JP2019030147A - モータ - Google Patents

モータ Download PDF

Info

Publication number
JP2019030147A
JP2019030147A JP2017148506A JP2017148506A JP2019030147A JP 2019030147 A JP2019030147 A JP 2019030147A JP 2017148506 A JP2017148506 A JP 2017148506A JP 2017148506 A JP2017148506 A JP 2017148506A JP 2019030147 A JP2019030147 A JP 2019030147A
Authority
JP
Japan
Prior art keywords
cooling air
rectifying
plate
flange
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017148506A
Other languages
English (en)
Other versions
JP6855973B2 (ja
Inventor
良輔 後藤
Ryosuke Goto
良輔 後藤
石井 秀明
Hideaki Ishii
秀明 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2017148506A priority Critical patent/JP6855973B2/ja
Priority to DE112018003902.1T priority patent/DE112018003902T5/de
Priority to US16/633,874 priority patent/US11316409B2/en
Priority to CN201880049462.9A priority patent/CN110945759B/zh
Priority to PCT/JP2018/022623 priority patent/WO2019026433A1/ja
Publication of JP2019030147A publication Critical patent/JP2019030147A/ja
Application granted granted Critical
Publication of JP6855973B2 publication Critical patent/JP6855973B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/18Casings or enclosures characterised by the shape, form or construction thereof with ribs or fins for improving heat transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/207Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium with openings in the casing specially adapted for ambient air
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

【課題】ヒートシンクの放熱効率を向上させることができるモータを提供する。【解決手段】モータ10は、ステータ12と、ロータ14と、フランジ部42を有するモータホルダ16と、フランジ部42と対向する板状部44を有するセンターピース18と、放熱部90を有するヒートシンク62を備える。フランジ部42と板状部44との間には、フランジ部42の径方向に延びる冷却風流路84が形成されており、放熱部90は、板状部44からフランジ部42に向けて突出して冷却風流路84に配置されている。フランジ部42には、放熱部90の頂部と近接して対向し冷却風流路84に沿って延びる冷却風整流面94Aを有する整流部94が形成されている。フランジ部42における板状部44と反対側の面42Aと冷却風整流面94Aとの間には、肉抜き部96が形成されている。【選択図】図3

Description

本発明は、モータに関する。
特許文献1には、ステータと、ロータと、モータホルダと、センターピースと、ヒートシンクとを備えたモータが開示されている。このモータにおいて、ロータは、環状のステータを収容する有天円筒状のロータハウジングを有しており、モータホルダは、ロータハウジングの軸方向を板厚方向とする円環板状に形成されたフランジ部(円盤部)を有している。フランジ部の内側には、ロータハウジングが回転可能に配置されている。
センターピースは、フランジ部と対向する板状部(本体部)を有しており、フランジ部と板状部との間には、フランジ部の径方向に延びる冷却風流路(冷却風導入路)が形成されている。この冷却風流路は、フランジ部の外周側に冷却風導入口を有しており、フランジ部の内周側に冷却風排出口を有している。ヒートシンクは、板状部からフランジ部に向けて突出する放熱部を有しており、この放熱部は、冷却風流路に配置されている。
特開2015−57014号公報
上記モータにおいて、放熱部の頂部とフランジ部との間の隙間が大きい場合、冷却風流路を流れる冷却風は、放熱部における頂部側の一部にしか当たらないため、ヒートシンクの放熱効率が低下する虞がある。
本発明は、上記事情に鑑みてなされたものであって、ヒートシンクの放熱効率を向上させることができるモータを提供することを目的とする。
前記課題を解決するために、請求項1に記載のモータは、環状のステータと、前記ステータを収容する有天円筒状のロータハウジングを有するロータと、前記ロータハウジングの軸方向を板厚方向とする円環板状に形成されて内側に前記ロータハウジングが回転可能に配置されたフランジ部を有するモータホルダと、前記フランジ部と対向する板状部を有し、前記モータホルダ及び前記ステータを支持するセンターピースと、前記フランジ部と前記板状部との間に形成されて前記フランジ部の径方向に延びると共に、前記フランジ部の外周側に冷却風導入口を有し、前記フランジ部の内周側に冷却風排出口を有する冷却風流路と、前記板状部から前記フランジ部に向けて突出して前記冷却風流路に配置された放熱部を有するヒートシンクと、前記放熱部の頂部と近接して対向し前記冷却風流路に沿って延びる冷却風整流面を有し、前記フランジ部に一体に形成された整流部と、前記フランジ部における前記板状部と反対側の面と前記冷却風整流面との間に形成された肉抜き部と、を備える。
このモータによれば、フランジ部には、冷却風流路に沿って延びる冷却風整流面を有する整流部が一体に形成されており、この整流部の冷却風整流面は、放熱部の頂部と近接して対向している。したがって、この冷却風整流面によって、冷却風の流れの位置を放熱部側に変えて、放熱部に対する冷却風の接触率を向上させることができる。
しかも、フランジ部における板状部と反対側の面と冷却風整流面との間には、肉抜き部が形成されている。したがって、肉抜き部が形成された分、整流部の体積が減少するので、整流部を含むモータホルダを成形する際に、整流部にヒケ(収縮変形)が生じることを抑制することができる。これにより、整流部を所望の形状に仕上げることができる。
以上より、冷却風を放熱部に的確に当てることができるので、冷却風と放熱部との間で効率良く熱交換することができる。これにより、ヒートシンクの放熱効率を向上させることができる。
請求項2に記載のモータは、請求項1に記載のモータにおいて、前記フランジ部から前記板状部に向けて立設されて前記板状部との間に前記冷却風排出口を形成する立壁部をさらに備えるものである。
このモータによれば、フランジ部から板状部に向けて立壁部が立設されており、この立壁部と板状部との間には、冷却風排出口が形成されている。したがって、冷却風排出口が板状部側に位置すると共に、立壁部が形成されたことにより、整流部によって整流されながら冷却風排出口に向かう冷却風の流れの位置を板状部側に維持することができる。これにより、冷却風の流れの位置が放熱部から離れることを抑制して、冷却風をより一層的確に放熱部に当てることができる。
請求項3に記載のモータは、請求項1又は請求項2に記載のモータにおいて、前記整流部が、前記フランジ部から前記放熱部に向けて膨出し、前記肉抜き部が、前記冷却風整流面に開口し前記冷却風流路に沿って延びる溝を含むものである。
このモータによれば、整流部は、フランジ部から板状部に向けて膨出する構成であるので、整流部を成形によって容易に形成することができる。
また、肉抜き部は、冷却風整流面に開口する溝を含んでおり、この溝は、冷却風流路に沿って延びている。したがって、この溝によって整流部のヒケを抑制しつつ冷却風を冷却風流路の長さ方向に案内することができる。これにより、冷却風流路における冷却風の流れを円滑にすることができるので、冷却風と放熱部との間の熱交換を促進して、ヒートシンクの放熱効率をより一層向上させることができる。
請求項4に記載のモータは、請求項1又は請求項2に記載のモータにおいて、前記整流部が、前記フランジ部から前記放熱部に向けて膨出し、前記肉抜き部が、前記整流部の内部に形成された空洞を含むものである。
このモータによれば、肉抜き部は、整流部の内部に形成された空洞を含んでいる。したがって、この空洞によって整流部の肉抜き量を確保して整流部の体積をより効果的に減少させることができるので、整流部のヒケをより一層効果的に抑制することができる。
また、内部に空洞が形成された整流部は、冷却風整流面を有する天壁部の両側に一対の側壁部を有するので、冷却風整流面を有する天壁部の支持剛性を高めることができる。
請求項5に記載のモータは、請求項1又は請求項2に記載のモータにおいて、前記肉抜き部が、前記フランジ部と前記冷却風整流面との間に形成され、前記整流部を前記冷却風流路に沿って延びる板状に形成する空間を含むものである。
このモータによれば、肉抜き部は、フランジ部と冷却風整流面との間に形成された空間を含んでいる。したがって、この空間によって整流部の肉抜き量を確保して整流部の体積をより効果的に減少させることができるので、整流部のヒケをより一層効果的に抑制することができる。
さらに、この空間により、整流部が冷却風流路に沿って延びる板状に形成されるので、整流部の構造を簡素化することができる。
請求項6に記載のモータは、請求項1〜請求項5のいずれか一項に記載のモータにおいて、前記整流部が、前記フランジ部から前記放熱部に向けて膨出し、前記フランジ部に、前記フランジ部の周方向及び径方向に配列され、それぞれ前記フランジ部における前記板状部と反対側の面に開口する複数のディンプルが形成され、前記肉抜き部が、前記複数のディンプルのうち前記フランジ部の板厚方向視で前記整流部と重なる位置に形成されたディンプルを含むものである。
このモータによれば、フランジ部には、フランジ部の周方向及び径方向に配列され、それぞれフランジ部における前記板状部と反対側の面に開口する複数のディンプルが形成されている。したがって、例えば、ロータにファンが固定され、このファンが、板状部と反対側からフランジ部と対向する場合には、ファンの回転時に複数のディンプルで乱流を生じさせることにより、ファンとフランジ部との間に生じる低周波音を抑制することができる。
しかも、肉抜き部は、複数のディンプルのうちフランジ部の板厚方向視で整流部と重なる位置に形成されたディンプルを含んでいる。したがって、低周波音を抑制するための複数のディンプルの一部を、整流部のヒケを抑制するための肉抜き部として利用しているので、専用の肉抜き部を用いる場合に比して、整流部の構造を簡素化することができる。
本発明の第一実施形態に係るモータの縦断面図である。 図1に示されるモータを軸方向一方側から見た斜視図である。 図1に示されるモータの要部拡大縦断面図である。 図1に示されるモータホルダを軸方向一方側から見た斜視図である。 図1に示されるモータホルダを軸方向他方側から見た斜視図である。 図1に示されるモータホルダを金型で成形する様子を示す縦断面図である。 図1に示されるモータホルダに形成された整流部の変形例を示す図である。 本発明の第二実施形態に係るモータの要部拡大縦断面図である。 図8に示されるモータホルダを軸方向他方側から見た斜視図である。 図9のF10−F10線断面図である。 図8に示されるモータホルダを金型で成形する様子を示す縦断面図である。 本発明の第三実施形態に係るモータの要部拡大縦断面図である。 図12に示されるモータホルダを軸方向他方側から見た斜視図である。 図12に示されるモータホルダを金型で成形する様子を示す縦断面図である。 第一比較例に係るモータの要部拡大縦断面図である。 第二比較例に係るモータの要部拡大縦断面図である。
[第一実施形態]
はじめに、本発明の第一実施形態について説明する。
図1に示される本発明の第一実施形態に係るモータ10は、例えば乗用自動車等の車両に搭載される送風装置として好適に用いられるものである。このモータ10は、ステータ12と、ロータ14と、モータホルダ16と、センターピース18と、制御回路20と、回路ケース22とを備えている。なお、各図において、矢印A1は、モータ10の軸方向一方側を示しており、矢印A2は、モータ10の軸方向他方側を示している。
ステータ12は、ステータコア24と、複数の巻線26を有している。複数の巻線26は、ステータコア24に放射状に形成された複数のティース28に樹脂製のインシュレータを介して巻回されている。ステータコア24の中央部には、ステータコア24の軸方向に貫通する孔が形成されており、このステータコア24及び複数の巻線26を含むステータ12の全体は、環状を成している。
ロータ14は、ステータ12とでモータ本体30を構成している。このロータ14は、有天円筒状のロータハウジング32と、ロータハウジング32の周壁部の内側に固着されたロータマグネット34を有している。ロータハウジング32は、ステータ12を収容しており、ロータマグネット34は、ステータ12の径方向外側にステータ12と対向して配置されている。
ロータハウジング32の天井部の中央部には、円筒状の固定部36が形成されており、この固定部36の内側には、モータシャフト38が圧入されている。このモータシャフト38の先端部は、ロータハウジング32の軸方向一方側に突出している。
モータホルダ16は、例えば、樹脂製であり、ロータハウジング32の周囲に設けられている。このモータホルダ16は、ロータハウジング32の周囲を囲う円筒部40と、この円筒部40から円筒部40の径方向外側に拡がるフランジ部42とを有している。このフランジ部42は、ロータハウジング32の軸方向を板厚方向とする円環板状に形成されており、このフランジ部42及び円筒部40の内側には、ロータハウジング32が回転可能に配置されている。また、このモータホルダ16には、車体等の取付対象物に固定される複数の取付部43が形成されている。
センターピース18は、モータ10の軸方向にフランジ部42と対向する板状部44と、この板状部44の中央部からステータ12側に突出する支持部46と、この支持部46に組み付けられた支持部材48とを有している。フランジ部42の周方向の複数箇所には、板状部44側に突出するボス部50が形成されており、板状部44には、ボス部50と対応する位置に結合部52が形成されている。このボス部50及び結合部52がボルト54で結合されることにより、モータホルダ16は、センターピース18に組み付けられて支持されている。
また、板状部44の中央部に形成された支持部46の先端部は、環状に形成されたステータコア24の内側に圧入されており、これにより、ステータ12は、センターピース18に支持されている。さらに、センターピース18に設けられた支持部46及び支持部材48には、軸受56がそれぞれ設けられており、この軸受56の内側には、モータシャフト38が圧入されている。このようにしてモータシャフト38が軸受56を介して支持部46及び支持部材48に支持されることにより、モータシャフト38を含むロータ14の全体は、センターピース18及びステータ12に対して回転可能とされている。
制御回路20は、センターピース18の板状部44に対するステータ12と反対側に配置されている。この制御回路20は、板状部44に沿って配置された基板58と、この基板58上に実装された複数の実装部品60等を有している。制御回路20は、巻線26の励磁を切替制御する機能を有する。制御回路20によって巻線26の励磁が切替制御されると、ステータ12に回転磁界が形成される。また、ステータ12に回転磁界が形成されると、ステータ12とロータ14との間に吸引及び反発力が作用し、ロータ14が回転する。
基板58における板状部44側の面には、ヒートシンク62が実装されている。このヒートシンク62は、実装部品60のうち例えば半導体素子などの発熱する実装部品60と熱的に接続されている。
回路ケース22は、扁平容器状に形成されており、開口を板状部44側に向けた状態で板状部44に組み付けられている。回路ケース22と板状部44とによって形成された空間には、上述の制御回路20が収容されている。
このモータ10は、上述の通り、例えば乗用自動車等の車両に搭載される送風装置として好適に用いられるものである。モータ10が車両に搭載される送風装置として使用される場合、モータシャフト38の先端部には、ファン70(例えばシロッコファン)が取り付けられ、モータホルダ16は、ファン70を収容するダクト72に組み付けられる。
ファン70は、モータシャフト38の先端部に取り付けられた状態では、フランジ部42と軸方向に対向して配置される。フランジ部42には、ファン70の回転時における騒音低減用の複数のディンプル74が形成されている(図2も参照)。この複数のディンプル74は、フランジ部42における板状部44と反対側の面42A、すなわち、ファン70と対向する面に開口している。この複数のディンプル74は、フランジ部42の全周に亘って形成されており、フランジ部42の周方向及び径方向に配列されている。複数のディンプル74は、それぞれファン70側、すなわち、板状部44と反対側に開口する。
ファン70は、回転に伴いファン70の軸方向一方側に向けて送風するように構成されている。ダクト72におけるファン70と対向する位置には、送風口76が形成されており、さらに、ダクト72の側部には、ダクト72の軸方向に延びる中空状の冷却風取込部78が設けられている。冷却風取込部78の一端部には、冷却風取込口80が形成されており、冷却風取込部78の内側とダクト72の内側とは、冷却風取込口80を介して連通されている。
モータホルダ16には、上述の冷却風をモータ10の内側に導入するための冷却風導入部82が形成されている。この冷却風導入部82は、フランジ部42の周方向の一部からフランジ部42の径方向外側に向けて突出しており、冷却風取込部78の他端部と接続されている。この冷却風導入部82は、モータホルダ16の軸方向一方側に開口する凹状に形成されており、冷却風導入部82の内側は、冷却風取込部78の内側と連通されている。
モータホルダ16のフランジ部42とセンターピース18の板状部44とは、離間して対向しており、このフランジ部42と板状部44との間には、フランジ部42の径方向に延びる冷却風流路84が形成されている。この冷却風流路84は、フランジ部42の外周側に冷却風導入口86を有し、フランジ部42の内周側に冷却風排出口88を有する。
冷却風導入口86は、冷却風導入部82の内側と連通されており、冷却風排出口88は、モータホルダ16の円筒部40とロータハウジング32との間の隙間、及び、ロータハウジング32の内側とそれぞれ連通されている。
ヒートシンク62は、例えば、複数のフィンや複数のピンなどによって構成される放熱部90を有する。この放熱部90は、板状部44を貫通して板状部44からフランジ部42に向けて突出しており、冷却風流路84に配置されている。
ロータハウジング32の天井部には、ロータハウジング32の軸方向に貫通する複数の通気孔92が形成されている。複数の通気孔92は、ロータハウジング32の軸方向視で、放射状に延びる複数のティース28間のスロットと重なる位置に形成されている。図2に示されるように、この複数の通気孔92は、ロータハウジング32の周方向に延びる円弧状に形成されている。
そして、図1に示されるように、このモータ10では、ファン70が回転すると、ファン70の軸方向一方側が正圧になり、ファン70の軸方向他方側が負圧になる。また、冷却風取込口80から取り込まれた冷却風Wが冷却風取込部78の内側をダクト72の軸方向一方側から他方側に向けて流れる。
図3にて拡大して示されるように、冷却風導入部82の内側に導入された冷却風Wは、冷却風導入口86を通じて冷却風流路84に流入する。冷却風流路84に流入した冷却風Wは、ヒートシンク62の放熱部90と熱交換し、放熱部90を冷却する。放熱部90が冷却されることにより、ヒートシンク62と熱的に接続された実装部品60が冷却される。このようにして冷却風流路84を流れ放熱部90と熱交換した冷却風Wは、冷却風排出口88を通じて冷却風流路84から排出される。
冷却風流路84から排出された冷却風Wのうち一部の冷却風W1は、モータホルダ16の円筒部40とロータハウジング32との間の隙間を通じてファン70側に排出される。一方、冷却風流路84から排出された冷却風Wのうち他の冷却風W2は、ロータハウジング32の内側に流入する。このロータハウジング32の内側に流入した冷却風W2は、ティース28間のスロットを通過しながらステータコア24及び巻線26と熱交換し、ステータコア24及び巻線26を冷却する。ステータコア24及び巻線26を冷却した冷却風W2は、通気孔92を通じてファン70側に排出される。
ところで、上記モータ10において、仮に、放熱部90の頂部とフランジ部42との間の隙間が大きい場合、冷却風流路84を流れる冷却風Wは、放熱部90における頂部側の一部にしか当たらないため、ヒートシンク62の放熱効率が低下する虞がある。
そこで、第一実施形態では、ヒートシンク62の放熱効率を向上させるために、以下の構造が適用されている。
すなわち、図3〜図5に示されるように、フランジ部42における放熱部90と対向する部位には、整流部94が形成されている。整流部94は、フランジ部42に一体に形成されており、フランジ部42から放熱部90に向けて膨出する概略偏平直方体に形成されている。
整流部94における放熱部90側の面は、冷却風流路84に沿って延びる冷却風整流面94Aとして形成されている。この冷却風整流面94Aは、放熱部90の頂部と近接して対向している。この場合の近接とは、冷却風整流面94Aによって冷却風の流れの位置を放熱部90側に変えて放熱部90に対する冷却風の接触率を向上させることができる程度のことである。
冷却風整流面94Aを含む整流部94の全体は、放熱部90よりも冷却風流路84の長さ方向に沿った長さが長く形成されており、冷却風流路84の長さ方向に放熱部90とオーバーラップしている。これにより、整流部94の冷却風導入口86側の端部は、放熱部90よりも冷却風導入口86側に位置し、整流部94の冷却風排出口88側の端部は、放熱部90よりも冷却風排出口88側に位置している。
概略偏平直方体の整流部94をフランジ部42に一体に形成する場合、モータホルダ16の樹脂成形時に整流部94にヒケ(収縮変形)が生じ、整流部94を所望の形状に仕上げることができない虞がある。このため、フランジ部42における板状部44と反対側の面42Aと冷却風整流面94Aとの間には、肉抜き部96が形成されている。この肉抜き部96は、具体的には、整流部94の放熱部90側に形成された複数の溝98と、整流部94のファン70側に形成された複数のディンプル74Aを含んでいる。
図3、図5に示されるように、複数の溝98は、それぞれ冷却風整流面94Aに開口し、冷却風流路84に沿って延びている。この複数の溝98は、整流部94の横幅方向に並んで形成されている。整流部94の横幅方向は、フランジ部42の板厚方向視で冷却風流路84の長さ方向(フランジ部42の径方向)と直交する方向に相当する。
複数の溝98は、同一の幅に形成されている。図5に示されるように、各溝98の幅w1は、隣り合う溝98の間に形成された凸部の幅w2よりも大きい寸法に設定されている。この複数の溝98における冷却風導入口86と反対側の端部(図3に示される冷却風排出口88側の端部)は、開放されている。
図4に示されるように、複数のディンプル74Aは、フランジ部42の全周に亘って形成された複数のディンプル74のうちフランジ部42の板厚方向視で整流部94と重なる位置に形成されたものである。複数のディンプル74には、開口面積が異なる大中小の複数種類のディンプル74が含まれるが、複数のディンプル74Aは、大中小の複数種類のディンプル74のうち開口面積が最も大きいものである。
図5に示されるように、モータホルダ16のフランジ部42には、円筒部40に加えて、外周壁100及び立壁部102が形成されている。外周壁100及び立壁部102は、フランジ部42における整流部94が形成された面と同じ面、すなわち、フランジ部42における軸方向他方側の面に立設されている。
外周壁100は、円筒部40の周囲を囲う概略矩形状を成している。外周壁100における冷却風導入部82と対応する部位には、上述の冷却風導入口86が貫通形成されている。整流部94の横幅は、冷却風導入口86の横幅と略同一となっている。
立壁部102は、整流部94と円筒部40との間に形成されている。立壁部102は、フランジ部42の板厚方向視でフランジ部42の径方向(図3に示される冷却風流路84の長さ方向)と直交する方向に延びている。立壁部102の両端部は、外周壁100と接続されており、立壁部102の中央部は、円筒部40と一体化されている。図3に示されるように、立壁部102は、フランジ部42から板状部44に向けて立設されている。立壁部102と板状部44との間には、上述の冷却風排出口88が形成されている。
立壁部102の高さ方向の端部(板状部44側の端部)は、ロータ14ハウンジングの開口端部と同じ位置か、又は、ロータ14ハウンジングの開口端部よりも板状部44側に位置する。また、立壁部102の高さ方向の端部は、放熱部90の頂部よりも板状部44側に位置しており、立壁部102の高さ方向の端部側の部位は、放熱部90の頂部側の部位とモータ10の軸方向にオーバーラップしている。
なお、上述の整流部94及び立壁部102を含むモータホルダ16は、例えば、図6に示される金型110を用いて樹脂成形により形成される。金型110は、モータホルダ16の軸方向に分割された固定型112及び可動型114と、スライド型116とを備える。スライド型116には、冷却風流路84を形成する型部118と、溝98を形成する型部120とが形成されている。
この金型110を用いてモータホルダ16が樹脂成形により形成された後、モータホルダ16を金型110から取り出すには、先ず、可動型114、スライド型116、及び、モータホルダ16が固定型112に対して矢印A2側に移動される。続いて、モータホルダ16及びスライド型116が可動型114に対して矢印A1側に移動されると共に、型部118の先端部が冷却風導入口86から抜けるまでスライド型116がモータホルダ16の径方向内側(矢印R1側)に移動される。そして、これにより、モータホルダ16が金型110から取り出される。
ここで、整流部94を肉抜きするために形成された複数の溝98は、冷却風整流面94Aに開口して形成されることにより、モータホルダ16の軸方向に開口している。このため、複数の溝98の長さは、モータホルダ16の径方向にスライドするスライド型116のスライド量に影響を与えない。
つまり、モータホルダ16の径方向にスライドするスライド型116のスライド量は、溝98の長さに関係なく、型部118の先端部が冷却風導入口86から抜けるまでの長さに設定されている。そして、これにより、第一実施形態では、上述のように、冷却風整流面94Aを含む整流部94の全体を、放熱部90よりも冷却風流路84の長さ方向に沿った長さが長くなるように形成することが可能となっている。
次に、本発明の第一実施形態の作用及び効果について説明する。
先ず、本発明の第一実施形態の作用及び効果を明確にするために、第一比較例及び第二比較例について説明する。
図15に示される第一比較例に係るモータ210は、上述の第一実施形態に対し、整流部94及び立壁部102(図3参照)が省かれたものである。この第一比較例に係るモータ210では、放熱部90の頂部とフランジ部42との間の隙間が大きいので、冷却風流路84を流れる冷却風は、放熱部90における頂部側の一部にしか当たらない。したがって、ヒートシンク62の放熱効率が低下する虞がある。
また、この第一比較例に係るモータ210では、冷却風流路84を流れた冷却風が円筒部40とロータハウジング32との間の隙間から流出してしまうため、ステータコア24及び巻線26を効率的に冷却することができない。
図16に示される第二比較例に係るモータ220は、上述の第一比較例に対し、立壁部102を追加したものである。この第二比較例に係るモータ220によれば、冷却風導入口86から流入した冷却風がフランジ部42側に一旦上昇するが、立壁部102により冷却風を板状部44側に再び誘導できる。これにより、放熱部90に対する冷却風の接触率を向上させることができる。
しかしながら、この第二比較例に係るモータ220では、立壁部102と板状部44との間に形成された冷却風排出口88側において、冷却風の流れの位置が板状部44側に変わるが、依然として、放熱部90の頂部とフランジ部42との間の隙間が大きいので、冷却風流路84を流れる冷却風は、放熱部90における頂部側の一部にしか当たらない。したがって、第二比較例に係るモータ220においても、ヒートシンク62の放熱効率を向上させるには改善の余地がある。
これに対し、図3に示される第一実施形態に係るモータ10によれば、フランジ部42には、冷却風流路84に沿って延びる冷却風整流面94Aを有する整流部94が一体に形成されており、この整流部94の冷却風整流面94Aは、放熱部90の頂部と近接して対向している。したがって、この冷却風整流面94Aによって、冷却風の流れの位置を放熱部90側に変えて、放熱部90に対する冷却風の接触率を向上させることができる。
しかも、フランジ部42における板状部44と反対側の面44Aと冷却風整流面94Aとの間には、肉抜き部96が形成されている。したがって、肉抜き部96が形成された分、整流部94の体積が減少するので、整流部94を含むモータホルダ16を成形する際に、整流部94にヒケ(収縮変形)が生じることを抑制することができる。これにより、整流部94を所望の形状に仕上げることができる。
以上より、冷却風を放熱部90に的確に当てることができるので、冷却風と放熱部90との間で効率良く熱交換することができる。これにより、ヒートシンク62の放熱効率を向上させることができる。
また、第一実施形態に係るモータ10によれば、フランジ部42から板状部44に向けて立壁部102が立設されており、この立壁部102と板状部44との間には、冷却風排出口88が形成されている。したがって、冷却風排出口88が板状部44側に位置すると共に、立壁部102が形成されたことにより、整流部94によって整流されながら冷却風排出口88に向かう冷却風の流れの位置を板状部44側に維持することができる。これにより、冷却風の流れの位置が放熱部90から離れることを抑制して、冷却風をより一層的確に放熱部90に当てることができる。
また、整流部94の冷却風整流面94Aは、放熱部90の頂部と近接して対向している。したがって、整流部94の冷却風整流面94Aと放熱部90の頂部との間が狭まることにより、整流部94の冷却風整流面94Aと放熱部90の頂部と間を流れる冷却風の流速を高めることができる。これにより、冷却風と放熱部90との間でより一層効率良く熱交換することができる。
さらに、第一実施形態に係るモータ10によれば、整流部94は、フランジ部42から板状部44に向けて膨出する構成であるので、整流部94を成形によって容易に形成することができる。
また、肉抜き部96は、冷却風整流面94Aに開口する溝98を含んでおり、この溝98は、冷却風流路84に沿って延びている。したがって、この溝98によって整流部94のヒケを抑制しつつ冷却風を冷却風流路84の長さ方向に案内することができる。これにより、冷却風流路84における冷却風の流れを円滑にすることができるので、冷却風と放熱部90との間の熱交換を促進して、ヒートシンク62の放熱効率をより一層向上させることができる。
また、整流部94に肉抜き部96が形成されることにより、整流部94の体積を減少させることができるので、整流部94を含むモータホルダ16の樹脂成形に要する時間(サイクルタイム)を短縮することができる。
また、整流部94を肉抜きするために形成された複数の溝98が、冷却風整流面94Aに開口して形成されることにより、複数の溝98の長さは、モータホルダ16の径方向にスライドするスライド型116(図6参照)のスライド量に影響を与えない。このため、冷却風整流面94Aを含む整流部94の全体は、放熱部90よりも冷却風流路84の長さ方向に沿った長さが長くなるように形成されている。これにより、放熱部90の全長に亘って冷却風が当たるように冷却風の流れの位置を規定することができるので、冷却風と放熱部90との間でより一層効率良く熱交換することができる。
また、図5示されるように、各溝98の幅w1は、隣り合う溝98の間に形成された凸部の幅w2よりも大きい寸法に設定されている。したがって、この複数の溝98によって、冷却風を冷却風流路84の長さ方向に案内しつつ整流部94の体積をより効果的に減少させることができる。
また、図4に示されるように、フランジ部42には、フランジ部42の周方向及び径方向に配列され、それぞれフランジ部42における板状部44と反対側の面42Aに開口する複数のディンプル74が形成されている。したがって、本実施形態のように、ロータ14にファン70が固定され、このファン70が、板状部44と反対側からフランジ部42と対向する場合には、ファン70の回転時に複数のディンプル74で乱流を生じさせることにより、ファン70とフランジ部42との間に生じる低周波音を抑制することができる。
しかも、肉抜き部96は、複数のディンプル74のうちフランジ部42の板厚方向視で整流部94と重なる位置に形成されたディンプル74Aを含んでいる。したがって、低周波音を抑制するための複数のディンプル74の一部を、整流部94のヒケを抑制するための肉抜き部96として利用しているので、専用の肉抜き部96を用いる場合に比して、整流部94の構造を簡素化することができる。なお、開口面積の大きいディンプル74Aは、必須の構成ではなく、肉抜きする溝98の大きさなどによっては、他のディンプルと同程度の大きさでもあっても良い。
次に、本発明の第一実施形態の変形例について説明する。
上記第一実施形態において、各溝98の幅w1は、隣り合う溝98の間に形成された凸部の幅w2よりも大きい寸法に設定されている。しかしながら、図7に示されるように、各溝98の幅w1は、隣り合う溝98の間に形成された凸部の幅w2よりも小さい寸法に設定されていても良い。
このように構成されていると、整流部94の体積を減少させつつ整流部94と放熱部90との間の流路の断面積を狭めることができる。これにより、冷却風の流れの位置を放熱部90側に変えつつ整流部94の冷却風整流面94Aと放熱部90の頂部と間を流れる冷却風の流速を高めることができるので、冷却風と放熱部90との間でより一層効率良く熱交換することができる。
また、上記第一実施形態において、整流部94には、複数の溝98が形成されているが、溝98の数は、一つでも良い。
また、複数の溝98における冷却風排出口88側の端部は、冷却風排出口88側に向けて開放されているが、冷却風排出口88側に対して閉止されていても良い。
[第二実施形態]
次に、本発明の第二実施形態について説明する。
図8に示される本発明の第二実施形態に係るモータ130は、上述の第一実施形態に係るモータ10(図3参照)に対し、整流部94に形成される肉抜き部96の構成が次のように変更されている。
すなわち、第二実施形態に係るモータ130において、肉抜き部96は、複数のディンプル74Aに加えて、整流部94の内部に形成された空洞132を含んでいる。図8、図9に示されるように、空洞132は、フランジ部42の径方向内側に向けて開口している。整流部94は、第一実施形態と同様に、フランジ部42から放熱部90に向けて膨出している。図9、図10に示されるように、内部に空洞132が形成された整流部94は、一対の側壁部134と、天壁部136とを有しており、天壁部136における放熱部90側の面は、上述の冷却風整流面94Aとして形成されている。
図8に示されるように、この冷却風整流面94Aを含む整流部94の全体は、第一実施形態よりも冷却風流路84の長さ方向に沿った長さが短く形成されている。これにより、整流部94の冷却風導入口86側の端部は、放熱部90よりも冷却風導入口86側に位置しているが、整流部94の冷却風排出口88側の端部は、放熱部90の冷却風排出口88側の端部よりも手前側(冷却風導入口86側)に位置している。
なお、上述の整流部94及び立壁部102を含むモータホルダ16は、例えば、図11に示される金型140を用いて樹脂成形により形成される。金型140は、上述の第一実施形態に対し、スライド型116の構成が変更されており、スライド型116には、冷却風流路84を形成する型部118に加えて、空洞132を形成する型部150が形成されている。
この金型140を用いてモータホルダ16が樹脂成形により形成された後、モータホルダ16を金型140から取り出すには、先ず、可動型114、スライド型116、及び、モータホルダ16が固定型112に対して矢印A2側に移動される。続いて、モータホルダ16及びスライド型116が可動型114に対して矢印A1側に移動されると共に、型部150が空洞132から抜けるまでスライド型116がモータホルダ16の径方向内側(矢印R1側)に移動される。また、型部150が空洞132から抜けた後、図示しないイジェクトピンによりモータホルダ16がさらに押し上げられることで、モータホルダ16がスライド型116から完全に排出される。そして、これにより、モータホルダ16が金型140から取り出される。
ここで、整流部94を肉抜きするために形成された空洞132は、整流部94の内部に形成されることにより、モータホルダ16の径方向内側に向けて開口している。この空洞132の開口は、立壁部102と対向している。このため、空洞132の長さは、モータホルダ16の径方向にスライドするスライド型116のスライド量に影響する。
つまり、モータホルダ16の径方向にスライドするスライド型116のスライド量は、型部150が空洞132から抜けるまでの長さに設定される。このため、冷却風整流面94Aを含む整流部94の全体は、第一実施形態よりも冷却風流路84の長さ方向に沿った長さが短く形成されている。
次に、本発明の第二実施形態の作用及び効果について、上述の第一実施形態と異なる点を説明する。
図8に示されるように、第二実施形態に係るモータ130によれば、肉抜き部96は、整流部94の内部に形成された空洞132を含んでいる。したがって、この空洞132によって整流部94の肉抜き量を確保して整流部94の体積をより効果的に減少させることができるので、整流部94のヒケをより一層効果的に抑制することができる。
また、図9に示されるように、内部に空洞132が形成された整流部94は、冷却風整流面94Aを有する天壁部136の両側に一対の側壁部134を有するので、冷却風整流面94Aを有する天壁部136の支持剛性を高めることができる。
次に、本発明の第二実施形態の変形例について説明する。
上記第二実施形態において、空洞132は、モータホルダ16の径方向内側に開口するが、モータホルダ16の径方向外側に開口していても良い。また、この場合に、冷却風整流面94Aを含む整流部94の全体は、放熱部90よりも冷却風流路84の長さ方向に沿った長さが長く形成されても良い。
また、上記第二実施形態において、肉抜き部96は、空洞132と、複数のディンプル74Aとを含むが、空洞132及び複数のディンプル74Aに加えて、上述の第一実施形態における溝98(図3参照)を含んでいても良い。
[第三実施形態]
次に、本発明の第三実施形態について説明する。
図12に示される本発明の第三実施形態に係るモータ160は、上述の第一実施形態に係るモータ10(図3参照)に対し、次のように構成が変更されている。すなわち、冷却風導入部82には、円筒状のインレット162が形成されている。インレット162の内側を通じて冷却風導入部82の内側に導入された冷却風は、冷却風導入口86を通じて冷却風流路84に流入する。
また、第三実施形態に係るモータ160は、上述の第一実施形態に係るモータ10(図3参照)に対し、整流部94に形成される肉抜き部96の構成が次のように変更されている。すなわち、肉抜き部96は、フランジ部42と冷却風整流面94Aとの間に形成された空間164を含んでいる。
そして、この肉抜き部96により、整流部94は、冷却風流路84に沿って延びる板状に形成されている。つまり、この整流部94は、フランジ部42と冷却風整流面94Aとの間に空間164を形成して肉抜きすることにより板状に形成されたものである(図13も参照)。
この整流部94は、フランジ部42の外周側に基端部を有し、フランジ部42の内周側に先端部を有している。この板状に形成された整流部94における放熱部90側の面は、上述の冷却風整流面94Aとして形成されている。
この冷却風整流面94Aを含む整流部94の全体は、第一実施形態よりも冷却風流路84の長さ方向に沿った長さが短く形成されており、上述の第二実施形態と同様の長さで形成されている。これにより、整流部94の冷却風導入口86側の端部は、放熱部90よりも冷却風導入口86側に位置しているが、整流部94の冷却風排出口88側の端部は、放熱部90の冷却風排出口88側の端部よりも手前側(冷却風導入口86側)に位置している。
なお、上述の整流部94及び立壁部102を含むモータホルダ16は、例えば、図14に示される金型170を用いて樹脂成形により形成される。金型170は、上述の第一実施形態に対し、スライド型116の構成が変更されており、スライド型116には、冷却風流路84を形成する型部118に加えて、空間164を形成する型部180が形成されている。
この金型170を用いてモータホルダ16が樹脂成形により形成された後、モータホルダ16を金型170から取り出すには、先ず、可動型114、スライド型116、及び、モータホルダ16が固定型112に対して矢印A2側に移動される。続いて、モータホルダ16及びスライド型116が可動型114に対して矢印A1側に移動されると共に、型部180が空間164から抜けるまでスライド型116がモータホルダ16の径方向内側(矢印R1側)に移動される。また、型部180が空間164から抜けた後、図示しないイジェクトピンによりモータホルダ16がさらに押し上げられることで、モータホルダ16がスライド型116から完全に排出される。そして、これにより、モータホルダ16が金型170から取り出される。
ここで、整流部94を肉抜きするために形成された空間164は、フランジ部42と冷却風整流面94Aとの間に形成されることにより、モータホルダ16の径方向内側に向けて開放されている。この空間164の開放口は、立壁部102と対向している。このため、空間164の長さは、モータホルダ16の径方向にスライドするスライド型116のスライド量に影響する。
つまり、モータホルダ16の径方向にスライドするスライド型116のスライド量は、型部170が空間164から抜けるまでの長さに設定される。このため、冷却風整流面94Aを含む整流部94の全体は、第一実施形態よりも冷却風流路84の長さ方向に沿った長さが短く形成されている。
次に、本発明の第三実施形態の作用及び効果について、上述の第一実施形態と異なる点を説明する。
図12に示されるように、第三実施形態に係るモータ10によれば、肉抜き部96は、フランジ部42と冷却風整流面94Aとの間に形成された空間164を含んでいる。したがって、この空間164によって整流部94の肉抜き量を確保して整流部94の体積をより効果的に減少させることができるので、整流部94のヒケをより一層効果的に抑制することができる。
さらに、この空間164により、整流部94が冷却風流路84に沿って延びる板状に形成されるので、整流部94の構造を簡素化することができる。
次に、本発明の第三実施形態の変形例について説明する。
上記第三実施形態において、空間164は、モータホルダ16の径方向内側に開放されているが、モータホルダ16の径方向外側に開放されていても良い。また、この場合に、冷却風整流面94Aを含む整流部94の全体は、放熱部90よりも冷却風流路84の長さ方向に沿った長さが長く形成されても良い。
また、上記第三実施形態において、肉抜き部96は、空間164を含むが、空間164及び複数のディンプル74に加えて、上述の第一実施形態における複数のディンプル74A及び溝98(図3参照)の少なくとも一方を含んでいても良い。
なお、肉抜き部96は、上記第一乃至第三実施形態に示される構成以外にも、フランジ部42における板状部44と反対側の面44Aと冷却風整流面94との間に形成されると共に、フランジ部42の板厚方向を高さ方向とする空間状で、かつ、フランジ部42の板厚方向視で整流部94と重なる位置に形成されているものであれば、どのような構成でも良い。この肉抜き部96は、モータホルダ16の成形後に除去加工により形成されるものではなく、モータホルダ16の成形時に形成されるものである。
以上、本発明の第一乃至第三実施形態について説明したが、本発明は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。
10…モータ、12…ステータ、14…ロータ、16…モータホルダ、18…センターピース、20…制御回路、22…回路ケース、32…ロータハウジング、40…円筒部、42…フランジ部、42A…フランジ部における板状部と反対側の面、44…板状部、46…支持部、48…支持部材、58…基板、60…実装部品、62…ヒートシンク、70…ファン、72…ダクト、74…ディンプル、74A…ディンプル、78…冷却風取込部、80…冷却風取込口、82…冷却風導入部、84…冷却風流路、86…冷却風導入口、88…冷却風排出口、90…放熱部、92…通気孔、94…整流部、94A…冷却風整流面、96…肉抜き部、98…溝、102…立壁部、132…空洞、164…空間

Claims (6)

  1. 環状のステータと、
    前記ステータを収容する有天円筒状のロータハウジングを有するロータと、
    前記ロータハウジングの軸方向を板厚方向とする円環板状に形成されて内側に前記ロータハウジングが回転可能に配置されたフランジ部を有するモータホルダと、
    前記フランジ部と対向する板状部を有し、前記モータホルダ及び前記ステータを支持するセンターピースと、
    前記フランジ部と前記板状部との間に形成されて前記フランジ部の径方向に延びると共に、前記フランジ部の外周側に冷却風導入口を有し、前記フランジ部の内周側に冷却風排出口を有する冷却風流路と、
    前記板状部から前記フランジ部に向けて突出して前記冷却風流路に配置された放熱部を有するヒートシンクと、
    前記放熱部の頂部と近接して対向し前記冷却風流路に沿って延びる冷却風整流面を有し、前記フランジ部に一体に形成された整流部と、
    前記フランジ部における前記板状部と反対側の面と前記冷却風整流面との間に形成された肉抜き部と、
    を備えるモータ。
  2. 前記フランジ部から前記板状部に向けて立設されて前記板状部との間に前記冷却風排出口を形成する立壁部をさらに備える、
    請求項1に記載のモータ。
  3. 前記整流部は、前記フランジ部から前記放熱部に向けて膨出し、
    前記肉抜き部は、前記冷却風整流面に開口し前記冷却風流路に沿って延びる溝を含む、
    請求項1又は請求項2に記載のモータ。
  4. 前記整流部は、前記フランジ部から前記放熱部に向けて膨出し、
    前記肉抜き部は、前記整流部の内部に形成された空洞を含む、
    請求項1又は請求項2に記載のモータ。
  5. 前記肉抜き部は、前記フランジ部と前記冷却風整流面との間に形成され、前記整流部を前記冷却風流路に沿って延びる板状に形成する空間を含む、
    請求項1又は請求項2に記載のモータ。
  6. 前記フランジ部には、前記フランジ部の周方向及び径方向に配列され、それぞれ前記フランジ部における前記板状部と反対側の面に開口する複数のディンプルが形成され、
    前記肉抜き部は、前記複数のディンプルのうち前記フランジ部の板厚方向視で前記整流部と重なる位置に形成されたディンプルを含む、
    請求項1〜請求項5のいずれか一項に記載のモータ。
JP2017148506A 2017-07-31 2017-07-31 モータ Active JP6855973B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017148506A JP6855973B2 (ja) 2017-07-31 2017-07-31 モータ
DE112018003902.1T DE112018003902T5 (de) 2017-07-31 2018-06-13 Motor
US16/633,874 US11316409B2 (en) 2017-07-31 2018-06-13 Motor including flow rectification section and bulk reduction section
CN201880049462.9A CN110945759B (zh) 2017-07-31 2018-06-13 电动机
PCT/JP2018/022623 WO2019026433A1 (ja) 2017-07-31 2018-06-13 モータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017148506A JP6855973B2 (ja) 2017-07-31 2017-07-31 モータ

Publications (2)

Publication Number Publication Date
JP2019030147A true JP2019030147A (ja) 2019-02-21
JP6855973B2 JP6855973B2 (ja) 2021-04-07

Family

ID=65233683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017148506A Active JP6855973B2 (ja) 2017-07-31 2017-07-31 モータ

Country Status (5)

Country Link
US (1) US11316409B2 (ja)
JP (1) JP6855973B2 (ja)
CN (1) CN110945759B (ja)
DE (1) DE112018003902T5 (ja)
WO (1) WO2019026433A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220271604A1 (en) * 2021-02-25 2022-08-25 Regal Beloit America, Inc. Electric machine assembly having end frame cooling

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07154946A (ja) * 1993-11-29 1995-06-16 Hitachi Ltd 回転電気機械
JPH07245915A (ja) * 1994-03-01 1995-09-19 Hitachi Ltd 回転電気機械
JPH08331822A (ja) * 1995-06-03 1996-12-13 Omron Corp ブラシレス直流モータ
JPH09322466A (ja) * 1996-06-03 1997-12-12 Hitachi Ltd 車両用交流発電機
JP2004360671A (ja) * 2002-10-29 2004-12-24 Kawasaki Heavy Ind Ltd オイルクーラ及び小型走行船
WO2010122735A1 (ja) * 2009-04-23 2010-10-28 株式会社ヴァレオサーマルシステムズ 駆動モータ
JP2015057014A (ja) * 2013-09-13 2015-03-23 アスモ株式会社 モータ
JP2017184547A (ja) * 2016-03-31 2017-10-05 アスモ株式会社 ファンモータ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3426151B2 (ja) * 1998-03-16 2003-07-14 アスモ株式会社 ブラシレスモータ
JP3544301B2 (ja) * 1998-05-13 2004-07-21 アスモ株式会社 ブラシレスモータ
KR100297342B1 (ko) * 1998-12-30 2001-08-07 이형도 팬 모터용 히트 싱크
JP4421083B2 (ja) 2000-06-12 2010-02-24 アスモ株式会社 ブラシレスモータ
JP2002112504A (ja) * 2000-09-27 2002-04-12 Zexel Valeo Climate Control Corp ブラシレスモータ
US6504274B2 (en) * 2001-01-04 2003-01-07 General Electric Company Generator stator cooling design with concavity surfaces
JP6726630B2 (ja) * 2017-02-08 2020-07-22 株式会社ケーヒン 空調用ブロアモータユニット

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07154946A (ja) * 1993-11-29 1995-06-16 Hitachi Ltd 回転電気機械
JPH07245915A (ja) * 1994-03-01 1995-09-19 Hitachi Ltd 回転電気機械
JPH08331822A (ja) * 1995-06-03 1996-12-13 Omron Corp ブラシレス直流モータ
JPH09322466A (ja) * 1996-06-03 1997-12-12 Hitachi Ltd 車両用交流発電機
JP2004360671A (ja) * 2002-10-29 2004-12-24 Kawasaki Heavy Ind Ltd オイルクーラ及び小型走行船
WO2010122735A1 (ja) * 2009-04-23 2010-10-28 株式会社ヴァレオサーマルシステムズ 駆動モータ
JP2015057014A (ja) * 2013-09-13 2015-03-23 アスモ株式会社 モータ
JP2017184547A (ja) * 2016-03-31 2017-10-05 アスモ株式会社 ファンモータ

Also Published As

Publication number Publication date
CN110945759A (zh) 2020-03-31
DE112018003902T5 (de) 2020-04-16
WO2019026433A1 (ja) 2019-02-07
CN110945759B (zh) 2021-12-31
US11316409B2 (en) 2022-04-26
US20200177058A1 (en) 2020-06-04
JP6855973B2 (ja) 2021-04-07

Similar Documents

Publication Publication Date Title
JP6707954B2 (ja) ファンモータ
US10404140B2 (en) Cooling structure of drive motor
JP2007218101A (ja) 軸流ファンのハウジングおよび軸流ファン
JPWO2017082224A1 (ja) 送風装置、および掃除機
US20070196208A1 (en) Fan Assembly
JP2000333409A (ja) 誘導電動機
US20190120243A1 (en) Fan impeller structure and cooling fan thereof
US20190280536A1 (en) Rotary electric machine cooling structure
JP2019024276A (ja) モータ、送風装置及び掃除機
US9755467B2 (en) Open-type induction motor
JP2012100521A (ja) 回転電機のケース
JP6620427B2 (ja) 送風機
JP4897587B2 (ja) 回転電機
JP6178674B2 (ja) 送風機
JP2013024134A (ja) 電動送風機ならびに電気掃除機
JP2018155237A (ja) 送風装置及び掃除機
JP4020414B2 (ja) ファンモータ
JP2019023433A (ja) 送風装置及び掃除機
JP2019030147A (ja) モータ
JP2012163021A (ja) 送風ファン
JP6950422B2 (ja) 遠心ファン
JP6624025B2 (ja) 回転電機
JP6764823B2 (ja) 回転電機
KR20220095872A (ko) 모터 조립체
JP3220488U (ja) インバータ一体型モータの冷却構造

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180427

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210301

R151 Written notification of patent or utility model registration

Ref document number: 6855973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250