JP2019108256A - 多層カーボンナノチューブおよび多層カーボンナノチューブの製造方法 - Google Patents

多層カーボンナノチューブおよび多層カーボンナノチューブの製造方法 Download PDF

Info

Publication number
JP2019108256A
JP2019108256A JP2017243686A JP2017243686A JP2019108256A JP 2019108256 A JP2019108256 A JP 2019108256A JP 2017243686 A JP2017243686 A JP 2017243686A JP 2017243686 A JP2017243686 A JP 2017243686A JP 2019108256 A JP2019108256 A JP 2019108256A
Authority
JP
Japan
Prior art keywords
walled carbon
carbon nanotube
resin
carbon nanotubes
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017243686A
Other languages
English (en)
Other versions
JP7052336B2 (ja
Inventor
雄 森田
Takeshi Morita
雄 森田
増田 幹
Miki Masuda
幹 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2017243686A priority Critical patent/JP7052336B2/ja
Priority to CN201880017332.7A priority patent/CN110418766B/zh
Priority to KR1020197027876A priority patent/KR102394357B1/ko
Priority to PCT/JP2018/009672 priority patent/WO2018168833A1/ja
Publication of JP2019108256A publication Critical patent/JP2019108256A/ja
Application granted granted Critical
Publication of JP7052336B2 publication Critical patent/JP7052336B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Abstract

【課題】本発明の課題は、漆黒性の高い樹脂組成物が得られる多層カーボンナノチューブおよび多層カーボンナノチューブの合成方法を提供することである。【解決手段】上記課題は、下記(1)、(2)および(3)の要件を満たすことを特徴とする多層カーボンナノチューブによって解決される。(1)多層カーボンナノチューブの平均外径が10nm以下であること(2)多層カーボンナノチューブの外径の標準偏差が4nm以下であること(3)粉末X線回折分析において、回折角2θ=25°±2°にピークが存在し、そのピークの半価幅が5°を超えて5.5 °以下であること【選択図】図1

Description

本発明は、多層カーボンナノチューブと多層カーボンナノチューブの製造方法に関する。さらに詳しくは、多層カーボンナノチューブ、多層カーボンナノチューブと樹脂を含む樹脂組成物およびその分散液、それを塗布した漆黒性に優れた塗膜に関する。
カーボンナノチューブは直径が数ナノメートルから数十ナノメートルの筒状炭素材料である。カーボンナノチューブは高い導電性及び機械的強度を有する。このためカーボンナノチューブは機能性材料として、電子工学及びエネルギー工学を含む幅広い分野への利用が期待されている。機能性材料の例は、燃料電池、電極、電磁波シールド材、導電性樹脂、電界放出ディスプレー(FED)用部材、水素を始めとする各種ガスの吸蔵材料等である。
一方、上記機能性材料の開発例として、カーボンナノチューブを色材として使用した例は少ない。色材にはカーボンナノチューブに代えてカーボンブラックが用いられる。例えば特許文献1及び2に示されるように、漆黒性の樹脂塗工物、フィルム、成形物を得るため、カーボンブラックが用いられる。カーボンブラックは樹脂溶液や固形樹脂に均一に分散させられる。
しかし、カーボンブラックからなる色材は、明度(L)が高い傾向にある(すなわち灰色・白)。また、色度(a、b)がプラス方向(+a:赤、+b:黄)となる。ここで、L、a及びbは、JIS Z8781−4で規定されるL表色系における値を表わす。このためカーボンブラックは、いわゆる「ピアノブラック」や「カラスの濡れ羽色」といった漆黒性を表現することが困難であった。
また、カーボンブラックを使用した成形物の色調は、カーボンブラックの一次粒子径に依存して変化する傾向にある。具体的には、一次粒子径が小さなカーボンブラックを使用すると、青味を呈する一方で黒度が低下する。このように、従来の黒色の色材では黒度と青味がトレードオフの関係にある。このため、青味があって、かつ黒度が高い色調、すなわち漆黒の色調を再現することは困難であった。
特許文献3、4及び5は、カーボンブラックからなる色材の黒度の調製に関する。黒度の調整に際しては、例えばカーボンブラックの粒径や凝集粒サイズ等のコロイダル特性を変更する。またオゾン酸化、硝酸酸化といった表面処理をカーボンブラックに施す。かかる処理により、分散体中での分散状態を制御する。
また、フタロシアニンブルー等の有機顔料をカーボンブラックに添加する方法も知られる。かかる方法により色材は黒色に加えて青味を呈することができる。しかし、色材中の有機顔料の添加に伴い黒度が低下する。このため、かかる色材を含む成形体を直射日光下で観察すると、成形体上に赤味が浮いて観察される。この問題は、いわゆるブロンズ現象の発生として認識されている。
特許文献6および7はこれらの課題を解決するために、カーボンナノチューブの積層体を検討している。しかし、これらの手段においてはカーボンナノチューブを含む樹脂組成物の光沢が得られるように、層形成する必要があった。また、特許文献8では、漆黒性顔料としてのカーボンナノチューブも検討されているが、外径が大きく、塗膜にした際の漆黒性が不十分であった。さらに、外径の小さい単層カーボンナノチューブや二層カーボンナノチューブ等の開発が進められているが、分散が難しく、十分な漆黒感を出すことが困難であった。
また、特許文献9は、触媒を微細化することにより、カーボンナノチューブ合成時の絡み合いを抑制することで、カーボンナノチューブ凝集体構造内部の空隙を広げ、樹脂への分散性に優れたカーボンナノチューブを製造しているが、外径の小さなカーボンナノチューブを効率良く得ることはできなかった。
特開2001−179176号公報 特開2004−098033号公報 特開平6−122834号公報 特開平6−136287号公報 特開2008−285632号公報 特開2016−13680号公報 特開2016−22664号公報 特開2015−229706号公報 特開2008−173608号公報
本発明が解決しようとする課題は、上記従来の問題を解決するためのものであり、漆黒性の高い樹脂組成物が得られる多層カーボンナノチューブおよび多層カーボンナノチューブの合成方法を提供することである。
本発明者らは、鋭意研究の結果、特定の多層カーボンナノチューブによって上記課題が解決できることを見出した。
すなわち、本発明は、下記(1)、(2)および(3)の要件を満たすことを特徴とする多層カーボンナノチューブに関する。
(1)多層カーボンナノチューブの平均外径が10nm以下であること
(2)多層カーボンナノチューブの外径の標準偏差が4nm以下であること
(3)粉末X線回折分析において、回折角2θ=25°±2°にピークが存在し、そのピークの半価幅が5°を超えて5.5 °以下であること
また、本発明は、多層カーボンナノチューブの平均外径をX、多層カーボンナノチューブの外径の標準偏差をσとした際に、X±2σが、2.5nm≦X±2σ≦15.5nmを満たすことを特徴とする前記多層カーボンナノチューブに関する。
また、本発明は、以下の工程を含んでなる前記多層カーボンナノチューブの製造方法に関する。
(1)コバルトと、マグネシウムを含む金属塩とを混合および粉砕した後に焼成し、カーボンナノチューブ合成用触媒を得る工程
(2)触媒1g当たりの多層カーボンナノチューブの生成量をY(g)、触媒と炭化水素の接触反応時間をZ(分)とした際に、Y/Z(g/分)が、1.5 ≦Y/Z≦2.7を満たすように触媒量および/または炭化水素の流量を調節して多層カーボンナノチューブを得る工程
また、本発明は、炭化水素としてエチレンを使用することを特徴とする請求項3記載の多層カーボンナノチューブの製造方法に関する。
また、本発明は、前記多層カーボンナノチューブと樹脂とを含有してなる樹脂組成物に関する。
また、本発明は、前記樹脂組成物より形成された塗膜に関する。
本発明の多層カーボンナノチューブを使用することにより、漆黒性に優れた樹脂組成物が得られる。よって、高い漆黒性が求められる様々な用途において、本発明の多層カーボンナノチューブおよび多層カーボンナノチューブの製造方法を使用することが可能である。
図1は、実施例2で得られた多層カーボンナノチューブについて、透過型電子顕微鏡を用いて、任意に300本のカーボンナノチューブを観察した際の多層カーボンナノチューブの外径と本数の関係を示すグラフである。 図2は、実施例3で得られた多層カーボンナノチューブについて、透過型電子顕微鏡を用いて、任意に300本のカーボンナノチューブを観察した際の多層カーボンナノチューブの外径と本数の関係を示すグラフである。
以下、本発明の多層カーボンナノチューブ、樹脂組成物およびその塗膜について詳しく説明する。
(1)多層カーボンナノチューブ(A)
多層カーボンナノチューブ(A)は、平面的なグラファイトを円筒状に巻いた形状を有している。多層カーボンナノチューブ(A)は単層カーボンナノチューブが混在するものであってもよい。単層カーボンナノチューブは一層のグラファイトが巻かれた構造を有する。多層カーボンナノチューブ(A)は、二又は三以上の層のグラファイトが巻かれた構造を有する。また、多層カーボンナノチューブ(A)の側壁はグラファイト構造でなくともよい。例えば、アモルファス構造を有する側壁を備えるカーボンナノチューブを多層カーボンナノチューブ(A)として用いることもできる。
多層カーボンナノチューブ(A)の形状は限定されない。かかる形状としては、針状、円筒チューブ状、魚骨状(フィッシュボーン又はカップ積層型)、トランプ状(プレートレット)及びコイル状を含む様々な形態が挙げられる。多層カーボンナノチューブ(A)の形態の具体例としては、例えばグラファイトウィスカー、フィラメンタスカーボン、グラファイトファイバー、極細炭素チューブ、カーボンチューブ、カーボンフィブリル、カーボンマイクロチューブ及びカーボンナノファイバーを挙げることができるが、これらに限定されない。多層カーボンナノチューブ(A)は、これらの単独の形態又は二種以上を組み合わせられた形態を有していてもよい。
本実施形態において、多層カーボンナノチューブ(A)の形態は、魚骨状(フィッシュボーン又はカップ積層型)、トランプ状(プレートレット)及びコイル状以外の形態であることが好ましい。
本実施形態の多層カーボンナノチューブ(A)はどのような方法で製造したカーボンナノチューブでも構わない。多層カーボンナノチューブ(A)は一般にレーザーアブレーション法、アーク放電法、熱CVD法、プラズマCVD法及び燃焼法で製造できるが、これらに限定されない。例えば、酸素濃度が1体積%以下の雰囲気中、500〜1000℃にて、炭素源を触媒と接触反応させることで多層カーボンナノチューブ(A)を製造することができる。炭素源は炭化水素及びアルコールの少なくともいずれか一方でもよい。
多層カーボンナノチューブ(A)の炭素源となる原料ガスは、従来公知の任意のものを使用できる。例えば、炭素を含む原料ガスとしてメタン、エチレン、プロパン、ブタン及びアセチレンに代表される炭化水素、一酸化炭素、並びにアルコールを用いることができる。特に、炭化水素としてエチレンを用いることが好ましい。
多層カーボンナノチューブ(A)の炭素源として、エチレンを用いた場合、酸素濃度が1体積%以下の雰囲気中、600〜800℃にて、炭素源を触媒と接触反応させることで多層カーボンナノチューブ(A)を製造することが好ましく、650〜750℃にて炭素源を触媒と接触反応させることで多層カーボンナノチューブ(A)を製造することがさらに好ましい。
炭化水素の量は反応容器の大きさや反応容器内の触媒量に応じて適宜変更すればよいが、触媒1g当たりのカーボンナノチューブの生成量をY(g)、触媒と炭化水素の接触反応時間をZ(分)とした際に、Y/Z(g/分)が、1.5 ≦Y/Z≦2.7を満たすように触媒量および/または炭化水素の流量を調節することが好ましい。
必要に応じて、触媒を還元性ガス雰囲気下で活性化した後、酸素濃度1体積%以下の雰囲気中、原料ガスと触媒とを接触反応させることが好ましい。また還元性ガスと共に、原料ガスを触媒と接触反応させてもよい。酸素濃度1体積%以下の雰囲気は特に制限されないが、アルゴンガスのような希ガス及び窒素ガスに代表される不活性ガスの雰囲気が好ましい。触媒の活性化に使用する還元性ガスとしては、水素又はアンモニアを用いることができるが、これらに限定されない。還元性ガスとしては特に水素が好ましい。
触媒としては、従来公知の様々な金属を使用することができる。具体的には、コバルト、ニッケル又は鉄に代表される活性成分と、マグネシウム、アルミニウム又は珪素に代表される担持成分となる金属とを混合および/または粉砕することで得られる金属酸化物である。特に、活性成分としてコバルト、担持成分としてマグネシウムを含む金属とを混合および/または粉砕することで得られる金属酸化物が好ましい。活性成分としてコバルト、担持成分としてマグネシウムを使用することで、平均外径が10nm以下、外径の標準偏差が4nm以下、粉末X線回折分析において、回折角2θ=25°±2°にピークが存在し、そのピークの半価幅が5°を超えて5.5 °以下の多層カーボンナノチューブが得られやすい。
活性成分として、具体的には、クエン酸鉄(III)アンモニウム、硫酸アンモニウム鉄(II)六水和物、塩化鉄(III)六水和物、塩化鉄(II)四水和物、クエン酸鉄(III)n水和物、硝酸鉄(III)九水和物、シュウ酸鉄(II)二水和物、酸化鉄(III)、水酸化コバルト、酢酸コバルト(II)四水和物、塩基性炭酸コバルト(II)、塩化コバルト(II)、塩化コバルト(II)六水和物、硝酸コバルト(II)六水和物、酸化コバルト(II)、酸化コバルト(II, III)、ステアリン酸コバルト(II)、硫酸コバルト(II)七水和物、硫化コバルト(II)、酢酸コバルト(II)、硫酸ニッケル(II)アンモニウム六水和物、酢酸ニッケル(II)四水和物、塩化ニッケル(II)、塩化ニッケル(II)六水和物、水酸化ニッケル(II)、硝酸ニッケル(II)六水和物、酸化ニッケル(II)、硫酸ニッケル(II)六水和物等が挙げられる。特に好ましいのは、水酸化コバルト、酢酸コバルト(II)四水和物、クエン酸鉄(III)n水和物、硝酸鉄(III)九水和物である。これらの活性成分は2種以上を組み合わせてもよい。
担持成分として、具体的には、マグネシウム、塩化マグネシウム、水酸化マグネシウム、酸化マグネシウム、硫酸マグネシウム、酢酸マグネシウム四水和物、塩基性炭酸マグネシウム、塩化マグネシウム六水和物、酸化珪素、アルミニウム、塩基性酢酸アルミニウム、臭化アルミニウム、塩化アルミニウム、水酸化アルミニウム、乳酸アルミニウム、酸化アルミニウム、ゼオライト等が挙げられる。これらの担持成分は2種以上を組み合わせてもよい。
触媒として、モリブデンやマンガンに代表される助触媒成分を含むことが好ましい。具体的には、酢酸マンガン(II)四水和物、炭酸マンガン(II) n水和物、塩化マンガン(II)四水和物、硝酸マンガン(II)六水和物、酸化マンガン(IV)、硫酸マンガン(II)五水和物、モリブデン酸アンモニウム、モリブデン、モリブデン酸カリウム、七モリブデン酸六アンモニウム四水和物、塩化モリブデン(V)、酸化モリブデン(VI)、硫化モリブデン(IV)、タングステン酸アンモニウムパラ五水和物、タングステン酸カリウム、タングステン(VI)酸ナトリウム二水和物、タングステン、酸化タングステン(VI)などが挙げられる。
触媒は活性成分と担持成分と助触媒成分とを均一に混合および/または粉砕して作製されることが好ましい。混合および/または粉砕の方法としては、従来公知の様々な方法を使用することができる。混合および/または粉砕の装置としては、例えば、ヘンシェルミキサー、スーパーミキサー、ナウタミキサー、トリミックス、ハイスピードミキサー、乳鉢、ピンミル、ハンマーミル、パルペライザー、アトライター、ジェットミル、カッターミル、ボールミル、ビーズミル、コロイドミル、コニカルミル、ディスクミル、エッジミル、ワンダークラッシャー、振動ミル、超音波ホモジナイザー等を使用することができる。特に好ましくは、触媒粒子の複合化、メカニカルアロイングおよびアモルファス化が進みやすいアトライター、ピンミル、ハンマーミル、ジェットミル、カッターミル、ボールミル、ビーズミル、ワンダークラッシャー、振動ミルである。
触媒は活性成分と担持成分と助触媒成分となる金属塩を混合および粉砕した後、空気中で焼成し、酸化物とされることが好ましい。
焼成温度は焼成時の酸素濃度によっても異なるが、酸素存在下、300〜900℃であることが好ましく、300〜750℃であることがより好ましい。
触媒は焼成後、固形物を粉砕し粒子径D50を50μm以下にすることが好ましい。固形物を粉砕し、粒子径を揃えることによって、均質な触媒が得られる。
多層カーボンナノチューブ(A)の平均外径は、10nm以下であり、分散の容易さや色相の観点から、3〜10nmであることが好ましく、3〜8nmであることがさらに好ましく、外径の標準偏差は4nm以下であり、3nm以下であることが好ましく、2.5nm以下であることがより好ましい。またカーボンナノチューブの平均外径をX[nm]、 カーボンナノチューブの外径の標準偏差をσ[nm]とした時に、X±2σ[nm]が、2.5nm≦X±2σ≦15.5nmであることが好ましく、3.0nm≦X±2σ≦12.0nmであることがさらに好ましい。
多層カーボンナノチューブ(A)の外径および平均外径は次のように求められる。まず透過型電子顕微鏡によって、多層カーボンナノチューブ(A)を観測するとともに撮像する。次に観測写真において、任意の300本の多層カーボンナノチューブ(A)を選び、それぞれの外径を計測する。次に外径の数平均として多層カーボンナノチューブ(A)の平均外径(nm)を算出する。
多層カーボンナノチューブ(A)の繊維長は、分散の容易さの観点及び色相の観点から、0.1〜150μmが好ましく、1〜10μmがより好ましい。
多層カーボンナノチューブ(A)の炭素純度は多層カーボンナノチューブ(A)中の炭素原子の含有率(質量%)で表される。炭素純度は多層カーボンナノチューブ(A)100質量%に対して、85質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましい。
本実施形態では、多層カーボンナノチューブ(A)は、通常二次粒子として存在している。この二次粒子の形状は、例えば一般的な一次粒子である多層カーボンナノチューブ(A)が複雑に絡み合っている状態でもよい。多層カーボンナノチューブ(A)を直線状にしたものの集合体であってもよい。直線状の多層カーボンナノチューブ(A)の集合体である二次粒子は、絡み合っているものと比べるとほぐれ易い。また直線状のものは、絡み合っているものに比べると分散性が良いので多層カーボンナノチューブ(A)として好適に利用できる。
多層カーボンナノチューブ(A)は、表面処理を行ったカーボンナノチューブでもよい。また多層カーボンナノチューブ(A)は、カルボキシル基に代表される官能基を付与させたカーボンナノチューブ誘導体であってもよい。また、有機化合物、金属原子、又はフラーレンに代表される物質を内包させた多層カーボンナノナノチューブ(A)も用いることができる。
多層カーボンナノチューブ(A)は比較的層数の少ないカーボンナノチューブであることが好ましい。特に粉末X線回折分析を行った時に回折角2θ=25°±2°にピークが存在し、そのピークの半価幅が5〜5.5°の範囲である。多層カーボンナノチューブ(A)の層構成は下記方法で粉末X線回折分析することにより解析することができる。
多層カーボンナノチューブ(A)の半価幅は次のように求められる。まず、多層カーボンナノチューブ(A)を所定のサンプルホルダーに表面が平らになるように詰め、粉末X線回折分析装置にセットし、5°から80°までX線源の照射角度を変化させ測定する。X線源としては例えばCuKα線が用いられる。ステップ幅は0.010°、計測時間は1.0秒である。その時にピークが現れる回折角2θを読み取ることで多層カーボンナノチューブ(A)の評価が可能である。グラファイトでは通常2θが26°付近にピークが検出され、これが層間回折によるピークであることが知られている。多層カーボンナノチューブ(A)もグラファイト構造を有するため、この付近にグラファイト層間回折によるピークが検出される。ただし、カーボンナノチューブは円筒構造であるために、その値はグラファイトとは異なってくる。その値2θが25°±2°の位置にピークが出現することで単層ではなく、多層構造を有している組成物を含んでいることが判断できる。この位置に出現するピークは多層構造の層間回折によるピークであるため、多層カーボンナノチューブ(A)の層数を判断することが可能となる。単層カーボンナノチューブは層数が1枚しなないので、単層カーボンナノチューブのみでは25°±2°の位置にピークは出現しない。しかしながら、単層カーボンナノチューブであっても、100%単層カーボンナノチューブということはなく、多層カーボンナノチューブ等が混入している場合は2θが25°±2°の位置にピークが出現する場合がある。
多層カーボンナノチューブ(A)は2θが25°±2°の位置にピークが出現する。また粉末X線回折分析により検出される25°±2°のピークの半価幅からも層構成を解析することができる。すなわち、このピークの半価幅が小さいほど多層カーボンナノチューブ(A)の層数が多いと考えられる。逆にこのピークの半価幅が大きいほど、カーボンナノチューブの層数が少ないと考えられる。
多層カーボンナノチューブ(A)のG/D比は2.0〜0.3であることが好ましく、1.0〜0.5であることがより好ましい。多層カーボンナノチューブ(A)のG/D比はラマン分光分析法により求められる。
ラマン分光分析法で使用するレーザー波長は種々あるが、ここでは532nmおよび632nmを利用する。ラマンスペクトルにおいて1590cm−1付近に見られるラマンシフトは、グラファイト由来のGバンドと呼ばれ、1350cm−1付近に見られるラマンシフトはアモルファスカーボンやグラファイトの欠陥に由来のDバンドと呼ばれる。このG/D比が高いカーボンナノチューブほど、グラファイト化度が高い。
またラマンスペクトルの150〜350cm−1はRBM(ラジアルブリージングモード)と呼ばれ、この領域に観測されるピークはカーボンナノチューブの直径と次のような相関があり、カーボンナノチューブの直径を見積もることが可能である。カーボンナノチューブの直径をd(nm)、ラマンシフトをν(cm−1)とすると、d=248/νが成り立つ。これから勘案すると波長532nmのラマン分光分析で140cm−1、160cm−1、180cm−1、210cm−1、270cm−1、320cm−1にピークが観測されることは、つまり1.77nm、1.55nm、1.38nm、1.18nm、0.92nm、0.78nmの直径を有するカーボンナノチューブの存在を示唆している。
測定条件によってラマン分光分析の波数は変動することがあるため、ここで規定する波数は波数±10cm−1で規定するものとする。
(2)樹脂組成物(B)
本実施形態の樹脂組成物(B)は少なくとも多層カーボンナノチューブ(A)と樹脂(C)とを含む。
本実施形態の樹脂組成物(B)を得るには、多層カーボンナノチューブ(A)及び樹脂(C)を溶媒中に分散させる処理を行うことが好ましい。かかる処理を行うために使用される機材は特に限定されない。機材として例えば、ペイントコンディショナー(レッドデビル社製)、ボールミル、サンドミル(シンマルエンタープライゼス社製「ダイノーミル」)、アトライター、パールミル(アイリッヒ社製「DCPミル」)、超音波ホモジナイザー(Advanced Digital Sonifer(登録商標)、MODEL 450DA、BRANSON社製)、コボールミル、バスケットミル、ホモミキサー、ホモジナイザー(エム・テクニック社製「クレアミックス」)、湿式ジェットミル(ジーナス社製「ジーナスPY」、ナノマイザー社製「ナノマイザー」)、フーバーマーラー、3本ロールミル、及びエクストルーダーが挙げられるが、これらに限定されない。
また、樹脂組成物(B)を得るために高速攪拌機を使用することもできる。高速攪拌機として、例えば、ホモディスパー(PRIMIX社製)、フィルミックス(PRIMIX社製)、ディゾルバー(井上製作所社製)及びハイパーHS(アシザワ・ファインテック社製)が挙げられるが、これらに限定されない。
また、樹脂組成物(B)は分散剤を含んでもよい。
分散剤としては、界面活性剤、樹脂型分散剤または有機顔料誘導体を使用することができる。界面活性剤は主にアニオン性、カチオン性、ノニオン性及び両性に分類される。多層カーボンナノチューブ(A)の分散に要求される特性に応じて適宜好適な種類の分散剤を、好適な配合量で使用することができる。分散剤として好ましいのは樹脂型分散剤である。
アニオン性界面活性剤を選択する場合、その種類は特に限定されない。具体的には脂肪酸塩、ポリスルホン酸塩、ポリカルボン酸塩、アルキル硫酸エステル塩、アルキルアリールスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキルアリールエーテル硫酸塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキルリン酸スルホン酸塩、グリセロールボレイト脂肪酸エステル及びポリオキシエチレングリセロール脂肪酸エステルが挙げられるが、これらに限定されない。さらに、具体的にはドデシルベンゼンスルホン酸ナトリウム、ラウリル酸硫酸ナトリウム、ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシエチレンノニルフェニルエーテル硫酸エステル塩及びβ−ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩が挙げられるが、これらに限定されない。
またカチオン性界面活性剤としては、アルキルアミン塩類及び第四級アンモニウム塩類がある。具体的にはステアリルアミンアセテート、トリメチルヤシアンモニウムクロリド、トリメチル牛脂アンモニウムクロリド、ジメチルジオレイルアンモニウムクロリド、メチルオレイルジエタノールクロリド、テトラメチルアンモニウムクロリド、ラウリルピリジニウムクロリド、ラウリルピリジニウムブロマイド、ラウリルピリジニウムジサルフェート、セチルピリジニウムブロマイド、4−アルキルメルカプトピリジン、ポリ(ビニルピリジン)−ドデシルブロマイド及びドデシルベンジルトリエチルアンモニウムクロリドが挙げられるが、これらに限定されない。また両性界面活性剤としては、アミノカルボン酸塩が挙げられるが、これらに限定されない。
またノニオン性界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシアルキレン誘導体、ポリオキシエチレンフェニルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル及びアルキルアリルエーテルが挙げられるが、これらに限定されない。具体的にはポリオキシエチレンラウリルエーテル、ソルビタン脂肪酸エステル及びポリオキシエチレンオクチルフェニルエーテルが挙げられるが、これらに限定されない。
選択される界面活性剤は単独の界面活性剤に限定されない。このため二種以上の界面活性剤を組み合わせて使用することも可能である。例えばアニオン性界面活性剤及びノニオン性界面活性剤の組み合わせ、又はカチオン性界面活性剤及びノニオン性界面活性剤の組み合わせが利用できる。その際の配合量は、それぞれの界面活性剤成分に対して好適な配合量とすることが好ましい。組み合わせとしてはアニオン性界面活性剤及びノニオン性界面活性剤の組み合わせが好ましい。アニオン性界面活性剤はポリカルボン酸塩であることが好ましい。ノニオン性界面活性剤はポリオキシエチレンフェニルエーテルであることが好ましい。
また樹脂型分散剤として具体的には、ポリウレタン;ポリアクリレートのポリカルボン酸エステル;不飽和ポリアミド、ポリカルボン酸、ポリカルボン酸(部分)アミン塩、ポリカルボン酸アンモニウム塩、ポリカルボン酸アルキルアミン塩、ポリシロキサン、長鎖ポリアミノアマイドリン酸塩及び水酸基含有ポリカルボン酸エステル並びにこれらの変性物;低級アルキレンイミンの重合体及び遊離のカルボキシル基を有するポリエステルとの反応により形成されたアミド又はその塩の油性分散剤;(メタ)アクリル酸−スチレン共重合体、(メタ)アクリル酸−(メタ)アクリル酸エステル共重合体、スチレン−マレイン酸共重合体、ポリビニルアルコール及びポリビニルピロリドンに代表される水溶性樹脂又は水溶性高分子化合物;ポリエステル系樹脂;変性ポリアクリレート系樹脂;エチレンオキサイド/プロピレンオキサイド付加化合物;並びにリン酸エステル系樹脂が用いられるが、これらに限定されない。これらは単独又は二種以上を混合して用いることができるが、必ずしもこれらに限定されるものではない。
上記分散剤のうち、ポリカルボン酸のような酸性官能基を有する樹脂型分散剤が好ましい。これは、かかる樹脂型分散剤が、少ない添加量で分散組成物の粘度を低下させ、また分散組成物の分光透過率を高めることによる。樹脂型分散剤は、多層カーボンナノチューブ(A)に対して3〜300質量%程度使用することが好ましい。また成膜性の観点から5〜100質量%程度使用することがより好ましい。
市販の樹脂型分散剤としては、ビックケミー・ジャパン社製のANTI−TERRA(登録商標)−U/U100、ANTI−TERRA(登録商標)―204、ANTI−TERRA(登録商標)―250*、DISPERBYK(登録商標)、DISPERBYK(登録商標)−102、DISPERBYK(登録商標)−103、DISPERBYK(登録商標)−106、DISPERBYK(登録商標)−108、DISPERBYK(登録商標)−109、DISPERBYK(登録商標)−110/111、DISPERBYK(登録商標)−118*、DISPERBYK(登録商標)−140、DISPERBYK(登録商標)−142、DISPERBYK(登録商標)−145、DISPERBYK(登録商標)−161、DISPERBYK(登録商標)−162/163、DISPERBYK(登録商標)−164、DISPERBYK(登録商標)−167、DISPERBYK(登録商標)−168、DISPERBYK(登録商標)−170/171、DISPERBYK(登録商標)−174、DISPERBYK(登録商標)−180、DISPERBYK(登録商標)−182、DISPERBYK(登録商標)−184、DISPERBYK(登録商標)−185、DISPERBYK(登録商標)−187、DISPERBYK(登録商標)−190、DISPERBYK(登録商標)−191、DISPERBYK(登録商標)−192、DISPERBYK(登録商標)−193、DISPERBYK(登録商標)−194N*、DISPERBYK(登録商標)−198*、DISPERBYK(登録商標)−199*、DISPERBYK(登録商標)−2000、DISPERBYK(登録商標)−2001、DISPERBYK(登録商標)−2008、DISPERBYK(登録商標)−2009、DISPERBYK(登録商標)−2010、DISPERBYK(登録商標)−2012*、DISPERBYK(登録商標)−2013*、DISPERBYK(登録商標)−2015、DISPERBYK(登録商標)−2022*、DISPERBYK(登録商標)−2025、DISPERBYK(登録商標)−2050、DISPERBYK(登録商標)−2096、DISPERBYK(登録商標)−2150、DISPERBYK(登録商標)−2152*、DISPERBYK(登録商標)−2155、DISPERBYK(登録商標)−2163、DISPERBYK(登録商標)−2164、DISPERBYK(登録商標)−2200*、BYK(登録商標)−P104/P104S、BYK(登録商標)−P105、BYK(登録商標)−9076、BYK(登録商標)−9077、BYK(登録商標)−220S、日本ルーブリゾール社製SOLSPERSE−3000、5000、9000、11200、12000、13240、13650、13940、16000、17000、18000、20000、21000、24000GR、26000、27000、28000、32000、32500、32550、32600、33000、34750、35100、35200、36000、36600、37500、38500、39000、41000、41090、43000、44000、46000、47000、53095、55000、56000、71000及び76500、BASF社製のDispex(登録商標)UltraPA4550、Dispex(登録商標)UltraPA4560、Dispex(登録商標)UltraPX4575、Dispex(登録商標)UltraPX4585、Efka(登録商標)FA4608、Efka(登録商標)FA4620、Efka(登録商標)FA4644、Efka(登録商標)FA4654、Efka(登録商標)FA4663、Efka(登録商標)FA4665、Efka(登録商標)FA4666、Efka(登録商標)FA4672、Efka(登録商標)FA4673、Efka(登録商標)PA4400、Efka(登録商標)PA4401、Efka(登録商標)PA4403、Efka(登録商標)PA4450、Efka(登録商標)PU4063、Efka(登録商標)PX4300、Efka(登録商標)PX4310、Efka(登録商標)PX4320、Efka(登録商標)PX4330、Efka(登録商標)PX4340、Efka(登録商標)PX4700、Efka(登録商標)PX4701、Efka(登録商標)PX4731、Efka(登録商標)PX4732、Dispex(登録商標)UltraPA4550、Efka(登録商標)PA4560、Efka(登録商標)PX4575、Efka(登録商標)PX4585、Efka(登録商標)FA4600、Efka(登録商標)FA4601、Efka(登録商標)FA4608、Efka(登録商標)FA4620、Efka(登録商標)FA4644、Efka(登録商標)FA4654、Efka(登録商標)FA4663、Efka(登録商標)FA4665、Efka(登録商標)FA4666、Efka(登録商標)FA4672、Efka(登録商標)FA4673、Efka(登録商標)PA4400、Efka(登録商標)PA4401、Efka(登録商標)PA4403、Efka(登録商標)PA4450、Efka(登録商標)PU4063、Efka(登録商標)PX4300、Efka(登録商標)PX4310、Efka(登録商標)PX4320、Efka(登録商標)PX4330、Efka(登録商標)PX4340、Efka(登録商標)PX4700、Efka(登録商標)PX4701、Efka(登録商標)PX4731、Efka(登録商標)PX4732、共栄社化学社製のフローレンDOPA−15B、フローレンDOPA−15BHFS、フローレンDOPA−17HF、フローレンDOPA−22、フローレンDOPA−35、フローレンG−700、フローレンG−820XF、フローレンGW−1500、フローレンG−100SF、フローレンAF−1000、フローレンAF−1005、フローレンKDG−2400、フローレンD−90並びに味の素ファインテクノ社製のアジスパーPA111、PN411、PB821、PB822、PB824、PB881が挙げられるが、これらに限定されない。
有機顔料誘導体としては下記一般式(2)で表される酸性官能基を有する有機色素誘導体及び、下記一般式(1)で表される酸性官能基を有するトリアジン誘導体が挙げられる。
一般式(1)
式中の記号は下記の意味を表す。
;有機色素残基、またはアントラキノン残基、または置換基を有していてもよい複素環、または置換基を有していてもよい芳香族環
:−O−R、−NH−R、ハロゲン基、−X−R、−X−Y−Z(Rは水素原子または置換基を有していてもよいアルキル基、アルケニル基を表す。)
;−NH−、−O−、−CONH−、−SONH−、−CHNH−、−CHNHCOCHNH−または−X−Y−X−(X及びXはそれぞれ独立に−NH−または−O−を表す。)
;−CONH−、−SONH−、−CHNH−、−NHCO−または−NHSO
;炭素数1〜20で構成された置換基を有してもよいアルキレン基、あるいは置換基を有してもよいアルケニレン基、あるいは置換基を有してもよいアリーレン基
;−SOM、−COOM(Mは1〜3価のカチオンの1当量を表す。)
上記一般式(1)のQにおける有機色素残基としてはフタロシアニン系色素、アゾ系色素、キナクリドン系色素、ジオキサジン系色素、アントラピリミジン系色素、アンサンスロン系色素、インダンスロン系色素、フラバンスロン系色素、トリフェニルメタン系色素等の顔料または染料が挙げられる。
上記一般式(1)のQにおける複素環または芳香族環としては例えば、チオフェン、フラン、ピリジン、ピラゾール、ピロール、イミダゾール、イソインドリン、イソインドリノン、ベンズイミダゾロン、ベンズチアゾール、ベンズトリアゾール、インドール、キノリン、カルバゾール、アクリジン、ベンゼン、ナフタレン、アントラセン、フルオレン、フェナントレン等が挙げられる。
一般式(2)
−(−X−Z
式中の記号は下記の意味を表す。
;有機色素残基またはアントラキノン残基
;直接結合、−NH−、−O−、−CONH−、−SONH−、−CHNH−、−CHNHCOCHNH−または−X−Y−X−(X及びXはそれぞれ独立に−NH−または−O−を表し、Yは置換基を有していてもよいアルキレン基またはアリーレン基を表す。)
;−SOM、−COOM(Mは1〜3価のカチオンの1当量を表す。)
n;1〜4の整数
上記一般式(2)のQにおける有機色素残基としてはフタロシアニン系色素、アゾ系色素、キナクリドン系色素、ジオキサジン系色素、アントラピリミジン系色素、アンサンスロン系色素、インダンスロン系色素、フラバンスロン系色素、ペリレン系色素、ペリノン系色素、チオインジコ系色素、イソインドリノン系色素、トリフェニルメタン系色素等の顔料または染料が挙げられる。
樹脂組成物(B)を得るのに用いる溶媒は特に限定されない。溶媒として、水系溶媒及び有機系溶媒のいずれも用いることができる。
水系溶媒とは水または水を含む溶媒である。水を含む溶媒としては、水溶性液体を使用することができる。具体的な水溶性液体の例としては、例えば、アセトアルデヒド、酸化プロピレン、アセトン、ピリジン、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、酢酸、プロピオン酸、アクリル酸、エチレングリコール、グリセリン等に代表される水溶性の引火性液体が挙げられる。
有機系溶媒の中では、沸点が50〜250℃の有機系溶媒が用いやすい。かかる有機系溶媒は塗工時の作業性や硬化前後の乾燥性に優れる。具体的な溶媒の例としては、メタノール、エタノール及びイソプロピルアルコールに代表されるアルコール系溶媒;アセトン、ブチルジグリコールアセテート及びMEK(メチルエチルケトン)に代表されるケトン系溶媒;酢酸エチル及び酢酸ブチルに代表されるエステル系溶媒;ジブチルエーテル、エチレングリコール及びモノブチルエーテルに代表されるエーテル系溶媒;並びにN−メチル−2−ピロリドンに代表される双極性非プロトン溶媒が挙げられるが、これらに限定されない。これらの溶媒は、単独あるいは二種以上を混合して用いることもできる。
また、トルエン、キシレン、ソルベッソ#100(東燃ゼネラル社製)及びソルベッソ#150(東燃ゼネラル社製)に代表される芳香族炭化水素系溶媒;ヘキサン、ヘプタン、オクタン及びデカンに代表される脂肪族炭化水素系溶媒;又はセロソルブアセテート、エチルセロソルブ、ブチルセロソルブに代表されるアミド系溶媒を用いることもできる。これらの溶媒も単独であるいは二種以上を混合して、用いることができる。
また前記溶媒には必要に応じて、本実施形態の目的を阻害しない範囲で添加剤を適宜配合することができる。添加剤としては例えば顔料、濡れ浸透剤、皮張り防止剤、紫外線吸収剤、酸化防止剤、架橋剤、防腐剤、防カビ剤、粘度調整剤、pH調整剤、レベリング剤及び消泡剤が挙げられるが、これらに限定されない。
(3)樹脂(C)
樹脂(C)は、天然樹脂及び合成樹脂から選ばれる。樹脂(C)は単独の樹脂でもよい。樹脂(C)として天然樹脂及び合成樹脂から二種以上の樹脂を選択してもよい。二種以上の樹脂は組み合わせて使用することができる。
天然樹脂としては、天然ゴム、ゼラチン、ロジン、セラック、多糖類及びギルソナイトが挙げられるが、これらに限定されない。また、合成樹脂としては、フェノール樹脂、アルキッド樹脂、石油樹脂、ビニル系樹脂、オレフィン樹脂、合成ゴム、ポリエステル、ポリアミド樹脂、アクリル樹脂、スチレン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、アミノ樹脂、アミド樹脂、イミド樹脂、フッ素系樹脂、フッ化ビニリデン樹脂、塩化ビニル樹脂、ABS樹脂、ポリカーボネート、シリコーン系樹脂、ニトロセルロース、ロジン変性フェノール樹脂及びロジン変性ポリアミド樹脂が挙げられるがこれらに限定されない。
これらの樹脂のうち、耐光性の観点からアクリル樹脂及びポリエステル樹脂の少なくともいずれか一方が含まれていることが好ましい。また、この時、後述するベース塗料にもアクリル樹脂及びポリエステル樹脂の少なくともいずれか一方が含まれていることが好ましい。
エマルジョン塗料に用いられる水溶性樹脂としては、酸価が20〜70mgKOH/gであるとともに、水酸基価が20〜160mgKOH/gである水溶性樹脂が好ましい。具体的には、ポリエステル樹脂、アクリル樹脂、ポリウレタン樹脂が特に水溶性樹脂として好適に用いられる。ポリエステル樹脂は、多価アルコール及び多塩基酸を原料として用いた樹脂である。ポリエステル樹脂の酸価は20〜70mgKOH/g、好ましくは25〜60mgKOH/g、特に好ましくは30〜55mgKOH/gである。ポリエステル樹脂の水酸基価は20〜160mgKOH/g、好ましくは80〜130mgKOH/gである。
本実施形態において、酸価とは樹脂1gを中和するために必要な水酸化カリウムの質量(mg)をいう。また水酸基価とは樹脂の水酸基と無水フタル酸とを反応させ、その反応に要した酸を、該樹脂1gを中和するために必要な水酸化カリウムの質量(mg)をいう。
なお、本実施形態において、樹脂の酸価及び水酸基価の測定はJIS K0070の方法に準じて行うことができる。
水溶性ポリエステル樹脂は、公知のエステル化反応によって容易に得ることができる。水溶性ポリエステル樹脂は、多価アルコール及び多塩基酸を原料として製造された樹脂である。原料は通常のポリエステル樹脂を構成する化合物でよい。必要に応じ水溶性ポリエステル樹脂に油脂類を追加してもよい。
上記多価アルコールとしては、例えば、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,3−ブチレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、トリエチレングリコール、水素化ビスフェノールA、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリトリット及びジペンタエリトリットが挙げられるがこれらに限定されない。これらの多価アルコールを単独で用いてもよいし、二種以上を組み合わせて用いてもよい。該多塩基酸としては、例えば、無水フタル酸、イソフタル酸、テレフタル酸、無水コハク酸、アジピン酸、アゼライン酸、セバシン酸、無水マレイン酸、フマル酸、イタコン酸及び無水トリメリット酸が挙げられるが、これらに限定されない。これらの多塩基酸は単独で用いてもよいし、二種以上を組み合わせて用いてもよい。油脂類としては、例えば、大豆油、椰子油、サフラワー油、ぬか油、ひまし油、きり油、あまに油及びトール油、並びにこれらから得られる脂肪酸を挙げることができるが、これらに限定されない。
アクリル樹脂は、ビニル系モノマーを原料とする樹脂である。アクリル樹脂の酸価は、20〜70mgKOH/g、好ましくは22〜50mgKOH/g、特に好ましくは23〜40mgKOH/gである。アクリル樹脂の水酸基価は20〜160mgKOH/g、好ましくは80〜150mgKOH/gの水溶性樹脂である。
水溶性アクリル樹脂は、公知の溶液重合法又はその他の方法によって、容易に得ることができる。水溶性アクリル樹脂はビニル系モノマーを原料として製造された樹脂である。原料は通常のアクリル樹脂を構成する化合物でよい。また上記方法において有機過酸化物は重合反応の開始剤として用いられる。
ビニル系モノマーとしては、例えば、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、クロトン酸に代表されるエチレン性不飽和カルボン酸類;メチル、エチル、プロピル、ブチル、イソブチル、ターシャリーブチル、2−エチルヘキシル、ラウリル、シクロヘキシル、ステアリルに代表される、アクリル酸又はメタクリル酸のアルキルエステル類;2−ヒドロキシエチル、2−ヒドロキシプロピル、3−ヒドロキシプロピル、分子量1000以下のポリエチレングリコールに代表されるアクリル酸又はメタクリル酸のヒドロキシアルキルエステル類;アクリル酸又はメタクリル酸のアミド類;又はそれらのアルキルエーテル類が挙げられるが、これらに限定されない。例えば、アクリルアミド、メタクリルアミド、N−メチロールアクリルアミド、ジアセトンアクリルアミド、ジアセトンメタクリルアミド、N−メトキシメチルアクリルアミド、N−メトキシメチルメタクリルアミド及びN−ブトキシメチルアクリルアミドが挙げられるが、これらに限定されない。
更に、エポキシ基を持つグリシジル(メタ)アクリレートが挙げられる。また第3級アミノ基を含むモノマー類も挙げられる。例えば、N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレートが挙げられるが、これらに限定されない。この他、スチレン、α−メチルスチレン、ビニルトルエン及びビニルピリジンに代表される芳香族モノマー;アクリロニトリル;メタクリロニトリル;酢酸ビニル;並びにマレイン酸又はフマル酸のモノ又はジアルキルエステル類が挙げられるが、これらに限定されない。有機過酸化物としては、例えば、アシルパーオキシド類(例えば、過酸化ベンゾイル)、アルキルヒドロパーオキシド類(例えば、t−ブチルヒドロパーオキシド及びp−メタンヒドロパーオキシド)、並びにジアルキルパーオキシド類(例えば、ジ−t−ブチルパーオキシド)が挙げられるが、これらに限定されない。
ポリウレタン樹脂は、ポリオール及びポリイソシアネートを原料とする樹脂である。ポリウレタン樹脂の酸価は、20〜70mgKOH/g、好ましくは22〜50mgKOH/g、特に好ましくは23〜 35mgKOH/gである。ポリウレタン樹脂の水酸基価は20〜160mgKOH/g、好ましくは25〜50mgKOH/gである。
水溶性ポリウレタン樹脂は、ポリオール及びポリイソシアネートを付加重合することによって、容易に得ることができる。原料は通常のポリウレタン樹脂を構成するポリオール及びポリイソシアネートでよい。
ポリオールとしては、ポリエステルポリオール、ポリエーテルポリオール及びアクリルポリオールが挙げられるが、これらに限定されない。また、ポリイソシアネートとしては、フェニレンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、ビスフェニレンジイソシアネート、ナフチレンジイソシアネート、ジフェニルメタンジイソシアネート、イソホロンジイソシアネート、シクロペンチレンジイソシアネート、シクロへキシレンジイソシアネート、メチルシクロへキシレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、プロピレンジイソシアネート、エチルエチレンジイソシアネート及びトリメチルヘキサンジイソシアネートが挙げられるが、これらに限定されない。
水溶性のポリエステル樹脂、アクリル樹脂及びポリウレタン樹脂は、塩基性物質で中和することにより水溶性が付与される。この際、水溶性樹脂に含まれている酸性基の40モル%以上を中和できる量の塩基性物質を用いることが好ましい。上記の塩基性物質としては、例えば、アンモニア、ジメチルアミン、トリメチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、トリエタノールアミン、N−メチルエタノールアミン、N−アミノエチルエタノールアミン、N−メチルジエタノールアミン、モルホリン、モノイソプロパノールアミン、ジイソプロパノールアミン及びジメチルエタノールアミンが挙げられるが、これらに限定されない。
水溶性樹脂の数平均分子量は特に制限されない。数平均分子量は500〜50000が好ましく、800〜25000がより好ましく、1000〜12000が特に好ましい。
また、樹脂(C)は硬化性を有するタイプとラッカータイプとに分類される。本実施形態では硬化性を有するタイプの樹脂が好適に使用される。硬化性を有するタイプの樹脂(C)は、メラミン樹脂に代表されるアミノ樹脂又は(ブロック)ポリイソシアネート化合物アミン系化合物、ポリアミド系化合物及び多価カルボン酸に代表される架橋剤とともに使用される。樹脂(C)及び架橋剤は混合された後、加熱されることで又は常温におかれることで硬化反応が進行する。また、硬化性を有しないタイプの樹脂を塗膜形成用樹脂とするとともに、硬化性を有するタイプの樹脂と併用することもできる。
(4)塗膜(D)
本実施形態の塗膜は多層カーボンナノチューブ(A)と樹脂(C)とを含んでなる。かかる塗膜(D)の下には基材(E)が設けられているが、基材は塗膜(D)作製後に取り除いても良い。
本実施形態の塗膜(D)は、樹脂組成物(B)を一般的な技法で塗布して形成することができる。技法として具体的には、キャスト、スピンコート、ディップコート、バーコート、スプレー、ブレードコート、スリットダイコート、グラビアコート、リバースコート、スクリーン印刷、鋳型塗布、印刷転写、及びインクジェットを含むウエットコート法を挙げることができるが、これらに限定されない。上記技法で樹脂組成物(B)を基材(E)上にコーティングすることにより、塗膜を形成することができる。
塗膜(D)中の多層カーボンナノチューブ(A)の添加率は、用途に応じて適宜選択すればよい。かかる添加率は好ましくは0.1〜30質量%、より好ましくは1〜25質量%、更に好ましくは2〜15質量%の範囲である。特に添加率が斯かる範囲内にあれば、漆黒性に優れた塗膜が得られる。
本発明の目的を阻害しない範囲であれば、塗膜(D)に、多層カーボンナノチューブ(A)に加えてカーボンブラックを添加することができる。カーボンブラックの具体例としては、ケッチェンブラック、アセチレンブラック、ファーネスブラック及びチャンネルブラックが挙げられる。カーボンブラックは、ナフサに代表される炭化水素を水素及び酸素の存在下で部分酸化することで、水素及び一酸化炭素を含む合成ガスを製造する際に副生されるものでもよい。またカーボンブラックは、かかる副生物を酸化又は還元処理したものでもよい。上記は本発明に係るカーボンブラックを限定するものではない。これらのカーボンブラックは、単独で用いてもよく、二種類以上併用しても良い。また、黒度を向上させる視点から、カーボンブラックは平均粒径が20nm以下であり、かつ、DBP吸油量が80mL/100g以下であるものが好ましく使用される。また、本実施形態においてDBP吸油量とは、カーボンブラック100g当りに包含することのできるジブチルフタレート(DBP)の量(mL)を表す。DBP吸油量はカーボンブラックのストラクチャーを定量化するための尺度である。上記ストラクチャーとはカーボンブラック粒子間の化学的ないし物理的結合による複雑な凝集形態である。
カーボンブラックの平均粒径は、多層カーボンナノチューブ(A)の外径と同様に求められる。具体的には、透過型電子顕微鏡によって、カーボンブラックを観測するとともに撮像する。次に観測写真において、任意の300個のカーボンブラックを選び、それぞれの粒径を計測する。次に粒径の数平均としてカーボンブラックの平均粒径(nm)を算出する。
カーボンブラックの使用量は、多層カーボンナノチューブ(A)100質量部に対して、1〜25質量部が好ましく、1〜10質量部がより好ましく、1〜5質量部がさらに好ましい。
塗膜(D)の膜厚は5μm以上であることが好ましく、10μm以上であることがさらに好ましい。
塗膜(D)は、塗膜(D)上にさらにクリア層が形成されてもよい。クリア層が形成されることにより、光沢、耐光性と漆黒性とを備える塗膜(D)が得られる。
塗膜(D)の呈する明度(L)は5.3以下であることが好ましく、5.2以下であることがさらに好ましい。この明度(L)は色差計を用いて測定することによって得られる。測定は塗膜(D)が形成された面の側から塗膜(D)の表面に対して行う。色差計としてNIPPONDENSHOKU社製、SpectroColorMeterSE6000を用いてもよい。
塗膜(D)の60°鏡面光沢は60以上であることが好ましく、85以上であることがさらに好ましい。光沢計として、グロスメーターGM−26D(村上色彩研究所社製)を用いてもよい。
(5)基材(E)
本実施形態における塗膜(D)を形成するために用いられる基材(E)は特に限定されない。基材(E)の材質として、鉄、アルミニウム及び銅若しくはこれらの合金に代表される金属類;ガラス、セメント及びコンクリートに代表される無機材料;ポリエチレン樹脂、ポリプロピレン樹脂、エチレン―酢酸ビニル共重合体樹脂、ポリアミド樹脂、アクリル樹脂、塩化ビニリデン樹脂、ポリカーボネート樹脂、ポリウレタン樹脂及びエポキシ樹脂に代表される樹脂類;各種のFRPに代表されるプラスチック材料;木材;並びに繊維材料(紙及び布を含む)に代表される天然材料又は合成材料が挙げられるが、これらに限定されない。
上記の材質のうち、鉄、アルミニウム及び銅若しくはこれらの合金類に代表される金属類が好ましい。また、カーボンブラック及びカーボンナノチューブに代表される顔料を含む樹脂も好ましい。
基材(E)の形状は板状、フィルム状、シート状又は成形体状でも良い。成形体の製造は、例えばインサート射出成形法、インモールド成形法、オーバーモールド成形法、二色射出成形法、コアバック射出成形法及びサンドイッチ射出成形法に代表される射出成形方法;Tダイラミネート成形法、多層インフレーション成形法、共押出成形法及び押出被覆法に代表される押出成形法;並びに多層ブロー成形法、多層カレンダー成形法、多層プレス成形法、スラッシュ成形法及び溶融注型法に代表されるその他の成形法を使用することができる。
(6)カーボンナノチューブ(CNT)分散液(F)
本実施形態のCNT分散液(F)は少なくとも多層カーボンナノチューブ(A)と溶媒と分散剤を含み、樹脂(C)を含まないものである。本発明の樹脂組成物は、CNT分散液に樹脂を添加したものである。
本実施形態のCNT分散液(F)を得るには、多層カーボンナノチューブ(A)を溶媒中に分散させる処理を行うことが好ましい。かかる処理を行うために使用される機材は特に限定されない。機材として例えば、ペイントコンディショナー(レッドデビル社製)、ボールミル、サンドミル(シンマルエンタープライゼス社製「ダイノーミル」)、アトライター、パールミル(アイリッヒ社製「DCPミル」)、超音波ホモジナイザー(Advanced Digital Sonifer(登録商標)、MODEL 450DA、BRANSON社製)、コボールミル、バスケットミル、ホモミキサー、ホモジナイザー(エム・テクニック社製「クレアミックス」)、湿式ジェットミル(ジーナス社製「ジーナスPY」、ナノマイザー社製「ナノマイザー」)、フーバーマーラー、3本ロールミル、及びエクストルーダーが挙げられるが、これらに限定されない。
分散剤としては、界面活性剤、樹脂型分散剤または有機顔料誘導体を使用することができる。界面活性剤は主にアニオン性、カチオン性、ノニオン性及び両性に分類される。分散剤として好ましいのは樹脂型分散剤である。
樹脂型分散剤として具体的には、ポリウレタン;ポリアクリレートのポリカルボン酸エステル;不飽和ポリアミド、ポリカルボン酸、ポリカルボン酸(部分)アミン塩、ポリカルボン酸アンモニウム塩、ポリカルボン酸アルキルアミン塩、ポリシロキサン、長鎖ポリアミノアマイドリン酸塩及び水酸基含有ポリカルボン酸エステル並びにこれらの変性物;低級アルキレンイミンの重合体及び遊離のカルボキシル基を有するポリエステルとの反応により形成されたアミド又はその塩の油性分散剤;(メタ)アクリル酸−スチレン共重合体、(メタ)アクリル酸−(メタ)アクリル酸エステル共重合体、スチレン−マレイン酸共重合体、ポリビニルアルコール及びポリビニルピロリドンに代表される水溶性樹脂又は水溶性高分子化合物;ポリエステル系樹脂;変性ポリアクリレート系樹脂;エチレンオキサイド/プロピレンオキサイド付加化合物;並びにリン酸エステル系樹脂が用いられるが、これらに限定されない。これらは単独又は二種以上を混合して用いることができるが、必ずしもこれらに限定されるものではない。
溶媒としては、水系溶媒及び有機系溶媒のいずれも用いることができる。
水系溶媒とは水または水を含む溶媒である。水を含む溶媒としては、水溶性液体を使用することができる。具体的な水溶性液体の例としては、例えば、アセトアルデヒド、酸化プロピレン、アセトン、ピリジン、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、酢酸、プロピオン酸、アクリル酸、エチレングリコール、グリセリン等に代表される水溶性の引火性液体が挙げられる。
有機系溶媒の中では、沸点が50〜250℃の有機系溶媒が用いやすい。かかる有機系溶媒は塗工時の作業性や硬化前後の乾燥性に優れる。具体的な溶媒の例としては、メタノール、エタノール及びイソプロピルアルコールに代表されるアルコール系溶媒;アセトン、ブチルジグリコールアセテート及びMEK(メチルエチルケトン)に代表されるケトン系溶媒;酢酸エチル及び酢酸ブチルに代表されるエステル系溶媒;ジブチルエーテル、エチレングリコール及びモノブチルエーテルに代表されるエーテル系溶媒;並びにN−メチル−2−ピロリドンに代表される双極性非プロトン溶媒が挙げられるが、これらに限定されない。これらの溶媒は、単独あるいは二種以上を混合して用いることもできる。
また、トルエン、キシレン、ソルベッソ#100(東燃ゼネラル社製)及びソルベッソ#150(東燃ゼネラル社製)に代表される芳香族炭化水素系溶媒;ヘキサン、ヘプタン、オクタン及びデカンに代表される脂肪族炭化水素系溶媒;又はセロソルブアセテート、エチルセロソルブ、ブチルセロソルブに代表されるアミド系溶媒を用いることもできる。これらの溶媒も単独であるいは二種以上を混合して、用いることができる。
(7)触媒担持体(G)
触媒担持体(G)は、マグネシウムを含んでおり、吸着や触媒活性を示し、触媒担持体(G)の表面に触媒金属を担持できるものであればどのようなものでも良く、有機物でも無機物でも良い。
触媒担持体(G)のマグネシウムとしては従来公知のマグネシウム化合物を使用することができる。例えば、マグネシウム、塩化マグネシウム、水酸化マグネシウム、酸化マグネシウム、硫酸マグネシウム、酢酸マグネシウム四水和物、塩基性炭酸マグネシウム、塩化マグネシウム六水和物である。特に、酢酸マグネシウム四水和物、水酸化マグネシウム、酸化マグネシウムを使用することが好ましい。
触媒担持体(G)としては、マグネシウムの他、例えば、酸化珪素、アルミニウム、塩基性酢酸アルミニウム、臭化アルミニウム、塩化アルミニウム、水酸化アルミニウム、乳酸アルミニウム、酸化アルミニウム、ゼオライト、酸化チタン、ジルコニウム、酸化カルシウム、酸化チタンなどを含むことが好ましい。融点の異なる2種の原料を組み合わせることで、触媒作製時に粒子同士の融着を防ぐことができる。例えば、酢酸マグネシウムや酢酸アルミニウム等の有機物と酸化珪素、酸化アルミニウム、ゼオライト、酸化チタン、ジルコニウム、酸化マグネシウム等の無機物と組み合わせることで、触媒活性を向上させることができる。特に、触媒担持体(G)に、酢酸マグネシウム四水和物を使用する場合、酸化珪素、ゼオライト、酸化アルミニウムを組み合わせることが好ましい。特に好ましくは、酸化珪素やゼオライトである。
触媒担持体(G)に使用する酸化珪素、ゼオライト、酸化アルミニウムとしては、例えば、エボニック グループの日本アエロジル社製のAEROSIL(登録商標) 50、AEROSIL( 登録商標) 130、AEROSIL(登録商標) 200、AEROSIL(登録商標 ) 300、AEROSIL(登録商標) 380、AEROXIDE(登録商標) A lu C、AEROXIDE(登録商標) TiO2 P25、日本軽金属社製のアルミ ナ C10W、C20、C40、C50、C500、東ソー社製のBeta型ゼオライト である940HOA、980HOA、Mordenite型ゼオライトである640HO A、690HOA、Y型ゼオライトである320HOA、331HSA、350HUA、 360HUA、385HUA、390HUAを使用することが好ましい。中でも、AEROSIL(登録商標)が好ましい。
触媒担持体(G)中のシリカやアルミニウムの含有量は、マグネシウムの含有量を100モル%とした場合、1〜50モル%であることが好ましく、1〜25モル%であることがさらに好ましい。
触媒担持体(G)中のシリカやアルミニウムの嵩密度は0.04〜0.5g/mLであることが好ましい。シリカを使用する場合は、0.04〜0.1g/mLであることがさらに好ましい。
嵩密度とは、脱気や造粒等の嵩を低下させる処理を行う前の嵩密度であり、JIS−K−5101に準拠した測定による値である。
触媒担持体(G)のシリカやアルミナのBET比表面積は50〜1000m/gであることが好ましく、150〜350m/gであることがさらに好ましい。
触媒担持体(G)は触媒の触媒作用を強化する働きを有する助触媒が含まれていることが好ましい。例えば、マンガン、モリブデン、タングステンが含まれていることが好ましい。特に好ましいのはマンガンやモリブデンである。これらを触媒担持体(A)中に含ませることで、触媒活性や触媒寿命を向上させることができる。これらの助触媒は単体であっても複数含んでも良い。
触媒担持体(G)中の助触媒の含有量は、マグネシウムの含有量を100モル%とした場合、5〜100モル%であることが好ましく、5〜30モル%であることがさらに好ましい。
触媒担持体(G)に使用するマンガン塩やモリブデン塩として、従来公知の様々な塩を使用することができる。例えば、酢酸マンガン(II)四水和物、炭酸マンガン(II) n水和物、塩化マンガン(II)四水和物、硝酸マンガン(II)六水和物、酸化マンガン(IV)、硫酸マンガン(II)五水和物、モリブデン酸アンモニウム、モリブデン、モリブデン酸カリウム、七モリブデン酸六アンモニウム四水和物、塩化モリブデン(V)、酸化モリブデン(VI)、硫化モリブデン(IV)、タングステン酸アンモニウムパラ五水和物、タングステン酸カリウム、タングステン(VI)酸ナトリウム二水和物、タングステン、酸化タングステン(VI)などが挙げられる。特に、酢酸マンガン(II)四水和物、炭酸マンガン(II) n水和物、モリブデン酸アンモニウム、酸化モリブデン(VI)が好ましい。
触媒担持体(G)の原料は均一に混合されることが好ましい。混合は湿式であっても乾式であっても良いが、水に不溶性の塩を使用する場合は乾式の混合が好ましい。湿式で原料を混合した場合は100〜200℃の範囲で乾燥した後、混合することが好ましい。
触媒担持体(G)は水分が少ないことが好ましい。触媒担持体(A)を100重量%とした時、水分が5重量%以下であることが好ましく、3重量%以下であることが好ましい。触媒前駆体(A)中の水分量は、例えば、加熱乾燥式水分計(MS−70、株式会社エー・アンド・デイ社)を使用して測定することができる。
触媒担持体(G)の粒子径は小さいものが好ましい。具体的には粒度分布はD50(μm)が1.0〜10.0μmであることが好ましく、1.0〜5.0μmであることがさらに好ましい。また、D90(μm)が5.0〜70.0μmであることが好ましく、5.0〜20.0μmであることがさらに好ましい。
触媒担持体(G)の粒度分布D50(μm)、D90(μm)は次のように求められる。まず、レーザー回折式乾式粒度分布測定装置によって触媒担持体(G)の粒度分布を測定する。測定結果における累積分布50vol%の時の粒径をD50(μm)、累積分布90vol%の時の粒径をD90(μm)として算出することができる。
触媒担持体(G)の粒子径を小さくする方法としては、従来公知の様々な方法を使用することができる。その中でも、圧縮力、衝撃力、せん断力や摩擦力を触媒担持体(A)に加えることができる粉砕機を使用することが好ましい。
粉砕機とは圧縮力、衝撃力、せん断力や摩擦力などの力を試料に加えて試料を微細化する装置である。微細化するための装置としては乳鉢、ピンミル、ハンマーミル、パルペライザー、アトライター、ジェットミル、カッターミル、ボールミル、ビーズミル、コロイドミル、コニカルミル、ディスクミル、エッジミル、ワンダークラッシャー、振動ミル、超音波ホモジナイザー等の粉砕機を使用することができる。好ましくは、触媒粒子の複合化、メカニカルアロイングおよびアモルファス化が進みやすいアトライター、ピンミル、ハンマーミル、ジェットミル、カッターミル、ボールミル、ビーズミル、ワンダークラッシャー、振動ミルである。特に好ましくは、粉砕メディアとしてビーズを用いるアトライター、ボールミル、ビーズミル、振動ミルである。
粉砕メディアとしてのビーズは従来公知の様々なものを使用することができる。例えば、スチールビーズ、ジルコニアビーズ、アルミナビーズ、ガラスビーズである。中でも、比重の大きいスチールビーズや硬度の高いジルコニアビーズを使用することが好ましい。
ビーズの径は従来公知の様々なものを使用することができるが、作業性の観点から直径1〜10mmのビーズを使用することが好ましい。2〜5mmのビーズを使用することがさらに好ましい。
以上のような多層カーボンナノチューブ(A)を用いた樹脂組成物(B)および塗膜(D)は漆黒性が良好であることがわかった。
漆黒性が良好である理由は、外径が小さく揃った多層カーボンナノチューブ(A)は一般的なカーボンナノチューブと比較し、カーボンナノチューブ間に働く相互作用が強くなり、強固にバンドルを形成、保持するためと考えられる。そのため、比表面積が小さくなり、溶媒や分散剤への濡れ性が向上する。また、分散後の樹脂組成物(B)や塗膜(D)においても、カーボンナノチューブの配向を保ちやすく、光閉じ込め効果が大きい。
以下に実施例を挙げて、本発明をさらに具体的に説明する。本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。実施例中、特に断わりのない限り「部」とは「質量部」を、「%」とは「質量%」をそれぞれ意味する。また、「カーボンナノチューブ」を「CNT」、「カーボンブラック」を「CB」と略記することがある。
<物性の測定方法>
後述の各実施例及び比較例において使用されたCNTまたはCNT塗膜の物性は、以下の方法により測定した。
<CNTのラマン分光分析>
ラマン顕微鏡(XploRA、株式会社堀場製作所社製)にCNTを設置し、532nmのレーザー波長を用いて測定を行った。測定条件は取り込み時間60秒、積算回数2回、減光フィルタ10%、対物レンズの倍率20倍、回折格子の刻線数1200本/分、コンフォーカスホール500、スリット幅100μmとした。測定用のCNTはスライドガラス上に分取し、スパチュラを用いて平坦化した。得られたピークの内、スペクトルで1560〜1600cm−1の範囲内で最大ピーク強度をG、1310〜1350cm−1の範囲内で最大ピーク強度をDとし、G/Dの比をCNTのG/D比とした。
<CNTの粉末X線回折分析>
X線回折装置(Ultima2100、株式会社リガク社製)にCNTを設置し、1.5°から80°まで操作し、分析を行った。X線源はCuKα線である。ステップ幅は0.01°、計測時間は1.0秒であった。この時得られる回折角2θ=25°±2°に出現するプロットをそれぞれ11点単純移動平均し、そのピークの半価幅をCNTの半価幅とした。
<CNT分散液の調製>
450mLのSMサンプル瓶(株式会社三商社製)にカーボンナノチューブ0.2g、樹脂型分散剤としてポリビニルピロリドン(東京化成工業株式会社社製)0.2gを量りとり、イソプロピルアルコール200mLを加えて、超音波ホモジナイザー(Advanced Digital Sonifer(登録商標)、MODEL 450DA、BRANSON社製)を使用し、振幅50%で5分間氷冷下分散処理を行い、CNT分散液を調製した。
<CNTの透過型電子顕微鏡分析>
CNT分散液を適宜希釈しコロジオン膜上に数μL滴下し、室温で乾燥させた後、直接透過型電子顕微鏡(H−7650、株式会社日立製作所社製)を用いて、観察した。観察は5万倍の倍率で、視野内に10本以上のCNTが含まれる写真を複数撮り、任意に抽出した300本のCNTの外径を測定し、その平均値をCNTの平均外径(nm)とした。標準偏差は測定した300本のCNTの外径を母集団として算出した。
<CNT塗膜の明度(L)の測定方法>
CNT塗膜について、CNT樹脂組成物が塗工された面から、色差計(NIPONDENSHOKU社製、SpectroColorMeterSE6000)を用いて明度(L)を測定した。
<CNT塗膜の光沢測定>
CNT塗膜について、CNT樹脂組成物が塗工された面から、JIS Z8741に準じてグロスメーターGM−26D(村上色彩研究所社製)で60°鏡面光沢を測定した。
<CNT合成用触媒の製造例>
後述の各実施例及び比較例において使用された、CNT合成用触媒担持体、コバルト組成物、CNT合成用触媒は以下の方法により作製した。
<CNT合成用触媒担持体の作製>
酢酸マグネシウム4水和物1000部を耐熱性容器に秤取り、電気オーブンを用いて、170±5℃の雰囲気温度で6時間乾燥させた後、粉砕機(サンプルミルKIIW−I型、株式会社ダルトン社製)を用いて、1mmのスクリーンを装着し、粉砕し、酢酸マグネシウム乾燥粉砕品を得た。酢酸マグネシウム乾燥粉砕品45.8部、炭酸マンガン8.1部、酸化珪素(SiO、日本アエロジル社製:AEROSIL(登録商標)200)1.0部、スチールビーズ(ビーズ径2.0mmφ)200部をSMサンプル瓶(株式会社三商製)に仕込み、レッドデビル社製ペイントコンディショナーを用いて、30分間粉砕混合処理を行った。その後、ステンレスふるいを使用し、粉砕混合した粉末とスチールビーズ(ビーズ径2.0mmφ)を分離し、CNT合成用触媒担持体を得た。
<CNT合成用触媒の作製>
水酸化コバルト(II)30部を耐熱性容器に秤取り、170±5℃の雰囲気温度で2時間乾燥させ、CoHOを含むコバルト組成物を得た。その後、CNT合成用触媒担持体54.9部とコバルト組成物29部を粉砕機(ワンダークラッシャーWC−3、大阪ケミカル株式会社製)に仕込み、標準フタを装着し、SPEEDダイヤルを2に調節し、30秒間粉砕混合し、CNT合成用触媒前駆体を得た。CNT合成用触媒前駆体を耐熱性容器に移し替え、マッフル炉(FO510、ヤマト科学株式会社製)を使用し、空気雰囲気、450±5℃の条件で30分間焼成した後、乳鉢で粉砕してCNT合成用触媒を得た。
(実施例1)CNT Aの作製
加圧可能で、外部ヒーターで加熱可能な、内容積が10Lの横型反応管の中央部に、前記CNT合成用触媒 1gを散布した石英ガラス製耐熱皿を設置した。窒素ガスを注入しながら排気を行い、反応管内の空気を窒素ガスで置換し、横型反応管中の雰囲気温度が710℃になるまで加熱した。710℃に到達した後、炭化水素としてエチレンガスを毎分2Lの流速で反応管内に導入し、7分間接触反応させた。反応終了後、反応管内のガスを窒素ガスで置換し、反応管の温度を100℃以下になるまで冷却し取り出すことでCNT Aを得た。
(実施例2〜6)
表1に掲載した触媒量、温度、反応時間を変更した以外は実施例1と同様の方法により、CNT B〜Fを得た。
(比較例1〜3)
表2に掲載した温度、反応時間を変更した以外は実施例1と同様の方法により、CNT G〜Iを得た。
(参考例1、2)
表3に掲載した触媒量、温度、反応時間、炭化水素を変更した以外は実施例1と同様の方法により、CNT J、Kを得た。
表4に実施例1〜6、比較例1〜3、参考例1〜2で作製したCNTの評価結果を示す。
(実施例7)CNT樹脂組成物および塗膜の作製
CNT A 5.6g、分散剤として樹脂型分散剤(DISPERBYK(登録商標)−111、ビックケミー社製、不揮発分100%)11.2g、溶媒としてソルベッソ150(東燃ゼネラル石油社製)48.8g、トルエン73.5g、キシレン73.5g、酢酸ブチル48.8gをプラスチック容器(デスカップ1L、東京硝子器械株式会社製)に加え、高速攪拌機(T.K.HOMODISPER MODEL2.5、プライミクス株式会社製)を使用し、1500rpmの回転数で5分間撹拌した。その後、高速攪拌機(T.K.HOMOMIXER MARKII MODEL2.5、プライミクス株式会社製)を使用し、5000rpmの回転数で5分間分散処理を行い、CNT粗分散液Aを得た。このCNT粗分散液A100部とジルコニアビーズ(ビーズ径1.0mmφ)175部を200mLのSMサンプル瓶(株式会社三商製)に仕込み、レッドデビル社製ペイントコンディショナーを用いて3時間分散処理を行い、CNT分散液Aを得た。その後、アクリル樹脂(DIC社製、アクリディック47−712、不揮発分50%)92.6部を加え、高速攪拌機(T.K.HOMODISPER MODEL2.5、プライミクス株式会社製)を使用し、1500rpmの回転数で5分間撹拌した。さらにその後、CNT分散液Aにメラミン樹脂(DIC社製、スーパーベッカミンL−117−60、不揮発分60%)19.3部を加え、レッドデビル社製ペイントコンディショナーを用いて30分間分散処理を行い、CNT樹脂組成物Aを得た。ついで、PET(ポリエチレンテレフタレート)フィルム(東レ社製、ルミラー100、T60)を基材として、片面にCNT樹脂組成物Aを乾燥後の膜厚が20μmになるようにスプレー塗装した。スプレー塗装はエアスプレーガン(アネスト岩田社製W−61−2G)を用いて行った。塗装後のPETフィルムを30分間室温放置した後、140±5℃にて30分間乾燥させ、CNT塗膜Aを作製した。
(実施例8〜12)、(比較例4〜6)、(参考例3、4)
表5に掲載したCNTに変更した以外は、実施例7と同様の方法により、CNT樹脂組成物B〜K、CNT分散液B〜K、CNT塗膜B〜Kを得た。
表6に実施例7〜12、比較例4〜6、参考例3〜4で作製したCNT塗膜の評価結果を示す。漆黒性評価については、塗膜の明度(L)が5.2以下かつ60°鏡面光沢が80以上を++(優良)、塗膜の明度(L)が5.3以下かつ60°鏡面光沢が80以上を+(良好)、塗膜の明度(L)が5.3を超えるまたは60°鏡面光沢が80未満を−(不良)とした。
上記実施例では、半価幅が大きく、直径の小さい多層CNTを用いた。比較例では、半価幅が小さく直径の大きい多層CNTを用いた。実施例では、比較例に比べて漆黒性の高いCNT塗膜が得られた。以上より、本発明は従来の多層CNTでは実現しがたい漆黒性を有するCNT塗膜を提供できることが明らかとなった。
以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。

Claims (6)

  1. 下記(1)、(2)および(3)の要件を満たすことを特徴とする多層カーボンナノチューブ。
    (1)多層カーボンナノチューブの平均外径が10nm以下であること
    (2)多層カーボンナノチューブの外径の標準偏差が4nm以下であること
    (3)粉末X線回折分析において、回折角2θ=25°±2°にピークが存在し、そのピークの半価幅が5°を超えて5.5 °以下であること
  2. 多層カーボンナノチューブの平均外径をX、多層カーボンナノチューブの外径の標準偏差をσとした際に、X±2σが、2.5nm≦X±2σ≦15.5nmを満たすことを特徴とする請求項1記載の多層カーボンナノチューブ。
  3. 以下の工程を含んでなる請求項1または2記載の多層カーボンナノチューブの製造方法。
    (1)コバルトと、マグネシウムを含む金属塩とを混合および/または粉砕した後に焼成し、カーボンナノチューブ合成用触媒を得る工程

    (2)触媒1g当たりの多層カーボンナノチューブの生成量をY(g)、触媒と炭化水素の接触反応時間をZ(分)とした際に、Y/Z(g/分)が、1.5 ≦Y/Z≦2.7を満たすように触媒量および/または炭化水素の流量を調節して多層カーボンナノチューブを得る工程
  4. 炭化水素としてエチレンを使用することを特徴とする請求項3記載の多層カーボンナノチューブの製造方法。
  5. 請求項1または2記載の多層カーボンナノチューブと樹脂とを含有してなる樹脂組成物。
  6. 請求項5記載の樹脂組成物より形成された塗膜。

JP2017243686A 2017-03-15 2017-12-20 多層カーボンナノチューブおよび多層カーボンナノチューブの製造方法 Active JP7052336B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017243686A JP7052336B2 (ja) 2017-12-20 2017-12-20 多層カーボンナノチューブおよび多層カーボンナノチューブの製造方法
CN201880017332.7A CN110418766B (zh) 2017-03-15 2018-03-13 多层碳纳米管、多层碳纳米管的制造方法、分散液、树脂组合物及涂膜
KR1020197027876A KR102394357B1 (ko) 2017-03-15 2018-03-13 다층 카본 나노 튜브, 다층 카본 나노 튜브의 제조 방법, 분산액, 수지 조성물, 및 도막
PCT/JP2018/009672 WO2018168833A1 (ja) 2017-03-15 2018-03-13 多層カーボンナノチューブ、多層カーボンナノチューブの製造方法、分散液、樹脂組成物、および塗膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017243686A JP7052336B2 (ja) 2017-12-20 2017-12-20 多層カーボンナノチューブおよび多層カーボンナノチューブの製造方法

Publications (2)

Publication Number Publication Date
JP2019108256A true JP2019108256A (ja) 2019-07-04
JP7052336B2 JP7052336B2 (ja) 2022-04-12

Family

ID=67179028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017243686A Active JP7052336B2 (ja) 2017-03-15 2017-12-20 多層カーボンナノチューブおよび多層カーボンナノチューブの製造方法

Country Status (1)

Country Link
JP (1) JP7052336B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021005371A1 (en) * 2019-07-09 2021-01-14 Applied Graphene Materials Uk Limited Dispersions
WO2021005368A1 (en) * 2019-07-09 2021-01-14 Applied Graphene Materials Uk Limited Dispersions
WO2021080006A1 (ja) 2019-10-24 2021-04-29 東洋インキScホールディングス株式会社 非水電解質二次電池用カーボンナノチューブ分散液、それを用いた樹脂組成物、合材スラリー、電極膜、及び非水電解質二次電池
JP6927448B1 (ja) * 2021-04-27 2021-09-01 東洋インキScホールディングス株式会社 電磁波吸収体用熱可塑性樹脂組成物及び成形体
WO2021201002A1 (ja) 2020-04-03 2021-10-07 東洋インキScホールディングス株式会社 ホウ素ドープ炭素材料、導電性組成物、導電膜、および蓄電デバイス
WO2022009915A1 (ja) 2020-07-07 2022-01-13 東洋インキScホールディングス株式会社 カーボンナノチューブ、カーボンナノチューブ分散液、それを用いた非水電解質二次電池

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188389A (ja) * 2005-01-06 2006-07-20 Univ Nagoya 高純度2層〜5層カーボンナノチューブの製造方法、および高純度2層〜5層カーボンナノチューブ含有組成物
JP2008173608A (ja) * 2007-01-22 2008-07-31 Mitsubishi Chemicals Corp 気相成長炭素繊維製造用触媒及び気相成長炭素繊維
JP2010201351A (ja) * 2009-03-04 2010-09-16 Toray Ind Inc カーボンナノチューブ製造用触媒体、その製造方法およびカーボンナノチューブ含有組成物の製造方法およびカーボンナノチューブ含有組成物
JP2011046611A (ja) * 2002-07-31 2011-03-10 Unidym Inc 担持触媒を用いた単一層カーボンナノチューブの製造方法
JP2011148674A (ja) * 2009-12-25 2011-08-04 Toray Ind Inc カーボンナノチューブ含有組成物およびその製造方法。
JP2012508159A (ja) * 2008-11-18 2012-04-05 ユニバーシティ サインス マレーシア カーボンナノチューブ(carbonnanotubes,CNTs)を生成するプロセス
JP2013018673A (ja) * 2011-07-08 2013-01-31 National Institute Of Advanced Industrial Science & Technology 単層カーボンナノチューブと二層カーボンナノチューブが任意比率で混合してなるカーボンナノチューブ集合体並びにその製造方法
JP2013519515A (ja) * 2010-02-16 2013-05-30 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング カーボンナノチューブの製造
JP2014001084A (ja) * 2012-06-15 2014-01-09 Toyo Ink Sc Holdings Co Ltd 分散体
JP2014208328A (ja) * 2013-03-29 2014-11-06 東洋インキScホールディングス株式会社 カーボンナノチューブ合成用触媒、カーボンナノチューブ集合体、及びその製造方法
JP2015048263A (ja) * 2013-08-30 2015-03-16 帝人株式会社 単層カーボンナノチューブ及び二層カーボンナノチューブを含有しているカーボンナノチューブ集合体、並びにその合成方法
JP2015062905A (ja) * 2009-07-17 2015-04-09 サウスウエスト ナノテクノロジーズ, インコーポレイテッド 多層カーボンナノチューブ製造のための触媒および方法
JP2015123410A (ja) * 2013-12-26 2015-07-06 東洋インキScホールディングス株式会社 カーボンナノチューブ合成用触媒
JP2016013680A (ja) * 2014-06-12 2016-01-28 東洋インキScホールディングス株式会社 積層体

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046611A (ja) * 2002-07-31 2011-03-10 Unidym Inc 担持触媒を用いた単一層カーボンナノチューブの製造方法
JP2006188389A (ja) * 2005-01-06 2006-07-20 Univ Nagoya 高純度2層〜5層カーボンナノチューブの製造方法、および高純度2層〜5層カーボンナノチューブ含有組成物
JP2008173608A (ja) * 2007-01-22 2008-07-31 Mitsubishi Chemicals Corp 気相成長炭素繊維製造用触媒及び気相成長炭素繊維
JP2012508159A (ja) * 2008-11-18 2012-04-05 ユニバーシティ サインス マレーシア カーボンナノチューブ(carbonnanotubes,CNTs)を生成するプロセス
JP2010201351A (ja) * 2009-03-04 2010-09-16 Toray Ind Inc カーボンナノチューブ製造用触媒体、その製造方法およびカーボンナノチューブ含有組成物の製造方法およびカーボンナノチューブ含有組成物
JP2015062905A (ja) * 2009-07-17 2015-04-09 サウスウエスト ナノテクノロジーズ, インコーポレイテッド 多層カーボンナノチューブ製造のための触媒および方法
JP2011148674A (ja) * 2009-12-25 2011-08-04 Toray Ind Inc カーボンナノチューブ含有組成物およびその製造方法。
JP2013519515A (ja) * 2010-02-16 2013-05-30 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング カーボンナノチューブの製造
JP2013018673A (ja) * 2011-07-08 2013-01-31 National Institute Of Advanced Industrial Science & Technology 単層カーボンナノチューブと二層カーボンナノチューブが任意比率で混合してなるカーボンナノチューブ集合体並びにその製造方法
JP2014001084A (ja) * 2012-06-15 2014-01-09 Toyo Ink Sc Holdings Co Ltd 分散体
JP2014208328A (ja) * 2013-03-29 2014-11-06 東洋インキScホールディングス株式会社 カーボンナノチューブ合成用触媒、カーボンナノチューブ集合体、及びその製造方法
JP2015048263A (ja) * 2013-08-30 2015-03-16 帝人株式会社 単層カーボンナノチューブ及び二層カーボンナノチューブを含有しているカーボンナノチューブ集合体、並びにその合成方法
JP2015123410A (ja) * 2013-12-26 2015-07-06 東洋インキScホールディングス株式会社 カーボンナノチューブ合成用触媒
JP2016013680A (ja) * 2014-06-12 2016-01-28 東洋インキScホールディングス株式会社 積層体

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHAI, SIANG-PIAO ET AL.: "The effect of reduction temperature on Co-Mo/Al2O3 catalysts for carbon nanotubes formation", APPLIED CATALYSIS A: GENERAL, vol. 326, no. 2, JPN6013064813, 15 July 2007 (2007-07-15), NL, pages 173 - 179, XP022117888, ISSN: 0004550495, DOI: 10.1016/j.apcata.2007.04.020 *
CHEUNG,C.L. ET AL.: "Diameter-Controlled Synthesis of Carbon Nanotubes", THE JOURNAL OF PHYSICAL CHEMISTRY B, vol. 106, JPN6018003020, 16 February 2002 (2002-02-16), US, pages 2429 - 2433, ISSN: 0004550496 *
WONG,W.K. ET AL.: "Uniform-diameter, aligned carbon nanotubes from microwave plasma-enhanced chemical vapor deposition", JOURNAL OF APPLIED PHYSICS, vol. 97, JPN6018003018, 4 April 2005 (2005-04-04), US, pages 084307, ISSN: 0004550494 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021005371A1 (en) * 2019-07-09 2021-01-14 Applied Graphene Materials Uk Limited Dispersions
WO2021005368A1 (en) * 2019-07-09 2021-01-14 Applied Graphene Materials Uk Limited Dispersions
WO2021080006A1 (ja) 2019-10-24 2021-04-29 東洋インキScホールディングス株式会社 非水電解質二次電池用カーボンナノチューブ分散液、それを用いた樹脂組成物、合材スラリー、電極膜、及び非水電解質二次電池
WO2021201002A1 (ja) 2020-04-03 2021-10-07 東洋インキScホールディングス株式会社 ホウ素ドープ炭素材料、導電性組成物、導電膜、および蓄電デバイス
WO2022009915A1 (ja) 2020-07-07 2022-01-13 東洋インキScホールディングス株式会社 カーボンナノチューブ、カーボンナノチューブ分散液、それを用いた非水電解質二次電池
JP6927448B1 (ja) * 2021-04-27 2021-09-01 東洋インキScホールディングス株式会社 電磁波吸収体用熱可塑性樹脂組成物及び成形体
JP2022168934A (ja) * 2021-04-27 2022-11-09 東洋インキScホールディングス株式会社 電磁波吸収体用熱可塑性樹脂組成物及び成形体

Also Published As

Publication number Publication date
JP7052336B2 (ja) 2022-04-12

Similar Documents

Publication Publication Date Title
JP2019108256A (ja) 多層カーボンナノチューブおよび多層カーボンナノチューブの製造方法
JP6380588B1 (ja) 多層カーボンナノチューブおよび多層カーボンナノチューブの製造方法
JP5751379B1 (ja) 積層体
JP2019005721A (ja) 触媒担持体およびカーボンナノチューブ合成用触媒
CN102395439B (zh) 包覆银超微粒子及其制造方法
JP4701409B2 (ja) コアシェル型酸化セリウムポリマーハイブリッドナノ粒子及びその分散液の製造方法
KR102394357B1 (ko) 다층 카본 나노 튜브, 다층 카본 나노 튜브의 제조 방법, 분산액, 수지 조성물, 및 도막
Izu et al. Formation mechanism of monodispersed spherical core–shell ceria/polymer hybrid nanoparticles
Yuan et al. Low-temperature plasma preparation and application of carbon black nanoparticles
US11807766B2 (en) Anti-counterfeit ink composition, anti-counterfeit ink, anti-counterfeit printed matter, and method for producing the anti-counterfeit ink composition
JP6468108B2 (ja) 樹脂組成物、積層体及び積層体の製造方法
JP6959290B2 (ja) 単斜晶ジルコニア系ナノ粒子及びその製造方法
JP6547438B2 (ja) 積層体
TWI787282B (zh) 近紅外線硬化型油墨組成物及其製造方法、近紅外線硬化膜暨光造形法
JP7010289B2 (ja) 光熱変換層とその製造方法、および当該光熱変換層を用いたドナーシート
JP2018126872A (ja) 積層体
JP2012193052A (ja) 有機溶媒分散アルミナゾル及びその製造方法
JP2007204857A (ja) 微細炭素繊維集合体の製造方法
JP2010285695A (ja) 銀微粒子とその分散液
JP6547449B2 (ja) 積層体およびその製造方法
TWI837092B (zh) 光熱轉換層及其製造方法暨使用該光熱轉換層之施體片材
JP2004285171A (ja) 水性顔料分散体の製造方法及び水性顔料記録液の製造方法
White Aspects of Multi-Walled Carbon Nanotubes in Commercially Viable, Static Dissipative Aerospace Coatings
JP2021138843A (ja) インクジェット用インク及びインクジェット用インクの製造方法
JP2007231123A (ja) 液体組成物の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200804

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220314

R151 Written notification of patent or utility model registration

Ref document number: 7052336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151