JP2019010733A - ガスバリアーフィルム、その製造方法及びそれを用いた電子デバイス - Google Patents

ガスバリアーフィルム、その製造方法及びそれを用いた電子デバイス Download PDF

Info

Publication number
JP2019010733A
JP2019010733A JP2015228396A JP2015228396A JP2019010733A JP 2019010733 A JP2019010733 A JP 2019010733A JP 2015228396 A JP2015228396 A JP 2015228396A JP 2015228396 A JP2015228396 A JP 2015228396A JP 2019010733 A JP2019010733 A JP 2019010733A
Authority
JP
Japan
Prior art keywords
gas barrier
layer
barrier film
barrier layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015228396A
Other languages
English (en)
Inventor
晋之介 八代
Shinnosuke Yashiro
晋之介 八代
森 孝博
Takahiro Mori
孝博 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2015228396A priority Critical patent/JP2019010733A/ja
Priority to PCT/JP2016/084592 priority patent/WO2017090606A1/ja
Publication of JP2019010733A publication Critical patent/JP2019010733A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

【課題】本発明の課題は、ガスバリアー性が顕著に改善されたガスバリアーフィルム、その製造方法及びそれを用いた電子デバイスを提供することである。
【解決手段】本発明のガスバリアーフィルムは、基材上に少なくとも第1のガスバリアー層及び第2のガスバリアー層が積層されており、前記第1のガスバリアー層は、少なくともケイ素(Si)を含有し、かつ当該第1のガスバリアー層の表層部における、酸素原子、窒素原子及びケイ素原子の存在量全体に対する、酸素原子の存在割合が60〜75%、窒素原子の存在割合が0〜10%、ケイ素原子の存在割合が25〜35%の範囲内であり、かつ、前記ガスバリアー層の表層部における膜密度が、2.4〜4.0g/cmの範囲内であり、前記第2のガスバリアー層は、第3〜11族の遷移金属を含有する層であることを特徴とする。
【選択図】図1

Description

本発明は、ガスバリアーフィルム、その製造方法及びそれを用いた電子デバイスに関する。より詳しくは、ガスバリアー性が顕著に改善されたガスバリアーフィルム、その製造方法及びそれを用いた電子デバイスに関する。
従来、食品、包装材料、医薬品などの分野で、水蒸気や酸素等のガスの透過を防ぐため、樹脂基材の表面に金属や金属酸化物の蒸着膜等の無機膜を設けた比較的簡易な構造を有するガスバリアー性フィルム(以下、本願ではガスバリアーフィルムという。)が用いられてきた。
近年、このような水蒸気や酸素等の透過を防ぐガスバリアーフィルムが、液晶表示素子(LCD)、太陽電池(PV)、有機エレクトロルミネッセンス(EL)素子などの電子デバイスの分野にも利用されつつある。このような電子デバイスに、フレキシブル性と軽くて割れにくいという性質を付与するためには、硬くて割れ易いガラス基板ではなく、高いガスバリアー性を有するガスバリアーフィルムが必要となってくる。
電子デバイスに適用可能なガスバリアーフィルムを得るための方策としては、樹脂基材上にプラズマCVD法(Chemical Vapor Deposition:化学気相成長法、化学蒸着法)によってガスバリアー層を形成する方法や、ポリシラザンを主成分とする塗布液を基材上に塗布した後、表面処理(改質処理)を施してガスバリアー層を形成する方法が知られている。
さらに、特許文献1及び特許文献2には、前記表面処理(改質処理)として、ポリシラザンを含む層にイオンを注入して改質する技術及び装置が開示されており、ガスバリアー性、フレキシブル性及び透明性に優れるガスバリアーフィルムが得られるとの記載がある。
しかしながら、前記有機エレクトロルミネッセンス(EL)素子などの電子デバイス用途としては、さらに高いガスバリアー性を有するガスバリアーフィルムが求められている。
国際公開第2010/107018号 特開2011−32494号公報
本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、ガスバリアー性が顕著に改善されたガスバリアーフィルム、その製造方法及びそれを用いた電子デバイスを提供することである。
本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、基材上に少なくとも第1のガスバリアー層及び第2のガスバリアー層が積層されており、前記第1のガスバリアー層は、少なくともケイ素(Si)を含有し、かつ当該ガスバリアー層の表層部における、酸素原子、窒素原子及びケイ素原子の存在量全体に対する、酸素原子、窒素原子、及びケイ素原子の存在割合と、前記ガスバリアー層の表層部における膜密度とが特定の範囲内であり、かつ前記第2のガスバリアー層は、第3〜11族の遷移金属を含有する層であることによって、ガスバリアー性が顕著に改善されたガスバリアーフィルムが得られることを見出した。
すなわち、本発明に係る上記課題は、以下の手段により解決される。
1.基材上に少なくとも第1のガスバリアー層及び第2のガスバリアー層が積層されており、
前記第1のガスバリアー層は、少なくともケイ素(Si)を含有し、かつ当該第1のガスバリアー層の表層部における、酸素原子、窒素原子及びケイ素原子の存在量全体に対する、酸素原子の存在割合が60〜75%、窒素原子の存在割合が0〜10%、ケイ素原子の存在割合が25〜35%の範囲内であり、かつ、前記ガスバリアー層の表層部における膜密度が、2.4〜4.0g/cmの範囲内であり、
前記第2のガスバリアー層は、第3〜11族の遷移金属を含有する層であることを特徴とするガスバリアーフィルム。
2.前記第1のガスバリアー層が、ポリシラザン化合物の改質層であることを特徴とする第1項に記載のガスバリアーフィルム。
3.前記ポリシラザン化合物が、ペルヒドロポリシラザンであることを特徴とする第2項に記載のガスバリアーフィルム。
4.前記遷移金属が、ニオブ(Nb)、タンタル(Ta)、及びバナジウム(V)から選択される少なくとも1種であることを特徴とする第1項から第3項までのいずれか一項に記載のガスバリアーフィルム。
5.前記第1のガスバリアー層と前記第2のガスバリアー層との間に、少なくとも厚さ方向において、ケイ素(Si)(M1)及び遷移金属(M2)を含有する領域であって、前記ケイ素(Si)(M1)に対する遷移金属(M2)の原子数比の値(M2/M1)が、0.02〜49の範囲内にある混合領域を、厚さ方向に連続して5nm以上有することを特徴とする第1項から第4項までのいずれか一項に記載のガスバリアーフィルム。
6.前記混合領域に、ケイ素(Si)又は当該ケイ素(Si)に由来する化合物と遷移金属又は当該遷移金属に由来する化合物の混合物又は複合酸化物の少なくとも一方が含有されていることを特徴とする第5項に記載のガスバリアーフィルム。
7.前記混合領域の組成に、さらに酸素が含有されていることを特徴とすることを特徴とする第5項又は第6項に記載のガスバリアーフィルム。
8.前記混合領域の組成を、下記化学組成式(1)で表したとき、前記混合領域の少なくとも一部が下記関係式(2)を満たすことを特徴とする請求項5から請求項7までのいずれか一項に記載のガスバリアーフィルム。
化学組成式(1): (M1)(M2)
関係式(2) : (2y+3z)/(a+bx)<1.0
(ただし式中、M1:ケイ素、M2:遷移金属、O:酸素、N:窒素、x,y,z:化学量論係数、0.02≦x≦49、0<y、0≦z、a:M1の最大価数、b:M2の最大価数を表す。)
9.第1項から第8項までのいずれか一項に記載のガスバリアーフィルムを製造するガスバリアーフィルムの製造方法であって、
前記第1のガスバリアー層を、ポリシラザンを含有する層にイオンを注入して改質処理する工程によって形成し、
前記第2のガスバリアー層を、気相成膜法によって形成することを特徴とするガスバリアーフィルムの製造方法。
10.前記ポリシラザンを含有する層に、水素、窒素、酸素、アルゴン、ヘリウム、ネオン、キセノン及びクリプトンから選択されるガスを用いてイオンを注入して改質処理する工程を有することを特徴とする第9項に記載のガスバリアーフィルムの製造方法。
11.前記ポリシラザンを含有する層に、水素、窒素、酸素、アルゴン、ヘリウム、ネオン、キセノン及びクリプトンから選択されるガスを用いて、プラズマイオンを注入して改質処理する工程を有することを特徴とする第9項に記載のガスバリアーフィルムの製造方法。
12.前記ポリシラザンを含有する層を有する長尺状の基材を一定方向に搬送しながら、前記ポリシラザンを含有する層にイオンを注入して改質処理することを特徴とする第9項から第11項までのいずれか一項に記載のガスバリアーフィルムの製造方法。
13.前記基材を、高電圧印加回転キャンの周囲に沿って一定方向に搬送させると同時に、前記高電圧印加回転キャンに負の高電圧のみを印加して生成させたプラズマ中のイオンを、前記基材表面部に注入することを特徴とする第9項から第12項までのいずれか一項に記載のガスバリアーフィルムの製造方法。
14.前記イオン注入する際の圧力が、0.01〜5Paであることを特徴とする第13項に記載のガスバリアーフィルムの製造方法。
15.パルス幅が1〜10μsecで前記プラズマを生成させることを特徴とする第13項又は第14項に記載のガスバリアーフィルムの製造方法。
16.印加電圧が−50〜−1kVで前記プラズマを生成させることを特徴とする第13項から第15項までのいずれか一項に記載のガスバリアーフィルムの製造方法。
17.第1項から第8項までのいずれか一項に記載のガスバリアーフィルムを具備していることを特徴とする電子デバイス。
18.量子ドット含有樹脂層を有することを特徴とする第17項に記載の電子デバイス。
19.有機エレクトロルミネッセンス素子を具備していることを特徴とする第17項に記載の電子デバイス。
本発明の上記手段により、ガスバリアー性が顕著に改善されたガスバリアーフィルム、その製造方法及びそれを用いた電子デバイスを提供することができる。
本発明者の検討によれば、特許文献3に開示されている、ポリシラザンを含む層にイオンを注入して改質する技術は、たしかにガスバリアー性は40℃・90%RH雰囲気下での水蒸気透過率が0.50g/(m・24h)未満になるものの、例えば、有機EL素子用として要望されている、JIS K 7126−1987に準拠した方法で測定された酸素透過度が、1×10−3 cm/m・24h・atm)以下、及びJIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10−3(g/m・24h)以下といった高ガスバリアー性には到達できなかった。
本発明者はさらに検討を進めた結果、ケイ素(Si)を含有する第1のガスバリアー層にイオンを注入して、特定の元素組成及び膜密度になるように改質処理を行い、さらに例えばNb等の遷移金属(M2)を含む層を積層することによって、ケイ素(Si)と遷移金属(M2)の「混合領域」を形成することで、ガスバリアーフィルム全体のガスバリアー性が著しく向上することを見出したものである。
本発明のガスバリアーフィルムの構成を示す断面図 プラズマイオン注入装置の一例を示す模式図 高電圧印加回転キャンの斜視図 プラズマイオン注入装置の別の一例を示す模式図 ガスバリアー層の厚さ方向におけるケイ素及び遷移金属の組成分布をXPS法により分析したときの元素プロファイルと混合領域を説明するためのグラフ
本発明のガスバリアーフィルムは、基材上に少なくとも第1のガスバリアー層及び第2のガスバリアー層が積層されており、前記第1のガスバリアー層は、少なくともケイ素(Si)を含有し、かつ当該第1のガスバリアー層の表層部における、酸素原子、窒素原子及びケイ素原子の存在量全体に対する、酸素原子の存在割合が60〜75%、窒素原子の存在割合が0〜10%、ケイ素原子の存在割合が25〜35%の範囲内であり、かつ、前記ガスバリアー層の表層部における膜密度が、2.4〜4.0g/cmの範囲内であり、前記第2のガスバリアー層は、第3族〜第11族の遷移金属を含有する層であることを特徴とする。この特徴は、請求項1から請求項19までの各請求項に係る発明に共通する技術的特徴である。
以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「〜」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
≪本発明のガスバリアーフィルムの概要≫
本発明ガスバリアーフィルムは、基材上に少なくとも第1のガスバリアー層及び第2のガスバリアー層が積層されており、前記第1のガスバリアー層は、少なくともケイ素(Si)を含有し、かつ当該第1のガスバリアー層の表層部における、酸素原子、窒素原子及びケイ素原子の存在量全体に対する、酸素原子の存在割合が60〜75%、窒素原子の存在割合が0〜10%、ケイ素原子の存在割合が25〜35%の範囲内であり、かつ、前記ガスバリアー層の表層部における膜密度が、2.4〜4.0g/cmの範囲内であり、前記第2のガスバリアー層は、第3〜11族の遷移金属を含有する層であることを特徴とする。
前記第1のガスバリアー層における「表層部」とは、基材上に順に第1のガスバリアー層及び第2のガスバリアー層が積層されている場合は、第1のガスバリアー層の第2のガスバリアー層に接する側の表面、及び当該表面から深さ方向に5nmまでの領域をいう。また、本発明に係る混合領域がある場合は、第1のガスバリアー層と混合領域の界面、及び当該界面から深さ方向に5nmまでの領域をいう。
基材上に順に第2のガスバリアー層及び第1のガスバリアー層が積層されている場合は、第1のガスバリアー層の第2のガスバリアー層と接する側とは反対側の表面、及び当該表面から深さ方向に5nmまでの領域をいう。
また、第1のガスバリアー層の「表面」とは、他の層と接している場合は、他の層との境界面を含む意である。
前記第1のガスバリアー層の表層部における、酸素原子、窒素原子及びケイ素原子の存在量全体に対する、酸素原子、窒素原子及びケイ素原子の存在割合は、以下のX線光電子分光法によって測定する。
(X線光電子分光法(XPS:Xray Photoelectron Spectroscopy))
下記に示す測定条件にて、第1のガスバリアー層の前記表層部における酸素原子、窒素原子及びケイ素原子の存在割合の測定を行う。
測定装置:「PHI Quantera SXM」アルバック・ファイ社製
X線源:AlKα
X線ビーム径:100μm
電力値:25W
電圧:15kV
取り出し角度:45°
真空度:5.0×10−8Pa
前記第1のガスバリアー層の表層部における膜密度は以下の方法によって測定することができる。
(X線反射法(XRR))
膜密度は、X線反射率法(XRR)を用いて算出することができる。
X線は、基板上の薄膜に対して非常に浅い角度で入射させると全反射される。入射X線の角度が全反射臨界角以上になると、薄膜内部にX線が侵入し薄膜表面や界面で透過波と反射波に分かれ、反射波は干渉する。全反射臨界角を解析することで、膜の密度を求めることができる。なお、入射角度を変えながら測定を行い、光路差の変化に伴う反射波の干渉信号の解析から、薄膜の膜厚も求めることができる。
膜密度は、以下の方法で測定することができる。
一般に、X線に対する物質の屈折率n、及び屈折率nの実数部分のδは以下の式1及び式2となることが知られている。
Figure 2019010733
Figure 2019010733
ここで、rは電子の古典半径(2.818×10−15m)を、Nはアボガドロ数を、λはX線の波長を、ρは密度(g/cm)を、Z、M、xは、それぞれi番目の原子の原子番号、原子量及び原子数比(モル比)を、f′はi番目の原子の原子散乱因子(異常分散項)を表す。また、全反射臨界角度θは、吸収に関係するβを無視すると、式3で与えられる。
Figure 2019010733
したがって、式2及び式3の関係から、密度ρは式4で求めることができる。
Figure 2019010733
ここで、θはX線反射率より求めることのできる値であり、r、N、λは定数であり、Z、M、f′はそれぞれ構成原子に固有の値となる。なお、x:原子数比(モル比)に関しては、XPS測定から得られた結果を用いる。
第1のガスバリアー層の表層部における膜密度は、実施例において説明する方法で測定し、上記式4を用いて得られる。
前述のとおり、本発明に係る第1のガスバリアー層と前記第2のガスバリアー層との間に、前記ケイ素(Si)(M1)と前記遷移金属(M2)との混合領域を有することが、ガスバリアー性を顕著に向上する観点から、好ましい。
かかる特定の金属種を用いて第1のガスバリアー層と第2のガスバリアー層を積層形成することで、高ガスバリアー性を得ることができる理由としては以下のように考えている。
前記ケイ素(Si)及び遷移金属をそれぞれ異なる複数の層に含有するガスバリアー層を積層形成することにより、ケイ素(Si)と遷移金属の複合された組成を有する特定の領域(以下、本願では「混合領域」という。)が形成され、さらに、当該混合領域を酸素欠損組成(酸素が欠損した非化学量論的組成)とすると、ガスバリアーフィルム全体のガスバリアー性が顕著に向上することを見出した。
これは、ケイ素(Si)の結合や遷移金属同士の結合よりも、ケイ素(Si)と遷移金属との結合が生じやすいことに起因して、さらに前記混合領域を酸素欠損組成とすることで、金属化合物の高密度な構造が混合領域において形成されるため、高ガスバリアー性の発現に寄与したためと推察される。
すなわち、本発明のガスバリアーフィルムは、ケイ素(Si)を含有する第1のガスバリアー層及び遷移金属を含有する第2のガスバリアー層を、積層形成することにより、ケイ素(Si)と遷移金属の複合された組成を有する領域、すなわち本願でいう「混合領域」が形成され、さらに、当該混合領域を酸素欠損組成とすると、ガスバリアーフィルム全体のガスバリアー性が顕著に向上するものである。
当該混合領域は以下の方法によって確認することができる。
(混合領域)
本発明でいう「混合領域」とは、後述するが、ガスバリアー層の少なくとも厚さ方向において、ケイ素(Si)(M1)及び遷移金属(M2)を含有する領域であって、前記ケイ素(Si)(M1)に対する遷移金属(M2)の原子数比の値(M2/M1)が、0.02〜49の範囲内にある領域を、厚さ方向に連続して5nm以上有する領域をいう。
この混合領域では、ケイ素と遷移金属、及び酸素が含有されていることが好ましい。又、この混合領域は、ケイ素の酸化物と遷移金属の酸化物との混合物、又は、ケイ素と遷移金属との複合酸化物の少なくとも一方が含有されていることが好ましい形態であり、ケイ素と遷移金属との複合酸化物が含有されていることがより好ましい形態である。
「複合酸化物」とは、前記第1のガスバリアー層及び第2のガスバリアー層の前記構成成分が相互に化学結合をして形成された化合物(酸化物)をいう。例えば、非遷移金属と遷移金属が直接的に又は酸素原子を介して化学結合を形成している化学構造を有する化合物をいう。
なお、本願においては、前記層A及び層Bの前記構成成分が相互に分子間相互作用などにより物理的結合をして形成された複合体も本発明に係る「複合酸化物」に含まれるものとする。
当該混合領域は、後述するXPS分析法による組成分析によって、組成内容と層厚を求めることができる。
本発明において、混合領域の厚さは5nm以上であるときに「混合領域」と判定する。ガスバリアー性の観点からは、混合領域の厚さの上限はないが、光学特性の観点から、好ましくは5〜100nmの範囲内であり、より好ましくは8〜50nmの範囲内であり、さらに好ましくは、10〜30nmの範囲内である。
また、本発明のガスバリアーフィルムのガスバリアー性は、基材上に前記ガスバリアー層を形成させた積層体で算出した際、JIS K 7129−1992に準拠した方法で測定された、25±0.5℃、90±2%RHの環境下の水蒸気透過度が0.01g/m・24h以下のガスバリアー性フィルムであることが好ましく、更には、JIS K 7126−2006に準拠した方法で測定された、85℃・85%RH環境下での酸素透過度が、1×10−3mL/m・24h・atm以下、水蒸気透過度が、1×10−3g/m・24h以下の高ガスバリアー性であることが好ましい。
<本発明のガスバリアーフィルムの構成>
図1は本発明のガスバリアーフィルムの構成を示す断面図である。
本発明のガスバリアーフィルム100は、基材101上に第1のガスバリアー層102及び第2のガスバリアー層103が積層されており、その間に混合領域104が形成される。
第1のガスバリアー層及び第2のガスバリアー層の積層順序は、特に限定はなく、第2のガスバリアー層が基材に接する側に配置されていてもよい。また、基材101と第1のガスバリアー層102の間にはアンダーコート層(本発明ではプライマー層ともいう。)、ハードコート層等の機能性層が形成されていてもよく、第2のガスバリアー層103上には、後述する量子ドットフィルムとの密着性を向上する密着層が形成されていてもよい。さらに、基材のガスバリアー層が配置されている側と反対側の面にバックコート層等が形成されていてもよい。
以下、図1の構成に沿って各要素を詳細に説明する。
〔1〕基材
本発明に係る基材は、ポリシラザン化合物以外の材料であって、ガスバリアーフィルムを構成する目的に合致するものであれば特に制限されない。例えば、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリアリレート、アクリル系樹脂、シクロオレフィン系ポリマー、芳香族系重合体等が挙げられる。
これらの中でも、透明性に優れ、汎用性があることから、ポリエステル、ポリアミド又はシクロオレフィン系ポリマーが好ましく、ポリエステル又はシクロオレフィン系ポリマーがより好ましい。
ポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート等が挙げられる。
ポリアミドとしては、全芳香族ポリアミド、ナイロン6、ナイロン66、ナイロン共重合体等が挙げられる。
シクロオレフィン系ポリマーとしては、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素重合体、及びこれらの水素化物が挙げられる。その具体例としては、アペル(三井化学社製のエチレン−シクロオレフィン共重合体)、アートン(JSR社製のノルボルネン系重合体)、ゼオノア(日本ゼオン社製のノルボルネン系重合体)等が挙げられる。
樹脂基材の厚さは5〜500μm程度が好ましく、更に好ましくは10〜250μmであり、より好ましくは10〜125μmの範囲である。基材の厚さが125μm以下であれば、ガスバリアーフィルムやこれが適用される電子デバイス等の薄膜化の要請に十分に応えることが可能であるという利点が得られる。このように、基材の厚さが125μm以下であると、上述したような薄膜化の要請にさらに応えることができることから、本発明に係るガスバリアーフィルムはフレキシブルな電子デバイスの基板等として用いられると特に有用である。なお、基材の厚さは特に、好ましくは10〜100μmである。
本発明において、基材は、透明であることが好ましい。基材が透明であり、基材上に形成する層も透明であることにより、透明なガスバリアーフィルムとすることが可能となるため、有機EL素子等の透明基板とすることも可能となるからである。
その他、基材の種類、基材の製造方法等については、特開2013−226758号公報の段落「0125」〜「0136」に開示されている技術を適宜採用することができる。
〔2〕第1のガスバリアー層
第1のガスバリアー層は、少なくともケイ素(Si)を含有し、かつ当該第1のガスバリアー層の表層部における、酸素原子、窒素原子及びケイ素原子の存在量全体に対する、酸素原子の存在割合が60〜75%、窒素原子の存在割合が0〜10%、ケイ素原子の存在割合が25〜35%の範囲内であり、かつ、前記ガスバリアー層の表層部における膜密度が、2.4〜4.0g/cmの範囲内であることを特徴とする。
表層部における、酸素原子、窒素原子及びケイ素原子の存在量全体に対する、酸素原子の存在割合は、好ましくは、63〜70%、窒素原子の存在割合は、好ましくは、0.1〜6%、ケイ素原子の存在割合は、好ましくは29〜32%であり、表層部における膜密度が、2.4〜4.0g/cmの範囲であると、ガスバリアー性、耐折り曲げ性及び透明性に優れるガスバリアー層が得られる。
<ポリシラザンの改質体>
本発明に係る第1のガスバリアー層は、少なくともケイ素(Si)を含有し、当該ケイ素(Si)を含有する層にイオンを注入して、本発明に係る特定の元素組成及び膜密度になるように改質処理を行う観点から、当該第1のガスバリアー層はポリシラザンの改質体由来の層であることが好ましい。
ポリシラザンとしては、ペルヒドロポリシラザン、オルガノポリシラザン等が挙げられるが、残留有機物の少ないことから好ましくはペルヒドロポリシラザンであることが好ましい。
本発明に用いるポリシラザンは、分子内に、−Si−N−結合を含む繰り返し単位を有する高分子である。具体的には、式(1)で表される繰り返し単位を有する化合物が挙げられる。
Figure 2019010733
式(1)中、nは任意の自然数を表す。
Rx、Ry、Rzは、それぞれ独立して、水素原子、無置換若しくは置換基を有するアルキル基、無置換若しくは置換基を有するシクロアルキル基、無置換若しくは置換基を有するアルケニル基、無置換若しくは置換基を有するアリール基又はアルキルシリル基等の非加水分解性基を表す。
前記無置換若しくは置換基を有するアルキル基のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、n−へキシル基、n−ヘプチル基、n−オクチル基等の炭素数1〜10のアルキル基が挙げられる。
無置換若しくは置換基を有するシクロアルキル基のシクロアルキル基としては、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロへプチル基等の炭素数3〜10のシクロアルキル基が挙げられる。
無置換若しくは置換基を有するアルケニル基のアルケニル基としては、例えば、ビニル基、1−プロペニル基、2−プロペニル基、1−ブテニル基、2−ブテニル基、3−ブテニル基等の炭素数2〜10のアルケニル基が挙げられる。
前記アルキル基、シクロアルキル基及びアルケニル基の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒドロキシル基;チオール基;エポキシ基;グリシドキシ基;(メタ)アクリロイルオキシ基;フェニル基、4−メチルフェニル基、4−クロロフェニル基等の無置換若しくは置換基を有するアリール基;等が挙げられる。
無置換又は置換基を有するアリール基のアリール基としては、例えば、フェニル基、1−ナフチル基、2−ナフチル基等の炭素数6〜10のアリール基が挙げられる。
前記アリール基の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;メチル基、エチル基等の炭素数1〜6のアルキル基;メトキシ基、エトキシ基等の炭素数1〜6のアルコキシ基;ニトロ基;シアノ基;ヒドロキシル基;チオール基;エポキシ基;グリシドキシ基;(メタ)アクリロイルオキシ基;フェニル基、4−メチルフェニル基、4−クロロフェニル基等の無置換若しくは置換基を有するアリール基;等が挙げられる。
アルキルシリル基としては、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、トリt-ブチルシリル基、メチルジエチルシリル基、ジメチルシリル基、ジエチルシリル基、メチルシリル基、エチルシリル基等が挙げられる。
これらの中でも、Rx、Ry、Rzとしては、水素原子、炭素数1〜6のアルキル基、又はフェニル基が好ましく、水素原子が特に好ましい。
前記式(1)で表される繰り返し単位を有するポリシラザン化合物としては、Rx、Ry、Rzが全て水素原子である無機ポリシラザン、Rx、Ry、Rzの少なくとも1つが水素原子ではない有機ポリシラザンのいずれであってもよい。
無機ポリシラザンとしては、下記
Figure 2019010733
(式中、aは任意の自然数を表す。)で表される繰り返し単位を有する直鎖状構造を有し、690〜2000の分子量を持ち、一分子中に3〜10個のSiH基を有するペルヒドロポリシラザン(特公昭63−16325号公報)、式(A)
Figure 2019010733
〔式中、b、cは任意の自然数を表し、Yは、水素原子又は式(B)
Figure 2019010733
(式中、dは任意の自然数を表し、*は結合位置を表し、Yは水素原子、又は前記(B)で表される基を表す。)で表される基を表す。〕で表される繰り返し単位を有する、直鎖状構造と分岐構造を有するペルヒドロポリシラザン、式(C)
Figure 2019010733
で表されるペルヒドロポリシラザン構造を有する、分子内に、直鎖状構造、分岐構造及び環状構造を有するペルヒドロポリシラザン等が挙げられる。
有機ポリシラザンとしては、
(i)−(Rx′SiHNH)−(Rx′は、無置換若しくは置換基を有するアルキル基、無置換若しくは置換基を有するシクロアルキル基、無置換若しくは置換基を有するアルケニル基、無置換若しくは置換基を有するアリール基、又はアルキルシリル基を表す。以下のRx′も同様である。)を繰り返し単位として、主として重合度が3〜5の環状構造を有するもの、
(ii)−(Rx′SiHNRz′)−(Rz′は、無置換若しくは置換基を有するアルキル基、無置換若しくは置換基を有するシクロアルキル基、無置換若しくは置換基を有するアルケニル基、無置換若しくは置換基を有するアリール基、又はアルキルシリル基を表す。)を繰り返し単位として、主として重合度が3〜5の環状構造を有するもの、
(iii)−(Rx′Ry′SiNH)−(Ry′は、無置換若しくは置換基を有するアルキル基、無置換若しくは置換基を有するシクロアルキル基、無置換若しくは置換基を有するアルケニル基、無置換若しくは置換基を有するアリール基、又はアルキルシリル基を表す。)を繰り返し単位として、主として重合度が3〜5の環状構造を有するもの、
(iv)下記式で表される構造を分子内に有するポリオルガノ(ヒドロ)シラザン、
Figure 2019010733
(v)下記式
Figure 2019010733
〔Rx′、Ry′は前記と同じ意味を表し、e、fは任意の自然数を表し、Yは、水素原子又は式(E)
Figure 2019010733
(式中、gは任意の自然数を表し、*は結合位置を表し、Yは水素原子、又は前記(E)で表される基を表す。)で表される基を表す。〕
で表される繰り返し構造を有するポリシラザン等が挙げられる。
上記有機ポリシラザンは、従来公知の方法により製造することができる。例えば、下記式(2)で表される無置換若しくは置換基を有するハロゲノシラン化合物と2級アミンとの反応生成物に、アンモニア又は1級アミンを反応させることにより得ることができる。
Figure 2019010733
式(2)中、mは2又は3を表し、Xはハロゲン原子を表し、Rは、前述した、Rx、Ry、Rz、Rx′、Ry′、Rz′のいずれかの置換基を表す。)
用いる2級アミン、アンモニア及び1級アミンは、目的とするポリシラザン化合物の構造に応じて、適宜選択すればよい。
また、本発明においては、ポリシラザン化合物として、ポリシラザン変性物を用いることもできる。ポリシラザン変性物としては、例えば、金属原子(該金属原子は架橋をなしていてもよい。)を含むポリメタロシラザン、繰り返し単位が〔(SiH)g(NH)h)〕及び〔(SiH)iO〕(式中、g、h、iはそれぞれ独立して、1、2又は3である。)で表されるポリシロキサザン(特開昭62−195024号公報)、ポリシラザンにボロン化合物を反応させて製造するポリボロシラザン(特開平2−84437号公報)、ポリシラザンとメタルアルコキシドとを反応させて製造するポリメタロシラザン(特開昭63−81122号公報等)、無機シラザン高重合体や改質ポリシラザン(特開平1−138108号公報等)、ポリシラザンに有機成分を導入した共重合シラザン(特開平2−175726号公報等)、ポリシラザンにセラミックス化を促進するための触媒的化合物を付加又は添加した低温セラミックス化ポリシラザン(特開平5−238827号公報等)、
ケイ素アルコキシド付加ポリシラザン(特開平5−238827号公報)、グリシドール付加ポリシラザン(特開平6−122852号公報)、アセチルアセトナト錯体付加ポリシラザン(特開平6−306329号公報)、金属カルボン酸塩付加ポリシラザン(特開平6−299118号公報等)、
上記ポリシラザン又はその変性物に、アミン類及び/又は酸類を添加してなるポリシラザン組成物(特開平9−31333号公報)、ペルヒドロポリシラザンにメタノール等のアルコール或いはヘキサメチルジシラザンを末端N原子に付加して得られる変性ポリシラザン(特開平5−345826号公報、特開平4−63833号公報)等が挙げられる。
これらの中でも、本発明において用いるポリシラザン化合物としては、Rx、Ry、Rzが全て水素原子である無機ポリシラザン、Rx、Ry、Rzの少なくとも1つが水素原子ではない有機ポリシラザンが好ましく、入手容易性及び優れたガスバリアー性を有する注入層を形成できる観点から、無機ポリシラザンがより好ましい。
用いるポリシラザン化合物の数平均分子量は、特に限定されないが、100〜50,000であるのが好ましい。
さらに、本発明においては、ポリシラザン化合物は、ガラスコーティング材等として市販されている市販品をそのまま使用することができる。
ポリシラザン化合物を含む層は、ポリシラザン化合物の他に、本発明の目的を阻害しない範囲で他の成分を含んでいてもよい。他の成分としては、硬化剤、他の高分子、老化防止剤、光安定剤、難燃剤等が挙げられる。
ポリシラザン化合物を含む層中の、ポリシラザン化合物の含有量は、優れたガスバリアー性を有するイオン注入層を形成できる観点から、50質量%以上であるのが好ましく、70質量%以上であるのがより好ましい。
ポリシラザン化合物を含む層を形成する方法としては、特に制約はなく、例えば、ポリシラザン化合物の少なくとも一種、所望により他の成分、及び溶媒等を含有する層形成用溶液を、適当な基材層の上に塗布し、得られた塗膜を適度に乾燥して形成する方法が挙げられる。
第1のガスバリアー層形成用塗布液を調製するための溶媒としては、ポリシラザンを溶解できるものであれば特に制限されないが、ポリシラザンと容易に反応してしまう水及び反応性基(例えば、ヒドロキシ基、又はアミン基等)を含まず、ポリシラザンに対して不活性の有機溶媒が好ましく、非プロトン性の有機溶媒がより好ましい。具体的には、溶媒としては、非プロトン性溶媒;例えば、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターペン等の、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒;塩化メチレン、トリクロロエタン等のハロゲン炭化水素溶媒;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ジブチルエーテル、ジオキサン、テトラヒドロフラン等の脂肪族エーテル、脂環式エーテル等のエーテル類:例えば、テトラヒドロフラン、ジブチルエーテル、モノ−及びポリアルキレングリコールジアルキルエーテル(ジグライム類)などを挙げることができる。上記溶媒は、ケイ素化合物の溶解度や溶媒の蒸発速度等の目的に合わせて選択され、単独で使用されても又は2種以上の混合物の形態で使用されてもよい。
第1のガスバリアー層形成用塗布液におけるポリシラザンの濃度は、特に制限されず、第1のガスバリアー層の膜厚や塗布液のポットライフによっても異なるが、好ましくは1〜80質量%、より好ましくは5〜50質量%、さらに好ましくは10〜40質量%である。
第1のガスバリアー層形成用塗布液は、改質を促進するために、触媒を含有することが好ましい。本発明に適用可能な触媒としては、塩基性触媒が好ましく、特に、N,N−ジエチルエタノールアミン、N,N−ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3−モルホリノプロピルアミン、N,N,N′,N′−テトラメチル−1,3−ジアミノプロパン、N,N,N′,N′−テトラメチル−1,6−ジアミノヘキサン等のアミン触媒、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒、N−複素環式化合物が挙げられる。これらのうち、アミン触媒を用いることが好ましい。この際添加する触媒の濃度としては、ケイ素化合物を基準としたとき、好ましくは0.1〜10質量%、より好ましくは0.5〜7質量%の範囲である。触媒添加量をこの範囲とすることで、反応の急激な進行よる過剰なシラノール形成、及び膜密度の低下、膜欠陥の増大などを避けることができる。
第1のガスバリアー層形成用塗布液には、必要に応じて下記に挙げる添加剤を用いることができる。例えば、セルロースエーテル類、セルロースエステル類;例えば、エチルセルロース、ニトロセルロース、セルロースアセテート、セルロースアセトブチレート等、天然樹脂;例えば、ゴム、ロジン樹脂等、合成樹脂;例えば、重合樹脂等、縮合樹脂;例えば、アミノプラスト、特に尿素樹脂、メラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステル若しくは変性ポリエステル、エポキシド、ポリイソシアネート若しくはブロック化ポリイソシアネート、ポリシロキサン等である。
塗工装置としては、スピンコーター、ナイフコーター、グラビアコーター等の公知の装置を使用することができる。
得られた塗膜の乾燥、成形体のガスバリアー性向上のため、塗膜を加熱することが好ましい。加熱は80〜150℃で、数十秒から数十分行う。
また、ポリシラザン化合物を含む層は、ジメチルジシラザン、テトラメチルジシラザン、ヘキサメチルジシラザンなどの、プラズマ重合性シラザン化合物のガスを、プラスチック成形体と接触させて、プラズマ重合処理を施すことによって形成することもできる(特開平9−143289号公報)。
形成されるポリシラザン化合物を含む層の厚さは、特に制限されないが、通常20nm〜100μm、好ましくは30〜500nm、より好ましくは40〜200nmである。
本発明においては、ポリシラザン化合物を含む層がナノオーダーであっても、充分なガスバリアー性能を有するガスバリアーフィルムを得ることができる。
〈他の金属〉
本発明に係る第1のガスバリアー層は、さらにケイ素(Si)以外の金属Mを含有し、
ケイ素(Si)の含有量100mol%に対して0.05〜10mol%であることが好ましく、より好ましくは0.5〜5mol%の範囲である。
塗布液に、Si以外の金属Mとして、例えば、Al、B、Ti、Zrの有機金属化合物を添加すると、塗布乾燥時にポリシラザンが含有するNがOに置き換わり、塗布後の改質処理のエネルギーが低い条件においても、効率的に改質が行われ、安定した組成へと変化させることができる。
金属元素の例としては、アルミニウム(Al)、チタン(Ti)、ジルコニウム(Zr)、亜鉛(Zn)、ガリウム(Ga)、インジウム(In)、クロム(Cr)、鉄(Fe)、マグネシウム(Mg)、スズ(Sn)、ニッケル(Ni)、パラジウム(Pd)、鉛(Pb)、マンガン(Mn)、リチウム(Li)、ゲルマニウム(Ge)、銅(Cu)、ナトリウム(Na)、カリウム(K)、カルシウム(Ca)、コバルト(Co)、ホウ素(B)、ベリリウム(Be)、ストロンチウム(Sr)、バリウム(Ba)、ラジウム(Ra)、タリウム(Tl)等が挙げられる。
特に、Al、B、Ti及びZrが好ましく、中でもAlを含む有機金属化合物が好ましい。
本発明に適用可能なアルミニウム化合物としては、例えば、アルミニウムイソポロポキシド、アルミニウム−sec−ブチレート、チタンイソプロポキシド、アルミニウムトリエチレート、アルミニウムトリイソプロピレート、アルミニウムトリtert−ブチレート、アルミニウムトリn−ブチレート、アルミニウムトリsec−ブチレート、アルミニウムエチルアセトアセテート・ジイソプロピレート、アセトアルコキシアルミニウムジイソプロピレート、アルミニウムジイソプロピレートモノアルミニウム−t−ブチレート、アルミニウムトリスエチルアセトアセテート、アルミニウムオキシドイソプロポキシドトリマー等を挙げることができる。
具体的な市販品としては、例えば、AMD(アルミニウムジイソプロピレートモノsec−ブチレート)、ASBD(アルミニウムセカンダリーブチレート)、ALCH(アルミニウムエチルアセトアセテート・ジイソプロピレート)、ALCH−TR(アルミニウムトリスエチルアセトアセテート)、アルミキレートM(アルミニウムアルキルアセトアセテート・ジイソプロピレート)、アルミキレートD(アルミニウムビスエチルアセトアセテート・モノアセチルアセトネート)、アルミキレートA(W)(アルミニウムトリスアセチルアセトネート)(以上、川研ファインケミカル株式会社製)、プレンアクト(登録商標)AL−M(アセトアルコキシアルミニウムジイソプロピレート、味の素ファインケミカル株式会社製)等を挙げることができる。
なお、これらの化合物を用いる場合は、ポリシラザンを含む塗布液と不活性ガス雰囲気下で混合することが好ましい。これらの化合物が大気中の水分や酸素と反応し、激しく酸化が進むことを抑制するためである。また、これらの化合物とポリシラザンとを混合する場合は、30〜100℃に昇温し、撹拌しながら1分〜24時間保持することが好ましい。
〈エネルギーの印加〉
続いて、上記のようにして形成されたポリシラザンを含有する層に対して、エネルギーを印加し、ポリシラザンの改質処理を行い、第1のガスバリアー層への改質を行う。
(改質処理;イオン注入)
本発明において、改質処理とは、ポリシラザンの一部又は全部が、酸化ケイ素又は酸化窒化ケイ素へ転化する反応(セラミックス化)を指し、また本発明のガスバリアーフィルムが全体としてガスバリアー性を発現するに貢献できるレベルの無機薄膜(すなわち、第1のガスバリアー層)を形成する処理をいう。そして、本発明では、この改質処理を、イオンの注入(イオン注入法)により行うことが好ましい。なお、イオン注入を行う限り、その他の従来公知の改質処理を併用してもよい。かような従来公知の改質処理としては、例えば、活性エネルギー線(例えば、真空紫外線)の照射など、例えば、特開2012−086394号公報の段落「0055」〜「0091」、特開2012−006154号公報の段落「0049」〜「0085」、特開2011−251460号公報の段落「0046」〜「0074」等に記載の内容を参照することができる。
以下、イオン注入について説明すると、まず、注入するイオンを生成する原料としては、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等の希ガス、フルオロカーボン、水素、窒素、酸素、二酸化炭素、塩素、フッ素、硫黄等のガス;
メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン等のアルカン系ガス類;エチレン、プロピレン、ブテン、ペンテン等のアルケン系ガス類;ペンタジエン、ブタジエン等のアルカジエン系ガス類;アセチレン、メチルアセチレン等のアルキン系ガス類;ベンゼン、トルエン、キシレン、インデン、ナフタレン、 フェナントレン等の芳香族炭化水素系ガス類;シクロプロパン、シクロヘキサン等のシクロアルカン系ガス類;シクロペンテン、シクロヘキセン等のシクロアル ケン系ガス類;等の炭素原子と水素原子からなる炭化水素化合物のガス;
メタノール、エタノール等のアルコール系ガス類;アセトン、メチルエチルケトン等のケトン系ガス類;アセトアルデヒド、プロピオンアルデヒド等のアルデヒド系ガス類;ジエチルエーテル、ジプロピルエーテル等のエーテル系ガス類;等の、炭素原子、水素原子及び酸素原子からなる酸素含有炭化水素化合物のガス;
銀、銅、白金、ニッケル、パラジウム、クロム、チタン、モリブデン、タンタル、タングステン、アルミニウム等の金属;等が挙げられる。
これらは1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。中でも、より簡便に注入することができ、ガスバリアー性により優れる第1のガスバリアー層が得られることから、水素、窒素、酸素、アルゴン、ヘリウム、ネオン、キセノン、クリプトン、メタン、エチレン、及びアセチレンからなる群から選ばれる少なくとも1種のイオンを注入することが好ましく、窒素又は酸素のイオンを注入することがより好ましい。
特に窒素又は酸素のイオンを注入することで、共有結合の再結合が生じるというメカニズムを介して、ガスバリアー性及びデバイス適性の向上が図られるものと考えられる。
イオンの注入量は、ポリシラザン含有塗布液の改質により得られる第1のガスバリアー層に要求される性能(必要なガスバリアー性など)に合わせて適宜決定すればよい。
イオンを注入する方法は特に限定されず、公知の方法を採用することができる。例えば、電界により加速されたイオン(イオンビーム)を照射する方法、プラズマ中のイオンを注入する方法等が挙げられる。中でも、本発明においては、簡便にガスバリアー性能が得られることから、後者の、プラズマ中のイオンを注入する方法(以下、「プラズマイオン注入法」という。)が好ましい。
プラズマイオン注入法は、プラズマ中に曝したポリシラザン含有塗布液の塗膜層に、負の高電圧パルスを印加することにより、プラズマ中のイオンを上記塗膜層に注入する方法である。
中でも、プラズマイオン注入法としては、(A)外部電界を用いて発生させたプラズマ中に存在するイオンを、負の高電圧パルスを印加することによってポリシラザン含有塗布液の塗膜層に注入する方法、又は(B)外部電界を用いることなく、ポリシラザン含有塗布液の塗膜層に印加する負の高電圧パルスによる電界のみで発生させたプラズマ中に存在するイオンを、ポリシラザン含有塗布液の塗膜層に注入する方法が好ましい。
(A)の方法においては、イオン注入する際の圧力(プラズマイオン注入時の圧力)を1Pa以下とすることが好ましく、0.01〜1Paとすることがより好ましい。プラズマイオン注入時の圧力がこのような範囲にあるときに、簡便にかつ効率よく均一にイオン注入することができ、ガスバリアー性に優れた第1のガスバリアー層を効率よく形成することができる。
(B)の方法は、減圧度を高くする必要がなく、処理操作が簡便であり、処理時間も大幅に短縮することができる。また、塗膜層全体にわたって均一に処理することができ、負の高電圧パルス印加時にプラズマ中のイオンを高エネルギーで層の表面部に連続的に注入することができる。さらに、radio frequency(高周波、以下、「RF」と略す。)や、マイクロ波等の高周波電力源等の特別の他の手段を要することなく、層に負の高電圧パルスを印加するだけで、層の表面部にイオン注入層を均一に形成することができる。
(A)及び(B)のいずれの方法においても、負の高電圧パルスを印加するとき、すなわちイオン注入するときのパルス幅は、1〜10μsecであるのが好ましい。パルス幅がこのような範囲にあるときに、透明で均一なイオン注入層をより簡便にかつ効率よく形成することができる。
また、プラズマを発生させるときの印加電圧は、好ましくは−50〜−1kV、より好ましくは−30〜−1kV、特に好ましくは−20〜−5kVである。印加電圧が−1kVより大きい値でイオン注入を行うと、イオン注入量(ドーズ量)が不十分となり、所望の性能が得られない。 一方、−50kVより小さい値でイオン注入を行うと、イオン注入時にフィルムが帯電し、またフィルムへの着色等の不具合が生じ、好ましくない。
塗膜層にプラズマ中のイオンを注入する際には、プラズマイオン注入装置を用いる。プラズマイオン注入装置としては、具体的には、(a)ポリシラザン含有塗膜層(以下、「イオン注入する層」ということがある。)に負の高電圧パルスを印加するフィードスルーに高周波電力を重畳してイオン注入する層の周囲を均等にプラズマで囲み、プラズマ中のイオンを誘引、注入、衝突、堆積させる装置(特開2001−26887号公報)、(b)チャンバー内にアンテナを設け、高周波電力を与えてプラズマを発生させてイオン注入する層周囲にプラズマが到達後、イオン注入する層に正と負のパルスを交互に印加することで、正のパルスでプラズマ中の電子を誘引衝突させてイオン注入する層を加熱し、パルス定数を制御して温度制御を行いつつ、負のパルスを印加してプラズマ中のイオンを誘引、注入させる装置(特開2001−156013号公報)、(c)マイクロ波等の高周波電力源等の外部電界を用いてプラズマを発生させ、負の高電圧パルスを印加してプラズマ中のイオンを誘引、注入させるプラズマイオン注入装置、(d)外部電界を用いることなく負の高電圧パルスの印加により発生する電界のみで発生するプラズマ中のイオンを注入するプラズマイオン注入装置等が挙げられる。
これらの中でも、処理操作が簡便であり、処理時間も大幅に短縮でき、連続使用に適していることから、(c)又は(d)のプラズマイオン注入装置を用いるのが好ましく。国際公開第2010/107018号記載のプラズマイオン注入装置を用いることが好ましい。
注入するイオン濃度は、通常1×1015ions/cm以上、好ましくは1×101ions/cm以上、より好ましくは1×1016〜1×1018ions/cmである。注入イオン濃度が高すぎると、高分子膜の表面が黒く炭化するだけであり、低すぎるとイオン注入層の形成が進行せず、ガスバリアー性等が低下することがある。イオン注入層形成の進行は、高分子フィルムの表面にアモルファスに特有の金属光沢が生じるため、目視によっても確認することができる。
塗膜層におけるイオン注入される部分の厚さは、印加電圧やイオンを注入する時間等の注入条件により制御することができ、ガスバリアーフィルムに求められる性能などに応じて適宜決定すればよいが、通常、0.1〜1000nmである。なお、イオンが注入されたことは、X線光電子分光分析(XPS)を用いて表面からある程度の深さの元素分析測定を行うことによって確認することができる。
以下、前記(c)及び(d)のプラズマイオン注入装置を用いる方法について、図面を参照しながら詳細に説明する。
図2は、前記(c)のプラズマイオン注入装置を備える連続的プラズマイオン注入装置の概要を示す図である。
図2において、1aはポリシラザンを含む層を表面部に有する長尺のフィルム状の成形物(以下、「フィルム」という。)、11aはチャンバー、20aはターボ分子ポンプ、3aはイオン注入される前のフィルム1aを送り出す巻き出しロール、5aはイオン注入されたフィルム1bをロール状に巻き取る巻取りロール、2aは高電圧印加回転キャン、6aはフィルムの送り出しロール、10aはガス導入口、7aは高電圧パルス電源、4はプラズマ放電用電極(外部電界)である。図3は、前記高電圧印加回転キャン2aの斜視図であり、15は高電圧導入端子(フィードスルー)である。
用いるポリシラザンを含有する層を表面部に有する長尺のフィルム1aは、基材層上に、ポリシラザンを含有する含む層を形成したフィルムである。
図2に示す連続的プラズマイオン注入装置においては、フィルム1aは、チャンバー11a内において、巻き出しロール3aから、図2中矢印X方向に搬送され、高電圧印加回転キャン2aを通過して、巻き取りロール5aに巻き取られる。フィルム1aの巻取りの方法や、フィルム1aを搬送する方法等は特に制約はないが、本実施形態においては、高電圧印加回転キャン2aを一定速度で回転させることにより、フィルム1aの搬送を行っている。また、高電圧印加回転キャン2aの回転は、高電圧導入端子15の中心軸13をモーターにより回転させることにより行われる。
高電圧導入端子15、及びフィルム1aが接触する複数の送り出し用ロール6a等は絶縁体からなり、例えば、アルミナの表面をポリテトラフルオロエチレン等の樹脂で被覆して形成されている。また、高電圧印加回転キャン2aは導体からなり、例えば、ステンレスで形成することができる。
フィルム1aの搬送速度は適宜設定できる。フィルム1aが巻き出しロール3aから搬送され、巻き取りロール5aに巻き取られるまでの間にフィルム1aの表面部(ポリシラザンを含有する層)にイオン注入され、所望のイオン注入層が形成されるだけの時間が確保される速度であれば、特に制約されない。フィルムの巻取り速度(搬送速度)は、印加電圧、装置規模等にもよるが、通常0.1〜3m/min、好ましくは0.2〜2.5m/minである。
まず、チャンバー11a内をロータリーポンプに接続されたターボ分子ポンプ20aにより排気して減圧とする。減圧度は、通常1×10−4〜1Pa、好ましくは1×10−3〜1×10−2Paの範囲である。
次に、ガス導入口10aよりチャンバー11a内に、窒素等のイオン注入用のガス(以下、「イオン注入用ガス」ということがある。)を導入して、チャンバー11a内を減圧イオン注入用ガス雰囲気とする。なお、イオン注入用ガスはプラズマ生成ガスでもある。
次いで、プラズマ放電用電極4(外部電界)によりプラズマを発生させる。プラズマを発生させる方法としては、マイクロ波やRF等の高周波電力源等による公知の方法が挙げられる。
一方、高電圧導入端子15を介して高電圧印加回転キャン2aに接続されている高電圧パルス電源7aにより、負の高電圧パルス9aが印加される。高電圧印加回転キャン2aに負の高電圧パルスが印加されると、プラズマ中のイオンが誘因され、高電圧印加回転キャン2aの周囲のフィルムの表面に注入され(図2中、矢印Y)、フィルム状の成形体1bが得られる。
前述のように、イオン注入する際の圧力(チャンバー11a内のプラズマガスの圧力)は、0.01〜5Paであるのが好ましく、イオン注入するときのパルス幅は、1〜10μsecであるのが好ましく、高電圧印加回転キャン2aに負の高電圧を印加する際の印加電圧は、−1〜−50kVであるのが好ましい。
次に、図4に示す連続的プラズマイオン注入装置を使用して、ポリシラザンを含有する層を表面部に有するフィルムの、前記ポリシラザンを含有する層にイオン注入する方法を説明する。
図4に示す装置は、プラズマイオン注入装置を備える。このプラズマイオン注入装置は、外部電界(すなわち、図2におけるプラズマ放電用電極4)を用いることなく印加する高電圧パルスによる電界のみでプラズマを発生させるものである。
図4に示す連続的プラズマイオン注入装置においては、フィルム(フィルム状の成形物)1cは、前記図2の装置と同様に高電圧印加回転キャン2bを回転させることによって巻き出しロール3bから図4中矢印X方向に搬送され、巻き取りロール5bに巻き取られる。
図4に示す連続的プラズマイオン注入装置では、前記フィルムのポリシラザンを含有する層の表面部へのイオン注入は次のように行われる。
まず、図2に示すプラズマイオン注入装置と同様にしてチャンバー11b内にフィルム1cを設置し、チャンバー11b内をロータリーポンプに接続されているターボ分子ポンプ20bにより排気して減圧とする。そこへ、ガス導入口10bよりチャンバー11b内に、窒素等のイオン注入用ガスを導入して、チャンバー11b内を減圧イオン注入用ガス雰囲気とする。
イオン注入する際の圧力(チャンバー11b内のプラズマガスの圧力)は、10Pa以下、好ましくは0.01〜5Pa、より好ましくは0.01〜1Paである。
次に、フィルム1cを、図4中Xの方向に搬送させながら、高電圧導入端子(図示せず)を介して高電圧印加回転キャン2bに接続されている高電圧パルス電源7bから高電圧パルス9bを印加する。
高電圧印加回転キャン2bに負の高電圧が印加されると、高電圧印加回転キャン2bの周囲のフィルム1cに沿ってプラズマが発生し、そのプラズマ中のイオンが誘因され、高電圧印加回転キャン2bの周囲の成形体フィルム1cの表面に注入される(図4中、矢印Y)。フィルム1cのポリシラザン化合物を含有する層の表面部にイオンが注入されると、フィルム表面部にイオン注入層が形成され、フィルム状の成形体1dが得られる。
高電圧印加回転キャン2bに負の高電圧を印加する際の印加電圧、パルス幅及びイオン注入する際の圧力は、図2に示す連続的プラズマイオン注入装置の場合と同様である。
図4に示すプラズマイオン注入装置では、プラズマを発生させるプラズマ発生手段を高電圧パルス電源によって兼用しているため、RFやマイクロ波等の高周波電力源等の特別の他の手段を要することなく、負の高電圧パルスを印加するだけで、プラズマを発生させ、フィルムのポリシラザン化合物を含有する層の表面部にプラズマ中のイオンを注入し、イオン注入層を連続的に形成し、フィルムの表面部にイオン注入層が形成されたガスバリアー層を有するガスバリアーフィルムを量産することができる。
(後処理)
改質処理して形成された第1のガスバリアー層は、その前段階である塗布液を塗布した後又は改質処理した後、特には改質処理した後、後処理を施すことが好ましい。ここで述べる後処理とは、温度10℃以上800℃未満の温度処理(熱処理)、又は湿度0%RH以上100%RH以下、又は水浴に浸漬した湿度処理も含み、処理時間は、5秒から48日の範囲より選択される範囲と定義する。温度と湿度との両方の処理を施してもよく、どちらか一方だけでもよい。ガスバリアー性向上、密着性向上等の観点から、好ましくは温度処理である。温度処理を施す際は、ホットプレート上に置く等の接触方式、オーブンにつるして放置する非接触方式等特に方式は問わず、併用でも、単式でもよい。生産性と装置上の負荷や基材の耐性も考えると、好ましい条件は、温度30〜300℃、相対湿度30〜85%RH、処理時間は30秒〜100時間である。
〔3〕第2のガスバリアー層
第2のガスバリアー層は、第3族〜第11族の遷移金属を含有する層であることを特徴とする。当該遷移金属が化合物である場合は、「遷移金属の化合物」とは、遷移金属を含む化合物をいい、例えば、遷移金属酸化物をいう。
本発明に係る第3族〜第11族の遷移金属M2としては特に制限されず、任意の遷移金属が単独で又は組み合わせて用いられうる。ここで、遷移金属とは、長周期型周期表の第3族元素から第11族元素を指し、遷移金属としては、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Pd、Ag、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、及びAuなどが挙げられる。
中でも、良好なガスバリアー性が得られる遷移金属(M2)としては、Nb、Ta、V、Zr、Ti、Hf、Y、La、Ce等が挙げられる。これらの中でも、種々の検討結果から、特に第5族元素であるNb、Ta、及びVが、第1のガスバリアー層に含有されるケイ素(M1)に対する結合が生じやすいと考えられるため、好ましく用いることができる。
特に第2のガスバリアー層に含有される遷移金属(M2)が第5族元素(特に、Nb)であって、上述した第1のガスバリアー層にケイ素(M1)が含有されていると、著しいガスバリアー性の向上効果が得られる。これは、Siと第5族元素(特に、Nb)との結合が特に生じやすいためであると考えられる。さらに、光学特性の観点から、遷移金属(M2)は、透明性が良好な化合物であるNb及びTaが特に好ましい。
〈第2のガスバリアー層の形成方法〉
第2のガスバリアー層である前記遷移金属(M2)酸化物を含有する層の形成は、特に限定されず、例えば、既存の薄膜堆積技術を利用した従来公知の気相成膜法を用いることが、混合領域を効率的に形成する観点から好ましい。
当該第2のガスバリアー層は、特に限定されないが気相成膜法で形成されることが好ましく、例えば、無機材料をスパッタ法(例えば、マグネトロンカソードスパッタリング、平板マグネトロンスパッタリング、2極AC平板マグネトロンスパッタリング、2極AC回転マグネトロンスパッタリングなど、反応性スパッタ法を含む。)、蒸着法(例えば、抵抗加熱蒸着、電子ビーム蒸着、イオンビーム蒸着、プラズマ支援蒸着など)、熱CVD法、触媒化学気相成長法(Cat−CVD)、容量結合プラズマCVD法(CCP−CVD)、光CVD法、プラズマCVD法(PE−CVD)、エピタキシャル成長法、原子層成長法等の化学蒸着法等によって層形成することが好ましい。
中でも、高い生産性を有することから、スパッタ法により形成することがより好ましい。
スパッタ法による成膜は、2極スパッタリング、マグネトロンスパッタリング、中間的な周波数領域を用いたデュアルマグネトロンスパッタリング(DMS)、イオンビームスパッタリング、ECRスパッタリングなどを単独で又は2種以上組み合わせて用いることができる。また、ターゲットの印加方式はターゲット種に応じて適宜選択され、DC(直流)スパッタリング、及びRF(高周波)スパッタリングのいずれを用いてもよい。
また、金属モードと、酸化物モードとの中間である遷移モードを利用した反応性スパッタ法も用いることができる。遷移領域となるようにスパッタ現象を制御することにより、高い成膜スピードで金属酸化物を成膜することが可能となるため好ましい。プロセスガスに用いられる不活性ガスとしては、He、Ne、Ar、Kr、Xe等を用いることができ、Arを用いることが好ましい。さらに、プロセスガス中に酸素、窒素、二酸化炭素、一酸化炭素を導入することで、ケイ素(M1)及び遷移金属(M2)の複合酸化物、窒酸化物、酸炭化物等の薄膜を作ることができる。スパッタ法における成膜条件としては、印加電力、放電電流、放電電圧、時間等が挙げられるが、これらは、スパッタ装置や、膜の材料、層厚等に応じて適宜選択することができる。
第2のガスバリアー層の層厚は、ガスバリアー性と光学特性との両立の観点から、2〜50nmの範囲であることが好ましく、4〜25nmの範囲であることがより好ましく、5〜15nmの範囲であることがさらに好ましい。
また、第2のガスバリアー層は、本発明に係るケイ素(M1)及び前記遷移金属(M2)の複合酸化物で構成されていてもよい。
ケイ素(M1)及び前記遷移金属(M2)の複合酸化物を含有するガスバリアー層は、ケイ素(M1)又はその化合物及び前記遷移金属(M2)酸化物をスパッタターゲットとして、共蒸着法を採用することによって形成することもできる。
共蒸着法を実施する際の成膜条件としては、成膜原料における前記ケイ素(M1)及び遷移金属(M2)と酸素との比率、成膜時の不活性ガスと反応性ガスとの比率、成膜時のガスの供給量、成膜時の真空度、及び、成膜時の電力からなる群から選択される1種又は2種以上の条件が例示され、これらの成膜条件(好ましくは、酸素分圧)を調節することによって、酸素欠損組成を有する組成からなる薄膜を形成することができる。すなわち、上述したような共蒸着法を用いてガスバリアー層を形成することで、形成されるガスバリアー層の厚さ方向のほとんどの領域を混合領域とすることができる。このため、かような手法によれば、混合領域の厚さを制御するという極めて簡便な操作により、所望のガスバリアー性を実現することができる。なお、混合領域の厚さを制御するには、例えば、共蒸着法を実施する際の成膜時間を調節すればよい。
共蒸着法の詳細については、スパッタリングターゲットを作製する方法や、これらのスパッタリングターゲットを用いて複合酸化物からなる薄膜を作製する方法については、例えば、特開2000−160331号公報、特開2004−068109号公報、特開2013−047361号公報などの記載が適宜参照されうる。
〔4〕混合領域
前述のとおり、本発明に係る第1のガスバリアー層と前記第2のガスバリアー層との間に、前記ケイ素(Si)と前記遷移金属との混合領域を有することが、ガスバリアー性を顕著に向上する観点から、好ましい。さらに、当該領域が、酸素欠損領域である場合に、ガスバリアー性が顕著に向上する。
本発明に係る混合領域は、ケイ素(M1)及び第3族〜第11族の金属から選択される遷移金属(M2)が含有されている領域であって、前記Si(M1)に対する遷移金属(M2)の原子数比の値(M2/M1)が、0.02〜49の範囲内にある混合領域を、厚さ方向に連続して5nm以上有する領域である。
ここで、混合領域は、構成成分の化学組成が相互に異なる複数の領域として形成されていてもよく、また、構成成分の化学組成が連続して変化している領域として形成されていてもよい。
なお、ガスバリアー層の混合領域以外の領域は、ケイ素(M1)の酸化物、窒化物、酸窒化物、酸炭化物等の領域であってもよいし、遷移金属(M2)の酸化物、窒化物、酸窒化物、酸炭化物等の領域であってもよい。
〈酸素欠損領域〉
本発明においては、混合領域の少なくとも一部の組成が、酸素が欠損した非化学量論的組成であることが好ましい。
本発明においては、酸素欠損組成とは、当該混合領域の組成を、下記化学組成式(1)で表したとき、当該混合領域の少なくとも一部の組成が、下記関係式(2)で規定する条件を満たすことと定義する。また、当該混合領域における酸素欠損程度を表す酸素欠損度指標としては、当該ある混合領域における(2y+3z)/(a+bx)を算出して得られる値の最小値を用いるものとする。
本発明に係る混合領域は、少なくとも厚さ方向において、ケイ素(M1)及び遷移金属M2を含有する領域であって、前記ケイ素(M1)に対する遷移金属(M2)の原子数比の値(M2/M1)が、0.02〜49の範囲内にある領域を、厚さ方向に連続して5nm以上有することを特徴とし、前記混合領域の組成を、下記化学組成式(1)で表したとき、前記混合領域の少なくとも一部が下記関係式(2)を満たす。
化学組成式(1): (M1)(M2)
関係式(2) : (2y+3z)/(a+bx)<1.0
(ただし式中、M1:ケイ素、M2:遷移金属、O:酸素、N:窒素、x,y,z:化学量論係数、0.02≦x≦49、0<y、0≦z、a:M1の最大価数、b:M2の最大価数を表す。)
上記関係式(2)は、ガスバリアー層の混合領域が、ケイ素(M1)と遷移金属(M2)との酸素欠損組成を含んでいることを表している。
ケイ素(M1)同士の結合や遷移金属(M2)同士の結合よりも、ケイ素(M1)と遷移金属(M2)との結合が生じやすいことに起因して、さらに前記混合領域を酸素欠損組成とすることで、金属化合物の高密度な構造が当該混合領域において形成されて高ガスバリアー性に寄与するものと推察される。
以下、特別の区別が必要ない場合、上記化学組成式(1)で表す組成を、単に複合領域の組成という。
上述したように、本発明に係るケイ素(M1)と遷移金属(M2)との複合領域での組成は、(M1)(M2)で示される。この組成からも明らかなように、上記複合領域の組成は、一部窒化物の構造を含んでいてもよく、窒化物の構造を含んでいる方がガスバリアー性の観点から好ましい。
ここでは、ケイ素(M1)の最大価数をa、遷移金属(M2)の最大価数をb、Oの価数を2、Nの価数を3とする。そして、上記複合領域の組成(一部窒化物となっているものを含む。)が化学量論的組成になっている場合は、(2y+3z)/(a+bx)=1.0となる。この式は、ケイ素(M1)及び遷移金属(M2)の結合手の合計と、O、Nの結合手の合計とが同数であることを意味し、この場合、ケイ素(M1)及び遷移金属(M2)ともに、O、Nのいずれかと結合していることになる。なお、本発明において、(M1)として2種以上が併用される場合や、遷移金属(M2)として2種以上が併用される場合には、各元素の最大価数を各元素の存在比率によって加重平均することにより算出される複合価数を「最大価数」のa及びbの値として採用するものとする。
一方、本発明に係る混合領域のように、(2y+3z)/(a+bx)<1.0となる場合には、ケイ素(M1)及び遷移金属(M2)の結合手の合計に対して、O、Nの結合手の合計が不足していることを意味し、この状態が上記複合領域の組成の「酸素欠損状態」である。当該酸素欠損状態においては、ケイ素(M1)及び遷移金属(M2)の余った結合手は互いに結合する可能性を有しており、ケイ素(M1)や遷移金属(M2)の金属同士が直接結合すると、金属の間にOやNを介して結合した場合よりも緻密で高密度な構造が形成され、その結果として、ガスバリアー性が向上すると考えられる。
また、本発明において、混合領域は、前記xの値が、0.02≦x≦49(0<y、0≦z)を満たす領域である。これは、先に、混合領域を遷移金属(M2)/ケイ素(M1)の原子数比率の値が、0.02〜49の範囲内にあり、厚さが5nm以上である領域と定義する、としたことと同一の定義である。この領域では、ケイ素(M1)及び遷移金属(M2)の双方が金属同士の直接結合に関与することから、この条件を満たす混合領域が所定値以上(5nm)の厚さで存在することで、ガスバリアー性の向上に寄与すると考えられる。なお、ケイ素(M1)及び遷移金属(M2)の存在比率が近いほどガスバリアー性の向上に寄与しうると考えられることから、混合領域は、0.1≦x≦10を満たす領域を5nm以上の厚さで含むことが好ましく、0.2≦x≦5を満たす領域を5nm以上の厚さで含むことがより好ましく、0.3≦x≦4を満たす領域を5nm以上の厚さで含むことが更に好ましい。
ここで、上述したように、(2y+3z)/(a+bx)<1.0を満たす混合領域が存在すれば、ガスバリアー性の向上効果が発揮されることが確認されたが、混合領域は、(2y+3z)/(a+bx)≦0.9を満たすことが好ましく、(2y+3z)/(a+bx)≦0.85を満たすことがより好ましく、(2y+3z)/(a+bx)≦0.8を満たすことが更に好ましい。ここで、混合領域における(2y+3z)/(a+bx)の値が小さくなるほど、ガスバリアー性の向上効果は高くなるものの可視光での吸収も大きくなる。したがって、透明性が望まれる用途に使用するガスバリアー層の場合には、0.2≦(2y+3z)/(a+bx)であることが好ましく、0.3≦(2y+3z)/(a+bx)であることがより好ましく、0.4≦(2y+3z)/(a+bx)であることが更に好ましい。
なお、本発明において良好なガスバリアー性が得られる混合領域の厚さは、SiO換算のスパッタ厚さとして、5nm以上であり、この厚さは、8nm以上であることが好ましく、10nm以上であることがより好ましく、20nm以上であることが更に好ましい。混合領域の厚さは、ガスバリアー性の観点からは特に上限はないが、光学特性の観点から、100nm以下であることが好ましく、50nm以下であることがより好ましく、30nm以下であることがさらに好ましい。
上述したような特定構成の混合領域を有するガスバリアー層は、例えば、有機EL素子等の電子デバイス用のガスバリアー層として使用可能なレベルの非常に高いガスバリアー性を示す。
(XPSによる組成分析と混合領域の厚さの測定)
本発明に係るガスバリアー層の混合領域や第1のガスバリアー層及び第2のガスバリアー層における組成分布や各領域の厚さ等については、以下に詳述するX線光電分光法(X−ray Photoelectron Spectroscopy、略称:XPS)により測定することにより求めることができる。
以下、XPS分析法による混合領域及第1のガスバリアー層及び第2のガスバリアー層の測定方法について説明する。
本発明に係るガスバリアー層の厚さ方向における元素濃度分布曲線(以下、「デプスプロファイル」という。)は、具体的にはケイ素(M1)の元素濃度、遷移金属(M2)(例えば、ニオブ)の元素濃度、酸素(O)、窒素(N)、炭素(C)元素濃度等を、X線光電子分光法の測定とアルゴン等の希ガスイオンスパッタとを併用することにより、ガスバリアー層の表面より内部を露出させつつ順次表面組成分析を行うことにより作成することができる。
このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比(単位:atom%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間は層厚方向における前記ガスバリアー層の厚さ方向におけるガスバリアー層の表面からの距離におおむね相関することから、「ガスバリアー層の厚さ方向におけるガスバリアー層の表面からの距離」として、XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出されるガスバリアー層の表面からの距離を採用することができる。また、このようなXPSデプスプロファイル測定に際して採用するスパッタ法としては、エッチングイオン種としてアルゴン(Ar)を用いた希ガスイオンスパッタ法を採用し、そのエッチング速度(エッチングレート)を0.05nm/sec(SiO熱酸化膜換算値)とすることが好ましい。
以下に、本発明に係るガスバリアー層の組成分析に適用可能なXPS分析の具体的な条件の一例を示す。
・分析装置:アルバック・ファイ社製QUANTERA SXM
・X線源:単色化Al−Kα
・スパッタイオン:Ar(2keV)
・デプスプロファイル:SiO換算スパッタ厚さで、所定の厚さ間隔で測定を繰り返し、深さ方向のデプスプロファイルを求める。この厚さ間隔は、1nmとした(深さ方向に1nmごとのデータが得られる)。
・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量した。データ処理は、アルバック・ファイ社製のMultiPakを用いる。なお、分析した元素は、ケイ素(Si)、遷移金属M2、酸素(O)、窒素(N)、炭素(C)である。
得られたデータから、組成比を計算し、ケイ素(M1)と遷移金属(M2)とが共存し、かつ、遷移金属(M2)/ケイ素(M1)の原子数比率の値が、0.02〜49になる範囲を求め、これを混合領域と定義し、その厚さを求める。混合領域の厚さは、XPS分析におけるスパッタ深さをSiO換算で表したものである。
本発明において、混合領域の厚さは5nm以上であるときに「混合領域」と判定する。
以下に、本発明に係るガスバリアー層における混合領域の具体例について、図を用いて説明する。
図5は、ガスバリアー層の厚さ方向におけるケイ素及び遷移金属の組成分布をXPS法により分析したときの元素プロファイルと混合領域を説明するためのグラフである。
図5において、ガスバリアー層の表面(グラフの左端部)より深さ方向に、遷移金属(M2)、ケイ素(M1)、O、N、Cの元素分析を行い、横軸にスパッタの深さ(層厚:nm)を、縦軸にケイ素(M1)と遷移金属(M2)の含有率(atom%)を示したグラフである。
右側より、金属としてケイ素(M1)を主成分とする元素組成である第1のガスバリアー層が示され、これに接して左側に金属として遷移金属(M2、例えば、ニオブ)を主成分とする元素組成である第2のガスバリアー層が示されている。混合領域は、遷移金属(M2)/ケイ素(M1)の原子数比率の値が、0.02〜49の範囲内の元素組成で示される領域であり、第1のガスバリアー層の一部と第2のガスバリアー層の一部とに重なって示される領域であって、かつ、厚さ5nm以上の領域である。
ここで「主成分」とは、原子組成比として含有量が最大である構成成分をいう。例えば、「金属の主成分」といえば、構成成分の中の金属成分の中で、原子組成比として含有量が最大である金属成分をいう。
(混合領域の形成方法)
第1のガスバリアー層を上述した塗布成膜法により形成する場合は、例えば、前記ケイ素(M1)を含有する成膜原料種(ポリシラザン種等)、触媒種、触媒含有量、塗布膜厚、乾燥温度・時間、改質方法、改質条件からなる群から選択される1種または2種以上の条件を調節することで混合領域を形成することができる。
第2のガスバリアー層を上述した気相成膜法により形成する場合は、例えば、成膜原料における前記遷移金属(M2)と酸素との比率、成膜時の不活性ガスと反応性ガスとの比率、成膜時のガスの供給量、成膜時の真空度、成膜時の磁力、及び成膜時の電力からなる群から選択される1種または2種以上の条件を調節することで混合領域を形成することができる。
なお、上記した方法によって、混合領域の厚さを制御するには、第1のガスバリアー層及び第2のガスバリアー層を形成する方法の形成条件を適宜調整して、制御することができる。例えば、第2のガスバリアー層を気相成膜法で形成する際には、成膜時間を制御することにより所望の厚さにすることができる。
また、これに加えて、ケイ素と遷移金属の混合領域を直接形成する方法も好ましい。
混合領域を直接形成する方法としては、公知の共蒸着法を用いることが好ましい。このような共蒸着法として、好ましくは、共スパッタ法が挙げられる。本発明において採用される共スパッタ法は、例えば、ケイ素(M1)及び遷移金属(M2)の双方を含む合金からなる複合ターゲットや、ケイ素(M1)及び遷移金属(M2)の複合領域の組成からなる複合ターゲットをスパッタリングターゲットとして用いた1元スパッタでありうる。
また、本発明における共スパッタ法は、ケイ素(M1)の単体又はその酸化物と、遷移金属(M2)の単体又はその酸化物とを含む複数のスパッタリングターゲットを用いた多元同時スパッタであってもよい。これらのスパッタリングターゲットを作製する方法や、これらのスパッタリングターゲットを用いて複合領域の組成からなる薄膜を作製する方法については、例えば、特開2000−160331号公報、特開2004−068109号公報、特開2013−047361号公報などの記載が適宜参照されうる。
そして、共蒸着法を実施する際の成膜条件としては、成膜原料における前記遷移金属(M2)と酸素との比率、成膜時の不活性ガスと反応性ガスとの比率、成膜時のガスの供給量、成膜時の真空度、及び、成膜時の電力からなる群から選択される1種又は2種以上の条件が例示され、これらの成膜条件(好ましくは、酸素分圧)を調節することによって、酸素欠損組成を有する複合領域の組成からなる薄膜を形成することができる。すなわち、上述したような共蒸着法を用いてガスバリアー層を形成することで、形成されるガスバリアー層の厚さ方向のほとんどの領域を混合領域とすることができる。このため、かような手法によれば、混合領域の厚さを制御するという極めて簡便な操作により、所望のガスバリアー性を実現することができる。なお、混合領域の厚さを制御するには、例えば、共蒸着法を実施する際の成膜時間を調節すればよい。
〔5〕その他の機能性層
本発明に好ましいその他の機能性層として、下記プライマー層、衝撃吸収層、導電体層及び密着層を説明する。これらの層は要求性能に応じて適宜形成されることが好ましい。
〔5.1〕プライマー層
プライマー層は、基材とイオン注入層又はポリシラザン化合物を含む層との層間密着性を高める役割を果たす。プライマー層を設けることにより、層間密着性及び表面平滑性に極めて優れるガスバリアーフィルムを得ることができる。
プライマー層を構成する材料としては、特に限定されず、公知のものが使用できる。例えば、ケイ素含有化合物;光重合性モノマー及び/又は光重合性プレポリマーからなる光重合性化合物、及び少なくとも可視光域の光でラジカルを発生する重合開始剤を含む光重合性組成物;ポリエステル系樹脂、ポリウレタン系樹脂(特にポリアクリルポリオール、ポリエステルポリオール、ポリエーテルポリオール等とイソシアネート化合物との2液硬化型樹脂)、アクリル系樹脂、ポリカーボネート系樹脂、塩化ビニル/酢酸ビニル共重合体、ポリビニルブチラール系樹脂、ニトロセルロース系樹脂等の樹脂類;アルキルチタネート;エチレンイミン;等が挙げられる。これらの材料は一種単独で、あるいは二種以上を組み合わせて用いることができる。
プライマー層は、プライマー層を構成する材料を適当な溶剤に溶解又は分散してなるプライマー層形成用溶液を、基材層の片面又は両面に塗付し、得られた塗膜を乾燥させ、所望により加熱することより形成することができる。
プライマー層形成用溶液を基材層に塗付する方法としては、通常の湿式コーティング方法を用いることができる。例えばディッピング法、ロールコート、グラビアコート、ナイフコート、エアナイフコート、ロールナイフコート、ダイコート、スクリーン印刷法、スプレーコート、グラビアオフセット法等が挙げられる。
プライマー層形成用溶液の塗膜を乾燥する方法としては、熱風乾燥、熱ロール乾燥、赤外線照射等、従来公知の乾燥方法が採用できる。プライマー層の厚さは、通常、10〜1000nmである。
また、得られたプライマー層に、イオン注入層にイオン注入する方法と同様な方法によりイオン注入を行い、その後、イオン注入層を形成するようにしてもよい。プライマー層にもイオン注入を行うことにより、より優れたガスバリアーフィルムを得ることができる。
〔5.2〕衝撃吸収層
衝撃吸収層を形成する素材としては、特に限定されないが、例えば、アクリル系樹脂、ウレタン系樹脂、シリコーン系樹脂、オレフィン系樹脂、ゴム系材料等を用いることができる。これらの中でも、アクリル系樹脂、シリコーン系樹脂、ゴム系材料が好ましい。
アクリル系樹脂としては、主成分として、(メタ)アクリル酸エステル単独重合体、2種以上の(メタ)アクリル酸エステル単位を含む共重合体、及び(メタ)アクリル酸エステルと他の官能性単量体との共重合体の中から選ばれた少なくとも1種を含有するものが挙げられる。なお、「(メタ)アクリル酸」は、アクリル酸又はメタクリル酸の意である(以下同様。)
(メタ)アクリル酸エステルとしては、エステル部分の炭素数が1〜20の(メタ)アクリル酸が好ましく、後述する衝撃吸収層の貯蔵弾性率を特定の範囲内とすることが容易であることから、エステル部分の炭素数が4〜10の(メタ)アクリル酸エステルを用いることがより好ましい。このような(メタ)アクリル酸エステルとしては、(メタ)アクリル酸ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル等が挙げられる。
官能性単量体としては、(メタ)アクリル酸ヒドロキシエチル等のヒドロキシル基含有単量体、(メタ)アクリルアミド等のアミド基含有単量体、(メタ)アクリル酸等のカルボン酸基含有単量体等が挙げられる。
(メタ)アクリル酸エステル(共)重合体は、例えば、溶液重合法、乳化重合法、懸濁重合法等の公知の重合方法により得ることができる。なお、(共)重合体は、単独重合体又は共重合体の意である(以下、同様)。
(メタ)アクリル酸エステル(共)重合体は、架橋剤と混合して、少なくとも一部に架橋体を形成して用いることもできる。
架橋剤としては、トリレンジイソシアネート、ヘキサメチレンジイソシアナート等、あるいはそれらのアダクト体等のイソシアネート系架橋剤;エチレングリコールグリシジルエーテル等のエポキシ系架橋剤;ヘキサ〔1−(2−メチル)−アジリジニル〕トリフオスファトリアジン等のアジリジン系架橋剤;アルミニウムキレート等のキレート系架橋剤;等が挙げられる。
架橋剤の使用量は、(メタ)アクリル酸エステル(共)重合体の固形分100質量部に対して通常0.01〜10質量部、好ましくは0.05〜5質量部である。架橋剤は1種単独で、あるいは2種以上を組み合わせて用いることができる。
シリコーン系樹脂としては、ジメチルシロキサンを主成分とするものが挙げられる。また、ゴム系材料としては、イソプレンゴム、スチレン−ブタジエンゴム、ポリイソブチレンゴム、スチレン−ブタジエン−スチレンゴム等を主成分とするものが挙げられる。
衝撃吸収層には、酸化防止剤、粘着付与剤、可塑剤、紫外線吸収剤、着色剤、帯電防止剤等の各種添加剤を含んでいてもよい。
また、衝撃吸収層を形成する素材は、粘着剤、コート剤、封止剤等として市販されているものを使用することもでき、特に、アクリル系粘着剤、シリコーン系粘着剤、ゴム系粘着剤等の粘着剤が好ましい。
衝撃吸収層の形成方法としては特に制限はなく、例えば、前記ポリシラザン化合物を含む層の形成方法と同様に、前記衝撃吸収層を形成する素材、及び、所望により、溶剤等の他の成分を含む衝撃吸収層形成溶液を、積層すべき層上に塗布し、得られた塗膜を乾燥し、必要に応じて加熱等して形成する方法が挙げられる。
また、別途、剥離基材上に衝撃吸収層を成膜し、得られた膜を、積層すべき層上に転写して積層してもよい。
衝撃吸収層の厚みは、通常1〜100μm、好ましくは5〜50μmである。
衝撃吸収層の25℃における貯蔵弾性率は、1×10Pa以上、1×10Pa以下であるのが好ましく、1×10Pa以上、1×10Pa以下であるのがより好ましく、1×10Pa以上、1×10Pa以下であるのがさらに好ましい。貯蔵弾性率は、動的粘弾性測定装置を用いて、ねじりせん断法により周波数1Hzで測定を行う。
衝撃吸収層を有する本発明の成形体は、衝撃吸収性能に優れ、衝撃を受けても、無機化合物層にクラックや割れが生じることがない。よって、各層のクラックや割れによるガスバリアー性の低下のおそれがない。
〔5.3〕導電体層
導電体層を構成する材料としては、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物等が挙げられる。具体的には、酸化スズ、アンチモンをドープした酸化スズ(ATO);フッ素をドープした酸化スズ(FTO)、酸化亜鉛、酸化インジウム、酸化インジウムスズ(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物;金、銀、クロム、ニッケル等の金属;これら金属と導電性金属酸化物との混合物;ヨウ化銅、硫化銅等の無機導電性物質;ポリアニリン、ポリチオフェン、ポリピロール等の有機導電性材料;等が挙げられる。導電体層は、これらの材料からなる層が複数積層されてなる積層体であってもよい。
また、導電体層は透明であっても透明でなくてもよいが、導電体層が透明である場合には、透明性に優れた積層体を得ることができる。透明性の点からは、導電体層を形成する材料として導電性金属酸化物が好ましく、ITOが特に好ましい。
導電体層の形成方法としては、例えば、蒸着法、スパッタリング法、イオンプレーティング法、熱CVD法、プラズマCVD法等が挙げられる。これらの中でも、本発明においては、簡便に導電体層が形成できることから、スパッタリング法が好ましい。
スパッタリング法は、真空槽内に放電ガス(アルゴン等)を導入し、ターゲットと基板との間に高周波電圧あるいは直流電圧を加えて放電ガスをプラズマ化し、該プラズマをターゲットに衝突させることでターゲット材料を飛ばし、基板に付着させて薄膜を得る方法である。ターゲットとしては、前記導電体層を形成する材料からなるものが使用される。
導電体層の厚さはその用途等に応じて適宜選択すればよい。通常10nm〜50μm、好ましくは20nm〜20μmである。
得られる導電体層の表面抵抗率は、通常1000Ω/□以下である。
形成された導電体層には、必要に応じてパターニングを行ってもよい。パターニングする方法としては、フォトリソグラフィー等による化学的エッチング、レーザ等を用いた物理的エッチング等、マスクを用いた真空蒸着法やスパッタリング法、リフトオフ法、印刷法等が挙げられる。
〔5.4〕密着層
本発明のガスバリアー性フィルムのガスバリアー層上には、後述するQDフィルムを構成するQD含有樹脂層との密着性を高めるための密着層を設けることが好ましい。
密着層としては、重合性基を有する有機ケイ素化合物を含有する密着層を形成することが好ましく、前記密着層の厚さが、5nm以下であることが好ましい。
重合性基を有する有機ケイ素化合物は、特に限定されるものではないが、シランカップリング剤であることが好ましく、例えば、ハロゲン含有シランカップリング剤(2−クロロエチルトリメトキシシラン、2−クロロエチルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、3−クロロプロピルトリエトキシシランなど)、エポキシ基含有シランカップリング剤[2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、3−(3,4−エポキシシクロヘキシル)プロピルトリメトキシシラン、2−グリシジルオキシエチルトリメトキシシラン、2−グリシジルオキシエチルトリエトキシシラン、3−グリシジルオキシプロピルトリメトキシシラン、3−グリシジルオキシプロピルトリエトキシシランなど]、アミノ基含有シランカップリング剤(2−アミノエチルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−[N−(2−アミノエチル)アミノ]エチルトリメトキシシラン、3−[N−(2−アミノエチル)アミノ]プロピルトリメトキシシラン、3−(2−アミノエチル)アミノ]プロピルトリエトキシシラン、3−[N−(2−アミノエチル)アミノ]プロピル メチルジメトキシシランなど)、メルカプト基含有シランカップリング剤(2−メルカプトエチルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシランなど)、ビニル基含有シランカップリング剤(ビニルトリメトキシシラン、ビニルトリエトキシシランなど)、(メタ)アクリロイル基含有シランカップリング剤(2−メタクリロイルオキシエチルトリメトキシシラン、2−メタクリロイルオキシエチルトリエトキシシラン、2−アクリロイルオキシエチルトリメトキシシラン、3−メタクリロイルオキシプロピルトリメトキシシラン、3−メタクリロイルオキシプロピルトリエトキシシラン、3−アクリロイルオキシプロピルトリメトキシシランなど)などを挙げることができる。
これらの中では、(メタ)アクリロイル基を含有するシランカップリング剤((メタ)アクリロイル基含有シランカップリング剤)が好ましい。
(メタ)アクリロイル基含有シランカップリング剤としては、1,3−ビス(アクリロイルオキシメチル)−1,1,3,3−テトラメチルジシラザン、1,3−ビス(メタクリロイルオキシメチル)−1,1,3,3−テトラメチルジシラザン、1,3−ビス(γ−アクリロイルオキシプロピル)−1,1,3,3−テトラメチルジシラザン、1,3−ビス(γ−メタクリロイルオキシプロピル)−1,1,3,3−テトラメチルジシラザン、アクリロイルオキシメチルメチルトリシラザン、メタクリロイルオキシメチルメチルトリシラザン、アクリロイルオキシメチルメチルテトラシラザン、メタクリロイルオキシメチルメチルテトラシラザン、アクリロイルオキシメチルメチルポリシラザン、メタクリロイルオキシメチルメチルポリシラザン、3−アクリロイルオキシプロピルメチルトリシラザン、3−メタクリロイルオキシプロピルメチルトリシラザン、3−アクリロイルオキシプロピルメチルテトラシラザン、3−メタクリロイルオキシプロピルメチルテトラシラザン、3−アクリロイルオキシプロピルメチルポリシラザン、3−メタクリロイルオキシプロピルメチルポリシラザン、アクリロイルオキシメチルポリシラザン、メタクリロイルオキシメチルポリシラザン、3−アクリロイルオキシプロピルポリシラザン、3−メタクリロイルオキシプロピルポリシラザンが好ましく、更に、化合物の合成・同定が容易であるといった観点から、1,3−ビス(アクリロイルオキシメチル)−1,1,3,3−テトラメチルジシラザン、1,3−ビス(メタクリロイルオキシメチル)−1,1,3,3−テトラメチルジシラザン、1,3−ビス(γ−アクリロイルオキシプロピル)−1,1,3,3−テトラメチルジシラザン、1,3−ビス(γ−メタクリロイルオキシプロピル)−1,1,3,3−テトラメチルジシラザンが特に好ましい。
なお、(メタ)アクリロイル基含有シランカップリング剤の市販品としては、KBM−5103、KBM−502、KBM−503、KBE−502、KBE−503、KR−513(信越化学工業社製)などが挙げられる。これらの(メタ)アクリロイル基含有シランカップリング剤は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。
密着層の形成は、重合性組成物を塗布して形成することができ、例えば上記(メタ)アクリロイル基含有化合物を適当な溶媒に溶解させた溶液をガスバリアー層の表面に塗布し、乾燥させる方法が例示される。この際、上記溶液に適当な光重合開始剤を添加しておき、上記溶液を塗布し、乾燥させて得られた塗膜に、光照射処理を施して(メタ)アクリロイル基含有化合物の一部を重合させて重合性ポリマーとしてもよい。
塗布組成物を塗布する方法としては、任意の適切な方法が採用され得る。具体的には例えば、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。
また、気相成膜法によって成膜することもでき、気相成膜法は公知の方法で用いることができる。気相成膜法としては、特に制限されず、例えば、スパッタ法、蒸着法、イオンプレーティング法、イオンアシスト蒸着法等の物理気相成長(PVD)法、プラズマCVD法、ALD(Atomic Layer Deposition)法などの化学気相成長(CVD)法が挙げられる。中でも、プラズマCVD法が好ましい。
前記密着層の厚さは、密着効果を発現すればよく、薄膜化の観点からは5nm以下であることが好ましい。密着層の厚さは透過型電子顕微鏡(Transmission Electron Microscope;TEM)によって測定することができる。
また、前記ガスバリアー層と前記密着層の間に、表面処理工程を加えることが好ましく、さらに前記表面処理工程が、前記ガスバリアー層を形成後、当該ガスバリアー層の形成に用いた装置で行われることが生産性の観点から、好ましい。
表面処理工程は、公知の方法を適用することができ、コロナ処理、プラズマ処理、スパッタ処理及びフレーム処理等を採用することができるが、中でも酸素プラズマ処理であると、樹脂基材やガスバリアー層へのダメージを小さくでき、かつ当該ガスバリアー層の形成に用いた装置で連続して行うことができるため、生産上も好ましい。
〔6〕電子デバイス
本発明に係る電子デバイスとは、液晶表示素子(LCD)、太陽電池(PV)、量子ドット含有樹脂層(量子ドットフィルム、量子ドットシートともいう。)、有機エレクトロルミネッセンス(EL)素子などをいうが、これらに限定されるものではない。中でも本発明のガスバリアーフィルムは優れたガスバリアー性を有するため、量子ドット含有樹脂フィルム及び有機エレクトロルミネッセンス(EL)素子に好適に用いることができる。
〔6.1〕量子ドット含有樹脂層
以下、量子ドット含有樹脂層の主要な構成要素である量子ドット(一般に、QDと略される。)及び樹脂等について説明する。
〈量子ドット〉
一般に、ナノメートルサイズの半導体物質で量子閉じ込め(quantum confinement)効果を示す半導体ナノ粒子は、「量子ドット」とも称されている。このような量子ドットは、半導体原子が数百個から数千個集まった10数nm程度以内の小さな塊であるが、励起源から光を吸収してエネルギー励起状態に達すると、量子ドットのエネルギーバンドギャップに相当するエネルギーを放出する。
したがって、量子ドットは、量子サイズ効果によりユニークな光学特性を有することが知られている。具体的には、(1)粒子のサイズを制御することにより、様々な波長、色を発光させることができる、(2)吸収帯が広く、単一波長の励起光で様々なサイズの微粒子を発光させることができる、(3)蛍光スペクトルが良好な対称形である、(4)有機色素に比べて耐久性、耐退色性に優れる、といった特徴を有する。
量子ドット含有樹脂層が含有する量子ドットは公知のものであってもよく、当業者に既知の任意の方法を使用して生成することができる。例えば、好適なQD及び好適なQDを形成するための方法には、米国特許第6225198号明細書、米国特許出願公開第2002/0066401号明細書、米国特許第6207229号明細書、同第6322901号明細書、同第6949206号明細書、同第7572393号明細書、同第7267865号明細書、同第7374807号明細書、米国特許出願第11/299299号、及び米国特許第6861155号明細書に記載のものが挙げられる。
量子ドットは、任意の好適な材料、好適には無機材料及びより好適には無機導体又は半導体材料から生成される。好適な半導体材料には、II−VI族、III−V族、IV−VI族及びIV族の半導体を含む、任意の種類の半導体が含まれる。
好適な半導体材料には、Si、Ge、Sn、Se、Te、B、C(ダイアモンドを含む。)、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si、Ge、Al、(Al、Ga、In)(S、Se、Te)、AlCO、及び二つ以上のこのような半導体の適切な組合せが含まれるが、これらに限定されない。
本発明においては、次のようなコア/シェル型の量子ドット、例えば、CdSe/ZnS、InP/ZnS、PbSe/PbS、CdSe/CdS、CdTe/CdS、CdTe/ZnS等も好ましく使用できる。
〈樹脂〉
量子ドット含有樹脂層には、量子ドットを保持するバインダーとして樹脂を用いることができる。例えば、ポリカーボネート系、ポリアリレート系、ポリスルホン(ポリエーテルスルホンも含む。)系、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系、ポリエチレン系、ポリプロピレン系、セロ−ファン系、セルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート等のセルロースエステル系、ポリ塩化ビニリデン系、ポリビニルアルコール系、エチレンビニルアルコール系、シンジオタクティックポリスチレン系、ノルボルネン系、ポリメチルペンテン系、ポリエーテルケトン系、ポリエーテルケトンイミド系、ポリアミド樹脂、フッ素樹脂、ナイロン系、ポリメチルメタクリレート等のアクリル系樹脂等を挙げることができる。
量子ドット含有樹脂層は、厚さが50〜200μmの範囲内であることが好ましい。
なお、量子ドット含有樹脂層における量子ドットの含有量は、使用する化合物によって最適量は異なるが、一般的には15〜60体積%の範囲内であることが好ましい。
〔6.2〕有機EL素子
本発明に係る有機EL素子は、例えば、本発明のガスバリアー層上に、陽極、第1有機機能層群、発光層、第2有機機能層群、陰極が積層されて構成されていることが好ましい。第1有機機能層群は、例えば、正孔注入層、正孔輸送層、電子阻止層等から構成され、第2有機機能層群は、例えば、正孔阻止層、電気輸送層、電子注入層等から構成されている。第1有機機能層群及び第2有機機能層群はそれぞれ1層のみで構成されていても良いし、第1有機機能層群及び第2有機機能層群はそれぞれ設けられていなくても良い。
以下に、有機EL素子の構成の代表例を示す。
(i)陽極/正孔注入輸送層/発光層/電子注入輸送層/陰極
(ii)陽極/正孔注入輸送層/発光層/正孔阻止層/電子注入輸送層/陰極
(iii)陽極/正孔注入輸送層/電子阻止層/発光層/正孔阻止層/電子注入輸送層/陰極
(iv)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(v)陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
(vi)陽極/正孔注入層/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
更に、有機EL素子は、非発光性の中間層を有していても良い。中間層は電荷発生層であっても良く、マルチフォトンユニット構成であっても良い。
本発明に適用可能な有機EL素子の概要については、例えば、特開2013−157634号公報、特開2013−168552号公報、特開2013−177361号公報、特開2013−187211号公報、特開2013−191644号公報、特開2013−191804号公報、特開2013−225678号公報、特開2013−235994号公報、特開2013−243234号公報、特開2013−243236号公報、特開2013−242366号公報、特開2013−243371号公報、特開2013−245179号公報、特開2014−003249号公報、特開2014−003299号公報、特開2014−013910号公報、特開2014−017493号公報、特開2014−017494号公報等に記載されている構成を挙げることができる。
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。
<実施例で用いた装置>
用いたX線光電子分光測定装置、X線反射率法による膜密度測定方法、プラズマイオン注入装置、測定条件、方法は以下のとおりである。なお、用いたプラズマイオン注入装置は外部電界を用いてイオン注入する装置である。
(X線光電子分光測定装置)
下記に示す測定条件にて、第1のガスバリアー層(イオン注入されて得られた層)の表層部における酸素原子、窒素原子及びケイ素原子の存在割合の測定を行った。
測定装置:「PHI Quantera SXM」アルバック・ファイ株式会社製
X線源:AlKα
X線ビーム径:100μm
電力値:25W
電圧:15kV
取り出し角度:45°
真空度:5.0×10−8Pa
(X線反射率法による膜密度の測定方法)
ガスバリアー層の表層部における膜密度は、下記に示す測定条件にてX線の反射率を測定して全反射臨界角度θcを求め、その値から算出した。
測定装置と測定条件は以下のとおりである。
測定装置:薄膜評価用試料水平型X線回折装置「SmartLab」株式会社リガク製
測定条件:
X線源;Cu−Kα1(波長:1.54059Å)
光学系;並行ビーム光学系
入射側スリット系;Ge(220)2結晶、高さ制限スリット5mm、入射スリッ
ト0.05mm
受光側スリット系;受光スリット 0.10mm、ソーラースリット 5°
検出器;シンチレーションカウンター
管電圧・管電流;45kV−200mA
走査軸;2θ/θ
走査モード;連続スキャン
走査範囲;0.1〜3.0deg
走査速度;1deg/min
サンプリング間隔;0.002°/step
なお、原子数比(xi)は、X線光電子分光測定により得られたガスバリアー層の表層部における酸素原子、窒素原子及びケイ素原子の存在割合を用いた。
(プラズマイオン注入装置)
RF電源:日本電子社製、型番号「RF」56000
高電圧パルス電源:栗田製作所社製、「PV−3−HSHV−0835」
<ガスバリアーフィルムNo.1の作製>
〈第1のガスバリアー層の形成>
基材としてポリエチレンテレフタレートフィルム(三菱樹脂社製、「PET38 T−100」、厚さ38μm、以下「PETフィルム」という。)を用意した。
ポリシラザン化合物含有塗布液として、パーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NN120−20)と、アミン触媒(N,N,N′,N′−テトラメチル−1,6−ジアミノヘキサン(TMDAH))を含むパーヒドロポリシラザン20質量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NAX120−20)とを、4:1(質量比)の割合で混合し、さらに乾燥膜厚調整のためジブチルエーテルで適宜希釈し塗布液を調製した。
当該塗布液を前記基材上に塗布して、120℃で1分間加熱してPETフィルム上にパーヒドロポリシラザンを含む層厚60nmの層を形成して成形物を得た。次に、図2に示すプラズマイオン注入装置を用いてパーヒドロポリシラザンを含む層の表面に、アルゴン(Ar)をプラズマイオン注入して第1のガスバリアー層を形成した。
プラズマイオン注入の条件を以下に示す。
・プラズマ生成ガス:Ar
・ガス流量:100sccm
・Duty比:0.5%
・繰り返し周波数:1000Hz
・印加電圧:−10kV
・RF電源:周波数 13.56MHz、印加電力 1000W
・チャンバー内圧:0.2Pa
・パルス幅:5μsec
・処理時間(イオン注入時間):5分間
・搬送速度:0.2m/min
第1のガスバリアー層を形成した時点で、第1のガスバリアー層の酸素原子、窒素原子、及びケイ素原子の存在割合、及び膜密度を測定した。
次いで第1のガスバリアー層上に、第2のガスバリアー層を積層形成する。
〈第2のガスバリアー層の形成〉
第2のガスバリアー層を、気相成膜法であるスパッタ法により形成した。スパッタ装置としては、マグネトロンスパッタ装置(キヤノンアネルバ社製:型式EB1100)を用いた。
ターゲットとしては、下記の各ターゲットを用い、プロセスガスにはArとOとを用いて、マグネトロンスパッタ装置により、DC方式による成膜を行った。スパッタ電源パワーは以下に記載がないものは5.0W/cmとし、成膜圧力は0.4Paとした。また、各成膜条件において、それぞれ酸素分圧を調整した。なお、事前にガラス基材を用いた成膜により、各成膜条件において、成膜時間に対する層厚変化のデータを取り、単位時間当たりに成膜される層厚を算出した後、設定層厚となるように成膜時間を設定した。
T1:市販の酸素欠損型酸化ニオブターゲットを用いた。組成はNb1229であった。
T1−1:ターゲットとしてT1を用い、DC方式により成膜した。酸素分圧を12%とした。また、層厚が10nmとなるように成膜時間を設定した。
以上のようにして、第1のガスバリアー層及び第2のガスバリアー層が積層形成されたガスバリアーフィルムNo.1を作製した。
<ガスバリアーフィルムNo.2〜5の作製>
〈第1のガスバリアー層の形成〉
上述したバリアフィルムNo.1と同様の方法で第1のガスバリアー層を形成した。
〈第2のガスバリアー層の形成〉
上述したガスバリアーフィルムNo.1の方法から酸素分圧を変化させることで、酸素欠損指標を表1に記載のように変化させた。
また、T2−1:ターゲットとしてT2(市販の金属Taターゲット)を用い、DC方式により成膜した。酸素分圧を20%とした。また、層厚が10nmとなるように成膜時間を設定した。
以上のようにして、表1に記載の第1のガスバリアー層及び第2のガスバリアー層が積層形成されたガスバリアーフィルムNo.2〜No.5を作製した。
<ガスバリアーフィルムNo.6の作製(比較例)>
上述したガスバリアーフィルムNo.1の第1のガスバリアー層のみとして、ガスバリアーフィルムNo.6を作製した。
≪評価≫
〈ガスバリアー層の厚さ方向の組成分布の測定〉
XPS分析により、ガスバリアー層の厚さ方向の組成分布プロファイルを測定した。なお、XPS分析条件は以下のとおりである。
〈XPS分析条件〉
・装置:「PHI Quantera SXM」アルバック・ファイ株式会社製
・X線源:単色化Al−Kα
・スパッタイオン:Ar(2keV)
・デプスプロファイル:SiO換算スパッタ厚さで、所定の厚さ間隔で測定を繰り返し、深さ方向のデプスプロファイルを得た。この厚さ間隔は、1nmとした(深さ方向に1nmごとのデータが得られる)
・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量した。データ処理は、アルバック・ファイ社製のMultiPakを用いた。なお、分析した元素は、Si、Nb、Ta、Al、O、N、Cである。
〈混合領域の厚さの測定〉
遷移金属がNbである場合を例に取ると、上記XPS組成分析から得られたデータから、ガスバリアー層の組成は、(Si)(Nb)xOyNzで表すことができる。第1層及び第2層を積層した態様においては、第1層と第2層との界面領域で、ケイ素と遷移金属であるNbとが共存し、かつ遷移金属Nb/Siの原子数比率の値xが、0.02≦x≦50の範囲内にある領域を「混合領域」とし、当該領域の有無を測定し、表に記載した。
〈混合領域の酸素欠損指標の計算〉
上記XPS分析データを用いて、各測定点における(2y+3z)/(a+bx)の値を計算した。ここで、Siであるため、a=4、また、遷移金属はNb若しくはTaであるため、a=5である。(2y+3z)/(a+bx)の値の最小値を求め、これを酸素欠損度指標として、表に記載した。(2y+3z)/(a+bx)<1.0となる場合、酸素欠損の状態であることを示す。
<ガスバリアーフィルムのCa法評価>
以下の測定方法に従って、各ガスバリアーフィルムの水蒸気透過性(ガスバリアー性)を評価した。
下記のようにして作製したCa法評価試料(透過濃度により評価するタイプ)を85℃85%RH環境に保存して一定時間ごとに、Caの腐食率を観察した。1時間、5時間、10時間、20時間、それ以降は20時間ごとに観察・透過濃度測定(任意4点の平均)し、測定した透過濃度が透過濃度初期値の50%未満となった時点の観察時間をガスバリアー性の指標とした。500時間の保存で測定した透過濃度が透過濃度初期値の50%以上であった場合は500時間以上とした。
〈Ca法評価試料の作製〉
ガスバリアーフィルムのガスバリアー層表面をUV洗浄した後、ガスバリアー層面に封止樹脂層として熱硬化型のシート状接着剤(エポキシ系樹脂)を厚さ20μmで貼合した。これを50mm×50mmのサイズに打ち抜いた後、グローブボックス内に入れて、24時間乾燥処理を行った。
50mm×50mmサイズの無アルカリガラス板(厚さ0.7mm)の片面をUV洗浄した。株式会社エイエルエステクノロジー製の真空蒸着装置を用い、ガラス板の中央に、マスクを介して20mm×20mmのサイズでCaを蒸着した。Caの厚さは80nmとした。Ca蒸着済のガラス板をグローブボックス内に取り出し、封止樹脂層を貼合したガスバリアーフィルムの封止樹脂層面とガラス板のCa蒸着面とを接するように配置し、真空ラミネートにより接着した。この際、110℃の加熱を行った。さらに、接着した試料を110℃に設定したホットプレート上にガラス板を下にして置き、30分間硬化させて、評価用セルを作製した。
Figure 2019010733
表1の結果から、本発明の構成のガスバリアーフィルムは、比較例に対してガスバリアー性が顕著に改善されたガスバリアーフィルムであることが分かる。
1a、1c フィルム状の成形物
1b、1d フィルム状の成形体
2a、2b 回転キャン
3a、3b 巻き出しロール
4 プラズマ放電用電極
5a、5b 巻き取りロール
6a、6b 送り出し用ロール
7a、7b パルス電源
9a、9b 高電圧パルス
10a、10b ガス導入口
11a、11b チャンバー
13 中心軸
15 高電圧導入端子
20a、20b ターボ分子ポンプ
100 ガスバリアーフィルム
101 基材
102 第1のガスバリアー層
103 第2のガスバリアー層
104 混合領域

Claims (19)

  1. 基材上に少なくとも第1のガスバリアー層及び第2のガスバリアー層が積層されており、
    前記第1のガスバリアー層は、少なくともケイ素(Si)を含有し、かつ当該第1のガスバリアー層の表層部における、酸素原子、窒素原子及びケイ素原子の存在量全体に対する、酸素原子の存在割合が60〜75%、窒素原子の存在割合が0〜10%、ケイ素原子の存在割合が25〜35%の範囲内であり、かつ、前記ガスバリアー層の表層部における膜密度が、2.4〜4.0g/cmの範囲内であり、
    前記第2のガスバリアー層は、第3族〜第11族の遷移金属を含有する層であることを特徴とするガスバリアーフィルム。
  2. 前記第1のガスバリアー層が、ポリシラザン化合物の改質層であることを特徴とする請求項1に記載のガスバリアーフィルム。
  3. 前記ポリシラザン化合物が、ペルヒドロポリシラザンであることを特徴とする請求項2に記載のガスバリアーフィルム。
  4. 前記遷移金属が、ニオブ(Nb)、タンタル(Ta)、及びバナジウム(V)から選択される少なくとも1種であることを特徴とする請求項1から請求項3までのいずれか一項に記載のガスバリアーフィルム。
  5. 前記第1のガスバリアー層と前記第2のガスバリアー層との間に、少なくとも厚さ方向において、ケイ素(Si)(M1)及び遷移金属(M2)を含有する領域であって、前記ケイ素(Si)(M1)に対する遷移金属(M2)の原子数比の値(M2/M1)が、0.02〜49の範囲内にある混合領域を、厚さ方向に連続して5nm以上有することを特徴とする請求項1から請求項4までのいずれか一項に記載のガスバリアーフィルム。
  6. 前記混合領域に、ケイ素(Si)又は当該ケイ素(Si)に由来する化合物と遷移金属又は当該遷移金属に由来する化合物の混合物又は複合酸化物の少なくとも一方が含有されていることを特徴とする請求項5に記載のガスバリアーフィルム。
  7. 前記混合領域の組成に、さらに酸素が含有されていることを特徴とすることを特徴とする請求項5又は請求項6に記載のガスバリアーフィルム。
  8. 前記混合領域の組成を、下記化学組成式(1)で表したとき、前記混合領域の少なくとも一部が下記関係式(2)を満たすことを特徴とする請求項5から請求項7までのいずれか一項に記載のガスバリアーフィルム。
    化学組成式(1): (M1)(M2)
    関係式(2) : (2y+3z)/(a+bx)<1.0
    (ただし式中、M1:ケイ素、M2:遷移金属、O:酸素、N:窒素、x,y,z:化学量論係数、0.02≦x≦49、0<y、0≦z、a:M1の最大価数、b:M2の最大価数を表す。)
  9. 請求項1から請求項8までのいずれか一項に記載のガスバリアーフィルムを製造するガスバリアーフィルムの製造方法であって、
    前記第1のガスバリアー層を、ポリシラザンを含有する層にイオンを注入して改質処理する工程によって形成し、
    前記第2のガスバリアー層を、気相成膜法によって形成することを特徴とするガスバリアーフィルムの製造方法。
  10. 前記ポリシラザンを含有する層に、水素、窒素、酸素、アルゴン、ヘリウム、ネオン、キセノン及びクリプトンから選択されるガスを用いてイオンを注入して改質処理する工程を有することを特徴とする請求項9に記載のガスバリアーフィルムの製造方法。
  11. 前記ポリシラザンを含有する層に、水素、窒素、酸素、アルゴン、ヘリウム、ネオン、キセノン及びクリプトンから選択されるガスを用いて、プラズマイオンを注入して改質処理する工程を有することを特徴とする請求項9に記載のガスバリアーフィルムの製造方法。
  12. 前記ポリシラザンを含有する層を有する長尺状の基材を一定方向に搬送しながら、前記ポリシラザンを含有する層にイオンを注入して改質処理することを特徴とする請求項9から請求項11までのいずれか一項に記載のガスバリアーフィルムの製造方法。
  13. 前記基材を、高電圧印加回転キャンの周囲に沿って一定方向に搬送させると同時に、前記高電圧印加回転キャンに負の高電圧のみを印加して生成させたプラズマ中のイオンを、前記基材表面部に注入することを特徴とする請求項9から請求項12までのいずれか一項に記載のガスバリアーフィルムの製造方法。
  14. 前記イオン注入する際の圧力が、0.01〜5Paであることを特徴とする請求項13に記載のガスバリアーフィルムの製造方法。
  15. パルス幅が1〜10μsecで前記プラズマを生成させることを特徴とする請求項13又は請求項14に記載のガスバリアーフィルムの製造方法。
  16. 印加電圧が−50〜−1kVで前記プラズマを生成させることを特徴とする請求項13から請求項15までのいずれか一項に記載のガスバリアーフィルムの製造方法。
  17. 請求項1から請求項8までのいずれか一項に記載のガスバリアーフィルムを具備していることを特徴とする電子デバイス。
  18. 量子ドット含有樹脂層を有することを特徴とする請求項17に記載の電子デバイス。
  19. 有機エレクトロルミネッセンス素子を具備していることを特徴とする請求項17に記載の電子デバイス。
JP2015228396A 2015-11-24 2015-11-24 ガスバリアーフィルム、その製造方法及びそれを用いた電子デバイス Pending JP2019010733A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015228396A JP2019010733A (ja) 2015-11-24 2015-11-24 ガスバリアーフィルム、その製造方法及びそれを用いた電子デバイス
PCT/JP2016/084592 WO2017090606A1 (ja) 2015-11-24 2016-11-22 ガスバリアーフィルム、その製造方法及びそれを用いた電子デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015228396A JP2019010733A (ja) 2015-11-24 2015-11-24 ガスバリアーフィルム、その製造方法及びそれを用いた電子デバイス

Publications (1)

Publication Number Publication Date
JP2019010733A true JP2019010733A (ja) 2019-01-24

Family

ID=58763816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015228396A Pending JP2019010733A (ja) 2015-11-24 2015-11-24 ガスバリアーフィルム、その製造方法及びそれを用いた電子デバイス

Country Status (2)

Country Link
JP (1) JP2019010733A (ja)
WO (1) WO2017090606A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020160212A (ja) * 2019-03-26 2020-10-01 凸版印刷株式会社 プライマー層形成用組成物、バリアフィルム、波長変換シート、及び、波長変換シートの製造方法
KR20230016412A (ko) * 2021-07-26 2023-02-02 도레이첨단소재 주식회사 수증기 배리어 필름 및 그의 제조 방법
WO2023189516A1 (ja) * 2022-03-29 2023-10-05 リンテック株式会社 ガスバリアフィルム及びガスバリアフィルムの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0470330A (ja) * 1990-02-16 1992-03-05 Nitto Denko Corp 透明耐透湿性フィルム及びel発光装置
EP1300374A4 (en) * 2000-07-12 2006-04-12 Nippon Sheet Glass Co Ltd PHOTOCATALYTIC ELEMENT
JP4328937B2 (ja) * 2001-06-29 2009-09-09 日本ゼオン株式会社 蒸着方法
JP4274844B2 (ja) * 2003-04-23 2009-06-10 尾池工業株式会社 透明プラスチックフィルム積層体
JP4269261B2 (ja) * 2003-07-18 2009-05-27 住友ベークライト株式会社 透明ガスバリアフィルムの製造方法
JP5151234B2 (ja) * 2007-04-26 2013-02-27 凸版印刷株式会社 加飾成形品
TWI535561B (zh) * 2010-09-21 2016-06-01 Lintec Corp A molded body, a manufacturing method thereof, an electronic device element, and an electronic device
JP2014152362A (ja) * 2013-02-08 2014-08-25 Nitto Denko Corp 透明ガスバリアフィルムの製造方法、及び透明ガスバリアフィルムの製造装置
US20170067151A1 (en) * 2014-03-04 2017-03-09 Toyo Seikan Group Holdings, Ltd. Gas barrier laminate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020160212A (ja) * 2019-03-26 2020-10-01 凸版印刷株式会社 プライマー層形成用組成物、バリアフィルム、波長変換シート、及び、波長変換シートの製造方法
KR20230016412A (ko) * 2021-07-26 2023-02-02 도레이첨단소재 주식회사 수증기 배리어 필름 및 그의 제조 방법
KR102621644B1 (ko) 2021-07-26 2024-01-05 도레이첨단소재 주식회사 수증기 배리어 필름 및 그의 제조 방법
WO2023189516A1 (ja) * 2022-03-29 2023-10-05 リンテック株式会社 ガスバリアフィルム及びガスバリアフィルムの製造方法

Also Published As

Publication number Publication date
WO2017090606A1 (ja) 2017-06-01

Similar Documents

Publication Publication Date Title
JP4956692B1 (ja) 成形体、その製造方法、電子デバイス用部材及び電子デバイス
JP5808747B2 (ja) 成形体、その製造方法、電子デバイス用部材及び電子デバイス
JP6319316B2 (ja) ガスバリア性フィルムの製造方法
JP5389255B2 (ja) 成形体、その製造方法、電子デバイス用部材及び電子デバイス
WO2017090606A1 (ja) ガスバリアーフィルム、その製造方法及びそれを用いた電子デバイス
KR101881244B1 (ko) 가스 배리어성 필름 및 그것을 사용한 전자 디바이스
TWI535871B (zh) A molded body, a manufacturing method thereof, an electronic device element, and an electronic device
JP6627521B2 (ja) 機能性フィルムおよびこれを含む量子ドット(qd)含有積層部材の製造方法
WO2017090592A1 (ja) ガスバリアー性フィルム及びこれを備えた電子デバイス
WO2017110463A1 (ja) ガスバリアーフィルム及びその製造方法
JPWO2017090278A1 (ja) ガスバリア性フィルム、およびその製造方法
JP6295865B2 (ja) ガスバリア性フィルム
JPWO2017047346A1 (ja) 電子デバイス及び電子デバイスの封止方法
JP2018012267A (ja) ガスバリアーフィルム及びその製造方法
JP2017094576A (ja) ガスバリアー性フィルム、その製造方法及び電子デバイス
JP6582856B2 (ja) ガスバリアー性フィルム及びガスバリアー性フィルムの製造方法
JP6760306B2 (ja) ガスバリア性フィルムおよびその製造方法
JP2019010735A (ja) ガスバリアー性フィルム及び電子デバイス
WO2017090591A1 (ja) ガスバリアー性フィルム及び電子デバイス
WO2017090613A1 (ja) ガスバリアー性フィルム及び電子デバイス
WO2017090602A1 (ja) ガスバリアー性フィルム及びこれを備えた電子デバイス
WO2017090579A1 (ja) 積層型ガスバリアー性フィルム及び電子デバイス
WO2017090578A1 (ja) ガスバリアーフィルムの製造方法
JP6402518B2 (ja) ガスバリア性フィルムおよびその製造方法、ならびにこれを用いた電子デバイス