JP2019139982A - 蓄電デバイス - Google Patents

蓄電デバイス Download PDF

Info

Publication number
JP2019139982A
JP2019139982A JP2018022820A JP2018022820A JP2019139982A JP 2019139982 A JP2019139982 A JP 2019139982A JP 2018022820 A JP2018022820 A JP 2018022820A JP 2018022820 A JP2018022820 A JP 2018022820A JP 2019139982 A JP2019139982 A JP 2019139982A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
storage device
current collector
electrode current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018022820A
Other languages
English (en)
Other versions
JP6885353B2 (ja
Inventor
奥田 匠昭
Naruaki Okuda
匠昭 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2018022820A priority Critical patent/JP6885353B2/ja
Publication of JP2019139982A publication Critical patent/JP2019139982A/ja
Application granted granted Critical
Publication of JP6885353B2 publication Critical patent/JP6885353B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

【課題】内部短絡が生じた場合に発熱をより抑制できる蓄電デバイスを提供する。【解決手段】蓄電デバイスは、正極集電体の表面に正極活物質層が形成された正極本体部と、正極集電部と、を有する正極体と、負極集電体の表面に負極活物質層が形成された負極本体部と、負極集電部と、を有する負極体と、を備え、1対の正極体及び負極体と、この1対の正極体及び負極体の間に介在するイオン伝導媒体と、で形成された単セルが並列接続され、正極集電部同士及び負極集電部同士のうちの少なくとも一方が、温度上昇に伴い電気抵抗が上昇する抵抗上昇部を介して接続されている。【選択図】図1

Description

本開示は、蓄電デバイスに関する。
従来、ある温度を超えると温度の上昇に応じて急激に抵抗が上昇するというPTCサーミスタの特性を利用して、異常発熱の原因となる電流を遮断し、電池の異常発熱を抑制することが提案されている。例えば、発電要素と、発電要素を収容するケースと、ケースの開口を塞ぐ蓋と、発電要素と蓋との間に配置された安全弁とを備えた密閉型電池において、蓋と安全弁とで画成された空間内にPTCサーミスタを収容することが提案されている(特許文献1参照)。また例えば、集電体と活物質層との間にPTCサーミスタの層を設けることが提案されている(特許文献2参照)。
特開2008−251484号公報 特開2016−149189号公報
特許文献1では、過充電や外部短絡などによって電池が発熱すると、PTCサーミスタの抵抗上昇によって、電池外部と発電要素とをつなぐ経路において電流が遮断されて、過充電や外部短絡が終了するため、さらなる発熱を抑制できる。しかし、発電要素内部での正極と負極との短絡、すなわち内部短絡が生じた場合、内部短絡の経路における電流を遮断できず、内部短絡によって生じる異常発熱は抑制できなかった。一方、特許文献2では、電池が発熱すると、PTCサーミスタの抵抗上昇によって、内部短絡の経路上にある集電体と活物質層との界面で電流が遮断されるため、内部短絡によって生じる異常発熱をある程度抑制できる。しかし、内部短絡部の発熱が集電体と活物質層との間全面に形成されたPTCサーミスタ全体に伝わるには時間がかかり、その間は集電体と活物質層との間で電子の授受が継続するため内部短絡が続いてしまい、発熱を十分に抑制できないことがあった。
本開示はこのような課題を解決するためになされたものであり、内部短絡が生じた場合に発熱をより抑制できる蓄電デバイスを提供することを主目的とする。
上述した目的を達成するために、本発明者らは鋭意研究した。そして、正極体と負極体とイオン伝導媒体とで形成された単セルが並列接続されている蓄電デバイスにおいて、正極体の正極集電部同士及び負極体の負極集電部同士のうちの少なくとも一方を温度上昇に伴い電気抵抗が上昇する抵抗上昇部を介して接続することに想到した。そして、こうした蓄電デバイスでは、内部短絡が生じた場合に発熱をより抑制できることを見いだし、本開示を完成するに至った。
即ち、本開示の蓄電デバイスは、
正極集電体の表面に正極活物質層が形成された正極本体部と、正極集電部と、を有する正極体と、
負極集電体の表面に負極活物質層が形成された負極本体部と、負極集電部と、を有する負極体と、
を備え、
1対の前記正極体及び前記負極体と、該1対の前記正極体及び前記負極体の間に介在するイオン伝導媒体と、で形成された単セルが並列接続され、
前記正極集電部同士及び前記負極集電部同士のうちの少なくとも一方が、温度上昇に伴い電気抵抗が上昇する抵抗上昇部を介して接続されているものである。
この蓄電デバイスでは、内部短絡が生じた場合に発熱をより抑制できる。こうした効果が得られる理由は、以下のように推察された。蓄電デバイスで内部短絡が発生すると、短絡経路に含まれるすべての正負極間で電気化学反応が起こる。単セルが並列接続された蓄電デバイスでは、正極体の集電部同士が接続した正極接続部や負極体の集電部同士が接続した負極接続部を通って電気化学反応で生じた電子が流れる。各極接続部を構成する各集電部は、若干抵抗が大きいことや、熱容量が小さいこと、各電極体から集まった全ての電流が集中することなどにより、内部短絡が発生した場合には非常に早く昇温する。こうした集電部同士の間に抵抗上昇部を介在させると、内部短絡が生じてから比較的早期に、温度上昇に伴って抵抗上昇部の抵抗が上昇し、内部短絡部に流れる電流が抑制される。抵抗上昇部のこうした電流抑制機能により、内部短絡部のジュール発熱をより抑制でき、内部短絡が生じた場合に発熱をより抑制できると考えられる。
蓄電デバイス10の構成の概略を示す説明図。 蓄電デバイス10の単セル20の構成の概略を示す断面図。 蓄電デバイス10の内部短絡時の様子を説明する説明図。 蓄電デバイス10の別例の構成の概略を示す説明図。 蓄電デバイス10の別例の構成の概略を示す説明図。 実施例で用いたPTCサーミスタの1cm2あたりの温度−抵抗値曲線。 実施例の釘刺し試験における釘刺し箇所を示す説明図。
本開示の蓄電デバイスは、正極集電体の表面に正極活物質層が形成された正極本体部と、正極集電部と、を有する正極体と、負極集電体の表面に負極活物質層が形成された負極本体部と、負極集電部と、を有する負極体と、を備えている。この蓄電デバイスでは、1対の正極体及び負極体と、この1対の正極体及び負極体の間に介在するイオン伝導媒体と、で形成された単セルが並列接続され、正極集電部同士及び負極集電部同士のうちの少なくとも一方が、温度上昇に伴い電気抵抗が上昇する抵抗上昇部を介して接続されている。この蓄電デバイスは、電気二重層キャパシタやハイブリッドキャパシタ、疑似電気二重層キャパシタなどとしてもよいし、二次電池としてもよいし、一次電池としてもよい。また、非水系のものとしてもよいし、水溶液系のものとしてもよいし、全固体型のものとしてもよい。以下では、説明の便宜のため、蓄電デバイスが、リチウムイオンをキャリアとするリチウム二次電池である場合について主に説明する。
次に、本開示の一実施形態について、図面を用いて説明する。図1は、本開示の蓄電デバイスの一実施形態である蓄電デバイス10の構成の概略を示す説明図である。図2は、蓄電デバイス10の構成の概略を示す断面図である。図3は、蓄電デバイス10の内部短絡時の様子を示す説明図である。なお、図3では、説明の便宜上、図1より正極体30と負極体40の数を減らすとともに、負極タブ46の位置を変更した。
蓄電デバイス10は、正極本体部35と正極タブ(正極集電部)36とを有する正極体30と、負極本体部45と負極タブ(負極集電部)46とを有する負極体40とを備えている。この蓄電デバイス10は、1対の正極体30及び負極体40と、その間に介在するイオン伝導媒体22と、で形成された単セル20が並列接続され、つまり、同極同士が接続されて構成されている。また、シート状の正極体30及びシート状の負極体40が積層された枚葉積層型の電池として構成されている。正極タブ36同士の間には、抵抗上昇部50が配設され、抵抗上昇部50を介して正極タブ36同士が接続されている。また、負極タブ46同士の間にも、抵抗上昇部50が配設され、抵抗上昇部50を介して負極タブ46同士が接続されている。正極体30及び負極体40は、両者の間にイオン伝導媒体22が介在し、必要に応じて両者の間にセパレータ24が配設され、単セル20が並列接続された状態で、図示しない電池ケースに収容されている。
正極体30は、正極集電体32の表面に正極活物質層34が形成された正極本体部35と、正極タブ36と、を有する部材である。正極体30において、正極集電体32と正極タブ36とは一部材で形成されていてもよいし、別部材の正極集電体32と正極タブ36とが接合されていてもよいが、一部材で形成されていた方が、両者の間の抵抗が小さくエネルギー損失が少ないため、好ましい。正極タブ36は、正極集電体42の端部に設けられているものとしてもよい。1つの正極体30の有する正極タブ36は、1つであるものとしてもよい。
正極集電体32は、正極活物質などに対して化学的、電気的に安定なものであれば特に限定されず、アルミニウム、チタン、ステンレス鋼、ニッケル、鉄、焼成炭素、導電性高分子、導電性ガラスなどのほか、接着性、導電性及び耐酸化性向上の目的で、アルミニウムや銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものを用いることができる。これらのうち、アルミニウムが好ましい。正極集電体として使用される電位領域ではリチウムイオンがドープされにくいこと、耐食性が高いことなどにより、リチウム二次電池の正極に特に適しているからである。正極集電体32の形状は、シート状、ネット状、パンチ又はエキスパンドされたもの、ラス体などとすることができる。シート状には、箔状やフィルム状などが含まれる。正極集電体32の厚さは、例えば10μm以上20μm以下が好ましく、12μm以上17μm以下がより好ましい。正極集電体32の厚さを10μm以上とすれば、正極集電体32の機械的強度をより高めることができる。また、正極集電体32の厚さを20μm以下とすれば、蓄電デバイス10において正極集電体32の体積分率をより少なくして正極活物質層34等の体積分率をより高めることができるため、蓄電デバイスのエネルギー密度をより高めることができる。
正極活物質層34は、例えば、正極活物質と、必要に応じて導電材と、結着材とを含むものとしてもよい。この正極活物質層34は、例えば正極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の正極合材としたものを、正極集電体32の表面に塗布乾燥したものとしてもよい。正極活物質としては、遷移金属元素を含む硫化物や、リチウムと遷移金属元素とを含む酸化物などを用いることができる。具体的には、TiS2、TiS3、MoS3、FeS2などの遷移金属硫化物、基本組成式をLi(1-x)MnO2(0≦x≦1など、以下同じ)やLi(1-x)Mn24などとするリチウムマンガン複合酸化物、基本組成式をLi(1-x)CoO2などとするリチウムコバルト複合酸化物、基本組成式をLi(1-x)NiO2などとするリチウムニッケル複合酸化物、基本組成式をLi(1-x)NiaCobMnc2(a+b+c=1)、Li(1-x)NiaCobMnc4(0≦a≦1、0≦b≦1、0<c≦2、a+b+c=2)などとするリチウムニッケルコバルトマンガン複合酸化物、基本組成式をLiV23などとするリチウムバナジウム複合酸化物、基本組成式をV25などとする遷移金属酸化物などを用いることができる。これらのうち、リチウムの遷移金属複合酸化物、例えば、LiCoO2、LiNiO2、LiMnO2、LiV23などが好ましい。なお、「基本組成式」とは、他の元素(例えばAlやMgなど)を含んでもよい趣旨である。導電材は、正極の電池性能に悪影響を及ぼさない電子伝導性材料であれば特に限定されず、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛)や人造黒鉛などの黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金など)などの1種又は2種以上を混合したものを用いることができる。これらの中で、導電材としては、電子伝導性及び塗工性の観点より、カーボンブラック及びアセチレンブラックが好ましい。結着材は、活物質粒子及び導電材粒子を繋ぎ止める役割を果たすものであり、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレンプロピレンジエンモノマー(EPDM)ゴム、スルホン化EPDMゴム、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。また、水系バインダーであるセルロース系やスチレンブタジエンゴム(SBR)の水分散体等を用いることもできる。正極活物質、導電材、結着材を分散させる溶剤としては、例えばN−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチレントリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフランなどの有機溶剤を用いることができる。また、水に分散剤、増粘剤等を加え、SBRなどのラテックスで活物質をスラリー化してもよい。増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロースなどの多糖類を単独で、あるいは2種以上の混合物として用いることができる。塗布方法としては、例えば、アプリケータロールなどのローラコーティング、スクリーンコーティング、ドクターブレイド方式、スピンコーティング、バーコータなどが挙げられ、これらのいずれかを用いて任意の厚さ・形状とすることができる。正極活物質層34の厚さは、例えば10μm以上200μm以下が好ましく、20μm以上100μm以下がより好ましい。正極活物質層34の厚さを10μm以上とすれば、充放電レート性や急速充電性などの充放電特性をより高めることができる。また、正極活物質層34の厚さを200μm以下とすれば、エネルギー密度をより高めることができる。
正極本体部35は、全ての正極体30において、正極集電体32の両面に正極活物質層34が形成されていてもよい。また、正極体30及び負極体40の全てを積層したときに端に配置される正極体30(例えば図1で一番上に配置されている正極体30)においては、正極体32の片面のみに正極活物質層34が形成されていてもよい。正極本体部35の厚さは、正極集電体32の両面に正極活物質層34が形成されたものにおいて、例えば30μm以上420μm以下が好ましく、50μm以上217μm以下がより好ましい。正極本体部35の厚さは、正極集電体32の厚さや正極活物質層34の厚さに応じて適切な厚さに設定すればよい。正極本体部35の投影面積PMは、例えば4cm2以上15000cm2以下が好ましく、10cm2以上3000cm2以下がより好ましい。正極本体部35の投影面積PMは、大きいほど、内部短絡発生時に正極タブ36が高温になりやすく抵抗上昇部50の電流抑制機能を早期に発揮させることができるため、好ましい。なお、本明細書において、投影面積とは、シート状の正極体やシート状の負極体のシート面に垂直な方向(図2の上方あるいは下方)から各部材を見たときの面積をいう。
正極タブ36は、正極本体部35に対して小さいほど、内部短絡が生じたときに早く昇温して、抵抗上昇部50の電流抑制機能を早く発揮させることができるため、好ましい。例えば、正極タブ36の投影面積PT(m2)の正極本体部35の投影面積PM(m2)に対する割合であるPT/PMの値は、1/5以下が好ましく、1/10以下がより好ましい。正極タブ36の投影面積PTは、所望の抵抗上昇部50を配設できる程度に大きければよく、小さいほど、内部短絡が生じた時に早く昇温して、抵抗上昇部50の電流抑制機能を早期に発揮させることができるため、好ましい。正極タブ36の投影面積PTは、例えば、0.4cm2以上3000cm2以下が好ましく、0.8cm2以上1500cm2以下がより好ましい。なお、各正極タブ36は、それ自体の面積が投影面積PTと同面積の部材としてもよいし、投影面積PTよりも面積が大きい部材を折り畳んだりロール状に捲回したりしたものとしてもよい。抵抗上昇部50の抵抗率が高く、高出力が得にくい場合などに、各正極タブ36の面積を投影面積PTより大きくすることで、抵抗上昇部50の配設面積を大きくでき、抵抗上昇部50での通常使用時の抵抗を低減できる。また、各正極タブ36を折り畳んだり捲回したりすれば、正極タブ36の投影面積PTを小さくできるため、蓄電デバイスとしてのエネルギー密度を上げることができる。正極タブ部36は、アルミニウムで形成されたものであることが好ましい。アルミニウムで形成された集電部では、内部短絡が生じた時の集電部の発熱が大きくなる傾向にあり、内部短絡が生じてから比較的早期に抵抗上昇部の電流抑制機能を発揮させることができるからである。
負極体40は、負極集電体42の表面に負極活物質層44が形成された負極本体部45と、負極タブ46と、を有する部材である。負極体40において、負極集電体42と負極タブ46とは一部材で形成されていてもよいし、別部材の負極集電体42と負極タブ46とが接合されていてもよいが、一部材で形成されていた方が、両者の間の抵抗が小さくエネルギー損失が少ないため、好ましい。負極タブ46は、負極集電体42の端部に設けられているものとしてもよい。1つの負極体40の有する負極タブ46は、1つであるものとしてもよい。
負極集電体42は、負極活物質などに対して化学的、電気的に安定なものであれば特に限定されず、銅、ニッケル、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金などのほか、接着性、導電性及び耐還元性向上の目的で、例えば銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものも用いることができる。これらのうち、銅が好ましい。負極集電体として使用される電位領域でリチウムイオンがドープされにくいこと、耐食性が高いことなどにより、リチウム二次電池の負極に特に適しているからである。負極集電体42の形状は、シート状、ネット状、パンチ又はエキスパンドされたもの、ラス体などとすることができる。シート状には、箔状、フィルム状などが含まれる。負極集電体42の厚さは、例えば5μm以上15μm以下が好ましく、8μm以上12μm以下がより好ましい。負極集電体42の厚さを5μm以上とすれば、負極集電体42の機械的強度をより高めることができる。また、負極集電体42の厚さを15μm以下とすれば、蓄電デバイス10において負極集電体42の体積分率をより少なくして負極活物質層44等の体積分率をより高めることができるため、蓄電デバイスのエネルギー密度をより高めることができる。
負極活物質層44は、負極活物質と、必要に応じて導電材と、結着材とを含むものとしてもよい。この負極活物質層44は、例えば負極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の負極合材としたものを、負極集電体42の表面に塗布乾燥したものとしてもよい。負極活物質としては、リチウム、リチウム合金、スズ化合物などの無機化合物、リチウムイオンを吸蔵・放出可能な炭素質材料、複数の元素を含む複合酸化物、導電性ポリマーなどが挙げられる。炭素質材料は、例えば、コークス類、ガラス状炭素類、グラファイト類、難黒鉛化性炭素類、熱分解炭素類、炭素繊維などが挙げられる。このうち、人造黒鉛、天然黒鉛などのグラファイト類が、金属リチウムに近い作動電位を有し、高い作動電圧での充放電が可能であり支持塩としてリチウム塩を使用した場合に自己放電を抑え、且つ充電時における不可逆容量を少なくできるため、好ましい。複合酸化物としては、例えば、リチウムチタン複合酸化物やリチウムバナジウム複合酸化物などが挙げられる。負極活物質としては、このうち、炭素質材料が安全性の面から見て好ましい。また、負極活物質層44に用いられる導電材、結着材、溶剤などは、それぞれ正極活物質層34で例示したものを用いることができる。負極活物質層44の厚さは、例えば10μm以上200μm以下が好ましく、20μm以上100μm以下がより好ましい。負極活物質層44の厚さを10μm以上とすれば、充放電レート性や急速充電性などの充放電特性をより高めることができる。また、負極活物質層44の厚さを200μm以下とすれば、エネルギー密度をより高めることができる。
負極本体部45は、全ての負極体40において、負極集電体42の両面に負極活物質層44が形成されていてもよい。また、正極体30及び負極体40の全てを積層したときに端に配置される負極体40(例えば図1で一番下に配置されている負極体40)においては、負極体42の片面のみに負極活物質層44が形成されていてもよい。負極本体部45の厚さは、負極集電体42の両面に負極活物質層44が形成されたものにおいて、例えば25μm以上415μm以下が好ましく、48μm以上212μm以下がより好ましい。負極本体部45の厚さは、負極集電体42の厚さや負極活物質層44の厚さに応じて適切な厚さに設定すればよい。負極本体部45の投影面積NMは、例えば4.4cm2以上15100cm2以下が好ましく、11cm2以上3060cm2以下がより好ましい。負極本体部45の投影面積NMは、大きいほど、内部短絡発生時に負極タブ46が高温になりやすく抵抗上昇部50の電流抑制機能を早期に発揮させることができるため、好ましい。
負極タブ46は、負極本体部45に対して小さいほど、内部短絡が生じたときに早く昇温して、抵抗上昇部50の電流抑制機能を早く発揮させることができるため、好ましい。例えば、負極タブ46の投影面積NT(m2)の負極本体部45の投影面積NM(m2)に対する割合であるNT/NMの値は、1/5以下が好ましく、1/10以下がより好ましい。負極タブ46の投影面積NTは、所望の抵抗上昇部50を配設できる程度に大きければよく、小さいほど、内部短絡が生じたときに早く昇温して、抵抗上昇部50の電流抑制機能をより早期に発揮させることができるため、好ましい。負極タブ46の投影面積NTは、例えば、0.4cm2以上3000cm2以下が好ましく、0.8cm2以上1500cm2以下がより好ましい。負極タブ46は、銅で形成されたものであることが好ましい。なお、各負極タブ46は、各正極タブ36と同様、それ自体の面積が投影面積NTと同面積の部材としてもよいし、投影面積NTよりも面積が大きい部材を折り畳んだりロール状に捲回したりしたものとしてもよい。銅で形成された集電部では、通常使用時の集電部での抵抗が小さく、エネルギーの損失がより小さいからである。
抵抗上昇部50は、温度上昇に伴い電気抵抗の抵抗値が上昇する正温度係数(PTC)特性を有するものである。この抵抗上昇部50は、所定の温度を超えると温度の上昇に対して急激に抵抗値が増大するPTCサーミスタであることが好ましい。抵抗上昇部50の抵抗値とは、正極タブ36同士の間または負極タブ46同士の間に配設されたときの形状および電流の向きでの抵抗値のことをいう。抵抗上昇部50は、抵抗値の立ち上がり温度が80℃以上120℃以下であることが好ましく、非水系電解液を用いたものにおいては80℃以上100℃以下がより好ましい。80℃以上であれば、蓄電デバイス10で想定される使用温度域(60℃以下)では電流を遮断しない。また、120℃以下であれば、活物質や固体電解質の変質などが始まる前に電流を抑制でき、100℃以下であれば、非水系電解液の分解などが始まる前に電流を抑制できるからである。なお、抵抗値の立ち上がり温度とは、1cm2あたり5Ω/℃以上の変化率で抵抗値が上昇し始める温度をいう。抵抗上昇部50は、20℃での抵抗値が低いほど好ましく、1cm2あたり3Ω以下であることが好ましく、1cm2あたり1Ω以下がより好ましい。内部短絡が生じていないときのエネルギーの損失が小さいからである。また、抵抗上昇部50は、抵抗値が1cm2あたり50Ω以上となる温度が、120℃以下であることが好ましく、100℃以下がより好ましい。内部短絡が生じてから比較的早期に電流を抑制できるからである。また、抵抗上昇部50は、抵抗値が1cm2あたり10Ω以上となる温度が、90℃以上であることが好ましく、100℃以上がより好ましい。内部短絡が生じていないときのエネルギーの損失が少ないからである。
抵抗上昇部50は、ポリマーPTCとしてもよいし、セラミックPTCとしてもよい。ポリマーPTCは、ポリマーに導電性粒子を分散させたものであり、高温になると、ポリマーの膨張や変形などによって導電性粉末の接触が断たれ電気抵抗が増加する。ポリマーは、非導電性であればよく、熱可塑性であることが好ましく、例えば、ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体(EVA)、ポリビニルクロライド、ポリビニリデンクロライド、ポリビニルフルオライド、ポリビニリデンフルオライド、ポリアミド、ポリスチレン、ポリアクリロニトリル、熱可塑性エラストマー、ポリエチレンオキサイド、ポリアセタール、熱可塑性変性セルロース、ポリスルホン、ポリメチル(メタ)アクリレートなどを用いることができる。導電性粒子としては、黒鉛、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどの炭素粒子、ニッケル粒子等の金属粒子、WC、B4C、ZrC、NbC,MoC、TiC、TaCなどの金属炭化物、TiN、ZrN、TaNなどの金属窒化物、WSi2、MoSi2などの金属ケイ化物などが挙げられる。セラミックPTCは、チタン酸バリウムに希土類元素やMn、Srなどの添加物を加えたものであり、チタン酸バリウムのキュリー温度付近で急激に電気抵抗が増大する。抵抗上昇部50は、比較的薄く形成できるという観点から、ポリマーに導電性粒子を分散させたシート状のポリマーPTCであることが好ましい。抵抗上昇部50は、自動車用途などの大電流で用いる用途に用いる場合には、セラミックPTCが好ましい。大電流で用いる場合、抵抗上昇部50におけるIRドロップが大きくなるが、これを抑制するには、蓄電デバイス10の通常の使用温度域での抵抗値をより小さくすることが望まれる。セラミックPTCでは、そうした使用温度域での抵抗値をより小さくできる。
抵抗上昇部50は、正極タブ36や負極タブ46と電子的に接続していればよく、正極タブ36や負極タブ46と接合されていてもよいし、正極タブ36同士の間や負極タブ46同士の間に形成されていてもよい。接合の方法は、例えば超音波溶接などの超音波接合が挙げられる。超音波接合は、超音波による振動を接合対象に印加して接合する方法である。形成の方法は、例えば、抵抗上昇部の原料を正極タブ36や負極タブ46に塗布し、必要に応じて加熱処理などを行う方法などが挙げられる。
抵抗上昇部50は、正極タブ36及び負極タブ46のうちアルミニウムで形成された集電部に配設されていることが好ましい。アルミニウムで形成された集電部では、内部短絡が生じた時の集電部の発熱が大きくなる傾向にあり、内部短絡が生じてから比較的早期に抵抗上昇部の電流抑制機能を発揮させることができるからである。あるいは、抵抗上昇部50は、正極タブ36及び負極タブ46のうち銅で形成された集電部に配設されていることが好ましい。銅で形成された集電部では、通常使用時の集電部での抵抗が小さく、エネルギーの損失がより小さいからである。
抵抗上昇部50の厚さは、正極タブ36同士や負極タブ46同士の間隔が、正極集電体32同士や負極タブ42同士の間隔以下となるようにすることが好ましく、例えば0.1μm以上500μm以下が好ましく、1μm以上100μm以下がより好ましい。抵抗上昇部50の面積は、正極タブ36や負極タブ46に配設できる面積であればよい。例えば、自動車用途などの大電流で使用する用途においては、抵抗上昇部50におけるIRドロップを抑制するために、すなわち蓄電デバイス10の通常の使用温度域での抵抗値をより小さくするために、抵抗上昇部50の面積は10cm2以上が好ましく、1000cm2以上がより好ましい。なお、各抵抗上昇部50は、それ自体の面積が抵抗上昇部50の投影面積と同面積の部材としてもよいが、各正極タブ36や各負極タブ46の構成に応じて、抵抗上昇部50の投影面積よりも面積が大きい部材を折り畳んだりロール状に捲回したりしたものとしてもよい。
イオン伝導媒体22は、例えば、支持塩(支持電解質)と有機溶媒とを含む非水系電解液としてもよい。支持塩としては、例えば、キャリアをリチウムイオンとした場合、公知のリチウム塩を含むものとしてもよい。このリチウム塩としては、例えば、LiPF6,LiBF4、LiClO4,LiAsF6,Li(CF3SO22N ,LiN(C25SO22などが挙げられ、このうちLiPF6やLiBF4などが好ましい。この支持塩は、非水電解液中の濃度が0.1mol/L以上5mol/L以下であることが好ましく、0.5mol/L以上2mol/L以下であることがより好ましい。支持塩を溶解する濃度が0.1mol/L以上では、十分な電流密度を得ることができ、5mol/L以下では、電解液をより安定させることができる。また、この非水電解液には、リン系、ハロゲン系などの難燃剤を添加してもよい。有機溶媒としては、例えば、非プロトン性の有機溶媒を用いることができる。このような有機溶媒としては、例えば環状カーボネート、鎖状カーボネート、環状エステル、環状エーテル、鎖状エーテル等が挙げられる。環状カーボネートとしては、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等がある。鎖状カーボネートとしては、例えばジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等がある。環状エステルカーボネートとしては、例えばガンマブチロラクトン、ガンマバレロラクトン等がある。環状エーテルとしては、例えばテトラヒドロフラン、2−メチルテトラヒドロフラン等がある。鎖状エーテルとしては、例えばジメトキシエタン、エチレングリコールジメチルエーテル等がある。これらは単独で用いてもよいし、複数を混合して用いてもよい。また、非水系電解液としては、そのほかにアセトニトリル、プロピルニトリルなどのニトリル系溶媒やイオン液体、ゲル電解質などを用いてもよい。
また、イオン伝導媒体22は、固体電解質であるものとしてもよい。固体電解質としては、例えば、無機固体電解質や、高分子固体電解質などが挙げられる。固体電解質は、以下の組成や構造に限定されるものではなくLiイオンが移動可能であるものであればよい。以下に例示する化合物を基本骨格とするものであれば、一部置換体や組成比が異なっても使用可能である。無機固体電解質としては、例えば、Li3N、LISICONと呼ばれるLi14Zn(GeO44、硫化物のLi3.25Ge0.250.754、ペロブスカイト型のLa0.5Li0.5TiO3、(La2/3Li3x1/3-2x)TiO3(□:原子空孔)、ガーネット型のLi7La3Zr212、NASICON型と呼ばれるLiTi2(PO43、Li1.30.3Ti1.7(PO34(M=Sc,Al)、ガラスセラミックスである80Li2S・20P25(mol%)組成のガラスから得られたLi7311、さらに硫化物系で高い導電率を持つ物質であるLi10Ge2PS2、ガラス系無機固体電解質ではLi2S−SiS2、Li2S−SiS2−LiI、Li2S−SiS2−Li3PO4、Li2S−SiS2− Li4SiO4、Li2S−P25、Li3PO4−Li4SiO4、Li3BO4−Li4SiO4、そしてSiO2、GeO2、B23、P25をガラス系物質としてLi2Oを網目修飾物質とするものなどが挙げられ、チオリシコン固体電解質としてLi2S−GeS2系、Li2S−GeS2−ZnS系、Li2S−Ga22系、Li2S−GeS2−Ga23系、Li2S−GeS2−P25系、Li2S−GeS2−SbS5系、Li2S−GeS2−Al23系、Li2S−SiS2系、Li2S−P25系、Li2S−Al23系、LiS−SiS2−Al23系、Li2S−SiS2−P25系などが挙げられる。
セパレータ24は、蓄電デバイス10の使用範囲に耐えうる組成であればよく、例えば、ポリプロピレン製不織布やポリフェニレンスルフィド製不織布などの高分子不織布、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の微多孔フィルムが挙げられる。これらは単独で用いてもよいし、複合して用いてもよい。
蓄電デバイス10の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、こうした蓄電デバイス10を複数直列に接続して電気自動車等に用いる大型のものなどに適用してもよい。
次に、この蓄電デバイス10に内部短絡が起きた場合について説明する。図3は、二次電池10の内部短絡時の一例を示す模式図である。蓄電デバイス10では、何らかの原因で、内部短絡部60が生じた場合には(図3上図参照)、短絡経路に含まれるすべての正負極間で電気化学反応が起こり、電子e-を生じる。単セル20が並列接続された蓄電デバイス10では、正極体30の正極タブ36同士が接続する正極接続部38や負極体40の負極タブ46同士が接続した負極接続部48を通って電気化学反応で生じた電子e-が流れる。正負極接続部38,48を構成する正極タブ36や負極タブ46は、接触界面や接合の影響によって若干抵抗が大きいこと、寸法が小さく活物質層が形成されていないことなどによって熱容量が小さいこと、各電極体30,40から集まった全ての電流が集中することなどにより、内部短絡が発生した場合には非常に早く昇温する。こうした正極タブ36同士の間や負極タブ46同士の間に抵抗上昇部50を介在させると、内部短絡が生じてから比較的早期に、温度上昇に伴って抵抗上昇部50の抵抗が上昇し、内部短絡部60に流れる電流が抑制される(図3下図参照)。こうして、蓄電デバイス10では、内部短絡部60を電子的に切り離し、蓄電デバイス10の発熱を抑制することができ、外部からの制御が困難な内部短絡が生じた場合においても、安全性をより高めることができる。
以上詳述した蓄電デバイス10では、内部短絡が生じた場合に発熱をより抑制できる。一般的に蓄電デバイスにおいて、事前の発見が難しいのが内部短絡であるが、この蓄電デバイス10では、内部短絡が開始してから比較的早期に高温になる正極タブ36同士の間や負極タブ46同士の間に抵抗上昇部50が配設されている。このため、内部短絡が開始してから比較的早期に抵抗上昇部50の抵抗が上昇し、内部短絡部60への電流が抑制される。こうした電流抑制機構が組み込まれているため、蓄電デバイス10では、内部短絡が生じた場合に発熱をより抑制し、安全性をより高めることができる。また、抵抗上昇部50を正極タブ36や負極タブ46の間にのみ配設すればよいため、抵抗上昇部50の寸法を、正極タブ36や負極タブ46と同程度以下と小さくすることができる。このため、エネルギーを蓄えることのできないPTCサーミスタを集電体と活物質層との間全面に配設するものなどに比して、エネルギー密度を向上し、コストを低減できる。
また、実施形態の蓄電デバイス10では、正極タブ36及び負極タブ46の両方に抵抗上昇部を配設しているため、図4,5のようにどちらか一方のみに抵抗上昇部を配設した場合よりも発熱をより抑制できる。
なお、本開示は上述した実施形態に何ら限定されることはなく、本開示の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
例えば、上述した実施形態では、シート状の正極体及び負極体を備えた枚葉積層型の電池として構成されているものとしたが、単セルが並列的に接続されるものであれば、これに限定されない。例えば、正極体や負極体は、棒状の集電体の表面に活物質層が形成された本体部と、棒状の集電部を備えた棒状の電極体としてもよい。棒状の場合、その断面は、円や楕円のほか、三角形や四角形、六角形などの多角形としてもよい。この場合、集電体や集電部は、中実棒のほか、多孔質体、発泡体、繊維群の形成体などしてもよい。
上述した実施形態では、正極集電部及び負極集電部の両方に抵抗上昇部を配設したが、どちらか一方に配設すればよい。両方に配設した場合よりも、発熱の抑制機能は若干劣るものの、抵抗上昇部を一部省略できるため、その分だけ、エネルギー密度の向上や、コストの低減が期待できる。抵抗上昇部が配設されなかった集電部同士は、抵抗上昇部を介さずに電子的に接続していればよい。接続方法は特に限定されないが、超音波溶接などの超音波接合によって両者を接合することが好ましい。また、上述した実施形態では、正極集電部同士の間及び負極集電部同士の間の全てに抵抗上昇部を配設したが、正極集電部同士の間の一部や、負極集電部同士の間の一部に抵抗上昇部を配設してもよい。
上述した実施形態では、図1において、正極体及び負極体を各々5つずつ備えているものとしたが、正極体及び負極体のうちの一方を1つ以上、他方を2つ以上備えていればよい。こうすれば、単セルを2つ以上備えたものとなるため、同極同士を接続することで、単セルが並列接続された構造とすることができる。
[実施例]
以下には、本開示の蓄電デバイスを具体的に作製した例について、実施例として説明する。なお、本開示は、以下の実施例に何ら限定されることはなく、本開示の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
[実施例1]
(電池の作製)
厚み15μmのアルミニウム集電箔に、一般的なリチウムイオン二次電池用の正極合材を塗工して、正極体を作製した。また、厚み10μmの銅集電箔に、一般的なリチウムイオン二次電池用の負極合材を塗工して、負極体を作製した。各電極とも、合材塗工面は50×80mmで両面塗工とし、合材が塗工されていない集電箔表面が露出した部分であるタブ部を20×20mmとした。電極1枚あたりの集電箔込みの厚さは、正極が200μm、負極が150μmであった。
正極と負極とをセパレータ(厚さ約15μm)を介して交互に積層し、正極タブ(セパレータ無)同士を超音波溶接機で接合し、負極タブ部(セパレータ無)同士を超音波溶接機で接合した。いずれのタブの接合も、タブとタブの間に18×18mmで厚み約300μmのPTCサーミスタを挟みいれて、PTCサーミスタを介してのみ接合するようにした。PTCサーミスタは、絶縁性ポリマーと導電性カーボンとを混合した大東通信(株)製のポリセーフティーDXE010を用いた。図6に実施例1で用いたPTCサーミスタの1cm2あたりの温度−抵抗値曲線を示した。その後、図示しないアルミラミネートフィルムの袋に挿入し、電解液注液後に封止して、図1に示すように、PTCサーミスタを正極タブ及び負極タブの両方に配設した、実施例1の電池を作製した。なお、この電池の放電容量は約3.0Ahであった。
[実施例2,3]
図4に示すように、PTCサーミスタを正極タブのみに配設した以外は実施例1と同様に実施例2の電池を作製した。また、図5に示すように、PTCサーミスタを負極タブのみに配設した以外は実施例1と同様に実施例3の電池を作製した。
[比較例1,2]
PTCサーミスタを正極タブ、負極タブのいずれにも配設しなかった以外は実施例1と同様に比較例1,2の電池を作製した。
(釘刺し試験)
電池を4.1Vに満充電後(比較例2は満充電後ではなく3.4Vに充電後)、図8のX部に釘(φ2mm)を0.5mm刺し込み、内部短絡状態を保持した。そして、内部短絡部近傍のX部、電極左端のA部、正極タブ部のB部、負極タブ部のC部に熱電対を貼付し、各部の温度を測定した。また、電池の外観状態を観察した。なお、釘刺し深さ0.5mmは、図1の一番上の単セル20だけが内部短絡する程度の深さである。
(結果)
表1に、各電池の釘刺し時における各部の最高到達温度を示した。最高到達温度は、正負極タブのいずれにもPTCサーミスタを配設しない従来の枚葉積層型電池である比較例1,2では、内部短絡部である釘部の次に正極タブの昇温が顕著であり480℃以上の高温となった。また、負極タブでも電極左端よりも昇温が顕著であり280℃以上の高温となった。これに対して、正負極タブの両方又は一方にPTCサーミスタを配設した実施例1〜3では、正極タブが140℃以下、負極タブが125℃以下であった。これは、内部短絡してから比較的早期に高温となるタブに配設されたPTCサーミスタによって、タブ同士の間を流れる電流が抑制され、内部短絡部への電子の供給が抑制され、内部短絡部のジュール発熱をより抑制できたためと推察された。特に、正極タブにPTCサーミスタを配設した実施例1,2では、負極タブのみにPTCサーミスタを配設した実施例3よりも、全体的に温度上昇が小さかった。これは、アルミニウム製の正極タブの方が、銅製の負極タブよりも、内部短絡が生じてからより早期に高温になり、PTCサーミスタの抵抗が上昇して若干発熱するためと推察された。タブが比較的早期に高温になる点や、アルミニウム製のタブの方が銅製のタブよりも早期に高温になる点は、集電箔やタブの電子抵抗、熱容量、熱伝達速度などに基づいてシミュレーションした結果ともよく一致した。正負極タブの両方にPTCサーミスタを配設した実施例1と、正極タブのみにPTCサーミスタを配設した実施例2とを比較すると、負極タブは実施例1が高温で、釘部と電極左端は実施例2が高温であった。これは、実施例1では負極タブに配設されたPTCサーミスタの抵抗が内部短絡による発熱で僅かに上昇したことに起因すると推察された。すなわち、PTCサーミスタの抵抗上昇によってPTCサーミスタに隣接する負極タブの温度が上昇する一方、内部短絡部への電子供給量の減少によって釘部周辺でのジュール発熱が減少し釘部や電極左端での温度上昇が抑制されたためと推察された。
以上より、本開示の蓄電デバイスでは、内部短絡が生じた場合に発熱をより抑制できることがわかった。
本開示は、電池産業の分野などに利用可能である。
10 蓄電デバイス、20 単セル、22 非水系電解液、24 セパレータ、30 正極体、32 正極集電体、34 正極活物質層、35 正極本体部、36 正極タブ、38 正極接続部、40 負極体、42 負極集電体、44 負極活物質層、45 負極本体部、46 負極タブ、48 負極接続部、50 抵抗上昇部、60 短絡部位。

Claims (10)

  1. 正極集電体の表面に正極活物質層が形成された正極本体部と、正極集電部と、を有する正極体と、
    負極集電体の表面に負極活物質層が形成された負極本体部と、負極集電部と、を有する負極体と、
    を備え、
    1対の前記正極体及び前記負極体と、該1対の前記正極体及び前記負極体の間に介在するイオン伝導媒体と、で形成された単セルが並列接続され、
    前記正極集電部同士及び前記負極集電部同士のうちの少なくとも一方が、温度上昇に伴い電気抵抗が上昇する抵抗上昇部を介して接続されている、
    蓄電デバイス。
  2. 前記抵抗上昇部は、PTCサーミスタである、
    請求項1に記載の蓄電デバイス。
  3. 前記抵抗上昇部は、抵抗値の立ち上がり温度が、80℃以上120℃以下である、
    請求項1又は2に記載の蓄電デバイス。
  4. 前記抵抗上昇部は、20℃での抵抗値が1cm2あたり3Ω以下である。
    請求項1〜3のいずれか1項に記載の蓄電デバイス。
  5. (a)前記正極体はシート状の部材であり、前記正極集電部の投影面積PT(m2)の前記正極本体部の投影面積PM(m2)に対する割合であるPT/PMの値が、1/5以下であるか、
    (b)前記負極体はシート状の部材であり、前記負極集電部の投影面積NT(m2)の前記負極本体部の投影面積NM(m2)に対する割合であるNT/NMの値が、1/5以下であるか、
    のうちの少なくとも一方を満たす、請求項1〜4のいずれか1項に記載の蓄電デバイス。
  6. (a)前記正極集電部の投影面積PTは0.4cm2以上3000cm2以下であるか、
    (b)前記負極集電部の投影面積NTは0.4cm22以上3000cm2以下であるか、
    のうちの少なくとも一方を満たす、請求項1〜5のいずれか1項に記載の蓄電デバイス。
  7. 前記正極集電部がアルミニウムで形成され、該正極集電部同士が、前記抵抗上昇部を介して接続されている、
    請求項1〜6のいずれか1項に記載の蓄電デバイス。
  8. 前記負極集電部が銅で形成され、該負極集電部同士が、前記抵抗上昇部を介して接続されている、
    請求項1〜7のいずれか1項に記載の蓄電デバイス。
  9. 前記正極集電部同士及び前記負極集電部同士の両方が、前記抵抗上昇部を介して接続されている、
    請求項1〜8のいずれか1項に記載の蓄電デバイス。
  10. 前記正極集電部同士及び前記負極集電部同士のうちの一方が、前記抵抗上昇部を介して接続されている、
    請求項1〜8のいずれか1項に記載の蓄電デバイス。
JP2018022820A 2018-02-13 2018-02-13 蓄電デバイス Active JP6885353B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018022820A JP6885353B2 (ja) 2018-02-13 2018-02-13 蓄電デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018022820A JP6885353B2 (ja) 2018-02-13 2018-02-13 蓄電デバイス

Publications (2)

Publication Number Publication Date
JP2019139982A true JP2019139982A (ja) 2019-08-22
JP6885353B2 JP6885353B2 (ja) 2021-06-16

Family

ID=67694258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018022820A Active JP6885353B2 (ja) 2018-02-13 2018-02-13 蓄電デバイス

Country Status (1)

Country Link
JP (1) JP6885353B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112687831A (zh) * 2020-12-24 2021-04-20 宁德新能源科技有限公司 电极组件及二次电池
JP2021136115A (ja) * 2020-02-26 2021-09-13 トヨタ自動車株式会社 バイポーラ電池及びバイポーラ電池スタック
WO2022097400A1 (ja) * 2020-11-06 2022-05-12 株式会社Gsユアサ 蓄電素子用正極活物質、蓄電素子用正極、蓄電素子及び蓄電装置
JP7521335B2 (ja) 2020-08-31 2024-07-24 株式会社Gsユアサ 検出装置、検出方法及びコンピュータプログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197178A (ja) * 2001-12-25 2003-07-11 Mitsubishi Heavy Ind Ltd 二次電池
JP2004031255A (ja) * 2002-06-28 2004-01-29 Nissan Motor Co Ltd 組電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197178A (ja) * 2001-12-25 2003-07-11 Mitsubishi Heavy Ind Ltd 二次電池
JP2004031255A (ja) * 2002-06-28 2004-01-29 Nissan Motor Co Ltd 組電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021136115A (ja) * 2020-02-26 2021-09-13 トヨタ自動車株式会社 バイポーラ電池及びバイポーラ電池スタック
JP7196872B2 (ja) 2020-02-26 2022-12-27 トヨタ自動車株式会社 バイポーラ電池及びバイポーラ電池スタック
JP7521335B2 (ja) 2020-08-31 2024-07-24 株式会社Gsユアサ 検出装置、検出方法及びコンピュータプログラム
WO2022097400A1 (ja) * 2020-11-06 2022-05-12 株式会社Gsユアサ 蓄電素子用正極活物質、蓄電素子用正極、蓄電素子及び蓄電装置
CN112687831A (zh) * 2020-12-24 2021-04-20 宁德新能源科技有限公司 电极组件及二次电池
CN112687831B (zh) * 2020-12-24 2022-03-22 宁德新能源科技有限公司 电极组件及二次电池

Also Published As

Publication number Publication date
JP6885353B2 (ja) 2021-06-16

Similar Documents

Publication Publication Date Title
JP5264099B2 (ja) 非水電解質二次電池
WO2012042830A1 (ja) 非水電解質二次電池
JP2011210450A (ja) 電池用電極板および電池
JP2014127242A (ja) リチウム二次電池
JP6885353B2 (ja) 蓄電デバイス
JP2014199714A (ja) 非水電解質二次電池用負極およびその非水電解質二次電池
JPH10241665A (ja) 電極及びこれを用いた電池
JP5359444B2 (ja) リチウムイオン二次電池
KR20170047179A (ko) 비수전해질 이차전지용 양극 및 비수전해질 이차전지
JP2017174648A (ja) 蓄電デバイス
JP2017073328A (ja) 非水電解液二次電池
TW201640730A (zh) 二次電池
CN109565029B (zh) 制造二次电池的长寿命的电极的方法
JP6656370B2 (ja) リチウムイオン二次電池および組電池
JP2015002167A (ja) 二次電池
JP2015002169A (ja) 二次電池及び二次電池用の電極
JP6209844B2 (ja) 非水電池用電極およびその製造方法
JP2016225137A (ja) 蓄電素子
WO2019073595A1 (ja) リチウムイオン二次電池
JP2019075278A (ja) 積層構造体、リチウム二次電池及び積層構造体の製造方法
WO2012101693A1 (ja) リチウムイオン電池用負極集電体及びリチウムイオン電池
JP2014041732A (ja) 正極活物質及び二次電池
JP7237055B2 (ja) 非水電解質二次電池
JP5278487B2 (ja) 蓄電システム
JP3700683B2 (ja) 非水電解液二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210426

R150 Certificate of patent or registration of utility model

Ref document number: 6885353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150