width dimension in the Y direction of each coil conductor 135 in the opposing detection unit 130a of the feedback coil 130 is small, and one pair of the coil conductor 135 and the magnetoresistive effect element 11a. One is facing up and down.
- the width dimensions in the Y direction of the opposed detection units 30a and 130a of the feedback coils 30 and 130 are substantially the same. Therefore, the number of turns of the coil conductor 135 of the feedback coil 130 in the comparative example shown in FIG. 5 (A) is larger than the number of turns of the feedback coil 30 of the embodiment shown in FIG. 4 (A).
- FIG. 6 (A) shows an example of the embodiment shown in FIG. 4 (A) at a position 0.5 ⁇ m away from the opposing surface 35a, which is the lower surface of the coil conductor 35 constituting the feedback coil 30, on the lower side in the figure.
- derived from the coil conductor 35 is shown.
- FIG. 6B shows the cancellation magnetic field Hd induced from the individual coil conductors 135 at a position 0.5 ⁇ m away from the lower surface of the feedback coil 30 in the comparative example shown in FIG. 5A. The result of having measured the component of the Y direction of is shown.
- the horizontal axis indicates the Y coordinate position in the right direction (+) and the left direction (-) starting from the 0 point shown in FIGS. 4A and 5A. ing.
- the vertical axis represents the intensity (mT) of the Y direction component of the canceling magnetic field Hd.
- the width dimension W1 in the Y direction is 22 ⁇ m
- the height dimension H1 in the Z direction is 5 ⁇ m.
- the cross-sectional shape of the coil conductor 135 in the comparative example shown in FIG. 5 has a width dimension in the Y direction of 2 ⁇ m and a height dimension in the Z direction of 5 ⁇ m. 4 and 5, the width dimension SW in the Y direction of each magnetoresistive effect element 11a is 4 ⁇ m.
- the amount of cancel current Id1 per unit width in the Y direction is greater in the embodiment of FIG. 4A than in the comparative example of FIG. It is low.
- the balanced magnetic field detection device 1 can achieve the following effects compared to the balanced magnetic field detection device 101 of the comparative example.
- the circulation component of the cancellation magnetic field Hd induced by each coil conductor 135 acts on the magnetoresistive effect element 11a. Therefore, the Y-direction component of the cancel magnetic field Hd is strong at the center in the width direction of the magnetoresistive element 11a having the width dimension SW, but the Y-direction component of the cancel magnetic field Hd is at both sides of the width dimension SW. become weak. Therefore, the linearity of the change in the resistance value of the magnetoresistive effect element 11a when the cancel current Id1 changes is reduced. Further, when the coil current Id is an alternating current and the canceling magnetic field Hd is an alternating magnetic field, the hysteresis of the change in the resistance value of the magnetoresistive effect element 11a is also increased.
- the component in the Y direction of the canceling magnetic field Hd induced by the single coil conductor 35 having a large width in the Y direction is an individual magnetoresistance. It becomes easy to act on the effect element 11a, and in particular, the Y-direction component of the canceling magnetic field Hd is dominant for the element located at the center of the three magnetoresistive effect elements 11a facing the coil conductor 35. Comes to work. Therefore, in the balanced magnetic field detection device 1 according to the embodiment, the linearity of the detection output of the magnetic detection units 11, 12, 13, and 14 can be easily maintained, and the hysteresis when the cancel magnetic field Hd is an alternating current can be reduced. become.
- the horizontal axis indicates the magnitude of the measured magnetic field H0
- the vertical axis indicates the coil current Id necessary to cancel the measured magnetic field H0.
- the increase / decrease width of the coil current Id necessary for canceling the measured magnetic field H0 changing with a predetermined width is narrow
- FIG. in the embodiment shown in FIG. 6, the increase / decrease width of the coil current Id necessary for canceling the measured magnetic field H0 that changes with a predetermined width is wide as indicated by the straight line (i).
- the horizontal axis indicates the coordinate position in the Y direction shown in FIG.
- the magnitude of the Y direction component of the canceling magnetic field Hd at a position 0.5 ⁇ m away from the opposing surface 35a of the coil conductor 35 on the lower side in the Z direction is shown. Note that the direction of the canceling magnetic field Hd is opposite to that in the measurement of FIG. 6A, and the magnitude of the Y-direction component of the canceling magnetic field Hd is reversed in FIGS. 8 and 9 and FIG. ing.
- the width SW of the magnetoresistive effect element 11a is 4 ⁇ m.
- the height dimension H1 of the coil conductor 35 is 2 ⁇ m.
- the change curve of the magnitude of the Y direction component of the canceling magnetic field Hd at each position in the Y direction is indicated by a broken line.
- a range (range of the width dimension SW) facing each magnetoresistive element 11a is indicated by a triple line.
- the coil conductor 35 shown in FIG. 10A has a width W1 of 16 ⁇ m, and the magnetoresistive effect element 11a located on both sides in the Y direction protrudes from the coil conductor 35.
- the condition that results in the measurement in FIG. 8B is that the width W1 of the coil conductor 35 is 19 ⁇ m, and the dimension ⁇ that the magnetoresistive element 11a located on both sides in the Y direction protrudes from the coil conductor 35 is ⁇ 0. .5 ⁇ m.
- the width W1 of the coil conductor 35 is 20 ⁇ m and, as shown in FIG. 10B, the Y direction of the magnetoresistive effect element 11a located on both sides in the Y direction. Of the coil conductor 35 coincides with the end of the coil conductor 35 in the Y direction.
- the canceling magnetic field Hd acting on the central one of the three magnetoresistive effect elements 11a facing the coil conductor 35 has a strong Y-direction component.
- the magnetoresistive element It is preferable that the effect element 11a does not protrude from the coil conductor 35 in the sensitivity axis direction. Further, as shown in FIGS. 8B, 8C, and 10C, it is more preferable that both ends of the coil conductor 35 in the Y direction protrude from the magnetoresistive effect element 11a.
- the number of the magnetoresistive effect elements 11a facing the single coil conductor 35 may be any number as long as it is two or more, but the number may be an odd number such as three. preferable. When an odd number of magnetoresistive effect elements 11a are opposed to the coil conductor 35, one central magnetoresistive effect element 11a is opposed to the central portion of the coil conductor 35. Thus, the magnetic field component in the Y direction acts dominantly, it is easy to ensure the linearity of the detection output, and the hysteresis can be suppressed.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Hall/Mr Elements (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
【課題】 フィードバックコイルを用いた平衡式磁界検知装置において、検知出力の線形性を向上させ、ヒステリシスを少なくし、さらに検知感度を高めることができるようにする。 【解決手段】 被測定磁界H0を検知する磁気検知部11が設けられ、その検知出力に応じてフィードバックコイル30にキャンセル電流Id1が与えられ、磁気検知部11にキャンセル磁界Hdが与えられる。被測定磁界H0とキャンセル磁界Hdが平衡状態となったときのコイル電流が検知出力となる。1条のコイル導体35に複数条の磁気抵抗効果素子11aを対向させることで、検知出力の線形性を向上させ、ヒステリシスを低減でき、検知感度を高めることができる。
Description
本発明は、フィードバックコイルを使用した平衡式磁界検知装置に関する。
特許文献1には、被測定電流の大きさを検知する平衡式磁界検知装置に関する発明が記載されている。
この磁界検知装置は、被測定電流が通過する導体に磁気抵抗効果素子とフィードバックコイルとが対向している。導体に流れる被測定電流で励起された電流磁界は磁気抵抗効果素子で検知され、その検知出力の大きさに対応したコイル電流が前記フィードバックコイルに与えられるように制御される。フィードバックコイルから磁気抵抗効果素子へは、前記電流磁界とは逆向きのキャンセル磁界が与えられ、磁気抵抗効果素子で検知される電流磁界とキャンセル磁界とが平衡状態となったときに、フィードバックコイルに流れている電流が検知され、電流の検知出力が被測定電流の測定値となる。
特許文献1に記載の磁界検知装置は、その図3に示すように、磁気抵抗効果素子が、互いに平行な複数の長尺パターンがいわゆるミアンダ形状に接続されて構成されている。また、図5に示すように、フィードバックコイルを構成する配線パターンの1本に対して磁気抵抗効果素子の長尺パターンが1本対向する構造である。
特許文献1に記載されている磁界検知装置では、フィードバックコイルの配線パターンと、磁気抵抗効果素子の長尺パターンとが1本対1本の関係で対向する構造であるため、以下の課題がある。
(1)フィードバックコイルの配線パターンと磁気抵抗効果素子の長尺パターンとが1本対1本で対向する構造であると、配線パターンの配列ピッチを長尺パターンの配列ピッチに合わせなくてはならないため、配線パターンの幅寸法は当然に小さくなる。幅寸法の小さい配線パターンを周回するキャンセル磁場が誘導されると、キャンセル磁界は、長尺パターンの幅方向の中央部において感度軸方向である水平方向に比較的強く作用するのに対し、長尺パターンの幅方向の両側部では、感度軸と交差する向きに作用しやすくなる。その結果、磁気抵抗効果素子の検知出力の線形性が低下し、また交番磁界に対して前記検知出力のヒステリシスも大きくなる。
(2)フィードバックコイルの配線パターンと磁気抵抗効果素子の長尺パターンとが1本対1本で対向する構造であると、1本の配線パターンに流れる電流によって、1本の長尺パターンに対して比較的大きなキャンセル磁界が与えられる。そのため、電流磁界の増減に対して、これをキャンセルするのに必要なコイル電流の増減幅を大きくできず、電流磁界に対する感度を高くするのに限界がある。
(3)また、フィードバックコイルは、幅寸法の小さい配線パターンを多数巻きで形成しなくてはならないため、インピーダンスが上昇し、消費電力が大きくなる。
本発明は上記従来の課題を解決するものであり、フィードバックコイルの1本のコイル導体に対して、磁気抵抗効果素子を複数本対向させることで、前記各課題を解決できるようにした平衡式磁界検知装置を提供することを目的としている。
本発明は、コイル導体が平面に巻き形成されたフィードバックコイルと、前記コイル導体に沿って長尺形状に形成された複数の磁気抵抗効果素子を有する磁気検知部と、前記磁気検知部が被測定磁界を検知したときの検知出力に応じて前記コイル導体に前記被測定磁界を打ち消す向きの磁界を誘導する電流を与えるコイル通電部と、前記コイル導体に流れる電流量を検知する電流検知部、とが設けられた平衡式磁界検知装置において、
1つの前記磁気検知部では、複数本の前記磁気抵抗効果素子が平行に配置され且つ直列に接続され、それぞれの前記磁気抵抗効果素子の検知軸が同じ向きに設定されており、
前記1本の前記コイル導体に対して、同じ前記磁気検知部を構成する前記磁気抵抗効果素子が複数本対向していることを特徴するものである。
1つの前記磁気検知部では、複数本の前記磁気抵抗効果素子が平行に配置され且つ直列に接続され、それぞれの前記磁気抵抗効果素子の検知軸が同じ向きに設定されており、
前記1本の前記コイル導体に対して、同じ前記磁気検知部を構成する前記磁気抵抗効果素子が複数本対向していることを特徴するものである。
本発明の平衡式磁界検知装置は、前記磁気抵抗効果素子が、前記コイル導体の直線状に延びる部分に対向しているものである。
本発明の平衡式磁界検知装置では、前記コイル導体の断面形状は、幅方向の寸法よりも高さ方向の寸法が短い長方形状であり、前記断面の前記幅方向に延びる長辺に、前記磁気抵抗効果素子が対向している。
本発明の平衡式磁界検知装置は、前記磁気抵抗効果素子が、前記コイル導体から前記幅方向へ突出していないことが好ましい。
本発明の平衡式磁界検知装置は、前記磁気抵抗効果素子へ至る被測定磁界を減衰させる磁気シールド層が設けられているものとして構成できる。
本発明の平衡式磁界検知装置は、電流路が設けられ、前記電流路で誘導された前記被測定磁界が、前記磁気抵抗効果素子に与えられるいわゆる電流検知装置に使用することが可能である。
本発明の平衡式磁界検知装置は、フィードバックコイルの1本のコイル導体に、磁気検知部を構成する磁気抵抗効果素子が複数本対向している。そのため、個々のコイル導体の幅寸法を広くすることができ、その結果、各磁気抵抗効果素子に対して感度軸に沿う方向にフィードバック磁性を与えやすくなり、磁気検知部の検知出力の線形性を高め、交番電流を与えたときのヒステリシスも低下することができる。
また、磁気抵抗効果素子に対して被測定磁界を相殺するために必要なフィードバック磁界を生成するために、フィードバックコイルに流れる電流量が多くなる。その結果、被測定磁界を検知するときのコイル電流を多くでき、感度を向上させることが可能になる。
コイル導体は幅寸法を大きくでき、またフィードバックコイルの巻き数も少なくできるので、インピーダンスを低下させることができ、消費電力も低減させることが可能になる。
本発明の実施の形態の平衡式磁界検知装置1は、図1と図2および図4に示す電流路40を流れる被測定電流I0の電流量を検知する電流検知装置の一部として使用されている。平衡式磁界検知装置1は、磁気検知部11,12,13,14と、フィードバックコイル30、およびシールド層3を有している。
図1と図2および図4に示す本発明の実施の形態では、電流路40が、フィードバックコイル30および磁気検知部11,12,13,14のZ方向の真上に配置されている。電流路40の位置は、その電流路40に流れる被測定電流I0によって発生する磁界が、磁気検知部11,12,13,14に対して感度軸方向(Y方向)の成分を与えることができれば、前記実施の形態以外の場所であってもよい。
図4(A)の断面図に示すように、平衡式磁界検知装置1は、基板2を有している。基板2はシリコン(Si)基板である。基板2の表面2aは平坦面であり、この表面2aに、磁気検知部11,12,13,14が形成されている。図11と図2には、磁気検知部11,12,13,14が平面図で示され、図4(A)には1個の磁気検知部11が断面図で示されている。
図1と図2に示すように、磁気検知部11,12,13,14はX方向へ等間隔で配置されている。前記電流路40はX方向に延びている。被測定電流I0は交流電流(または直流電流)であり、X方向に流れる。
図1と図2に、磁気検知部11,12,13,14の配置構造と配線構造が示され、図7に、その回路図が示されている。図7では、説明の都合上、電流路40が磁気検知部11,12,13,14のY方向の左側に並べて記載されている。ただし、実際の平衡式磁界検知装置1では、図1や図4などに示すように、電流路40は、磁気検知部11,12,13,14のZ方向の真上に配置されている。
図1と図3の図示左側の端部に位置する磁気検知部11と図示右側の端部に位置する磁気検知部13に配線路5が接続されており、配線路5の端末部に接続ランド部5aが形成されている。磁気検知部11と磁気検知部12は直列に接続され、磁気検知部13と磁気検知部14は直列に接続されている。中央に位置する磁気検知部12と磁気検知部14にはそれぞれ配線路6が接続されており、それぞれの配線路6の端末部に接続ランド部6aが形成されている。
直列に接続されている磁気検知部11と磁気検知部12の中間に配線路7が接続され、直列に接続されている磁気検知部13と磁気検知部14の中間に配線路8が接続されている。配線路7の端末部に接続ランド部7aが形成され、配線路8の端末に接続ランド部8aが形成されている。
前記配線路5,6,7,8は基板2の表面2aに形成された金や銅などの導電層で形成されている。前記接続ランド部5a,6a,7a,8aも金などの導電層で形成されている。
図3に磁気検知部11の平面形状が拡大して示されている。磁気検知部11は、Y方向の幅寸法よりもX方向の長手寸法が大きいストライプ形状(長尺形状)の複数本の磁気抵抗効果素子11aにより構成されている。複数本のストライプ形状の磁気抵抗効果素子11aは互いに平行に配置されている。隣り合う磁気抵抗効果素子11aの図示左側の端部が接続電極12aで接続され、図示右側の端部が接続電極12bで接続されて、磁気抵抗効果素子11aがいわゆるミアンダパターンに接続されている。1つの磁気検知部11内では全ての磁気抵抗効果素子11aが直列に接続されている。磁気検知部11では、図3の図示上方に位置する磁気抵抗効果素子11aが、配線路7に接続され、図示下方に位置する磁気抵抗効果素子11aが配線路5に接続されている。
他の磁気検知部12,13,14も平面形状は磁気検知部11と同じであり、それぞれ、ストライプ形状の磁気抵抗効果素子11aが、接続電極12a,12bによっていわゆるミアンダパターンに接続されている。
磁気検知部11,12,13,14のそれぞれに設けられた磁気抵抗効果素子11aは、巨大磁気抵抗効果を発揮する巨大磁気抵抗効果素子層(GMR層)であり、基板2の表面に形成された絶縁下地層の上に、固定磁性層と非磁性層とフリー磁性層が順に積層され、フリー磁性層の表面が保護層で覆われている。これらの層はCVDやスパッタ工程で形成され、その後にエッチングでストライプ形状に形成される。さらにストライプ形状の磁気抵抗効果素子をミアンダパターンに接続する接続電極12a,12bおよび配線路5,6,7,8が形成される。
固定磁性層とフリー磁性層は長手方向がX方向に向けられたストライプ形状であり、固定磁性層の磁化がY方向に向けて固定されている。固定磁性層は、第1磁性層と非磁性中間層と第2の磁性層とが積層されたセルフピン止め構造である。あるいは、反強磁性層の上に固定磁性層が積層され、反強磁性層との間の反強磁性結合により、固定磁性層の磁化が固定されている構造であってもよい。
図2と図3に、固定磁性層の磁化の固定方向Pが矢印で示されている。磁化の固定方向Pがそれぞれの磁気抵抗効果素子11aの感度軸方向であり、磁気検知部11,12,13,14の感度軸方向である。磁気検知部11と14に設けられた磁気抵抗効果素子11aは磁化の固定方向Pが同じであり、共に磁化の固定方向Pが図示下向きである。磁気検知部12と13に設けられた磁気抵抗効果素子11aは磁化の固定方向Pが同じであり、共に磁化の固定方向Pが図示上向きである。
前記磁気抵抗効果素子11aでは、フリー層の磁化Fが形状異方性や反強磁性層を用いたバイアス磁界などによってX方向に単磁区化されて揃えられている。それぞれの磁気検知部11,12,13,14において、感度軸(P方向)方向に沿う向きの外部磁界が与えられると、フリー磁性層においてX方向に揃えられていた磁化Fの向きがY方向へ向けて傾けられる。フリー磁性層の磁化のベクトルと磁化の固定方向Pとの角度が小さくなると、磁気抵抗効果素子11aの電気抵抗が低下し、フリー磁性層の磁化のベクトルと磁化の固定方向Pとの角度が大きくなると、磁気抵抗効果素子11bの抵抗値が大きくなる。
図7の回路図に示すように、配線路5に電源Vddが接続され、配線路6,6が接地電位に設定されて、磁気検知部11,12,13,14で構成されているフルブリッジ回路に定電圧が印加されている。配線路8からは中点電圧V1が得られ、配線路7からは中点電位V2が得られる。
磁気検知部11(12,13,14)の表面に下部絶縁層が形成されており、図4(A)に示すように、下部絶縁層の表面にフィードバックコイル30が形成されている。図1にフィードバックコイル30の平面パターンが示されている。フィードバックコイル30は、一方のランド部31から他方のランド部32に向けて時計回りの螺旋状に巻かれて形成されている。磁気検知部11,12,13,14の上には、フィードバックコイル30の対向検知部30aが重ねられている。
対向検知部30aでは、フィードバックコイル30において螺旋状に巻かれているコイル導体35が、互いに平行で、X方向へ直線状に延びている。図4には、対向検知部30aにおけるフィードバックコイル30の断面形状が示されている。対向検知部30aではコイル導体35がY方向へ一定の間隔を空けて複数条が配列している。
コイル導体35はメッキ層であり、低抵抗の非磁性金属層である金で形成されている。ただし、コイル導体35は銅など他の金属で形成してもよい。図4(B)に示すように、コイル導体35の断面形状は、Y方向の幅寸法W1が、Z方向の高さ寸法H1よりも長い長方形状である。幅寸法W1は20~60μm程度であり、高さ寸法H1は幅寸法W1の1/3以下である。
図4(A)(B)に示すように、磁気検知部11を構成する磁気抵抗効果素子11aは、Y方向に一定のピッチで配列している。コイル導体35の下面である対向面35aは断面形状で長辺として現れる部分である。1条(1本)のコイル導体の対向面35aに対し、Z方向において、複数条(複数本)の磁気抵抗効果素子11aが対向している。図の実施の形態では、対向面35aに3条(3本)の磁気抵抗効果素子11aが対向している。
他の磁気検知部12,13,14においても同様に、1条のコイル導体35の対向面35aに3条の磁気抵抗効果素子11aが対向している。
フィードバックコイル30の対向検知部30aの上は上部絶縁層で覆われており、上部絶縁層の上にシールド層3が形成されている。シールド層3はNi-Fe合金(ニッケルー鉄合金)などの磁性金属材料で形成されたメッキ層である。
図7の回路部に示すように、磁気検知部11,12,13,14でブリッジ回路が構成されており、配線路8で得られる中点電圧V1と配線路7で得られる中点電位V2が、コイル通電部15に与えられる。コイル通電部15は、差動増幅部15aと補償回路15bとを有している。差動増幅部15aはオペアンプを主体として構成されており、入力された中点電圧V1とV2との差(V1-V2)が検出電圧Vdとして求められる。この検出電圧Vdが補償回路15bに与えられ補償電流であるコイル電流Idが生成され、コイル電流Idは、フィードバックコイル30に与えられる。
なお、差動増幅部15aと補償回路15bとが一体となったものが、補償型の差動増幅部と呼ばれることがある。
図7に示すように、フィードバックコイル30のランド部31が補償回路15bに接続され、ランド部32が電流検知部17に接続されている。電流検知部17は、フィードバックコイル30に接続された抵抗17aと、抵抗17aに作用する電圧を検知する電圧検知部17bとを有している。
次に、平衡式磁界検知装置1の動作を説明する。
図7に示すように、電流路40においてX方向へ流れる被測定電流I0によって被測定磁界H0が誘導される。被測定電流I0は交流電流または直流電流であるが、ここでは、被測定電流I0が、図7において図示上向きに流れ、図4(A)において紙面奥方向へ流れている瞬間を想定する。このときの被測定磁界H0の向きは図4(A)と図7において矢印で示され、磁気検知部11,12,13,14に、磁界のY方向の成分が印加される。
図7に示すように、電流路40においてX方向へ流れる被測定電流I0によって被測定磁界H0が誘導される。被測定電流I0は交流電流または直流電流であるが、ここでは、被測定電流I0が、図7において図示上向きに流れ、図4(A)において紙面奥方向へ流れている瞬間を想定する。このときの被測定磁界H0の向きは図4(A)と図7において矢印で示され、磁気検知部11,12,13,14に、磁界のY方向の成分が印加される。
図2と図7に示すように、磁気検知部11,14と磁気検知部12,13とで、感度軸である固定磁性層の磁化の固定方向Pが互いに逆向きである。図4(A)と図7において矢印で示す向きの被測定磁界H0が磁気検知部11,12,13,14に与えられると、磁気検知部11と磁気検知部14では、磁気抵抗効果素子11aの抵抗値が増加し、磁気検知部12と磁気検知部13では、磁気抵抗効果素子11aの抵抗値が低下する。このとき、差動増幅部15aの出力値である検出電圧Vdは被測定電流I0が大きくなるにしたがって増大していく。
補償回路15bからは、フィードバックコイル30にコイル電流Idが与えられ、フィードバックコイル30にキャンセル電流Id1が流れる。対向検知部30aでは、被測定電流I0とキャンセル電流Id1の流れる方向が逆向きとなり、キャンセル電流Id1によって、磁気検知部11,12,13,14に、被測定磁界H0を相殺する向きのキャンセル磁界Hdが与えられる。
被測定電流I0で誘導される被測定磁界H0が、キャンセル磁界Hdよりも大きいときは、配線路8で得られる中点電圧V1が高くなり、配線路7で得られる中点電位V2が低くなって、差動増幅部15aの出力である検出電圧Vdが高くなる。このとき、補償回路15bでは、キャンセル磁界Hdを増加させて前記検出電圧Vdをゼロに近づけるためのコイル電流Idが生成され、このコイル電流Idがフィードバックコイル30に与えられる。磁気検知部11,12,13,14に作用するキャンセル磁界Hdと被測定磁界H0とが平衡状態となって、前記検出電圧Vdが所定値以下となったときに、フィードバックコイル30に流れているコイル電流Id(キャンセル電流Id1)が図7に示す電流検知部17で検知され、これが被測定電流I0の電流測定値となる。
前記平衡式磁界検知装置1では、磁気検知部11,12,13,14とフィードバックコイル30の上にシールド層3が形成されており、被測定電流I0で誘導される被測定磁界H0の一部がシールド層3に吸収されるため、磁気検知部11,12,13,14に与えられる被測定磁界H0が減衰させられる。その結果、磁気検知部11,12,13,14の磁気抵抗効果素子11aが磁気飽和するまでの被測定電流I0の変化の範囲を広げることができ、ダイナミックレンジを広げることが可能になる。
次に、図4に示すように、フィードバックコイル30の対向検知部30aにおいて、1条のコイル導体35の対向面35aに3条の磁気抵抗効果素子11aが対向している。
そのため、個々の磁気抵抗効果素子11aに対して感度軸(固定磁化の方向P)と平行に作用する磁場成分を大きくでき、磁気検知部11,12,13,14での検知出力の線形性とリニアリティを高く維持することができる。また、磁気検知部11,12,13,14の抵抗値を変化させるのに必要となるコイル電流Idすなわちキャンセル電流Id1が大きくなるので、磁気検知部での検知感度を高めることが可能になる。
図5(A)には、比較例の平衡式磁界検知装置101の断面図が記載されている。図5(A)は図4(A)と同じ個所の断面を示している。
図4(A)に示す実施の形態の磁気検知装置1と、図5(A)に示す比較例の平衡式磁界検知装置101とで、磁気検知部11,12,13,14における磁気抵抗効果素子11aのY方向の幅寸法SWとY方向の配列ピッチが同じである。
ただし、図5(A)に示す比較例では、フィードバックコイル130の対向検知部130aにおける個々のコイル導体135のY方向の幅寸法が小さく、コイル導体135と磁気抵抗効果素子11aとが1本対1本で上下に対向している。図4(A)と図5(A)とでは、フィードバックコイル30,130の対向検知部30a,130aのY方向の幅寸法はほぼ同じである。したがって、図5(A)に示す比較例でのフィードバックコイル130のコイル導体135の巻き数は、図4(A)に示す実施の形態のフィードバックコイル30の巻き数よりも多くなっている。
図6(A)は、図4(A)に示す実施の形態において、フィードバックコイル30を構成するコイル導体35の下面である対向面35aから図示下側に0.5μm離れた位置において、個々のコイル導体35から誘導されるキャンセル磁界HdのうちのY方向の成分を測定した結果を示している。図6(B)は、図5(A)に示す比較例において、フィードバックコイル30の下面から図示下側に0.5μm離れた位置で、個々のコイル導体135から誘導されるキャンセル磁界HdのうちのY方向の成分を測定した結果を示している。
図6(A)(B)において、横軸は、図4(A)と図5(A)に示す0点を起点とする右方向(+)と左方向(-)のY座標位置を示している。縦軸は、キャンセル磁界HdのY方向成分の強度(mT)を示している。
図4に示す実施の形態でのコイル導体35の断面形状は、Y方向の幅寸法W1が22μmであり、Z方向の高さ寸法H1が5μmである。図5に示す比較例でのコイル導体135の断面形状は、Y方向の幅寸法が2μmであり、Z方向の高さ寸法が5μmである。図4と図5において、個々の磁気抵抗効果素子11aのY方向の幅寸法SWを4μmとした。
図6に示すキャンセル磁界Hdを誘導するために、実施の形態のフィードバックコイル30と比較例のフィードバックコイル130のそれぞれにコイル電流Idとして10mAの直流電流を与えた。
図5(A)に示す比較例では、Y方向の幅寸法が小さいコイル導体135が短いピッチで並んでいる。そのため、図6(B)に示すように、磁気抵抗効果素子11aが配列している高さ位置でのキャンセル磁界HdのY方向成分が、コイル導体135の配列ピッチに合わせて細かく変動している。これに対し、図4(A)に示す実施の形態では、個々のコイル導体35のY方向の幅寸法が大きいため、図6(A)に示すように、磁気抵抗効果素子11aが配列している高さ位置に、キャンセル磁界HdのY方向成分が作用しやすくなる。
さらに、Y方向での単位幅当たりのキャンセル電流Id1の電流量、すなわちY方向での電流密度は、図5(A)の比較例に比べて、図4(A)の実施の形態の方が低くなっている。
以上から、本発明の実施の形態の平衡式磁界検知装置1は、比較例の平衡式磁界検知装置101に比較して以下の効果を奏することができる。
(1)図5(B)に示すように、比較例では、個々のコイル導体135で誘導されたキャンセル磁界Hdの周回成分が磁気抵抗効果素子11aに作用する。そのため、幅寸法SWの磁気抵抗効果素子11aの幅方向の中心部ではキャンセル磁界HdのうちのY方向成分が強くなるが、幅寸法SWの両側部では、キャンセル磁界HdのうちのY方向成分が弱くなる。したがって、キャンセル電流Id1が変化したときの磁気抵抗効果素子11aの抵抗値の変化の線形性が低下することになる。また、コイル電流Idが交流電流で、キャンセル磁界Hdが交番磁界となったときの、磁気抵抗効果素子11aの抵抗値の変化のヒステリシスも大きくなる。
これに対し、図4(B)に示すように、実施の形態では、Y方向の幅寸法の大きい1条のコイル導体35で誘導されるキャンセル磁界HdのY方向の成分が、個々の磁気抵抗効果素子11aに作用しやすくなり、特に、コイル導体35に対向する3条の磁気抵抗効果素子11aのうちの中央部に位置するものに対しては、キャンセル磁界HdのY方向成分が支配的に作用するようになる。したがって、実施の形態の平衡式磁界検知装置1では、磁気検知部11,12,13,14の検知出力の線形性を維持しやすくなり、キャンセル磁界Hdが交番電流のときのヒステリシスも低減できるようになる。
(2)図4の実施の形態におけるコイル電流Idと図5の比較例におけるコイル電流Idを同じ値としたときに、図6(A)に示すように、実施の形態において、個々の磁気抵抗効果素子11aに作用するキャンセル磁界Hdは、図6(B)に示すように、比較例において個々の磁気抵抗効果素子11aに作用するキャンセル磁界Hdよりも弱くなる。
そのため、磁気検知部11,12,13,14で検知する被測定磁界H0をキャンセルする大きさのキャンセル磁界Hdを磁気抵抗効果素子11aに与えるときに、そのために必要となるコイル電流Idは、図4に示す実施の形態の方が、図5に示す比較例よりも大きくなる。
図11には、横軸に被測定磁界H0の大きさが示され、縦軸に被測定磁界H0をキャンセルするのに必要なコイル電流Idが示されている。図5に示す比較例では、図11において直線(ii)で示すように、所定幅で変化する被測定磁界H0をキャンセルするのに必要なコイル電流Idの増減幅が狭いのに対し、図4に示す実施の形態では、直線(i)で示すように、所定幅で変化する被測定磁界H0をキャンセルするのに必要なコイル電流Idの増減幅が広くなっている。これは実施の形態の平衡式磁界検知装置1が、比較例の平衡式磁界検知装置101に比べて検知感度が高くなることを意味している。
したがって、比較的弱い被測定磁界H0であっても、高いS/N比で検知出力を得ることができる。
(3)図4に示す実施の形態では、個々のコイル導体35の断面積を大きくできるため、フィードバックコイル30の抵抗値を下げることができる。またフィードバックコイル30の巻き数を少なくできるため、インダクタンスを低下させてインピーダンスを低下させることができる。よって、高周波の非検知電流I0の検知にも優れたものとなり、消費電力も低減できる。
次に、図8ないし図10を参照して、コイル導体35の幅寸法W1と、磁気抵抗効果素子11aに作用するキャンセル磁界HdのY方向成分の変化について説明する。
図8(A)(B)(C)と図9(A)(B)(C)では、横軸に、図4(A)に示したY方向の座標位置を示しており、縦軸に、コイル導体35の対向面35aよりもZ方向の下側に0.5μm離れた位置での、キャンセル磁界HdのY方向成分の大きさを示している。なお、キャンセル磁界Hdの向きは図6(A)の測定時と逆向きであり、キャンセル磁界HdのY方向成分の大きさは、図8および図9と、図4とで符号が逆になっている。
磁気抵抗効果素子11aの幅寸法SWは4μmである。コイル導体35の高さ寸法H1は、2μmである。
図8と図9では、Y方向の各位置でのキャンセル磁界HdのY方向成分の大きさの変化曲線を破線で示している。またこの破線で示す変化曲線のうち、個々の磁気抵抗効果素子11aと対向する範囲(幅寸法SWの範囲)を3重線で示している。
図8(A)の測定結果となる条件は、図10(A)に示すコイル導体35の幅寸法W1が16μmであり、Y方向の両側に位置する磁気抵抗効果素子11aがコイル導体35から突出する寸法-δが-2.0μmである。
図8(B)の測定結果となる条件は、コイル導体35の幅寸法W1が19μmであり、Y方向の両側に位置する磁気抵抗効果素子11aがコイル導体35から突出する寸法-δが-0.5μmである。
図8(C)の測定結果となる条件は、コイル導体35の幅寸法W1が20μmであり、図10(B)に示すように、Y方向の両側に位置する磁気抵抗効果素子11aのY方向の端部が、コイル導体35のY方向の端部に一致している。
図9(A)の測定結果となる条件は、図10(C)に示すコイル導体35の幅寸法W1が21μmであり、Y方向の両側に位置する磁気抵抗効果素子11aよりもコイル導体35が+δ=0.5μmだけ突出している。
図9(B)の測定結果となる条件は、コイル導体35の幅寸法W1が22μmであり、Y方向の両側に位置する磁気抵抗効果素子11aよりもコイル導体35が+δ=1.0μmだけ突出している。
図9(C)の測定結果となる条件は、コイル導体35の幅寸法W1が23μmであり、Y方向の両側に位置する磁気抵抗効果素子11aよりもコイル導体35が+δ=1.5μm突出している。
図8と図9の結果によると、いずれの場合も、コイル導体35に対向する3条の磁気抵抗効果素子11aのうちの中央に位置するものに作用するキャンセル磁界Hdは、Y方向成分が強くなる。また、Y方向の両側に位置する磁気抵抗効果素子11aに対してキャンセル磁界HdのY方向成分を強く作用させるためには、図8(C)および図10(B)に示すように、磁気抵抗効果素子11aが、コイル導体35から感度軸方向へ出ていないことが好ましい。また、図8(B)(C)および図10(C)に示すように、コイル導体35のY方向の両端部が、磁気抵抗効果素子11aよりも突出していることがさらに好ましい。
なお、1条のコイル導体35に対向する磁気抵抗効果素子11aの数は2個以上であれば、いずれの数であってもよいが、その数が3本などのような奇数であることが好ましい。奇数の数の磁気抵抗効果素子11aをコイル導体35に対向させると、中央の1本の磁気抵抗効果素子11aが、コイル導体35の中央部に対向するようになり、中央の磁気抵抗効果素子11aにY方向の磁界成分が支配的に作用するようになり、検知出力の線形性を確保しやすく、ヒステリシスも抑制できるようになる。
1 平衡式磁界検知装置
3 シールド層
5,6,7,8 配線層
11,12,13,14 磁気検知部
11a 磁気抵抗効果素子
17 電流検知部
30 フィードバックコイル
30a 対向検知部
35 コイル導体
40 電流路
H0 被測定磁界
Hd キャンセル磁界
I0 被測定電流
Id コイル電流
P 固定磁性層の磁化の固定方向(感度軸の方向)
3 シールド層
5,6,7,8 配線層
11,12,13,14 磁気検知部
11a 磁気抵抗効果素子
17 電流検知部
30 フィードバックコイル
30a 対向検知部
35 コイル導体
40 電流路
H0 被測定磁界
Hd キャンセル磁界
I0 被測定電流
Id コイル電流
P 固定磁性層の磁化の固定方向(感度軸の方向)
Claims (6)
- コイル導体が平面に巻き形成されたフィードバックコイルと、前記コイル導体に沿って長尺形状に形成された複数の磁気抵抗効果素子を有する磁気検知部と、前記磁気検知部が被測定磁界を検知したときの検知出力に応じて前記コイル導体に前記被測定磁界を打ち消す向きの磁界を誘導する電流を与えるコイル通電部と、前記コイル導体に流れる電流量を検知する電流検知部、とが設けられた平衡式磁界検知装置において、
1つの前記磁気検知部では、複数本の前記磁気抵抗効果素子が平行に配置され且つ直列に接続され、それぞれの前記磁気抵抗効果素子の検知軸が同じ向きに設定されており、
前記1本の前記コイル導体に対して、同じ前記磁気検知部を構成する前記磁気抵抗効果素子が複数本対向していることを特徴する平衡式磁界検知装置。 - 前記磁気抵抗効果素子は、前記コイル導体の直線状に延びる部分に対向している請求項1記載の平衡式磁界検知装置。
- 前記コイル導体の断面形状は、幅方向の寸法よりも高さ方向の寸法が短い長方形状であり、前記断面の前記幅方向に延びる長辺に、前記磁気抵抗効果素子が対向している請求項1または2記載の平衡式磁界検知装置。
- 前記磁気抵抗効果素子が、前記コイル導体から前記幅方向へ突出していない請求項1ないし3のいずれかに記載の平衡式磁界検知装置。
- 前記磁気抵抗効果素子へ至る被測定磁界を減衰させる磁気シールド層が設けられている請求項1ないし4のいずれかに記載の平衡式磁界検知装置。
- 電流路が設けられ、前記電流路で誘導された前記被測定磁界が、前記磁気抵抗効果素子に与えられる請求項1ないし5のいずれかに記載の平衡式磁界検知装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018508511A JP6526319B2 (ja) | 2016-03-30 | 2017-02-09 | 平衡式磁界検知装置 |
CN201780015094.1A CN108780131B (zh) | 2016-03-30 | 2017-02-09 | 平衡式磁场检测装置 |
US16/118,129 US20180372812A1 (en) | 2016-03-30 | 2018-08-30 | Equilibrium-type magnetic field detection device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016067448 | 2016-03-30 | ||
JP2016-067448 | 2016-03-30 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/118,129 Continuation US20180372812A1 (en) | 2016-03-30 | 2018-08-30 | Equilibrium-type magnetic field detection device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017169156A1 true WO2017169156A1 (ja) | 2017-10-05 |
Family
ID=59963851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/004692 WO2017169156A1 (ja) | 2016-03-30 | 2017-02-09 | 平衡式磁界検知装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20180372812A1 (ja) |
JP (1) | JP6526319B2 (ja) |
CN (1) | CN108780131B (ja) |
WO (1) | WO2017169156A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019138865A (ja) * | 2018-02-15 | 2019-08-22 | アルプスアルパイン株式会社 | 磁気センサおよび電流センサ |
JP2019138807A (ja) * | 2018-02-13 | 2019-08-22 | アルプスアルパイン株式会社 | 磁気センサおよび電流センサ |
WO2019188186A1 (ja) * | 2018-03-29 | 2019-10-03 | Tdk株式会社 | 磁気センサ |
JP2019215182A (ja) * | 2018-06-11 | 2019-12-19 | Tdk株式会社 | 磁気センサ |
WO2020054112A1 (ja) * | 2018-09-12 | 2020-03-19 | アルプスアルパイン株式会社 | 磁気センサおよび電流センサ |
TWI723412B (zh) * | 2019-06-05 | 2021-04-01 | 愛盛科技股份有限公司 | 磁場感測裝置 |
JP7488136B2 (ja) | 2020-07-06 | 2024-05-21 | 株式会社東芝 | 磁気センサ、センサモジュール及び診断装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020148640A (ja) * | 2019-03-14 | 2020-09-17 | 株式会社東芝 | 電流検出装置 |
CN109932668B (zh) * | 2019-03-27 | 2020-11-27 | 三峡大学 | 基于正反向激励的低磁滞tmr磁场测量装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030057938A1 (en) * | 2001-08-27 | 2003-03-27 | International Rectifier Corporation | Magnetoresistive magnetic field sensors and motor control devices using same |
JP2011196798A (ja) * | 2010-03-18 | 2011-10-06 | Tdk Corp | 電流センサ |
WO2013018665A1 (ja) * | 2011-08-01 | 2013-02-07 | アルプス・グリーンデバイス株式会社 | 電流センサ |
WO2014148437A1 (ja) * | 2013-03-18 | 2014-09-25 | 日立金属株式会社 | 磁気センサ |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6429640B1 (en) * | 2000-08-21 | 2002-08-06 | The United States Of America As Represented By The Secretary Of The Air Force | GMR high current, wide dynamic range sensor |
JP4105145B2 (ja) * | 2004-11-30 | 2008-06-25 | Tdk株式会社 | 電流センサ |
JP4458149B2 (ja) * | 2007-10-31 | 2010-04-28 | Tdk株式会社 | 磁気カプラ |
WO2011111493A1 (ja) * | 2010-03-12 | 2011-09-15 | アルプス・グリーンデバイス株式会社 | 電流センサ |
JP5505817B2 (ja) * | 2010-06-09 | 2014-05-28 | アルプス・グリーンデバイス株式会社 | 磁気平衡式電流センサ |
JP5487402B2 (ja) * | 2010-08-23 | 2014-05-07 | アルプス・グリーンデバイス株式会社 | 磁気平衡式電流センサ |
CN103314304A (zh) * | 2010-12-27 | 2013-09-18 | 阿尔卑斯绿色器件株式会社 | 磁比例式电流传感器 |
EP2778704B1 (en) * | 2013-03-11 | 2015-09-16 | Ams Ag | Magnetic field sensor system |
-
2017
- 2017-02-09 WO PCT/JP2017/004692 patent/WO2017169156A1/ja active Application Filing
- 2017-02-09 JP JP2018508511A patent/JP6526319B2/ja active Active
- 2017-02-09 CN CN201780015094.1A patent/CN108780131B/zh active Active
-
2018
- 2018-08-30 US US16/118,129 patent/US20180372812A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030057938A1 (en) * | 2001-08-27 | 2003-03-27 | International Rectifier Corporation | Magnetoresistive magnetic field sensors and motor control devices using same |
JP2011196798A (ja) * | 2010-03-18 | 2011-10-06 | Tdk Corp | 電流センサ |
WO2013018665A1 (ja) * | 2011-08-01 | 2013-02-07 | アルプス・グリーンデバイス株式会社 | 電流センサ |
WO2014148437A1 (ja) * | 2013-03-18 | 2014-09-25 | 日立金属株式会社 | 磁気センサ |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7057680B2 (ja) | 2018-02-13 | 2022-04-20 | アルプスアルパイン株式会社 | 磁気センサおよび電流センサ |
JP2019138807A (ja) * | 2018-02-13 | 2019-08-22 | アルプスアルパイン株式会社 | 磁気センサおよび電流センサ |
JP7122836B2 (ja) | 2018-02-15 | 2022-08-22 | アルプスアルパイン株式会社 | 磁気センサおよび電流センサ |
JP2019138865A (ja) * | 2018-02-15 | 2019-08-22 | アルプスアルパイン株式会社 | 磁気センサおよび電流センサ |
JP7069960B2 (ja) | 2018-03-29 | 2022-05-18 | Tdk株式会社 | 磁気センサ |
JP2019174324A (ja) * | 2018-03-29 | 2019-10-10 | Tdk株式会社 | 磁気センサ |
WO2019188186A1 (ja) * | 2018-03-29 | 2019-10-03 | Tdk株式会社 | 磁気センサ |
US11442120B2 (en) | 2018-03-29 | 2022-09-13 | Tdk Corporation | Magnetic sensor with compensation coil for cancelling magnetic flux applied to a magneto-sensitive element |
WO2019239933A1 (ja) * | 2018-06-11 | 2019-12-19 | Tdk株式会社 | 磁気センサ |
JP2019215182A (ja) * | 2018-06-11 | 2019-12-19 | Tdk株式会社 | 磁気センサ |
WO2020054112A1 (ja) * | 2018-09-12 | 2020-03-19 | アルプスアルパイン株式会社 | 磁気センサおよび電流センサ |
TWI723412B (zh) * | 2019-06-05 | 2021-04-01 | 愛盛科技股份有限公司 | 磁場感測裝置 |
JP7488136B2 (ja) | 2020-07-06 | 2024-05-21 | 株式会社東芝 | 磁気センサ、センサモジュール及び診断装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017169156A1 (ja) | 2018-07-05 |
JP6526319B2 (ja) | 2019-06-05 |
US20180372812A1 (en) | 2018-12-27 |
CN108780131B (zh) | 2021-02-09 |
CN108780131A (zh) | 2018-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017169156A1 (ja) | 平衡式磁界検知装置 | |
JP5012939B2 (ja) | 電流センサ | |
JP5888402B2 (ja) | 磁気センサ素子 | |
US11293950B2 (en) | Current sensor having soft magnetic bodies for adjusting magnetic field intensity | |
JP6617156B2 (ja) | 磁界検知装置 | |
WO2017199519A1 (ja) | 平衡式磁気検知装置 | |
JP2019516094A (ja) | セット/リセットデバイスのない異方性磁気抵抗(amr)センサ | |
JP2017072375A (ja) | 磁気センサ | |
JP6526223B2 (ja) | 電流検知装置 | |
JP2015219227A (ja) | 磁気センサ | |
JP2018112481A (ja) | 磁気センサ | |
JP5990963B2 (ja) | 磁気センサデバイス、及び電流センサ回路 | |
US9835692B2 (en) | Magnetic detection device | |
WO2016017490A1 (ja) | 磁気スイッチ | |
EP3130929B1 (en) | Current detection device | |
JP6776120B2 (ja) | 磁気検出装置、磁気検出装置の製造方法および磁気検出装置を用いてなる電流検出装置 | |
JP2019138807A (ja) | 磁気センサおよび電流センサ | |
CN110837066B (zh) | 磁场感测装置 | |
EP3851864B1 (en) | Magnetic sensor and current sensor | |
WO2015125699A1 (ja) | 磁気センサ | |
JP7122836B2 (ja) | 磁気センサおよび電流センサ | |
JP6970591B2 (ja) | 磁気センサおよび電流センサ | |
JP2017020818A (ja) | 電流検知装置およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018508511 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17773704 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17773704 Country of ref document: EP Kind code of ref document: A1 |