JP2019071320A - 結露防止機能を備えたレーザ装置 - Google Patents

結露防止機能を備えたレーザ装置 Download PDF

Info

Publication number
JP2019071320A
JP2019071320A JP2017195848A JP2017195848A JP2019071320A JP 2019071320 A JP2019071320 A JP 2019071320A JP 2017195848 A JP2017195848 A JP 2017195848A JP 2017195848 A JP2017195848 A JP 2017195848A JP 2019071320 A JP2019071320 A JP 2019071320A
Authority
JP
Japan
Prior art keywords
temperature
cooling
laser
dew point
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017195848A
Other languages
English (en)
Other versions
JP6640811B2 (ja
Inventor
宏 瀧川
Hiroshi Takigawa
宏 瀧川
祐司 西川
Yuji Nishikawa
祐司 西川
吉田 宏之
Hiroyuki Yoshida
宏之 吉田
忠 黒沢
Tadashi Kurosawa
忠 黒沢
森 敦
Atsushi Mori
敦 森
年康 塩見
Toshiyasu Shiomi
年康 塩見
道徳 前田
Michitoku Maeda
道徳 前田
明彦 西尾
Akihiko Nishio
明彦 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP2017195848A priority Critical patent/JP6640811B2/ja
Priority to US16/142,078 priority patent/US11133643B2/en
Priority to CN201811140118.9A priority patent/CN109638637B/zh
Priority to DE102018216840.7A priority patent/DE102018216840A1/de
Publication of JP2019071320A publication Critical patent/JP2019071320A/ja
Application granted granted Critical
Publication of JP6640811B2 publication Critical patent/JP6640811B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02423Liquid cooling, e.g. a liquid cools a mount of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02218Material of the housings; Filling of the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06804Stabilisation of laser output parameters by monitoring an external parameter, e.g. temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02218Material of the housings; Filling of the housings
    • H01S5/0222Gas-filled housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0617Arrangements for controlling the laser output parameters, e.g. by operating on the active medium using memorised or pre-programmed laser characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06825Protecting the laser, e.g. during switch-on/off, detection of malfunctioning or degradation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Lasers (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】除湿しなくても、露点温度が高い環境下にあっても、発熱部を本来維持したい冷却温度に維持しながら、結露防止対象部への結露を防止できるレーザ装置の提供。【解決手段】レーザ装置1は、受熱冷却部11の冷却能力を制御する冷却能力制御手段6と、発熱部9を含む結露防止対象部13を包囲し、発熱部9の温度上昇に連動して筐体2内の最高露点温度より高温の包囲部材平衡温度になる包囲部材14と、包囲部材14の温度を検出する温度検出手段15とを備え、制御部7は、レーザ電源部4に電流出力指令を出力している間、包囲部材温度を、予め包囲部材平衡温度より低温に設定された切換温度と比較し、切換温度より低い時は、受熱冷却部11の冷却能力が低水準となるように冷却能力制御手段6を制御し、切換温度以上である時は、受熱冷却部11の冷却能力が標準水準あるいは標準水準より高水準となるように冷却能力制御手段6を制御する。【選択図】図1

Description

本発明は、結露防止機能を備えたレーザ装置に関する。詳しくは、発熱量の大きい高出力レーザでは最も一般的な冷却方法である水冷式のレーザ装置に関し、水冷式レーザ装置で問題となる被冷却部における結露を防止する機能を備えたレーザ装置に関する。
レーザ加工等に使用される高出力レーザ装置では、レーザ発振器等の発熱部品の発熱による当該発熱部品の温度上昇を抑えるため、発熱部品を水冷する場合が多い。しかし、レーザ装置の庫内露点温度が冷却水の温度より高い場合、結露が発生し、発熱部品や発熱部品と共に冷却される部品において漏電や腐食による損傷が発生する恐れがある。このため、従来は盤用クーラー等によって庫内の除湿を行ってきた。ところが、盤用クーラーの使用には、コストがかかる、大きなスペースを要する、盤用クーラーの信頼性にレーザ装置の信頼性が左右される等の問題がある。
また、結露する可能性があると判断された場合は、冷却水の流量を減少させるという方法もある。しかし、当然のことながら、レーザ発振器等の発熱部品の温度が標準的な温度より上昇するので、寿命消費が加速され、寿命や信頼性への悪影響は避けられない。
冷却によって発生する可能性のある結露を防止することは普遍的な課題であり、従来から多くの技術が提案されている。例えば、特許文献1には、半導体レーザと、半導体レーザを冷却する冷却手段と、半導体レーザの雰囲気温度を検出する温度検出手段と、半導体レーザの雰囲気湿度を検出する湿度検出手段と、湿度に対する水の露点温度特性を記憶しているメモリと、制御手段とを備え、上記制御手段は、湿度検出手段の検出湿度に基づいて、上記メモリを参照して露点温度を算出し、温度検出手段の検出温度がこの露点温度よりも高くなるように冷却手段を制御することを特徴とする半導体レーザ装置が開示されている。
この技術では、半導体レーザの温度が露点温度より高くなるように冷却手段が制御されるので、露点温度が高い場合は半導体レーザの温度が上がることになる。従って、結露を避けると半導体レーザの寿命消費が加速されるという前述の問題は解決されない。
特許文献2には、半導体レーザに供給する注入電流を制御すると共に前記半導体レーザを温度制御して当該半導体レーザから出力されるレーザ光の波長を安定化させる波長安定化光源に備えられ、前記半導体レーザにおける結露発生の要因となる環境情報を収集する手段と、この手段で収集された環境情報に基づいて前記半導体レーザを監視し、結露の可能性が生じた場合に当該半導体レーザに対する温度制御を停止させる結露判断手段とを具備したことを特徴とする結露防止装置が開示されている。
やはり、この技術も、結露の可能性が生じた場合に当該半導体レーザに対する温度制御を停止させているので、露点温度が高い環境下では半導体レーザの冷却が不充分になり、半導体レーザの寿命消費が加速されるという問題は解決されない。
特許文献3には、複数個の固体発光素子を搭載した実装基板と、前記実装基板で発生した熱を冷却させる冷却流水路と、前記冷却流水路に流入させる冷却水の入水量または入水温を調整する調整手段と、前記実装基板の温度を検出するための第1の検出手段と、前記実装基板の周囲気体の温度、湿度、気圧の少なくとも1つを検出するための第2の検出手段と、前記調整手段の調整を制御する制御ユニットと、が透光性容器内に配置された光源装置であって、前記制御ユニットは、予め保持された冷却制御基準値と前記第1および第2の検出手段による検出結果を比較判定し、前記調整手段による冷却水を調整することを特徴とする光源装置が開示されている。
この装置は、結露を防ぐために、基板温度と基板の周囲気体の湿度等を検出して、冷却水の入水量または入水温を調整している。しかし、やはり、この技術も、基板の周囲気体の湿度が高い場合は、冷却水の入水量を減らす等の方法で基板の温度を上げているため、固体発光素子の寿命消費が加速されるという問題は解決されない。
特許文献4には、光源を含む複数の電子部品、これら電子部品に対して駆動電流を供給する主電源、および前記光源に対するスタート釦を備えた電子機器に用いる光安定化装置であって、前記光源に対して加熱電流を供給し、前記光源を非発光状態で自己発熱させる加熱電源と、前記主電源が投入された後、前記複数の電子部品のうちで最初に前記光源に対して加熱電流を供給し、前記光源の温度を露点温度よりも高くすると共に、前記スタート釦が押下されたときには、駆動電流を供給して前記光源を発光させるよう制御する制御部を備えた光安定化装置が開示されている。
この文献は、光源への結露を防ぐために、光源を発光させる前に加熱電流を流して光源の温度を露点温度より上げることを開示するだけであり、光源を冷却する技術には言及していない。従って、この技術は、露点温度が高い場合、結露を防ぐために光源の温度を上げることになり、光源の寿命消費が加速されるという問題を解決する技術ではない。
特許文献5には、植物に対して光を照射する照明装置であって、光源を有する光源ユニットと、内部に冷媒を通す冷却部を有し、該冷却部内に冷媒を供給することで上記光源ユニットとの間で熱交換を行い、上記光源の冷却を行う冷却ユニットと、上記光源ユニットの温度を測定する温度センサと、上記温度センサが測定した温度に基づいて上記冷媒の供給を開始したり停止したりする冷媒流通制御部と、を備えていることを特徴とする照明装置が開示されている。
この文献は、冷媒流通制御部には上限温度および下限温度が設定されており、上記温度センサが上記上限温度よりも高い温度を検出したときに、上記冷媒の供給を開始し、上記温度センサが上記下限温度よりも低い温度を検出したときに、上記冷媒の供給を停止することや、空間内の露点温度を上記下限温度として設定することにも言及している。しかし、この技術も、露点温度が高いと、光源ユニットの温度が高くでも冷媒の供給を停止することになるので、露点温度が高い場合には光源の寿命消費が加速されるという問題は解決されない。
特許文献6には、被写体の放射線画像情報を検出する放射線画像情報検出器と、前記放射線画像情報検出器を収容する筐体と、前記筐体の外部の温度を検出する温度検出器と、前記筐体の外部の湿度を検出する湿度検出器と、前記筐体の内部の温度を調整する温度調整手段と、前記温度検出器及び前記湿度検出器の検出結果に基づいて前記温度調整手段を制御することにより、前記放射線画像情報検出器を所定温度以下に維持すると共に、前記筐体内での結露の発生を回避可能なように該筐体内の温度を制御する制御手段と、を備えることを特徴とする放射線画像撮影装置が開示されている。
しかし、この技術では、筐体内の温度が制御されても、筐体内の露点温度が変化する訳ではないので、結局、露点温度が高い場合は、結露しないように、放射線画像情報検出器の温度を本来維持したい温度より高く保つしかない。従って、この文献にも、寿命消費が加速されるという問題への解決方法は開示されていない。
特許文献7には、X線透視および撮影に用いられるX線検出器の温度を調整するX線検出器用温度調整手段と、前記X線検出器が設置された室内の気温を測定する気温測定手段と、前記室内の湿度を測定する湿度測定手段と、各気温における飽和水蒸気圧値をあらかじめ記憶している飽和水蒸気圧記憶手段と、前記気温測定手段から出力される室温と前記湿度測定手段から出力される湿度および前記飽和水蒸気圧記憶手段に記憶された前記飽和水蒸気圧値から室内の露点温度を算出して、前記熱媒体の温度が前記露点温度を超えるように制御する制御手段を設けたことを特徴とするX線診断装置が開示されている。
しかし、この技術は、X線検出器の周囲に循環させる熱媒体の温度が露点温度を超えるように制御するので、露点温度が高い場合は、温度の高い熱媒体を循環させることになり、X線検出器の温度が本来維持したい温度より高温になってしまい、寿命消費が加速されることに変わりはない。
特許文献8には、電子機器が配置される室と、前記電子機器に近接して設けられ、該電子機器から発生する熱で冷媒を気化させることにより該電子機器を冷却する蒸発器と、前記蒸発器に供給する冷媒を外気温度を利用して冷却する凝縮器と、を備えた電子機器の冷却システムにおいて、前記外気温度を測定する外気温度測定手段と、前記外気温度測定手段における測定結果に基づき、前記蒸発器の入口における冷媒温度を前記室内の露点温度よりも高い所定温度に維持するように前記凝縮器における冷媒の凝縮温度を制御する第1の制御手段と、を備えたことを特徴とする電子機器の冷却システムが開示されている。
しかし、やはり、この技術も、凝縮器における冷媒の凝縮温度を室内の露点温度よりも高い所定温度に維持するように制御しており、室内の露点温度が高くなると、電子機器を冷却する蒸発器に供給する冷媒の温度が高くなり、電子機器が充分冷却できなくなる恐れがある。
以上のように、いずれの従来技術においても、半導体レーザ等の冷却対象部分への結露を防止するために、冷却対象部分の温度が、その冷却対象部分が収納された筐体や室内の露点温度より低温にならないように、冷媒の温度を上げたり、冷媒の供給を停止したりする等、冷却対象部分をあまり冷却しないようしている。しかし、この方法では、露点温度が高い場合は、冷却対象部分を本来維持したい冷却温度より高い状態で使用することになるため、冷却対象部分を本来維持したい冷却温度に維持した場合に比べ、寿命消費が加速されたり、所定の性能が得られなかったりする問題がある。上記従来技術には、この問題を解決する技術について一切開示されていない。もちろん、盤用クーラー等の除湿器によって露点温度を下げれば、冷却対象部分への結露を発生させず、冷却対象部分を本来維持したい冷却温度に冷却することが可能になるが、除湿器の使用には、前述のように、コストがかかる、大きなスペースを要する、盤用クーラーの信頼性にレーザ装置の信頼性が左右される等の問題がある。従って、除湿器によって除湿せずに、露点温度が高い環境下でも、冷却対象部分を本来維持したい冷却温度に維持しながら、冷却対象部分への結露を防止できる技術は、上記従来技術には全く開示されていない。
特公平6−32336号公報 特開平6−307808号公報 特開2012−89417号公報 特開2010−212475号公報 特許第5261612号公報 特開2009−72361号公報 特開2008−93330号公報 特開2009−231529号公報
発熱部品を冷却水で冷却することによって、発熱部品の温度上昇が抑えられ、発熱部品を標準的な駆動条件で駆動した時に、発熱部品の温度を所定の標準部品温度に保つことが可能になる。しかし、発熱部品の発熱部の温度がある程度高くても、発熱部を冷却する際に発熱部と共に冷却される部分は、発熱部に比べて温度が低い。このため、発熱部品周辺の空気の露点温度が高い場合は、発熱部と発熱部を冷却するために発熱部と共に冷却される部分を含む冷却対象部の低温部分に結露が発生する可能性がある。
露点温度は、空気の温度を変えても変わらない。しかし、盤用クーラー等の除湿器で除湿すれば、露点温度が下げられるので、結露を防止することは可能である。ところが、盤用クーラー等の除湿器の使用には、前述のように、コストがかかる、大きなスペースを要する、盤用クーラーの信頼性にレーザ装置の信頼性が左右される等の問題がある。一方、除湿しない場合、露点温度は下がらないので、結露を防止する必要がある。このとき、上記従来技術のように、冷却対象部の低温部分の温度が、露点温度より下がらないように、冷却水による冷却を抑制すると、露点温度が高い場合は、発熱部品を標準的な駆動条件で駆動した時に、発熱部品の温度を本来維持したい冷却温度である所定の標準部品温度に保つことができなくなる。その結果、発熱部品の温度が標準部品温度より高くなり、寿命消費が加速されて寿命が短くなったり、信頼性が低下したり、あるいは所定の性能が得られなくなるという問題が生じる。
従って、本発明が解決しようとする課題は、特に除湿器によって除湿しなくても、露点温度が高い環境下にあっても、発熱部を本来維持したい冷却温度に維持しながら、発熱部を含む冷却対象部分への結露を防止できるレーザ装置であって、低コストで小型化が可能であり、かつ信頼性が高く長寿命なレーザ装置を提供することにある。
(1) 本発明に係るレーザ装置は、筐体(例えば、後述の筐体2)を備えると共に、前記筐体の内部に、少なくとも一つ以上のレーザ発振器(例えば、後述のレーザ発振器3)と、前記レーザ発振器に電流を供給する一つ以上のレーザ電源部(例えば、後述のレーザ電源部4)とを有し、前記レーザ発振器は、レーザ発振のために発熱する一つ以上の発熱部(例えば、後述の発熱部9)と、少なくとも前記発熱部を含む結露防止対象部に熱的に接続し、前記結露防止対象部を冷却するための冷却水を流す冷却水流路(例えば、後述の冷却水流路10)を有する一つ以上の受熱冷却部(例えば、後述の受熱冷却部11)と、前記冷却水流路に冷却水を流すための冷却水配管系(例えば、後述の冷却水配管系5)が接続されたレーザ装置(例えば、後述のレーザ装置1、100、200、300、400、500、600、700)であって、更に、前記冷却水配管系を流れる冷却水によって前記受熱冷却部を冷却する冷却能力を制御するための一つ以上の冷却能力制御手段(例えば、後述の冷却能力制御手段6)と、少なくとも前記冷却能力制御手段及び前記レーザ電源部を制御する制御部(例えば、後述の制御部7)と、前記結露防止対象部(例えば、後述の結露防止対象部13)に近接して前記結露防止対象部を包囲する包囲部材(例えば、後述の包囲部材14)と、前記包囲部材の所定部位の温度を検出し、その検出結果を包囲部材温度として前記制御部に出力する少なくとも一つ以上の温度検出手段(例えば、後述の温度検出手段15)と、を備え、前記包囲部材は、前記レーザ装置あるいは前記レーザ発振器が、標準光出力のレーザ光を出射し、前記冷却能力制御手段によって前記受熱冷却部を冷却する冷却能力が標準水準に制御されている標準駆動条件で駆動されて実質的に平衡状態に達した状態において、前記発熱部の温度上昇に連動して、前記筐体の内部の空気に対して想定される最高露点温度より高温の包囲部材平衡温度になるように構成され、前記制御部は、前記レーザ電源部に電流出力指令を出力している間、前記温度検出手段によって検出された前記包囲部材温度を、予め前記包囲部材平衡温度より低温に設定された切換温度と比較し、前記切換温度より低い時は、前記受熱冷却部を冷却する冷却能力が前記標準水準より低い低水準となるように前記冷却能力制御手段を制御し、前記切換温度以上である時は、前記受熱冷却部を冷却する冷却能力が前記標準水準あるいは前記標準水準より高水準となるように前記冷却能力制御手段を制御するものである。
(2) (1)に記載のレーザ装置において、更に、前記筐体の内部の空気の露点温度を検出するための一つ以上の露点温度検出手段(例えば、後述の露点温度検出手段19)を備え、前記露点温度検出手段によって検出された前記筐体の内部の空気の露点温度を筐体内露点温度としたとき、前記切換温度が、(切換温度)=(筐体内露点温度)+(所定温度)に設定されていてもよい。
(3) (1)又は(2)に記載のレーザ装置において、前記最高露点温度が、前記レーザ装置の許容設置環境条件、あるいは、設置条件仕様から導出される前記レーザ装置の周囲の空気における露点温度の上限である周囲上限露点温度に設定されていてもよい。
(4) (3)に記載のレーザ装置において、更に、前記筐体の内部の空気の露点温度が、前記周囲上限露点温度より高くなった場合に、前記制御部の制御によって、前記レーザ装置の設置環境が前記設置条件仕様の範囲から逸脱していることを視覚的又は聴覚的に通知する通知手段(例えば、後述の表示部20)を備えていてもよい。
(5) (1)〜(4)のいずれかに記載のレーザ装置において、前記温度検出手段が設置される前記所定部位が、前記包囲部材における空気に接している表面あるいは表面の近傍の部位であって、前記レーザ装置あるいは前記レーザ発振器が前記平衡状態に達した状態において、前記包囲部材の突起部分を除いて最も温度の低い部位、あるいは最も温度の低い部位の温度に近い温度を示す部位に設定されていてもよい。
(6) (1)〜(5)のいずれかに記載のレーザ装置において、前記包囲部材に熱的に接続した補助加熱手段(例えば、後述の補助加熱手段21)を備え、前記制御部は、前記レーザ装置あるいは前記レーザ発振器が前記平衡状態に達した状態において、前記温度検出手段によって検出される前記包囲部材温度が前記最高露点温度より高温になるように、前記補助加熱手段の発熱量を制御するものでもよい。
(7) (1)〜(6)のいずれかに記載のレーザ装置において、前記レーザ発振器は、少なくとも一つ以上のLDモジュール(例えば、後述のLDモジュール22)を発光源あるいは励起光源とするレーザ発振器であり、少なくとも一つ以上の前記発熱部は、前記LDモジュールの構成要素の一つであるレーザダイオードチップ(例えば、後述のレーザダイオードチップ23)であり、前記包囲部材は、前記LDモジュールの構成要素の一つであるパッケージ(例えば、後述のパッケージ24)であり、前記パッケージの内部に、少なくとも一つ以上の前記レーザダイオードチップが設置されていてもよい。
(8) (7)に記載のレーザ装置は、前記受熱冷却部は、内部又は表面に前記冷却水流路が設けられた冷却板(例えば、後述の冷却板27)であり、少なくとも一つ以上の前記LDモジュールが、前記冷却板に熱的に接続して配置されていてもよい。
(9) (8)に記載のレーザ装置において、前記冷却板に複数の前記LDモジュールが配置されており、少なくとも、前記冷却板の前記冷却水流路に冷却水を流した時に最も上流側に近い位置に配置された前記LDモジュールの前記パッケージの表面あるいは表面近傍に、前記温度検出手段が設置されていてもよい。
(10) (1)〜(9)のいずれかに記載のレーザ装置において、前記冷却能力制御手段は、冷却水の流路を開閉する開閉弁(例えば、後述の電磁弁A、B、C)及び/又は冷却水の流路の流量を調整する流量調整弁を有し、前記冷却能力制御手段の冷却能力の制御は、前記開閉弁又は前記流量調整弁による冷却水の給水・非給水又は流量の制御であってもよい。
(11) (1)〜(10)のいずれかに記載のレーザ装置において、前記冷却水流路に冷却水を流すことによって前記筐体の内部に発生した結露水を、外部に排水する排水機構(例えば、後述の排水機構29)を備えていてもよい。
(12) (11)に記載のレーザ装置において、前記筐体の内部において、冷却水によって冷却される部位の少なくとも一ヶ所以上の表面に、断熱材(例えば、後述の断熱材32)が配置されていてもよい。
(13) (11)又は(12)に記載のレーザ装置において、前記筐体の内部で結露が発生する部分に、結露による腐食を抑制するために防錆処理が施されている、あるいは、前記筐体の内部で結露が発生する部分の材質が防錆材であってもよい。
(14) (1)〜(13)のいずれかに記載のレーザ装置において、複数の前記発熱部にそれぞれ熱的に接続した複数の前記受熱冷却部と、複数の前記受熱冷却部を冷却する冷却能力を独立して制御するための複数の前記冷却能力制御手段と、複数の前記発熱部を含む前記結露防止対象部に近接して、それぞれの前記結露防止対象部を包囲する複数の前記包囲部材と、複数の前記包囲部材の前記所定部位の温度を検出する複数の前記温度検出手段と、を備え、前記制御部は、それぞれの前記温度検出手段の検出結果に応じて、対応する前記受熱冷却部を冷却する冷却能力を制御する前記冷却能力制御手段をそれぞれ個別に制御するものであってもよい。
(15) (1)〜(13)のいずれかに記載のレーザ装置において、複数の前記レーザ発振器を備え、それぞれの前記レーザ発振器におけるレーザ発振のために発熱する複数の前記発熱部にそれぞれ熱的に接続した複数の前記受熱冷却部と、複数の前記受熱冷却部を冷却する冷却能力を一括して制御するための前記冷却能力制御手段と、複数の前記発熱部を含む前記結露防止対象部に近接して、それぞれの前記結露防止対象部を包囲する複数の前記包囲部材と、複数の前記包囲部材の前記所定部位の温度を検出する複数の前記温度検出手段を備え、前記制御部は、それぞれの前記温度検出手段の検出結果が同一温度になるように、対応する前記レーザ電源部から前記レーザ発振器に供給する電流を制御するものであってもよい。
本発明によれば、特に除湿器によって除湿しなくても、露点温度が高い環境下にあっても、発熱部を本来維持したい冷却温度に維持しながら、発熱部を含む結露防止対象部への結露を防止できるため、低コストで小型化が可能であると共に、信頼性が高く長寿命なレーザ装置を提供することができる。
本発明の第1実施形態に係るレーザ装置の概念的な構成を示すブロック図である。 本発明の第1実施形態に係るレーザ装置における制御の一例を示すフローチャートである。 本発明の第1実施形態に係るレーザ装置における制御の流れを表すタイムチャートである。 本発明の第2実施形態に係るレーザ装置の概念的な構成を示すブロック図である。 本発明の第2実施形態に係るレーザ装置における制御の一例を示すフローチャートである。 本発明の第2実施形態に係るレーザ装置における制御の流れを表すタイムチャートである。 本発明の第3実施形態に係るレーザ装置の概念的な構成を示すブロック図である。 本発明の第4実施形態に係るレーザ装置の概念的な構成を示すブロック図である。 本発明の第4実施形態に係るレーザ装置を構成するLDモジュールの模式的な断面図である。 LDモジュールの模式的断面図に熱回路網を追記した図である。 本発明の第4実施形態において、pn接合温度のpn接合発熱量依存性を算出した結果を示した図である。 排水機構の構造例を示す模式図である。 断熱材の配置例を示す図である。 本発明の第5実施形態に係るレーザ装置の概念的な構成を示すブロック図である。 本発明の第6実施形態に係るレーザ装置の概念的な構成を示すブロック図である。
以下、本発明に係るレーザ装置の実施の形態を、図面を参照して説明する。
以下に示す各図面において、同じ部材には同じ参照符号を付している。また、異なる図面において同じ参照符号が付されたものは、同じ機能を有する構成要素であることを意味するものとする。なお、これらの図面は見易くするために、縮尺を適宜変更している。また、図面に示される形態は、本発明を実施するための一つの例であり、本発明は図示された形態に限定されるものではない。
[第1実施形態]
図1は、本発明の第1実施形態に係るレーザ装置1の概念的な構成を示すブロック図である。
レーザ装置1は、筐体2の内部に、レーザ発振器3と、レーザ発振器3に駆動電流を供給するレーザ電源部4と、冷却水配管系5と、冷却能力制御手段6と、少なくともレーザ電源部4と冷却能力制御手段6を制御する制御部7と、制御部7に指示を出す入力部8とを備えている。
本実施形態に示すレーザ発振器3の内部には、発熱部9と、受熱冷却部11と、発熱部支持部12とが設けられている。発熱部9は、レーザ発振のために発熱する部品であり、レーザ発振器3が少なくとも一つ以上のLD(レーザダイオード)モジュールを発光源あるいは励起光源とするレーザ発振器3である場合は、LDモジュールの構成要素の一つであるレーザダイオードチップ(LDチップ)に相当する。受熱冷却部11は、発熱部支持部12に熱的に接して設けられている。受熱冷却部11には、発熱部支持部12及び発熱部支持部12を介した発熱部9を冷却するための冷却水を流す冷却水流路10が設けられている。冷却水流路10は、受熱冷却部11の内面又は表面に設けられている。発熱部支持部12は、発熱部9と受熱冷却部11との間に介在して発熱部9と熱的に接続し、発熱部9を支持している。この発熱部支持部12は、発熱部9を冷却する際に発熱部9と共に冷却される部品である。
本実施形態において、レーザ発振器3内の上記部品のうち、発熱部9及び発熱部支持部12が、結露を防止する必要のある結露防止対象部13を構成する。受熱冷却部11は、発熱部支持部12を支持することにより、結露防止対象部13と熱的に接続している。
結露防止対象部13は、結露防止対象部13に近接するように配置された包囲部材14によって包囲されている。包囲部材14は、受熱冷却部11との間で結露防止対象部13を包囲し得るものであればよいが、発熱部9が前述のようにLDチップの場合は、LDモジュールの構成要素の一つであるパッケージに相当する。ここで、包囲部材14は、受熱冷却部11との間で結露防止対象部13の周囲全体を必ずしも完全に密閉するように包囲するものに限定されず、受熱冷却部11との間で結露防止対象部13を実質的に包囲するものであればよい。従って、包囲部材14は、本発明の目的を妨げない程度に、空気が包囲部材14の内外を連通し得る部位を有していてもよい。
冷却水配管系5は、筐体2の外部のチラー(冷却水循環供給装置)16と筐体2の内部の受熱冷却部11に設けられた冷却水流路10とに亘って設けられ、チラー16と冷却水流路10との間で冷却水を循環するようになっている。冷却水配管系5は、チラー16から冷却水流路10に向かって冷却水が流入する流入側の配管部51と、冷却水流路10からチラー16に向かって冷却水が流出する流出側の配管部52と、配管部51の途中と配管部52の途中を連通させる配管部53とを有している。
なお、図1では、チラー16は、レーザ装置1の筐体2の外部に設置されているが、筐体2の内部に設置されてもよい。また、図1において、太い実線は、冷却水流路10を含む冷却水配管系5を表している。その傍に記載した矢印は冷却水の流れの方向を例示している。更に、白抜きの矢印は、レーザ光17を模式的に表している。即ち、レーザ発振器3から出射されたレーザ光17は、レーザ光学系18を経由して、レーザ装置1から出力されるようになっている。
レーザ発振器3の内部には、包囲部材14の所定部位の温度を検出する温度検出手段15が設けられている。温度検出手段15は、例えば温度センサからなり、包囲部材14の温度検出結果を包囲部材温度として制御部7に出力する。温度検出手段15を設ける包囲部材14の所定部位としては、結露防止対象部13への結露をより確実に防止するため、包囲部材14の空気に接している表面あるいは表面の近傍の部位で、レーザ装置1あるいはレーザ発振器3が、標準駆動条件で駆動されて実質的に平衡状態に達した状態において、包囲部材14の突起部分を除いて最も温度の低い部位、あるいは最も温度の低い部位の温度に近い温度を示す部位であることが望ましい。なお、包囲部材14の突起部分とは、例えば、包囲部材14の取付けフランジ部やタブ等の、包囲部材14の外壁面よりも結露防止対象部13から遠く離れている部分のことである。
包囲部材14は、発熱部9の温度上昇に連動して温度が上昇するように構成されている。具体的には、包囲部材14は、包囲部材平衡温度が、筐体2の内部の空気に対して想定される最高露点温度より高温になるように構成される。包囲部材平衡温度とは、レーザ装置1あるいはレーザ発振器3が、標準光出力のレーザ光を出射し、冷却能力制御手段6によって受熱冷却部11を冷却する冷却能力が標準水準に制御されている標準駆動条件で駆動されて実質的に平衡状態に達した状態における包囲部材14の温度である。標準光出力は、定格光出力としてもよい。具体的な包囲部材平衡温度は限定されないが、一例を挙げれば、最高露点温度より5℃高温になるように構成される。
包囲部材14の包囲部材平衡温度が最高露点温度より高温になるように構成するための具体的な手段としては、例えば、包囲部材14と受熱冷却部11との界面に断熱板(図示せず)を介在させる等の方法で、包囲部材14と受熱冷却部11の間の熱抵抗を増大させる手段や、包囲部材14の内壁面を黒体化して発熱部9からの輻射熱を吸収し易くしたりする手段が挙げられる。包囲部材14の受熱冷却部11と接している部分の近傍も、発熱部9の温度上昇に伴って充分温度が上昇するように、上記同様に断熱板を介在させる等の方法によって、包囲部材14と受熱冷却部11の間の熱抵抗が増大するような構成にしてもよい。
冷却能力制御手段6は、冷却水配管系5上に設けられ、図示するように、制御部7によって開閉制御される開閉弁である3つの電磁弁A、B、Cを有している。電磁弁Aは、冷却水配管系5の配管部51において、配管部53との接続部位よりも下流側に設けられている。電磁弁Bは、冷却水配管系5の配管部52において、配管部53との接続部位よりも上流側に設けられている。電磁弁Cは、冷却水配管系5の配管部53に設けられている。冷却能力制御手段6は、チラー16から受熱冷却部11に冷却水を供給する場合、電磁弁Cを閉じ、電磁弁Aと電磁弁Bを開くように制御され、チラー16から受熱冷却部11への冷却水の供給を停止する場合、電磁弁Cを開き、電磁弁Aと電磁弁Bを閉じるように制御される。これにより、受熱冷却部11の冷却水流路10を流れる冷却水の給水・非給水が制御され、その結果、冷却能力が制御される。
制御部7には、温度検出手段15によって検出された包囲部材温度と比較するための切換温度が予め設定されている。切換温度は、上述した包囲部材平衡温度より低温に設定される温度である。但し、本実施形態では、切換温度は、上述した筐体2の内部の空気に対して想定される最高露点温度よりも高温に設定される。具体的な温度は限定されないが、一例を挙げれば、包囲部材平衡温度が最高露点温度より5℃高温に設定される上述の例の場合、切換温度は、包囲部材平衡温度より3℃低温となるように設定される。従って、筐体2の内部の空気に対して想定される最高露点温度が35℃であるとすると、包囲部材平衡温度は40℃、切換温度は37℃ということになる。切換温度は、入力部8から設定入力することができる。
制御部7は、少なくともレーザ電源部4に電流出力指令を出力している間は、温度検出手段15によって検出される包囲部材温度を切換温度と比較している。そして、包囲部材温度が切換温度より低いと判断された時、制御部7は、冷却能力制御手段6を制御して電磁弁A、Bを閉じ、電磁弁Cを開き、チラー16から受熱冷却部11への冷却水の供給を停止した状態にする。これにより、対応する受熱冷却部11を冷却するための冷却能力は、標準水準より低い低水準に設定される。一方、包囲部材温度が切換温度より高いと判断された時、制御部7は、冷却能力制御手段6を制御して電磁弁A、Bを開き、電磁弁Cを閉じ、チラー16から、受熱冷却部11に冷却水を供給している状態にする。これにより、対応する受熱冷却部11を冷却する冷却能力は、標準水準に設定される。
図2は、本実施形態に示すレーザ装置1における制御の一例を示すフローチャートである。これに基づいて、レーザ装置1における制御について説明する。
レーザ装置1の電源がオンされ、制御が開始されると、制御部7は、まず、チラー16の運転状態を確認し(ステップS101)、チラー16が運転中か否かを判定する(ステップS102)。ここで、チラー16が運転中であれば(YESの場合)、入力部8から入力された情報を確認する(ステップS103)。ステップS102での判定で、チラー16が運転中でなければ(NOの場合)、チラー16の運転を開始し(ステップS104)、ステップS103に進む。
ステップS103では、制御部7は、入力部8から入力された情報を確認する。その結果、レーザ装置1に対して光出力指令が出ているかを判定する(ステップS105)。ここで、レーザ装置1に対して光出力指令が出ていないと判定された場合(NOの場合)、ステップS103に戻る。レーザ装置1に対して光出力指令が出ていると判定された場合(YESの場合)、制御部7は、温度検出手段15からの出力(温度検出値)を読み込み(ステップS106)、温度検出手段15で検出された包囲部材温度を切換温度と比較し、包囲部材温度が切換温度以上であるか否かを判定する(ステップS107)。
ステップS107で、包囲部材温度が切換温度より高いと判定された場合(YESの場合)、制御部7は、チラー16から受熱冷却部11への冷却水の供給が停止されているか否かを判定する(ステップS108)。ここで、冷却水の供給が停止中と判定された場合(YESの場合)、制御部7は冷却能力制御手段6を制御して、冷却水の供給を開始する(ステップS109)。次いで、制御部7は、光出力指令に対応した電流出力指令をレーザ電源部4に対して出力する。これにより、レーザ電源から供給された駆動電流によってレーザ発振器3がレーザ発振し、レーザ装置1からレーザ光が出射される(ステップS110)。
ステップS108で、チラー16から受熱冷却部11への冷却水の供給が停止されていないと判定された場合(NOの場合)、直接ステップS110に進む。また、ステップS107で、包囲部材温度が切換温度より低いと判定された場合(NOの場合)、制御部7は、チラー16から受熱冷却部11に冷却水が供給中か否かを判定する(ステップS111)。ここで、冷却水が供給中と判定された場合(YESの場合)、制御部7は、冷却能力制御手段6を制御して冷却水の供給を停止し(ステップS112)、次いで、ステップS110に進む。また、ステップS111でチラー16から受熱冷却部11に冷却水が供給されていないと判定された場合(NOの場合)も、ステップS110に進む。
制御部7は、ステップS110でレーザ光を出射している間も、絶えず、光出力指令の実行が完了したか否かを判定している(ステップS113)。ここで、光出力指令の実行が完了していないと判定される間(NOの場合)、制御部7は、ステップS106に戻って包囲部材温度のチェックを行う。光出力指令の実行が完了したと判定された場合(YESの場合)、制御部7は、冷却能力制御手段6を制御して、チラー16から受熱冷却部11への冷却水の供給を停止し(ステップS114)、その後、入力部8から電源オフ指令が出ているかを判定する(ステップS115)。ここで、電源オフ指令が出ていないと判定された場合(NOの場合)、ステップS103に戻って、次の光出力指令の入力を待ち、電源オフ指令が出ていると判定された場合(YESの場合)、制御部7は、冷却能力制御手段6を制御して、チラー16の運転を停止し(ステップS116)、最後に、レーザ装置1の電源をオフする。
かかるレーザ装置1の制御において、レーザ装置1の電源がオンされ、標準光出力を一定期間連続的に出力した後、標準光出力の50%の光出力を再び一定期間連続的に出力し、その後、光出力を終了するという光出力指令が入力部8から入力された場合について、具体的な制御の流れを説明すると、次のようになる。
レーザ装置1の電源がオンされ、制御が開始されると、制御部7は、まず、チラー16の運転状態を確認する(ステップS101)。ここでは、チラー16は停止中なので、制御部7は、チラー16の運転を開始し(ステップS104)、入力部8からの入力情報を確認する(ステップS103)。ここでは光出力指令が出ていると判定されるので、制御部7は、温度検出手段15からの出力を読み込み(ステップS106)、包囲部材温度が切換温度以上であるか否かを判定する(ステップS107)。
制御開始当初は、レーザ光は出力されておらず、まだ発熱部9は発熱していない。従って、ステップS107では、包囲部材温度は切換温度より低いと判定され、次いで、ステップS111で、チラー16から受熱冷却部11に冷却水が供給されている状態か否かが判定される。制御開始当初は、冷却水は供給されていないので、冷却水が供給されていない状態で、制御部7から標準光出力を連続的に出力するという光出力指令に対応した電流出力指令がレーザ電源部4に対して出力され、レーザ光が出射される(ステップS110)。制御部7は、レーザ光を出射している間、光出力指令の実行が完了したか否かを判定し(ステップ113)、光出力指令の実行が完了するまでは、ステップS106に戻って、温度検出手段15からの出力を読み込む。
暫くの間は、ステップS106→ステップS107→ステップS111→ステップS110→ステップS113→ステップS106のループを繰り返す。標準光出力を出力し続けていると、そのうちに、発熱部9の温度上昇に伴い、包囲部材温度も上昇して、切換温度(上述の例では37℃)に達する。これにより、ステップS107で、包囲部材温度が切換温度以上であると判定され、ステップS108に進んで、チラー16から受熱冷却部11への冷却水供給が開始されているか否かが判定される。ここでは未だ冷却水供給が開始されていないので、ここで始めて冷却水の供給が開始される(ステップS109)。
ここまでは、受熱冷却部11に冷却水は供給されていないので、結露防止対象部13に結露は発生していない。また、包囲部材温度は、レーザ装置1を標準駆動条件で駆動して平衡に達した時の包囲部材平衡温度(上述の例では40℃)より低い。従って、発熱部9の温度も標準駆動条件で駆動して平衡に達した時の温度より低いので、発熱部9の寿命消費が標準駆動条件で駆動している時より加速されることはない。
その後、ステップS110、ステップS113を経て、ステップS106に戻り、標準光出力を出力している間は、ステップS106→ステップS107→ステップS108→ステップS110→ステップS113→ステップS106のループを繰り返す。包囲部材温度は、切換温度(上述の例では37℃)から包囲部材平衡温度(上述の例では40℃)まで上がって平衡に達しており、筐体2の内部の空気に対して想定される最高露点温度(上述の例で35℃)を下回ることがないので、結露防止対象部13に結露が発生することはない。従って、ステップS107で包囲部材温度が切換温度より低いと判定されて冷却水の供給が停止することにより、発熱部9の温度が標準駆動条件で駆動されている時よりも高くなって、発熱部9の温度によって寿命消費が加速されることもない。
次に、光出力指令の指令内容が、標準光出力の50%の光出力を一定期間連続的に出力するように変わると、発熱部9における発熱量が減少し、発熱部9の温度が低下すると共に、包囲部材14の温度も低下する。これにより、ステップS107で、包囲部材温度が切換温度より低いと判定されると、受熱冷却部11に冷却水を供給中と判定されて、チラー16からの冷却水供給が停止される(ステップS112)。
冷却水の供給が停止されると、受熱冷却部11の温度が上昇し、発熱部9や包囲部材温度も上昇する。これにより、ステップS107で、包囲部材温度が切換温度以上であると判定され、次いで、ステップS108で、冷却水の供給は停止中と判定され、再び冷却水の供給が開始される(ステップS109)というステップが繰り返される。その結果、包囲部材温度は、ほぼ切換温度(上述の例では37℃)に一致するように制御されることになり、筐体2の内部の空気に対して想定される最高露点温度(上述の例で35℃)を下回ることはない。このため、結露防止対象部13に結露が発生することはない。包囲部材温度は包囲部材平衡温度より低いので、発熱部9の温度は、少なくとも、標準駆動条件で駆動されている時の温度よりも低く、標準駆動条件で駆動されている時よりも、発熱部9の温度によって寿命消費が加速されることもない。
ステップS113で、光出力指令の実行が完了したと判定されると、制御部7は、チラー16から受熱冷却部11への冷却水の供給を停止した後(ステップS114)、電源オフ指令が出ているかが判定される(ステップS115)。電源オフ指令が出ていると判定された場合、チラー16の運転が停止され(ステップS116)、最後に、レーザ装置1の電源がオフとなる。
光出力指令の実行が完了したと判断されると、直ぐに、チラー16から受熱冷却部11への冷却水の供給を停止しているので、受熱冷却部11等の熱容量によって、包囲部材14や結露防止対象部13の温度は、比較的ゆっくりと低下する。このため、冷却水流路10以外の冷却水配管系5等の方が低温であり、包囲部材14や結露防止対象部13には結露が発生しない。
以上のように、本実施形態におけるレーザ装置1は、除湿器を設けなくても、ステップS101からステップS116のフローチャートに従って制御することによって、発熱部9の温度を標準駆動条件における発熱部9の温度よりも上げて、標準駆動条件における発熱部9の寿命消費を加速させることなく、標準光出力より低い光出力が指令された場合も含めて、発熱部9を含む結露防止対象部13への結露を防止することができる。
図3は、上述の具体的な制御の流れを表すタイムチャートである。図3では、500秒間は標準光出力を出力し、その後、400秒間は標準光出力の50%の光出力を出力するという光出力指令が入力部から入力された場合を示している。
包囲部材温度が切換温度より高い期間は、冷却水がチラー16から受熱冷却部11に連続的に常時給水される。包囲部材温度が下がって切換温度より低くなると、冷却水の供給が停止されるが、冷却水の供給が停止されたことによって包囲部材温度が切換温度まで上がってくると、再び冷却水の供給が開始されるので、冷却水の供給は断続的に行われる。その冷却水断続給水を行っている期間は、包囲部材温度はほぼ切換温度付近に維持される。
冷却水が断続的に供給されても、受熱冷却部11等の熱容量によって、包囲部材14や発熱部9の温度は急激に変化しないが、余り頻繁に給水と給水停止が繰り返さないように、給水を開始する温度より給水を停止する温度より少し低く設定してもよい。
また、冷却能力制御手段6は、電磁弁A、B、Cによって冷却水の供給を断続的に切換える代わりに、例えば、図1に示す電磁弁Aに、開閉弁ではなく、流量を調整可能な流量調整弁を使用してもよい。流量調整弁を使用することにより、図3における冷却水断続給水期間では、配管部51を流れる冷却水の流量を調整し、受熱冷却部11に供給される冷却水量を低減することによって、包囲部材温度を切換温度付近の温度に制御することができる。しかも、流量調整弁を使用する場合は、流量の変化速度を制御して、急激な流量変化による配管系へのストレスや、LDモジュールやLDチップに不要な振動や衝撃が加わることを低減するように制御することもできる。また、冷却能力制御手段6には、電磁弁A、B、Cに代えて流量調整弁だけを設けるようにしてもよい。
なお、冷却能力制御手段6による冷却能力の制御としては、他に、チラー16から供給される冷却水の温度を変えるという制御方法も考えられる。しかし、冷却水の熱容量により、急速に冷却能力を変化させることが難しいという問題があるので、開閉弁や流量調整弁のような流量制御手段によって冷却水の流量を制御することが望ましい。
[第2実施形態]
図4は、本発明の第2実施形態に係るレーザ装置100の概念的な構成を示すブロック図である。
図4に示すレーザ装置100が図1に示すレーザ装置1と異なる点は、筐体2の内部の空気の露点温度を検出するための露点温度検出手段19と、判定結果や警告等を表示するための表示部20が追加されている点である。
露点温度検出手段19は、例えば露点温度センサからなり、筐体2の内部の空気の露点温度検出値を制御部7に出力する。なお、図4においては、露点温度検出手段19は、レーザ発振器3の外側に設置されているが、結露防止対象部13に近い位置の空気の露点温度を検出するために、レーザ発振器3の内側に設置されてもよいし、レーザ発振器3の外側と内側の両方に一つ以上の露点温度検出手段19を設置して、露点温度検出手段19の検出特性の劣化等を監視できるようにしてもよい。また、露点温度検出手段19は、温度検出器と、湿度検出器と、温度と湿度から露点温度を算出する算出部等から構成されるものでもよい。
本実施形態における切換温度は、第1実施形態と異なり、露点温度検出手段19で検出された筐体2の内部の空気の露点温度に所定温度を加えた値とされている。所定温度は、0℃を含む正か負の温度である。即ち、所定温度は、マージンをとって正の温度としてもよいし、前述のように通常は包囲部材14の温度より結露防止対象部13の最低温度の方が高くなることを考慮して、負の温度としてもよい。
図5は、本実施形態のレーザ装置100における制御の一例を示すフローチャートである。
図5に示すフローチャートが図2に示すフローチャートと異なる点は、温度検出手段15からの出力読み込み(ステップS206)の後に、露点温度検出手段19からの出力読み込み(ステップS217)が追加された点と、図2に示すフローチャートでは、ステップS107で包囲部材温度と切換温度とを比較しているのに対して、図5に示すフローチャートでは、ステップS207で、包囲部材温度と露点温度検出手段19で検出された露点温度に所定温度を加えた温度とを比較している点である。
ステップS207において、所定温度は用語の短縮のためαと記載しており、包囲部材温度が露点温度+所定温度以上であるか否かが判定される。包囲部材温度が露点温度+所定温度より高い場合(YESの場合)は、チラー16より受熱冷却部11に冷却水が供給され、包囲部材温度が露点温度+所定温度より低い場合(NOの場合)は、チラー16から受熱冷却部11への冷却水の供給が停止される。
図6は、本実施形態における制御の流れを表すタイムチャートである。図6では、図3と同様に、500秒間は標準光出力を出力し、その後、400秒間は標準光出力の50%の光出力を出力するという光出力指令が入力部8から入力された場合を示している。図3と異なるのは、露点温度検出手段19で検出された筐体2の内部の露点温度が追記されている点である。ここでは、所定温度を1℃として、露点温度+1℃が切換温度として設定されている。
図3の場合と同様に、包囲部材温度が切換温度より高い期間は、冷却水は、チラー16から受熱冷却部11に連続的に常時給水される。包囲部材温度が下がって切換温度より低くなると、冷却水の供給は停止される。しかし、冷却水の供給が停止されたことによって、包囲部材温度が切換温度まで上がってくると、再び冷却水の供給が開始される。このため、冷却水の供給は断続的に行われる。その冷却水断続給水を行っている期間は、包囲部材温度はほぼ切換温度付近に維持される。
図6に示す例では、900秒間の間に、露点温度が34℃から31℃まで下がった場合を示している。これにより、切換温度も35℃から32℃に下がっている。そのため、光出力指令が標準光出力の出力である期間の発熱部9や包囲部材温度は、図3に示した場合と変わらないが、光出力指令が標準光出力50%の出力である期間に入ると、切換温度が下がった分だけ、包囲部材温度も下がり、発熱部9の温度も、図3の場合より低下する。冷却水断続供給期間において、受熱冷却部11に冷却水が供給される時間の割合が増えることによって、図3の場合より温度が下がっている。
以上のように、第1実施形態でも、光出力指令が標準光出力より小さい出力である期間は、発熱部9の温度は、標準駆動条件で駆動されている時より低く、発熱部9の寿命消費が減速されるが、第2実施形態では、実際の露点温度が、想定される最高露点温度より低い場合は、光出力指令が標準光出力より小さい時の寿命消費の減速が更に大きくなるという特長がある。
以上の実施形態の説明からも分かるように、筐体2の内部の空気に対して想定される最高露点温度が、レーザ装置100の許容設置環境条件、あるいは、設置条件仕様から導出されるレーザ装置100の周囲の空気における露点温度の上限である周囲上限露点温度に設定されると、筐体2の密閉度が低く、レーザ装置100の外部から設置条件仕様範囲内で最も露点温度の高い空気がかなりの割合で筐体2内に浸入してきたとしても、包囲部材14の表面や結露防止対象部13への結露の発生が防止できる。
第2の実施形態の変形として、露点温度検出手段19によって検出される筐体2の内部の露点温度が、レーザ装置100の許容設置環境条件、あるいは、設置条件仕様から導出されるレーザ装置100の周囲の空気における露点温度の上限である周囲上限露点温度より高くなった場合に、表示部20によって、レーザ装置100の設置環境が設置条件仕様の範囲から逸脱していることを通知するようにしてもよい。表示部20は、視覚的又は聴覚的に通知を行う通知手段である。具体的な通知方法は特に限定されないが、例えば、モニタ画面への表示、音声による警報、警報ランプの点滅等が挙げられる。この表示部20は制御部7によって制御される。
表示部20によって通知を行う場合、例えば、図5に示すフローチャートのステップS217において、露点温度検出手段19からの出力を読み込んだ後に、筐体2の内部の空気の露点温度が、上記のレーザ装置100の許容設置環境条件、あるいは、設置条件仕様から導出されるレーザ装置100の周囲の空気における露点温度の上限である周囲上限露点温度より低いか否かを判定するステップを追加すればよい。筐体2の内部の空気の露点温度が周囲上限露点温度より高い場合、制御部7が表示部20に「レーザ装置の設置環境が、仕様範囲から逸脱して露点温度が上昇しています。設置環境を確認して改善して下さい。」等の注意表示を行うことができる。更に、その状態が続く場合には、「レーザ装置の設置環境が、仕様範囲から逸脱して露点温度が上昇しています。レーザ装置保護のため、10分後にレーザ発振を停止します。」等の警報表示を行うこともできる。注意表示や警告表示と共に警報や警報ランプの点滅等で、注意報や警報の見落としを防いでもよい。レーザ装置100の設置環境をより正確にチェックするために、レーザ装置100の外側の露点温度を直接検出する露点温度検出手段を更に付加してもよい。
上記のように、第2の実施形態においては、何らかの理由で、筐体2の内部の空気の露点温度が、筐体2の内部の空気に対して想定される最高露点温度を越えた場合にも、結露防止対象部13への結露の発生を防止できるという特長がある。
[第3実施形態]
図7は、本発明の第3実施形態に係るレーザ装置200の概念的な構成を示すブロック図である。
図7に示すレーザ装置200が図4に示すレーザ装置100と異なる点は、包囲部材14と熱的に接続した補助加熱手段21が設置されている点である。本実施形態における補助加熱手段21は、例えば通電によって発熱するヒータからなり、包囲部材14の周囲を取り囲む枠のような形状を有し、受熱冷却部11に近い位置に、包囲部材14に接して設置されている。しかし、補助加熱手段21の形状や設置位置は、本実施形態に限定されるものではない。
補助加熱手段21の発熱量の制御方法も、限定されるものではない。最も単純な制御としては、一定の発熱量に保つだけでもよい。その場合、補助加熱手段21が設置された部分の包囲部材14の温度は、補助加熱手段21の発熱によって、補助加熱手段21の発熱量と補助加熱手段21から受熱冷却部11までの熱抵抗の積算から算出される温度の分だけ高温に保たれる。
第1実施形態では、包囲部材14の包囲部材平衡温度が、最高露点温度より高温になるようにするため、例えば、包囲部材14と受熱冷却部11の間の熱抵抗が増大するような構成とか、包囲部材14の内壁面を黒体化する等の方法が講じられる。しかし、本実施形態では、必ずしもこのような方法を講じる必要はなく、包囲部材14の温度が発熱部9の温度上昇に連動して上がりにくく、包囲部材14の包囲部材平衡温度を最高露点温度より高温にするのが困難な場合であっても、補助加熱手段21によって、包囲部材平衡温度を最高露点温度より容易に高温にすることができる。
なお、補助加熱手段21を発熱させる期間は、受熱冷却部11に冷却水を連続的あるは断続的に供給している期間だけとしてもよいが、受熱冷却部11への冷却水の供給を停止している期間にも発熱させてもよいし、レーザ装置200の完全停止時以外は、レーザ発振を行っていない期間も含めて常時発熱させてもおいてもよい。これによって、受熱冷却部11への冷却水の供給を停止している状態でも、筐体2の内部の空気の露点温度が非常に高いために包囲部材14や結露防止対象部13に結露が発生するというリスクをより確実に回避できる。なお、このように、レーザ発振を行っていない時も包囲部材14や結露防止対象部13の温度を少し上げておくようにすることは、レーザ発振器3にレーザ発振が始まる閾値電流よりも低い電流を常時流しておくという方法で実現してもよい。
結露の発生を防止するために低コストで除湿を行うことは必ずしも容易ではないが、加熱は、除湿に比べて容易でコストが掛からない。上記のように、補助加熱手段21による加熱を行うことによって、結露防止対象部13への結露の発生を確実に防止することができる。
なお、包囲部材14の温度が発熱部9の温度上昇に連動して上がりにくいということは、包囲部材14と発熱部9と間の熱抵抗が大きいことを意味しており、補助加熱手段21によって、包囲部材14の温度を少しぐらい上げても発熱部9への熱の影響は小さい。このため、発熱部9の温度は殆ど上昇せず、発熱部9の寿命消費が加速されることはない。
また、以上記載した実施形態では、冷却水によって冷却される発熱部は、レーザ発振器3の内部の発熱部9として示されているが、冷却水によって冷却される発熱部は、例えば、レーザ電源部4の内部の発熱部であってもよい。
[第4実施形態]
図8は、本発明の第4実施形態に係るレーザ装置300の概念的な構成を示すブロック図であり、図9は、図8に記載されている複数のLDモジュール22の内の一つのLDモジュール22の断面を模式的に表した図である。
本実施形態に示すレーザ装置300において、レーザ発振器は、複数のLDモジュール22を発光源あるいは励起光源とするレーザ発振器3であり、発熱部は、LDモジュール22の構成要素の一つであるレーザダイオードチップ(LDチップ)23であり、包囲部材は、LDモジュール22の構成要素の一つであるパッケージ24であり、結露防止対象部は、LDチップ23を含むLDCOS(LD chip on substrate)25であり、LDチップ23の基板26が、発熱部支持部12に相当している。また、受熱冷却部11は板状の冷却板27としている。冷却水流路10は、この冷却板27の表面又は内部に設けられている。LDモジュール22内には複数のLDCOS25が配置されている。
図8に示したように、本実施形態では、LDモジュール22が、冷却板27に熱的に接続して複数個配置されている。LDモジュール22の固定方法は図示していないが、LDモジュール22は、例えば、パッケージ24のタブ28に設けられた穴と冷却板27の対応する位置に設けられたネジ穴とを使用してネジ止めする等の方法で、冷却板27に固定されている。
図8では、LDモジュール22は、冷却板27上に一次元的に一列しか配列されていないが、当然のことながら、冷却板27上に二次元的に複数列配置させることができる。冷却板27を使用することによって、複数のLDモジュール22を一括して冷却できるので、高光出力のレーザ発振器3が実現できると共に、冷却板27の熱容量によって、LDチップ23の急激な発熱量の増加に起因するLDチップ23の温度のオーバーシュート等の急激なLDチップ23の温度変化が緩和され、温度衝撃ストレスを軽減できるという効果がある。また、LDモジュール22への駆動電流の供給が停止された後にも、冷却板27の熱容量によって、LDモジュール22の温度低下の速度が遅くなるので、LDモジュール22への結露が生じ難くなるという効果もある。
また、冷却板27を流れる冷却水は、LDモジュール22内のLDチップ23の発熱を吸収して、冷却水流路の上流側から下流側にかけて次第に温度が上昇するので、通常最も上流側に近い位置に配置されたLDモジュール22の温度が最も低温になり、結露し易い。このため、図8に示したように、冷却板27の冷却水流路10に冷却水を流した時に最も上流側に近い位置に配置されたLDモジュール22(図8中の最左端のLDモジュール22)のパッケージ24の表面あるいは表面近傍に、温度検出手段15を設置している。これにより、温度検出手段15で検出された温度をフィードバックして冷却能力を制御することによって、最も結露し易いLDモジュール22への結露を防止できる。
なお、図8においては、図1と同様に、太い実線は、冷却水流路10を含む冷却水配管系5を表しており、傍に記載した矢印は冷却水の流れの方向を例示している。また、太い白抜きの矢印や白抜きの太線は、レーザ光17を模式的に表している。但し、レーザ光17は、空気中を伝搬するレーザビームだけでなく、光ファイバ中を伝搬するレーザ光も含めて白抜きの太線で示している。また、本実施形態のレーザ装置300におけるレーザ光学系18は、光結合器やビームコンバイナ等の光結合手段や、LDモジュール22を励起光源とする場合には、励起媒体を添加した光ファイバ等のレーザ媒体等も含むものとして示している。
また、図9においては、簡略化のため、LDチップ23から出射されるレーザ光やLDチップ23から出射されたレーザ光をLDモジュールの外側に取り出すための光学系や、LDチップ23にレーザ電源部4から供給される駆動電流を流すための電気配線系は図示していない。
ここで、本発明の効果を定量的に明らかにするために、本実施形態において、LDチップ23の寿命消費の加減速に影響するLDチップ23の温度が、LDチップ23の発熱量や、筐体2の内部の空気の露点温度によって、どのように変化するかを、図10を参照して具体的に算出する。図10は、LDモジュールの模式的断面図に、熱節点、熱節点間の熱抵抗、熱抵抗を流れる熱量を追記した図である。簡単化のために、パッケージ24内のLDチップ23は1個だけ配置されている。
発熱源の熱節点は、LDチップ23内のpn接合であり、ヒートシンクの熱節点は、冷却水が流れる冷却水流路10が設けられた冷却板27であり、パッケージ24の側面の表面近傍の熱節点は、温度検出手段15によって温度が検出される温度検出部位である。温度検出部位は、パッケージ24において、タブ28等の突起部分を除いて最も温度の低い部位である。pn接合で発生した熱はパッケージ24を経由して冷却板27に流れるので、LDチップ23の温度上昇と共にかなり温度が上昇するが、図10に示すように、冷却板27に比較的近い部位の温度が最も低くなる場合が多い。各熱節点の温度は、それぞれ、T、T、Tの符号で表し、pn接合から冷却板までの熱抵抗、pn接合から温度検出部位までの熱抵抗、温度検出部位から冷却板までの熱抵抗は、それぞれ、R、r、rの符号で表している。また、発熱源での発熱量は、Qの符号で表し、Qの発熱量のうち、Rの熱抵抗以外を流れる熱量は、qの符号で表している。なお、簡単化のため、上記以外の熱抵抗は大きく、その熱抵抗を流れる熱量は無視できるとしている。
まず、基本的な関係として、(熱節点間の温度差=熱節点間の熱抵抗×熱抵抗を流れる熱量)の関係から以下の式が成り立ち、pn接合の発熱量が変わった場合について、温度検出部位の温度からpn接合の温度を算出できる。Q、TH1、TM1、TC1が分かっているとすると、Q、TM2が分かると、R、r、r、qが算出できる。但し、kは、k=(r+r)/R= 定数である。
H1−TC1=R(Q−q)=(r+r)q
=R(k/(k+1))Q
H1−TM1=r
M1−TC1=r

H2−TC2=R(Q−q)=(r+r)q
=R(k/(k+1))Q
H2−TM2=r
M2−TC2=r
ここで、
k:k=(r+r)/R= 定数
:標準駆動条件におけるpn接合の発熱量
:標準駆動条件における熱抵抗(r、r)を流れる熱量
H1:標準駆動条件におけるpn接合の温度
M1:標準駆動条件における温度検出部位の温度
C1:標準駆動条件における冷却板の温度
:Qより小さいpn接合の発熱量
:pn接合の発熱量がQの条件において熱抵抗(r、r)を流れる熱量
H2:pn接合の発熱量がQの条件におけるpn接合の温度
M2:pn接合の発熱量がQの条件における温度検出部位の温度
C2:pn接合の発熱量がQの条件における冷却板の温度
である。
pn接合の発熱量が減少すると、温度検出部位の温度が下がるので、温度検出部位の温度が切換温度まで下がると、冷却水を供給したり、供給を停止したりする等の方法で冷却能力を制御することによって、温度検出部位の温度はほぼ切換温度と同じ温度に保たれる。従って、温度検出部位の温度≧切換温度の場合は、冷却水が連続して供給されているため、冷却板27の温度は発熱量によって殆ど変らないと考えられるので、TC2=TC1として、pn接合の発熱量がQの時のpn接合の温度TH2は、先の式から導出した次の式で求めることができる。
H2 =(TH1−TC1)Q/Q+TC1
一方、冷却能力の制御によって、温度検出部位の温度が切換温度と同じ温度に保たれている場合は、冷却板27の温度は発熱量によって変わるが、pn接合の温度は次の式で求めることができる。
H2 =(TH1−TM1)Q/Q+TM2
具体的な数値としては、Q=10W、TC1=27℃の場合、pn接合の温度は、TH1=65℃程度になり、温度検出部位は、パッケージ24等を適切に設計すれば、TM1=38℃程度にすることができる。
上記の数値条件で、LDモジュール22が、
(1)標準駆動条件の光出力を出力する条件で駆動されている場合(Q=Q)と、(2)標準駆動条件より光出力が大きい条件で駆動されている場合(Q>Q)と、(3)準駆動条件より光出力が小さい条件で駆動されている場合(Q<Q)の3つの場合について、パッケージ24やLDCOS25への結露が確実に防止できると共に、pn接合の温度上昇によってLDチップ23の寿命消費が加速されないことを以下に述べる。なお、切換温度は、切換温度=(筐体2の内部の空気の露点温度+1℃)とする。
(1)標準駆動条件の光出力を出力する条件で駆動されている場合(Q=Q):
筐体2の内部の空気の温度が35℃で湿度95%でも、筐体2の内部の空気の露点温度は34.1℃なので、標準駆動条件における温度検出部位の温度(TM1)=38℃より低い。このため、少なくともタブ28等の突起部分を除くパッケージ24には、結露は発生しない。発熱源であるpn接合に近い基板26は、温度検出部位より更に温度が高くなるので、結露防止対象部であるLDCOS25にも結露は発生しない。
また、切換温度は35.1℃であるが、標準駆動条件における温度検出部位の温度(TM1)=38℃の方が高いので、冷却水の供給が停止されることはない。このため、LDチップ23の寿命消費速度は、冷却能力も標準条件である標準駆動条件で駆動されている場合の寿命消費速度と同じであり、LDチップ23の寿命消費が標準駆動条件の場合より加速されることはない。
従って、標準駆動条件で駆動している場合、温度≦35℃、湿度≦95%が、レーザ装置300の許容設置環境条件であるとすると、その環境条件が守られる限り、仮に筐体2の密閉度が悪く、外部から露点温度が34.1℃と高い空気が浸入してきても、結露防止対象部に結露が発生することなく、また、標準駆動条件よりも、冷却能力を下げることなくレーザ発振を続けることができ、LDチップ23の寿命消費が加速されることはない。
(2)標準駆動条件より光出力が大きい条件で駆動されている場合(Q>Q):
温度検出部位の温度が、TM1=38℃より更に高くなるので、パッケージ24やLDCOS25への結露が発生することはない。一方、LDチップ23の寿命消費は、光出力が標準駆動条件より大きく、pn接合の温度も標準駆動条件より高くなるので、標準駆動条件の場合より加速される。しかし、これは、標準光出力(定格光出力)を上回る光出力を出力したためであり、結露防止対策のためにLDチップ23の寿命消費が加速される訳ではない。
(3)準駆動条件より光出力が小さい条件で駆動されている場合(Q<Q):
pn接合の発熱量が減少して、温度検出部位の温度が切換温度まで下がり、冷却能力の制御によって、温度検出部位の温度がほぼ切換温度と同じ温度に保たれるようになった場合のpn接合の温度を前述の式を用いて算出すると、図11に示したような結果が得られる。
図11において、実線のグラフは、pn接合の発熱量が減少しても冷却水を供給し続けた場合のpn接合の温度の発熱量依存性を表している。破線と一点鎖線は、温度検出手段の温度が、切換温度=(筐体2の内部の空気の露点温度+1℃)まで下がると、結露を防ぐために、冷却水の供給を停止した場合のpn接合の温度の発熱量依存性を表している。破線は、上述の筐体2の内部の空気の露点温度が34.1℃の場合である。一点鎖線は、筐体2の内部の空気の露点温度が30℃の場合のpn接合の温度の発熱量依存性である。
温度検出手段の温度が、切換温度=(筐体2の内部の空気の露点温度+1℃)まで下がると、冷却水の供給を停止した場合は、温度検出部位の温度≧(筐体2の内部の空気の露点温度+1℃)なので、やはり、パッケージ24やLDCOS25に結露は発生しない。
一方、寿命消費の加減速に影響するpn接合の温度については、筐体2の内部の空気の露点温度が34.1℃の場合、pn接合の発熱量が約7.4Wよりも減少すると、温度検出部位の温度を35.1℃に保つために、冷却水の供給が断続的になる。このため、冷却水を供給し続けた場合に比べると、pn接合の発熱量が減少しても、pn接合の温度が余り低下しない。しかし、発熱量が減少するということは、駆動電流が低減されて光出力が少ない上に、冷却水を供給し続けた場合に比べるとpn接合の温度が余り低下しないといっても少なくとも低下しているので、標準駆動条件で駆動している場合に比べて、LDチップ23の寿命消費は大幅に減速される。
仮に、筐体2の内部の空気の露点温度が30℃の場合まで下がると、切換温度は31℃になる。pn接合の発熱量が約3.6Wに減少するまで、冷却水の供給が連続して行われるので、pn接合の発熱量が少ない領域では、露点温度が34.1℃の場合より、pn接合の温度が更に4.1℃低くなっている。この4.1℃は露点温度の差に相当している。即ち、pn接合の発熱量が小さい条件で駆動する場合は、筐体2の内部の空気の露点温度が34.1℃と高く、パッケージ24やLDCOS25に結露が生じないことは同じであっても、露点温度が低い程、pn接合の温度を低く保つことができて、LDチップ23の寿命消費の減速が更に大幅な減速になることを示している。従って、パッケージ24やLDCOS25に結露が生じず、LDチップ23の寿命消費が標準駆動条件の場合より加速されないので、特に除湿器は必要ではないとは言え、筐体2の内部の空気の露点温度は低い方が望ましいことには変わりない。
以上の実施形態においては、結露防止対象部13への結露は防止できることを説明してきたが、逆に、他の部分については、結露を許容することを意味している。筐体2の内部の空気の露点温度が高いと、冷却水配管系5の特に内部の冷却水の温度が最も低い流入側等にはかなり結露が発生する可能性がある。しかし、結露が発生するということは、筐体2の内部の空気の露点温度が下がるということを意味しており、上記のように、筐体2の内部の空気の露点温度は低い方が望ましいことには変わりない。従って、結露で発生した水滴が再蒸発しないように、筐体2の外部に排水する機構を設けることが望ましい。
具体的な排水機構29としては、図12のような構造が考えられる。図12において、排水機構29に関係のないレーザ装置400内の構成部品は図示していない。図12に示した排水機構29は、毛細管部材30とヒータ31等の加熱手段とを有し、冷却水配管系5のうち、受熱冷却部11に向かう流入側の配管部51に、筐体2の内部と外部を跨ぐように配設されている。この排水機構29は、繊維の束のような毛細管部材30を浸透してきた水分を筐体2の外側のヒータ31等で加熱して蒸発させ、その部分の毛細管部材30を乾燥させることにより、筐体2の内部の水滴が筐体2の外側に浸出し易くしている。但し、上記の排水機構29は一例であって、排水機構を限定するものではない。
上記のように、結露で発生した水を筐体2の外側に排水する排水機構29を設け、筐体2の密閉性を高めることによって、筐体2の内部の空気に対して想定される最高露点温度を、レーザ装置の許容設置環境条件、あるいは、設置条件仕様から導出されるレーザ装置の周囲の空気における露点温度の上限である周囲上限露点温度より低く設定することも可能になる。
また、図12のような排水機構29を多数揃える必要がないように、結露が発生する場所を限定するために、図13に示すレーザ装置500のように、冷却水配管系5のうち、受熱冷却部11から流出する流出側の配管部52の表面に、結露を防ぐための断熱材32を配置してもよい。図13では、冷却水配管系5において、流入側の配管部51における配管部53との接続部位と排水機構29の配設部位との間の以外の配管表面に断熱材32を設けた例を示している。
更に、少なくとも筐体2の内部で結露が発生する部分には、結露による腐食を抑制するために防錆処理が施されている、あるいは、少なくとも筐体2の内部で結露が発生する部分の材質が防錆材であってもよい。例えば、図13に示す例では、冷却水配管系5のうち、特に結露が発生する流入側の配管部51は、結露による腐食を抑制するために、表面に金メッキ等の防錆処理を施したり、配管の材質をステンレスのような防錆材にしたりすることができる。図13においても、本項の説明に関係のないレーザ装置内の構成部品は図示していない。
[第5実施形態]
図14は、本発明の第5実施形態に係るレーザ装置600の概念的な構成を示すブロック図である。
このレーザ装置600は、複数の発熱部9にそれぞれ熱的に接続した複数の受熱冷却部11と、複数の受熱冷却部11を冷却する冷却能力を独立して制御するための複数の冷却能力制御手段6と、複数の発熱部9と発熱部支持部12を含む結露防止対象部に近接して、それぞれの結露防止対象部を実質的に包囲する複数の包囲部材14と、複数の包囲部材14の所定部位の温度を検出する複数の温度検出手段15を備えている。また、制御部7は、それぞれの温度検出手段15によるそれぞれの検出結果に応じて、対応する受熱冷却部11を冷却する冷却能力を、対応する冷却能力制御手段6によってそれぞれ個別に制御するようにしている。図14には3つのレーザ発振器3が示されているが、レーザ発振器3の数は3つに限定されない。
本実施形態のような構造を備えることによって、例えば、本実施形態のように、複数のレーザ発振器3や、図示していないが、レーザ発振器3とレーザ電源部4への冷却水の流量を個別に制御して、いずれの結露防止対象部への結露も防止することができる。複数のレーザ発振器3を備えたレーザ装置600においては、一部のレーザ発振器3だけ駆動した場合も、そのレーザ発振器3だけに冷却水を流して、発振していない他のレーザ発振器3の結露防止対象部への結露を防ぐこともできる。また、レーザ発振器3によって光出力指令が異なり、レーザ発振器3における発熱量が異なる場合にも、レーザ発振器3毎に個別に冷却能力を制御することによって、発熱量が小さいレーザ発振器3についても結露を効果的に防止できる。
なお、図14においても、太い実線は、冷却水流路10を含む冷却水配管系5を表しており、傍に記載した矢印は冷却水の流れの方向を例示している。また、太い白抜きの矢印や白抜きの太い線は、レーザ光17を模式的に表しており、レーザ発振器3から出射されたレーザ光17は、レーザ光学系18を経由してレーザ装置600から出力される。
[第6実施形態]
図15は、本発明の第6実施形態に係るレーザ装置700の概念的な構成を示すブロック図である。
レーザ装置700は、複数のレーザ発振器3を備え、それぞれのレーザ発振器3におけるレーザ発振のために発熱する複数の発熱部9にそれぞれ熱的に接続した複数の受熱冷却部11と、複数の受熱冷却部11を冷却する冷却能力を一括して制御するための冷却能力制御手段6と、複数の発熱部9と発熱部支持部12を含む結露防止対象部に近接して、それぞれの結露防止対象部を実質的に包囲する複数の包囲部材14と、複数の包囲部材14の所定部位の温度を検出する複数の温度検出手段15を備えている。また、制御部7は、それぞれの温度検出手段15によるそれぞれの検出結果がほぼ同一温度になるように、対応するレーザ電源部4からレーザ発振器3に供給する電流を制御するようにしている。図15にも3つのレーザ発振器3が示されているが、レーザ発振器3の数は3つに限定されない。
複数のレーザ発振器3を備えたレーザ装置700においては、複数のレーザ発振器3の発熱部9とそれぞれ熱的に接続する複数の受熱冷却部11を冷却する冷却能力を単一の冷却能力制御手段6で制御しながら、全ての発熱部9と発熱部支持部12を含む結露防止対象部への結露を防止することができる。
なお、図15においても、太い実線は、冷却水流路10を含む冷却水配管系5を表しており、傍に記載した矢印は冷却水の流れの方向を例示している。また、太い白抜きの矢印や白抜きの太い線は、レーザ光17を模式的に表しており、レーザ発振器3から出射されたレーザ光17は、レーザ光学系18を経由してレーザ装置700から出力される。
以上説明したように、本発明に係るレーザ装置1、100、200、300、400、500、600、700によれば、特に除湿機能を必要とせず、従って、コストやサイズの点でできれば使用を避けたい盤用クーラー等の除湿器を使用することなく、レーザ装置が、標準駆動条件で駆動されている時よりも、発熱部の温度を上げて発熱部の寿命消費を加速させることなく、結露防止対象部への結露が防止できる長寿命で信頼性の高いレーザ装置が提供できるという効果を奏する。また、本発明に係るレーザ装置1、100、200、300、400、500、600、700によれば、従来の除湿器を使用しないレーザ装置では避けることができなかった、露点温度が高い場合は結露を防止するために冷却能力を下げざるを得ず、その結果、レーザ発振器等の発熱部の温度が上がって、レーザ発振器等の発熱部の寿命消費が加速されるという問題を解決することができる。
1、100、200、300、400、500、600、700 レーザ装置
2 筐体
3 レーザ発振器
4 レーザ電源部
5 冷却水配管系
6 冷却能力制御手段
7 制御部
8 入力部
9 発熱部
10 冷却水流路
11 受熱冷却部
12 発熱部支持部
13 結露防止対象部
14 包囲部材
15 温度検出手段
16 チラー
17 レーザ光
18 レーザ光学系
19 露点温度検出手段
20 表示部
21 補助加熱手段
22 LDモジュール
23 LD、LDチップ
24 (LDモジュールの)パッケージ
25 LDCOS(LD chip on substrate)
26 (LDチップの)基板
27 冷却板
28 (LDモジュールの)タブ
29 排水機構
30 毛細管部材
31 ヒータ
32 断熱材
A,B,C 電磁弁

Claims (15)

  1. 筐体を備えると共に、前記筐体の内部に、少なくとも一つ以上のレーザ発振器と、前記レーザ発振器に電流を供給する一つ以上のレーザ電源部とを有し、
    前記レーザ発振器は、レーザ発振のために発熱する一つ以上の発熱部と、少なくとも前記発熱部を含む結露防止対象部に熱的に接続し、前記結露防止対象部を冷却するための冷却水を流す冷却水流路を有する一つ以上の受熱冷却部と、前記冷却水流路に冷却水を流すための冷却水配管系が接続されたレーザ装置であって、
    更に、前記冷却水配管系を流れる冷却水によって前記受熱冷却部を冷却する冷却能力を制御するための一つ以上の冷却能力制御手段と、
    少なくとも前記冷却能力制御手段及び前記レーザ電源部を制御する制御部と、
    前記結露防止対象部に近接して前記結露防止対象部を包囲する包囲部材と、
    前記包囲部材の所定部位の温度を検出し、その検出結果として包囲部材温度を前記制御部に出力する少なくとも一つ以上の温度検出手段と、を備え、
    前記包囲部材は、前記レーザ装置あるいは前記レーザ発振器が、標準光出力のレーザ光を出射し、前記冷却能力制御手段によって前記受熱冷却部を冷却する冷却能力が標準水準に制御されている標準駆動条件で駆動されて実質的に平衡状態に達した状態において、前記発熱部の温度上昇に連動して、前記筐体の内部の空気に対して想定される最高露点温度より高温の包囲部材平衡温度になるように構成され、
    前記制御部は、前記レーザ電源部に電流出力指令を出力している間、前記温度検出手段によって検出された前記包囲部材温度を、予め前記包囲部材平衡温度より低温に設定された切換温度と比較し、前記包囲部材温度が前記切換温度より低い時は、前記受熱冷却部を冷却する冷却能力が前記標準水準より低い低水準となるように前記冷却能力制御手段を制御し、前記包囲部材温度が前記切換温度以上である時は、前記受熱冷却部を冷却する冷却能力が前記標準水準あるいは前記標準水準より高水準となるように前記冷却能力制御手段を制御する、レーザ装置。
  2. 更に、前記筐体の内部の空気の露点温度を検出するための一つ以上の露点温度検出手段を備え、
    前記露点温度検出手段によって検出された前記筐体の内部の空気の露点温度を筐体内露点温度としたとき、前記切換温度が、(切換温度)=(筐体内露点温度)+(所定温度)に設定されている、請求項1に記載のレーザ装置。
  3. 前記最高露点温度が、前記レーザ装置の許容設置環境条件、あるいは、設置条件仕様から導出される前記レーザ装置の周囲の空気における露点温度の上限である周囲上限露点温度に設定されている、請求項1又は2に記載のレーザ装置。
  4. 更に、前記筐体の内部の空気の露点温度が、前記周囲上限露点温度より高くなった場合に、前記制御部の制御によって、前記レーザ装置の設置環境が前記設置条件仕様の範囲から逸脱していることを視覚的又は聴覚的に通知する通知手段を備える、請求項3に記載のレーザ装置。
  5. 前記温度検出手段が設置される前記所定部位が、前記包囲部材における空気に接している表面あるいは表面の近傍の部位であって、前記レーザ装置あるいは前記レーザ発振器が前記平衡状態に達した状態において、前記包囲部材の突起部分を除いて最も温度の低い部位、あるいは最も温度の低い部位の温度に近い温度を示す部位に設定されている、請求項1〜4のいずれか1項に記載のレーザ装置。
  6. 前記包囲部材に熱的に接続した補助加熱手段を備え、
    前記制御部は、前記レーザ装置あるいは前記レーザ発振器が前記平衡状態に達した状態において、前記温度検出手段によって検出される前記包囲部材温度が前記最高露点温度より高温になるように、前記補助加熱手段の発熱量を制御する、請求項1〜5のいずれか1項に記載のレーザ装置。
  7. 前記レーザ発振器は、少なくとも一つ以上のLDモジュールを発光源あるいは励起光源とするレーザ発振器であり、
    少なくとも一つ以上の前記発熱部は、前記LDモジュールの構成要素の一つであるレーザダイオードチップであり、
    前記包囲部材は、前記LDモジュールの構成要素の一つであるパッケージであり、
    前記パッケージの内部に、少なくとも一つ以上の前記レーザダイオードチップが設置されている、請求項1〜6のいずれか1項に記載のレーザ装置。
  8. 前記受熱冷却部は、内部又は表面に前記冷却水流路が設けられた冷却板であり、
    少なくとも一つ以上の前記LDモジュールが、前記冷却板に熱的に接続して配置されている、請求項7に記載のレーザ装置。
  9. 前記冷却板に複数の前記LDモジュールが配置されており、少なくとも、前記冷却板の前記冷却水流路に冷却水を流した時に最も上流側に近い位置に配置された前記LDモジュールの前記パッケージの表面あるいは表面近傍に、前記温度検出手段が設置されている、請求項8に記載のレーザ装置。
  10. 前記冷却能力制御手段は、冷却水の流路を開閉する開閉弁及び/又は冷却水の流路の流量を調整する流量調整弁を有し、
    前記冷却能力制御手段の冷却能力の制御は、前記開閉弁又は前記流量調整弁による冷却水の給水・非給水又は流量の制御である、請求項1〜9のいずれか1項に記載のレーザ装置。
  11. 前記冷却水流路に冷却水を流すことによって前記筐体の内部に発生した結露水を、外部に排水する排水機構を備える、請求項1〜10のいずれか1項に記載のレーザ装置。
  12. 前記筐体の内部において、冷却水によって冷却される部位の少なくとも一ヶ所以上の表面に、断熱材が配置されている、請求項11に記載のレーザ装置。
  13. 前記筐体の内部で結露が発生する部分に、結露による腐食を抑制するために防錆処理が施されている、あるいは、前記筐体の内部で結露が発生する部分の材質が防錆材である、請求項11又は12に記載のレーザ装置。
  14. 複数の前記発熱部にそれぞれ熱的に接続した複数の前記受熱冷却部と、
    複数の前記受熱冷却部を冷却する冷却能力を独立して制御するための複数の前記冷却能力制御手段と、
    複数の前記発熱部を含む前記結露防止対象部に近接して、それぞれの前記結露防止対象部を包囲する複数の前記包囲部材と、
    複数の前記包囲部材の前記所定部位の温度を検出する複数の前記温度検出手段と、を備え、
    前記制御部は、それぞれの前記温度検出手段の検出結果に応じて、対応する前記受熱冷却部を冷却する冷却能力を制御する前記冷却能力制御手段をそれぞれ個別に制御する、請求項1〜13のいずれか1項に記載のレーザ装置。
  15. 複数の前記レーザ発振器を備え、
    それぞれの前記レーザ発振器におけるレーザ発振のために発熱する複数の前記発熱部にそれぞれ熱的に接続した複数の前記受熱冷却部と、
    複数の前記受熱冷却部を冷却する冷却能力を一括して制御するための前記冷却能力制御手段と、
    複数の前記発熱部を含む前記結露防止対象部に近接して、それぞれの前記結露防止対象部を包囲する複数の前記包囲部材と、
    複数の前記包囲部材の前記所定部位の温度を検出する複数の前記温度検出手段を備え、
    前記制御部は、それぞれの前記温度検出手段の検出結果が同一温度になるように、対応する前記レーザ電源部から前記レーザ発振器に供給する電流を制御する、請求項1〜13のいずれか1項に記載のレーザ装置。



JP2017195848A 2017-10-06 2017-10-06 結露防止機能を備えたレーザ装置 Expired - Fee Related JP6640811B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017195848A JP6640811B2 (ja) 2017-10-06 2017-10-06 結露防止機能を備えたレーザ装置
US16/142,078 US11133643B2 (en) 2017-10-06 2018-09-26 Laser apparatus including dew condensation prevention function
CN201811140118.9A CN109638637B (zh) 2017-10-06 2018-09-28 激光装置
DE102018216840.7A DE102018216840A1 (de) 2017-10-06 2018-10-01 Lasereinrichtung, die Taukondensationsverhinderungsfunktion beinhaltet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017195848A JP6640811B2 (ja) 2017-10-06 2017-10-06 結露防止機能を備えたレーザ装置

Publications (2)

Publication Number Publication Date
JP2019071320A true JP2019071320A (ja) 2019-05-09
JP6640811B2 JP6640811B2 (ja) 2020-02-05

Family

ID=65816920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017195848A Expired - Fee Related JP6640811B2 (ja) 2017-10-06 2017-10-06 結露防止機能を備えたレーザ装置

Country Status (4)

Country Link
US (1) US11133643B2 (ja)
JP (1) JP6640811B2 (ja)
CN (1) CN109638637B (ja)
DE (1) DE102018216840A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113138520A (zh) * 2020-01-17 2021-07-20 中强光电股份有限公司 投影装置以及散热控制方法
JP2021168462A (ja) * 2020-04-13 2021-10-21 三菱電機株式会社 アレイアンテナ装置
WO2021246307A1 (ja) * 2020-06-03 2021-12-09 ファナック株式会社 レーザ装置
KR20220116843A (ko) 2021-02-16 2022-08-23 동아대학교 산학협력단 폐 리튬이온 배터리 내 유가금속 회수방법
WO2023037460A1 (ja) * 2021-09-08 2023-03-16 ファナック株式会社 レーザ発振器及びレーザ加工装置の加工制御装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6619410B2 (ja) * 2017-12-05 2019-12-11 ファナック株式会社 レーザ加工装置
JP7114984B2 (ja) * 2018-03-29 2022-08-09 株式会社島津製作所 水中用レーザ光源
JP7088861B2 (ja) * 2019-02-12 2022-06-21 ファナック株式会社 除湿機能を高めたレーザ発振器
US20220337014A1 (en) * 2021-04-16 2022-10-20 General Electric Company Thermal control apparatus for laser system
DE102021110857A1 (de) 2021-04-28 2022-11-03 Carl Zeiss Industrielle Messtechnik Gmbh Optisches Messgerät
CN113187754B (zh) * 2021-05-11 2023-03-28 珠海泰坦新动力电子有限公司 具有防凝露功能的风机控制方法及系统
CN114384404B (zh) * 2022-03-23 2022-08-23 上海菲莱测试技术有限公司 一种冷却测试装配单元及老化冷却设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577992U (ja) * 1992-03-27 1993-10-22 沖電気工業株式会社 電子機器収納棚箱
JP2002076500A (ja) * 2000-08-22 2002-03-15 Keyence Corp 半導体レーザの冷却機構および冷却方法
JP2006196644A (ja) * 2005-01-13 2006-07-27 Fanuc Ltd レーザ装置
JP2010219516A (ja) * 2009-02-23 2010-09-30 Gigaphoton Inc ガスレーザ装置用温度調節装置
CN104083211A (zh) * 2014-07-17 2014-10-08 山东杰美医疗科技有限公司 一种半导体激光脱毛仪中半导体激光器的保护方法
JP2016219456A (ja) * 2015-05-14 2016-12-22 ファナック株式会社 結露の発生を予測する機能を備えたレーザ装置
JP2017005141A (ja) * 2015-06-11 2017-01-05 ファナック株式会社 レーザ発振部、空気冷却機、および除湿器を共通の冷却水にて冷却するレーザ装置
JP2017103414A (ja) * 2015-12-04 2017-06-08 ファナック株式会社 結露防止機能を有するレーザ装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2550889C2 (de) 1975-11-13 1985-05-23 Wankel Gmbh, 8990 Lindau Innendichtung für Rotationskolbenmaschinen
JPS551119A (en) 1978-06-16 1980-01-07 Canon Inc Semiconductor laser apparatus
JPH0632336B2 (ja) 1984-09-26 1994-04-27 三田工業株式会社 半導体レーザ装置
JP3315461B2 (ja) 1993-04-20 2002-08-19 オリンパス光学工業株式会社 波長安定化光源の結露防止装置
JP2001326410A (ja) 2000-05-16 2001-11-22 Ishikawajima Harima Heavy Ind Co Ltd 半導体レーザ冷却装置
US7058100B2 (en) 2002-04-18 2006-06-06 The Boeing Company Systems and methods for thermal management of diode-pumped solid-state lasers
JP2004253525A (ja) 2003-02-19 2004-09-09 Nec Corp 半導体レーザ装置及び半導体レーザ励起固体レーザ装置
US7164703B2 (en) 2003-02-20 2007-01-16 Lambda Physik Ag Temperature control systems for excimer lasers
JP3775397B2 (ja) 2003-03-27 2006-05-17 住友電気工業株式会社 光送信モジュール
JP2008093330A (ja) 2006-10-16 2008-04-24 Shimadzu Corp X線診断装置
JP4797004B2 (ja) 2007-09-03 2011-10-19 株式会社日立製作所 レーザダイオードの制御方法及びレーザダイオード制御装置並びに情報記録再生装置
JP2009072361A (ja) 2007-09-20 2009-04-09 Fujifilm Corp 放射線画像撮影装置
JP4816974B2 (ja) 2008-03-24 2011-11-16 株式会社日立プラントテクノロジー 電子機器の冷却システム
JP5482985B2 (ja) 2009-03-11 2014-05-07 ソニー株式会社 光安定化装置、光安定化方法および印刷装置
EP2556745A1 (en) 2010-04-09 2013-02-13 Sharp Kabushiki Kaisha Lighting device, plant cultivation device, and method for cooling lighting device
US9341792B2 (en) * 2010-06-29 2016-05-17 Cisco Technology, Inc. Vent structures for encapsulated components on an SOI-based photonics platform
JP2012059993A (ja) 2010-09-10 2012-03-22 Miyachi Technos Corp レーザ装置及びその制御方法
JP2012089417A (ja) 2010-10-21 2012-05-10 Harison Toshiba Lighting Corp 光源装置
JP6366288B2 (ja) 2014-02-07 2018-08-01 三菱電機株式会社 光源装置およびプロジェクタ装置
WO2015186258A1 (ja) * 2014-06-06 2015-12-10 三菱電機株式会社 光源装置、および光源装置を備えた投写型映像表示装置
US9966731B2 (en) * 2014-10-01 2018-05-08 Nlight, Inc. Cryogenic cooling of diode laser with coolant recovery
JP6259419B2 (ja) 2015-06-01 2018-01-10 ファナック株式会社 扉の開放の可否を判定する機能を備えたレーザ装置
JP6267164B2 (ja) 2015-08-24 2018-01-24 ファナック株式会社 保守作業用の温度管理機能を有するレーザ装置
JP6259435B2 (ja) 2015-10-28 2018-01-10 ファナック株式会社 レーザ光を合波して出力するレーザ発振器
JP6360090B2 (ja) 2016-03-10 2018-07-18 ファナック株式会社 機械学習装置、レーザ装置および機械学習方法
JP6412042B2 (ja) 2016-03-29 2018-10-24 ファナック株式会社 レーザ発振器
JP6367900B2 (ja) * 2016-12-14 2018-08-01 ファナック株式会社 レーザ装置
JP7022901B2 (ja) * 2017-07-07 2022-02-21 パナソニックIpマネジメント株式会社 半導体レーザ装置
US10454244B2 (en) * 2017-08-09 2019-10-22 Lawrence Livermore National Security, Llc Driver circuitry and systems for high current laser diode arrays
JP6629812B2 (ja) * 2017-10-10 2020-01-15 ファナック株式会社 レーザ発振器
WO2020004288A1 (ja) * 2018-06-29 2020-01-02 パナソニックIpマネジメント株式会社 レーザ装置及びレーザ装置の除湿管理方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577992U (ja) * 1992-03-27 1993-10-22 沖電気工業株式会社 電子機器収納棚箱
JP2002076500A (ja) * 2000-08-22 2002-03-15 Keyence Corp 半導体レーザの冷却機構および冷却方法
JP2006196644A (ja) * 2005-01-13 2006-07-27 Fanuc Ltd レーザ装置
JP2010219516A (ja) * 2009-02-23 2010-09-30 Gigaphoton Inc ガスレーザ装置用温度調節装置
CN104083211A (zh) * 2014-07-17 2014-10-08 山东杰美医疗科技有限公司 一种半导体激光脱毛仪中半导体激光器的保护方法
JP2016219456A (ja) * 2015-05-14 2016-12-22 ファナック株式会社 結露の発生を予測する機能を備えたレーザ装置
JP2017005141A (ja) * 2015-06-11 2017-01-05 ファナック株式会社 レーザ発振部、空気冷却機、および除湿器を共通の冷却水にて冷却するレーザ装置
JP2017103414A (ja) * 2015-12-04 2017-06-08 ファナック株式会社 結露防止機能を有するレーザ装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113138520A (zh) * 2020-01-17 2021-07-20 中强光电股份有限公司 投影装置以及散热控制方法
US11256165B2 (en) 2020-01-17 2022-02-22 Coretronic Corporation Projection device and heat dissipation control method
JP2021168462A (ja) * 2020-04-13 2021-10-21 三菱電機株式会社 アレイアンテナ装置
JP7458873B2 (ja) 2020-04-13 2024-04-01 三菱電機株式会社 アレイアンテナ装置
WO2021246307A1 (ja) * 2020-06-03 2021-12-09 ファナック株式会社 レーザ装置
JP7436661B2 (ja) 2020-06-03 2024-02-21 ファナック株式会社 レーザ装置
KR20220116843A (ko) 2021-02-16 2022-08-23 동아대학교 산학협력단 폐 리튬이온 배터리 내 유가금속 회수방법
WO2023037460A1 (ja) * 2021-09-08 2023-03-16 ファナック株式会社 レーザ発振器及びレーザ加工装置の加工制御装置

Also Published As

Publication number Publication date
CN109638637B (zh) 2021-01-19
CN109638637A (zh) 2019-04-16
DE102018216840A1 (de) 2019-04-11
JP6640811B2 (ja) 2020-02-05
US11133643B2 (en) 2021-09-28
US20190109433A1 (en) 2019-04-11

Similar Documents

Publication Publication Date Title
JP6640811B2 (ja) 結露防止機能を備えたレーザ装置
US9887513B2 (en) Laser apparatus having condensation prevention function
JP6166310B2 (ja) レーザ発振部、空気冷却機、および除湿器を共通の冷却水にて冷却するレーザ装置
KR101723385B1 (ko) 모터 하우징 온도 제어장치
EP2674814A2 (en) Light source apparatus comprising a cooling mechanism
US5748656A (en) Laser having improved beam quality and reduced operating cost
US10277004B2 (en) Laser device
US20190319421A1 (en) Laser apparatus including heat transfer device for releasing heat inside housing to the outside
JP4098780B2 (ja) レーザ装置
US10516247B2 (en) Laser oscillator
JP2016053863A (ja) 温度調節装置
JP6267164B2 (ja) 保守作業用の温度管理機能を有するレーザ装置
JP2006153429A (ja) 恒温流体供給システム
JP2001358397A (ja) レーザ加熱装置
JP2007157837A (ja) レーザ装置
JP2007218457A (ja) 冷却液循環装置
JP2008249571A (ja) 検査装置および検査方法
JP2007085712A (ja) 空調装置
KR102247922B1 (ko) 경화장치 냉각 시스템
JP2010192779A (ja) 冷却装置
KR200198469Y1 (ko) 반도체 웨이퍼 노광장비용 냉동기의 압력 이상검출장치
JP2024055603A (ja) 脈動低減装置、冷却装置、リソグラフィー装置および物品製造方法
KR20050025517A (ko) 반도체 제조설비용 냉각장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181221

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190618

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191226

R150 Certificate of patent or registration of utility model

Ref document number: 6640811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees