WO2017090613A1 - ガスバリアー性フィルム及び電子デバイス - Google Patents

ガスバリアー性フィルム及び電子デバイス Download PDF

Info

Publication number
WO2017090613A1
WO2017090613A1 PCT/JP2016/084604 JP2016084604W WO2017090613A1 WO 2017090613 A1 WO2017090613 A1 WO 2017090613A1 JP 2016084604 W JP2016084604 W JP 2016084604W WO 2017090613 A1 WO2017090613 A1 WO 2017090613A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
region
transition metal
film
barrier film
Prior art date
Application number
PCT/JP2016/084604
Other languages
English (en)
French (fr)
Inventor
森 孝博
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2017090613A1 publication Critical patent/WO2017090613A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots

Definitions

  • the present invention relates to a gas barrier film and an electronic device. More specifically, the present invention relates to a gas barrier film having good optical properties and good gas barrier properties.
  • a gas barrier film has been used as a packaging material for preventing the entry of gases such as oxygen and water.
  • gases such as oxygen and water.
  • a technique for forming a high-density gas barrier layer by employing a layer obtained by implanting ions into a layer containing a polysilazane compound is known (for example, patents). Reference 1).
  • gas barrier films are also used as circuit boards and sealing materials in electronic devices such as organic electroluminescence elements (ELs), solar cells, touch panels, and electronic paper.
  • ELs organic electroluminescence elements
  • the gas barrier film used in these electronic devices is required to have high gas barrier properties.
  • high gas barrier properties in order to be used in an electronic device, not only high gas barrier properties but also high optical properties (such as light transmittance) are required.
  • the conventional gas barrier layer as disclosed in Patent Document 1 has insufficient gas barrier properties, and the gas barrier properties are greatly deteriorated during high-temperature and high-humidity storage (for example, 85 ° C. and 85% for 100 hours). There was a problem such as.
  • the present invention has been made in view of the above problems and situations, and a problem to be solved is to provide a gas barrier film having good optical properties and good gas barrier properties.
  • the present inventor in the process of examining the cause of the above-mentioned problems, contains a transition metal and has a gas barrier layer having a region having an average density in a specific range.
  • the inventors have found that a barrier film can be obtained, and have reached the present invention. That is, the said subject which concerns on this invention is solved by the following means.
  • a gas barrier film having a gas barrier layer on a substrate,
  • the gas barrier layer contains a non-transition metal M1 and a transition metal M2, and at least in the thickness direction, the atomic ratio (M2 / (M1 + M2)) between the transition metal M2 and the non-transition metal M1 is 0.02.
  • composition of the T region is expressed by the following chemical composition formula (1), and at least a part of the composition in the thickness direction of the T region satisfies the following relational formula (2).
  • Gas barrier film Chemical composition formula (1): (M1) (M2) x O y N z Relational expression (2): (2y + 3z) / (a + bx) ⁇ 1.0 (Wherein, M1: non-transition metal, M2: transition metal, O: oxygen, N: nitrogen, x, y, z: stoichiometric coefficient, a: maximum valence of M1, b: maximum valence of M2 Represents.)
  • the transition metal M2 is at least one metal selected from niobium (Nb), tantalum (Ta), and vanadium (V), according to any one of items 1 to 4, The gas barrier film according to the description.
  • An electronic device comprising the gas barrier film according to any one of items 1 to 5.
  • An electronic device comprising an organic electroluminescence element.
  • the above-mentioned means of the present invention can provide a gas barrier film having good optical properties and good gas barrier properties.
  • the inventor contains the transition metal M2 and the non-transition metal M1, and at least in the thickness direction, the atomic ratio (M2 / (M1 + M2)) of the transition metal M2 and the non-transition metal M1 is 0.02 or more.
  • Sectional drawing which shows the structure of the gas barrier film of embodiment of this invention Graph for explaining element profile and T region when analyzing composition distribution of non-transition metal and transition metal in thickness direction of gas barrier layer by XPS method
  • the gas barrier film of the present invention is a gas barrier film having a gas barrier layer on a substrate, and the gas barrier layer contains a non-transition metal M1 and a transition metal M2 and has at least a thickness. And having a continuous T region in which the atomic ratio (M2 / (M1 + M2)) of the transition metal M2 to the non-transition metal M1 is 0.02 or more, and the average density of the T region is 2.6 to It is characterized by being in the range up to 3.4 g / cm 3 .
  • This feature is a technical feature common to or corresponding to the claimed invention.
  • composition of the T region is represented by the chemical composition formula (1)
  • at least a part of the composition in the thickness direction of the T region satisfies the relational formula (2).
  • a high-density structure of the metal compound is preferable in that it is formed in the T region.
  • the non-transition metal M1 is silicon (Si) from the standpoint that more excellent gas barrier properties can be achieved.
  • the transition metal M2 is a Group 5 element, and further, at least one metal selected from niobium (Nb), tantalum (Ta), and vanadium (V).
  • Nb niobium
  • Ta tantalum
  • V vanadium
  • the gas barrier film of the present invention can be suitably provided for an electronic device.
  • an electronic device having good optical characteristics and good gas barrier properties can be provided. Examples of such an electronic device include those having a quantum dot-containing resin layer and those having an organic electroluminescence element.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the gas barrier film of the present invention is a gas barrier film having a gas barrier layer on a substrate, and the gas barrier layer contains a non-transition metal M1 and a transition metal M2 and has at least a thickness. And having a continuous T region in which the atomic ratio (M2 / (M1 + M2)) of the transition metal M2 to the non-transition metal M1 is 0.02 or more, and the average density of the T region is 2.6 to It is characterized by being in the range up to 3.4 g / cm 3 .
  • the gas barrier property in the “gas barrier film” referred to in the present invention was measured by a method according to JIS K 7126-1987 for a gas barrier film formed by laminating a gas barrier layer on a substrate.
  • Water vapor permeability 25 ⁇ 0.5 ° C., relative humidity measured by a method in accordance with JIS K 7129-1992, with an oxygen permeability of 1 ⁇ 10 ⁇ 3 cm 3 / (m 2 ⁇ 24 h ⁇ atm) or less (90 ⁇ 2)% RH) means a high barrier property of 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • the thickness of the gas barrier layer is not particularly limited, but is preferably 5 to 1000 nm.
  • the water vapor transmission rate can be measured, for example, with a water vapor transmission rate measuring device (trade name: manufactured by Permatran Mocon) in an atmosphere of 38 ° C. and 100% RH.
  • FIG. 1 shows a cross-sectional configuration of a gas barrier film F1 according to an embodiment of the present invention.
  • the gas barrier film F ⁇ b> 1 includes a gas barrier layer 2 on a substrate 1.
  • FIG. 1 shows an example in which the gas barrier layer 2 is provided only on one surface of the substrate 1, but the gas barrier film F ⁇ b> 1 can also have the gas barrier layer 2 on both surfaces of the substrate 1.
  • a plurality of gas barrier layers 2 can be provided on one surface.
  • the transition metal M2 and the non-transition metal M1 coexist in the thickness direction, and the atomic ratio of the transition metal M2 and the non-transition metal M1 (M2 / ( M1 + M2)) has a continuous mixing region 21 that is 0.02 or more and 0.98 or less.
  • the mixed region 21 preferably further contains oxygen in addition to the transition metal M2 and the non-transition metal M1. Note that oxygen may be contained in the mixed region 21 as a so-called complex oxide of the transition metal M2 and the non-transition metal M1. Further, the gas barrier layer 2 in FIG.
  • the T region according to the present invention refers to the mixed region 21 and the A region 23 in the example of FIG.
  • the base material applied to the gas barrier film of the present invention is preferably a resin base material, and more preferably a plastic film from the viewpoint of obtaining flexibility and light transmittance.
  • the plastic film applicable to the present invention is not particularly limited in material, thickness and the like as long as it can hold the gas barrier layer according to the present invention, and can be appropriately selected according to the purpose of use.
  • Specific examples of the plastic film include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyetherimide resin.
  • Cellulose acylate resin Polyurethane resin, polyether ether ketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyether sulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring modified polycarbonate resin, alicyclic modification
  • the film include thermoplastic resins such as polycarbonate resin, fluorene ring-modified polyester resin, and acryloyl compound.
  • the thickness of the substrate is preferably in the range of 5 to 500 ⁇ m, more preferably in the range of 15 to 250 ⁇ m.
  • materials for example, techniques appropriately disclosed in paragraphs “0125” to “0136” of JP2013-226758A are appropriately employed. can do.
  • the gas barrier layer according to the present invention contains a non-transition metal M1 and a transition metal M2, and an atomic ratio (M2 / (M1 + M2)) between the transition metal M2 and the non-transition metal M1 is at least in the thickness direction. It has a continuous T region that is greater than or equal to 0.02.
  • the gas barrier layer is preferably in a configuration having the mixed region between the A region and the B region.
  • the “region” is a plane perpendicular to the thickness direction of the gas barrier layer (that is, a plane parallel to the outermost surface of the gas barrier layer), and the gas barrier layer has a constant or arbitrary thickness. This refers to a three-dimensional range (region) between two opposing surfaces formed when divided, and the composition of the constituent components in the region gradually changes even if it is constant in the thickness direction. It may be a thing.
  • the region A which is a transition metal-containing region in the present invention is a region containing a transition metal M2 as a main component as a metal, and specifically, an atomic ratio of the transition metal M2 and the non-transition metal M1 ( M2 / (M1 + M2)) is a region exceeding 0.98.
  • the transition metal M2 is not particularly limited, and any transition metal can be used alone or in combination.
  • the transition metal refers to, for example, a Group 3 element to a Group 11 element in the long-period periodic table, and examples of the transition metal include Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. Zn, Y, Zr, Nb, Mo, Tc, Ru, Pd, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf , Ta, W, Re, Os, Ir, Pt, and Au.
  • the transition metal M2 that can provide good gas barrier properties include Nb, Ta, V, Zr, Ti, Hf, Y, La, and Ce.
  • the transition metal M2 is preferably a Group 5 element, particularly at least one metal selected from niobium (Nb), tantalum (Ta), and vanadium (V). It can be preferably used from the viewpoint of easy binding to the non-transition metal M1 contained in the gas barrier layer.
  • the transition metal M2 is a Group 5 element (especially Nb) and the non-transition metal M1, which will be described in detail later, is Si, a significant gas barrier property improvement effect can be obtained. is there.
  • the transition metal M2 is particularly preferably Nb or Ta from which a compound with good transparency can be obtained.
  • the A region preferably further contains oxygen, and may further contain nitrogen or carbon. Moreover, you may contain other elements.
  • Non-transition metal-containing region B region
  • the B region which is a non-transition metal-containing region in the present invention is a region containing a non-transition metal M1 as a main component as a metal, and specifically, an atomic ratio of the transition metal M2 and the non-transition metal M1. This is a region where (M2 / (M1 + M2)) is less than 0.02.
  • Non-transition metal M1 Specific examples of the non-transition metal M1 include non-transition metals selected from metals of Groups 12 to 14 of the long-period periodic table. Such a non-transition metal is not particularly limited, and any metal of Group 12 to Group 14 can be used alone or in combination. For example, Si, Al, Zn, In, Sn, and the like can be used. Can be used. Among these, the non-transition metal M1 preferably contains Si, Sn, or Zn, and more preferably contains Si. Furthermore, the non-transition metal M1 is particularly preferably Si alone.
  • the B region preferably further contains oxygen, and may further contain nitrogen or carbon. Moreover, you may contain other elements.
  • the mixed region according to the present invention is a region where the atomic ratio (M2 / (M1 + M2)) between the transition metal M2 and the non-transition metal M1 is 0.02 or more and 0.98 or less.
  • the mixed region is preferably present in a thickness of a predetermined value or more (specifically, 5 nm or more) continuously in the thickness direction of the gas barrier layer.
  • the T region according to the present invention contains a non-transition metal M1 and a transition metal M2, and at least in the thickness direction, the atomic ratio (M2 / (M1 + M2)) between the transition metal M2 and the non-transition metal M1 is 0. 0.02 or more, and the average density of this region is in the range of 2.6 to 3.4 g / cm 3 .
  • the average density of this region is more preferably in the range of 2.7 to 3.3 g / cm 3 , and is preferably in the range of 2.8 to 3.3 g / cm 3. From the viewpoint of
  • the T region is preferably present continuously in the thickness direction of the gas barrier layer at a thickness of a predetermined value or more (specifically, 5 nm or more).
  • the T region has the A region and the mixed region.
  • the T region in the gas barrier layer, is formed as a region whose composition is continuously changed in the thickness direction. This is preferable in that stress concentration can be relaxed, a dense composition can be formed, and higher gas barrier properties can be realized.
  • the upper limit of the atomic ratio (M2 / (M1 + M2)) in the T region is 1.
  • the thickness of the T region can be made appropriate. It becomes a gas barrier film with good barrier properties.
  • the composition of the T region is expressed by the chemical composition formula (1) described later, it is preferable that at least a part of the composition in the thickness direction of the T region satisfies the relationship formula (2) described later.
  • the average density can be calculated using an X-ray reflectivity method (XRR), as described in Japanese Patent No. 4912612. X-rays are totally reflected when they are incident on the thin film on the substrate at a very shallow angle. When the angle of incident X-rays exceeds the total reflection critical angle, X-rays enter the thin film and are divided into transmitted waves and reflected waves at the thin film surface and interface, and the reflected waves interfere. By analyzing the total reflection critical angle, the density of the film can be obtained. It should be noted that the thickness of the thin film can also be obtained from measurement while changing the incident angle and analyzing the interference signal of the reflected wave accompanying the change in the optical path difference. The density can be measured by the following method. In general, it is known that the refractive index n of a substance with respect to X-rays and ⁇ of the real part of the refractive index n are expressed by the following equations 1 and 2.
  • N 0 is the Avogadro number
  • is the X-ray wavelength
  • is the density (g / cm 3 )
  • Z i , M i , and x i represent the atomic number, atomic weight, and atomic ratio (molar ratio) of the i-th atom, respectively
  • f i ′ represents the atomic scattering factor (anomalous dispersion term) of the i-th atom.
  • the total reflection critical angle ⁇ c is given by Equation 3 when ⁇ related to absorption is ignored.
  • the density ⁇ can be obtained from Equation 4 from Equation 2 and Equation 3.
  • a distribution (density distribution) in the thickness direction in the T region is obtained for this density ⁇ , and is set as an average value of the density distribution.
  • ⁇ c is a value that can be obtained from the X-ray reflectivity
  • r e , N 0 , and ⁇ are constants
  • Z i , M i , and f i ′ are values specific to the constituent atoms.
  • x i atomic number ratio (molar ratio)
  • the result obtained from the XPS measurement is used.
  • the average density of the gas barrier layer is measured by the method described in Examples, and is obtained using Equation 4.
  • oxygen deficient composition In the present invention, it is preferable that a part of the composition contained in the mixed region according to the present invention has a non-stoichiometric composition (oxygen deficient composition) in which oxygen is deficient.
  • the oxygen deficient composition is defined by the following relational expression (2) when at least a part of the composition of the mixed region is expressed by the following chemical composition formula (1). It is defined as satisfying the condition.
  • the oxygen deficiency index indicating the degree of oxygen deficiency in the mixed region, the minimum value obtained by calculating (2y + 3z) / (a + bx) in the certain mixed region is used. Details will be described later.
  • M1 represents a non-transition metal
  • M2 represents a transition metal
  • O represents oxygen
  • N represents nitrogen
  • x, y, and z represent stoichiometric coefficients, respectively.
  • a represents the maximum valence of M1
  • b represents the maximum valence of M2.
  • the composition represented by the chemical composition formula (1) is simply referred to as a composite region composition.
  • the composition of the composite region of the non-transition metal M1 and the transition metal M2 according to the present invention is represented by (M1) (M2) x O y N z which is the chemical composition formula (1).
  • the composition of the composite region may partially include a nitride structure, and it is more preferable from the viewpoint of barrier properties to include a nitride structure.
  • the maximum valence of the non-transition metal M1 is a
  • the maximum valence of the transition metal M2 is b
  • the valence of O is 2
  • the valence of N is 3.
  • composition of the composite region (including a part of the nitride) is a stoichiometric composition
  • (2y + 3z) / (a + bx) 1.0.
  • This formula means that the total number of bonds of the non-transition metal M1 and the transition metal M2 is equal to the total number of bonds of the O and N bonds.
  • both the non-transition metal M1 and the transition metal M2 are It is combined with either O or N.
  • the maximum valence of each element is weighted by the abundance ratio of each element.
  • the mixed region is a region where the value of x satisfies 0.02 ⁇ x ⁇ 49 (0 ⁇ y, 0 ⁇ z).
  • the mixed region is a region satisfying 0.1 ⁇ x ⁇ 10 with a thickness of 5 nm or more.
  • the region satisfying 0.2 ⁇ x ⁇ 5 is included with a thickness of 5 nm or more
  • the region satisfying 0.3 ⁇ x ⁇ 4 is included with a thickness of 5 nm or more.
  • the mixed region exhibits at least a part of the composition, (2y + 3z) / (a + bx) ⁇ 0.9, and (2y + 3z) / (a + bx) ⁇ 0.85 in the mixed region. It is more preferable to satisfy
  • fill (2y + 3z) / (a + bx) ⁇ 0.8.
  • the smaller the value of (2y + 3z) / (a + bx) in the mixed region the higher the gas barrier property, but the greater the absorption in visible light.
  • the thickness of the mixed region that provides good gas barrier properties is 5 nm or more as the sputtering thickness in terms of SiO 2 in the XPS analysis method described later, and this thickness is 8 nm or more. Is preferably 10 nm or more, more preferably 20 nm or more.
  • the thickness of the mixed region is not particularly limited from the viewpoint of gas barrier properties, but is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 30 nm or less from the viewpoint of optical characteristics. preferable.
  • a gas barrier layer having a mixed region having a specific configuration as described above exhibits a very high gas barrier property that can be used as a gas barrier layer for an electronic device such as an organic EL element.
  • composition analysis by XPS measurement of atomic ratio
  • the element concentration distribution in the thickness direction of the gas barrier layer according to the present invention is specifically a distribution curve of a non-transition metal M1 (for example, a silicon distribution curve), a transition metal M2.
  • a distribution curve for example, niobium distribution curve
  • oxygen (O) oxygen
  • N nitrogen
  • C carbon
  • XPS depth profile measurement in which surface composition analysis is sequentially performed while exposing the inside from the surface of the gas barrier layer.
  • a distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio of each element (unit: atom%) and the horizontal axis as the etching time (sputtering time).
  • the etching time is generally correlated with the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer in the layer thickness direction.
  • the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement Can be adopted.
  • etching rate is 0.05 nm / It is preferable to use sec (SiO 2 thermal oxide film equivalent value).
  • ⁇ Analyzer Quantera SXM manufactured by ULVAC-PHI ⁇
  • X-ray source Monochromatic Al-K ⁇ ⁇ Sputtering ion: Ar (2 keV)
  • Depth profile Repeated measurement at a predetermined thickness interval with a SiO 2 equivalent sputtering thickness to obtain a depth profile in the depth direction. The thickness interval was 1 nm (data every 1 nm is obtained in the depth direction).
  • Quantification The background was determined by the Shirley method, and quantified using the relative sensitivity coefficient method from the obtained peak area.
  • Data processing uses MultiPak manufactured by ULVAC-PHI.
  • the analyzed elements are non-transition metal M1 (for example, silicon (Si)), transition metal M2 (for example, niobium (Nb)), oxygen (O), nitrogen (N), and carbon (C).
  • the composition ratio is calculated, and the range in which the atomic ratio (M2 / (M1 + M2)) between the transition metal M2 and the non-transition metal M1 is 0.02 or more is obtained.
  • the T region is defined, and the thickness is obtained.
  • the thickness of the T region represents the sputter depth in XPS analysis in terms of SiO 2 .
  • the thickness of the T region is preferably 5 nm or more.
  • the thickness of the T region is preferably in the range of 5 to 100 nm, more preferably in the range of 8 to 50 nm, and still more preferably Is in the range of 10 to 30 nm.
  • region in the gas barrier layer which concerns on this invention is demonstrated using figures.
  • FIG. 2 is a graph for explaining an element profile and a mixed region when the composition distribution of the non-transition metal and the transition metal in the thickness direction of the gas barrier layer is analyzed by the XPS method.
  • elemental analysis of the non-transition metal M1, transition metal M2, O, N, and C is performed in the depth direction from the surface of the gas barrier layer (the left end of the graph), and the horizontal axis indicates the thickness (nm).
  • the vertical axis represents the content (atom%) of the non-transition metal M1 and the transition metal M2.
  • the elemental composition of the B region containing the non-transition metal (M1, eg, Si), the elemental composition of the mixed region, and the elemental composition profile in the A region containing the transition metal (M2, eg, niobium), T The region is a region having an atomic ratio (M2 / (M1 + M2)) value of 0.02 or more.
  • Formation of the region (A region and mixed region) containing the transition metal M2 is not particularly limited, and for example, a conventionally known vapor deposition method using an existing thin film deposition technique can be used. In the present invention, it is preferable to form a film containing the transition metal M2 on a layer containing the non-transition metal M1 described later. When the film containing the transition metal M2 is formed on the layer containing the non-transition metal M1, the mixed region can be formed by appropriately adjusting the film forming conditions.
  • the set film thickness when forming the film containing the transition metal M2 is preferably 2 nm or more. Moreover, it is preferable that it is 12 nm or less as a setting film thickness from a viewpoint that a favorable optical characteristic is acquired.
  • the set film thickness when forming the film containing the transition metal M2 is thin, only the mixed region may be formed and the A region may not be formed, but the T region has an average density of 2. If it is 6 g / cm 3 or more, good gas barrier properties can be obtained.
  • the vapor deposition method is not particularly limited, and examples thereof include physical vapor deposition (PVD) methods such as sputtering, vapor deposition, ion plating, and ion assist vapor deposition, plasma CVD (chemical vapor deposition), and ALD. Examples thereof include a chemical vapor deposition (CVD) method such as an (Atomic Layer Deposition) method.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • ion plating vapor deposition
  • ion assist vapor deposition plasma CVD (chemical vapor deposition)
  • ALD chemical vapor deposition
  • CVD chemical vapor deposition
  • bipolar sputtering, magnetron sputtering, dual magnetron sputtering (DMS) using an intermediate frequency region, ion beam sputtering, ECR sputtering, or the like can be used alone or in combination of two or more.
  • the target application method is appropriately selected according to the target type, and any of DC (direct current) sputtering, DC pulse sputtering, AC sputtering, and RF (radio frequency) sputtering may be used.
  • a reactive sputtering method using a transition mode that is intermediate between the metal mode and the oxide mode can also be used.
  • a metal oxide film can be formed at a high film formation speed, which is preferable.
  • the inert gas used for the process gas He, Ne, Ar, Kr, Xe, or the like can be used, and Ar is preferably used.
  • oxygen, nitrogen, carbon dioxide and carbon monoxide into the process gas, thin films such as so-called complex oxides, complex nitride oxides and complex acid carbides of non-transition metal M1 and transition metal M2 are formed. can do.
  • film forming conditions in the sputtering method include applied power, discharge current, discharge voltage, time, and the like, and these can be appropriately selected according to the sputtering apparatus, the material and thickness of the film, and the like.
  • the sputtering method may be a multi-source simultaneous sputtering method using a plurality of sputtering targets including the transition metal M2 alone or its oxide.
  • the method for producing these sputtering targets and the method for producing a thin film made of a so-called complex oxide using these sputtering targets see, for example, JP-A Nos. 2000-160331 and 2004-068109. Reference can be made to the methods and conditions described in Japanese Unexamined Patent Publication No. 2013-047361.
  • the method for forming the region (B region) containing the non-transition metal M1 is not particularly limited, and for example, a vapor deposition method can be used by a known method.
  • the vapor deposition method is not particularly limited, and examples thereof include physical vapor deposition (PVD) methods such as sputtering, vapor deposition, ion plating, and ion assisted vapor deposition, plasma CVD (chemical vapor deposition), and ALD. Examples thereof include a chemical vapor deposition (CVD) method such as an (Atomic Layer Deposition) method.
  • PVD physical vapor deposition
  • a method of forming by a wet coating method using a polysilazane-containing coating solution containing Si as the non-transition metal M1 is also a preferable method.
  • “polysilazane” applicable to the formation of the B region is a polymer having a silicon-nitrogen bond in the structure, and includes SiO 2 , Si 3 made of Si—N, Si—H, NH or the like.
  • N is 4 and both of the intermediate solid solution SiO x N preceramic inorganic polymers, such as y.
  • the relatively Polysilazanes that can be modified to silicon oxide, silicon nitride, or silicon oxynitride at low temperatures are preferred.
  • Examples of such polysilazane include compounds having a structure represented by the following general formula (1).
  • R 1 , R 2 and R 3 each represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group.
  • PHPS perhydropolysilazane
  • the organopolysilazane in which the hydrogen part bonded to Si is partially substituted with an alkyl group or the like has an alkyl group such as a methyl group, so that the adhesion to an adjacent substrate is improved and it may be hard.
  • the ceramic film made of polysilazane can be tough, and even when the film is made thicker, the generation of cracks is preferred.
  • perhydropolysilazane and organopolysilazane may be appropriately selected according to the application, and may be used in combination.
  • Perhydropolysilazane is presumed to have a structure in which a linear structure and a ring structure centered on a 6- or 8-membered ring coexist.
  • the molecular weight of polysilazane is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), is a liquid or solid substance, and varies depending on the molecular weight.
  • Mn number average molecular weight
  • These polysilazane compounds are commercially available in the form of a solution dissolved in an organic solvent, and commercially available products can be used as they are as coating solutions containing polysilazane compounds.
  • Other examples of polysilazanes that are ceramicized at a low temperature include silicon alkoxide-added polysilazanes obtained by reacting the above polysilazanes with silicon alkoxides (Japanese Patent Laid-Open No.
  • acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (JP-A-6-306329), metal fine particle-added polysilazane obtained by adding metal fine particles (JP-A-7- 19698 JP), and the like.
  • polysilazane examples include, for example, paragraphs 0024 to 0040 of JP2013-255910A, paragraphs 0037 to 0043 of JP2013-188942A, paragraph 0014 of JP2013-151123A. 0021, paragraphs 0033 to 0045 of JP 2013-052569 A, paragraphs 0062 to 0075 of JP 2013-129557 A, paragraphs 0037 to 0064 of JP 2013-226758 A, etc. It can be applied with reference to the contents.
  • Suitable organic solvents include, for example, hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons, halogenated hydrocarbon solvents, ethers such as aliphatic ethers and alicyclic ethers. it can.
  • organic solvents such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, and ethers such as dibutyl ether, dioxane and tetrahydrofuran.
  • organic solvents may be selected according to purposes such as the solubility of polysilazane and the evaporation rate of the solvent, and a plurality of organic solvents may be mixed.
  • the concentration of polysilazane in the coating liquid containing polysilazane varies depending on the thickness of the target gas barrier layer and the pot life of the coating liquid, but is preferably about 0.2 to 35% by mass.
  • an amine or metal catalyst may be added to the coating liquid containing polysilazane in order to promote modification to silicon oxide, silicon nitride, or silicon oxynitride.
  • a polysilazane solution containing a catalyst such as NAX120-20, NN120-20, NN110, NN310, NN320, NL110A, NL120A, NL150A, NP110, NP140, SP140 manufactured by AZ Electronic Materials Co., Ltd. as a commercial product is used. be able to.
  • these commercial items may be used independently and may be used in mixture of 2 or more types.
  • the addition amount of the catalyst is adjusted to 2% by mass or less with respect to polysilazane in order to avoid excessive silanol formation by the catalyst, decrease in film density, increase in film defects, and the like. It is preferable.
  • the coating liquid containing polysilazane can contain an inorganic precursor compound.
  • the inorganic precursor compound other than polysilazane is not particularly limited as long as a coating liquid can be prepared.
  • compounds other than polysilazane described in paragraphs 0110 to 0114 of JP2011-143577A can be appropriately employed.
  • the modification treatment is a treatment in which polysilazane is imparted with energy and part or all thereof is converted into silicon oxide or silicon oxynitride.
  • a known method based on the conversion reaction of polysilazane can be selected, and examples thereof include known plasma treatment, plasma ion implantation treatment, ultraviolet irradiation treatment, vacuum ultraviolet irradiation treatment and the like.
  • a conversion reaction using plasma, ozone, or ultraviolet light that can be converted at a low temperature is preferable. Conventionally known methods can be used for plasma and ozone.
  • a gas barrier layer is formed by providing a coating film of a polysilazane-containing coating liquid of a coating method on a substrate and applying a vacuum ultraviolet irradiation treatment in which a vacuum ultraviolet ray (VUV) having a wavelength of 200 nm or less is irradiated to perform a modification treatment.
  • VUV vacuum ultraviolet ray
  • a rare gas excimer lamp is preferably used.
  • an excimer lamp (single wavelength of 172 nm, 222 nm, 308 nm, for example, manufactured by USHIO INC., Manufactured by M.D. Can be mentioned.
  • the treatment by vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, preferably light energy of a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in polysilazane, and the bonding of atoms is an action of only a photon called a photon process.
  • a silicon oxide film is formed at a relatively low temperature (about 200 ° C. or less) by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly.
  • the thickness of the B region is not particularly limited, but is preferably in the range of 1 to 500 nm, more preferably in the range of 10 to 300 nm.
  • the mixed region As a method for forming the mixed region, as described above, a method of appropriately adjusting the formation conditions when forming the A region and the B region and forming the mixed region between the A region and the B region is preferable.
  • the mixed region can be formed by adjusting one or more conditions selected from the group consisting of the amount of gas supplied at the time, the degree of vacuum during film formation, and the power during film formation.
  • a film forming raw material type (polysilazane type or the like) containing the non-transition metal M1, a catalyst type, a catalyst content, a coating film thickness, a drying temperature / time.
  • the mixed region can be formed by adjusting one or more conditions selected from the group consisting of a reforming method and reforming conditions.
  • the A region is formed by the above-described vapor deposition method
  • the mixed region can be formed by adjusting one or two or more conditions selected from the group consisting of the gas supply amount, the degree of vacuum during film formation, and the power during film formation.
  • the formation conditions of the method of forming the A region and the B region can be adjusted as appropriate. For example, when forming the A region by a vapor deposition method, a desired thickness can be obtained by controlling the deposition time.
  • An anchor coat layer may be disposed on the surface of the base material on the side where the gas barrier layer according to the present invention is formed for the purpose of improving the adhesion between the base material and the gas barrier layer.
  • anchor coating agents used for the anchor coat layer polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, modified styrene resin, modified silicone resin, alkyl titanate, etc. are used alone Or in combination of two or more. Conventionally known additives can be added to these anchor coating agents.
  • the above-mentioned anchor coating agent is coated on the support by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, etc., and anchor coating is performed by drying and removing the solvent, diluent, etc. be able to.
  • the application amount of the anchor coating agent is preferably about 0.1 to 5.0 g / m 2 (dry state).
  • the anchor coat layer can also be formed by a vapor deposition method such as physical vapor deposition or chemical vapor deposition. For example, as described in JP-A-2008-142941, an inorganic film mainly composed of silicon oxide can be formed for the purpose of improving adhesion and the like. Alternatively, by forming an anchor coat layer as described in Japanese Patent Application Laid-Open No.
  • An anchor coat layer can also be formed for the purpose of blocking to some extent and controlling the composition of the inorganic thin film.
  • the thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10 ⁇ m.
  • a hard coat layer may be disposed on the surface (one side or both sides) of the substrate.
  • the material contained in the hard coat layer include a thermosetting resin and an active energy ray curable resin, but an active energy ray curable resin is preferable because it is easy to mold.
  • Such curable resins can be used singly or in combination of two or more.
  • the active energy ray-curable resin refers to a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays and electron beams.
  • the active energy ray curable resin a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and cured by irradiating an active energy ray such as an ultraviolet ray or an electron beam to cure the active energy ray.
  • an active energy ray such as an ultraviolet ray or an electron beam to cure the active energy ray.
  • a layer containing a cured product of the functional resin, that is, a hard coat layer is formed.
  • Typical examples of the active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and an ultraviolet curable resin that is cured by irradiation with ultraviolet rays is preferable. You may use the commercially available base material in which the hard-coat layer is formed previously.
  • the thickness of the hard coat layer is preferably in the range of 0.1 to 15 ⁇ m, and more preferably in the range of 1 to 5 ⁇ m, from the viewpoint of smoothness and bending resistance.
  • the active energy ray-curable resin applicable to the hard coat layer forming material include a resin composition containing an acrylate compound having a radical-reactive unsaturated compound, and a mercapto compound having an acrylate compound and a thiol group.
  • examples thereof include resin compositions, resin compositions in which polyfunctional acrylate monomers such as epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, polyethylene glycol acrylate, and glycerol methacrylate are dissolved.
  • thermosetting materials include TutProm Series (Organic Polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Co., Ltd., Nanohybrid Silicone manufactured by Adeka, and Unidic manufactured by DIC.
  • the method for forming the hard coat layer is not particularly limited, but is preferably formed by a wet coating method such as a spin coating method, a spray method, a blade coating method, a dip method, or a dry coating method such as a vapor deposition method.
  • a wet coating method such as a spin coating method, a spray method, a blade coating method, a dip method, or a dry coating method such as a vapor deposition method.
  • additives such as an antioxidant, an ultraviolet absorber, and a plasticizer can be added to the above-described active energy ray-curable resin as necessary.
  • any hard coat layer may use an appropriate resin or additive for improving the film formability and preventing the generation of pinholes in the film.
  • the thickness of the hard coat layer is preferably in the range of 1 to 10 ⁇ m, more preferably in the range of 2 to 7 ⁇ m, from the viewpoint of improving the heat resistance of the film and facilitating the balance adjustment of the optical properties of the film. It is preferable.
  • the gas barrier film of the present invention can be preferably applied to a device whose performance is deteriorated by chemical components (oxygen, water, nitrogen oxide, sulfur oxide, ozone, etc.) in the air. That is, the gas barrier film of the present invention can be applied to an electronic device including an electronic device body.
  • the electronic device body used in the electronic device provided with the gas barrier film of the present invention include, for example, a QD film having a quantum dot (QD) -containing resin layer, an organic electroluminescence element (organic EL element), and a liquid crystal display.
  • An element (LCD), a thin film transistor, a touch panel, electronic paper, a solar cell (PV), and the like can be given. From the viewpoint that the effects of the present invention can be obtained more efficiently, the electronic device body is preferably an organic EL element or a solar cell, and more preferably an organic EL element.
  • the gas barrier film of the present invention can be applied to a QD film having a quantum dot (QD) -containing resin layer.
  • QD quantum dots
  • resins, and the like which are main components of the QD-containing resin layer, will be described.
  • Quantum dots semiconductor nanoparticles exhibiting a quantum confinement effect with a nanometer-sized semiconductor material are also referred to as “quantum dots”.
  • quantum dots Such a quantum dot is a small lump within about 10 and several nanometers in which several hundred to several thousand semiconductor atoms are gathered, but when absorbing energy from an excitation source and reaching an energy excited state, the energy of the quantum dot Releases energy corresponding to the band gap. Therefore, it is known that quantum dots have unique optical characteristics due to the quantum size effect. Specifically, (1) By controlling the size of the particles, various wavelengths and colors can be emitted. (2) The absorption band is wide and fine particles of various sizes can be obtained with a single wavelength of excitation light. It has the characteristics that it can emit light, (3) it has a symmetrical fluorescence spectrum, and (4) it has excellent durability and fading resistance compared to organic dyes.
  • the quantum dots contained in the QD-containing resin layer may be known, and can be generated using any method known to those skilled in the art.
  • suitable QDs and methods for forming suitable QDs include US Pat. No. 6,225,198, US 2002/0066401, US Pat. No. 6,207,229, US Pat. No. 6,322,901. Description, US Pat. No. 6,949,206, US Pat. No. 7,572,393, US Pat. No. 7,267,865, US Pat. No. 7,374,807, US Patent Application No. 11/299299, and US Pat. No. 6,861,155 Can be mentioned.
  • the QD is generated from any suitable material, preferably an inorganic material and more preferably an inorganic conductor or semiconductor material.
  • suitable semiconductor materials include any type of semiconductor, including II-VI, III-V, IV-VI and IV semiconductors.
  • Suitable semiconductor materials include Si, Ge, Sn, Se, Te, B, C (including diamond), P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb. , InN, InP, InAs, InSb, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe , BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si 3 N 4 , Ge 3 N 4 , Al 2 O 3
  • the following core / shell type quantum dots for example, CdSe / ZnS, InP / ZnS, PbSe / PbS, CdSe / CdS, CdTe / CdS, CdTe / ZnS, and the like can be preferably used.
  • Resin can be used for a QD containing resin layer as a binder holding a quantum dot.
  • a QD containing resin layer preferably has a thickness in the range of 50 to 200 ⁇ m. The optimum amount of quantum dots in the QD-containing resin layer varies depending on
  • the gas barrier film of the present invention can be applied to an organic EL element.
  • organic EL element for example, JP 2013-157634 A, JP 2013-168552 A, and the like.
  • JP 2013-177361 A, JP 2013-187221 A, JP 2013-191644 A, JP 2013-191804 A, JP 2013-225678 A, JP 2013-235994 A, JP 2013-243234, JP 2013-243236, JP 2013-242366, JP 2013-243371, JP 2013-245179, JP 2014-003249, JP 2014 -003299, JP2014-013910A JP 2014-017493 JP include a configuration described in JP-2014-017494 Publication.
  • the gas barrier films of Samples 1 to 12 were produced as follows.
  • a clear hard coat layer having a thickness of 2 ⁇ m was formed on the surface on which the gas barrier layer was to be formed.
  • UV curable resin OPSTAR (registered trademark) Z7527 manufactured by JSR Corporation was applied so as to have a dry film thickness of 2 ⁇ m, dried at 80 ° C., and then a high-pressure mercury lamp in air. It was used and cured under conditions of an irradiation energy amount of 0.5 J / cm 2 .
  • the base material was produced (Hereafter, the same base material is used about all the preparation examples.).
  • ⁇ Sputtering method> As the sputtering method, the following methods S-1 to S-11 were performed. In S-1 to S-11, a magnetron sputtering apparatus was used. In S-1 to S-11, Ar and O 2 were used as process gases.
  • ⁇ Coating method> As the coating method, the following methods C-1 to C-4 were performed.
  • C-1 A dibutyl ether solution containing 20% by mass of perhydropolysilazane (manufactured by AZ Electronic Materials Co., Ltd., NN120-20) and an amine catalyst (N, N, N ′, N′-tetramethyl-1,6-diaminohexane (TMDAH) )) And a dibutyl ether solution (NAX120-20, manufactured by AZ Electronic Materials Co., Ltd.) containing 20% by mass of perhydropolysilazane in a ratio of 4: 1 (mass ratio), and further for adjusting the dry film thickness Diluted with dibutyl ether to prepare a coating solution having a solid content of 4% by mass. A coating solution was applied onto the substrate by spin coating so that the thickness after drying was 120 nm, and a coating film dried at 80 ° C. for 2 minutes was obtained.
  • C-2 The dried coating film obtained in C-1 was subjected to a vacuum ultraviolet ray irradiation treatment using a vacuum ultraviolet ray irradiation apparatus having an Xe excimer lamp having a wavelength of 172 nm and an irradiation energy of 5.0 J / cm 2 . . At this time, the irradiation atmosphere was replaced with nitrogen, and the oxygen concentration was set to 0.1% by volume. The stage temperature for installing the sample was set to 80 ° C.
  • an aluminum compound solution was prepared by diluting aluminum ethyl acetoacetate diisopropylate with dibutyl ether so that the solid concentration was 5% by mass.
  • S1 and the aluminum compound liquid are mixed so that the Al / Si atomic ratio is 0.01, heated to 80 ° C. with stirring, held at 80 ° C. for 2 hours, and then gradually lowered to room temperature (25 ° C.). Chilled.
  • a coating solution having a solid content of 4% by mass was prepared.
  • a coating solution was applied onto the substrate by spin coating so that the thickness after drying was 120 nm, and a coating film dried at 80 ° C. for 2 minutes was obtained.
  • ⁇ XPS> The composition distribution profile in the thickness direction was measured on the surface side of the gas barrier film by XPS analysis.
  • the XPS analysis conditions are as follows.
  • the sample used for the analysis is a sample stored in an environment of 20 ° C. and 50% RH after sample preparation.
  • XPS analysis conditions ⁇ Device: Quantera SXM manufactured by ULVAC-PHI ⁇ X-ray source: Monochromatic Al-K ⁇ ⁇ Sputtering ion: Ar (2 keV) Depth profile: Measurement was repeated at a predetermined thickness interval with a SiO 2 equivalent sputtering thickness to obtain a depth profile in the depth direction. The thickness interval was 1 nm (data every 1 nm is obtained in the depth direction). Quantification: The background was determined by the Shirley method, and quantified using the relative sensitivity coefficient method from the obtained peak area. For data processing, MultiPak manufactured by ULVAC-PHI was used. The analyzed elements are Si (non-transition metal M1), transition metal M2, O, N, and C.
  • ⁇ Measuring method of average density by X-ray reflectivity method (XRR)> The average density in the T region of the gas barrier layer is determined by measuring the reflectivity of X-rays under the measurement conditions shown below to determine the total reflection critical angle ⁇ c , and calculating the density ⁇ from that value. For ⁇ , a distribution (density distribution) in the thickness direction in the T region was obtained, and an average value of the density distribution was calculated as an average density.
  • Measurement conditions X-ray source: Cu-K ⁇ 1 (wavelength: 1.54059 mm)
  • Optical system Parallel beam optical system
  • Incident side slit system Ge (220) 2 crystal, height limiting slit 5 mm, incident slit 0.05 mm
  • Receiving side slit system receiving slit 0.10mm, solar slit 5 °
  • Detector Scintillation counter Tube voltage / tube current: 45 kV / 200 mA Scanning axis; 2 ⁇ / ⁇ Scan mode; continuous scan scan range; 0.1-3.0 deg.
  • Table 1 describes the average film density of the A region, the B region, or the A region and the B region. did.
  • the atomic ratio between the transition metal M2 and the non-transition metal M1 (Si) is obtained from the data obtained from the above-described XPS measurement results, as in the determination of the presence or absence of the T region.
  • M2 / (M1 + M2)) M2 / (M1 + M2)
  • the region where this atomic ratio (M2 / (M1 + M2)) exceeds 0.98 is defined as A region, and the region where the atomic ratio (M2 / (M1 + M2)) is less than 0.02 B region was designated.
  • thermosetting sheet-like adhesive epoxy resin
  • a thermosetting sheet-like adhesive epoxy resin
  • the glass plate on which Ca has been deposited is taken out into the glove box, placed so that the sealing resin layer surface of the gas barrier film to which the sealing resin layer is bonded and the Ca deposition surface of the glass plate are in contact with each other, and adhered by vacuum lamination. . At this time, heating at 110 ° C. was performed. Further, the adhered sample was placed on a hot plate set at 110 ° C. with the glass plate facing down, and cured for 30 minutes to produce an evaluation cell. In addition, in order to confirm that there is no permeation of water vapor from other than the gas barrier film surface, a sample using a quartz glass plate having a thickness of 0.2 mm was used instead of the gas barrier film sample as a comparative sample. The sample was stored at 40 ° C. and 90% RH under high temperature and high humidity, and it was confirmed that corrosion of metallic calcium did not occur even after 500 hours.
  • the water vapor transmission concentration was measured from the change in the Ca transmission concentration.
  • a black and white transmission density meter TM-5 manufactured by Konica Minolta was used for measuring the water vapor transmission density.
  • the water vapor transmission concentration was measured at any four points in the evaluation cell, and the average value was calculated. The same applies hereinafter.
  • the evaluation cell was stored in a 40 ° C./90% RH environment, and the water vapor transmission concentration after 500 hours (“WVTR [g / (m 2 ⁇ 24 h)]” described in Table 1) was measured. Less than 5.0 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) was regarded as acceptable.
  • the transmittance (light transmittance) of light having a wavelength of 450 nm was measured using a spectrocolorimeter CM-3500d manufactured by Konica Minolta. At this time, the light transmittance was defined as the light transmittance from the gas barrier layer side of the gas barrier film to the resin substrate back side. The measurement was performed at five points in the in-plane position of the sample, and the obtained light transmittance curve was evaluated as follows. Transmittance (average value) of light having a wavelength of 450 nm: An average value of transmittance of light having a wavelength of 450 nm was calculated from the obtained five light transmittance curves. The light transmittance was determined to be 90% or more.
  • the present invention is suitable for providing a gas barrier film having good optical properties and good gas barrier properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本発明の課題は、良好な光学特性を有し、かつ、ガスバリアー性のよいガスバリアー性フィルムを提供することである。当該ガスバリアー性フィルムは、基材上に、ガスバリアー層を有するガスバリアー性フィルムであって、前記ガスバリアー層が、非遷移金属M1及び遷移金属M2を含有し、かつ、少なくとも厚さ方向において、遷移金属M2と非遷移金属M1との原子数比(M2/(M1+M2))が0.02以上である連続したT領域を有し、前記T領域の平均密度が、2.6~3.4g/cmの範囲内であることを特徴とする。

Description

ガスバリアー性フィルム及び電子デバイス
 本発明は、ガスバリアー性フィルム及び電子デバイスに関する。より詳しくは、本発明は、良好な光学特性を有し、かつ、ガスバリアー性のよいガスバリアー性フィルム等に関する。
 従来、酸素や水等のガスの浸入を防ぐ包装材として、ガスバリアー性フィルムが使用されている。例えば、このような、ガスバリアー性フィルムは、ポリシラザン化合物を含む層にイオンが注入されて得られる層を採用することで高密度のガスバリアー層を形成する技術が知られている(例えば、特許文献1参照。)。
 一方、有機エレクトロルミネッセンス素子(EL:Electro Luminescence)、太陽電池、タッチパネル、電子ペーパー等の電子デバイスにおいても、回路基板や封止材として、ガスバリアー性フィルムが利用されている。電流のリーク等を防ぐため、これら電子デバイスに使用するガスバリアー性フィルムには、高いガスバリアー性が求められる。また、電子デバイスに使用されるためには、高いガスバリアー性だけではなく、高い光学特性(光透過性など)も求められる。
 しかし、特許文献1に開示されているような従来のガスバリアー層は、ガスバリアー性が不十分、かつ、高温高湿保存(例えば、85℃85%100時間)でガスバリアー性が大きく劣化する等の問題があった。
特許第4921612号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、良好な光学特性を有し、かつ、ガスバリアー性のよいガスバリアー性フィルム等を提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、遷移金属を含有し、かつ、平均密度が特定の範囲にある領域を有するガスバリアー層とすることで、非常に良好なガスバリアー性と良好な光学特性との両立が可能となり、さらに、高温高湿保存(85℃85%100時間)後でも良好なガスバリアー性を維持できる高い耐久性を実現できるガスバリアー性フィルムを得られることを見いだし本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.基材上に、ガスバリアー層を有するガスバリアー性フィルムであって、
 前記ガスバリアー層が、非遷移金属M1及び遷移金属M2を含有し、かつ、少なくとも厚さ方向において、遷移金属M2と非遷移金属M1との原子数比(M2/(M1+M2))が0.02以上である連続したT領域を有し、
 前記T領域の平均密度が、2.6~3.4g/cmの範囲内であることを特徴とするガスバリアー性フィルム。
 2.T領域の組成を下記化学組成式(1)で表したとき、前記T領域の厚さ方向における少なくとも一部の組成が、下記関係式(2)を満たすことを特徴とする第1項に記載のガスバリアー性フィルム。
 化学組成式(1): (M1)(M2)xyz
 関係式(2): (2y+3z)/(a+bx)<1.0
 (ただし式中、M1:非遷移金属、M2:遷移金属、O:酸素、N:窒素、x,y,z:化学量論係数、a:M1の最大価数、b:M2の最大価数を表す。)
 3.前記非遷移金属M1が、ケイ素(Si)であることを特徴とする第1項又は第2項に記載のガスバリアー性フィルム。
 4.前記遷移金属M2が、第5族元素であることを特徴とする第1項から第3項までのいずれか一項に記載のガスバリアー性フィルム。
 5.前記遷移金属M2が、ニオブ(Nb)、タンタル(Ta)及びバナジウム(V)から選択される少なくとも1種の金属であることを特徴とする第1項から第4項までのいずれか一項に記載のガスバリアー性フィルム。
 6.第1項から第5項までのいずれか一項に記載のガスバリアー性フィルムを具備していることを特徴とする電子デバイス。
 7.量子ドット含有樹脂層を有することを特徴とする第6項に記載の電子デバイス。
 8.有機エレクトロルミネッセンス素子を具備していることを特徴とする第6項に記載の電子デバイス。
 本発明の上記手段により、良好な光学特性を有し、かつ、ガスバリアー性のよいガスバリアー性フィルム等を提供することができる。
 本発明者は、遷移金属M2と非遷移金属M1を含有し、かつ、少なくとも厚さ方向において、遷移金属M2と非遷移金属M1との原子数比(M2/(M1+M2))が0.02以上である連続したT領域を設け、当該T領域の平均密度を特定の範囲とすることで、非常に良好なガスバリアー性と良好な光学特性との両立が可能となり、さらに、高温高湿保存(85℃85%100時間)後でも良好なガスバリアー性を維持することができる耐久性を実現するに至った。
本発明の実施の形態のガスバリアー性フィルムの構成を示す断面図 ガスバリアー層の厚さ方向における非遷移金属及び遷移金属の組成分布をXPS法により分析したときの元素プロファイルとT領域を説明するためのグラフ
 本発明のガスバリアー性フィルムは、基材上に、ガスバリアー層を有するガスバリアー性フィルムであって、前記ガスバリアー層が、非遷移金属M1及び遷移金属M2を含有し、かつ、少なくとも厚さ方向において、遷移金属M2と非遷移金属M1との原子数比(M2/(M1+M2))が0.02以上である連続したT領域を有し、前記T領域の平均密度が、2.6~3.4g/cmまでの範囲内であることを特徴とする。この特徴は各請求項に係る発明に共通又は対応する技術的特徴である。
 本発明の実施態様としては、T領域の組成を上記化学組成式(1)で表したとき、前記T領域の厚さ方向における少なくとも一部の組成が、上記関係式(2)を満たすことが、金属化合物の高密度な構造がT領域において形成される点で好ましい。
 本発明の実施態様としては、非遷移金属M1が、ケイ素(Si)であることが、より優れたガスバリアー性を達成することができる点で好ましい。
 本発明の実施態様としては、遷移金属M2が、第5族元素であること、さらには、ニオブ(Nb)、タンタル(Ta)及びバナジウム(V)から選択される少なくとも1種の金属であることが、より優れたガスバリアー性を達成することができる点で好ましい。
 本発明のガスバリアー性フィルムは、電子デバイスに好適に具備され得る。これにより、良好な光学特性を有し、かつ、ガスバリアー性のよい電子デバイスを提供できる。このような電子デバイスとしては、量子ドット含有樹脂層を有するものや、有機エレクトロルミネッセンス素子を具備しているものが挙げられる。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 ≪ガスバリアー性フィルムの概要≫
 本発明のガスバリアー性フィルムは、基材上に、ガスバリアー層を有するガスバリアー性フィルムであって、前記ガスバリアー層が、非遷移金属M1及び遷移金属M2を含有し、かつ、少なくとも厚さ方向において、遷移金属M2と非遷移金属M1との原子数比(M2/(M1+M2))が0.02以上である連続したT領域を有し、前記T領域の平均密度が、2.6~3.4g/cmまでの範囲内であることを特徴とする。
 本発明でいう「ガスバリアー性フィルム」におけるガスバリアー性とは、基材上にガスバリアー層を積層して形成させたガスバリアー性フィルムについて、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3cm/(m・24h・atm)以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下の高バリアー性であることを意味する。
 ガスバリアー層の厚さは、特に制限されないが、5~1000nmであることが好ましい。このような範囲であれば、高いガスバリアー性能、折り曲げ耐性、断裁加工適性に優れる。
 水蒸気透過度は、例えば、水蒸気透過度測定装置(商品名:パーマトラン モコン社製)により、38℃、100%RHの雰囲気下で測定することができる。
 図1は、本発明の実施の形態のガスバリアー性フィルムF1の断面構成を示している。
 図1に示すように、ガスバリアー性フィルムF1は、基材1上にガスバリアー層2を備えている。
 図1は、基材1の一方の面にのみガスバリアー層2を備える例を示しているが、ガスバリアー性フィルムF1は、基材1の両面にそれぞれガスバリアー層2を備えることもできるし、一方の表面上に複数層のガスバリアー層2を備えることもできる。
 ガスバリアー層2は、図1に示すように、厚さ方向において、遷移金属M2と非遷移金属M1とが共存し、かつ、遷移金属M2と非遷移金属M1との原子数比(M2/(M1+M2))が0.02以上、かつ、0.98以下である連続した混合領域21を有している。混合領域21は、遷移金属M2と、非遷移金属M1との他に、さらに酸素が含有されていることが好ましい。なお、酸素は、遷移金属M2と非遷移金属M1とのいわゆる複合酸化物として混合領域21に含有されていてもよい。
 また、図1のガスバリアー層2は、厚さ方向において、非遷移金属M1を金属の主成分として含有するB領域22と、遷移金属M2を金属の主成分として含有するA領域23とを有し、混合領域21は、B領域22及びA領域23の間に位置している。図1において、基材1側からB領域22、混合領域21、A領域23がこの順に位置しているが、混合領域21がB領域22及びA領域23の間に位置するのであれば、基材1側からA領域23、混合領域21、B領域22の順番で位置していてもよい。
 本発明に係るT領域は、図1の例においては、混合領域21とA領域23とをいう。
 [基材]
 本発明のガスバリアー性フィルムに適用する基材としては、フレキシブル性及び光透過性を得ることができる観点から樹脂基材であることが好ましく、更には、プラスチックフィルムであることが好ましい。
 本発明に適用可能なプラスチックフィルムは、本発明係るガスバリアー層等を保持できるフィルムであれば材質、厚さ等に特に制限はなく、使用目的等に応じて適宜選択することができる。プラスチックフィルムとしては、具体的には、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィルンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂を構成材料とするフィルムが挙げられる。
 基材の厚さは5~500μmの範囲内であることが好ましく、更に好ましくは15~250μmの範囲内である。
 本発明に係る適用可能な基材のその他の種類、基材の製造方法等については、例えば、特開2013-226758号公報の段落「0125」~「0136」に開示されている技術を適宜採用することができる。
 [ガスバリアー層]
 本発明に係るガスバリアー層は、非遷移金属M1及び遷移金属M2を含有し、かつ、少なくとも厚さ方向において、遷移金属M2と非遷移金属M1との原子数比(M2/(M1+M2))が0.02以上である連続したT領域を有する。
 更には、ガスバリアー層としては、A領域とB領域との間に、前記混合領域を有する構成であることが好ましい形態である。
 以下、本発明に係るガスバリアー層の詳細について更に説明する。
 〔ガスバリアー層を構成する各領域〕
 本発明に係るガスバリアー層を構成する領域について説明するが、初めに、以下において使用する技術用語の定義についてあらかじめ説明する。
 本発明において、「領域」とは、ガスバリアー層の厚さ方向に対して垂直な面(すなわち当該ガスバリアー層の最表面に平行な面)で当該ガスバリアー層を一定又は任意の厚さで分割したときに形成される対向する二つの面の間の三次元的範囲内(領域)をいい、当該領域内の構成成分の組成は、厚さ方向において一定であっても、徐々に変化するものであっても良い。
 次いで、各領域について詳細な説明をする。
 <遷移金属含有領域:A領域>
 本発明における遷移金属含有領域であるA領域とは、金属として、遷移金属M2を主成分として含有する領域であって、具体的には、遷移金属M2と非遷移金属M1との原子数比(M2/(M1+M2))が0.98を超える領域である。
 (遷移金属M2)
 遷移金属M2としては、特に制限されず、任意の遷移金属が単独で又は組み合わせて用いられうる。ここで、遷移金属とは、例えば、長周期型周期表の第3族元素から第11族元素を指し、遷移金属としては、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Pd、Ag、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、及びAuなどが挙げられる。
 中でも、良好なガスバリアー性が得られる遷移金属M2としては、Nb、Ta、V、Zr、Ti、Hf、Y、La、Ce等が挙げられる。これらの中でも、種々の検討結果から、遷移金属M2は第5族元素であることが好ましく、特に、ニオブ(Nb)、タンタル(Ta)及びバナジウム(V)から選択される少なくとも1種の金属であることが、ガスバリアー層に含有される非遷移金属M1に対する結合が生じやすい観点から、好ましく用いることができる。
 特に、遷移金属M2が第5族元素(特に、Nb)であって、詳細は後述する非遷移金属M1がSiであると、著しいガスバリアー性の向上効果を得ることができ、特に好ましい組み合わせである。これは、Siと第5族元素(特に、Nb)との結合が特に生じやすいためであると考えられる。さらに、光学特性の観点から、遷移金属M2は、透明性が良好な化合物が得られるNb、Taが特に好ましい。
 A領域は、さらに酸素を含有していることが好ましく、さらに窒素や炭素を含有していてもよい。また、その他元素を含有していても良い。
 (非遷移金属含有領域:B領域)
 本発明における非遷移金属含有領域であるB領域とは、金属として非遷移金属M1を主成分として含有する領域であって、具体的には、遷移金属M2と非遷移金属M1との原子数比(M2/(M1+M2))が0.02未満の領域である。
 (非遷移金属M1)
 非遷移金属M1としては、具体的には、例えば、長周期型周期表の第12族~第14族の金属から選択される非遷移金属が挙げられる。このような非遷移金属としては、特に制限されず、第12族~第14族の任意の金属が単独で又は組み合わせて用いることができるが、例えば、Si、Al、Zn、In及びSnなどを使用できる。中でも、当該非遷移金属M1として、Si、Sn又はZnを含むことが好ましく、Siを含むことがより好ましい。さらには、非遷移金属M1は、Si単独であることが特に好ましい。
 B領域は、さらに酸素を含有していることが好ましく、さらに窒素や炭素を含有していてもよい。また、その他元素を含有していても良い。
 <混合領域>
 本発明に係る混合領域は、遷移金属M2と非遷移金属M1との原子数比(M2/(M1+M2))が0.02以上、0.98以下の領域である。
 混合領域は、ガスバリアー層の厚さ方向に連続して所定値以上(具体的には、5nm以上)の厚さで存在することが好ましい形態である。
 <T領域>
 本発明に係るT領域は、非遷移金属M1及び遷移金属M2を含有し、かつ、少なくとも厚さ方向において、遷移金属M2と非遷移金属M1との原子数比(M2/(M1+M2))が0.02以上である連続した領域であり、さらに、この領域の平均密度は、2.6~3.4g/cmの範囲内であることを特徴とする。この領域の平均密度は、2.7~3.3g/cmの範囲内であることがより好ましく、2.8~3.3g/cmの範囲内であることが、本発明の効果発現の観点から、さらに好ましい。
 T領域は、ガスバリアー層の厚さ方向に連続して所定値以上(具体的には、5nm以上)の厚さで存在することが好ましい形態である。
 また、T領域は、前記A領域と、前記混合領域を有する構成である。この態様においては、ガスバリアー層内で、前記T領域は、厚さ方向に組成が連続的に変化した領域として形成される。このことにより応力の集中を緩和でき、かつ緻密な組成を形成することができ、より高いガスバリアー性を実現することができる点で好ましい。
 なお、T領域における原子数比(M2/(M1+M2))の上限は、1である。
 また、T領域における平均密度は、2.6~3.4g/cmであることで、T領域の厚さを適切にすることができ、ひいては、良好な光学特性を有し、かつ、ガスバリアー性のよいガスバリアー性フィルムとなる。
 また、T領域は、その組成を後述の化学組成式(1)で表したとき、T領域の厚さ方向における少なくとも一部の組成が、後述の関係式(2)を満たすことが好ましい。
 <平均密度>
 平均密度は、特許第4921612号公報に記載のように、X線反射率法(XRR)を用いて算出することができる。
 X線は、基板上の薄膜に対して非常に浅い角度で入射させると全反射される。入射X線の角度が全反射臨界角以上になると、薄膜内部にX線が侵入し薄膜表面や界面で透過波と反射波に分かれ、反射波は干渉する。全反射臨界角を解析することで、膜の密度を求めることができる。なお、入射角度を変えながら測定を行い、光路差の変化に伴う反射波の干渉信号の解析から、薄膜の厚さも求めることができる。
 密度は、以下の方法で測定することができる。
 一般に、X線に対する物質の屈折率n、及び屈折率nの実部部分のδは以下の式1及び式2となることが知られている。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ここで、reは電子の古典半径(2.818×10-15m)を、N0はアボガドロ数を、λはX線の波長を、ρは密度(g/cm)を、Zi、Mi、xiは、それぞれi番目の原子の原子番号、原子量及び原子数比(モル比)を、fi′はi番目の原子の原子散乱因子(異常分散項)を表す。また、全反射臨界角度θcは、吸収に関係するβを無視すると、式3で与えられる。
Figure JPOXMLDOC01-appb-M000003
 したがって、式2及び式3の関係から、密度ρは式4で求めることができる。本発明に係る平均密度は、この密度ρについて、T領域において厚さ方向の分布(密度分布)を求め、この密度分布の平均値とする。
Figure JPOXMLDOC01-appb-M000004
 ここで、θcはX線反射率より求めることのできる値であり、re、N0、λは定数であり、Zi、Mi、fi′はそれぞれ構成原子に固有の値となる。なお、xi:原子数比(モル比)に関しては、XPS測定から得られた結果を用いる。
 ガスバリアー層の平均密度は、実施例において説明する方法で測定し、式4を用いて得られる。
 (酸素欠損組成)
 本発明においては、本発明に係る混合領域に含有される一部の組成が、酸素が欠損した非化学量論的組成(酸素欠損組成)であることが好ましい。
 本発明においては、酸素欠損組成とは、当該混合領域の組成を、下記化学組成式(1)で表したとき、当該混合領域の少なくとも一部の組成が、下記関係式(2)で規定する条件を満たすことと定義する。また、当該混合領域における酸素欠損程度を表す酸素欠損度指標としては、当該ある混合領域における(2y+3z)/(a+bx)を算出して得られる値の最小値を用いるものとする。詳細については後述する。
 化学組成式(1)
   (M1)(M2)xyz
 関係式(2)
   (2y+3z)/(a+bx)<1.0
 上記各式において、M1は非遷移金属、M2は遷移金属、Oは酸素、Nは窒素を表し、x、y及びzはそれぞれ化学量論係数を表す。aはM1の最大価数、bはM2の最大価数を表す。
 以下、特別の区別が必要ない場合、上記化学組成式(1)で表す組成を、単に複合領域の組成という。
 上述したように、本発明に係る非遷移金属M1と遷移金属M2との複合領域の組成は、化学組成式(1)である(M1)(M2)xyzで示される。この組成からも明らかなように、上記複合領域の組成は、一部窒化物の構造を含んでいてもよく、窒化物の構造を含んでいる方がバリアー性の観点から好ましい。
 ここでは、非遷移金属M1の最大価数をa、遷移金属M2の最大価数をb、Oの価数を2、Nの価数を3とする。そして、上記複合領域の組成(一部窒化物となっているものを含む)が化学量論的組成になっている場合は、(2y+3z)/(a+bx)=1.0となる。この式は、非遷移金属M1及び遷移金属M2の結合手の合計と、O、Nの結合手の合計とが同数であることを意味し、この場合、非遷移金属M1及び遷移金属M2ともに、O及びNのいずれか一方と結合していることになる。なお、本発明において、非遷移金属M1として2種以上が併用される場合や、遷移金属M2として2種以上が併用される場合には、各元素の最大価数を各元素の存在比率によって加重平均することにより算出される複合価数を、それぞれの「最大価数」のa及びbの値として採用するものとする。
 一方、本発明に係る混合領域において、関係式(2)で示す(2y+3z)/(a+bx)<1.0となる場合には、非遷移金属M1及び遷移金属M2の結合手の合計に対して、O、Nの結合手の合計が不足していることを意味し、この様な状態が上記の「酸素欠損」である。
 酸素欠損状態においては、非遷移金属M1及び遷移金属M2の余った結合手は互いに結合する可能性を有しており、非遷移金属M1や遷移金属M2の金属同士が直接結合すると、金属の間にOやNを介して結合した場合よりも緻密で高密度な構造が形成され、その結果として、ガスバリアー性が向上すると考えられる。
 また、本発明において、混合領域は、前記xの値が、0.02≦x≦49(0<y、0≦z)を満たす領域である。これは、先に、遷移金属M2/非遷移金属M1の原子数比率の値が、0.02~49の範囲内にあり、厚さが5nm以上である領域と定義する、としたことと同一の定義である。
 この領域では、非遷移金属M1及び遷移金属M2の双方が金属同士の直接結合に関与することから、この条件を満たす混合領域が所定値以上(5nm)の厚さで存在することで、ガスバリアー性の向上に寄与すると考えられる。なお、非遷移金属M1及び遷移金属M2の存在比率が近いほどガスバリアー性の向上に寄与しうると考えられることから、混合領域は、0.1≦x≦10を満たす領域を5nm以上の厚さで含むことが好ましく、0.2≦x≦5を満たす領域を5nm以上の厚さで含むことがより好ましく、0.3≦x≦4を満たす領域を5nm以上の厚さで含むことが更に好ましい。
 ここで、上述したように、混合領域の範囲内に、関係式(2)で示す(2y+3z)/(a+bx)<1.0の関係を満たす領域が存在すれば、ガスバリアー性の向上効果が発揮されることが確認されたが、混合領域は、その組成の少なくとも一部が(2y+3z)/(a+bx)≦0.9を満たすことが好ましく、(2y+3z)/(a+bx)≦0.85を満たすことがより好ましく、(2y+3z)/(a+bx)≦0.8を満たすことがさらに好ましい。ここで、混合領域における(2y+3z)/(a+bx)の値が小さくなるほど、ガスバリアー性の向上効果は高くなるものの可視光での吸収も大きくなる。したがって、透明性が望まれる用途に使用するガスバリアー層の場合には、0.2≦(2y+3z)/(a+bx)であることが好ましく、0.3≦(2y+3z)/(a+bx)であることがより好ましく、0.4≦(2y+3z)/(a+bx)であることがさらに好ましい。
 なお、本発明において良好なガスバリアー性が得られる混合領域の厚さは、後述するXPS分析法におけるSiO2換算のスパッタ厚さとして、5nm以上であり、この厚さは、8nm以上であることが好ましく、10nm以上であることがより好ましく、20nm以上であることがさらに好ましい。混合領域の厚さは、ガスバリアー性の観点からは特に上限はないが、光学特性の観点から、100nm以下であることが好ましく、50nm以下であることがより好ましく、30nm以下であることがさらに好ましい。
 上述したような特定構成の混合領域を有するガスバリアー層は、例えば、有機EL素子等の電子デバイス用のガスバリアー層として使用可能なレベルの非常に高いガスバリアー性を示す。
 (XPSによる組成分析:原子数比の測定)
 本発明に係るガスバリアー層の混合領域やA領域及びB領域における組成分布や各領域の厚さ等については、以下に詳述するX線光電分光法(X-ray Photoelectron Spectroscopy、略称:XPS)により測定することにより求めることができる。
 以下、XPS分析法による混合領域及びA領域、B領域の測定方法について説明する。
 本発明に係るガスバリアー層の厚さ方向における元素濃度分布(以下、「デプスプロファイル」という。)は、具体的には、非遷移金属M1の分布曲線(例えば、ケイ素分布曲線)、遷移金属M2の分布曲線(例えば、ニオブ分布曲線)、酸素(O)、窒素(N)、炭素(C)分布曲線等を、X線光電子分光法の測定とアルゴン等の希ガスイオンスパッタとを併用することにより、ガスバリアー層の表面より内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定により作成することができる。
 このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比(単位:atom%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間は層厚方向における前記ガスバリアー層の厚さ方向におけるガスバリアー層の表面からの距離におおむね相関することから、「ガスバリアー層の厚さ方向におけるガスバリアー層の表面からの距離」として、XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出されるガスバリアー層の表面からの距離を採用することができる。また、このようなXPSデプスプロファイル測定に際して採用するスパッタ法としては、エッチングイオン種としてアルゴン(Ar)を用いた希ガスイオンスパッタ法を採用し、そのエッチング速度(エッチングレート)を0.05nm/sec(SiO2熱酸化膜換算値)とすることが好ましい。
 以下に、本発明に係るガスバリアー層の組成分析に適用可能なXPS分析の具体的な条件の一例を示す。
 ・分析装置:アルバック・ファイ社製Quantera SXM
 ・X線源:単色化Al-Kα
 ・スパッタイオン:Ar(2keV)
 ・デプスプロファイル:SiO2換算スパッタ厚さで、所定の厚さ間隔で測定を繰り返し、深さ方向のデプスプロファイルを求める。この厚さ間隔は、1nmとした(深さ方向に1nmごとのデータが得られる)。
 ・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量した。データ処理は、アルバック・ファイ社製のMultiPakを用いる。なお、分析した元素は、非遷移金属M1(例えば、ケイ素(Si))、遷移金属M2(例えば、ニオブ(Nb))、酸素(O)、窒素(N)、炭素(C)である。
 得られたデータから、組成比を計算し、遷移金属M2と非遷移金属M1との原子数比(M2/(M1+M2))が0.02以上になる範囲を求め、さらには、XPSの結果に基づき上述のXRRから、上記範囲の平均密度が2.6~3.4g/cmまでの範囲内となるかどうかを判断して、T領域を定義し、その厚さを求める。T領域の厚さは、XPS分析におけるスパッタ深さをSiO2換算で表したものである。
 本発明において、T領域の厚さは5nm以上であることが好ましい。ガスバリアー性の観点からは、T領域の厚さの上限はないが、光学特性の観点から、好ましくは5~100nmの範囲内であり、より好ましくは8~50nmの範囲内であり、さらに好ましくは、10~30nmの範囲内である。
 以下に、本発明に係るガスバリアー層におけるT領域の具体例について、図を用いて説明する。
 図2は、ガスバリアー層の厚さ方向における非遷移金属及び遷移金属の組成分布をXPS法により分析したときの元素プロファイルと混合領域を説明するためのグラフである。
 図2において、ガスバリアー層の表面(グラフの左端部)より深さ方向に、非遷移金属M1、遷移金属M2、O、N、Cの元素分析を行い、横軸に厚さ(nm)を、縦軸に非遷移金属M1と遷移金属M2の含有率(atom%)を示したグラフである。
 右側より、非遷移金属(M1、例えば、Si)を含有するB領域の元素組成、混合領域の元素組成、遷移金属(M2、例えば、ニオブ)を含有するA領域における元素組成プロファイルであり、T領域は、原子数比(M2/(M1+M2))の値が、0.02以上である領域である。
 〔各領域の形成方法〕
 (遷移金属M2を含有する領域:A領域及び混合領域の形成)
 前記遷移金属M2を含有する領域(A領域及び混合領域)の形成は、特に限定されず、例えば、既存の薄膜堆積技術を利用した従来公知の気相成膜法を用いることができる。
 本発明においては、後述する非遷移金属M1を含有する層の上に、前記遷移金属M2を含有する膜を製膜することが好ましい。非遷移金属M1を含有する層の上に、前記遷移金属M2を含有する膜を製膜する際に、製膜条件を適宜調整することで、前記混合領域を形成することができる。前記遷移金属M2を含有する膜を製膜する際の設定膜厚としては、本発明のT領域が形成されればよく、特に制限はされないが、良好なガスバリアー性が得られるという観点から、設定膜厚として2nm以上であることが好ましい。また、良好な光学特性が得られるという観点から、設定膜厚として12nm以下であることが好ましい。
 前記遷移金属M2を含有する膜を製膜する際の設定膜厚が薄い場合には、前記混合領域のみが形成され、A領域が形成されない場合もあるが、T領域として、平均密度が2.6g/cm以上であれば、良好なガスバリアー性が得られる。
 これらの気相成膜法は公知の方法で用いることができる。気相成膜法としては、特に制限されず、例えば、スパッタ法、蒸着法、イオンプレーティング法、イオンアシスト蒸着法等の物理気相成長(PVD)法、プラズマCVD(chemical vapordeposition)法、ALD(Atomic Layer Deposition)法などの化学気相成長(CVD)法が挙げられる。中でも、機能性素子へのダメージを与えることなく成膜が可能となり、高い生産性を有することから、物理気相成長(PVD)法により形成することが好ましく、スパッタ法により形成することがより好ましい。特に、前記混合領域を効率的に形成する観点から、スパッタ法を用いることが好ましい。
 スパッタ法による成膜は、2極スパッタリング、マグネトロンスパッタリング、中間的な周波数領域を用いたデュアルマグネトロンスパッタリング(DMS)、イオンビームスパッタリング、ECRスパッタリングなどを単独で又は2種以上組み合わせて用いることができる。また、ターゲットの印加方式はターゲット種に応じて適宜選択され、DC(直流)スパッタリング、DCパルススパッタリング、ACスパッタリング及びRF(高周波)スパッタリングのいずれを用いてもよい。
 また、金属モードと、酸化物モードとの中間である遷移モードを利用した反応性スパッタ法も用いることができる。遷移領域となるようにスパッタ現象を制御することにより、高い成膜スピードで金属酸化物を成膜することが可能となるため好ましい。
 プロセスガスに用いられる不活性ガスとしては、He、Ne、Ar、Kr、Xe等を用いることができ、Arを用いることが好ましい。さらに、プロセスガス中に酸素、窒素、二酸化炭素、一酸化炭素を導入することで、非遷移金属M1と遷移金属M2とのいわゆる複合酸化物、複合窒酸化物、複合酸炭化物等の薄膜を形成することができる。スパッタ法における成膜条件としては、印加電力、放電電流、放電電圧、時間等が挙げられるが、これらは、スパッタ装置や、膜の材料や厚さ等に応じて適宜選択することができる。
 スパッタ法は、遷移金属M2の単体又はその酸化物を含む複数のスパッタリングターゲットを用いた多元同時スパッタ方式であってもよい。これらのスパッタリングターゲットを作製する方法や、これらのスパッタリングターゲットを用いていわゆる複合酸化物からなる薄膜を作製する方法については、例えば、特開2000-160331号公報、特開2004-068109号公報、特開2013-047361号公報などの記載の方法や条件を適宜参照することができる。
 (非遷移金属M1を含有する領域:B領域の形成)
 本発明に係るガスバリアー層において、非遷移金属M1を含有する領域(B領域)を形成する方法としては、特に制限はなく、例えば、気相成膜法は公知の方法で用いることができる。気相成膜法としては、特に制限されず、例えば、スパッタ法、蒸着法、イオンプレーティング法、イオンアシスト蒸着法等の物理気相成長(PVD)法、プラズマCVD(chemical vapordeposition)法、ALD(Atomic Layer Deposition)法などの化学気相成長(CVD)法が挙げられる。中でも、機能性素子へのダメージを与えることなく成膜が可能となり、高い生産性を有することから、物理気相成長(PVD)法により形成することが好ましく、スパッタ法により、非遷移金属をターゲットとして用いて形成することができる。
 また、他の方法としては、非遷移金属M1としてSiを含むポリシラザン含有塗布液を用いて、湿式塗布法により形成する方法も、好ましい方法の一つである。
 本発明において、B領域の形成に適用可能な「ポリシラザン」とは、構造内にケイ素-窒素結合を持つポリマーであり、Si-N、Si-H、N-H等からなるSiO2、Si34及び両方の中間固溶体SiOxy等のセラミック前駆体無機ポリマーである。
 上述した基材の平面性等を損なわないように、ポリシラザンを用いてガスバリアー層を構成するB領域を形成するためには、特開平8-112879号公報に記載されているような、比較的低温で酸化ケイ素、窒化ケイ素、又は酸窒化ケイ素に変性することが可能なポリシラザンが好ましい。
 このようなポリシラザンとしては、下記一般式(1)で表す構造を有する化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 式中、R、R及びRは、各々水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基、又はアルコキシ基を表す。
 本発明では、得られるガスバリアー層を構成するB領域の、薄膜としての緻密性の観点からは、R、R及びRの全てが水素原子であるパーヒドロポリシラザン(PHPS)が特に好ましい。
 一方、そのSiと結合する水素部分が一部アルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより、隣接する基材との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より膜を厚くした場合でもクラックの発生が抑えられる点で好ましい。
 用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。
 なお、パーヒドロポリシラザンは、直鎖構造と6又は8員環を中心とする環構造とが共存した構造を有していると推定されている。
 ポリシラザンの分子量は数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)であり、液体又は固体の物質であり、分子量により異なる。
 これらのポリシラザン化合物は有機溶媒に溶解した溶液状態で市販されており、市販品をそのままポリシラザン化合物含有塗布液として使用することができる。
 低温でセラミック化するポリシラザンの他の例としては、上記ポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5-238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6-122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6-240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6-299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6-306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7-196986号公報)等が挙げられる。
 また、その他、ポリシラザンの詳細については、例えば、特開2013-255910号公報の段落0024~同0040、特開2013-188942号公報の段落0037~同0043、特開2013-151123号公報の段落0014~同0021、特開2013-052569号公報の段落0033~同0045、特開2013-129557号公報の段落0062~同0075、特開2013-226758号公報の段落0037~同0064等に記載されている内容を参照して適用することができる。
 <ポリシラザンを含有する塗布液>
 ポリシラザンを含有する塗布液を調製する有機溶媒としては、ポリシラザンと容易に反応してしまうようなアルコール系や水分を含有するものを用いることは避けることが好ましい。好適な有機溶媒としては、例えば、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒、脂肪族エーテル、脂環式エーテル等のエーテル類が使用できる。具体的には、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の炭化水素、塩化メチレン、トリクロロエタン等のハロゲン炭化水素、ジブチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類等が挙げられる。これらの有機溶剤は、ポリシラザンの溶解度や溶剤の蒸発速度等、目的に合わせて選択し、複数の有機溶剤を混合してもよい。
 ポリシラザンを含有する塗布液におけるポリシラザンの濃度は、目的とするガスバリアー層の厚さや塗布液のポットライフによっても異なるが、0.2~35質量%程度であることが好ましい。
 また、ポリシラザンを含有する塗布液には、酸化ケイ素、窒化ケイ素、又は酸窒化ケイ素への変性を促進するために、アミンや金属の触媒を添加することもできる。例えば、市販品としてのAZエレクトロニックマテリアルズ株式会社製のNAX120-20、NN120-20、NN110、NN310、NN320、NL110A、NL120A、NL150A、NP110、NP140、SP140のような触媒が含まれるポリシラザン溶液を用いることができる。また、これらの市販品は単独で使用されてもよく、2種以上混合して使用されてもよい。
 なお、ポリシラザンを含有する塗布液中において、触媒の添加量は、触媒による過剰なシラノール形成、及び膜密度の低下、膜欠陥の増大などを避けるため、ポリシラザンに対して2質量%以下に調整することが好ましい。
 ポリシラザンを含有する塗布液には、ポリシラザン以外にも無機前駆体化合物を含有させることができる。ポリシラザン以外の無機前駆体化合物としては、塗布液の調製が可能であれば特に限定はされない。例えば、特開2011-143577号公報の段落0110~0114に記載のポリシラザン以外の化合物を適宜採用することができる。
 ポリシラザンを用いたB領域の形成においては、ポリシラザン含有層を形成した後、改質処理を施すことが好ましい。
 改質処理とは、ポリシラザンを、エネルギーを付与して、その一部又は全てを酸化ケイ素又は酸化窒化ケイ素への転化する処理である。
 本発明における改質処理は、ポリシラザンの転化反応に基づく公知の方法を選ぶことができ、例えば、公知のプラズマ処理、プラズマイオン注入処理、紫外線照射処理、真空紫外線照射処理等を挙げることができる。本発明においては、低温で転化反応が可能なプラズマやオゾンや紫外線を使う転化反応が好ましい。プラズマやオゾンは従来公知の方法を用いることができる。本発明において、基材上に塗布方式のポリシラザン含有塗布液の塗膜を設け、波長200nm以下の真空紫外線(VUV)を照射して改質処理する真空紫外線照射処理を適用してガスバリアー層を形成する方法が好ましい。
 真空紫外光源としては、希ガスエキシマランプが好ましく用いられ、例えば、エキシマランプ(172nm、222nm、308nmの単一波長、例えば、ウシオ電機株式会社製、株式会社エム・ディ・コム製など)等を挙げることができる。
 真空紫外線照射による処理は、ポリシラザン内の原子間結合力より大きい100~200nmの光エネルギーを用い、好ましくは100~180nmの波長の光エネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温(約200℃以下)で、酸化ケイ素膜の形成を行う方法である。
 これらの改質処理の詳細については、例えば、特開2012-086394号公報の段落0055~同0091、特開2012-006154号公報の段落0049~同0085、特開2011-251460号公報の段落0046~同0074等に記載の内容を参照することができる。
 B領域の厚さは、特に制限はないが、1~500nmの範囲内が好ましい、より好ましくは10~300nmの範囲内である。
 (混合領域の形成)
 混合領域の形成方法としては、前述したように、A領域及びB領域を形成する際に形成条件を適宜調整して、A領域とB領域との間に混合領域を形成する方法が好ましい。
 B領域を上述した気相成膜法により形成する場合は、例えば、成膜原料における前記非遷移金属M1と酸素との比率、成膜時の不活性ガスと反応性ガスとの比率、成膜時のガスの供給量、成膜時の真空度、および、成膜時の電力からなる群から選択される1種または2種以上の条件を調節することで混合領域を形成することができる。
 B領域を上述した塗布成膜法により形成する場合は、例えば、前記非遷移金属M1を含有する成膜原料種(ポリシラザン種等)、触媒種、触媒含有量、塗布膜厚、乾燥温度・時間、改質方法、改質条件からなる群から選択される1種または2種以上の条件を調節することで混合領域を形成することができる。
 A領域を上述した気相成膜法により形成する場合は、例えば、成膜原料における前記遷移金属M2と酸素との比率、成膜時の不活性ガスと反応性ガスとの比率、成膜時のガスの供給量、成膜時の真空度、および、成膜時の電力からなる群から選択される1種又は2種以上の条件を調節することで混合領域を形成することができる。
 なお、上記した方法によって、混合領域の厚さを制御するには、A領域及びB領域を形成する方法の形成条件を適宜調整して、制御することができる。例えば、A領域を気相成膜法で形成する際には、成膜時間を制御することにより所望の厚さにすることができる。
 《ガスバリアー性フィルムのその他の機能層》
 本発明のガスバリアー性フィルムにおいては、上記説明した各構成層の他に、本発明の目的効果を損なわない範囲で、他の機能層を設けることができる。
 (アンカーコート層)
 本発明に係るガスバリアー層を形成する側の基材の表面には、基材とガスバリアー層との密着性の向上を目的として、アンカーコート層が配置されてもよい。
 アンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコーン樹脂、及びアルキルチタネート等を単独で又は2種以上組み合わせて使用することができる。
 これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート剤は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により支持体上にコーティングし、溶剤、希釈剤等を乾燥除去することによりアンカーコーティングすることができる。上記のアンカーコート剤の塗布量としては、0.1~5.0g/m(乾燥状態)程度が好ましい。
 また、アンカーコート層は、物理蒸着法又は化学蒸着法といった気相成膜法により形成することもできる。例えば、特開2008-142941号公報に記載のように、接着性等を改善する目的で酸化ケイ素を主体とした無機膜を形成することもできる。または、特開2004-314626号公報に記載されているようなアンカーコート層を形成することで、その上に気相成膜法により無機薄膜を形成する際に、基材側から発生するガスをある程度遮断して、無機薄膜の組成を制御するといった目的でアンカーコート層を形成することもできる。
 また、アンカーコート層の厚さは、特に制限されないが、0.5~10μm程度が好ましい。
 (ハードコート層)
 基材の表面(片面又は両面)には、ハードコート層が配置されてもよい。ハードコート層に含まれる材料の例としては、例えば、熱硬化性樹脂や活性エネルギー線硬化性樹脂が挙げられるが、成形が容易なことから、活性エネルギー線硬化性樹脂が好ましい。このような硬化性樹脂は、単独でも又は2種以上組み合わせても用いることができる。
 活性エネルギー線硬化性樹脂とは、紫外線や電子線のような活性エネルギー線照射により架橋反応等を経て硬化する樹脂をいう。活性エネルギー線硬化性樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性エネルギー線を照射することによって硬化させて、活性エネルギー線硬化性樹脂の硬化物を含む層、すなわちハードコート層が形成される。活性エネルギー線硬化性樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する紫外線硬化性樹脂が好ましい。あらかじめハードコート層が形成されている市販の基材を用いてもよい。
 ハードコート層の厚さは、平滑性及び屈曲耐性の観点から、0.1~15μmの範囲内が好ましく、1~5μmの範囲内であることがより好ましい。
 ハードコート層の形成材料に適用可能な活性エネルギー線硬化性樹脂としては、例えば、ラジカル反応性不飽和化合物を有するアクリレート化合物を含有する樹脂組成物、アクリレート化合物とチオール基を有するメルカプト化合物を含有する樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させた樹脂組成物等が挙げられる。具体的には、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)シリーズを用いることができる。また、上記のような樹脂組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している感光性樹脂であれば特に制限はない。
 熱硬化性材料として具体的には、クラリアント社製のトゥットプロムシリーズ(有機ポリシラザン)、セラミックコート株式会社製のSP COAT耐熱クリアー塗料、株式会社アデカ製のナノハイブリッドシリコーン、DIC株式会社製のユニディック(登録商標)V-8000シリーズ、EPICLON(登録商標) EXA-4710(超高耐熱性エポキシ樹脂)、信越化学工業株式会社製の各種シリコーン樹脂、日東紡株式会社製の無機・有機ナノコンポジット材料SSGコート、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等が挙げられる。この中でも特に耐熱性を有するエポキシ樹脂ベースの材料であることが好ましい。
 ハードコート層の形成方法は、特に制限はないが、スピンコーティング法、スプレー法、ブレードコーティング法、ディップ法等のウエットコーティング法又は蒸着法等のドライコーティング法により形成することが好ましい。
 ハードコート層の形成では、上述の活性エネルギー線硬化性樹脂に、必要に応じて酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を加えることができる。また、ハードコート層の積層位置に関係なく、いずれのハードコート層においても、成膜性向上及び膜のピンホール発生防止等のために適切な樹脂や添加剤を使用してもよい。
 ハードコート層の厚さとしては、フィルムの耐熱性を向上させ、フィルムの光学特性のバランス調整を容易にする観点から、1~10μmの範囲が好ましく、さらに好ましくは、2~7μmの範囲にすることが好ましい。
 《電子デバイス》
 本発明のガスバリアー性フィルムは、空気中の化学成分(酸素、水、窒素酸化物、硫黄酸化物、オゾン等)によって性能が劣化するデバイスに好ましく適用できる。すなわち、本発明のガスバリアー性フィルムは、電子デバイス本体と、を含む電子デバイスに適用することができる。
 本発明のガスバリアー性フィルムを具備した電子デバイスに用いられる電子デバイス本体の例としては、例えば、量子ドット(QD)含有樹脂層を有するQDフィルム、有機エレクトロルミネッセンス素子(有機EL素子)、液晶表示素子(LCD)、薄膜トランジスタ、タッチパネル、電子ペーパー、太陽電池(PV)等を挙げることができる。本発明の効果がより効率的に得られるという観点から、該電子デバイス本体は有機EL素子又は太陽電池が好ましく、有機EL素子がより好ましい。
 〔QDフィルム〕
 本発明のガスバリアー性フィルムは、量子ドット(QD)含有樹脂層を有するQDフィルムに適用することができる。
 以下、QD含有樹脂層の主要な構成要素である量子ドット(QD)及び樹脂等について説明する。
 <量子ドット>
 一般に、ナノメートルサイズの半導体物質で量子閉じ込め(quantum confinement)効果を示す半導体ナノ粒子は、「量子ドット」とも称されている。このような量子ドットは、半導体原子が数百個から数千個集まった10数nm程度以内の小さな塊であるが、励起源から光を吸収してエネルギー励起状態に達すると、量子ドットのエネルギーバンドギャップに相当するエネルギーを放出する。
 したがって、量子ドットは、量子サイズ効果によりユニークな光学特性を有することが知られている。具体的には、(1)粒子のサイズを制御することにより、様々な波長、色を発光させることができる、(2)吸収帯が広く、単一波長の励起光で様々なサイズの微粒子を発光させることができる、(3)蛍光スペクトルが良好な対称形である、(4)有機色素に比べて耐久性、耐退色性に優れる、といった特徴を有する。
 QD含有樹脂層が含有する量子ドットは公知のものであってもよく、当業者に既知の任意の方法を使用して生成することができる。例えば、好適なQD及び好適なQDを形成するための方法には、米国特許第6225198号明細書、米国特許出願公開第2002/0066401号明細書、米国特許第6207229号明細書、同第6322901号明細書、同第6949206号明細書、同第7572393号明細書、同第7267865号明細書、同第7374807号明細書、米国特許出願第11/299299号、及び米国特許第6861155号明細書に記載のものが挙げられる。
 QDは、任意の好適な材料、好適には無機材料及びより好適には無機導体又は半導体材料から生成される。好適な半導体材料には、II-VI族、III-V族、IV-VI族及びIV族の半導体を含む、任意の種類の半導体が含まれる。
 好適な半導体材料には、Si、Ge、Sn、Se、Te、B、C(ダイアモンドを含む。)、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si34、Ge34、Al23、(Al、Ga、In)2(S、Se、Te)3、Al2CO、及び二つ以上のこのような半導体の適切な組合せが含まれるが、これらに限定されない。
 本発明においては、次のようなコア/シェル型の量子ドット、例えば、CdSe/ZnS、InP/ZnS、PbSe/PbS、CdSe/CdS、CdTe/CdS、CdTe/ZnS等も好ましく使用できる。
 <樹脂>
 QD含有樹脂層には、量子ドットを保持するバインダーとして樹脂を用いることができる。例えば、ポリカーボネート系、ポリアリレート系、ポリスルホン(ポリエーテルスルホンも含む。)系、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系、ポリエチレン系、ポリプロピレン系、セロファン系、セルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート等のセルロースエステル系、ポリ塩化ビニリデン系、ポリビニルアルコール系、エチレンビニルアルコール系、シンジオタクティックポリスチレン系、ノルボルネン系、ポリメチルペンテン系、ポリエーテルケトン系、ポリエーテルケトンイミド系、ポリアミド樹脂、フッ素樹脂、ナイロン系、ポリメチルメタクリレート等のアクリル系樹脂等を挙げることができる。
 QD含有樹脂層は、厚さが50~200μmの範囲内であることが好ましい。
 なお、QD含有樹脂層における量子ドットの含有量は、使用する化合物によって最適量は異なるが、一般的には15~60体積%の範囲内であることが好ましい。
 〔有機EL素子〕
 本発明のガスバリアー性フィルムは、有機EL素子に適用することができ、本発明に適用可能な有機EL素子の概要については、例えば、特開2013-157634号公報、特開2013-168552号公報、特開2013-177361号公報、特開2013-187211号公報、特開2013-191644号公報、特開2013-191804号公報、特開2013-225678号公報、特開2013-235994号公報、特開2013-243234号公報、特開2013-243236号公報、特開2013-242366号公報、特開2013-243371号公報、特開2013-245179号公報、特開2014-003249号公報、特開2014-003299号公報、特開2014-013910号公報、特開2014-017493号公報、特開2014-017494号公報等に記載されている構成を挙げることができる。
 なお、本発明を適用可能な実施形態は、上述した実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。
 以下のようにして、試料1~12のガスバリアー性フィルムを作製した。
 [基材の準備]
 両面に易接着処理した厚さ100μmのポリエチレンテレフタレートフィルム(東レ株式会社製、ルミラー(登録商標)(U403))のガスバリアー層を形成する面とは反対側の面に、アンチブロック機能を有するクリアハードコート層を形成した。具体的には、UV硬化型樹脂(アイカ工業株式会社製、品番:Z731L)を乾燥膜厚が0.5μmになるように塗布した後、80℃で乾燥し、その後、空気下、高圧水銀ランプを用いて照射エネルギー量0.5J/cmの条件で硬化を行った。
 次に、ガスバリアー層を形成する側の面に厚さ2μmのクリアハードコート層を形成した。具体的には、JSR株式会社製、UV硬化型樹脂オプスター(登録商標)Z7527を、乾燥膜厚が2μmになるように塗布した後、80℃で乾燥し、その後、空気下、高圧水銀ランプを用いて照射エネルギー量0.5J/cmの条件で硬化を行った。このようにして、基材を作製した(以下、全ての作製例について、同一の基材を用いている)。
 [製膜条件]
 上記基材に対し、表1に記載の製膜条件にて非遷移金属M1を含有する領域、遷移金属M2を含有する領域を形成し、試料No.1~19のガスバリアー性フィルムを得た。各条件の具体的な手順は下記のとおりである。なお、製膜の順番は、上記基材上に、表1に記載の方法で非遷移金属M1を含有する領域(表1には「第1層」と記載。)を製膜し、その後、遷移金属M2又は非遷移金属M1を含有する領域(表1には「第2層」と記載。)を製膜する順番とした。
 <スパッタ法>
 スパッタ法として、以下のS-1~S-11までの方法を行った。S-1~S-11においては、マグネトロンスパッタ装置を用いた。なお、S-1~S-11においては、プロセスガスにArとO2とを用いた。
 (S-1)
 市販の多結晶Siターゲットを用いて酸化ケイ素を製膜、RF方式、厚さ200nmとなるように製膜時間を設定して製膜した。なお、酸素分圧を調整し、XPSでの組成がSiO2となるようにした。
 (S-2)
 厚さ10nmとなるように製膜時間を設定して製膜した以外はS-1と同様にした。
 (S-3)
 市販の酸素欠損型五酸化二ニオブターゲットを用いて酸化ニオブを製膜、DC方式、酸素分圧12%、厚さ10nmとなるように製膜時間を設定して製膜した。
 (S-4)
 厚さ5nmとなるように製膜時間を設定して製膜した以外はS-3と同様にした。
 (S-5)
 厚さ2nmとなるように製膜時間を設定して製膜した以外はS-3と同様にした。
 (S-6)
 市販の金属ニオブターゲットを用いて酸化ニオブを製膜、DC方式、酸素分圧8%、厚さ5nmとなるように製膜時間を設定して製膜した。
 (S-7)
 市販の金属タンタルターゲットを用いて酸化タンタルを製膜、DC方式、酸素分圧20%、厚さ5nmとなるように製膜時間を設定して製膜した。
 (S-8)
 厚さ20nmとなるように製膜時間を設定して製膜した以外はS-3と同様にした。
 (S-9)
 厚さ4nmとなるように製膜時間を設定して製膜した以外はS-3と同様にした。
 (S-10)
 電源をDCパルス方式にして製膜した以外はS-4と同様にした。
 (S-11)
 電源をAC方式にして製膜した以外はS-4と同様にした。
 <塗布法>
 塗布法として、以下のC-1~C-4までの方法を行った。
 (C-1)
 パーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NN120-20)と、アミン触媒(N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン(TMDAH))を含むパーヒドロポリシラザン20質量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NAX120-20)とを、4:1(質量比)の割合で混合し、さらに乾燥膜厚調整のためジブチルエーテルで希釈し、固形分4質量%の塗布液を調製した。
 上記基材上にスピンコート法により塗布液を、乾燥後の厚さが120nmになるよう塗布し、80℃で2分間乾燥した塗膜を得た。
 (C-2)
 C-1で得られた乾燥した塗膜に対して、波長172nmのXeエキシマランプを有する真空紫外線照射装置を用い、照射エネルギーを5.0J/cmとした条件で真空紫外線照射処理を行った。この際、照射雰囲気は窒素で置換し、酸素濃度は0.1体積%とした。また、試料を設置するステージ温度を80℃とした。
 (C-3)
 パーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NN120-20)と、アミン触媒(N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン(TMDAH))を含むパーヒドロポリシラザン20質量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NAX120-20)とを、4:1(質量比)の割合で混合し、さらにジブチルエーテルで固形分濃度が4質量%となるように希釈した液Aを調製した。塗布液の調製はグローブボックス内で行った。次に、アルミニウムエチルアセトアセテート・ジイソプロピレートをジブチルエーテルで固形分濃度が5質量%となるように希釈したアルミニウム化合物液を作製した。S1とアルミニウム化合物液とを、Al/Si原子比率が0.01となるように混合し、撹拌しながら80℃まで昇温し、80℃で2時間保持した後、室温(25℃)まで徐冷した。このようにして、固形分4質量%の塗布液を調製した。
 上記基材上にスピンコート法により塗布液を、乾燥後の厚さが、120nmになるよう塗布し、80℃で2分間乾燥した塗膜を得た。
 (C-4)
 C-3で得られた乾燥した塗膜に対して、波長172nmのXeエキシマランプを有する真空紫外線照射装置を用い、照射エネルギーを0.2J/cmとした条件で真空紫外線照射処理を行った。この際、照射雰囲気は窒素で置換し、酸素濃度は0.1体積%とした。また、試料を設置するステージ温度を80℃とした。
 [T領域の有無]
 試料No.1~19のガスバリアー性フィルムについて、T領域の有無を下記XPS及びXRRにより検出した。結果は、表1に示すとおりである。
 <XPS>
 XPS分析により、ガスバリアー性フィルムの表面側により厚さ方向の組成分布プロファイルを測定した。なお、XPS分析条件は以下のとおりである。なお、分析に用いた試料は、試料作製後、20℃・50%RHの環境に保管した試料である。
 (XPS分析条件)
 ・装置:アルバック・ファイ社製Quantera SXM
 ・X線源:単色化Al-Kα
 ・スパッタイオン:Ar(2keV)
 ・デプスプロファイル:SiO2換算スパッタ厚さで、所定の厚さ間隔で測定を繰り返し、深さ方向のデプスプロファイルを得た。この厚さ間隔は、1nmとした(深さ方向に1nmごとのデータが得られる)。
 ・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量した。データ処理は、アルバック・ファイ社製のMultiPakを用いた。なお、分析した元素は、Si(非遷移金属M1)、遷移金属M2、O、N、Cである。
 <X線反射率法(XRR)による平均密度の測定方法>
 ガスバリアー層のT領域における平均密度は、下記に示す測定条件にてX線の反射率を測定して全反射臨界角度θcを求め、その値から密度ρを算出し、さらには、この密度ρについて、T領域における厚さ方向の分布(密度分布)を求め、この密度分布の平均値を平均密度として算出した。
 測定装置と測定条件は以下のとおりである。
測定装置:薄膜評価用試料水平型X線回折装置「SmartLab」株式会社リガク製
測定条件:
   X線源;Cu-Kα1(波長:1.54059Å)
   光学系;並行ビーム光学系
   入射側スリット系;Ge(220)2結晶、高さ制限スリット5mm、入射スリット0.05mm
   受光側スリット系;受光スリット 0.10mm、ソーラースリット 5°
   検出器;シンチレーションカウンター
   管電圧・管電流;45kV・200mA
   走査軸;2θ/θ
   走査モード;連続スキャン
   走査範囲;0.1-3.0deg.
   走査速度;1deg./min.
   サンプリング間隔;0.002°/step
 なお、原子数比(xi)は、X線光電子分光測定(XPS)により得られたガスバリアー層における酸素原子、窒素原子及びケイ素原子の存在割合を用いた。
 [T領域の有無と密度範囲の判定]
 上述のXPS及びXRRによる測定結果より得られたデータから、遷移金属M2と非遷移金属M1(Si)との原子数比(M2/(M1+M2))が0.02以上である連続した領域の有無及び厚さを求め、T領域の有無を判定した(表1には、T領域「有」と記載。)。また、上記連続した領域の平均密度が、2.6~3.4g/cmまでの範囲内であるかどうかを判定した。なお、T領域が形成されていない場合(比較例)は、T領域の平均密度を記載する代わりに、表1には、A領域、B領域又は、A領域及びB領域の平均膜密度を記載した。
 なお、A領域、B領域については、T領域の有無の判定と同様に、上述のXPSによる測定結果より得られたデータから、遷移金属M2と非遷移金属M1(Si)との原子数比(M2/(M1+M2))を求め、この原子数比(M2/(M1+M2))が0.98を超える領域をA領域とし、原子数比(M2/(M1+M2))が0.02未満の領域をB領域とした。
 [酸素欠損指標最小値]
 上記XPS分析データを用いて、T領域の各測定点における(2y+3z)/(a+bx)の値を計算した。ここで、非遷移金属はSiであるため、a=4、また、遷移金属はNb若しくはTaであるため、a=5である。T領域の範囲内での(2y+3z)/(a+bx)の値の最小値を求め、これを酸素欠損度指標最小値として、表に記載した。(2y+3z)/(a+bx)<1.0となる場合、酸素欠損の領域を有することを示す。
 [評価]
 <ガスバリアー性>
 以下の測定方法に従って、ガスバリアー性として、各ガスバリアー性フィルムの水蒸気透過度を評価した。
 (評価用セルの作製)
 ガスバリアー性フィルムのガスバリアー層表面をUV洗浄した後、ガスバリアー層表面に封止樹脂層として熱硬化型のシート状接着剤(エポキシ系樹脂)を厚さ20μmで貼合した。これを50mm×50mmのサイズに打ち抜いた後、グローブボックス内に入れて、24時間乾燥処理を行った。
 50mm×50mmサイズの無アルカリガラス板(厚さ0.7mm)の片面をUV洗浄した。
 株式会社 ALSテクノロジー製の真空蒸着装置を用い、ガラス板の中央に、マスクを介して20mm×20mmのサイズでCaを蒸着した。Caの厚さは80nmとした。
 Ca蒸着済のガラス板をグローブボックス内に取り出し、封止樹脂層を貼合したガスバリアー性フィルムの封止樹脂層面とガラス板のCa蒸着面とを接するように配置し、真空ラミネートにより接着した。この際、110℃の加熱を行った。さらに、接着した試料を110℃に設定したホットプレート上にガラス板を下にして置き、30分間硬化させて、評価用セルを作製した。
 なお、ガスバリアー性フィルム面以外からの水蒸気の透過がないことを確認するために、比較試料としてガスバリアー性フィルム試料の代わりに、厚さ0.2mmの石英ガラス板を用いた試料を、同様に40℃・90%RHの高温高湿下保存を行い、500時間経過後でも金属カルシウム腐食が発生しないことを確認した。
 (水蒸気透過濃度の測定)
 上記評価用セルを用いて、Caの透過濃度の変化から、水蒸気透過濃度を測定した。
 水蒸気透過濃度測定には、コニカミノルタ社製の白黒透過濃度計 TM-5を用いた。
 水蒸気透過濃度は、評価用セルの任意の4点で測定し、その平均値を算出した。以下、同様である。
 次いで、評価用セルを40℃・90%RH環境下に保存し、500時間経過後の水蒸気透過濃度(表1に記載の「WVTR[g/(m・24h)]」)を測定した。5.0×10-3g/(m・24h)未満を合格とした。
 <光学特性>
 コニカミノルタ社製 分光測色計CM-3500dを用い、波長450nmの光の透過率(光透過率)を測定した。この際、光透過率は、ガスバリアー性フィルムのガスバリアー層側から、樹脂基材裏面側への光透過率とした。
 測定は、試料の面内位置違い5点で行い、得られた光透過率曲線に対して下記のようにして評価した。
 波長450nmの光の透過率(平均値):得られた五つの光透過率曲線より、波長450nmの光の透過率の平均値を算出した。
 光透過率は、90%以上を合格とした。
Figure JPOXMLDOC01-appb-T000006
 [まとめ]
 表1より、本発明によれば、良好な光学特性を有し、かつ、ガスバリアー性のよいガスバリアー性フィルムを提供できることがわかった。
 以上のように、本発明は、良好な光学特性を有し、かつ、ガスバリアー性のよいガスバリアー性フィルムを提供することに適している。
 F1 ガスバリアー性フィルム
 1  基材
 2  ガスバリアー層
 20  T領域
 21  混合領域
 22  B領域
 23  A領域

Claims (8)

  1.  基材上に、ガスバリアー層を有するガスバリアー性フィルムであって、
     前記ガスバリアー層が、非遷移金属M1及び遷移金属M2を含有し、かつ、少なくとも厚さ方向において、遷移金属M2と非遷移金属M1との原子数比(M2/(M1+M2))が0.02以上である連続したT領域を有し、
     前記T領域の平均密度が、2.6~3.4g/cmの範囲内であることを特徴とするガスバリアー性フィルム。
  2.  T領域の組成を下記化学組成式(1)で表したとき、前記T領域の厚さ方向における少なくとも一部の組成が、下記関係式(2)を満たすことを特徴とする請求項1に記載のガスバリアー性フィルム。
     化学組成式(1): (M1)(M2)xyz
     関係式(2): (2y+3z)/(a+bx)<1.0
     (ただし式中、M1:非遷移金属、M2:遷移金属、O:酸素、N:窒素、x,y,z:化学量論係数、a:M1の最大価数、b:M2の最大価数を表す。)
  3.  前記非遷移金属M1が、ケイ素(Si)であることを特徴とする請求項1又は請求項2に記載のガスバリアー性フィルム。
  4.  前記遷移金属M2が、第5族元素であることを特徴とする請求項1から請求項3までのいずれか一項に記載のガスバリアー性フィルム。
  5.  前記遷移金属M2が、ニオブ(Nb)、タンタル(Ta)及びバナジウム(V)から選択される少なくとも1種の金属であることを特徴とする請求項1から請求項4までのいずれか一項に記載のガスバリアー性フィルム。
  6.  請求項1から請求項5までのいずれか一項に記載のガスバリアー性フィルムを具備していることを特徴とする電子デバイス。
  7.  量子ドット含有樹脂層を有することを特徴とする請求項6に記載の電子デバイス。
  8.  有機エレクトロルミネッセンス素子を具備していることを特徴とする請求項6に記載の電子デバイス。
PCT/JP2016/084604 2015-11-24 2016-11-22 ガスバリアー性フィルム及び電子デバイス WO2017090613A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-228384 2015-11-24
JP2015228384A JP2019010732A (ja) 2015-11-24 2015-11-24 ガスバリアー性フィルム及び電子デバイス

Publications (1)

Publication Number Publication Date
WO2017090613A1 true WO2017090613A1 (ja) 2017-06-01

Family

ID=58764100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084604 WO2017090613A1 (ja) 2015-11-24 2016-11-22 ガスバリアー性フィルム及び電子デバイス

Country Status (2)

Country Link
JP (1) JP2019010732A (ja)
WO (1) WO2017090613A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0470330A (ja) * 1990-02-16 1992-03-05 Nitto Denko Corp 透明耐透湿性フィルム及びel発光装置
WO2002004376A1 (fr) * 2000-07-12 2002-01-17 Nippon Sheet Glass Co., Ltd. Element photocatalytique
JP2003013202A (ja) * 2001-06-29 2003-01-15 Nippon Zeon Co Ltd 蒸着方法
JP2004322382A (ja) * 2003-04-23 2004-11-18 Oike Kaihatsu Kenkyusho:Kk 透明ガスバリアフィルム
JP2005035128A (ja) * 2003-07-18 2005-02-10 Sumitomo Bakelite Co Ltd 透明ガスバリアフィルムおよびそれを用いた表示装置
JP2008275737A (ja) * 2007-04-26 2008-11-13 Toppan Printing Co Ltd 光学薄膜積層体
WO2012039357A1 (ja) * 2010-09-21 2012-03-29 リンテック株式会社 成形体、その製造方法、電子デバイス用部材及び電子デバイス
JP2014152362A (ja) * 2013-02-08 2014-08-25 Nitto Denko Corp 透明ガスバリアフィルムの製造方法、及び透明ガスバリアフィルムの製造装置
WO2015133441A1 (ja) * 2014-03-04 2015-09-11 東洋製罐グループホールディングス株式会社 ガスバリア性積層体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0470330A (ja) * 1990-02-16 1992-03-05 Nitto Denko Corp 透明耐透湿性フィルム及びel発光装置
WO2002004376A1 (fr) * 2000-07-12 2002-01-17 Nippon Sheet Glass Co., Ltd. Element photocatalytique
JP2003013202A (ja) * 2001-06-29 2003-01-15 Nippon Zeon Co Ltd 蒸着方法
JP2004322382A (ja) * 2003-04-23 2004-11-18 Oike Kaihatsu Kenkyusho:Kk 透明ガスバリアフィルム
JP2005035128A (ja) * 2003-07-18 2005-02-10 Sumitomo Bakelite Co Ltd 透明ガスバリアフィルムおよびそれを用いた表示装置
JP2008275737A (ja) * 2007-04-26 2008-11-13 Toppan Printing Co Ltd 光学薄膜積層体
WO2012039357A1 (ja) * 2010-09-21 2012-03-29 リンテック株式会社 成形体、その製造方法、電子デバイス用部材及び電子デバイス
JP2014152362A (ja) * 2013-02-08 2014-08-25 Nitto Denko Corp 透明ガスバリアフィルムの製造方法、及び透明ガスバリアフィルムの製造装置
WO2015133441A1 (ja) * 2014-03-04 2015-09-11 東洋製罐グループホールディングス株式会社 ガスバリア性積層体

Also Published As

Publication number Publication date
JP2019010732A (ja) 2019-01-24

Similar Documents

Publication Publication Date Title
WO2015053405A1 (ja) ガスバリア性フィルムの製造方法
WO2014178332A1 (ja) ガスバリア性フィルムおよびその製造方法
JP2017226876A (ja) ガスバリアフィルムの製造方法
WO2017090606A1 (ja) ガスバリアーフィルム、その製造方法及びそれを用いた電子デバイス
JP2017095758A (ja) ガスバリア性フィルムの製造方法
KR20190045218A (ko) 적층체
JP6720981B2 (ja) ガスバリア性フィルム、およびその製造方法
WO2017090592A1 (ja) ガスバリアー性フィルム及びこれを備えた電子デバイス
WO2017090613A1 (ja) ガスバリアー性フィルム及び電子デバイス
JP6627521B2 (ja) 機能性フィルムおよびこれを含む量子ドット(qd)含有積層部材の製造方法
JP6645137B2 (ja) ガスバリアー性粘着シート及びそれを備える電子デバイス
WO2017090609A1 (ja) ガスバリアー性フィルム及び電子デバイス
WO2016190053A1 (ja) ガスバリアー性フィルム及びガスバリアー性フィルムの製造方法
WO2017110463A1 (ja) ガスバリアーフィルム及びその製造方法
JP2018012267A (ja) ガスバリアーフィルム及びその製造方法
WO2017090605A1 (ja) ガスバリアー性フィルム及び電子デバイス
WO2017090602A1 (ja) ガスバリアー性フィルム及びこれを備えた電子デバイス
WO2017090591A1 (ja) ガスバリアー性フィルム及び電子デバイス
WO2017090498A1 (ja) ガスバリア性フィルムの製造方法
WO2017090576A1 (ja) ガスバリアー性フィルム及び電子デバイス
JP6582856B2 (ja) ガスバリアー性フィルム及びガスバリアー性フィルムの製造方法
WO2017013980A1 (ja) ガスバリアー性フィルム
JP6295865B2 (ja) ガスバリア性フィルム
WO2018021021A1 (ja) ガスバリア性膜、これを用いたガスバリア性フィルム、およびこれらを用いた電子デバイス、ならびにガスバリア性膜の製造方法
WO2017014246A1 (ja) ガスバリア性フィルムおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16868556

Country of ref document: EP

Kind code of ref document: A1