JP2018523751A - Lift放出角度の制御 - Google Patents

Lift放出角度の制御 Download PDF

Info

Publication number
JP2018523751A
JP2018523751A JP2018500694A JP2018500694A JP2018523751A JP 2018523751 A JP2018523751 A JP 2018523751A JP 2018500694 A JP2018500694 A JP 2018500694A JP 2018500694 A JP2018500694 A JP 2018500694A JP 2018523751 A JP2018523751 A JP 2018523751A
Authority
JP
Japan
Prior art keywords
sub
beams
asymmetry
donor
optical assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018500694A
Other languages
English (en)
Inventor
ゼノウ・ミカエル
コトレル・ズヴィ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orbotech Ltd
Original Assignee
Orbotech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orbotech Ltd filed Critical Orbotech Ltd
Publication of JP2018523751A publication Critical patent/JP2018523751A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/57Working by transmitting the laser beam through or within the workpiece the laser beam entering a face of the workpiece from which it is transmitted through the workpiece material to work on a different workpiece face, e.g. for effecting removal, fusion splicing, modifying or reforming
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits

Abstract

アクセプタ表面への材料堆積装置は,対向する第1および第2の表面を有し,上記第2の表面上にドナーフィルムを備える透明ドナー基板を含む。また,この装置は,ドナー基板の第1の表面を通過し第2の表面上の所定位置でドナーフィルムに衝突するように放射ビームを方向づけ,上記位置で第2の表面に垂直でない角度で,上記アクセプタ表面上に向けてドナーフィルムからの溶融材料の液滴の放出を誘起するように構成された光学アセンブリを備えている。

Description

この発明は概略的にはレーザ誘起材料印刷に関するもので,より詳細には被制御放出角度(controlled ejection angle)の下で印刷をする方法およびシステムに関する。
レーザ直接書き込み(LDW)(Laser Direct-Write)技術では,レーザビームによる材料の溶発(アブレーション)または堆積制御によって空間分解3次元構造を備えるパターン化表面が作成される。レーザ誘起前方転写(LIFT)(Laser-induced forward transfer)は何らかの表面上にマイクロパターンを堆積するときに適用可能なLDW技術である。LIFTは金属およびポリマー等のさまざまな材料の高品質印刷のための技術である。以下に示す従来技術例が挙げられる。
メインダーズ(Meinders)その外によるPCT国際公開WO2013/165241はドナーシートからの材料転写のための光誘起前方転写製造方法を記載するもので,その開示内容はこの明細書に援用される。表面にトレンチを備え,トレンチに転写材料を有するドナーシートが用いられる。トレンチの底部に沿って光スポットを走査することにより材料は転写される。
LIFTを用いた金属噴射の別の例は,ウィリス(Willis)その外による「Microdroplet deposition by laser-induced forward transfer」,Appl.Phys.Lett.86,244103(2005),ウィリス(Willis)その外による「The effect of melting-induced volumetric expansion on initiation of laser-induced forward transfer」,Appl. Surf. Sci.,253 4759-4763(2007),およびバンクス(Banks)その外による「Nanodroplets deposited in microarrays by femtosecond Ti: sapphire laser-induced forward transfer」,Appl. Phys. Lett.,89,193107(2006)に示されており,これらすべてをこの明細書に援用する。
この特許出願に援用する文書は,これらの援用文書においてこの明細書の明示的または暗示的な定義と矛盾するように任意の用語が定義されている限りにおいてこの明細書の定義のみが考慮される場合を除き,この出願の不可欠な部分と考えられる。
この明細書に記載のこの発明の一実施形態は,アクセプタ表面(acceptor surface)上への材料堆積のための装置であって,対向する第1および第2の表面を有する透明ドナー基板と上記第2の表面上のドナーフィルムとを含む装置を提供する。また,この装置はさらに,上記ドナー基板の上記第1の表面を通過して上記第2の表面上の所定位置(a location)において上記ドナーフィルムに衝突することによって上記位置において上記第2の表面に垂直でない(not normal)角度で上記ドナーフィルムから上記アクセプタ表面に向けて溶融材料の液滴の放出を誘起するように放射ビームを方向づける(案内する)(direct)ように構成された光学アセンブリを備えている。
いくつかの実施形態において,上記光学アセンブリは,第2の表面に垂直でない選択角度(a selected angle)で上記液滴が放出されるように選択される非対称性を上記ビーム中に生成する(非対称ビームを生成する)(to generate an asymmetry in the beam)ように構成されている。他の実施形態において,上記光学アセンブリは音響光学偏向器(AOD)(acousto-optic deflector)を備え,上記AODが,それぞれ異なる角度で上記AODから出射される複数のサブビームとして放射ビームを形成し,一体となった上記サブビームが上記非対称性を有する合成ビーム(a composite beam)を形成するように構成されている。さらに他の実施形態において,上記装置はドライバ回路を備え,上記ドライバ回路が,複数の周波数を有する駆動信号を上記AODに入力することによって上記AODにおける回折によって上記サブビームを形成するように構成されている。
一実施形態において,上記装置はさらにプロセッサを含み,上記プロセッサが,上記放射ビームと上記駆動信号の複数の周波数とを同期することによって上記非対称性を有する上記合成ビームを形成するように構成されている。別の実施形態において,上記光学アセンブリが複数のミラーを備え,上記ミラーが上記非対称性を有する合成ビームを一体的に形成する複数のサブビームとしての上記放射ビームを形成するように構成されている。さらに別の実施形態において,上記光学アセンブリは,上記ミラーを用いて一または複数の選択されるサブビームをスイッチ・オフすることによって上記非対称性を上記合成ビームに導入するように構成されている。
いくつかの実施形態において,光学アセンブリは,上記ミラーを用いて一または複数の選択されるサブビームの各位相を制御することによって上記非対称性を上記合成ビームに導入するように構成されている。他の実施形態において,光学アセンブリは液晶セルアレイ(liquid crystal cell array)を備え,上記アレイが上記非対称性を有する上記合成ビームを一体となって形成する複数のサブビームとしての上記放射ビームを形成するように構成されている。さらに他の実施形態において,光学アセンブリは,上記液晶セルアレイのセルを用いて一または複数の選択されるサブビームの各位相を制御することによって上記非対称性を上記合成ビームに導入するように構成されている。代替的な実施形態において,上記ドナーフィルムが上記第2の表面上の所定位置に(at a position)不均一部(non-uniformity)を有するものであり,上記光学アセンブリが,上記位置付近のドナーフィルムに上記ビームが衝突するように上記ビームを方向づける(案内する)ことによって,上記第2の表面に対して垂直でない選択される角度において液滴が放出されるように構成されている。
一実施形態において,上記ドナーフィルムに衝突するビームが球対称(spherically symmetric)である。別の実施形態において,上記不均一部はドナーフィルム中の孔およびトレンチの少なくとも一つを含む。さらに別の実施形態において,上記不均一部は上記選択される角度において上記液滴が放出されるように選定される所定形状を有する。代替的な一実施形態では,上記位置から上記ビームの衝突点の距離が,上記選択される角度において放出される上記液滴が生じるように選定される。
いくつかの実施形態において,上記光学アセンブリは,上記放射ビームを用いて上記ドナーフィルムに上記不均一部を形成するように構成されている。他の実施形態において,上記不均一部が第1および第2の不均一部を含み,上記光学アセンブリは,上記第1の不均一部の形成後かつ上記液滴の放出前または放出後に,上記第2の不均一部を形成するように構成されている。
また,この発明の一実施形態によると,アクセプタ表面上に材料を堆積させる方法であって,対向する第1および第2の表面を有する透明ドナー基板と上記第2の表面上にドナーフィルムを用意する方法が提供される。放射ビームは,上記ドナー基板の上記第1の表面を通過し,かつ上記第2の表面上の所定位置において上記ドナーフィルムに衝突し,上記位置において上記第2の表面に垂直でない角度において上記ドナーフィルムから上記アクセプタ表面への溶融材料の液滴の放出が誘起されるように方向づけられる(案内される)。
この発明は,図面とともに以下に示すこの発明の実施形態の詳細な説明によってさらに理解されよう。
この発明の一実施形態による基板に直接書き込みをするシステムの模式図である。 この発明の別の実施形態による光学アセンブリの詳細を示す模式図である。 この発明の代替的な一実施形態による別の光学アセンブリの模式図である。 この発明の一実施形態による音響光学偏向器の模式断面図である。 図4Aおよび図4Bは,この発明の実施形態による非対称ビームプロファイルのグラフである。 この発明の代替的な一実施形態による代替的な光学アセンブリの模式図である。 この発明の別の実施形態による基板に直接書き込みをするシステムの模式側面図である。 図7A〜図7Cは,この発明の実施形態によるドナーから放出される液滴の模式図である。 図8A〜図8Cは,この発明の他の実施形態によるドナーおよび熱障壁の模式図である。
概説
最新の多くの電子機器は,表面に3D構造が構築された非平坦面の3D構造を備えている。このような構造体は,被覆,再パターン化(たとえば欠損構造の完成),または構築(たとえば金属柱の追加)が難しい。レーザ誘起前方転写(LIFT)技術は高品質かつ高コスト効率の印刷を提供するが,通常はドナーの表面に対して直角に微小液滴を放出するものに限定される。このため従来のLIFTシステムは,アクセプタの水平面上に微小液滴を印刷できるが,許容し得る品質において3D構造の側壁に印刷をする(printing on the side-walls of 3D structures)ことができない場合がある。
以下に記載のこの発明の実施形態は上記に例示するような従来技術の限界を克服するもので,複数の新規な光学アセンブリおよびドナー構造体と,LIFTシステムを動作させる対応する方法とを提供するものである。この発明の実施形態は金属材料および非金属材料の両方の印刷を含む。
いくつかの実施形態において,アクセプタ表面上への材料堆積のためのシステムは,対向する第1および第2の表面を有する透明ドナー基板を備え,上記ドナーの第2の表面にドナーフィルム(donor film)を備えるものである。このシステムはさらに,上記ドナー基板の第1の表面を通過し,かつ上記ドナーの上記第2の表面上の選択位置において上記ドナーフィルムに衝突するように放射ビームを案内する(方向づける,向ける)ように構成された光学アセンブリを備えている。上記放射ビームは,上記選択位置において,上記ドナーの上記第2の表面に垂直でない(すなわち直角でない)角度で,上記ドナーフィルムからの溶融材料の液滴の放出を誘起することができる。
一般的なLIFT技術では,上記ドナーと上記アクセプタとをごく近接させる必要があり(たとえば実質的に1mm未満),上記ドナーおよび上記アクセプタは通常互いに平行に位置決めされる。液滴はドナーフィルムからアクセプタ表面上に放出され,典型的にドナーとアクセプタとが平行な場合に,上記アクセプタの表面に直角ではない角度で到達させることができ,したがってこのシステムは3D構造体の側壁に液滴を印刷することができる。
一実施形態においては,ドナーフィルム中の非対称な加熱プロファイルによって所要角度(the required angle)において液滴を放出(または噴射)させることができる。開示する技術を使用して,上記ドナーフィルム上に非対称ビームを衝突させるまたは上記ドナーフィルムの材料中に(非対称性を生じさせる)ある不均一部を導入しかつ上記ドナーフィルム上に球対称ビームを衝突させることによって,非対称な加熱プロファイルを形成することができる。加熱非対称性を反映する熱「ノズル」が上記ドナーフィルム中に形成され,溶融材料中に圧力勾配(pressure gradient)が形成される。上記圧力勾配および上記ノズルの非対称性によって液滴の噴射角度が決まる。このように,上記ドナーフィルム中の非対称性を制御することによって,ユーザは,ドナーを上記アクセプタと平行に位置決めしつつも,噴射角度を制御することができる。
いくつかの実施態様において,光学アセンブリは,レーザからの入射ビームを複数のサブビームに分割するように構成されている。サブビームは,通常変調されて上記ドナーの下面に案内され,これによって上記ドナーフィルム上に非対称ビームが形成される。上記ドナーの上記第2の表面に垂直でない選択角度において上記液滴が(上記ドナーの第2の表面上の)ドナーフィルムから放出されるように,スポット非対称性(spot asymmetry)を選択してもよい。一実施形態では,上記光学アセンブリが,複数の出力サブビームを生成し,これを結合して所望の合成(複合)非対称ビーム(composite asymmetric beam)を生じさせる音響光学機器を備える。
代替的な実施形態において,上記光学アセンブリは,マイクロミラーのアレイを有する微小光電気機械システム(MOEMS)(Micro-Opto-Electro-Mechanical-system)装置を備えてもよい。MOEMS装置は,通常,各マイクロミラーの回転または上昇位置を制御し,上記装置によって生成されるサブビームの位相または偏向角度を制御する。出力サブビームの局所的位相または方向(the local phase or direction)を制御することによって,ユーザは合成出力ビームのさまざまなプロファイルを形成することができる。出力サブビームを組み合わせることによって上記ドナーフィルム上に所望の非対称スポットを形成するように,この発明の光学アセンブリの光学素子(光学系)を構成することができる。
代替的な一実施形態において,ドナーフィルムは,上記フィルム中にトレンチ(溝)(trench)または孔(hole)といった不均一部を備えている。この代替的な実施形態において,放射ビーム,この場合は通常球対称ビーム,を案内し,上記不均一部の位置に近接する上記ドナーフィルム上に衝突するように光学アセンブリを構成してもよい。上記ビームと上記ドナーフィルムとの相互作用が上記衝突位置において上記ドナーフィルムの材料を溶かし,上記不均一部が熱障壁として作用する。上記熱障壁が溶かされた材料の周りに非対称な熱伝プロファイル(asymmetric thermal conductivity)を形成し,これによって溶かされた材料が非対称プロファイルを有するものとなり,上記ドナーフィルムに対して垂直でない角度において上記液滴が放出される。
いくつかの実施態様において,上記システムは,パターンとビームとの間の固有の近接(specific proximity)を選択することによって,放出角度の方位(アジマス)およびサイズを制御する。代替的な実施形態では,上記放出角度は,パターン形状(たとえば,円形孔または矩形トレンチ)と,上記パターンと上記ビームの近接との組み合わせを用いて制御される。
上記技術によって,LIFTシステムは,簡単かつ高コスト効率の光学アセンブリおよび平坦ドナー構造体を用いて,側壁のような複雑な3D構造上に印刷をすることができる。非対称ビームを用いる実施形態を,従来の任意のドナーを用いて所定かつ被制御の直角でない角度(controlled non-orthogonal angle)において印刷するために用いることができる。また,ドナーフィルム中の不均一部を用いる実施形態によって,被制御の直角でない角度において印刷をすることができる。開示される能力は大量製造ラインにおいて容易に実装可能である。
システムの説明
図1は,この発明の一実施形態によるもので,基板24上に描画する印刷および直接書き込みシステム10の模式図である。ここでこのシステムおよびその構成要素は,この明細書に記載の技術を実装可能な環境を説明することを目的として示しているに過ぎないものである。このような技術は,他種の適当な装置を用いてかつ他の構成において同様に実行可能である。
印刷および直接書き込みシステム10は,搭載面14上に保持されたフラットパネルディスプレイ(FPD)またはプリント回路基板(プリント配線板)(PCB)等の電子回路12の基板24上で動作する。一般的に,LIFTプロセスにおいて基板24はレシーバまたはアクセプタとも呼ばれる。この明細書において,用語「フラットパネルディスプレイ」,「FPD」,「プリント回路基板」,および「PCB」は,基板材料の種類および堆積に用いられるプロセスに関係なく,金属等の導電材料または誘電体およびポリマー等の非導電材料が堆積される任意の誘電体,金属または半導体基板を概略的に表すために使用している。システム10は,さまざまな基板上またはその他任意の電子機器中に金属回路の印刷のような新たな層を堆積するために用いることができる。
ブリッジ18の形態の位置決めアセンブリが,システム10の軸に沿って光学アセンブリ16を直線状に移動させることによって,対象の基板24上の適当な部位の上方に光学アセンブリ16を位置決めする。他の実施形態において,位置決めアセンブリを,1つの軸(X),2つの軸(X,Y),または3つの軸(X,Y,Z)に沿う移動ステージ等,他の形態のものとすることができる。制御ユニット27が光学アセンブリおよび位置決めアセンブリの動作を制御し,かつ温度制御といった付加機能を実行し,所要の印刷,パターンニング,および/または他の製造動作を実行する。通常,制御ユニット27は,ユーザインターフェースおよびソフトウェアとともにプロセッサおよびディスプレイ(図示略)を含む汎用コンピュータを備えるオペレータ端末(図示略)と通信する。
光学アセンブリ16はレーザ40および光学素子44を備え,ドナー11からレーザ誘起前方転写(LIFT)技術を適用する。挿入図38は,光学アセンブリ16の構成要素およびモジュールと,ドナー11の下面69に垂直でない放出角度θでドナーフィルム62から液滴を放出するプロセスとを示す模式的な側面図である。
レーザ40がパルスビーム52をビーム操作アセンブリ41に放出し,アセンブリ41はビーム52を複数の出力サブビーム54に分割するように構成されている。サブビーム54は,互いに分岐した2つ以上のサブビームとしてアセンブリ41から出射される。光学素子44はサブビーム54を合成非対称ビーム43に集束し,この合成ビームが光学素子によって集光され,下面69に合成非対称スポット23を形成する。アセンブリ41の動作は図2A〜図4Bを参照して以下により詳細に説明する。レーザ40はたとえば周波数倍化出力(frequency-doubled output)を有するパルスNd:YAGレーザを含むことができ,レーザのパルス振幅は制御ユニット27によって制御することができる。
光学素子44は,一または複数のドナーフィルム62が下面に堆積されたドナー基板60を備えるドナー11上に非対称ビーム43を集光する。典型的には,基板60はガラスまたはプラスチック・シートといった透明な光学材料を備えている。光学素子44は基板60の上面59を通るビーム43をフィルム62上に集光する。スポット23の非対称性によって,フィルム62に関して測定される垂直でない放出角度θにおいて,フィルム62から回路12のフィルム25上に溶融材料の液滴が放出される。選択角度における放出のメカニズムについては,図4A,図4B,および図7A〜図7Cを参照してより詳細に説明する。
図2Aは,この発明の一実施形態による光学アセンブリ16の詳細を示す模式図である。レーザ40は光学的放射ビーム52を放出するものであり,これには可視光線,紫外線または赤外線放射が含まれる。ドライバ48は周波数が近い複数の信号をアセンブリ41の音響光学偏向器(AOD)(acousto-optic deflector)42に送り込む。AODはビーム52を複数の出力サブビーム54に分割するものであり,複数の出力サブビームはAOD中の多周波回折格子から回折して分岐する。一実施形態では,走査ミラー46がサブビーム54を光学素子44に偏向し,光学素子がサブビーム54を集光し,基板60を通して回折角度によって決定される隣接位置においてドナーフィルム62上に衝突させる。ドナーフィルム62への衝突のとき,上記回折したサブビーム54は各位置において部分的にオーバーラップするスポット(spots)を形成し,これによって非対称ビーム43が形成される。
複数のサブビーム54を生成するために,多周波ドライバ回路48が駆動信号を圧電性結晶50に印加し,圧電性結晶が偏向器42を駆動することによって,ビーム52を分割する音波が偏向器中に生成される。図2Aには単一のミラー46のみが示されているが,代替的な実施形態(図示略)においては,一体的または独立して走査可能な2軸ミラー,および/または当技術分野において知られている任意の他の適切な種類のビーム・スキャナを採用してもよい。
ドライバ回路48はさまざまな異なるモードにおいて音響光学偏向器42を駆動して複数の出力ビーム54を生成することができる。付属的な集光光学素子および走査光学素子とともに光学アセンブリ24における使用に適応可能な多くの適切な駆動技術は,たとえばネイバー(Naver)その外の米国特許第8,395,083号に記載されており,その開示内容をこの明細書に援用する。これらの技術のうちの一つによると,ドライバ回路48が多周波駆動信号を生成し,これによって音響光学偏向器がビーム52をそれぞれ異なる角度の複数の出力ビーム54に回折する。この種の多周波駆動のさらなる詳細については,この明細書に援用されるヘクト(Hecht)の「Multifrequency Acoutooptic Diffraction」,IEEE Transactions on Sonics and UitrasonicsSU-24,pages 7-18(1977),および同じくこの明細書に援用されるアントノフ(Antonov)外の「Efficient Multi-Beam Bragg Acoustooptic Diffraction with Phase Optimization of a Multifrequency Acoustic Wave」,Technical Physics 52:8,pages 1053-1060(2007)に記載されている。
図2Bは,この発明の他の実施形態による別の光学アセンブリ17の模式図である。アセンブリ17は,システム10のアセンブリ16に代えて用いることができる。アセンブリ17において,第1の音響光学偏向器42Aは,レーザ40からのビーム52を受け,ビーム52を複数のサブビーム54Aに分割する。上記偏向器42AはサブビームをX軸に沿って分離する。X軸に沿うサブビーム54Aの強度分布は対称であってもよいし非対称であってもよい。第2の音響光学偏向器42Bは,一または複数のサブビーム54AをY軸に沿う各サブビーム54Bにさらに分割するように構成されている。ここでも,Y軸に沿うサブビーム54Bの強度分布は対称であってもよいし非対称であってもよい。
ドライバ回路48は周波数が近い複数の駆動信号を偏向器42Aおよび42Bのそれぞれに与える。用語「周波数が近い」とは,音速をV,開口のサイズをDとしたときに,比Δf=V/Dで与えられる,システム10の周波数分解能Δfよりも小さい周波数差を表す。
開示する技術においては,偏向器の回折格子によって形成される光学的開口(optical aperture)を音波が横切るのに要する時間(「立ち上がり時間」とも呼ばれる)よりも実質的に短い短時間レーザパルス(short-duration laser pulses)が使用される。たとえば,開口幅がD=6mmの場合,音速Vを59000メートル/秒とすると,立ち上がり時間は約1.02マイクロ秒に等しい。
偏向器(複数)を通過したビーム52は,互いに部分的に重なり合った2つ以上のスポットをドナーの表面に形成し,これによって非対称ビームを形成することができる。周波数が近い信号とともに偏向器を使用することによって,非対称サブビーム(54Aまたは54B)の2次元(2D)アレイを生成することができる。各サブビームがドナーに衝突すると,非対称ビームの形状に関連する所望角度で液滴が噴射する。非対称サブビームの2Dアレイは複数の液滴を同時に噴射するものでもよく,異なるサブビームによって生成された液滴は各非対称サブビームの形状に対応した角度で噴射される。
これに代えて,偏向器42Aはその入射ビームをX方向に走査するようにしてもよく,他方,偏向器42Bは入射ビームをY方向に分離した複数の非対称ビームに分割するように駆動される。偏向器42Aおよび42Bはアセンブリ41中に設けられ,それぞれ圧電性結晶50Aおよび50Bによって駆動される。アセンブリ16と比較してアセンブリ17は多用途性およびステアリング速度が高く,しかしながらビーム強度損失がより大きくなる代償を払う。
図3は,この発明の一実施形態による音響光学偏向器42の模式断面図である。この図はドライバ回路48および圧電性結晶(piezoelectric crystal)50を含む多周波駆動の効果および動作を示している。回路48からの多周波駆動信号によって,圧電性結晶50は複数の駆動周波数の音波を生成し,これが偏向器42の音響光学結晶を伝搬する。様々な駆動周波数のそれぞれが偏向器中に対応する空間周波数の音響光学回折格子を規定する。すなわち,上記偏向器は間隔の異なる複数の重畳格子を含む。
ビーム52が偏向器42に入ると,上記結晶中の格子のそれぞれが格子間隔に応じた様々な角度でビーム52を様々な角度で回折する。これによって偏向器42は,結晶50によって提供される様々な周波数f1,f2,・・・に対応する様々な角度θ1,θ2,・・・でビーム52を複数のサブビーム54に分割する。たとえば,偏向器42中において駆動される近い周波数を有する2つの駆動信号によって,ドナーフィルム62に衝突するときに一部が重なり合う2つの隣接回折サブビーム(adjacent diffracted sub-beams)54が形成され,これによって非対称ビーム43が形成される。
複数の周波数f1,f2の提供に加え,ドライバ回路48はこれら周波数のそれぞれに振幅を与えるように構成されており,これによってビーム52の各パルスによって生成される対応するサブビーム54の強度が制御される。以下により詳細に説明するように,回路48は,ビーム52のパルスと適切に同期した対応する周波数において信号の振幅を変調することによってサブビームの強度を制御する。より詳細には,ドライバ回路48は,上記対応する周波数成分をオンおよびオフすることによって,各パルスにおいて生成される出力ビーム54の組み合わせを選択することができる。
図4Aは,この発明の一実施形態による,スポット23の非対称ビームプロファイル56の模式的なグラフである。プロファイル56は偏向器42の向きによって規定される直線に沿うスポット23の断面であり,スポットを横切る距離xに対する強度yをプロットしている。ビームプロファイル56は,図3に示す2つのそれぞれの出力サブビーム54を表す2つのピークを含む。ピーク57は角度θで偏向された第1の出力サブビーム54に対応する。ピーク58は角度θで偏向された第2の出力サブビーム54に対応する。第1および第2の出力ビーム54は,ドライバ回路48によって偏向器42に与えられる対応周波数(f1,f2),振幅(A1,A2)および位相(p1,p2)の所定セットによって形成される。
第1および第2のサブビーム54がスポット23に集光すると,f1およびf2の値の差によってスポットにおいて2つのビームのピークの位置的シフトがわずかに生じ,これによって上記グラフに示す非対称プロファイルが形成されることを理解されたい。
典型的には,周波数が近い2つの信号を偏向器42に加えると,2つの信号間の周波数差によって与えられる周期によって上記偏向器42中で音響信号が変調され,建設的および相殺的干渉(constructive and destructive interference)が生じる。回折効率を最大に得るために,制御ユニット27は偏向器42において生じる建設的干渉とレーザ40のパルスとを同期するように構成されている。これに加えて,レーザパルスの時間幅は上記変調周期よりも実質的に短くなければならず,これによってレーザパルスが建設的干渉と同期する。
図4Bは,この発明の一実施形態による,スポット23の非対称プロファイル60の別グラフ例である。ビームプロファイル60は第1,第2および第3のサブビーム54によって形成され,かつ単一のピーク61を含む。図示するプロファイルを生成するために,ドライバ回路48は結晶50によって偏向器42に入力される3つの周波数f1,f2,およびf3を生成し,これによって対応する第1,第2および第3のサブビームを生成する。ドライバ回路48はまた,周波数f1,f2,およびf3に対応する振幅A1,A2,およびA3を設定する。このプロファイルは,振幅A2およびA3が等しく(A2=A3),振幅A1がA2+A3に等しいときに生成される。さらに,上記周波数間の差はf1−f2=2*(f2−f3)である。図4Aおよび図4Bを考慮すると,システム10のユーザは,対応周波数および振幅の特定セットを持つ所定のパルスのセットを選択することによって,所望形状の非対称ビーム,および上記ビームによって生成される非対称スポットを設計できることを理解されたい。
以下に示すように,光学アセンブリ16は,典型的には1MHz以下の速度(レート)でリフレッシュするレーザ40のような,高速繰り返しレーザに対応する早い速度でスポット23の形状を修正するまたはリフレッシュするように構成することができる。
レーザ40の空間パルス幅をDとすると,AOD42中の音波がパルス幅を伝播するために要する時間tは,式(1)によって与えられる。
Figure 2018523751
ここで,vはAOD中の音波速度である。
AOD中の波長λは式(2)によって与えられる。
Figure 2018523751
ここでFは音波の周波数である。
AODによる効果的な回折のためには,上記光パルスの幅Dは上記AOD中に生成される回折格子中において多くの波をカバーしなければならない。すなわち,以下の通りである。
Figure 2018523751
式(1)および式(3)を組み合わせると,以下が与えられる。
Figure 2018523751
AODについてFは200MHz以上とすることができるので,200MHzで駆動するAOD中における,たとえば20波(20 waves)の伝播時間tTは10−7秒である。この伝播時間は10MHzのレーザリフレッシュ速度に対応し,これは上述の1MHzの典型的な速度よりも1桁大きい。このように,この発明の実施形態によると,典型的なものよりもレーザ40についてリフレッシュ速度を実質的に速くすることができる。上述の説明および数値は純粋に一例としてのものである。他の実施形態においては,その他の任意の適切な動作スキーム,レーザパラメータ,または他の数値を用いることができる。
図5は,この発明の他の一実施形態による,他の光学アセンブリ19の模式図である。アセンブリ19はシステム10のアセンブリ16に代えて用いることができる。レーザ40がビーム52をビーム拡大器65に放出し,ビーム拡大器65は微小電気機械システム(MEMS)(Micro-Electro-Mechanical-system)デバイス63に含まれるマイクロミラー64のアレイ上にビーム52を拡大しかつコリメートする。
MEMSデバイス63のようなMEMSデバイスは複数の製造業者から市販されており,たとえば,ドイツ,ミュンヘンのフラウンホファー・インスティチュート(FraunhoferInstitute)によって製造されるマイクロミラー製品であり,MOEMS(微小光電気機械システム)(Micro-Opto-Electro-Mechanical-System)と呼ばれることもある。この種のデバイスは,たとえばゲナー(Gehner)の「MEMS Adaptive Optics Developments at IPMS」,2007年に記載されており,これをこの明細書に援用する。
典型的には,デバイス63はマイクロミラー64の一または複数のアレイ(たとえば,メガピクセルデバイスでは百万個のマイクロミラー64)を備え,通常,アレイ中の各マイクロミラー64の回転または上昇を制御する。いくつかの実施態様において,上記光学アセンブリは,マイクロミラーのそれぞれを適切な回転角に回転させることによって一または複数のサブビーム54をオフにスイッチするように構成されている。この技術は広く用いられており(たとえば,テキサス・インスツルメンツ(Texas Instruments)が用いている),所定のマイクロミラーをオフにスイッチすることによって所望強度形状の非対称ビームを形成することができる。典型的には,各マイクロミラー64の回転制御によって,高い分解能の下,各サブビーム54の偏向角を制御することができる。図3に関して既述したように,光学素子44がサブビーム54を集光して合成非対称ビーム43を形成し,ビーム43がフィルム62上にスポット23を形成する。
他の実施形態において,光学アセンブリは一または複数のマイクロミラー64の上昇を制御することによって,各サブビームが通過する経路の光路長を調整するように構成されている。この調整によってサブビーム間の相対位相が変動し,所望のビームプロファイルが形成される。この技術はフランホファー・インスティチュート(FraunhoferInstitute)によって開発されたものである(IPMSと呼ばれている)。マイクロミラーベース技術によってデバイス63を高空間分解能の空間光変調器(Spatial Light Modulator)として機能させることができる。
さらに他の実施形態においては,MEMSデバイス63に代えて,アセンブリ19に,シリコン上液晶空間光変調器(LCOS−SLM)(Liquid Crystal on Silicon Spatial Light Modulator)のような液晶セルアレイを,非対称ビームを成形するために設けてもよい。上記液晶セルアレイ中の各セルは電気的に制御され,反射サブビームに明確な位相遅延を生成する。このようなSLMデバイスはたとえば浜松ホトニクス株式会社(日本,浜松市)によって提供されている。
ドナーフィルムに非対称スポットを生成する上述の方法は一例であって,非対称スポットを生成する他の方法は当業者にとって明らかであろう。このような方法のすべてがこの発明の範囲に含まれる。
アセンブリ16,17,19(および図6に示すアセンブリ21)の構成,およびそれらのそれぞれの光路はシンプル化された構成であって,分かりやすくするために純粋に一例として選択されものである。別の実施形態においては,その他の任意の適切な構成および光路を光学アセンブリに使用することができる。たとえば,アセンブリ19において,ビーム54の強度を向上するために,ビーム52をデバイス63上において45°以外の角度で投射しておよい。
図6は,この発明の別の実施形態によるシステム13の模式側面図である。以下に記載の相違点を除き,システム13の動作はシステム10の動作におおよそ類似しており,両システム13および10において同一の符号によって示す要素は構成および動作がおおよそ類似している。システム13において,光学アセンブリ21はレーザ40を備え,ビーム52を光学素子44に向ける。光学素子44は基板60の上面59を通過するビーム52をフィルム62上に集光する。システム10と異なり,システム13のビーム52は,典型的にはフィルム62に衝突するときを含めて,その光路全体に沿って球対称(spherically symmetric)である。また,システム10と異なり,システム13では,以下に詳述するようにフィルム62が不均一である。
フィルム62は一または複数の不均一部(non-uniformities)68を備えるもので,不均一部は上記フィルム62においてパターン化されたトレンチ(溝)(trenches)または孔(holes)を含む。いくつかの実施態様において,不均一部68はドナー11の作成プロセス中にフィルム62にパターン化される。フィルム62に設計された不均一部68が備えられると,ドナーがシステムに搭載されて,上述の通りLIFT印刷プロセスが開始される。
変形実施形態においては,LIFTプロセス中にフィルム62をパターン化してもよい。フィルム62がパターン化される前に,または部分的に不均一部68がパターン化されて,ドナー11がシステムに搭載される。レーザ40は,典型的には,様々な照射方式を用いることによってフィルム62から材料を噴射するように構成されており,これによって一または複数の不均一部68が形成される。一実施形態では,レーザはLIFT印刷プロセスの開始前に不均一部を形成する。別の実施形態において,レーザはLIFTプロセスの一部(たとえばドナーの第1の領域の被覆)を完了した後,追加の不均一部68を(たとえばドナーの別の領域に)パターン化することもできる。この機能によって,ユーザは,印刷処理要件に対して上記パターン(たとえば不均一部のレイアウト)を適応させることができ,また,LIFT印刷要件を満たすように不均一部68のパターンを最適化することによって,フィルム62中の材料を有効に利用することができる。
動作中,フィルム62中の所与の不均一部に近接するフィルム62上に,この明細書において球対称ビームとされるビーム52が衝突するように,上記ビーム52を方向づけるよう光学アセンブリ21を構成することができる。ビーム52とフィルム62との相互作用が衝突位置においてフィルム62の材料を溶かし,不均一部が熱障壁として作用する。熱障壁が溶けた材料の周りに非対称な伝熱プロファイルを形成し,これによって溶けた材料が非対称プロファイルを有することになる。その結果,液滴70が,垂直ではない放出角度θで,フィルム62から回路12のフィルム25上に放出され,典型的にドナーとアクセプタとが平行とされているときに,フィルム25の上面に直角でない角度で液滴を着弾させることができる。垂直でない放出プロセスおよびメカニズムについては,図7A〜図7Cを参照して詳細に説明する。
図7A〜図7Cは,この発明の一実施形態によるもので,フィルム62から放出される液滴70の模式図である。これらの図において,ドナー11は,ビーム52に対して透明な基板60と一または複数の孔68を含む不均一フィルム62とを備えている。3つのすべての図面において,光学アセンブリ21は,位置73においてフィルム62に衝突するように球対称ビームプロファイル66を有するビーム52を方向づけるものとする。
ビーム52とフィルム62との相互作用が位置73においてフィルム62の材料を溶かし,熱「ノズル」(thermal “nozzle”)を形成する。フィルム62中の熱ノズル(通常は金属)はフィルム62を通じてフィルムの周りの環境(たとえば,空気)に熱を分散させる。
図7Aは,所与の孔68が位置73から十分に離れており,上記孔が位置73における熱ノズルからの放熱に影響しない場合を示している。この例において,熱が分散されるフィルム領域72および74は位置73を囲む。領域72および74はサイズが等しく,位置73に関して対称に位置するので,熱ノズルの周りに対称熱プロファイル(symmetric thermal profile)(図示略)が存在する。上記対称熱プロファイルのために,位置73において熱ノズルからの排出によって形成される液滴70は,基板66の下面69に直交する方向76に放出される。
図7Bは,所与の孔68が位置73に十分に近く,上記孔が位置73における熱ノズルからの放熱に影響する場合を示している。図7Aを参照して既述したように,フィルム62は熱を伝達し,伝達した熱はフィルムから放熱する。位置73の左側にフィルム領域80が位置しており,位置73に形成された熱ノズルと孔68との間にフィルム62の材料が含まれている。位置73の右側には領域78が位置しており,位置73に形成された熱ノズルとフィルム62の右側縁部79との間にフィルム62の材料が含まれている。領域80および78は熱を分散させる。しかしながら,領域80は領域78よりも小さいので,領域78からとは異なる速度で領域80から熱が放出され,これによって位置73の熱ノズルの周りに非対称熱プロファイル(図示略)が形成される。この非対称熱プロファイルによって,表面69の法線77に対して規定されるゼロでない角度82で液滴70が放出される。
図7Cは,図7Bの状況よりも所与の孔68が位置73に近い場合を示している。図7Bの状況に比べて,図7Cに示す孔の位置は,位置73における溶融材料からの放熱に影響を及ぼす。位置73の左側に領域86が位置しており,位置73と孔68との間にフィルム62の材料が含まれる。位置73の右側には領域84が位置しており,位置73とフィルム62の右側縁部79との間にフィルム62の材料が含まれる。領域86と84の面積の差が領域80とおよび78(図7B)の差よりも大きいためので,図7Cの位置73の周りの熱プロファイル(図示略)は,図7Bの場合に比べてさらに非対称である。図7Cにおける熱プロファイルのより高い非対称性によって,液滴70は,図7Bの角度82よりも大きな非ゼロの角度88で放出される。
図7A〜図7Cから,上記光学アセンブリの設計を簡素化することができるとともに,フィルム62に孔68を持たせることによって,表面69に垂直でない角度で液滴70を放出する能力をシステム13に与える球対称ビーム52を,システム13が使用することが理解されよう。典型的には,システム13のユーザは,孔68から選択距離のところのフィルム62に衝突するようにビーム52を方向づけ,これによってドナー11から基板24に向かう液滴70の所望の放出角度を設定することができる。図7A〜図7Cに記載の例では,孔68と位置73との距離が短くなればなるほど,表面69に対するフィルム62からの放出角度が大きくなる。
図8A〜図8Cは,この発明の一実施形態によるもので,ドナー11の下側に位置する回路12から見た,ドナーおよびさまざまな熱障壁の模式図である。以下で示す場合を除いて,ドナー11は表面69の領域を覆うフィルム62を備える。
図8Aはフィルム62中の円形孔を示しており,これが熱障壁92を提供する。光学アセンブリ21(図8Aにおいて図示略)は,障壁92の左側に位置しかつ障壁にごく近い円形スポット90においてフィルム62に衝突するように対称ビーム52を方向づける(典型的には,図8Aの障壁92およびスポット90はおおよそ図7Bの孔68および位置73に対応する)。図8Aにおいて,矢印94は放出液滴70の方向を示しており,図7Bの角度82での液滴70の放出方向を示している。ビーム52がフィルム62に衝突すると,スポット90の周りに熱が分散する。しかしながら,空間91における温度勾配は,スポット90周りの他の点における温度勾配と比較してより急峻である。点93および95はスポット90の縁部から同様の距離に位置するものの,障壁92によって,点93および95における温度は互いに異なるとともに,空間91の温度とも異なる。このように様々な温度がスポット90の周りに非対称熱プロファイルを描き,その結果液滴70が右方に放出される。
図8Bはフィルム62中の矩形孔を示しており,これが熱障壁98を表す。光学アセンブリ21(図8Bにおいて図示略)は,障壁98の下側に位置する円形スポット100においてフィルム62に衝突するように対称ビーム52を方向づける。
ビーム52がフィルム62に衝突すると,その結果,熱がスポット100の周りに分散し,障壁98との近接によってスポット100周りに不均一な温度勾配が形成される。スポット100と障壁98との間の上記勾配は急峻である。障壁98が矩形状であるので,点95が熱障壁に非常に近く,両点93および95がスポット90の縁部から同様の距離に位置していても,それらの温度は異なる。図8Aの状況のように,様々な温度がスポット90の周りに非対称熱プロファイルを描く。矢印96は放出液滴70の方向を示しており,図8Bの例では,障壁98がスポット100の上方に位置しているので矢印96は下を向く。
図8Cはフィルム62中の矩形孔を示しており,これが熱障壁104を表す。光学アセンブリ21(図8Cにおいて図示略)は,障壁104の左側に位置する円形スポット102においてフィルム62に衝突するように対称ビーム52を方向づける。
ビーム52がフィルム62に衝突すると,その結果,熱がスポット102の周りに分散し,障壁104との近接によってスポット102周りに不均一な温度勾配が形成される。図8Bの状況のように,両点93および95がスポット90の縁部から同様の距離に位置するが,障壁104の存在によってそれらの温度は異なる。様々な温度がスポット102の周りに非対称熱プロファイルを描く。矢印106は放出液滴70の方向を示しており,図8Cの例では,障壁104がスポット100の右側に位置しているので矢印106は左を向く。
図7A〜図8Cに関する上記説明から,フィルム62における熱障壁の形状および寸法が,フィルム上のレーザビームの衝突点からの障壁の距離とともに,すべて,フィルム中に生じる非対称熱プロファイルに寄与することが理解される。当然であるが,これらの障壁パラメータ,すなわち障壁の形状,寸法および距離の選択によって,システム13における任意の所与の液滴70の方向および放出角度の値を,システムのユーザが,実質的に任意の所望の値に設定することができる。
上述のシステムでは単一のビーム52が使用されている。しかしながら,当業者であれば,複数の入力ビームが同時に用いられる並列印刷について上記説明を適応できよう。コトラー(Kotler)その外による米国特許出願第62/078,450は,並列印刷に使用可能な複数のビームを生成する方法を記載しており,その開示内容をこの明細書に援用する。
当然のことながら,上述の実施形態は一例として言及したものであり,以下の特許請求の範囲は,以上のように詳細に図示および説明したものには限定されない。むしろ,その範囲には,上述のさまざまな特徴のコンビネーションおよびサブ・コンビネーションの両方のほか,上記説明を読むことによって当業者が想到し得るとともに従来技術に開示されていないそれらの変形および改良を含む。

Claims (34)

  1. アクセプタ表面への材料堆積装置であって,
    対向する第1および第2の表面を有し,上記第2の表面上にドナーフィルムを備える透明ドナー基板,ならびに
    上記ドナー基板の上記第1の表面を通過しかつ上記第2の表面上の所定位置において上記ドナーフィルムに衝突するように放射ビームを方向づけ,上記位置において上記第2の表面に垂直でない角度で,上記アクセプタ表面上に向けて上記ドナーフィルムからの溶融材料の液滴の放出を誘起するように構成された光学アセンブリ,
    を備えている,装置。
  2. 上記光学アセンブリが,上記第2の表面に垂直でない選択角度において上記液滴が放出されるように選択される非対称性を上記ビーム中に生成するように構成されている,請求項1に記載の装置。
  3. 上記光学アセンブリが音響光学偏向器(AOD)を備え,上記AODが,それぞれが異なる角度で上記AODから出射される複数のサブビームとして上記放射ビームを形成し,一体となった上記サブビームが上記非対称性を有する合成ビームを形成するように構成されている,請求項2に記載の装置。
  4. 複数の周波数を有する駆動信号を上記AODに入力するように構成されたドライバ回路をさらに備え,上記AODにおける回折によって上記サブビームが形成される,請求項3に記載の装置。
  5. プロセッサをさらに備え,上記プロセッサが上記放射ビームと上記駆動信号の上記複数の周波数を同期することによって上記非対称性を有する上記合成ビームを形成するように構成されている,請求項4に記載の装置。
  6. 上記光学アセンブリが複数のミラーを備え,上記複数のミラーが複数のサブビームとして上記放射ビームを形成し,一体となった上記サブビームが上記非対称性を有する合成ビームを形成するように構成されている,請求項2に記載の装置。
  7. 上記光学アセンブリが,上記ミラーを用いて一または複数の選択されるサブビームをスイッチ・オフすることによって上記非対称性を上記合成ビームに導入するように構成されている,請求項6に記載の装置。
  8. 上記光学アセンブリが,上記ミラーを用いて一または複数の選択されるサブビームの各位相を制御することによって上記非対称性を上記合成ビームに導入するように構成されている,請求項6に記載の装置。
  9. 上記光学アセンブリが液晶セルアレイを備え,上記液晶セルアレイが複数のサブビームとして上記放射ビームを形成し,一体となった上記サブビームが上記非対称性を有する合成ビームを形成するように構成されている,請求項2に記載の装置。
  10. 上記光学アセンブリが,上記液晶セルアレイのセルを用いて一または複数の選択されるサブビームの各位相を制御することによって上記非対称性を上記合成ビームに導入するように構成されている,請求項9に記載の装置。
  11. 上記ドナーフィルムが上記第2の表面上の所定の位置に不均一部を有しており,上記光学アセンブリが,上記ビームを方向づけて上記位置に近接する上記ドナーフィルム上に衝突させて上記第2の表面に垂直でない選択角度で上記液滴を放出させるように構成されている,請求項1に記載の装置。
  12. 上記ドナーフィルムに衝突する上記ビームが球対称である,請求項11に記載の装置。
  13. 上記不均一部が上記ドナーフィルム中の孔およびトレンチの少なくとも一つを含む,請求項11に記載の装置。
  14. 上記不均一部が上記選択角度で上記液滴が放出されるように選定される所定形状を有している,請求項11に記載の装置。
  15. 上記位置から上記ビームの衝突点までの距離が上記選択角度で上記液滴が放出されるように選定されている,請求項11に記載の装置。
  16. 上記光学アセンブリが,上記放射ビームを用いて上記ドナーフィルムに上記不均一部を形成するように構成されている,請求項11に記載の装置。
  17. 上記不均一部が第1および第2の不均一部を含み,上記光学アセンブリが,上記第1の不均一部の形成後かつ上記液滴の放出前または放出後に上記第2の不均一部を形成するように構成されている,請求項16に記載の装置。
  18. アクセプタ表面に材料を堆積する方法であって,
    対向する第1および第2の表面を有し,上記第2の表面上にドナーフィルムを備える透明ドナー基板を用意し,
    上記ドナー基板の上記第1の表面を通過しかつ上記第2の表面上の所定位置において上記ドナーフィルムに衝突するように放射ビームを方向づけ,上記位置において上記第2の表面に垂直でない角度で,上記アクセプタ表面上に向けて上記ドナーフィルムからの溶融材料の液滴の放出を誘起する,
    方法。
  19. 上記第2の表面に垂直でない選択角度において上記液滴が放出されるように選択される非対称性を上記ビーム中に生成する,請求項18に記載の方法。
  20. それぞれが異なる角度で出射されて一体となって上記非対称性を有する合成ビームを形成する複数のサブビームとして上記放射ビームを形成するように音響光学偏向器(AOD)を構成する,請求項19に記載の方法。
  21. 複数の周波数を上記AODに入力して上記AODにおける回折によって上記サブビームを形成する,請求項20に記載の方法。
  22. 上記放射ビームが一連のレーザパルスを用いて生成され,上記レーザパルスと駆動信号の上記複数の周波数とを同期して上記非対称性を有する上記合成ビームを形成する,請求項21に記載の方法。
  23. 一体となって上記非対称性を有する合成ビームを形成する複数のサブビームとして上記放射ビームを形成するように複数のミラーを構成する,請求項19に記載の方法。
  24. 上記ミラーの構成が,上記ミラーを用いて一または複数の選択されるサブビームをスイッチ・オフすることによって上記非対称性を上記合成ビームに導入することを含む,請求項23に記載の方法。
  25. 上記ミラーの構成が,上記ミラーを用いて一または複数の選択されるサブビームの各位相を制御することによって上記非対称性を上記合成ビームに導入することを含む,請求項23に記載の方法。
  26. 一体となって上記非対称性を有する合成ビームを形成する複数のサブビームとして上記放射ビームを形成するように液晶セルアレイを構成する,請求項19に記載の方法。
  27. 上記液晶セルアレイの構成が,上記液晶セルアレイのセルを用いて一または複数の選択されるサブビームの各位相を制御することによって上記非対称性を上記合成ビームに導入することを含む,請求項26に記載の方法。
  28. 上記ドナーフィルムが上記第2の表面上の所定の位置に不均一部を有しており,上記ビームを方向づけて上記位置に近接する上記ドナーフィルム上に衝突させることによって上記第2の表面に垂直でない選択角度で上記液滴を放出させる,請求項18に記載の方法。
  29. 上記ドナーフィルムに衝突する上記ビームが球対称である,請求項28に記載の方法。
  30. 上記不均一部が上記ドナーフィルム中の孔およびトレンチの少なくとも一つを含む,請求項28に記載の方法。
  31. 所定形状を有する上記不均一部を選定することによって上記選択角度で上記液滴を放出させる,請求項28に記載の方法。
  32. 上記位置から上記ビームの衝突点までの距離を選定することによって上記選択角度で上記液滴を放出させる,請求項28に記載の方法。
  33. 上記放射ビームを用いて上記ドナーフィルムに上記不均一部を形成する,請求項28に記載の方法。
  34. 上記不均一部の形成が,上記液滴の放出開始後の上記不均一部の形成を含む,請求項33に記載の方法。
JP2018500694A 2015-07-09 2016-06-07 Lift放出角度の制御 Pending JP2018523751A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562190276P 2015-07-09 2015-07-09
US62/190,276 2015-07-09
PCT/IL2016/050585 WO2017006306A1 (en) 2015-07-09 2016-06-07 Control of lift ejection angle

Publications (1)

Publication Number Publication Date
JP2018523751A true JP2018523751A (ja) 2018-08-23

Family

ID=57686203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018500694A Pending JP2018523751A (ja) 2015-07-09 2016-06-07 Lift放出角度の制御

Country Status (6)

Country Link
US (1) US10471538B2 (ja)
EP (1) EP3322835A4 (ja)
JP (1) JP2018523751A (ja)
KR (1) KR20180030609A (ja)
CN (1) CN107849687B (ja)
WO (1) WO2017006306A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020196196A (ja) * 2019-06-03 2020-12-10 株式会社リコー 光吸収材を飛翔させる装置、立体造形物を造形する装置、光吸収材を飛翔させる方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3058113B1 (en) * 2013-10-14 2020-12-02 Orbotech Ltd. Lift printing of multi-composition material structures
CN106575077A (zh) 2014-08-07 2017-04-19 奥宝科技有限公司 Lift印刷系统
EP3207772B1 (en) 2014-10-19 2024-04-17 Orbotech Ltd. Lift printing of conductive traces onto a semiconductor substrate
US10633758B2 (en) 2015-01-19 2020-04-28 Orbotech Ltd. Printing of three-dimensional metal structures with a sacrificial support
GB201502149D0 (en) * 2015-02-09 2015-03-25 Spi Lasers Uk Ltd Apparatus and method for laser welding
US10471538B2 (en) * 2015-07-09 2019-11-12 Orbotech Ltd. Control of lift ejection angle
KR102546450B1 (ko) 2015-11-22 2023-06-21 오르보테크 엘티디. 프린팅된 3-차원 구조들의 표면 특성들의 제어
CN105702881B (zh) * 2016-01-21 2017-11-07 京东方科技集团股份有限公司 一种基板顶起装置、基板封装设备及方法
WO2018094504A1 (en) * 2016-11-23 2018-05-31 Institut National De La Recherche Scientifique Method and system of laser-driven impact acceleration
TW201901887A (zh) * 2017-05-24 2019-01-01 以色列商奧寶科技股份有限公司 於未事先圖樣化基板上電器互連電路元件
EP3521483A1 (en) * 2018-02-06 2019-08-07 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Lift deposition apparatus and method
CN109581674B (zh) * 2019-01-04 2020-04-28 华南理工大学 一种锡膏激光诱导前向转移设备与方法
CN110666169B (zh) * 2019-09-25 2022-04-08 南京农业大学 一种多材料激光诱导向前转移3d打印装置及方法
EP3800033A1 (en) * 2019-09-30 2021-04-07 Ricoh Company, Ltd. Irradiation target flying apparatus, three-dimensional modeling apparatus, and irradiation target flying method
US11446750B2 (en) 2020-02-03 2022-09-20 Io Tech Group Ltd. Systems for printing solder paste and other viscous materials at high resolution
US11622451B2 (en) 2020-02-26 2023-04-04 Io Tech Group Ltd. Systems and methods for solder paste printing on components
US11497124B2 (en) 2020-06-09 2022-11-08 Io Tech Group Ltd. Methods for printing conformal materials on component edges at high resolution
US11691332B2 (en) 2020-08-05 2023-07-04 Io Tech Group Ltd. Systems and methods for 3D printing with vacuum assisted laser printing machine
WO2022140688A1 (en) * 2020-12-23 2022-06-30 Cornell University Controlled molten metal deposition
WO2023138768A1 (en) * 2022-01-20 2023-07-27 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Method of using a thermal laser evaporation system and thermal laser evaporation system
WO2023138769A1 (en) * 2022-01-20 2023-07-27 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Method of using a thermal laser evaporation system and thermal laser evaporation system
US20230398802A1 (en) 2022-06-08 2023-12-14 Reophotonics Ltd. Systems and methods for printing metal lines and patterns at high resolution
DE102022114637A1 (de) 2022-06-10 2023-12-21 Trumpf Laser Gmbh Verfahren und Vorrichtung zum Verarbeiten mindestens eines Teilbereichs eines Schichtsystems
DE102022114646A1 (de) 2022-06-10 2023-12-21 Trumpf Laser Gmbh Verfahren und Vorrichtung zum Verarbeiten mindestens eines Teilbereichs eines Schichtsystems

Family Cites Families (176)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1393637A (en) 1917-09-21 1921-10-11 Hydesaburo Ohashi & Co Inc Coating-machine
US3787210A (en) * 1971-09-30 1974-01-22 Ncr Laser recording technique using combustible blow-off
JPS567206B2 (ja) 1972-10-11 1981-02-17
US3963852A (en) 1973-08-04 1976-06-15 Moore Business Forms, Inc. Clay-coated record material of improved image durability
US3935566A (en) 1973-10-26 1976-01-27 Zenith Radio Corporation Multiple-channel information translation system and method
US3964389A (en) * 1974-01-17 1976-06-22 Scott Paper Company Printing plate by laser transfer
US4608328A (en) 1985-05-02 1986-08-26 Xerox Corporation Donor for touchdown development
FR2594853A1 (fr) * 1986-02-25 1987-08-28 Commissariat Energie Atomique Procede et dispositif de traitement d'un materiau par effet thermo-ionique en vue d'en modifier ses proprietes physico-chimiques
US4752455A (en) * 1986-05-27 1988-06-21 Kms Fusion, Inc. Pulsed laser microfabrication
US4891183A (en) 1986-12-03 1990-01-02 Chrysler Motors Corporation Method of preparing alloy compositions
US4970196A (en) * 1987-01-15 1990-11-13 The Johns Hopkins University Method and apparatus for the thin film deposition of materials with a high power pulsed laser
US4931323A (en) * 1987-12-10 1990-06-05 Texas Instruments Incorporated Thick film copper conductor patterning by laser
US4942056A (en) 1988-02-18 1990-07-17 Seiko Epson Corporation Method for replenishing a depleted ink sheet
US4895735A (en) * 1988-03-01 1990-01-23 Texas Instruments Incorporated Radiation induced pattern deposition
US5138482A (en) 1989-09-25 1992-08-11 Fuji Photo Film Co., Ltd. Light modular and recording device employing same
US4987006A (en) * 1990-03-26 1991-01-22 Amp Incorporated Laser transfer deposition
JPH04197774A (ja) 1990-11-29 1992-07-17 Nec Corp プリンタ用インキング装置
US5173441A (en) * 1991-02-08 1992-12-22 Micron Technology, Inc. Laser ablation deposition process for semiconductor manufacture
US5204696A (en) 1991-12-16 1993-04-20 Xerox Corporation Ceramic printhead for direct electrostatic printing
US5292559A (en) * 1992-01-10 1994-03-08 Amp Incorporated Laser transfer process
US5322986A (en) * 1992-04-06 1994-06-21 Eastman Kodak Company Methods for preparing polymer stripe waveguides and polymer stripe waveguides prepared thereby
JPH0634283A (ja) 1992-06-16 1994-02-08 Ishikawajima Harima Heavy Ind Co Ltd 宇宙用熱交換器の製作方法
DE4232373A1 (de) * 1992-09-03 1994-03-10 Deutsche Forsch Luft Raumfahrt Verfahren zum Auftragen strukturierter Schichten
US5935462A (en) * 1994-10-24 1999-08-10 Matsushita Electric Industrial Co., Ltd. Repair of metal lines by electrostatically assisted laser ablative deposition
US5683601A (en) * 1994-10-24 1997-11-04 Panasonic Technologies, Inc. Laser ablation forward metal deposition with electrostatic assisted bonding
US5935758A (en) 1995-04-20 1999-08-10 Imation Corp. Laser induced film transfer system
US7534543B2 (en) 1996-04-15 2009-05-19 3M Innovative Properties Company Texture control of thin film layers prepared via laser induced thermal imaging
US5692844A (en) 1996-08-29 1997-12-02 Eastman Kodak Company Re-application of dye to a dye donor element of thermal printers
JP3825112B2 (ja) 1996-12-25 2006-09-20 アークレイ株式会社 音響光学可変調フィルタ
WO1998041189A1 (en) 1997-03-20 1998-09-24 Therics, Inc. Fabrication of tissue products using a mold formed by solid free-form methods
US5963569A (en) 1997-03-28 1999-10-05 International Business Machines Corporation Multiple channel acousto-optic modulators
US5885929A (en) 1997-06-17 1999-03-23 Eastman Kodak Company Reusable donor layer containing dye wells for thermal printing
US6025110A (en) 1997-09-18 2000-02-15 Nowak; Michael T. Method and apparatus for generating three-dimensional objects using ablation transfer
US7116907B1 (en) 1998-02-20 2006-10-03 Fujitsu Limited Acousto-optical tunable filters cascaded together
US6159832A (en) * 1998-03-18 2000-12-12 Mayer; Frederick J. Precision laser metallization
JP3871096B2 (ja) 1998-05-21 2007-01-24 株式会社ティラド 蒸発器、吸収器および過冷却器の組合せ一体型熱交換器と、その製造方法
US6155330A (en) 1998-11-04 2000-12-05 Visteon Global Technologies, Inc. Method of spray forming metal deposits using a metallic spray forming pattern
US6805918B2 (en) * 1999-01-27 2004-10-19 The United States Of America As Represented By The Secretary Of The Navy Laser forward transfer of rheological systems
US6936311B2 (en) * 1999-01-27 2005-08-30 The United States Of America As Represented By The Secretary Of The Navy Generation of biomaterial microarrays by laser transfer
US6815015B2 (en) * 1999-01-27 2004-11-09 The United States Of America As Represented By The Secretary Of The Navy Jetting behavior in the laser forward transfer of rheological systems
WO2000044960A1 (en) * 1999-01-27 2000-08-03 The United States Of America, As Represented By The Secretary Of The Navy Matrix assisted pulsed laser evaporation direct write
US6905738B2 (en) * 1999-01-27 2005-06-14 The United States Of America As Represented By The Secretary Of The Navy Generation of viable cell active biomaterial patterns by laser transfer
US6177151B1 (en) * 1999-01-27 2001-01-23 The United States Of America As Represented By The Secretary Of The Navy Matrix assisted pulsed laser evaporation direct write
WO2000072222A1 (en) 1999-05-24 2000-11-30 Potomac Photonics, Inc. Apparatus for fabrication of miniature structures
US6792326B1 (en) 1999-05-24 2004-09-14 Potomac Photonics, Inc. Material delivery system for miniature structure fabrication
US7014885B1 (en) * 1999-07-19 2006-03-21 The United States Of America As Represented By The Secretary Of The Navy Direct-write laser transfer and processing
US6440503B1 (en) 2000-02-25 2002-08-27 Scimed Life Systems, Inc. Laser deposition of elements onto medical devices
US6649861B2 (en) * 2000-05-24 2003-11-18 Potomac Photonics, Inc. Method and apparatus for fabrication of miniature structures
DE50014868D1 (de) 2000-09-25 2008-01-31 Voxeljet Technology Gmbh Verfahren zum herstellen eines bauteils in ablagerungstechnik
DE10062683A1 (de) 2000-12-15 2002-06-20 Heidelberger Druckmasch Ag Mehrstrahl-Abtastvorrichtung
US6412143B1 (en) 2001-01-08 2002-07-02 Cheng-Lu Chen Structure of material for forming a stop at an end of lashing string
US20020141039A1 (en) 2001-04-02 2002-10-03 Michael Mermelstein Spatial light modulation
US7087200B2 (en) 2001-06-22 2006-08-08 The Regents Of The University Of Michigan Controlled local/global and micro/macro-porous 3D plastic, polymer and ceramic/cement composite scaffold fabrication and applications thereof
GB2379083A (en) 2001-08-20 2003-02-26 Seiko Epson Corp Inkjet printing on a substrate using two immiscible liquids
SG122749A1 (en) 2001-10-16 2006-06-29 Inst Data Storage Method of laser marking and apparatus therefor
GR1004059B (el) 2001-12-31 2002-11-15 Ιωαννα Ζεργιωτη Κατασκευη βιοπολυμερικων σχηματων μεσω εναποθεσης με λειζερ.
US7188492B2 (en) 2002-01-18 2007-03-13 Linde Aktiengesellschaft Plate heat exchanger
DE10210146A1 (de) * 2002-03-07 2003-09-25 Aurentum Innovationstechnologi Qualitätsdruckverfahren und Druckmaschine sowie Drucksbustanz hierfür
US7316748B2 (en) 2002-04-24 2008-01-08 Wisconsin Alumni Research Foundation Apparatus and method of dispensing small-scale powders
US6939660B2 (en) * 2002-08-02 2005-09-06 Eastman Kodak Company Laser thermal transfer donor including a separate dopant layer
US6896429B2 (en) 2003-03-12 2005-05-24 Printronix, Inc. Constant density printer system
EP1606119A1 (en) * 2003-03-13 2005-12-21 Koninklijke Philips Electronics N.V. Marking method and market object
US6873398B2 (en) 2003-05-21 2005-03-29 Esko-Graphics A/S Method and apparatus for multi-track imaging using single-mode beams and diffraction-limited optics
US7294367B2 (en) * 2003-06-06 2007-11-13 The United States Of America As Represented By The Secretary Of The Navy Biological laser printing via indirect photon-biomaterial interactions
US6899988B2 (en) 2003-06-13 2005-05-31 Kodak Polychrome Graphics Llc Laser thermal metallic donors
US7277770B2 (en) 2003-07-15 2007-10-02 Huang Wen C Direct write process and apparatus
US7423286B2 (en) 2003-09-05 2008-09-09 Si2 Technologies, Inc. Laser transfer article and method of making
US7521651B2 (en) 2003-09-12 2009-04-21 Orbotech Ltd Multiple beam micro-machining system and method
US20050095367A1 (en) 2003-10-31 2005-05-05 Babiarz Alec J. Method of noncontact dispensing of viscous material
US7540996B2 (en) 2003-11-21 2009-06-02 The Boeing Company Laser sintered titanium alloy and direct metal fabrication method of making the same
US7799699B2 (en) 2004-06-04 2010-09-21 The Board Of Trustees Of The University Of Illinois Printable semiconductor structures and related methods of making and assembling
KR101429098B1 (ko) 2004-06-04 2014-09-22 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 인쇄가능한 반도체소자들의 제조 및 조립방법과 장치
US8217381B2 (en) 2004-06-04 2012-07-10 The Board Of Trustees Of The University Of Illinois Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics
US7133188B2 (en) 2004-06-07 2006-11-07 Electro Scientific Industries, Inc. AOM modulation techniques employing an upstream Bragg adjustment device
US7236334B2 (en) 2004-08-31 2007-06-26 Hitachi Global Storage Technologies Netherlands B.V. Repeatable ESD protection utilizing a process for unshorting a first shorting material between electrical pads and reshorting by recreating the short
KR20060089839A (ko) * 2005-02-04 2006-08-09 삼성에스디아이 주식회사 패터닝된 유기전계발광소자의 제조 방법
US8216931B2 (en) 2005-03-31 2012-07-10 Gang Zhang Methods for forming multi-layer three-dimensional structures
US7358169B2 (en) 2005-04-13 2008-04-15 Hewlett-Packard Development Company, L.P. Laser-assisted deposition
US7279721B2 (en) * 2005-04-13 2007-10-09 Applied Materials, Inc. Dual wavelength thermal flux laser anneal
US7198879B1 (en) * 2005-09-30 2007-04-03 Eastman Kodak Company Laser resist transfer for microfabrication of electronic devices
AU2006299612A1 (en) * 2005-10-03 2007-04-12 Aradigm Corporation Method and system for laser machining
US7375819B2 (en) 2005-11-01 2008-05-20 Agilent Technologies, Inc. System and method for generating beams of light using an anisotropic acousto-optic modulator
US7784173B2 (en) 2005-12-27 2010-08-31 Palo Alto Research Center Incorporated Producing layered structures using printing
US9327056B2 (en) 2006-02-14 2016-05-03 Washington State University Bone replacement materials
DE102006009900B4 (de) 2006-03-03 2008-06-26 Kraussmaffei Technologies Gmbh Integrierte Systemvorrichtung zur Herstellung von Verbundkörpern
US20070224235A1 (en) 2006-03-24 2007-09-27 Barron Tenney Medical devices having nanoporous coatings for controlled therapeutic agent delivery
US7608308B2 (en) 2006-04-17 2009-10-27 Imra America, Inc. P-type semiconductor zinc oxide films process for preparation thereof, and pulsed laser deposition method using transparent substrates
TWI431380B (zh) 2006-05-12 2014-03-21 Photon Dynamics Inc 沉積修復設備及方法
US7894125B2 (en) 2006-05-30 2011-02-22 Bae Systems Acousto-optic devices
US20080006966A1 (en) 2006-07-07 2008-01-10 Stratasys, Inc. Method for building three-dimensional objects containing metal parts
WO2008014519A2 (en) 2006-07-28 2008-01-31 Microcontinuum, Inc. Addressable flexible patterns
US7935242B2 (en) 2006-08-21 2011-05-03 Micron Technology, Inc. Method of selectively removing conductive material
US8563431B2 (en) * 2006-08-25 2013-10-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7633035B2 (en) * 2006-10-05 2009-12-15 Mu-Gahat Holdings Inc. Reverse side film laser circuit etching
US20080099515A1 (en) 2006-10-11 2008-05-01 Nordson Corporation Thin line conformal coating apparatus and method
US8420978B2 (en) * 2007-01-18 2013-04-16 The Board Of Trustees Of The University Of Illinois High throughput, low cost dual-mode patterning method for large area substrates
US20080233291A1 (en) 2007-03-23 2008-09-25 Chandrasekaran Casey K Method for depositing an inorganic layer to a thermal transfer layer
US7538929B2 (en) 2007-04-06 2009-05-26 Harris Corporation RF phase modulation technique for performing acousto-optic intensity modulation of an optical wavefront
US7667888B2 (en) 2007-04-06 2010-02-23 Harris Corporation Low cost system and method that implements acousto-optic (AO) RF signal excitation
US10231344B2 (en) 2007-05-18 2019-03-12 Applied Nanotech Holdings, Inc. Metallic ink
US8026158B2 (en) * 2007-06-01 2011-09-27 Electro Scientific Industries, Inc. Systems and methods for processing semiconductor structures using laser pulses laterally distributed in a scanning window
US8101247B2 (en) * 2007-06-19 2012-01-24 The United States Of America As Represented By The Secretary Of The Navy Sub-micron laser direct write
WO2009018340A2 (en) 2007-07-31 2009-02-05 Boston Scientific Scimed, Inc. Medical device coating by laser cladding
US8728589B2 (en) * 2007-09-14 2014-05-20 Photon Dynamics, Inc. Laser decal transfer of electronic materials
EP2193657A2 (en) * 2007-09-25 2010-06-09 Explay Ltd. Micro-projector
US7534544B2 (en) 2007-10-19 2009-05-19 E.I. Du Pont De Nemours And Company Method of separating an exposed thermal transfer assemblage
GB2453774B (en) 2007-10-19 2013-02-20 Materials Solutions A method of making an article
US20090130427A1 (en) * 2007-10-22 2009-05-21 The Regents Of The University Of California Nanomaterial facilitated laser transfer
US7938855B2 (en) 2007-11-02 2011-05-10 Boston Scientific Scimed, Inc. Deformable underlayer for stent
KR101528385B1 (ko) * 2008-01-10 2015-06-11 오르보테크 엘티디. 다중 미러 조정 시스템
US8056222B2 (en) 2008-02-20 2011-11-15 The United States Of America, As Represented By The Secretary Of The Navy Laser-based technique for the transfer and embedding of electronic components and devices
US8058598B2 (en) 2008-03-05 2011-11-15 Trex Enterprises Corp. Fourier telescopic imaging system and method
US8215371B2 (en) 2008-04-18 2012-07-10 Stratasys, Inc. Digital manufacturing with amorphous metallic alloys
EP2299784A4 (en) * 2008-06-16 2012-05-30 Toray Industries CONTOUR MODELING METHOD, DEVICE MANUFACTURING METHOD USING THE CONTOUR MODELING METHOD, AND DEVICE
CN102131950B (zh) 2008-06-19 2014-05-28 实用光有限公司 光感应图案
US7942987B2 (en) 2008-06-24 2011-05-17 Stratasys, Inc. System and method for building three-dimensional objects with metal-based alloys
US20100022078A1 (en) 2008-07-24 2010-01-28 Joerg Rockenberger Aluminum Inks and Methods of Making the Same, Methods for Depositing Aluminum Inks, and Films Formed by Printing and/or Depositing an Aluminum Ink
TWI531872B (zh) 2008-09-22 2016-05-01 Asml荷蘭公司 微影裝置、可程式化圖案化器件及微影方法
JP2010098526A (ja) 2008-10-16 2010-04-30 Sony Corp 受信装置、コンテンツ受信方法、およびプログラム
IL197349A0 (en) * 2009-03-02 2009-12-24 Orbotech Ltd A method and system for electrical circuit repair
US20120025182A1 (en) * 2009-04-03 2012-02-02 Sharp Kabushiki Kaisha Donor substrate, process for production of transfer film, and process for production of organic electroluminescent element
DE102009020774B4 (de) * 2009-05-05 2011-01-05 Universität Stuttgart Verfahren zum Kontaktieren eines Halbleitersubstrates
US8262916B1 (en) 2009-06-30 2012-09-11 Microfabrica Inc. Enhanced methods for at least partial in situ release of sacrificial material from cavities or channels and/or sealing of etching holes during fabrication of multi-layer microscale or millimeter-scale complex three-dimensional structures
US20110136162A1 (en) 2009-08-31 2011-06-09 Drexel University Compositions and Methods for Functionalized Patterning of Tissue Engineering Substrates Including Bioprinting Cell-Laden Constructs for Multicompartment Tissue Chambers
US8843416B2 (en) * 2009-09-11 2014-09-23 NetESCO LLC Determining energy consumption in a structure
US8743165B2 (en) 2010-03-05 2014-06-03 Micronic Laser Systems Ab Methods and device for laser processing
US20130029480A1 (en) * 2010-04-09 2013-01-31 Frank Niklaus Free form printing of silicon micro- and nanostructures
US8681412B2 (en) 2010-06-09 2014-03-25 Leica Microsystems Cms Gmbh Acousto-optical system, microscope and method of use of the acousto-optical system
GB201009847D0 (en) * 2010-06-11 2010-07-21 Dzp Technologies Ltd Deposition method, apparatus, printed object and uses
US20120247740A1 (en) 2011-03-31 2012-10-04 Denso International America, Inc. Nested heat exchangers
CN103597404B (zh) 2011-04-08 2017-04-26 Asml荷兰有限公司 光刻设备、可编程图案形成装置以及光刻方法
KR101982887B1 (ko) 2011-07-13 2019-05-27 누보트로닉스, 인크. 전자 및 기계 구조체들을 제조하는 방법들
KR101616761B1 (ko) * 2011-08-16 2016-04-29 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치, 프로그램가능한 패터닝 디바이스 및 리소그래피 방법
RU2539135C2 (ru) 2012-02-27 2015-01-10 Юрий Александрович Чивель Способ получения объемных изделий из порошков и устройство для его осуществления
JP5871013B2 (ja) * 2011-12-27 2016-03-01 Jfeスチール株式会社 方向性電磁鋼板の鉄損改善装置
CN102566193A (zh) 2012-01-16 2012-07-11 华中科技大学 一种具有相控式换能器阵列的声光偏转器
JP6042457B2 (ja) 2012-02-23 2016-12-14 エーエスエムエル ネザーランズ ビー.ブイ. デバイス、露光装置および放射誘導方法
EP2660352A1 (en) 2012-05-02 2013-11-06 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Donor sheet and method for light induced forward transfer manufacturing
GB2501918B (en) 2012-05-11 2014-06-18 Rolls Royce Plc Casing
US9044805B2 (en) 2012-05-16 2015-06-02 Apple Inc. Layer-by-layer construction with bulk metallic glasses
US9943996B2 (en) 2012-05-22 2018-04-17 University Of Southern California Process planning of meniscus shapes for fabricating smooth surfaces in mask image projection based additive manufacturing
WO2013182562A1 (en) * 2012-06-04 2013-12-12 Micronic Mydata AB Optical writer for flexible foils
JP6052931B2 (ja) 2012-06-08 2016-12-27 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置及びデバイス製造方法
US11376349B2 (en) 2012-10-05 2022-07-05 University of Pittsburgh—of the Commonwealth System of Higher Education Biodegradable iron-containing compositions, methods of preparing and applications therefor
EP2909034A4 (en) 2012-10-21 2017-11-29 Photon Jet Ltd. A multi-technology printing system
EP2731126A1 (en) * 2012-11-09 2014-05-14 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Method for bonding bare chip dies
PL2956823T5 (pl) * 2013-02-12 2019-11-29 Carbon Inc Ciągłe cieczowe drukowanie z warstwą międzyfazową
TWI636717B (zh) * 2013-02-18 2018-09-21 奧寶科技有限公司 兩步驟直接寫入之雷射金屬化
US9249015B2 (en) 2013-02-27 2016-02-02 International Business Machines Corporation Mold for forming complex 3D MEMS components
CN103333853B (zh) 2013-07-12 2014-11-26 清华大学 细胞打印方法及细胞打印系统
US20150024317A1 (en) 2013-07-17 2015-01-22 Stratasys, Inc. High-Performance Consumable Materials for Electrophotography-Based Additive Manufacturing
US9023566B2 (en) 2013-07-17 2015-05-05 Stratasys, Inc. ABS part material for electrophotography-based additive manufacturing
US9029058B2 (en) 2013-07-17 2015-05-12 Stratasys, Inc. Soluble support material for electrophotography-based additive manufacturing
EP3058113B1 (en) 2013-10-14 2020-12-02 Orbotech Ltd. Lift printing of multi-composition material structures
US10018889B2 (en) 2013-11-28 2018-07-10 Femtonics Kft. Acousto-optic deflector comprising multiple electro-acoustic transducers
JP6665386B2 (ja) 2013-12-15 2020-03-13 オーボテック リミテッド プリント回路配線の修復
EP2886360B1 (en) 2013-12-17 2016-07-20 Braun GmbH Method of laser induced marking of an article
US20150197063A1 (en) 2014-01-12 2015-07-16 Zohar SHINAR Device, method, and system of three-dimensional printing
WO2015106193A1 (en) 2014-01-13 2015-07-16 Kevin Engel Additive metal deposition process
TWI489516B (zh) * 2014-03-11 2015-06-21 Nat Univ Tsing Hua 電子束還原圖案化金屬的裝置及其方法
KR102345450B1 (ko) 2014-04-10 2021-12-29 오르보테크 엘티디. 펄스-모드 직접-기록 레이저 금속화
US10052824B2 (en) 2014-05-13 2018-08-21 Massachusetts Institute Of Technology Systems, devices, and methods for three-dimensional printing
JP2017528902A (ja) * 2014-05-27 2017-09-28 オーボテック リミテッド レーザ誘起前方転写法による3d構造印刷
US20150346483A1 (en) * 2014-05-30 2015-12-03 Jonathan S. Ehrmann Flat-field scanning lenses, systems, and methods
US9925715B2 (en) * 2014-06-30 2018-03-27 General Electric Company Systems and methods for monitoring a melt pool using a dedicated scanning device
US20160114425A1 (en) * 2014-07-03 2016-04-28 Jian Liu Method for Manipulating Microstructure and Grain Size in Laser Three-Dimensional Additive Manufacturing
CN106575077A (zh) * 2014-08-07 2017-04-19 奥宝科技有限公司 Lift印刷系统
EP3207772B1 (en) * 2014-10-19 2024-04-17 Orbotech Ltd. Lift printing of conductive traces onto a semiconductor substrate
US20160187646A1 (en) * 2014-12-29 2016-06-30 Jonathan S. Ehrmann High-speed optical scanning systems and methods
US10633758B2 (en) * 2015-01-19 2020-04-28 Orbotech Ltd. Printing of three-dimensional metal structures with a sacrificial support
CN107206548B (zh) 2015-01-21 2019-08-13 奥博泰克有限公司 倾斜的激光诱导前向转换喷射
US9887356B2 (en) 2015-01-23 2018-02-06 The Trustees Of Princeton University 3D printed active electronic materials and devices
CN107532275B (zh) 2015-02-05 2019-09-13 迈康尼股份公司 用于激光诱导向前转移且高产量的重复方法、以及通过重新使用多个靶基材板或离散供体点图案的向前转移的供体材料回收
US9842831B2 (en) 2015-05-14 2017-12-12 Mediatek Inc. Semiconductor package and fabrication method thereof
US10471538B2 (en) * 2015-07-09 2019-11-12 Orbotech Ltd. Control of lift ejection angle
WO2018015850A2 (en) * 2016-07-17 2018-01-25 Io Tech Group Ltd. Kit and system for laser-induced material dispensing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020196196A (ja) * 2019-06-03 2020-12-10 株式会社リコー 光吸収材を飛翔させる装置、立体造形物を造形する装置、光吸収材を飛翔させる方法
JP7287124B2 (ja) 2019-06-03 2023-06-06 株式会社リコー 光吸収材を飛翔させる装置、立体造形物を造形する装置、光吸収材を飛翔させる方法
US11740453B2 (en) 2019-06-03 2023-08-29 Ricoh Company, Ltd. Apparatus configured to fly light-absorbing material, apparatus configured to model three-dimensional modeled object, and method of flying light-absorbing material

Also Published As

Publication number Publication date
KR20180030609A (ko) 2018-03-23
CN107849687B (zh) 2020-01-14
EP3322835A4 (en) 2019-02-27
CN107849687A (zh) 2018-03-27
EP3322835A1 (en) 2018-05-23
WO2017006306A1 (en) 2017-01-12
US10471538B2 (en) 2019-11-12
US20180193948A1 (en) 2018-07-12

Similar Documents

Publication Publication Date Title
JP2018523751A (ja) Lift放出角度の制御
KR101012913B1 (ko) 다중빔 미세가공 시스템 및 방법
KR101115643B1 (ko) 다중 빔 마이크로 기계 가공 시스템 및 방법
KR101310243B1 (ko) 고속 빔 편향 링크 가공
US20220121082A1 (en) High-Speed Dynamic Beam Shaping
US20080049285A1 (en) System and method for employing a resonant scanner in an x-y high speed drilling system
JP3872462B2 (ja) レーザ加工装置、及びレーザ加工方法
US20230048420A1 (en) Laser processing device and method for laser-processing a workpiece
KR101962527B1 (ko) 광학 빔 조향을 위한 다수의 트랜스듀서를 구비한 음향 광학 편향기
JP4467390B2 (ja) レーザ加工方法及びレーザ照射装置
JP2008129535A (ja) ビーム振り分け装置、及び、多軸レーザ照射装置
JP2006314932A (ja) 液滴吐出装置、パターン形成方法、電気光学装置の製造方法及び電気光学装置
JP2008137039A (ja) 光の照射方法、回路基板の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180109