JP2018181855A - フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池 - Google Patents

フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池 Download PDF

Info

Publication number
JP2018181855A
JP2018181855A JP2018138133A JP2018138133A JP2018181855A JP 2018181855 A JP2018181855 A JP 2018181855A JP 2018138133 A JP2018138133 A JP 2018138133A JP 2018138133 A JP2018138133 A JP 2018138133A JP 2018181855 A JP2018181855 A JP 2018181855A
Authority
JP
Japan
Prior art keywords
less
mass
lithium
electrolytic solution
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018138133A
Other languages
English (en)
Other versions
JP6555400B2 (ja
Inventor
大輔 川上
Daisuke Kawakami
大輔 川上
浩之 徳田
Hiroyuki Tokuda
浩之 徳田
雅裕 竹原
Masahiro Takehara
雅裕 竹原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47432267&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2018181855(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Publication of JP2018181855A publication Critical patent/JP2018181855A/ja
Application granted granted Critical
Publication of JP6555400B2 publication Critical patent/JP6555400B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】初期充電容量、入出力特性およびインピーダンス特性が改善されることで、初期の電池特性と耐久性のみならず、耐久後も高い入出力特性およびインピーダンス特性が維持される非水系電解液二次電池をもたらすことができる非水系電解液を提供する。【解決手段】フルオロスルホン酸リチウムを含有し、かつ非水系電解液中の硫酸イオンの含有量が、1.0×10−7mol/L以上1.0×10−2mol/L以下である非水系電解液。【選択図】なし

Description

本発明は、特定量のカルボン酸が含まれるフルオロスルホン酸リチウム、特定量のハロゲン元素が含まれるフルオロスルホン酸リチウム、特定量の硫酸イオン分が含まれるフルオロスルホン酸リチウム、これらフルオロスルホン酸リチウムを含有する非水系電解液、及び非水系電解液二次電池に関する。
携帯電話、ノートパソコン等のいわゆる民生用の電源から自動車用等の駆動用車載電源や定置用大型電源等の広範な用途にリチウム二次電池等の非水系電解液二次電池が実用化されつつある。しかしながら、近年の非水系電解液二次電池に対する高性能化の要求はますます高くなっており、電池特性、例えば高容量、高出力、高温保存特性、サイクル特性等を高い水準で達成することが求められている。
特に電気自動車用電源としてリチウム二次電池を使用する場合、電気自動車は発進、加速時に大きなエネルギーを要し、また、減速時に発生する大きなエネルギーを効率よく回生させなければならないため、リチウム二次電池には、高い出力特性、入力特性が要求される。また、電気自動車は屋外で使用されるため、寒冷時期においても電気自動車が速やかに発進、加速できるためには、リチウム二次電池には、特に、−30℃のような低温における高い入出力特性(電池内部インピーダンスが低いこと)が要求される。加えて、高温環境下で繰り返し充放電させた場合においてもその容量の劣化が少なく、電池内部インピーダンスの増加が少ない必要がある。
また、電気自動車用途のみならず、各種バックアップ用途や、電力供給の負荷平準化用途、自然エネルギー発電の出力安定化用途等の定置用大型電源としてリチウム二次電池を使用する際には、単電池が大型化されるだけでなく、多数の単電池が直並列接続される。このため、個々の単電池の放電特性のばらつきや、単電池間における温度のばらつき、個々の単電池の容量や充電状態のばらつきといった各種の非一様性に起因する信頼性や安全性の問題が生じやすい。電池設計や管理が不適切であると、上記のような組電池を構成する単電池の一部だけが高い充電状態のまま保持されたり、あるいは電池内部の温度が上昇して高温状態に陥るというような問題を生じる。
即ち、現在の非水系電解液二次電池には、初期の容量と入出力特性が高く、電池内部インピーダンスが低いこと、高温保存試験やサイクル試験といった耐久試験後の容量維持率が高いこと、耐久試験後でも入出力性能とインピーダンス特性に優れること、といった項目が、極めて高いレベルで要求される。
これまで、非水系電解液二次電池の入出力特性、インピーダンス特性、高温サイクル特性、高温保存特性を改善するための手段として、正極や負極の活物質や、非水系電解液を始めとする様々な電池の構成要素について、数多くの技術が検討されている。例えば特許文献1には、LiFSOを電解質とすると、60℃充放電サイクル評価時の放電容量が高い電池が得られることが記載されている。特許文献1によると、電解質にLiClOを用いた場合、正極活物質の貴な電位によりLiClOが分解し活性酸素が生成し、この活性酸素が溶媒を攻撃して溶媒の分解反応を促進させる。また、電解質にCFSOLi、LiBFおよびLiPFを用いた場合は、正極活物質の貴な電位により電解質の分解が進行してフッ素が生成し、このフッ素が溶媒を攻撃して溶媒の分解反応を促進させると記載されている。
特開平7−296849号公報
本発明の課題は、初期充電容量、入出力特性およびインピーダンス特性が改善されることで、初期の電池特性と耐久性のみならず、耐久後も高い入出力特性およびインピーダンス特性が維持される非水系電解液二次電池をもたらすことができる非水系電解液用の添加剤ならびに非水系電解液を提供することにあり、また、この非水系電解液を用いた非水系電解液二次電池を提供することにある。
本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、特定量のカルボン酸、ハロゲン元素、硫酸イオンを含有するフルオロスルホン酸リチウムを非水系電解液に加えた場合、初期充電容量、及び容量維持率が改善された非水系電解液二次電池をもたらすことができる非水系電解液が実現できることを見出し、本発明を完成させるに至った。
即ち、本発明は、下記フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池に関する。
<1> カルボン酸の含有量が、フルオロスルホン酸リチウムの全量に対して、2.5×10−2mol/kg以下であるフルオロスルホン酸リチウム。
<2> フルオロスルホン酸リチウムを含有し、かつカルボン酸イオンの含有量が、1.0×10−7mol/L以上4.0×10−3mol/L以下である、非水系電解液。
<3> ハロゲン元素の含有量が1.5×10−3mol/kg以下であるフルオロスルホン酸リチウム。
<4> フルオロスルホン酸リチウムを含有し、かつ非水系電解液中のフッ化物イオンを除いたハロゲン化物イオンの含有量が、1.0×10−7mol/L以上1.0×10−3mol/L以下である非水系電解液。
<5> 硫酸イオン分のモル含有量が、フルオロスルホン酸リチウムの重量に対して、2.5×10−1mol/kg以下であるフルオロスルホン酸リチウム。
<6> フルオロスルホン酸リチウムを含有し、かつ非水系電解液中の硫酸イオンの含有量が、1.0×10−7mol/L以上1.0×10−2mol/L以下である非水系電解液。
<7> リチウムイオンを吸蔵放出可能な負極、並びに正極を備えた非水系電解液電池に用いられる非水系電解液において、前記<1>、<3>または<5>に記載のフルオロスルホン酸リチウムを含有する非水系電解液。
<8> リチウムイオンを吸蔵放出可能な負極及び正極を備えた非水系電解液電池に用いられる非水系電解液であって、
該非水系電解液は、フルオロスルホン酸リチウム、フルオロスルホン酸リチウム以外のリチウム塩、及び非水系溶媒を含有し、
該非水系電解液中のフルオロスルホン酸リチウムのモル含有量が、0.0005mol/L以上0.5mol/L以下であり、かつ、該非水系電解液中の硫酸イオン分のモル含有量が1.0×10−7mol/L以上1.0×10−2mol/L以下である非水系電解液。
<9> フルオロスルホン酸リチウム以外のリチウム塩が、LiPF及びLiBFの少なくとも一方である前記<7>または<8>に記載の非水系電解液。
<10> 非水系電解液が、フッ素原子を有する環状カーボネートを含有する前記<7>〜<9>の何れか1項に記載の非水系電解液。
<11> 前記フッ素原子を有する環状カーボネートが、非水系電解液中に0.001質量%以上85質量%以下含有されている前記<10>に記載の非水系電解液。
<12> 炭素−炭素不飽和結合を有する環状カーボネートを含有する前記<7>〜<1
1>の何れか1項に記載の非水系電解液。
<13> 前記炭素−炭素不飽和結合を有する環状カーボネートが、非水系電解液中に0.001質量%以上10質量%以下含有されている前記<12>に記載の非水系電解液。<14> 環状スルホン酸エステルを含有する前記<7>〜<13>の何れか1項に記載の非水系電解液。
<15> 前記環状スルホン酸エステルの非水系電解液中における含有量が0.001質量%以上10質量%以下である前記<14>に記載の非水系電解液。
<16> シアノ基を有する化合物を含有する前記<7>〜<15>のいずれか1項に記載の非水系電解液。
<17> 前記シアノ基を有する化合物の非水系電解液中における含有量が0.001質量%以上10質量%以下である前記<16>に記載の非水系電解液。
<18> ジイソシアネート化合物を含有する前記<7>〜<17>の何れか1項に記載の非水系電解液。
<19> 前記ジイソシアネート化合物の非水系電解液中における含有量が0.001質量%以上5質量%以下である前記<18>に記載の非水系電解液。
<20> リチウムオキサラート塩類を含有する前記<7>〜<19>の何れか1項に記載の非水系電解液。
<21> リチウムイオンを吸蔵・放出可能な負極及び正極、並びに前記<7>〜<20>のいずれか1項に記載の非水系電解液を含む非水系電解液二次電池。
<22> 前記負極は、集電体上に負極活物質層を有し、前記負極活物質層は、ケイ素の単体金属、合金及び化合物、並びにスズの単体金属、合金及び化合物のうちの少なくとも1種を含有する負極活物質を含む前記<21>に記載の非水系電解液二次電池。
<23> 前記負極は、集電体上に負極活物質層を有し、前記負極活物質層は、炭素質材料を含有する負極活物質を含む前記<21>に記載の非水系電解液二次電池。
<24> 前記負極は、集電体上に負極活物質層を有し、前記負極活物質層は、リチウムチタン複合酸化物を含有する負極活物質を含む前記<21>に記載の非水系電解液二次電池。
<25> 前記正極は、集電体上に正極活物質層を有し、前記正極活物質層は、リチウム・コバルト複合酸化物、リチウム・コバルト・ニッケル複合酸化物、リチウム・マンガン複合酸化物、リチウム・コバルト・マンガン複合酸化物、リチウム・ニッケル複合酸化物、リチウム・コバルト・ニッケル複合酸化物、リチウム・ニッケル・マンガン複合酸化物、及びリチウム・ニッケル・コバルト・マンガン複合酸化物、からなる群より選ばれた少なくとも一種を含有する前記<21>〜<24>のいずれか1項に記載の非水系電解液二次電池。
<26> 前記正極は、集電体上に正極活物質層を有し、前記正極活物質層は、LixMPO(Mは周期表の第4周期の第4族〜第11族の遷移金属からなる群より選ばれた少なくとも一種の元素、xは0<x<1.2)を含有する前記<21>〜<24>のいずれか1項に記載の非水系電解液二次電池。
発明者らは、特定量の硫酸イオン分を含有するフルオロスルホン酸リチウムを、非水系電解液中に含有させることにより、電池内部インピーダンスが低下し、低温出力特性が向上するという優れた特徴が発現されることを見出し、更に耐久後にも初期の電池内部インピーダンス特性や高出力特性が持続するとの知見を得て、本発明を完成させた。詳細は詳らかではないが、フルオロスルホン酸リチウムに特定の割合で硫酸イオンを含有させることにより相乗効果が発現されていると考えられる。
すなわち、本発明の非水系電解液によれば、初期充電容量、入出力特性、電池内部インピーダンス特性が改善された非水系電解液二次電池をもたらすことができる非水系電解液が提供される。また、本発明の非水系電解液によれば、高温保存試験やサイクル試験とい
った耐久試験後においても、容量維持率が高く、入出力性能に優れ、また、インピーダンス特性にも優れた非水系電解液電池が提供できることになる。よって、産業上の観点では、上記の携帯機器用途や、電気自動車用途、定置用大型電源用途等、各方面に適用可能な優れた電池を供給することが可能となる。
以下、本発明の実施の形態について詳細に説明するが、本発明はこれらに限定されるものではなく、任意に変形して実施することができる。
<フルオロスルホン酸リチウム>
フルオロスルホン酸リチウムを電池等に用いた場合により高い性能を示す為に、純度は高いことが好ましい。
その中でも、例えばカルボン酸リチウムを用いて製造した場合、電池内で容易に酸化されるカルボン酸イオンが電解液中に溶解しないように除去されていることが電池特性を制御する上で望ましい。これは、水に溶かした際のカルボン酸イオン量を測定することで確認が出来る。
フルオロスルホン酸リチウムのカルボン酸イオンの含有量は、上限値としては、2.5×10−2mol/kg以下であり、好ましくは2.0×10−2mol/kg以下、より好ましくは1.5×10−2mol/kg以下である。一方で、下限値としては、1.0×10−5mol/kg以上であり、好ましくは5.0×10−5mol/kg以上、より好ましくは1.0×10−4mol/kg以上である。
また、フルオロスルホン酸リチウムを電解液中に含有する場合、非水系電解液中のカルボン酸イオンの含有量は、上限値としては、4.0×10−3mol/L以下であり、好ましくは2.0×10−3mol/L以下、より好ましくは1.5×10−3mol/L以下、更に好ましくは1.0×10−3mol/L以下、最も好ましくは5.0×10−4mol/L以下である。一方で、下限値としては、1.0×10−7mol/L以上であり、好ましくは5.0×10−7mol/L以上、より好ましくは1.0×10−6mol/L以上である。カルボン酸イオンのモル濃度が上記範囲内であると、電池内部インピーダンスが低くなり入出力特性や耐久性がより発現し易くなる。また、上記値は、添加量から算出される値及び電解液を分析して、電解液中に含まれる含有量から適宜算出される値のうち少なくとも一方である。
また、電池内で容易に酸化されるハロゲン化物イオン、電池内に混入する微量の水で容易にハロゲン化物イオンを生成する化学種、又は、電池内の反応によってハロゲン化物イオンを生成する可能性のある、ハロゲン元素を有する化合物が電解液中に溶解しないように除去されていることが電池特性を制御する上で望ましい。これは、水に溶かした際のハロゲン化物イオン量を測定することで確認が出来る。一方、極微量のハロゲン化物塩を混入させると電池の性能が向上することも知られている。
フルオロスルホン酸リチウムのハロゲン元素の含有量は、上限値としては、1.5×10−3mol/kg以下であり、好ましくは1.0×10−3mol/kg以下、より好ましくは5.0×10−4mol/kg以下、更に好ましくは3.0×10−4mol/kg以下である。一方で、下限値としては、1.0×10−5mol/kg以上であり、好ましくは5.0×10−5mol/kg以上、より好ましくは1.0×10−4mol/kg以上である。
また、フルオロスルホン酸リチウムを電解液中に含有する場合、非水系電解液中のフッ化物イオンを除いたハロゲン化物イオンの含有量は、上限値としては、1.0×10−3mol/L以下であり、好ましくは5.0×10−4mol/L以下、より好ましくは1
.0×10−4mol/L以下、更に好ましくは5.0×10−5mol/L以下、最も好ましくは3.0×10−5mol/L以下である。一方で、下限値としては、1.0×10−7mol/L以上であり、好ましくは5.0×10−7mol/L以上、より好ましくは1.0×10−6mol/L以上である。フッ化物イオンを除いたハロゲン化物イオンのモル濃度が上記範囲内であると、電池内部インピーダンスが低くなり入出力特性や耐久性がより発現し易くなる。また、上記値は、添加量から算出される値及び電解液を分析して、電解液中に含まれる含有量から適宜算出される値のうち少なくとも一方である。
また、本発明は、特定量の硫酸イオン分を含有するフルオロスルホン酸リチウムに関する。硫酸イオンは、例えば、上記ハロゲン化リチウムを用いてフルオロスルホン酸リチウムを製造する際に副生することがある。硫酸イオンは、硫酸リチウム、硫酸水素リチウム、硫酸のいずれの形態で含有していてもよい。本発明のフルオロスルホン酸リチウムは、硫酸イオン分のモル含有量が、フルオロスルホン酸リチウムの重量に対して下限値として、1.0×10−5mol/kg以上であり、好ましくは5.0×10−5mol/kg以上、より好ましくは1.0×10−4mol/kg以上である。また、フルオロスルホン酸リチウム中に含有する硫酸イオン分のモル含有量が、上限値として、2.5×10−1mol/kg以下であり、好ましくは2.0×10−1mol/kg以下、より好ましくは1.5×10−1mol/kg以下である。硫酸イオン分のモル含有量が上記範囲内にあることにより、電解液に加えた際の電池内での硫酸イオン分の効果が十分に発現し、また、副反応による抵抗の増加を抑制する。
また、フルオロスルホン酸リチウムを電解液中に含有する場合、非水系電解液中の硫酸イオンの含有量は、上限値としては、1.0×10−2mol/L以下であり、好ましくは8.0×10−3mol/L以下、より好ましくは5.0×10−3mol/L以下、更に好ましくは1.0×10−3mol/L以下、最も好ましくは5.0×10−4mol/L以下である。一方で、下限値としては、1.0×10−7mol/L以上であり、好ましくは5.0×10−7mol/L以上、より好ましくは8.0×10−7mol/L以上である。硫酸イオンのモル濃度が上記範囲内であると、電池内部インピーダンスが低くなり入出力特性や耐久性がより発現し易くなる。また、上記値は、添加量から算出される値及び電解液を分析して、電解液中に含まれる含有量から適宜算出される値のうち少なくとも一方である。
本発明のフルオロスルホン酸リチウムの合成及び入手の方法は、特に制限されず、いかなる方法を用いて合成されたものであっても、又は入手されたものであっても使用することができる。
ここで、フルオロスルホン酸リチウムの合成方法としては、例えば、フッ化リチウムやリチウムフッ化ケイ素化合物と三酸化硫黄やフルオロスルホン酸を反応させてフルオロスルホン酸リチウムを得る方法や、フルオロスルホン酸とリチウムを反応させてフルオロスルホン酸リチウムを得る方法、フルオロスルホン酸のアンモニウム塩とリチウムとを反応させてフルオロスルホン酸リチウムを得る方法、フルオロスルホン酸とカルボン酸リチウムとを反応させて、塩交換することによりフルオロスルホン酸リチウムを得る方法、フルオロスルホン酸とハロゲン化リチウムとを反応させて塩交換することによりフルオロスルホン酸リチウムを得る方法、クロロスルホン酸等の他のハロスルホン酸のように、容易にフッ素に置換される官能基を持つ置換スルホン酸リチウムをフッ素、フッ酸、フッ化カリウム等のフッ化物塩酸性フッ化カリウム等の酸性フッ化物塩、非金属無機フッ化物や有機フッ素化剤等でフッ素置換して得る方法、等が挙げられる。
これらの反応において、溶媒使用の有無は特に限定はされないが、用いられる場合は、反応試剤に合わせて、各種有機溶媒や水以外の無機溶媒から選ぶ事が出来る。この際、残存しにくく、残存した場合でも影響が小さい溶媒を用いることが好ましく、有機溶媒では
炭酸エステル等の非プロトン性溶媒、無機溶媒では無水フッ酸などをあげることが出来る。
<1.非水系電解液>
本発明の非水系電解液は、少なくとも、フルオロスルホン酸リチウム、フルオロスルホン酸リチウム以外のリチウム塩、及びこれらを溶解する非水系溶媒を含有するものである。
<1−1.フルオロスルホン酸リチウム>
本発明の非水系電解液に用いるフルオロスルホン酸リチウムは、前項に記載されたフルオロスルホン酸リチウムを用いることができる。
本発明の非水系電解液においては、非水系電解液中のフルオロスルホン酸リチウムのモル含有量が、下限値として、0.0005mol/L以上であり、0.01mol/L以上であることが好ましく、0.02mol/L以上であることがより好ましい。また、上限値として、0.5mol/L以下であり、0.45mol/L以下であることが好ましく、0.4mol/L以下であることがより好ましい。フルオロスルホン酸リチウムの濃度の範囲としては、0.0005mol/L以上0.5mol/L以下であり、0.01mol/L以上0.5mol/L以下が好ましく、0.01mol/L以上0.45mol/L以下がより好ましく、0.01mol/L以上0.40mol/L以下が特に好ましい。フルオロスルホン酸リチウムのモル濃度が上記範囲内であると、電池内部インピーダンスが低くなり、入出力特性や耐久性に優れる。
また、上記値は、添加量から算出される値及び電解液を分析して、電解液中に含まれる含有量から適宜算出される値のうち少なくとも一方である。
また、本発明の非水系電解液においては、非水系電解液中のフルオロスルホン酸リチウムの対アニオン種FSO のモル含有量が、下限値としては、0.0005mol/L以上であることが好ましく、0.01mol/L以上であることがより好ましく、0.02mol/L以上であることが特に好ましい。また、上限値としては、0.5mol/L以下であることが好ましく、0.45mol/L以下であることがより好ましく、0.4mol/L以下であることが特に好ましい。対アニオン種FSO の濃度が上記範囲内であると、電池内部インピーダンスが低くなり入出力特性や耐久性がより発現し易くなる。対アニオン種FSO の濃度の範囲としては、0.0005mol/L以上0.5mol/L以下が好ましく、0.01mol/L以上0.5mol/L以下が好ましく、0.01mol/L以上0.45mol/L以下が更に好ましく、0.01mol/L以上0.40mol/L以下が特に好ましい。また、上記値は、添加量から算出される値及び電解液を分析して、電解液中に含まれる含有量から適宜算出される値のうち少なくとも一方である。
なお、非水系電解液中の、対アニオン種FSO のモル含有量は、例えば、非水系電解液を調製するにあたって使用したフルオロスルホン酸リチウムの量によって決定することができる。
<1−2.フルオロスルホン酸リチウム以外のリチウム塩>
本発明における非水系電解液は、特定量の硫酸イオン分を含有するフルオロ硫酸リチウムを含有するが、さらにその他のリチウム塩を1種以上含有することが好ましい。
その他のリチウム塩としては、この用途に用いることが知られているものであれば、特に制限はなく、具体的には以下のものが挙げられる。
例えば、LiPF、LiBF、LiClO、LiAlF、LiSbF、LiTaF、LiWF等の無機リチウム塩;
LiPOF、LiPO等のLiPF以外のフルオロリン酸リチウム塩類;
LiWOF等のタングステン酸リチウム塩類;
HCOLi、CHCOLi、CHFCOLi、CHFCOLi、CFCOLi、CFCHCOLi、CFCFCOLi、CFCFCFCOLi、CFCFCFCFCOLi等のカルボン酸リチウム塩類;
CHSOLi、CHFSOLi、CHFSOLi、CFSOLi、CFCFSOLi、CFCFCFSOLi、CFCFCFCFSOLi等のスルホン酸リチウム塩類;
LiN(FCO、LiN(FCO)(FSO)、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiN(CFSO)(CSO)等のリチウムイミド塩類;
LiC(FSO、LiC(CFSO、LiC(CSO等のリチウムメチド塩類;
リチウムジフルオロオキサラトボレート、リチウムビス(オキサラト)ボレート、リチウムテトラフルオロオキサラトフォスフェート、リチウムジフルオロビス(オキサラト)フォスフェート、リチウムトリス(オキサラト)フォスフェート等のリチウムオキサラート塩類;
その他、LiPF(CF、LiPF(C、LiPF(CFSO、LiPF(CSO、LiBFCF、LiBF、LiBF、LiBF(CF、LiBF(C、LiBF(CFSO、LiBF(CSO等の含フッ素有機リチウム塩類;等が挙げられる。
以上のなかでも、LiPF、LiBF、LiSbF、LiTaF、LiPO、CFSOLi、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiC(FSO、LiC(CFSO、LiC(CSO、リチウムビスオキサラトボレート、リチウムジフルオロオキサラトボレート、リチウムテトラフルオロオキサラトホスフェート、リチウムジフルオロビスオキサラトフォスフェート、LiBFCF、LiBF、LiPF(CF、LiPF(C等が好ましい。さらに、これらの中でも、LiPF、LiBFが好ましく、LiPFが最も好ましい。
本発明の非水系電解液においては、非水系電解液中のフルオロスルホン酸リチウム以外のリチウム塩の対アニオン種(例えば、フルオロスルホン酸リチウム以外のリチウム塩がLiPFの場合のPF )のモル含有量が、下限値としては、0.5mol/L以上であることが好ましく、0.6mol/L以上であることがより好ましく、0.7mol/L以上であることが特に好ましい。また、上限値としては、3.0mol/L以下であることが好ましく、2.0mol/L以下であることがより好ましく、1.5mol/L以下であることが特に好ましい。フルオロスルホン酸リチウム以外のリチウム塩の対アニオン種の濃度範囲としては、0.5mol/L以上3.0mol/L以下であることが好ましく、0.5mol/L以上2.0mol/L以下であることがより好ましく、0.5mol/L以上1.5mol/L以下であることが更に好ましい。フルオロスルホン酸リチウム以外のリチウム塩の対アニオン種の濃度が上記範囲内であると、非水系電解液中の総イオン含有量が存在量と電解液の粘性が適度なバランスとなるため、イオン伝導度が低下することなく電池内部インピーダンスが低くなり、入出力特性の効果発現し易くなる。
本発明において、非水系電解液中の、フルオロスルホン酸リチウム以外のリチウム塩中のリチウムのモル含有量[フルオロスルホン酸リチウム以外のリチウム塩]に対するフルオロスルホン酸リチウムのモル含有量[フルオロスルホン酸リチウム]の比([フルオロスルホン酸リチウム]/[フルオロスルホン酸リチウム以外のリチウム塩])は、0.001以上1.2以下であることが好ましい。
[フルオロスルホン酸リチウム]/[フルオロスルホン酸リチウム以外のリチウム塩]の比率が上記範囲内であると、フルオロスルホン酸塩の特徴である入出力特性や耐久性が発現し易くなる。本発明の効果をより顕著に発揮するためには、[フルオロスルホン酸リチウム]/[フルオロスルホン酸リチウム以外のリチウム塩]は、好ましくは0.01以上、より好ましくは0.02以上であり、また、好ましくは1.1以下、より好ましくは1.0以下、更に好ましくは0.7以下である。そして、[フルオロスルホン酸リチウム]/[フルオロスルホン酸リチウム以外のリチウム塩]の範囲としては、0.001以上1.2以下が好ましく、0.01以上1.1以下がより好ましく、0.01以上1.0以下が更に好ましく、0.01以上0.7以下が特に好ましい。
また、これらに加えて、出力特性やハイレート充放電特性、高温保存特性、サイクル特性等を向上させる効果がある点から、上記のLiPF以外のフルオロリン酸リチウム塩類、リチウムイミド塩類、リチウムオキサラート塩類、の中から選ばれるリチウム塩を含有させると好ましい場合がある。これらリチウム塩としては、具体的には、LiPO、LiBF、LiN(CFSO、LiN(FSO、リチウムジフルオロオキサラトボレート、リチウムビスオキサラトボレート、リチウムジフルオロビスオキサラトフォスフェート、リチウムテトラフルオロビスオキサラートフォスフェートの中から選ばれるリチウム塩が好ましい。
本発明においては、LiPO、LiBF、LiN(CFSO、LiN(FSO、リチウムジフルオロオキサラトボレート、リチウムビスオキサラトボレート、リチウムジフルオロビスオキサラトフォスフェート、リチウムテトラフルオロビスオキサラートフォスフェートの中から選ばれるリチウム塩の含有量は、本発明の効果を著しく損なわない限り任意であるが、下限値としては、0.0005mol/L以上であることが好ましく、0.001mol/L以上であることがより好ましく、0.01mol/L以上であることが特に好ましい。また、上限値としては、0.5mol/L以下であることが好ましく、0.45mol/L以下であることがより好ましく、0.4mol/L以下であることが特に好ましい。
このなかで、LiPOを電解液中に含有させる場合の電解液の調製は、別途公知の手法で合成したLiPOを、LiPFを含む電解液に添加する方法や活物質や極板等の電池構成要素中に水を共存させておき、LiPFを含む電解液を用いて電池を組み立てる際に系中でLiPOを発生させる方法が挙げられ、本発明においてはいずれの手法を用いてもよい。
上記の非水系電解液、および非水系電解液電池中におけるLiPOの含有量を測定する手法としては、特に制限がなく、公知の手法であれば任意に用いることができるが、具体的にはイオンクロマトグラフィーや、F核磁気共鳴分光法(以下、NMRと省略する場合がある)等が挙げられる。
<1−3.非水系溶媒>
本発明において、フルオロスルホン酸リチウム、フルオロスルホン酸リチウム以外のリチウム塩を溶解する為の非水系溶媒の代表的な具体例を以下に列挙する。本発明においては、これらの非水系溶媒は単独或いは複数の溶媒を任意の割合で混合した混合液として使
用されるが、本発明の効果を著しく損なわない限りこれらの例示に限定されない。
<飽和環状カーボネート>
本発明において非水系溶媒として用いることができる飽和環状カーボネートとしては、炭素数2〜4のアルキレン基を有するものが挙げられる。
具体的には、炭素数2〜4の飽和環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。中でも、エチレンカーボネートとプロピレンカーボネートがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、1種を単独で用いる場合の配合量の下限は、非水系溶媒100体積%中、3体積%以上、より好ましくは5体積%以上である。この範囲とすることで、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液二次電池の大電流放電特性、負極に対する安定性、サイクル特性を良好な範囲としやすくなる。また上限は、90体積%以下、より好ましくは85体積%以下、さらに好ましくは80体積%以下である。この範囲とすることで、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液二次電池の負荷特性を良好な範囲としやすくなる。
また、飽和環状カーボネートを2種類以上の任意の組み合わせで用いることもできる。好ましい組合せの一つは、エチレンカーボネートとプロピレンカーボネートとの組み合わせである。この場合のエチレンカーボネートとプロピレンカーボネートの体積比は、99:1〜40:60が好ましく、特に好ましくは95:5〜50:50である。更に、非水系溶媒全体に占めるプロピレンカーボネートの量は、1体積%以上、好ましくは2体積%以上、より好ましくは3体積%以上、また上限は、通常20体積%以下、好ましくは8体積%以下、より好ましくは5体積%以下である。この範囲でプロピレンカーボネートを含有すると、エチレンカーボネートとジアルキルカーボネート類との組み合わせの特性を維持したまま、更に低温特性が優れるので好ましい。
<鎖状カーボネート>
本発明において非水系溶媒として用いることができる鎖状カーボネートとしては、炭素数3〜7のものが挙げられる。
具体的には、炭素数3〜7の鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、n−プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネート、n−ブチルメチルカーボネート、イソブチルメチルカーボネート、t−ブチルメチルカーボネート、エチル−n−プロピルカーボネート、n−ブチルエチルカーボネート、イソブチルエチルカーボネート、t−ブチルエチルカーボネート等が挙げられる。
中でも、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、n−プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネートが好ましく、特に好ましくはジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートである。
また、フッ素原子を有する鎖状カーボネート類(以下、「フッ素化鎖状カーボネート」と略記する場合がある)も好適に用いることができる。フッ素化鎖状カーボネートが有するフッ素原子の数は、1以上であれば特に制限されないが、通常6以下であり、好ましく
は4以下である。フッ素化鎖状カーボネートが複数のフッ素原子を有する場合、それらは互いに同一の炭素に結合していてもよく、異なる炭素に結合していてもよい。フッ素化鎖状カーボネートとしては、フッ素化ジメチルカーボネート誘導体、フッ素化エチルメチルカーボネート誘導体、フッ素化ジエチルカーボネート誘導体等が挙げられる。
フッ素化ジメチルカーボネート誘導体としては、フルオロメチルメチルカーボネート、ジフルオロメチルメチルカーボネート、トリフルオロメチルメチルカーボネート、ビス(フルオロメチル)カーボネート、ビス(ジフルオロ)メチルカーボネート、ビス(トリフルオロメチル)カーボネート等が挙げられる。
フッ素化エチルメチルカーボネート誘導体としては、2−フルオロエチルメチルカーボネート、エチルフルオロメチルカーボネート、2,2−ジフルオロエチルメチルカーボネート、2−フルオロエチルフルオロメチルカーボネート、エチルジフルオロメチルカーボネート、2,2,2−トリフルオロエチルメチルカーボネート、2,2−ジフルオロエチルフルオロメチルカーボネート、2−フルオロエチルジフルオロメチルカーボネート、エチルトリフルオロメチルカーボネート等が挙げられる。
フッ素化ジエチルカーボネート誘導体としては、エチル−(2−フルオロエチル)カーボネート、エチル−(2,2−ジフルオロエチル)カーボネート、ビス(2−フルオロエチル)カーボネート、エチル−(2,2,2−トリフルオロエチル)カーボネート、2,2−ジフルオロエチル−2’−フルオロエチルカーボネート、ビス(2,2−ジフルオロエチル)カーボネート、2,2,2−トリフルオロエチル−2’−フルオロエチルカーボネート、2,2,2−トリフルオロエチル−2’,2’−ジフルオロエチルカーボネート、ビス(2,2,2−トリフルオロエチル)カーボネート等が挙げられる。
鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
鎖状カーボネートは、非水系溶媒100体積%中、15体積%以上であることが好ましい。15体積%以上とすることにより、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液二次電池の大電流放電特性を良好な範囲としやすくなる。また、鎖状カーボネートは、非水系溶媒100体積%中、90体積%以下であることが好ましい。90体積%以下とすることにより、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液二次電池の大電流放電特性を良好な範囲としやすくなる。鎖状カーボネートの配合量は、より好ましくは20体積%以上、さらに好ましくは25体積%以上であり、また、より好ましくは85体積%以下、さらに好ましくは80体積%以下である。
さらに、特定の鎖状カーボネートに対して、エチレンカーボネートを特定の配合量で組み合わせることにより、電池性能を著しく向上させることができる。
例えば、特定の鎖状カーボネートとしてジメチルカーボネートとエチルメチルカーボネートを選択した場合、エチレンカーボネートの配合量が15体積%以上、40体積%以下、ジメチルカーボネートの配合量が20体積%以上、50体積%以下、エチルメチルカーボネートの配合量が20体積%以上、50体積%以下であることが好ましい。このような配合量を選択することで、電解質の低温析出温度を低下させながら、非水系電解液の粘度も低下させてイオン伝導度を向上させ、低温でも高出力を得ることができる。特に好ましくは、エチレンカーボネートの配合量が25体積%以上、35体積%以下、ジメチルカーボネートの配合量が30体積%以上、40体積%以下、エチルメチルカーボネートの配合量が30体積%以上、40体積%以下である。
<フッ素原子を有する環状カーボネート>
本発明において非水系溶媒として用いることができるフッ素原子を有する環状カーボネ
ート(以下、「フッ素化環状カーボネート」と略記する場合がある)としては、フッ素原子を有する環状カーボネートであれば、特に制限はない。
フッ素化環状カーボネートとしては、炭素原子数2〜6のアルキレン基を有する環状カーボネートの誘導体が挙げられ、例えばエチレンカーボネート誘導体である。エチレンカーボネート誘導体としては、例えば、エチレンカーボネート又はアルキル基(例えば、炭素原子数1〜4個のアルキル基)で置換されたエチレンカーボネートのフッ素化物が挙げられ、中でもフッ素原子が1〜8個のものが好ましい。
具体的には、モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、4−フルオロ−4−メチルエチレンカーボネート、4,5−ジフルオロ−4−メチルエチレンカーボネート、4−フルオロ−5−メチルエチレンカーボネート、4,4−ジフルオロ−5−メチルエチレンカーボネート、4−(フルオロメチル)−エチレンカーボネート、4−(ジフルオロメチル)−エチレンカーボネート、4−(トリフルオロメチル)−エチレンカーボネート、4−(フルオロメチル)−4−フルオロエチレンカーボネート、4−(フルオロメチル)−5−フルオロエチレンカーボネート、4−フルオロ−4,5−ジメチルエチレンカーボネート、4,5−ジフルオロ−4,5−ジメチルエチレンカーボネート、4,4−ジフルオロ−5,5−ジメチルエチレンカーボネート等が挙げられる。
中でも、モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート及び4,5−ジフルオロ−4,5−ジメチルエチレンカーボネートよりなる群から選ばれる少なくとも1種が、高イオン伝導性を与え、かつ好適に界面保護被膜を形成する点でより好ましい。
フッ素化環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。フッ素化環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、非水系電解液100質量%中、好ましくは0.001質量%以上であり、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、また、好ましくは85質量%以下であり、より好ましくは80質量%以下、さらに好ましくは75質量%以下である。そして、フッ素化環状カーボネートの濃度の範囲としては、0.001質量%以上85質量%以下が好ましく、0.01質量%以上80質量%以下がより好ましく、0.1質量%以上75質量%以下がさらに好ましい。
尚、フッ素化環状カーボネートは、該非水系電解液の主たる溶媒として用いても、副たる溶媒として用いてもよい。主たる溶媒として用いる場合のフッ素化環状カーボネートの配合量は、非水系電解液100質量%中、好ましくは8質量%以上であり、より好ましくは10質量%以上であり、更にこのましくは12質量%以上であり、好ましくは85質量%以下であり、より好ましくは80質量%以下であり、さらに好ましくは75質量%以下である。この範囲であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、放電容量維持率が低下することを回避しやすい。また、副たる溶媒として用いる場合のフッ素化環状カーボネートの配合量は、非水系電解液100質量%中、好ましくは0.001質量%以上であり、より好ましくは0.01質量%以上であり、更にこのましくは0.1質量%以上であり、好ましくは8質量%以下であり、より好ましくは6質量%以下であり、さらに好ましくは5質量%以下である。この範囲であれば、非水系電解液二次電池が十分な出力特性を発現しやすい。
<鎖状カルボン酸エステル>
本発明において非水系溶媒として用いることができる鎖状カルボン酸エステルとしては、その構造式中の全炭素数が3〜7のものが挙げられる。
具体的には、酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸イソプロピル、酢酸
−n−ブチル、酢酸イソブチル、酢酸−t−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸イソプロピル、プロピオン酸−n−ブチル、プロピオン酸イソブチル、プロピオン酸−t−ブチル、酪酸メチル、酪酸エチル、酪酸−n−プロピル、酪酸イソプロピル、イソ酪酸メチル、イソ酪酸エチル、イソ酪酸−n−プロピル、イソ酪酸イソプロピル等が挙げられる。
中でも、酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸−n−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸イソプロピル、酪酸メチル、酪酸エチル等が、粘度低下によるイオン伝導度の向上の点から好ましい。
鎖状カルボン酸エステルは、非水系溶媒100体積%中、5体積%以上であることが好ましい。5体積%以上とすることにより、非水系電解液の電気伝導率を改善し、非水系電解液二次電池の大電流放電特性を向上させやすくなる。また、鎖状カルボン酸エステルは、非水系溶媒100体積%中、80体積%以下であることが好ましい。80体積%以下とすることにより、負極抵抗の増大を抑制し、非水系電解液二次電池の大電流放電特性、サイクル特性を良好な範囲としやすくなる。鎖状カルボン酸エステルの配合量は、より好ましくは8体積%以上であり、また、より好ましくは70体積%以下である。
<環状カルボン酸エステル>
本発明において非水系溶媒として用いることができる環状カルボン酸エステルとしては、その構造式中の全炭素原子数が3〜12のものが挙げられる。
具体的には、ガンマブチロラクトン、ガンマバレロラクトン、ガンマカプロラクトン、イプシロンカプロラクトン等が挙げられる。中でも、ガンマブチロラクトンがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
環状カルボン酸エステルは、非水系溶媒100体積%中、好ましくは3体積%以上である。3体積%以上とすることにより、非水系電解液の電気伝導率を改善し、非水系電解液二次電池の大電流放電特性を向上させやすくなる。また、環状カルボン酸エステルは、好ましくは60体積%以下である。60体積%以下とすることにより、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避し、負極抵抗の増大を抑制し、非水系電解液二次電池の大電流放電特性を良好な範囲としやすくなる。環状カルボン酸エステルの配合量は、より好ましくは5体積%以上であり、また、より好ましくは50体積%以下である。
<エーテル系化合物>
本発明において非水系溶媒として用いることができるエーテル系化合物としては、炭素数3〜10の鎖状エーテル、及び炭素数3〜6の環状エーテルが挙げられる。
炭素数3〜10の鎖状エーテルとしては、ジエチルエーテル、ジ(2−フルオロエチル)エーテル、ジ(2,2−ジフルオロエチル)エーテル、ジ(2,2,2−トリフルオロエチル)エーテル、エチル(2−フルオロエチル)エーテル、エチル(2,2,2−トリフルオロエチル)エーテル、エチル(1,1,2,2−テトラフルオロエチル)エーテル、(2−フルオロエチル)(2,2,2−トリフルオロエチル)エーテル、(2−フルオロエチル)(1,1,2,2−テトラフルオロエチル)エーテル、(2,2,2−トリフルオロエチル)(1,1,2,2−テトラフルオロエチル)エーテル、エチル−n−プロピルエーテル、エチル(3−フルオロ−n−プロピル)エーテル、エチル(3,3,3−トリフルオロ−n−プロピル)エーテル、エチル(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、エチル(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、2−フルオロエチル−n−プロピルエーテル、(2−フルオロエチル)(3−フルオロ−n−プロピル)エーテル、(2−フルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(2−フルオロエチル)(2,2,3,3−テトラフルオ
ロ−n−プロピル)エーテル、(2−フルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、2,2,2−トリフルオロエチル−n−プロピルエーテル、(2,2,2−トリフルオロエチル)(3−フルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、1,1,2,2−テトラフルオロエチル−n−プロピルエーテル、(1,1,2,2−テトラフルオロエチル)(3−フルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ−n−プロピルエーテル、(n−プロピル)(3−フルオロ−n−プロピル)エーテル、(n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(3−フルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(3,3,3−トリフルオロ−n−プロピル)エーテル、(3,3,3−トリフルオロ−n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(3,3,3−トリフルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,3,3−テトラフルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ−n−ブチルエーテル、ジメトキシメタン、メトキシエトキシメタン、メトキシ(2−フルオロエトキシ)メタン、メトキシ(2,2,2−トリフルオロエトキシ)メタンメトキシ(1,1,2,2−テトラフルオロエトキシ)メタン、ジエトキシメタン、エトキシ(2−フルオロエトキシ)メタン、エトキシ(2,2,2−トリフルオロエトキシ)メタン、エトキシ(1,1,2,2−テトラフルオロエトキシ)メタン、ジ(2−フルオロエトキシ)メタン、(2−フルオロエトキシ)(2,2,2−トリフルオロエトキシ)メタン、(2−フルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)メタンジ(2,2,2−トリフルオロエトキシ)メタン、(2,2,2−トリフルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)メタン、ジ(1,1,2,2−テトラフルオロエトキシ)メタン、ジメトキシエタン、メトキシエトキシエタン、メトキシ(2−フルオロエトキシ)エタン、メトキシ(2,2,2−トリフルオロエトキシ)エタン、メトキシ(1,1,2,2−テトラフルオロエトキシ)エタン、ジエトキシエタン、エトキシ(2−フルオロエトキシ)エタン、エトキシ(2,2,2−トリフルオロエトキシ)エタン、エトキシ(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(2−フルオロエトキシ)エタン、(2−フルオロエトキシ)(2,2,2−トリフルオロエトキシ)エタン、(2−フルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(2,2,2−トリフルオロエトキシ)エタン、(2,2,2−トリフルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(1,1,2,2−テトラフルオロエトキシ)エタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテル等が挙げられる。
炭素数3〜6の環状エーテルとしては、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチルテトラヒドロフラン、1,3−ジオキサン、2−メチル−1,3−ジオキサン、4−メチル−1,3−ジオキサン、1,4−ジオキサン等、及びこれらのフッ
素化化合物が挙げられる。
中でも、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテルが、リチウムイオンへの溶媒和能力が高く、イオン解離性を向上させる点で好ましく、特に好ましくは、粘性が低く、高いイオン伝導度を与えることから、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタンである。
エーテル系化合物の配合量は、通常、非水系溶媒100体積%中、好ましくは3体積%以上、より好ましくは4体積%以上、さらに好ましくは5体積%以上、また、好ましくは70体積%以下、より好ましくは65体積%以下、さらに好ましくは60体積%以下である。この範囲であれば、鎖状エーテルのリチウムイオン解離度の向上と粘度低下に由来するイオン伝導度の向上効果を確保しやすく、負極活物質が炭素質材料の場合、鎖状エーテルがリチウムイオンと共に共挿入されて容量が低下するといった事態を回避しやすい。
<スルホン系化合物>
本発明において非水系溶媒として用いることができるスルホン系化合物としては、炭素数3〜6の環状スルホン、及び炭素数2〜6の鎖状スルホンが挙げられる。1分子中のスルホニル基の数は、1又は2であることが好ましい。
環状スルホンとしては、モノスルホン化合物であるトリメチレンスルホン類、テトラメチレンスルホン類、ヘキサメチレンスルホン類;ジスルホン化合物であるトリメチレンジスルホン類、テトラメチレンジスルホン類、ヘキサメチレンジスルホン類等が挙げられる。中でも誘電率と粘性の観点から、テトラメチレンスルホン類、テトラメチレンジスルホン類、ヘキサメチレンスルホン類、ヘキサメチレンジスルホン類がより好ましく、テトラメチレンスルホン類(スルホラン類)が特に好ましい。
スルホラン類としては、スルホラン及びスルホラン誘導体のうち少なくとも一方(以下、スルホランも含めて「スルホラン類」と略記する場合がある)が好ましい。スルホラン誘導体としては、スルホラン環を構成する炭素原子上に結合した水素原子の1以上がフッ素原子やアルキル基で置換されたものが好ましい。
中でも、2−メチルスルホラン、3−メチルスルホラン、2−フルオロスルホラン、3−フルオロスルホラン、2,2−ジフルオロスルホラン、2,3−ジフルオロスルホラン、2,4−ジフルオロスルホラン、2,5−ジフルオロスルホラン、3,4−ジフルオロスルホラン、2−フルオロ−3−メチルスルホラン、2−フルオロ−2−メチルスルホラン、3−フルオロ−3−メチルスルホラン、3−フルオロ−2−メチルスルホラン、4−フルオロ−3−メチルスルホラン、4−フルオロ−2−メチルスルホラン、5−フルオロ−3−メチルスルホラン、5−フルオロ−2−メチルスルホラン、2−フルオロメチルスルホラン、3−フルオロメチルスルホラン、2−ジフルオロメチルスルホラン、3−ジフルオロメチルスルホラン、2−トリフルオロメチルスルホラン、3−トリフルオロメチルスルホラン、2−フルオロ−3−(トリフルオロメチル)スルホラン、3−フルオロ−3−(トリフルオロメチル)スルホラン、4−フルオロ−3−(トリフルオロメチル)スルホラン、5−フルオロ−3−(トリフルオロメチル)スルホラン等がイオン伝導度が高く入出力が高い点で好ましい。
また、鎖状スルホンとしては、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n−プロピルメチルスルホン、n−プロピルエチルスルホン、ジ−n−プロピルスルホン、イソプロピルメチルスルホン、イソプロピルエチルスルホン、ジイソプロピルスルホン、n−ブチルメチルスルホン、n−ブチルエチルスルホン、t−ブチルメチルスルホン、t−ブチルエチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタ
フルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、パーフルオロエチルメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、ジ(トリフルオロエチル)スルホン、パーフルオロジエチルスルホン、フルオロメチル−n−プロピルスルホン、ジフルオロメチル−n−プロピルスルホン、トリフルオロメチル−n−プロピルスルホン、フルオロメチルイソプロピルスルホン、ジフルオロメチルイソプロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル−n−プロピルスルホン、トリフルオロエチルイソプロピルスルホン、ペンタフルオロエチル−n−プロピルスルホン、ペンタフルオロエチルイソプロピルスルホン、トリフルオロエチル−n−ブチルスルホン、トリフルオロエチル−t−ブチルスルホン、ペンタフルオロエチル−n−ブチルスルホン、ペンタフルオロエチル−t−ブチルスルホン等が挙げられる。
中でも、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n−プロピルメチルスルホン、イソプロピルメチルスルホン、n−ブチルメチルスルホン、t−ブチルメチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、トリフルオロメチル−n−プロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル−n−ブチルスルホン、トリフルオロエチル−t−ブチルスルホン、トリフルオロメチル−n−ブチルスルホン、トリフルオロメチル−t−ブチルスルホン等がイオン伝導度が高く入出力が高い点で好ましい。
スルホン系化合物は、非水系溶媒100体積%中、好ましくは0.3体積%以上であり、また、80体積%以下である。この範囲であれば、サイクル特性や保存特性等の耐久性の向上効果が得られやすく、また、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避することができ、非水系電解液二次電池の充放電を高電流密度で行う場合に、充放電容量維持率が低下するといった事態を回避しやすい。スルホン系化合物の配合量は、より好ましくは0.5体積%以上、さらに好ましくは1体積%以上であり、また、より好ましくは75体積%以下、さらに好ましくは70体積%以下である。
<1−4.助剤>
本発明においては、非水系溶媒中に以下に挙げる助剤を含有させることができるが、本発明の効果を著しく損なわない限り特にこれらの例示に限定されない。
<炭素−炭素不飽和結合を有する環状カーボネート>
本発明の非水系電解液において、非水系電解液電池の負極表面に皮膜を形成し、電池の長寿命化を達成するために、炭素−炭素不飽和結合を有する環状カーボネート(以下、「不飽和環状カーボネート」と略記する場合がある)を用いることができる。
炭素−炭素不飽和結合を有する環状カーボネートとしては、炭素−炭素二重結合を有する環状カーボネートであれば、特に制限はなく、任意の炭素−炭素不飽和結合を有するカーボネートを用いることができる。なお、芳香環を有する置換基を有する環状カーボネートも、炭素−炭素不飽和結合を有する環状カーボネートに包含されることとする。
不飽和環状カーボネートとしては、ビニレンカーボネート類、芳香環又は炭素−炭素不飽和結合を有する置換基で置換されたエチレンカーボネート類、フェニルカーボネート類、ビニルカーボネート類、アリルカーボネート類等が挙げられる。
ビニレンカーボネート類としては、ビニレンカーボネート、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、フェニルビニレンカーボネート、4,5−
ジフェニルビニレンカーボネート、ビニルビニレンカーボネート、アリルビニレンカーボネート等が挙げられる。
芳香環又は炭素−炭素不飽和結合を有する置換基で置換されたエチレンカーボネート類の具体例としては、ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、フェニルエチレンカーボネート、4,5−ジフェニルエチレンカーボネート、エチニルエチレンカーボネート、4,5−ジエチニルエチレンカーボネート等が挙げられる。
中でも、ビニレンカーボネート類、芳香環又は炭素−炭素不飽和結合を有する置換基で置換されたエチレンカーボネートが好ましく、特に、ビニレンカーボネート、4,5−ジフェニルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、ビニルエチレンカーボネート、エチニルエチレンカーボネートが、安定な界面保護被膜を形成するので、より好適に用いられる。
不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上、250以下である。この範囲であれば、非水系電解液に対する不飽和環状カーボネートの溶解性を確保しやすく、本発明の効果が十分に発現されやすい。不飽和環状カーボネートの分子量は、より好ましくは80以上であり、また、より好ましくは150以下である。不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
不飽和環状カーボネートは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併有してもよい。また、不飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。不飽和環状カーボネートは、非水系電解液100質量%中、好ましくは0.001質量%以上であり、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、特に好ましくは0.2質量%以上であり、また、好ましくは10質量%以下であり、より好ましくは8質量%以下、さらに好ましくは5質量%以下である。そして、不飽和環状カーボネートの濃度の範囲としては、0.001質量%以上10質量%以下が好ましく、0.001質量%以上8質量%以下がより好ましく、0.001質量%以上5質量%以下がさらに好ましい。
上記範囲内であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
<フッ素化不飽和環状カーボネート>
フッ素化環状カーボネートとして、不飽和結合とフッ素原子とを有する環状カーボネート(以下、「フッ素化不飽和環状カーボネート」と略記する場合がある)を用いることも好ましい。フッ素化不飽和環状カーボネートは、特に制限されない。中でもフッ素原子が1個又は2個のものが好ましい。
フッ素化不飽和環状カーボネートとしては、ビニレンカーボネート誘導体、芳香環又は炭素−炭素不飽和結合を有する置換基で置換されたエチレンカーボネート誘導体等が挙げられる。
ビニレンカーボネート誘導体としては、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−フェニルビニレンカーボネート、4,5−ジフルオロエチレンカーボネート等が挙げられる。
芳香環又は炭素−炭素不飽和結合を有する置換基で置換されたエチレンカーボネート誘導体としては、4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4,4−ジフルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、
4−フルオロ−4−フェニルエチレンカーボネート、4−フルオロ−5−フェニルエチレンカーボネート、4,4−ジフルオロ−5−フェニルエチレンカーボネート、4,5−ジフルオロ−4−フェニルエチレンカーボネート等が挙げられる。
フッ素化不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上であり、また、250以下である。この範囲であれば、非水系電解液に対するフッ素化環状カーボネートの溶解性を確保しやすく、本発明の効果が発現されやすい。フッ素化不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。分子量は、より好ましくは80以上であり、また、より好ましくは150以下である。
フッ素化不飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。また、フッ素化不飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。フッ素化不飽和環状カーボネートは、非水系電解液100質量%中、好ましくは、0.01質量%以上であり、また、5質量%以下である。この範囲であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。フッ素化不飽和環状カーボネートの配合量は、より好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上であり、また、より好ましくは4質量%以下、さらに好ましくは3質量%以下である。
<環状スルホン酸エステル化合物>
本発明の非水系電解液において、用いることができる環状スルホン酸エステル化合物としては、特にその種類は限定されないが、一般式(1)で表される化合物が挙げられる。
(式中、RおよびRは各々独立して、炭素原子、水素原子、窒素原子、酸素原子、硫黄原子、リン原子およびハロゲン原子からなる群から選ばれる少なくとも一種の原子で構成された有機基を表し、RとRは互いに−O−SO−とともに不飽和結合を含んでいてもよい。)
およびRは、好ましくは炭素原子、水素原子、酸素原子、硫黄原子からなる原子で構成された有機基であることが好ましく、中でも炭素数1〜3の炭化水素基、−O−SO−を有する有機基であることが好ましい。
環状スルホン酸エステル化合物の分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、100以上であり、また、250以下である。この範囲であれば、非水系電解液に対する環状スルホン酸エステル化合物の溶解性を確保しやすく、本発明の効果が発現されやすい。環状スルホン酸エステル化合物の製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
一般式(1)で表される化合物の具体例としては、例えば、
1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−
1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン、1−メチル−1,3−プロパンスルトン、2−メチル−1,3−プロパンスルトン、3−メチル−1,3−プロパンスルトン1−プロペン−1,3−スルトン、2−プロペン−1,3−スルトン、1−フルオロ−1−プロペン−1,3−スルトン、2−フルオロ−1−プロペン−1,3−スルトン、3−フルオロ−1−プロペン−1,3−スルトン、1−フルオロ−2−プロペン−1,3−スルトン、2−フルオロ−2−プロペン−1,3−スルトン、3−フルオロ−2−プロペン−1,3−スルトン、1−メチル−1−プロペン−1,3−スルトン、2−メチル−1−プロペン−1,3−スルトン、3−メチル−1−プロペン−1,3−スルトン、1−メチル−2−プロペン−1,3−スルトン、2−メチル−2−プロペン−1,3−スルトン、3−メチル−2−プロペン−1,3−スルトン、
1,4−ブタンスルトン、1−フルオロ−1,4−ブタンスルトン、2−フルオロ−1,4−ブタンスルトン、3−フルオロ−1,4−ブタンスルトン、4−フルオロ−1,4−ブタンスルトン、1−メチル−1,4−ブタンスルトン、2−メチル−1,4−ブタンスルトン、3−メチル−1,4−ブタンスルトン、4−メチル−1,4−ブタンスルトン、1−ブテン−1,4−スルトン、2−ブテン−1,4−スルトン、3−ブテン−1,4−スルトン、1−フルオロ−1−ブテン−1,4−スルトン、2−フルオロ−1−ブテン−1,4−スルトン、3−フルオロ−1−ブテン−1,4−スルトン、4−フルオロ−1−ブテン−1,4−スルトン、1−フルオロ−2−ブテン−1,4−スルトン、2−フルオロ−2−ブテン−1,4−スルトン、3−フルオロ−2−ブテン−1,4−スルトン、4−フルオロ−2−ブテン−1,4−スルトン、1−フルオロ−3−ブテン−1,4−スルトン、2−フルオロ−3−ブテン−1,4−スルトン、
3−フルオロ−3−ブテン−1,4−スルトン、4−フルオロ−3−ブテン−1,4−スルトン、1−メチル−1−ブテン−1,4−スルトン、2−メチル−1−ブテン−1,4−スルトン、3−メチル−1−ブテン−1,4−スルトン、4−メチル−1−ブテン−1,4−スルトン、1−メチル−2−ブテン−1,4−スルトン、2−メチル−2−ブテン−1,4−スルトン、3−メチル−2−ブテン−1,4−スルトン、4−メチル−2−ブテン−1,4−スルトン、1−メチル−3−ブテン−1,4−スルトン、2−メチル−3−ブテン−1,4−スルトン、3−メチル−3−ブテン−1,4−スルトン、4−メチル−3−ブテン−1,4−スルトン、1,5−ペンタンスルトン、1−フルオロ−1,5−ペンタンスルトン、2−フルオロ−1,5−ペンタンスルトン、3−フルオロ−1,5−ペンタンスルトン、4−フルオロ−1,5−ペンタンスルトン、5−フルオロ−1,5−ペンタンスルトン、1−メチル−1,5−ペンタンスルトン、2−メチル−1,5−ペンタンスルトン、
3−メチル−1,5−ペンタンスルトン、4−メチル−1,5−ペンタンスルトン、5−メチル−1,5−ペンタンスルトン、1−ペンテン−1,5−スルトン、2−ペンテン−1,5−スルトン、3−ペンテン−1,5−スルトン、4−ペンテン−1,5−スルトン、1−フルオロ−1−ペンテン−1,5−スルトン、2−フルオロ−1−ペンテン−1,5−スルトン、3−フルオロ−1−ペンテン−1,5−スルトン、4−フルオロ−1−ペンテン−1,5−スルトン、5−フルオロ−1−ペンテン−1,5−スルトン、1−フルオロ−2−ペンテン−1,5−スルトン、2−フルオロ−2−ペンテン−1,5−スルトン、3−フルオロ−2−ペンテン−1,5−スルトン、4−フルオロ−2−ペンテン−1,5−スルトン、5−フルオロ−2−ペンテン−1,5−スルトン、1−フルオロ−3−ペンテン−1,5−スルトン、2−フルオロ−3−ペンテン−1,5−スルトン、3−フルオロ−3−ペンテン−1,5−スルトン、4−フルオロ−3−ペンテン−1,5−スルトン、5−フルオロ−3−ペンテン−1,5−スルトン、
1−フルオロ−4−ペンテン−1,5−スルトン、2−フルオロ−4−ペンテン−1,
5−スルトン、3−フルオロ−4−ペンテン−1,5−スルトン、4−フルオロ−4−ペンテン−1,5−スルトン、5−フルオロ−4−ペンテン−1,5−スルトン、1−メチル−1−ペンテン−1,5−スルトン、2−メチル−1−ペンテン−1,5−スルトン、3−メチル−1−ペンテン−1,5−スルトン、4−メチル−1−ペンテン−1,5−スルトン、5−メチル−1−ペンテン−1,5−スルトン、1−メチル−2−ペンテン−1,5−スルトン、2−メチル−2−ペンテン−1,5−スルトン、3−メチル−2−ペンテン−1,5−スルトン、4−メチル−2−ペンテン−1,5−スルトン、5−メチル−2−ペンテン−1,5−スルトン、1−メチル−3−ペンテン−1,5−スルトン、2−メチル−3−ペンテン−1,5−スルトン、3−メチル−3−ペンテン−1,5−スルトン、4−メチル−3−ペンテン−1,5−スルトン、5−メチル−3−ペンテン−1,5−スルトン、1−メチル−4−ペンテン−1,5−スルトン、2−メチル−4−ペンテン−1,5−スルトン、
3−メチル−4−ペンテン−1,5−スルトン、4−メチル−4−ペンテン−1,5−スルトン、5−メチル−4−ペンテン−1,5−スルトンなどのスルトン化合物;
メチレンスルフェート、エチレンスルフェート、プロピレンスルフェートなどのスルフェート化合物;
メチレンメタンジスルホネート、エチレンメタンジスルホネートなどのジスルホネート化合物;
1,2,3−オキサチアゾリジン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアゾリジン−2,2−ジオキシド、3H−1,2,3−オキサチアゾール−2,2−ジオキシド、
5H−1,2,3−オキサチアゾール−2,2−ジオキシド、1,2,4−オキサチアゾリジン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアゾリジン−2,2−ジオキシド、3H−1,2,4−オキサチアゾール−2,2−ジオキシド、5H−1,2,4−オキサチアゾール−2,2−ジオキシド、1,2,5−オキサチアゾリジン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアゾリジン−2,2−ジオキシド、3H−1,2,5−オキサチアゾール−2,2−ジオキシド、5H−1,2,5−オキサチアゾール−2,2−ジオキシド、1,2,3−オキサチアジナン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアジナン−2,2−ジオキシド、
5,6−ジヒドロ−1,2,3−オキサチアジン−2,2−ジオキシド、1,2,4−オキサチアジナン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアジナン−2,2−ジオキシド、5,6−ジヒドロ−1,2,4−オキサチアジン−2,2−ジオキシド、3,6−ジヒドロ−1,2,4−オキサチアジン−2,2−ジオキシド、3,4−ジヒドロ−1,2,4−オキサチアジン−2,2−ジオキシド、1,2,5−オキサチアジナン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアジナン−2,2−ジオキシド、5,6−ジヒドロ−1,2,5−オキサチアジン−2,2−ジオキシド、3,6−ジヒドロ−1,2,5−オキサチアジン−2,2−ジオキシド、3,4−ジヒドロ−1,2,5−オキサチアジン−2,2−ジオキシド、1,2,6−オキサチアジナン−2,2−ジオキシド、6−メチル−1,2,6−オキサチアジナン−2,2−ジオキシド、5,6−ジヒドロ−1,2,6−オキサチアジン−2,2−ジオキシド、3,4−ジヒドロ−1,2,6−オキサチアジン−2,2−ジオキシド、5,6−ジヒドロ−1,2,6−オキサチアジン−2,2−ジオキシドなどの含窒素化合物;
1,2,3−オキサチアホスラン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアホスラン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアホスラン−2,2,3−トリオキシド、3−メトキシ−1,2,3−オキサチアホスラン−2,2,3−トリオキシド、1,2,4−オキサチアホスラン−2,2−ジオキシド、4−メチ
ル−1,2,4−オキサチアホスラン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアホスラン−2,2,4−トリオキシド、4−メトキシ−1,2,4−オキサチアホスラン−2,2,4−トリオキシド、1,2,5−オキサチアホスラン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアホスラン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアホスラン−2,2,5−トリオキシド、5−メトキシ−1,2,5−オキサチアホスラン−2,2,5−トリオキシド、1,2,3−オキサチアホスフィナン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアホスフィナン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアホスフィナン−2,2,3−トリオキシド、3−メトキシ−1,2,3−オキサチアホスフィナン−2,2,3−トリオキシド、
1,2,4−オキサチアホスフィナン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアホスフィナン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアホスフィナン−2,2,3−トリオキシド、4−メチル−1,5,2,4−ジオキサチアホスフィナン−2,4−ジオキシド、4−メトキシ−1,5,2,4−ジオキサチアホスフィナン−2,4−ジオキシド、3−メトキシ−1,2,4−オキサチアホスフィナン−2,2,3−トリオキシド、1,2,5−オキサチアホスフィナン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアホスフィナン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアホスフィナン−2,2,3−トリオキシド、5−メトキシ−1,2,5−オキサチアホスフィナン−2,2,3−トリオキシド、1,2,6−オキサチアホスフィナン−2,2−ジオキシド、6−メチル−1,2,6−オキサチアホスフィナン−2,2−ジオキシド、6−メチル−1,2,6−オキサチアホスフィナン−2,2,3−トリオキシド、6−メトキシ−1,2,6−オキサチアホスフィナン−2,2,3−トリオキシドどの含リン化合物;
これらのうち、
1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン、1−プロペン−1,3−スルトン、1−フルオロ−1−プロペン−1,3−スルトン、2−フルオロ−1−プロペン−1,3−スルトン、3−フルオロ−1−プロペン−1,3−スルトン、1,4−ブタンスルトン、メチレンメタンジスルホネート、エチレンメタンジスルホネートが保存特性向上の点から好ましく、1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン、1−プロペン−1,3−スルトンがより好ましい。
環状スルホン酸エステル化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。本発明の非水系電解液全体に対する環状スルホン酸エステル化合物の配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常0.001質量%以上、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下の濃度で含有させる。上記範囲を満たした場合は、出力特性、負荷特性、低温特性、サイクル特性、高温保存特性等の効果がより向上する。
<シアノ基を有する化合物>
本発明の非水系電解液において、用いることができるシアノ基を有する化合物としては、分子内にシアノ基を有している化合物であれば特にその種類は限定されないが、一般式(2)で表される化合物が挙げられる。
(式中、Tは、炭素原子、水素原子、窒素原子、酸素原子、硫黄原子、リン原子およびハロゲン原子からなる群から選ばれる原子で構成された有機基を表し、Uは置換基を有してもよい炭素数1から10のV価の有機基である。Vは1以上の整数であり、Vが2以上の場合は、Tは互いに同一であっても異なっていてもよい。)
シアノ基を有する化合物の分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上であり、より好ましくは80以上、さらに好ましくは100以上であり、また、200以下である。この範囲であれば、非水系電解液に対するシアノ基を有する化合物の溶解性を確保しやすく、本発明の効果が発現されやすい。シアノ基を有する化合物の製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
一般式(2)で表される化合物の具体例としては、例えば、
アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、イソバレロニトリル、ラウロニトリル、2−メチルブチロニトリル、2,2−ジメチルブチロニトリル、ヘキサンニトリル、シクロペンタンカルボニトリル、シクロヘキサンカルボニトリル、アクリロニトリル、メタクリロニトリル、クロトノニトリル、3−メチルクロトノニトリル、2−メチル−2−ブテン二トリル、2−ペンテンニトリル、2−メチル−2−ペンテンニトリル、3−メチル−2−ペンテンニトリル、2−ヘキセンニトリル、フルオロアセトニトリル、ジフルオロアセトニトリル、トリフルオロアセトニトリル、2−フルオロプロピオニトリル、3−フルオロプロピオニトリル、2,2−ジフルオロプロピオニトリル、2,3−ジフルオロプロピオニトリル、3,3−ジフルオロプロピオニトリル、2,2,3−トリフルオロプロピオニトリル、3,3,3−トリフルオロプロピオニトリル、3,3′−オキシジプロピオニトリル、3,3′−チオジプロピオニトリル、1,2,3−プロパントリカルボニトリル、1,3,5−ペンタントリカルボニトリル、ペンタフルオロプロピオニトリル等のシアノ基を1つ有する化合物;
マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル、メチルマロノニトリル、エチルマロノニトリル、i−プロピルマロノニトリル、t−ブチルマロノニトリル、メチルスクシノニトリル、2,2−ジメチルスクシノニトリル、2,3−ジメチルスクシノニトリル、トリメチルスクシノニトリル、テトラメチルスクシノニトリル、3,3′−(エチレンジオキシ)ジプロピオニトリル、3,3’−(エチレンジチオ)ジプロピオニトリル等のシアノ基を2つ有する化合物;
1,2,3−トリス(2−シアノエトキシ)プロパン、トリス(2−シアノエチル)アミン等のシアノ基を3つ有する化合物;
メチルシアネート、エチルシアネート、プロピルシアネート、ブチルシアネート、ペンチルシアネート、ヘキシルシアネート、ヘプチルシアネートなどのシアネート化合物;
メチルチオシアネート、エチルチオシアネート、プロピルチオシアネート、ブチルチオシアネート、ペンチルチオシアネート、ヘキシルチオシアネート、ヘプチルチオシアネート、メタンスルホニルシアニド、エタンスルホニルシアニド、プロパンスルホニルシアニド、ブタンスルホニルシアニド、ペンタンスルホニルシアニド、ヘキサンスルホニルシアニド、ヘプタンスルホニルシアニド、メチルスルフロシアニダート、エチルスルフロシアニ
ダート、プロピルスルフロシアニダート、ブチルスルフロシアニダート、ペンチルスルフロシアニダート、ヘキシルスルフロシアニダート、ヘプチルスルフロシアニダートなどの含硫黄化合物;
シアノジメチルホスフィン、シアノジメチルホスフィンオキシド、シアノメチルホスフィン酸メチル、シアノメチル亜ホスフィン酸メチル、ジメチルホスフィン酸シアニド、ジメチル亜ホスフィン酸シアニド、シアノホスホン酸ジメチル、シアノ亜ホスホン酸ジメチル、メチルホスホン酸シアノメチル、メチル亜ホスホン酸シアノメチル、リン酸シアノジメチル、亜リン酸シアノジメチルなどの含リン化合物;
等が挙げられる。
これらのうち、
アセトニトリル、プロピオニトリル、ブチロニトリル、i−ブチロニトリル、バレロニトリル、i−バレロニトリル、ラウロニトリル、クロトノニトリル、3‐メチルクロトノニトリル、マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリルが保存特性向上の点から好ましく、マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル等のシアノ基を2つ有する化合物がより好ましい。
シアノ基を有する化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。本発明の非水系電解液全体に対するシアノ基を有する化合物の配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常0.001質量%以上、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下の濃度で含有させる。上記範囲を満たした場合は、出力特性、負荷特性、低温特性、サイクル特性、高温保存特性等の効果がより向上する。
<ジイソシアネート化合物>
本発明の非水系電解液において、用いることができるジイソシアネート化合物は、分子内にイソシアナト基を2つ有する化合物であれば特に制限はないが、下記一般式(3)で表されるものが好ましい。
(式中、Xはフッ素で置換されていてもよい炭素数1〜16の炭化水素基である)
上記一般式(3)において、Xはフッ素で置換されていてもよい炭素数1〜16の炭化水素基である。Xの炭素数は好ましくは2以上、より好ましくは3以上、特に好ましくは4以上であり、また好ましくは14以下、より好ましくは12以下、特に好ましくは10以下、最も好ましくは8以下である。またXの種類については炭化水素基である限り特に限定されない。脂肪族鎖状アルキレン基、脂肪族環状アルキレン基及び芳香環含有炭化水素基のいずれであってもよいが、好ましくは脂肪族鎖状アルキレン基又は脂肪族環状アルキレン基である。
本発明におけるジイソシアネートの具体例を挙げると、
エチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシア
ネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、デカメチレンジイソシアネート、ドデカメチレンジイソシアネート、テトラデカメチレンジイソシアネート、等の直鎖ポリメチレンジイソシアネート類;
1−メチルヘキサメチレンジイソシアネート、2−メチルヘキサメチレンジイソシアネート、3−メチルヘキサメチレンジイソシアネート、1,1−ジメチルヘキサメチレンジイソシアネート、1,2−ジメチルヘキサメチレンジイソシアネート、1,3−ジメチルヘキサメチレンジイソシアネート、1,4−ジメチルヘキサメチレンジイソシアネート、1,5−ジメチルヘキサメチレンジイソシアネート、1,6−ジメチルヘキサメチレンジイソシアネート、1,2,3−トリメチルヘキサメチレンジイソシアネート、等の分岐アルキレンジイソシアネート類;
1,4−ジイソシアナト−2−ブテン、1,5−ジイソシアナト−2−ペンテン、1,5−ジイソシアナト−3−ペンテン、1,6−ジイソシアナト−2−ヘキセン、1,6−ジイソシアナト−3−ヘキセン、1,8−ジイソシアナト−2−オクテン、1,8−ジイソシアナト−3−オクテン、1,8−ジイソシアナト−4−オクテン、等のジイソシアナトアルケン類;
1,3−ジイソシアナト−2−フルオロプロパン、1,3−ジイソシアナト−2,2−ジフルオロプロパン、1,4−ジイソシアナト−2−フルオロブタン、1,4−ジイソシアナト−2,2−ジフルオロブタン、1,4−ジイソシアナト−2,3−ジフルオロブタン、1,6−ジイソシアナト−2−フルオロヘキサン、1,6−ジイソシアナト−3−フルオロヘキサン、1,6−ジイソシアナト−2,2−ジフルオロヘキサン、1,6−ジイソシアナト−2,3−ジフルオロヘキサン、1,6−ジイソシアナト−2,4−ジフルオロヘキサン、1,6−ジイソシアナト−2,5−ジフルオロヘキサン、1,6−ジイソシアナト−3,3−ジフルオロヘキサン、1,6−ジイソシアナト−3,4−ジフルオロヘキサン、1,8−ジイソシアナト−2−フルオロオクタン、1,8−ジイソシアナト−3−フルオロオクタン、1,8−ジイソシアナト−4−フルオロオクタン、1,8−ジイソシアナト−2,2−ジフルオロオクタン、1,8−ジイソシアナト−2,3−ジフルオロオクタン、1,8−ジイソシアナト−2,4−ジフルオロオクタン、1,8−ジイソシアナト−2,5−ジフルオロオクタン、1,8−ジイソシアナト−2,6−ジフルオロオクタン、1,8−ジイソシアナト−2,7−ジフルオロオクタン、等のフッ素置換ジイソシアナトアルカン類;
1,2−ジイソシアナトシクロペンタン、1,3−ジイソシアナトシクロペンタン、1,2−ジイソシアナトシクロヘキサン、1,3−ジイソシアナトシクロヘキサン、1,4−ジイソシアナトシクロヘキサン、1,2−ビス(イソシアナトメチル)シクロヘキサン、1,3−ビス(イソシアナトメチル)シクロヘキサン、1,4−ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタン−2,2’−ジイソシアネート、ジシクロヘキシルメタン−2,4’−ジイソシアネート、ジシクロヘキシルメタン−3,3’−ジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、等のシクロアルカン環含有ジイソシアネート類;
1,2−フェニレンジイソシアネート、1,3−フェニレンジイソシアネート、1,4−フェニレンジイソシアネート、トリレン−2,3−ジイソシアネート、トリレン−2,4−ジイソシアネート、トリレン−2,5−ジイソシアネート、トリレン−2,6−ジイソシアネート、トリレン−3,4−ジイソシアネート、トリレン−3,5−ジイソシアネート、1,2−ビス(イソシアナトメチル)ベンゼン、1,3−ビス(イソシアナトメチル)ベンゼン、1,4−ビス(イソシアナトメチル)ベンゼン、2,4−ジイソシアナトビフェニル、2,6−ジイソシアナトビフェニル、2,2’−ジイソシアナトビフェニル、3,3’−ジイソシアナトビフェニル、4,4’−ジイソシアナト−2−メチルビフェ
ニル、4,4’−ジイソシアナト−3−メチルビフェニル、4,4’−ジイソシアナト−3,3’−ジメチルビフェニル、4,4’−ジイソシアナトジフェニルメタン、4,4’−ジイソシアナト−2−メチルジフェニルメタン、4,4’−ジイソシアナト−3−メチルジフェニルメタン、4,4’−ジイソシアナト−3,3’−ジメチルジフェニルメタン、1,5−ジイソシアナトナフタレン、1,8−ジイソシアナトナフタレン、2,3−ジイソシアナトナフタレン、1,5−ビス(イソシアナトメチル)ナフタレン、1,8−ビス(イソシアナトメチル)ナフタレン、2,3−ビス(イソシアナトメチル)ナフタレン等の芳香環含有ジイソシアネート類;などが挙げられる。
これらの中でも、
エチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、デカメチレンジイソシアネート、ドデカメチレンジイソシアネート、テトラデカメチレンジイソシアネート、等の直鎖ポリメチレンジイソシアネート類;
1−メチルヘキサメチレンジイソシアネート、2−メチルヘキサメチレンジイソシアネート、3−メチルヘキサメチレンジイソシアネート、1,1−ジメチルヘキサメチレンジイソシアネート、1,2−ジメチルヘキサメチレンジイソシアネート、1,3−ジメチルヘキサメチレンジイソシアネート、1,4−ジメチルヘキサメチレンジイソシアネート、1,5−ジメチルヘキサメチレンジイソシアネート、1,6−ジメチルヘキサメチレンジイソシアネート、1,2,3−トリメチルヘキサメチレンジイソシアネート、等の分岐アルキレンジイソシアネート類;
1,2−ジイソシアナトシクロペンタン、1,3−ジイソシアナトシクロペンタン、1,2−ジイソシアナトシクロヘキサン、1,3−ジイソシアナトシクロヘキサン、1,4−ジイソシアナトシクロヘキサン、1,2−ビス(イソシアナトメチル)シクロヘキサン、1,3−ビス(イソシアナトメチル)シクロヘキサン、1,4−ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタン−2,2’−ジイソシアネート、ジシクロヘキシルメタン−2,4’−ジイソシアネート、ジシクロヘキシルメタン−3,3’−ジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、等のシクロアルカン環含有ジイソシアネート類;
が好ましい。
さらには、
テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、から選ばれる直鎖ポリメチレンジイソシアネート類;
1,2−ジイソシアナトシクロペンタン、1,3−ジイソシアナトシクロペンタン、1,2−ジイソシアナトシクロヘキサン、1,3−ジイソシアナトシクロヘキサン、1,4−ジイソシアナトシクロヘキサン、1,2−ビス(イソシアナトメチル)シクロヘキサン、1,3−ビス(イソシアナトメチル)シクロヘキサン、4−ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタン−2,2’−ジイソシアネート、ジシクロヘキシルメタン−2,4’−ジイソシアネート、ジシクロヘキシルメタン−3,3’−ジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、から選ばれるシクロアルカン環含有ジイソシアネート類;
が特に好ましい。
また上述した本発明におけるジイソシアネートは、1種類を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
本発明の非水系電解液において、用いることができるジイソシアネートの含有量は、該
非水系電解液の全体の質量に対して、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.3質量%以上、また、通常5質量%以下、好ましくは4.0質量%以下、より好ましくは3.0質量%以下、さらに好ましくは2質量%以下である。含有量が上記範囲内であると、サイクル、保存等の耐久性を向上でき、本発明の効果を十分に発揮できる。
<過充電防止剤>
本発明の非水系電解液において、非水系電解液二次電池が過充電等の状態になった際に電池の破裂・発火を効果的に抑制するために、過充電防止剤を用いることができる。
過充電防止剤としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2−フルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分フッ素化物;2,4−ジフルオロアニソール、2,5−ジフルオロアニソール、2,6−ジフルオロアニソール、3,5−ジフルオロアニソール等の含フッ素アニソール化合物等が挙げられる。中でも、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物が好ましい。これらは1種を単独で用いても、2種以上を併用してもよい。2種以上併用する場合は、特に、シクロヘキシルベンゼンとt−ブチルベンゼン又はt−アミルベンゼンとの組み合わせ、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン等の酸素を含有しない芳香族化合物から選ばれる少なくとも1種と、ジフェニルエーテル、ジベンゾフラン等の含酸素芳香族化合物から選ばれる少なくとも1種を併用するのが過充電防止特性と高温保存特性のバランスの点から好ましい。
過充電防止剤の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。過充電防止剤は、非水系電解液100質量%中、好ましくは、0.1質量%以上であり、また、5質量%以下である。この範囲でれば、過充電防止剤の効果を十分に発現させやすく、また、高温保存特性等の電池の特性が低下するといった事態も回避しやすい。過充電防止剤は、より好ましくは0.2質量%以上、さらに好ましくは0.3質量%以上、特に好ましくは0.5質量%以上であり、また、より好ましくは3質量%以下、さらに好ましくは2質量%以下である。
<その他の助剤>
本発明の非水系電解液には、公知のその他の助剤を用いることができる。その他の助剤としては、エリスリタンカーボネート、スピロ−ビス−ジメチレンカーボネート、メトキシエチル−メチルカーボネート等のカーボネート化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物及びフェニルコハク酸無水物等のカルボン酸無水物;2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ジビニル−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン等のスピロ化合物;エチレンサルファイト、フルオロスルホン酸メチル、フルオロスルホン酸エチル、メタンスルホン酸メチル、メタンスルホン酸エチル、ブスルファン、スルホレン、硫酸エチレン、硫酸ビニレン、ジフェニルスルホン、N,N−ジメチルメタンスルホンアミド、N,N−ジエチルメタンスルホンアミド等の含硫黄化合物;1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン及びN−メチルスクシンイミド等の含窒素化合物;ヘプタン、オクタン、ノナン、デカン、シクロヘプタン等の炭化水素化合物、フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベン
ゾトリフルオライド等の含フッ素芳香族化合物;ホウ酸トリス(トリメチルシリル)、ホウ酸トリス(トリメトキシシリル)、リン酸トリス(トリメチルシリル)、リン酸トリス(トリメトキシシリル)、ジメトキシアルミノキシトリメトキシシラン、ジエトキシアルミノキシトリエトキシシラン、ジプロポキシアルミノキシトリエトキシシラン、ジブトキシアルミノキシトリメトキシシラン、ジブトキシアルミノキシトリエトキシシラン、チタンテトラキス(トリメチルシロキシド)、チタンテトラキス(トリエチルシロキシド)等のシラン化合物、が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。これらの助剤を添加することにより、高温保存後の容量維持特性やサイクル特性を向上させることができる。
その他の助剤の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。その他の助剤は、非水系電解液100質量%中、好ましくは、0.01質量%以上であり、また、5質量%以下である。この範囲であれば、その他助剤の効果が十分に発現させやすく、高負荷放電特性等の電池の特性が低下するといった事態も回避しやすい。その他の助剤の配合量は、より好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上であり、また、より好ましくは3質量%以下、さらに好ましくは1質量%以下である。
以上に記載してきた非水系電解液は、本発明に記載の非水系電解液電池の内部に存在するものも含まれる。具体的には、リチウム塩や溶媒、助剤等の非水系電解液の構成要素を別途合成し、実質的に単離されたものから非水系電解液を調整し、下記に記載する方法にて別途組み立てた電池内に注液して得た非水系電解液電池内の非水系電解液である場合や、本発明の非水系電解液の構成要素を個別に電池内に入れておき、電池内にて混合させることにより本発明の非水系電解液と同じ組成を得る場合、更には、本発明の非水系電解液を構成する化合物を該非水系電解液電池内で発生させて、本発明の非水系電解液と同じ組成を得る場合も含まれるものとする。
<2.非水系電解液二次電池>
本発明の非水系電解液二次電池は、イオンを吸蔵及び放出し得る負極及び正極と前記の本発明の非水系電解液とを備えるものである。
<2−1.電池構成>
本発明の非水系電解液二次電池は、負極及び非水系電解液以外の構成については、従来公知の非水系電解液二次電池と同様であり、通常は、本発明の非水系電解液が含浸されている多孔膜(セパレータ)を介して正極と負極とが積層され、これらがケース(外装体)に収納された形態を有する。従って、本発明の非水系電解液二次電池の形状は特に制限されるものではなく、円筒型、角形、ラミネート型、コイン型、大型等の何れであってもよい。
<2−2.非水系電解液>
非水系電解液としては、上述の本発明の非水系電解液を用いる。
<2−3.負極>
負極は、集電体上に負極活物質層を有するものであり、以下に負極活物質について述べる。
負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、特に制限はない。その具体例としては、炭素質材料、合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。これらは1種を単独で用いてもよく、また2種以上を任意に組み合わせて併用してもよい。
<2−3−1.炭素質材料>
負極活物質として用いられる炭素質材料としては、
(1)天然黒鉛、
(2)人造炭素質物質並びに人造黒鉛質物質を400℃から3200℃の範囲で一回以上熱処理した炭素質材料、
(3)負極活物質層が少なくとも2種類以上の異なる結晶性を有する炭素質から成り立ちかつ/又はその異なる結晶性の炭素質が接する界面を有している炭素質材料、
(4)負極活物質層が少なくとも2種類以上の異なる配向性を有する炭素質から成り立ちかつ/又はその異なる配向性の炭素質が接する界面を有している炭素質材料、
から選ばれるものが初期不可逆容量、高電流密度充放電特性のバランスが良く好ましい。また、(1)〜(4)の炭素質材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記(2)の人造炭素質物質並びに人造黒鉛質物質の具体的な例としては、天然黒鉛、石炭系コークス、石油系コークス、石炭系ピッチ、石油系ピッチ、あるいはこれらピッチを酸化処理したもの、ニードルコークス、ピッチコークス及びこれらを一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等の有機物の熱分解物、炭化可能な有機物、及びこれらの炭化物、又は炭化可能な有機物をベンゼン、トルエン、キシレン、キノリン、n−へキサン等の低分子有機溶媒に溶解させた溶液及びこれらの炭化物等が挙げられる。
<2−3−2.炭素質負極の構成、物性、調製方法>
炭素質材料についての性質や炭素質材料を含有する負極電極及び電極化手法、集電体、非水系電解液二次電池については、次に示す(1)〜(13)の何れか1項又は複数項を同時に満たしていることが望ましい。
(1)X線パラメータ
炭素質材料の学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が、通常0.335〜0.340nmであり、特に0.335〜0.338nm、とりわけ0.335〜0.337nmであるものが好ましい。また、学振法によるX線回折で求めた結晶子サイズ(Lc)は、通常1.0nm以上、好ましくは1.5nm以上、特に好ましくは2nm以上である。
(2)体積基準平均粒径
炭素質材料の体積基準平均粒径は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)が、通常1μm以上であり、3μm以上が好ましく、5μm以上が更に好ましく、7μm以上が特に好ましく、また、通常100μm以下であり、50μm以下が好ましく、40μm以下がより好ましく、30μm以下が更に好ましく、25μm以下が特に好ましい。体積基準平均粒径が上記範囲を下回ると、不可逆容量が増大して、初期の電池容量の損失を招くことになる場合がある。また、上記範囲を上回ると、塗布により電極を作製する際に、不均一な塗面になりやすく、電池製作工程上望ましくない場合がある。
体積基準平均粒径の測定は、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約10mL)に炭素粉末を分散させて、レーザー回折・散乱式粒度分布計(堀場製作所社製LA−700)を用いて行なう。該測定で求められるメジアン径を、本発明の炭素質材料の体積基準平均粒径と定義する。
[菱面体晶率]
本発明で定義される菱面体晶率は、X線広角回折法(XRD)による菱面体晶構造黒鉛層(ABCスタッキング層)と六方晶構造黒鉛層(ABスタッキング層)の割合から次式を用いて求めることができる。
菱面体晶率(%)=XRDのABC(101)ピークの積分強度÷
XRDのAB(101)ピーク積分強度×100
ここで、本発明の黒鉛粒子の菱面体晶率は、通常0%以上、好ましくは0%より大きく、より好ましくは3%以上、更に好ましくは5%以上、特に好ましくは12%以上、また、通常35%以下、好ましくは27%以下、更に好ましくは24%以下、特に好ましくは20%以下の範囲である。ここで、菱面体晶率が0%とは、ABCスタッキング層に由来するXRDピークが全く検出されないことを指す。また0%より大きいとは、ABCスタッキング層に由来するXRDピークが僅かでも検出されていることを指す。
菱面体晶率が大きすぎると、黒鉛粒子の結晶構造中に欠陥が多く含まれているので、Liの挿入量が減少し高容量が得られ難い傾向がある。また、前記欠陥によってサイクル中に電解液が分解するため、サイクル特性が低下する傾向がある。これに対し、菱面体晶率が本発明の範囲内であれば、例えば、黒鉛粒子の結晶構造中に欠陥が少なく電解液との反応性が小さく、サイクル中の電解液の消耗が少なくサイクル特性に優れるので好ましい。
菱面体晶率を求めるためのXRDの測定方法は、以下の通りである。
0.2mmの試料板に黒鉛粉体が配向しないように充填し、X線回折装置(例えば、PANalytical社製 X'Pert Pro MPDでCuKα線にて、出力45kV、40mA)で測定する。得られた回折パターンを使用し解析ソフトJADE5.0を用い、非対称ピアソンVII関数を用いたプロファイルフィッティングにより前記ピーク積分強度をそれぞれ算出し、前記式から菱面体晶率を求める。
X線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット :
ソーラースリット 0.04度
発散スリット 0.5度
横発散マスク 15mm
散乱防止スリット 1度
・測定範囲及びステップ角度/計測時間:
(101)面:41度≦2θ≦47.5度 0.3度/60秒
・バックグラウンド補正:42.7から45.5度の間を直線で結び、バックグラウンドとし差し引く。
・菱面体晶構造黒鉛粒子層のピーク:43.4度付近のピークのことを指す。
・六方晶構造黒鉛粒子層のピーク:44.5度付近のピークのことを指す。
上記範囲の菱面体晶率を有する黒鉛粒子を得る方法は、従来の技術を用いて製造する方法を採用することが可能であり、特に限定されないが、黒鉛粒子を500℃以上の温度で熱処理することにより製造することが好ましい。また、衝撃力を主体に粒子の相互作用も含めた圧縮、摩擦、せん断力等の機械的作用を黒鉛粒子に与えることも好ましい。その他、機械的作用の強度、処理時間、繰り返しの有無などを変えることでも、菱面体晶率を調整することが可能である。菱面体晶率を調整するための具体的な装置としては、ケーシング内部に多数のブレードを設置したローターを有し、そのローターが高速回転することによって、内部に導入された炭素材料に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与え、表面処理を行なう装置が好ましい。また、炭素材料を循環させることによって機械的作用を繰り返して与える機構を有するもの、若しくは、循環機構を有しないが装置を複数台連結させ処理する機構を有するものであるのが好ましい。好ましい装置の一例として、(株)奈良機械製作所製のハイブリダイゼーションシステムなどを挙げることができる。
また、前記機械的作用を与えた後に熱処理を加えることがより好ましい。
更に前記機械的作用を与えた後に炭素前駆体と複合化し700℃以上の温度で熱処理を加えることが特に好ましい。
(3)ラマンR値、ラマン半値幅
炭素質材料のラマンR値は、アルゴンイオンレーザーラマンスペクトル法を用いて測定した値が、通常0.01以上であり、0.03以上が好ましく、0.1以上が更に好ましく、また、通常1.5以下であり、1.2以下が好ましく、1以下が更に好ましく、0.5以下が特に好ましい。
ラマンR値が上記範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、充放電に伴ってLiが層間に入るサイトが少なくなる場合がある。すなわち、充電受入性が低下する場合がある。また、集電体に塗布した後、プレスすることによって負極を高密度化した場合に電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く場合がある。一方、上記範囲を上回ると、粒子表面の結晶性が低下し、非水系電解液との反応性が増し、効率の低下やガス発生の増加を招く場合がある。
また、炭素質材料の1580cm−1付近のラマン半値幅は特に制限されないが、通常10cm−1以上であり、15cm−1以上が好ましく、また、通常100cm−1以下であり、80cm−1以下が好ましく、60cm−1以下が更に好ましく、40cm−1以下が特に好ましい。
ラマン半値幅が上記範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、充放電に伴ってLiが層間に入るサイトが少なくなる場合がある。すなわち、充電受入性が低下する場合がある。また、集電体に塗布した後、プレスすることによって負極を高密度化した場合に電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く場合がある。一方、上記範囲を上回ると、粒子表面の結晶性が低下し、非水系電解液との反応性が増し、効率の低下やガス発生の増加を招く場合がある。
ラマンスペクトルの測定は、ラマン分光器(日本分光社製ラマン分光器)を用いて、試料を測定セル内へ自然落下させて充填し、セル内のサンプル表面にアルゴンイオンレーザー光を照射しながら、セルをレーザー光と垂直な面内で回転させることにより行なう。得られるラマンスペクトルについて、1580cm−1付近のピークPAの強度IAと、1360cm−1付近のピークPBの強度IBとを測定し、その強度比R(R=IB/IA)を算出する。該測定で算出されるラマンR値を、本発明における炭素質材料のラマンR値と定義する。また、得られるラマンスペクトルの1580cm−1付近のピークPAの半値幅を測定し、これを本発明における炭素質材料のラマン半値幅と定義する。
また、上記のラマン測定条件は、次の通りである。
・アルゴンイオンレーザー波長 :514.5nm
・試料上のレーザーパワー :15〜25mW
・分解能 :10〜20cm−1
・測定範囲 :1100cm−1〜1730cm−1
・ラマンR値、ラマン半値幅解析:バックグラウンド処理
・スムージング処理 :単純平均、コンボリューション5ポイント
(4)BET比表面積
炭素質材料のBET比表面積は、BET法を用いて測定した比表面積の値が、通常0.1m・g−1以上であり、0.7m・g−1以上が好ましく、1.0m・g−1以上が更に好ましく、1.5m・g−1以上が特に好ましく、また、通常100m・g−1以下であり、25m・g−1以下が好ましく、15m・g−1以下が更に好ましく、10m・g−1以下が特に好ましい。
BET比表面積の値がこの範囲を下回ると、負極材料として用いた場合の充電時にリチ
ウムの受け入れ性が悪くなりやすく、リチウムが電極表面で析出しやすくなり、安定性が低下する可能性がある。一方、この範囲を上回ると、負極材料として用いた時に非水系電解液との反応性が増加し、ガス発生が多くなりやすく、好ましい電池が得られにくい場合がある。
BET法による比表面積の測定は、表面積計(大倉理研製全自動表面積測定装置)を用いて、試料に対して窒素流通下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって行なう。該測定で求められる比表面積を、本発明における炭素質材料のBET比表面積と定義する。
(5)円形度
炭素質材料の球形の程度として円形度を測定した場合、以下の範囲に収まることが好ましい。なお、円形度は、「円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)」で定義され、円形度が1のときに理論的真球となる。
炭素質材料の粒径が3〜40μmの範囲にある粒子の円形度は1に近いほど望ましく、また、0.1以上が好ましく、中でも0.5以上が好ましく、0.8以上がより好ましく、0.85以上が更に好ましく、0.9以上が特に好ましい。
高電流密度充放電特性は、円形度が大きいほど向上する。従って、円形度が上記範囲を下回ると、負極活物質の充填性が低下し、粒子間の抵抗が増大して、短時間高電流密度充放電特性が低下する場合がある。
円形度の測定は、フロー式粒子像分析装置(シスメックス社製FPIA)を用いて行う。試料約0.2gを、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約50mL)に分散させ、28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6〜400μmに指定し、粒径が3〜40μmの範囲の粒子について測定する。該測定で求められる円形度を、本発明における炭素質材料の円形度と定義する。
円形度を向上させる方法は、特に限定されないが、球形化処理を施して球形にしたものが、電極体にしたときの粒子間空隙の形状が整うので好ましい。球形化処理の例としては、せん断力、圧縮力を与えることによって機械的に球形に近づける方法、複数の微粒子をバインダー若しくは、粒子自身の有する付着力によって造粒する機械的・物理的処理方法等が挙げられる。
(6)タップ密度
炭素質材料のタップ密度は、通常0.1g・cm−3以上であり、0.5g・cm−3以上が好ましく、0.7g・cm−3以上が更に好ましく、1g・cm−3以上が特に好ましく、また、2g・cm−3以下が好ましく、1.8g・cm−3以下が更に好ましく、1.6g・cm−3以下が特に好ましい。
タップ密度が、上記範囲を下回ると、負極として用いた場合に充填密度が上がり難く、高容量の電池を得ることができない場合がある。また、上記範囲を上回ると、電極中の粒子間の空隙が少なくなり過ぎ、粒子間の導電性が確保され難くなり、好ましい電池特性が得られにくい場合がある。
タップ密度の測定は、目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセルの上端面まで試料を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量からタップ密度を算出する。該測定で算出されるタップ密度を、本発明における炭素質材料のタップ密度として定義する。
(7)配向比
炭素質材料の配向比は、通常0.005以上であり、0.01以上が好ましく、0.015以上が更に好ましく、また、通常0.67以下である。配向比が、上記範囲を下回ると、高密度充放電特性が低下する場合がある。なお、上記範囲の上限は、炭素質材料の配向比の理論上限値である。
配向比は、試料を加圧成型してからX線回折により測定する。試料0.47gを直径17mmの成型機に充填し58.8MN・m−2で圧縮して得た成型体を、粘土を用いて測定用試料ホルダーの面と同一面になるようにセットしてX線回折を測定する。得られた炭素の(110)回折と(004)回折のピーク強度から、(110)回折ピーク強度/(004)回折ピーク強度で表わされる比を算出する。該測定で算出される配向比を、本発明における炭素質材料の配向比と定義する。
X線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット :
発散スリット=0.5度
受光スリット=0.15mm
散乱スリット=0.5度
・測定範囲及びステップ角度/計測時間:
(110)面:75度≦2θ≦80度 1度/60秒
(004)面:52度≦2θ≦57度 1度/60秒
(8)アスペクト比(粉)
炭素質材料のアスペクト比は、通常1以上、また、通常10以下であり、8以下が好ましく、5以下が更に好ましい。アスペクト比が、上記範囲を上回ると、極板化時にスジ引きや、均一な塗布面が得られず、高電流密度充放電特性が低下する場合がある。なお、上記範囲の下限は、炭素質材料のアスペクト比の理論下限値である。
アスペクト比の測定は、炭素質材料の粒子を走査型電子顕微鏡で拡大観察して行う。厚さ50ミクロン以下の金属の端面に固定した任意の50個の黒鉛粒子を選択し、それぞれについて試料が固定されているステージを回転、傾斜させて、3次元的に観察した時の炭素質材料粒子の最長となる径Aと、それと直交する最短となる径Bを測定し、A/Bの平均値を求める。該測定で求められるアスペクト比(A/B)を、本発明における炭素質材料のアスペクト比と定義する。
(9)電極作製
電極の製造は、本発明の効果を著しく制限しない限り、公知の何れの方法を用いることができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって形成することができる。
電池の非水系電解液注液工程直前の段階での片面あたりの負極活物質層の厚さは、通常15μm以上であり、20μm以上が好ましく、30μm以上が更に好ましく、また、通常150μm以下であり、120μm以下が好ましく、100μm以下が更に好ましい。負極活物質の厚さが、この範囲を上回ると、非水系電解液が集電体界面付近まで浸透しにくいため、高電流密度充放電特性が低下する場合があるためである。またこの範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合があるためである。また、負極活物質をロール成形してシート電極としてもよく、圧縮成形によりペレット電極としてもよい。
(10)集電体
負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、例えば、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられるが、加工し易さとコストの点から特に銅が好ましい。
また、集電体の形状は、集電体が金属材料の場合は、例えば、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも、好ましくは金属薄膜、より好ましくは銅箔であり、更に好ましくは圧延法による圧延銅箔と、電解法による電解銅箔があり、どちらも集電体として用いることができる。
また、銅箔の厚さが25μmよりも薄い場合、純銅よりも強度の高い銅合金(リン青銅、チタン銅、コルソン合金、Cu−Cr−Zr合金等)を用いることができる。
(10−1)集電体の厚さ
集電体の厚さは任意であるが、通常1μm以上であり、3μm以上が好ましく、5μm以上が更に好ましく、また、通常1mm以下であり、100μm以下が好ましく、50μm以下が更に好ましい。金属皮膜の厚さが、1μmより薄くなると、強度が低下するため塗布が困難となる場合がある。また、100μmより厚くなると、捲回等の電極の形を変形させる場合がある。なお、集電体は、メッシュ状でもよい。
(11)集電体と負極活物質層の厚さの比
集電体と負極活物質層の厚さの比は特には限定されないが、「(非水系電解液注液直前の片面の負極活物質層厚さ)/(集電体の厚さ)」の値が、150以下が好ましく、20以下が更に好ましく、10以下が特に好ましく、また、0.1以上が好ましく、0.4以上が更に好ましく、1以上が特に好ましい。
集電体と負極活物質層の厚さの比が、上記範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。また、上記範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
(12)電極密度
負極活物質を電極化した際の電極構造は特には限定されないが、集電体上に存在している負極活物質の密度は、1g・cm−3以上が好ましく、1.2g・cm−3以上が更に好ましく、1.3g・cm−3以上が特に好ましく、また、2.2g・cm−3以下が好ましく、2.1g・cm−3以下がより好ましく、2.0g・cm−3以下が更に好ましく、1.9g・cm−3以下が特に好ましい。集電体上に存在している負極活物質の密度が、上記範囲を上回ると、負極活物質粒子が破壊され、初期不可逆容量の増加や、集電体/負極活物質界面付近への非水系電解液の浸透性低下による高電流密度充放電特性悪化を招く場合がある。また、上記範囲を下回ると、負極活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
(13)バインダー
負極活物質を結着するバインダーとしては、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に制限されない。
具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル・ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素
添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
スラリーを形成するための溶媒としては、負極活物質、バインダー、並びに必要に応じて使用される増粘剤及び導電材を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
水系溶媒の例としては水、アルコール等が挙げられ、有機系溶媒の例としてはN−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルフォキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。
特に水系溶媒を用いる場合、増粘剤に併せて分散剤等を含有させ、SBR等のラテックスを用いてスラリー化することが好ましい。なお、これらの溶媒は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
負極活物質に対するバインダーの割合は、0.1質量%以上が好ましく、0.5質量%以上が更に好ましく、0.6質量%以上が特に好ましく、また、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下が更に好ましく、8質量%以下が特に好ましい。負極活物質に対するバインダーの割合が、上記範囲を上回ると、バインダー量が電池容量に寄与しないバインダー割合が増加して、電池容量の低下を招く場合がある。また、上記範囲を下回ると、負極電極の強度低下を招く場合がある。
特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、負極活物質に対するバインダーの割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上が更に好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下が更に好ましい。
また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には負極活物質に対する割合は、通常1質量%以上であり、2質量%以上が好ましく、3質量%以上が更に好ましく、また、通常15質量%以下であり、10質量%以下が好ましく、8質量%以下が更に好ましい。
増粘剤は、通常、スラリーの粘度を調製するために使用される。増粘剤としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
更に増粘剤を用いる場合には、負極活物質に対する増粘剤の割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上が更に好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下が更に好ましい。負極活物質に対する増粘剤の割合が、上記範囲を下回ると、著しく塗布性が低下する場合がある。また、上記範囲を上回ると、負極活物質層に占める負極活物質の割合が低下し、電池の容量が低下する問題や負極活物質間の抵抗が増大する場合がある。
<2−3−3.金属化合物系材料、及び金属化合物系材料を用いた負極の構成、物性、調製方法>
負極活物質として用いられる金属化合物系材料としては、リチウムを吸蔵・放出可能であれば、リチウム合金を形成する単体金属若しくは合金、又はそれらの酸化物、炭化物、窒化物、珪化物、硫化物、燐化物等の化合物の何れであっても特に限定はされない。このような金属化合物としては、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn等の金属を含有する化合物が挙げられる。なかでも、リチウム合金を形成する単体金属若しくは合金であることが好ましく、13族又は14族の金属・半金属元素(すなわち炭素を除く)を含む材料あることがより好ましく、更には、ケイ素(Si)、スズ(Sn)又は鉛(Pb)(以下、これら3種の元素を「特定金属元素」という場合がある)の単体金属若しくはこれら原子を含む合金、又は、それらの金属(特定金属元素)の化合物であることが好ましく、ケイ素の単体金属、合金及び化合物、並びにスズの単体金属、合金及び化合物が特に好ましい。これらは、1種を単独で用いてもよく、また2種以上を任意の組み合わせ及び比率で併用してもよい。
特定金属元素から選ばれる少なくとも1種の原子を有する負極活物質の例としては、何れか1種の特定金属元素の金属単体、2種以上の特定金属元素からなる合金、1種又は2種以上の特定金属元素とその他の1種又は2種以上の金属元素とからなる合金、並びに、1種又は2種以上の特定金属元素を含有する化合物、又は、その化合物の酸化物・炭化物・窒化物・珪化物・硫化物・燐化物等の複合化合物が挙げられる。負極活物質としてこれらの金属単体、合金又は金属化合物を用いることで、電池の高容量化が可能である。
また、これらの複合化合物が、金属単体、合金、又は非金属元素等の数種の元素と複雑に結合した化合物も例として挙げることができる。より具体的には、例えばケイ素やスズでは、これらの元素と負極として動作しない金属との合金を用いることができる。また例えばスズでは、スズとケイ素以外で負極として作用する金属と、更に負極として動作しない金属と、非金属元素との組み合わせで5〜6種の元素を含むような複雑な化合物も用いることができる。
これらの負極活物質の中でも、電池にしたときに単位質量当りの容量が大きいことから、何れか1種の特定金属元素の金属単体、2種以上の特定金属元素の合金、特定金属元素の酸化物や炭化物、窒化物等が好ましく、特に、ケイ素及びスズの金属単体、ならびにこれらの合金、酸化物や炭化物、窒化物等が、単位質量当りの容量及び環境負荷の観点から好ましい。
また、金属単体又は合金を用いるよりは単位質量当りの容量には劣るものの、サイクル特性に優れることから、ケイ素及びスズのうち少なくとも一方を含有する以下の化合物も好ましい。
・ケイ素及びスズのうち少なくとも一方と酸素との元素比が通常0.5以上であり、好ましくは0.7以上、更に好ましくは0.9以上、また、通常1.5以下であり、好ましくは1.3以下、更に好ましくは1.1以下の「ケイ素及びスズのうち少なくとも一方の酸化物」。
・ケイ素及びスズのうち少なくとも一方と窒素との元素比が通常0.5以上であり、好ましくは0.7以上、更に好ましくは0.9以上、また、通常1.5以下であり、好ましくは1.3以下、更に好ましくは1.1以下の「ケイ素及びスズのうち少なくとも一方の窒化物」。
・ケイ素及びスズのうち少なくとも一方と炭素との元素比が通常0.5以上であり、好ましくは0.7以上、更に好ましくは0.9以上、また、通常1.5以下であり、好ましくは1.3以下、更に好ましくは1.1以下の「ケイ素及びスズのうち少なくとも一方の炭
化物」。
なお、上述の負極活物質は、何れか1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
本発明の非水系電解液二次電池における負極は、公知の何れの方法を用いて製造することが可能である。具体的に、負極の製造方法としては、例えば、上述の負極活物質に結着剤や導電材等を加えたものをそのままロール成型してシート電極とする方法や、圧縮成形してペレット電極とする方法も挙げられるが、通常は負極用の集電体(以下「負極集電体」という場合がある。)上に塗布法、蒸着法、スパッタ法、メッキ法等の手法により、上述の負極活物質を含有する薄膜層(負極活物質層)を形成する方法が用いられる。この場合、上述の負極活物質に結着剤、増粘剤、導電材、溶媒等を加えてスラリー状とし、これを負極集電体に塗布、乾燥した後にプレスして高密度化することにより、負極集電体上に負極活物質層を形成する。
負極集電体の材質としては、鋼、銅合金、ニッケル、ニッケル合金、ステンレス等が挙げられる。これらのうち、薄膜に加工し易いという点及びコストの点から、銅箔が好ましい。
負極集電体の厚さは、通常1μm以上、好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下である。負極集電体の厚さが厚過ぎると、電池全体の容量が低下し過ぎることがあり、逆に薄過ぎると取り扱いが困難になることがあるためである。
なお、表面に形成される負極活物質層との結着効果を向上させるため、これら負極集電体の表面は、予め粗面化処理しておくことが好ましい。表面の粗面化方法としては、ブラスト処理、粗面ロールによる圧延、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線等を備えたワイヤーブラシ等で集電体表面を研磨する機械的研磨法、電解研磨法、化学研磨法等が挙げられる。
また、負極集電体の質量を低減させて電池の質量当たりのエネルギー密度を向上させるために、エキスパンドメタルやパンチングメタルのような穴あきタイプの負極集電体を使用することもできる。このタイプの負極集電体は、その開口率を変更することで、質量も白在に変更可能である。また、このタイプの負極集電体の両面に負極活物質層を形成させた場合、この穴を通してのリベット効果により、負極活物質層の剥離が更に起こり難くなる。しかし、開口率があまりに高くなった場合には、負極活物質層と負極集電体との接触面積が小さくなるため、かえって接着強度は低くなることがある。
負極活物質層を形成するためのスラリーは、通常は負極材に対して結着剤、増粘剤等を加えて作製される。なお、本明細書における「負極材」とは、負極活物質と導電材とを合わせた材料を指すものとする。
負極材中における負極活物質の含有量は、通常70質量%以上、特に75質量%以上、また、通常97質量%以下、特に95質量%以下であることが好ましい。負極活物質の含有量が少な過ぎると、得られる負極を用いた二次電池の容量が不足する傾向があり、多過ぎると相対的に結着剤等の含有量が不足することにより、得られる負極の強度が不足する傾向にあるためである。なお、2以上の負極活物質を併用する場合には、負極活物質の合計量が上記範囲を満たすようにすればよい。
負極に用いられる導電材としては、銅やニッケル等の金属材料;黒鉛、カーボンブラック等の炭素材料等が挙げられる。これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。特に、導電材として炭素材料を用いると、炭素材料が活物質としても作用するため好ましい。負極材中における導電材の含有量は、通常3
質量%以上、特に5質量%以上、また、通常30質量%以下、特に25質量%以下であることが好ましい。導電材の含有量が少な過ぎると導電性が不足する傾向があり、多過ぎると相対的に負極活物質等の含有量が不足することにより、電池容量や強度が低下する傾向となるためである。なお、2以上の導電材を併用する場合には、導電材の合計量が上記範囲を満たすようにすればよい。
負極に用いられる結着剤としては、電極製造時に使用する溶媒や電解液に対して安全な材料であれば、任意のものを使用することができる。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、スチレン・ブタジエンゴム・イソプレンゴム、ブタジエンゴム、エチレン−アクリル酸共重合体、エチレン・メタクリル酸共重合体等が挙げられる。これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。結着剤の含有量は、負極材100質量部に対して通常0.5質量部以上、特に1質量部以上、また、通常10質量部以下、特に8質量部以下であることが好ましい。結着剤の含有量が少な過ぎると得られる負極の強度が不足する傾向があり、多過ぎると相対的に負極活物質等の含有量が不足することにより、電池容量や導電性が不足する傾向となるためである。なお、2以上の結着剤を併用する場合には、結着剤の合計量が上記範囲を満たすようにすればよい。
負極に用いられる増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。増粘剤は必要に応じて使用すればよいが、使用する場合には、負極活物質層中における増粘剤の含有量が通常0.5質量%以上、5質量%以下の範囲で用いることが好ましい。
負極活物質層を形成するためのスラリーは、上記負極活物質に、必要に応じて導電材や結着剤、増粘剤を混合し、水系溶媒又は有機溶媒を分散媒として用いて調製される。水系溶媒としては、通常は水が用いられるが、エタノール等のアルコール類やN−メチルピロリドン等の環状アミド類等の水以外の溶媒を、水に対して30質量%以下程度の割合で併用することもできる。また、有機溶媒としては、通常、N−メチルピロリドン等の環状アミド類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等の直鎖状アミド類、アニソール、トルエン、キシレン等の芳香族炭化水素類、ブタノール、シクロヘキサノール等のアルコール類が挙げられ、中でも、N−メチルピロリドン等の環状アミド類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等の直鎖状アミド類等が好ましい。なお、これらは何れか1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
スラリーの粘度は、集電体上に塗布することが可能な粘度であれば、特に制限されない。塗布が可能な粘度となるように、スラリーの調製時に溶媒の使用量等を変えて、適宜調製すればよい。
得られたスラリーを上述の負極集電体上に塗布し、乾燥した後、プレスすることにより、負極活物質層が形成される。塗布の手法は特に制限されず、それ自体既知の方法を用いることができる。乾燥の手法も特に制限されず、自然乾燥、加熱乾燥、減圧乾燥等の公知の手法を用いることができる。
上記手法により負極活物質を電極化した際の電極構造は特には限定されないが、集電体上に存在している活物質の密度は、1g・cm−3以上が好ましく、1.2g・cm−3以上が更に好ましく、1.3g・cm−3以上が特に好ましく、また、2.2g・cm−3以下が好ましく、2.1g・cm−3以下がより好ましく、2.0g・cm−3以下が更に好ましく、1.9g・cm−3以下が特に好ましい。
集電体上に存在している活物質の密度が、上記範囲を上回ると、活物質粒子が破壊され、初期不可逆容量の増加や、集電体/活物質界面付近への非水系電解液の浸透性低下による高電流密度充放電特性悪化を招く場合がある。また、上記範囲を下回ると、活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
<2−3−4.リチウム含有金属複合酸化物材料、及びリチウム含有金属複合酸化物材料を用いた負極の構成、物性、調製方法>
負極活物質として用いられるリチウム含有金属複合酸化物材料としては、リチウムを吸蔵・放出可能であれば特に限定はされないが、チタンを含むリチウム含有複合金属酸化物材料が好ましく、リチウムとチタンの複合酸化物(以下、「リチウムチタン複合酸化物」と略記する)が特に好ましい。すなわち、スピネル構造を有するリチウムチタン複合酸化物を、非水系電解液二次電池用負極活物質に含有させて用いると、出力抵抗が大きく低減するので特に好ましい。
また、リチウムチタン複合酸化物のリチウムやチタンが、他の金属元素、例えば、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素で置換されているものも好ましい。
上記金属酸化物が、一般式(3)で表されるリチウムチタン複合酸化物であり、一般式(3)中、0.7≦x≦1.5、1.5≦y≦2.3、0≦z≦1.6であることが、リチウムイオンのドープ・脱ドープの際の構造が安定であることから好ましい。
LixTiyMzO (3)
[一般式(3)中、Mは、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素を表わす。]
上記の一般式(3)で表される組成の中でも、
(a)1.2≦x≦1.4、1.5≦y≦1.7、z=0
(b)0.9≦x≦1.1、1.9≦y≦2.1、z=0
(c)0.7≦x≦0.9、2.1≦y≦2.3、z=0
の構造が、電池性能のバランスが良好なため特に好ましい。
上記化合物の特に好ましい代表的な組成は、(a)ではLi4/3Ti5/3、(b)ではLiTi、(c)ではLi4/5Ti11/5である。また、Z≠0の構造については、例えば、Li4/3Ti4/3Al1/3が好ましいものとして挙げられる。
本発明における負極活物質としてのリチウムチタン複合酸化物は、上記した要件に加えて、更に、下記の(1)〜(13)に示した物性及び形状等の特徴の内、少なくとも1種を満たしていることが好ましく、2種以上を同時に満たすことが特に好ましい。
(1)BET比表面積
負極活物質として用いられるリチウムチタン複合酸化物のBET比表面積は、BET法を用いて測定した比表面積の値が、0.5m・g−1以上が好ましく、0.7m・g−1以上がより好ましく、1.0m・g−1以上が更に好ましく、1.5m・g−1以上が特に好ましく、また、200m・g−1以下が好ましく、100m・g−1以下がより好ましく、50m・g−1以下が更に好ましく、25m・g−1以下が特に好ましい。
BET比表面積が、上記範囲を下回ると、負極材料として用いた場合の非水系電解液と接する反応面積が減少し、出力抵抗が増加する場合がある。一方、上記範囲を上回ると、チタンを含有する金属酸化物の結晶の表面や端面の部分が増加し、また、これに起因して、結晶の歪も生じるため、不可逆容量が無視できなくなり、好ましい電池が得られにくい
場合がある。
BET法による比表面積の測定は、表面積計(大倉理研製全自動表面積測定装置)を用いて、試料に対して窒素流通下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって行なう。該測定で求められる比表面積を、本発明におけるリチウムチタン複合酸化物のBET比表面積と定義する。
(2)体積基準平均粒径
リチウムチタン複合酸化物の体積基準平均粒径(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)で定義される。
リチウムチタン複合酸化物の体積基準平均粒径は、通常0.1μm以上であり、0.5μm以上が好ましく、0.7μm以上が更に好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下が更に好ましく、25μm以下が特に好ましい。
体積基準平均粒径の測定は、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(10mL)に炭素粉末を分散させて、レーザー回折・散乱式粒度分布計(堀場製作所社製LA−700)を用いて行なう。該測定で求められるメジアン径を、本発明における炭素質材料の体積基準平均粒径と定義する。
リチウムチタン複合酸化物の体積平均粒径が、上記範囲を下回ると、電極作製時に多量の結着剤が必要となり、結果的に電池容量が低下する場合がある。また、上記範囲を上回ると、電極極板化時に、不均一な塗面になりやすく、電池製作工程上望ましくない場合がある。
(3)平均一次粒子径
一次粒子が凝集して二次粒子を形成している場合においては、リチウムチタン複合酸化物の平均一次粒子径が、通常0.01μm以上であり、0.05μm以上が好ましく、0.1μm以上が更に好ましく、0.2μm以上が特に好ましく、また、通常2μm以下であり、1.6μm以下が好ましく、1.3μm以下が更に好ましく、1μm以下が特に好ましい。体積基準平均一次粒子径が、上記範囲を上回ると、球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下したりするために、出力特性等の電池性能が低下する可能性が高くなる場合がある。また、上記範囲を下回ると、通常、結晶が未発達になるために充放電の可逆性が劣る等、二次電池の性能を低下させる場合がある。
なお、一次粒子径は、走査型電子顕微鏡(SEM)を用いた観察により測定される。具体的には、粒子が確認できる倍率、例えば10000〜100000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
(4)形状
リチウムチタン複合酸化物の粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が用いられるが、中でも一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状ないし楕円球状であるものが好ましい。
通常、電気化学素子はその充放電に伴い、電極中の活物質が膨張収縮をするため、そのストレスによる活物質の破壊や導電パス切れ等の劣化がおきやすい。そのため一次粒子のみの単一粒子の活物質であるよりも、一次粒子が凝集して、二次粒子を形成したものである方が膨張収縮のストレスを緩和して、劣化を防ぐためである。
また、板状等軸配向性の粒子であるよりも、球状又は楕円球状の粒子の方が、電極の成形時の配向が少ないため、充放電時の電極の膨張収縮も少なく、また電極を作製する際の
導電材との混合においても、均一に混合されやすいため好ましい。
(5)タップ密度
リチウムチタン複合酸化物のタップ密度は、0.05g・cm−3以上が好ましく、0.1g・cm−3以上がより好ましく、0.2g・cm−3以上が更に好ましく、0.4g・cm−3以上が特に好ましく、また、2.8g・cm−3以下が好ましく、2.4g・cm−3以下が更に好ましく、2g・cm−3以下が特に好ましい。タップ密度が、上記範囲を下回ると、負極として用いた場合に充填密度が上がり難く、また粒子間の接触面積が減少するため、粒子間の抵抗が増加し、出力抵抗が増加する場合がある。また、上記範囲を上回ると、電極中の粒子間の空隙が少なくなり過ぎ、非水系電解液の流路が減少することで、出力抵抗が増加する場合がある。
タップ密度の測定は、目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセルの上端面まで試料を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量から密度を算出する。該測定で算出されるタップ密度を、本発明におけるリチウムチタン複合酸化物のタップ密度として定義する。
(6)円形度
リチウムチタン複合酸化物の球形の程度として、円形度を測定した場合、以下の範囲に収まることが好ましい。円形度は、「円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)」で定義され、円形度が1のときに理論的真球となる。
リチウムチタン複合酸化物の円形度は、1に近いほど好ましく、通常0.10以上であり、0.80以上が好ましく、0.85以上が更に好ましく、0.90以上が特に好ましい。高電流密度充放電特性は、円形度が大きいほどが向上する。従って、円形度が上記範囲を下回ると、負極活物質の充填性が低下し、粒子間の抵抗が増大して、短時間高電流密度充放電特性が低下する場合がある。
円形度の測定は、フロー式粒子像分析装置(シスメックス社製FPIA)を用いて行なう。試料約0.2gを、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約50mL)に分散させ、28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6〜400μmに指定し、粒径が3〜40μmの範囲の粒子について測定する。該測定で求められる円形度を、本発明におけるリチウムチタン複合酸化物の円形度と定義する。
(7)アスペクト比
リチウムチタン複合酸化物のアスペクト比は、通常1以上、また、通常5以下であり、4以下が好ましく、3以下が更に好ましく、2以下が特に好ましい。アスペクト比が、上記範囲を上回ると、極板化時にスジ引きや、均一な塗布面が得られず、短時間高電流密度充放電特性が低下する場合がある。なお、上記範囲の下限は、リチウムチタン複合酸化物のアスペクト比の理論下限値である。
アスペクト比の測定は、リチウムチタン複合酸化物の粒子を走査型電子顕微鏡で拡大観察して行なう。厚さ50μm以下の金属の端面に固定した任意の50個の粒子を選択し、それぞれについて試料が固定されているステージを回転、傾斜させて、3次元的に観察した時の粒子の最長となる径Aと、それと直交する最短となる径Bを測定し、A/Bの平均値を求める。該測定で求められるアスペクト比(A/B)を、本発明におけるリチウムチタン複合酸化物のアスペクト比と定義する。
(8)負極活物質の製造法
リチウムチタン複合酸化物の製造法としては、本発明の要旨を超えない範囲で特には制限されないが、いくつかの方法が挙げられ、無機化合物の製造法として一般的な方法が用いられる。
例えば、酸化チタン等のチタン原料物質と、必要に応じ他の元素の原料物質とLiOH、LiCO、LiNO等のLi源を均一に混合し、高温で焼成して活物質を得る方法が挙げられる。
特に球状又は楕円球状の活物質を作成するには種々の方法が考えられる。一例として、酸化チタン等のチタン原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作成回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法が挙げられる。
また、別の例として、酸化チタン等のチタン原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これにLiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法が挙げられる。
更に別の方法として、酸化チタン等のチタン原料物質と、LiOH、LiCO、LiNO等のLi源と、必要に応じ他の元素の原料物質とを水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これを高温で焼成して活物質を得る方法が挙げられる。
また、これらの工程中に、Ti以外の元素、例えば、Al、Mn、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、C、Si、Sn、Agを、チタンを含有する金属酸化物構造中及び/又はチタンを含有する酸化物に接する形で存在していることも可能である。これらの元素を含有することで、電池の作動電圧、容量を制御することが可能となる。
(9)電極作製
電極の製造は、公知の何れの方法を用いることができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって形成することができる。
電池の非水系電解液注液工程直前の段階での片面あたりの負極活物質層の厚さは通常15μm以上、好ましくは20μm以上、より好ましくは30μm以上であり、上限は150μm以下、好ましくは120μm以下、より好ましくは100μm以下が望ましい。
この範囲を上回ると、非水系電解液が集電体界面付近まで浸透しにくいため、高電流密度充放電特性が低下する場合がある。またこの範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。また、負極活物質をロール成形してシート電極としてもよく、圧縮成形によりペレット電極としてもよい。
(10)集電体
負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられ、中でも加工し易さとコストの点から特に銅が好ましい。
また、集電体の形状は、集電体が金属材料の場合は、例えば金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも好ましくは銅(Cu)及びアルミニウム(Al)のうち少なくとも一方を含有する金属箔膜であり、より好ましくは銅箔、アルミニウム箔であり、更に好ましくは圧延法による圧延銅箔と、電解法による電解銅箔があり、どちらも集電体として用いることが
できる。
また、銅箔の厚さが25μmよりも薄い場合、純銅よりも強度の高い銅合金(リン青銅、チタン銅、コルソン合金、Cu−Cr−Zr合金等)を用いることができる。またアルミニウム箔は、その比重が軽いことから、集電体として用いた場合に、電池の質量を減少させることが可能となり、好ましく用いることができる。
圧延法により作製した銅箔からなる集電体は、銅結晶が圧延方向に並んでいるため、負極を密に丸めても、鋭角に丸めても割れにくく、小型の円筒状電池に好適に用いることができる。
電解銅箔は、例えば、銅イオンが溶解された非水系電解液中に金属製のドラムを浸漬し、これを回転させながら電流を流すことにより、ドラムの表面に銅を析出させ、これを剥離して得られるものである。上記の圧延銅箔の表面に、電解法により銅を析出させていてもよい。銅箔の片面又は両面には、粗面化処理や表面処理(例えば、厚さが数nm〜1μm程度までのクロメート処理、Ti等の下地処理等)がなされていてもよい。
また、集電体基板には、更に次のような物性が望まれる。
(10−1)平均表面粗さ(Ra)
JISB0601−1994に記載の方法で規定される集電体基板の活物質薄膜形成面の平均表面粗さ(Ra)は、特に制限されないが、通常0.01μm以上であり、0.03μm以上が好ましく、また、通常1.5μm以下であり、1.3μm以下が好ましく、1.0μm以下が更に好ましい。
集電体基板の平均表面粗さ(Ra)が、上記の範囲内であると、良好な充放電サイクル特性が期待できるためである。また、活物質薄膜との界面の面積が大きくなり、負極活物質薄膜との密着性が向上するためである。なお、平均表面粗さ(Ra)の上限値は特に制限されるものではないが、平均表面粗さ(Ra)が1.5μmを超えるものは電池として実用的な厚みの箔としては一般に入手しにくいため、1.5μm以下のものが通常用いられる。
(10−2)引張強度
引張強度とは、試験片が破断に至るまでに要した最大引張力を、試験片の断面積で割ったものである。本発明における引張強度は、JISZ2241(金属材料引張試験方法)に記載と同様な装置及び方法で測定される。
集電体基板の引張強度は、特に制限されないが、通常50N・mm−2以上であり、100N・mm−2以上が好ましく、150N・mm−2以上が更に好ましい。引張強度は、値が高いほど好ましいが、工業的入手可能性の観点から、通常1000N・mm−2以下が望ましい。
引張強度が高い集電体基板であれば、充電・放電に伴う活物質薄膜の膨張・収縮による集電体基板の亀裂を抑制することができ、良好なサイクル特性を得ることができる。
(10−3)0.2%耐力
0.2%耐力とは、0.2%の塑性(永久)歪みを与えるに必要な負荷の大きさであり、この大きさの負荷を加えた後に除荷しても0.2%変形していることを意味している。0.2%耐力は、引張強度と同様な装置及び方法で測定される。
集電体基板の0.2%耐力は、特に制限されないが、通常30N・mm−2以上、好ましくは100N・mm−2以上、特に好ましくは150N・mm−2以上である。0.2%耐力は、値が高いほど好ましいが、工業的入手可能性の観点から、通常900N・mm−2以下が望ましい。
0.2%耐力が高い集電体基板であれば、充電・放電に伴う活物質薄膜の膨張・収縮による集電体基板の塑性変形を抑制することができ、良好なサイクル特性を得ることができ
るためである。
(10−4)集電体の厚さ
集電体の厚さは任意であるが、通常1μm以上であり、3μm以上が好ましく、5μm以上が更に好ましく、また、通常1mm以下であり、100μm以下が好ましく、50μm以下が更に好ましい。
金属皮膜の厚さが、1μmより薄くなると、強度が低下するため塗布が困難となる場合がある。また、100μmより厚くなると、捲回等の電極の形を変形させる場合がある。
なお、金属薄膜は、メッシュ状でもよい。
(11)集電体と活物質層の厚さの比
集電体と活物質層の厚さの比は特には限定されないが、「(非水系電解液注液直前の片面の活物質層の厚さ)/(集電体の厚さ)」の値が、通常150以下であり、20以下が好ましく、10以下が更に好ましく、また、通常0.1以上であり、0.4以上が好ましく、1以上が更に好ましい。
集電体と負極活性物質層の厚さの比が、上記範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。また、上記範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
(12)電極密度
負極活物質の電極化した際の電極構造は特には限定されないが、集電体上に存在している活物質の密度は、1g・cm−3以上が好ましく、1.2g・cm−3以上がより好ましく、1.3g・cm−3以上が更に好ましく、1.5g・cm−3以上が特に好ましく、また、3g・cm−3以下が好ましく、2.5g・cm−3以下がより好ましく、2.2g・cm−3以下が更に好ましく、2g・cm−3以下が特に好ましい。
集電体上に存在している活物質の密度が、上記範囲を上回ると、集電体と負極活物質の結着が弱くなり、電極と活物質が乖離する場合がある。また、上記範囲を下回ると、負極活物質間の導電性が低下し、電池抵抗が増大する場合がある。
(13)バインダー
負極活物質を結着するバインダーとしては、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に制限されない。
具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル・ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体及びその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
スラリーを形成するための溶媒としては、負極活物質、バインダー、必要に応じて使用される増粘剤及び導電材を、溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
水系溶媒の例としては水、アルコール等が挙げられ、有機系溶媒の例としてはN−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジメチルエーテル、ジメチルアセトアミド、ヘキサメリルホスファルアミド、ジメチルスルフォキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。特に水系溶媒を用いる場合、上述の増粘剤に併せて分散剤等を加え、SBR等のラテックスを用いてスラリー化する。なお、これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
負極活物質に対するバインダーの割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上が更に好ましく、また、通常20質量%以下であり、15質量%以下が好ましく、10質量%以下が更に好ましく、8質量%以下が特に好ましい。
負極活物質に対するバインダーの割合が、上記範囲を上回ると、バインダー量が電池容量に寄与しないバインダー割合が増加して、電池容量が低下する場合がある。また、上記範囲を下回ると、負極電極の強度低下を招き、電池作製工程上好ましくない場合がある。
特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、活物質に対するバインダーの割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上が更に好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下が更に好ましい。
また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には活物質に対する割合は、1質量%以上であり、2質量%以上が好ましく、3質量%以上が更に好ましく、通常15質量%以下であり、10質量%以下が好ましく、8質量%以下が更に好ましい。
増粘剤は、通常、スラリーの粘度を調製するために使用される。増粘剤としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
更に増粘剤を用いる場合には、負極活物質に対する増粘剤の割合は、0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上が更に好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下が更に好ましい。負極活物質に対する増粘剤の割合が、上記範囲を下回ると、著しく塗布性が低下する場合がある。また、上記範囲を上回ると、負極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や負極活物質間の抵抗が増大する場合がある。
<2−4.正極>
正極は、集電体上に正極活物質層を有するものであり、以下に正極活物質について述べる。
<2−4−1.正極活物質>
以下に正極に使用される正極活物質について説明する。
(1)組成
正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば特に制限はないが、例えば、リチウムと少なくとも1種の遷移金属を含有する物質が好ましい。具体例としては、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物
が挙げられる。
リチウム遷移金属複合酸化物の遷移金属としてはV、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、LiCoO等のリチウム・コバルト複合酸化物、LiMnO、LiMn、LiMnO等のリチウム・マンガン複合酸化物、LiNiO等のリチウム・ニッケル複合酸化物、等が挙げられる。また、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の他の金属で置換したもの等が挙げられ、具体例としては、リチウム・コバルト・ニッケル複合酸化物、リチウム・コバルト・マンガン複合酸化物、リチウム・ニッケル・マンガン複合酸化物、リチウム・ニッケル・コバルト・マンガン複合酸化物等が挙げられる。
置換されたものの具体例としては、例えば、Li1+aNi0.5Mn0.5、Li1+aNi0.8Co0.2、Li1+aNi0.85Co0.10Al0.05、Li1+aNi0.33Co0.33Mn0.33、Li1+aNi0.45Co0.45Mn0.1、Li1+aMn1.8Al0.2、Li1+aMn1.5Ni0.5、xLiMnO・(1−x)Li1+aMO(M=遷移金属)等が挙げられる(a=0<a≦3.0)。
リチウム含有遷移金属リン酸化合物は、LixMPO(M=周期表の第4周期の4族〜11族の遷移金属からなる群より選ばれた一種の元素、xは0<x<1.2)で表すことができ、上記遷移金属(M)としては、V、Ti、Cr、Mg、Zn、Ca、Cd、Sr、Ba、Co、Ni、Fe、MnおよびCuからなる群より選ばれる少なくとも一種の元素であることが好ましく、Co、Ni、Fe、Mnからなる群より選ばれる少なくとも一種の元素であることがより好ましい。例えば、LiFePO、LiFe(PO、LiFeP等のリン酸鉄類、LiCoPO等のリン酸コバルト類、LiMnPO等のリン酸マンガン類、LiNiPO等のリン酸ニッケル類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の金属で置換したもの等が挙げられる。これらの中でも、特にLiMnO、LiMn、LiMnO等のリチウム・マンガン複合酸化物や、LiFePO、LiFe(PO、LiFeP等のリン酸鉄類が、高温・充電状態での金属溶出が起こりにくく、また安価であるために好適に用いられる。
なお、上述の「LixMPOを基本組成とする」とは、その組成式で表される組成のものだけでなく、結晶構造におけるFe等のサイトの一部を他の元素で置換したものも含むことを意味する。さらに、化学量論組成のものだけでなく、一部の元素が欠損等した非化学量論組成のものも含むことを意味する。置換する他の元素はAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の元素であることが好ましい。上記他元素置換を行う場合は、0.1mol%以上5mol%以下が好ましく、さらに好ましくは0.2mol%以上2.5mol%以下である。
上記正極活物質は、単独で用いてもよく、2種以上を併用してもよい。
(2)表面被覆
上記の正極活物質の表面に、主体となる正極活物質を構成する物質とは異なる組成の物質(以後、適宜「表面付着物質」という)が付着したものを用いることもできる。表面付着物質の例としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の
炭酸塩等が挙げられる。
これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて正極活物質に含浸添加させた後に乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて正極活物質に含浸添加させた後に加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により、正極活物質表面に付着させることができる。
正極活物質の表面に付着している表面付着物質の質量は、正極活物質の質量に対して、通常0.1ppm以上であり、1ppm以上が好ましく、10ppm以上が更に好ましく、また、通常20%以下であり、10%以下が好ましく、5%以下が更に好ましい。
表面付着物質により、正極活物質表面での非水系電解液の酸化反応を抑制することができ、電池寿命を向上させることができる。しかし、付着量が上記範囲を下回ると、その効果は十分に発現せず、また上記範囲を上回ると、リチウムイオンの出入りを阻害するために抵抗が増加する場合があるため、上記範囲が好ましい。
(3)形状
正極活物質粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が用いられるが、中でも一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状又は楕円球状であるものが好ましい。
通常、電気化学素子はその充放電に伴い、電極中の活物質が膨張収縮をするため、そのストレスによる活物質の破壊や導電パス切れ等の劣化がおきやすい。従って、一次粒子のみの単一粒子活物質であるよりも、一次粒子が凝集して、二次粒子を形成したものである方が膨張収縮のストレスを緩和して、劣化を防ぐためである。
また、板状等軸配向性の粒子よりも、球状又は楕円球状の粒子の方が、電極の成形時の配向が少ないため、充放電時の電極の膨張収縮も少なく、また電極を作成する際の導電材との混合においても、均一に混合されやすいため好ましい。
(4)タップ密度
正極活物質のタップ密度は、通常0.4g・cm−3以上であり、0.6g・cm−3以上が好ましく、0.8g・cm−3以上が更に好ましく、1.0g・cm−3以上が特に好ましく、また、通常4.0g・cm−3以下であり、3.8g・cm−3以下が好ましい。
タップ密度の高い金属複合酸化物粉体を用いることにより、高密度の正極活物質層を形成することができる。従って、正極活物質のタップ密度が上記範囲を下回ると、正極活物質層形成時に必要な分散媒量が増加すると共に、導電材や結着剤の必要量が増加し、正極活物質層への正極活物質の充填率が制約され、電池容量が制約される場合がある。また、タップ密度は一般に大きいほど好ましく特に上限はないが、上記範囲を下回ると、正極活物質層内における非水系電解液を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下しやすくなる場合がある。
タップ密度の測定は、目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセル容積を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量から密度を算出する。該測定で算出されるタップ密度を、本発明における正極活物質のタップ密度として定義する。
(5)メジアン径d50
正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は、レーザー回折/散乱式粒度分布測定装置を用いても測定することができる。
メジアン径d50は、通常0.1μm以上であり、0.5μm以上が好ましく、1μm
以上が更に好ましく、3μm以上が特に好ましく、また、通常20μm以下であり、18μm以下が好ましく、16μm以下が更に好ましく、15μm以下が特に好ましい。メジアン径d50が、上記範囲を下回ると、高嵩密度品が得られなくなる場合があり、上記範囲を上回ると粒子内のリチウムの拡散に時間がかかるため、電池特性の低下や、電池の正極作成すなわち活物質と導電材やバインダー等を溶媒でスラリー化し、薄膜状に塗布する際に、スジを引く等が生じる場合がある。
なお、異なるメジアン径d50をもつ正極活物質を2種類以上、任意の比率で混合することで、正極作成時の充填性を更に向上させることもできる。
メジアン径d50の測定は、0.1質量%ヘキサメタリン酸ナトリウム水溶液を分散媒にして、粒度分布計として堀場製作所社製LA−920用いて、5分間の超音波分散後に測定屈折率1.24に設定して測定する。
(6)平均一次粒子径
一次粒子が凝集して二次粒子を形成している場合、正極活物質の平均一次粒子径は、通常0.03μm以上であり、0.05μm以上が好ましく、0.08μm以上がより好ましく、0.1μm以上が特に好ましく、また、通常5μm以下であり、4μm以下が好ましく、3μm以下がより好ましく、2μm以下が特に好ましい。上記範囲を上回ると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下するために、出力特性等の電池性能が低下する可能性が高くなる場合がある。また、上記範囲を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等、二次電池の性能を低下させる場合がある。
なお、平均一次粒子径は、走査型電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
(7)BET比表面積
正極活物質のBET比表面積は、BET法を用いて測定した比表面積の値が、通常0.1m・g−1以上であり、0.2m・g−1以上が好ましく、0.3m・g−1以上が更に好ましく、また、通常50m・g−1以下であり、40m・g−1以下が好ましく、30m・g−1以下が更に好ましい。BET比表面積の値が、上記範囲を下回ると、電池性能が低下しやすくなる。また、上記範囲を上回ると、タップ密度が上がりにくくなり、正極活物質形成時の塗布性が低下する場合がある。
BET比表面積は、表面積計(大倉理研製全自動表面積測定装置)を用いて測定する。試料に対して窒素流通下150℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって測定する。該測定で求められる比表面積を、本発明における陽極活物質のBET比表面積と定義する。
(8)正極活物質の製造法
正極活物質の製造法としては、本発明の要旨を超えない範囲で特には制限されないが、いくつかの方法が挙げられ、無機化合物の製造法として一般的な方法が用いられる。
特に球状ないし楕円球状の活物質を作製するには種々の方法が考えられるが、例えばその1つとして、遷移金属硝酸塩、硫酸塩等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作製回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法が挙げられる。
また、別の方法の例として、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これにLiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法が挙げられる。
更に別の方法の例として、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、LiOH、LiCO、LiNO等のLi源と、必要に応じ他の元素の原料物質とを水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これを高温で焼成して活物質を得る方法が挙げられる。
<2−4−2.電極構造と作製法>
以下に、本発明に使用される正極の構成及びその作製法について説明する。
(1)正極の作製法
正極は、正極活物質粒子と結着剤とを含有する正極活物質層を、集電体上に形成して作製される。正極活物質を用いる正極の製造は、公知の何れの方法で作製することができる。すなわち、正極活物質と結着剤、並びに必要に応じて導電材及び増粘剤等を乾式で混合してシート状にしたものを正極集電体に圧着するか、又はこれらの材料を液体媒体に溶解又は分散させてスラリーとして、これを正極集電体に塗布し、乾燥することにより、正極活物質層を集電体上に形成させることにより正極を得ることができる。
正極活物質の正極活物質層中の含有量は、好ましくは80質量%以上、より好ましくは82質量%以上、特に好ましくは84質量%以上である。また上限は、好ましくは99質量%以下、より好ましくは98質量%以下である。正極活物質層中の正極活物質の含有量が低いと電気容量が不十分となる場合がある。逆に含有量が高すぎると正極の強度が不足する場合がある。なお、本発明における正極活物質粉体は1種を単独で用いてもよく、異なる組成又は異なる粉体物性の2種以上を任意の組み合わせ及び比率で併用してもよい。
(2)導電材
導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素質材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
導電材は、正極活物質層中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上、また、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。含有量が上記範囲よりも下回ると、導電性が不十分となる場合がある。また、上記範囲よりも上回ると、電池容量が低下する場合がある。
(3)結着剤
正極活物質層の製造に用いる結着剤は、非水系電解液や電極製造時用いる溶媒に対して安定な材料であれば、特に限定されない。
塗布法の場合は、電極製造時に用いる液体媒体に対して溶解又は分散される材料であればよいが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、NBR(アクリロニトリル・ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・
ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
正極活物質層中の結着剤の割合は、通常0.1質量%以上であり、1質量%以上が好ましく、3質量%以上が更に好ましく、また、通常50質量%以下であり、30質量%以下が好ましく、10質量%以下が更に好ましく、8質量%以下が特に好ましい。結着剤の割合が、上記範囲を下回ると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう場合がある。また、上記範囲を上回ると、電池容量や導電性の低下につながる場合がある。
(4)液体媒体
スラリーを形成するための液体媒体としては、正極活物質、導電材、結着剤、並びに必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
水系媒体の例としては、例えば、水、アルコールと水との混合媒等が挙げられる。有機系媒体の例としては、ヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;キノリン、ピリジン等の複素環化合物;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、アクリル酸メチル等のエステル類;ジエチレントリアミン、N,N−ジメチルアミノプロピルアミン等のアミン類;ジエチルエーテル、テトラヒドロフラン(THF)等のエーテル類;N−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;ヘキサメチルホスファルアミド、ジメチルスルフォキシド等の非プロトン性極性溶媒等を挙げることができる。なお、これらは、1種を単独で用いてもよく、また2種以上を任意の組み合わせ及び比率で併用してもよい。
(5)増粘剤
スラリーを形成するための液体媒体として水系媒体を用いる場合、増粘剤と、スチレンブタジエンゴム(SBR)等のラテックスを用いてスラリー化するのが好ましい。増粘剤は、通常、スラリーの粘度を調製するために使用される。
増粘剤としては、本発明の効果を著しく制限しない限り制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
更に増粘剤を使用する場合には、活物質に対する増粘剤の割合は、通常0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上、また、通常5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下が望ましい。上記範囲を下回ると著しく塗布性が低下する場合があり、また上記範囲を上回ると、正極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や正極活物質間の抵抗が増大する場合がある。
(6)圧密化
塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、
ハンドプレス、ローラープレス等により圧密化することが好ましい。正極活物質層の密度は、1g・cm−3以上が好ましく、1.5g・cm−3以上が更に好ましく、2g・cm−3以上が特に好ましく、また、4g・cm−3以下が好ましく、3.5g・cm−3以下が更に好ましく、3g・cm−3以下が特に好ましい。
正極活物質層の密度が、上記範囲を上回ると集電体/活物質界面付近への非水系電解液の浸透性が低下し、特に高電流密度での充放電特性が低下する場合がある。また上記範囲を下回ると、活物質間の導電性が低下し、電池抵抗が増大する場合がある。
(7)集電体
正極集電体の材質としては特に制限は無く、公知のものを任意に用いることができる。具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素質材料が挙げられる。中でも金属材料、特にアルミニウムが好ましい。
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素質材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。
集電体の厚さは任意であるが、通常1μm以上であり、3μm以上が好ましく、5μm以上が更に好ましく、また、通常1mm以下であり、100μm以下が好ましく、50μm以下が更に好ましい。薄膜が、上記範囲よりも薄いと、集電体として必要な強度が不足する場合がある。また、薄膜が上記範囲よりも厚いと、取り扱い性が損なわれる場合がある。
集電体と正極活物質層の厚さの比は特には限定されないが、(電解液注液直前の片面の正極活物質層の厚さ)/(集電体の厚さ)の値が20以下であることが好ましく、より好ましくは15以下、最も好ましくは10以下であり、下限は、0.5以上が好ましく、より好ましくは0.8以上、最も好ましくは1以上の範囲である。この範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。この範囲を下回ると、正極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
<2−5.セパレータ>
正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。この場合、本発明の非水系電解液は、通常はこのセパレータに含浸させて用いる。
セパレータの材料や形状については特に制限は無く、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。中でも、本発明の非水系電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。中でも好ましくはガラスフィルター、ポリオレフィンであり、更に好ましくはポリオレフィンである。これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記セパレータの厚さは任意であるが、通常1μm以上であり、5μm以上が好ましく、10μm以上が更に好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下が更に好ましい。セパレータが、上記範囲より薄過ぎると、絶縁性や機械的強度が低下する場合がある。また、上記範囲より厚過ぎると、レート特性等の電池性能が低下する場合があるばかりでなく、非水系電解液二次電池全体としてのエネルギー密度が低下する場合がある。
更に、セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%以上が更に好ましく、また、通常90%以下であり、85%以下が好ましく、75%以下が更に好ましい。空孔率が、上記範囲より小さ過ぎると、膜抵抗が大きくなってレート特性が悪化する傾向がある。また、上記範囲より大き過ぎると、セパレータの機械的強度が低下し、絶縁性が低下する傾向にある。
また、セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低下する場合がある。
一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物類、窒化アルミや窒化ケイ素等の窒化物類、硫酸バリウムや硫酸カルシウム等の硫酸塩類が用いられ、粒子形状若しくは繊維形状のものが用いられる。
形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01〜1μm、厚さが5〜50μmのものが好適に用いられる。前記の独立した薄膜形状以外に、樹脂製の結着剤を用いて前記無機物の粒子を含有する複合多孔層を正極及び負極のうち少なくとも一方の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着剤として多孔層を形成させることが挙げられる。
<2−6.電池設計>
[電極群]
電極群は、前述の正極板と負極板とを前述のセパレータを介してなる積層構造のもの、及び前述の正極板と負極板とを前述のセパレータを介して渦巻き状に捲回した構造のものの何れでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。電極群占有率が、上記範囲を下回ると、電池容量が小さくなる。また、上記範囲を上回ると空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、更には、内部圧力を外に逃がすガス放出弁が作動する場合がある。
[集電構造]
集電構造は特に限定されるものではないが、本発明の非水系電解液による放電特性の向上をより効果的に実現するには、配線部分や接合部分の抵抗を低減する構造にすることが好ましい。この様に内部抵抗を低減させた場合、本発明の非水系電解液を使用した効果は特に良好に発揮される。
電極群が前述の積層構造のものでは、各電極層の金属芯部分を束ねて端子に溶接して形成される構造が好適に用いられる。1枚の電極面積が大きくなる場合には、内部抵抗が大きくなるので、電極内に複数の端子を設けて抵抗を低減することも好適に用いられる。電極群が前述の捲回構造のものでは、正極及び負極にそれぞれ複数のリード構造を設け、端子に束ねることにより、内部抵抗を低くすることができる。
[外装ケース]
外装ケースの材質は用いられる非水系電解液に対して安定な物質であれば特に限定されるものではない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
前記金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して前記金属類を用いてかしめ構造とするものが挙げられる。前記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、前記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。
[保護素子]
前述の保護素子として、異常発熱や過大電流が流れた時に抵抗が増大するPTC(Positive Temperature Coefficient)、温度ヒューズ、サーミスター、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等が挙げられる。前記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、高出力の観点から、保護素子がなくても異常発熱や熱暴走に至らない設計にすることがより好ましい。
[外装体]
本発明の非水系電解液二次電池は、通常、上記の非水系電解液、負極、正極、セパレータ等を外装体内に収納して構成される。この外装体に制限は無く、本発明の効果を著しく損なわない限り公知のものを任意に採用することができる。
具体的に、外装体の材質は任意であるが、通常は、例えばニッケルメッキを施した鉄、ステンレス、アルミニウム又はその合金、ニッケル、チタン等が用いられる。
また、外装体の形状も任意であり、例えば円筒型、角形、ラミネート型、コイン型、大型等の何れであってもよい。
以下、実施例及び比較例を示して、本発明について具体的に説明するが、本発明はこの実施例に限定されるものではなく、本発明の要旨を逸脱しない限り、任意に変形して実施することができる。
<実施例1〜15、比較例1〜9>
[試験例A]
[硫酸イオン分の測定]
フルオロスルホン酸リチウムに含まれる硫酸イオンをイオンクロマトグラフィーで測定した。測定結果を表1に示す。
[電池の製造]
[負極の作製]
炭素質材料98質量部に、増粘剤及びバインダーとして、それぞれ、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)100質量部及びスチレン−ブタジエンゴムの水性ディスパージョン(スチレン−ブタジエンゴムの濃度50質量%)1質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ10μmの銅箔に塗布して乾燥し、プレス機で圧延したものを、活物質層のサイズとして幅30mm、長さ40mm、及び幅5mm、長さ9mmの未塗工部を有する形状に切り出し、それぞれ実施及び比較例に用いる負極とした。
[正極の作製]
正極活物質としてコバルト酸リチウムを90質量%と、導電材としてのアセチレンブラ
ック5質量%と、結着剤としてのポリフッ化ビニリデン(PVdF)5質量%とを、N−メチルピロリドン溶媒中で混合して、スラリー化した。得られたスラリーを、厚さ15μmのアルミ箔に塗布して乾燥し、プレス機で圧延したものを、活物質層のサイズとして幅30mm、長さ40mm、及び幅5mm、長さ9mmの未塗工部を有する形状に切り出し、それぞれ実施例及び比較例に用いる正極とした。
[電解液の製造]
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合物(体積比30:70)に乾燥したLiPFを1mol/Lの割合となるように溶解して基本電解液を調製した。この基本電解液に、硫酸イオンを含むフルオロスルホン酸リチウムを5質量%含有するように混合した。
[リチウム二次電池の製造]
上記の正極、負極、及びポリエチレン製のセパレータを、負極、セパレータ、正極の順に積層して電池要素を作製した。この電池要素をアルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正極と負極の端子を突設させながら挿入した後、表に記載の化合物を混合した電解液をそれぞれ袋内に注入し、真空封止を行い、シート状電池を作製し、それぞれ実施例1及び比較例1に用いる電池とした。
[初期容量評価]
リチウム二次電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において0.2Cに相当する定電流で4.1Vまで充電した後、0.2Cの定電流で3.0Vまで放電した。これを2サイクル行って電池を安定させ、3サイクル目は、0.2Cの定電流で4.2Vまで充電後、4.2Vの定電圧で電流値が0.05Cになるまで充電を実施し、0.2Cの定電流で3.0Vまで放電した。その後、4サイクル目に0.2Cの定電流で4.2Vまで充電後、4.2Vの定電圧で電流値が0.05Cになるまで充電を実施し、0.2Cの定電流で3.0Vまで放電して、初期放電容量を求めた。評価結果を表1に示す。尚、1Cとは電池の基準容量を1時間で放電する電流値を表し、2Cとはその2倍の電流値を、また0.2Cとはその1/5の電流値を表す。
[高温保存膨れ評価]
初期放電容量評価試験の終了した電池を、0.2Cの定電流で4.2Vまで充電後、4.2Vの定電圧で電流値が0.05Cになるまで充電した。これを85℃で24時間保存し、電池を冷却させた後、エタノール浴中に浸して体積を測定し、高温保存前後の体積変化から発生したガス量を求めた。評価結果を表1に示す。
表1より、同量のフルオロスルホン酸リチウムを含有する電解液を用いた電池においては、フルオロスルホン酸リチウム中に含まれる硫酸イオンの量が少ない方が、初期放電容量が高く、かつ高温保存時のガス発生量が低いことから、電池特性に優れることが分かる。
[試験例B]
[電解液の製造]
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合物(体積比30:70)に乾燥したLiPFを1mol/Lの割合となるように溶解して基本電解液を調製した。この基本電解液に、硫酸イオンを含むフルオロスルホン酸リチウムを表2に記載の割合となるように混合した。
[リチウム二次電池の製造]
実施例1及び比較例1と同様の方法にてシート状電池を作製して初期容量評価及び高温保存膨れ評価を行った。評価結果を表2に示す。
表2より、製造された電解液の硫酸イオンの量が1.00×10−7×mol/L〜1.00×10−2mol/Lの範囲内であれば、初期放電容量が向上し、高温保存時のガス発生量が低下することから、電池特性が向上することが分かる。
[試験例C]
[カルボン酸イオン分の測定]
フルオロスルホン酸リチウムに含まれる酢酸イオンをイオンクロマトグラフィーで測定した。測定結果を表3に示す。
[電解液の製造]
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合物(体積比30:70)に乾燥したLiPFを1mol/Lの割合となるように溶解して基本電解液を調製した。この基本電解液に、酢酸イオンを含むフルオロスルホン酸リチウムを1質量%含有するように混合した。
[リチウム二次電池の製造]
実施例1〜7及び比較例1〜3と同様の方法にてシート状電池を作製し、高温保存膨れ評価を行った。評価結果を表3に示す。
表3より、同量のフルオロスルホン酸リチウムを含有する電解液を用いた電池においては、酢酸イオンの量が少ない方が高温保存時のガス発生量が少なく、電池特性に優れることが分かる。
[試験例D]
[電解液の製造]
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合物(体積比30:70)に乾燥したLiPFを1mol/Lの割合となるように溶解して基本電解液を調製した。この基本電解液に、酢酸イオンを含むフルオロスルホン酸リチウムを表に記載の割合となるように混合した。
[リチウム二次電池の製造]
上記負極、正極並びに上記電解液を使用した以外、実施例1〜8及び比較例1〜4と同様の方法にてシート状電池を作製して初期容量評価及び高温保存膨れ評価を行った。評価結果を表4に示す。
表4より、製造された電解液の酢酸イオンの量が1.00×10−6mol/L〜4.00×10−3mol/Lの範囲内であれば、初期放電容量が高く、かつ高温保存時のガス発生量が低下することから、電池特性が向上することが分かる。
[試験例E]
[ハロゲン分の測定]
フルオロスルホン酸リチウムに含まれるハロゲン化物イオンをイオンクロマトグラフィーで測定した。測定結果を表5に示す。尚、フッ化物イオン、塩化物イオン以外のハロゲン化物イオンは検出されなかった。
[電解液の製造]
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合物(体積比30:70)に乾燥したLiPFを1mol/Lの割合となるように溶解して基本電解液を調製した。この基本電解液に、塩化物イオンを含むフルオロスルホン酸リチウムを2.5質量%含有するように混合した。
[リチウム二次電池の製造]
実施例1〜12及び比較例1〜6と同様の方法にてシート状電池を作製して初期容量評価を行った。評価結果を表5に示す。
[高温保存特性の評価]
初期放電容量評価試験の終了した電池を、0.2Cの定電流で4.2Vまで充電後、4.2Vの定電圧で電流値が0.05Cになるまで充電した。これを85℃で24時間保存し、電池を冷却させた後、25℃において0.2Cの定電流で3Vまで放電させて残存容量を求めた。(残存容量/充電容量)×100より容量維持率を求めた。評価結果を表5に示す。
表5より、同量のフルオロスルホン酸リチウムを含有する電解液を用いた電池においては、フルオロスルホン酸リチウム中に含まれる塩化物イオンの量が少ない方が、初期放電容量と容量維持率が明らかに高く、電池特性に優れることが分かる。
[試験例F]
[電解液の製造]
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合物(体積比30:70)に乾燥したLiPFを1mol/Lの割合となるように溶解して基本電解液を調製した。この基本電解液に、塩化物イオンを含むフルオロスルホン酸リチウムを表6に記載の割合となるように混合した。
[リチウム二次電池の製造]
上記負極、正極並びに上記電解液を使用した以外、実施例1〜13及び比較例1〜7と同様の方法にてシート状電池を作製して初期容量評価及び高温保存特性評価を行った。評価結果を表6に示す。
表6より、製造された電解液の塩化物イオンの量が1.00×10−6mol/L〜1.00×10−3mol/Lの範囲内であれば、初期放電容量や高温保存特性といった電池特性が向上することが分かる。
上記のとおり、本発明の非水系電解液によれば、非水系電解液二次電池の初期充電容量及び容量維持率を改善できる。本発明の非水系電解液を用いた非水系電解液二次電池は、高温保存試験やサイクル試験といった耐久試験後においても、容量維持率が高く、入出力性能に優れ、また、低温での入出力特性にも優れる。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。
本発明の非水系電解液及びこれを用いた非非水系電解液二次電池は、公知の各種の用途に用いることが可能である。具体例としては、例えば、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、自動車、バイク、原動機付自転車、自転車、照明器具、玩具、ゲーム機器、時計、電動工具、ストロボ、カメラ、負荷平準化用電源、自然エネルギー貯蔵電源等が挙げられる。
本発明の課題は、初期の電池特性と耐久性に優れた非水系電解液二次電池をもたらすことができる非水系電解液用の添加剤ならびに非水系電解液を提供することにあり、また、この非水系電解液を用いた非水系電解液二次電池を提供することにある。
ち、本発明は、下記フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池に関する。
<1> カルボン酸の含有量が、フルオロスルホン酸リチウムの全量に対して、2.5×10−2mol/kg以下であるフルオロスルホン酸リチウム。
<2> フルオロスルホン酸リチウムを含有し、かつカルボン酸イオンの含有量が、1.0×10−7mol/L以上4.0×10−3mol/L以下である、非水系電解液。
<3> ハロゲン元素の含有量が1.5×10−3mol/kg以下であるフルオロスルホン酸リチウム。
<4> フルオロスルホン酸リチウムを含有し、かつ非水系電解液中のフッ化物イオンを除いたハロゲン化物イオンの含有量が、1.0×10−7mol/L以上1.0×10−3mol/L以下である非水系電解液。
<5> 硫酸イオン分のモル含有量が、フルオロスルホン酸リチウムの重量に対して、2.5×10−1mol/kg以下であるフルオロスルホン酸リチウム。
<6> フルオロスルホン酸リチウムを含有し、かつ非水系電解液中の硫酸イオンの含有量が、1.0×10−7mol/L以上1.0×10−2mol/L以下である非水系電解液。
<7> リチウムイオンを吸蔵放出可能な負極、並びに正極を備えた非水系電解液電池に用いられる非水系電解液において、前記<1>、<3>または<5>に記載のフルオロスルホン酸リチウムを含有する非水系電解液。
<8> リチウムイオンを吸蔵放出可能な負極及び正極を備えた非水系電解液電池に用いられる非水系電解液であって、
該非水系電解液は、フルオロスルホン酸リチウム、フルオロスルホン酸リチウム以外の
リチウム塩、及び非水系溶媒を含有し、
該非水系電解液中のフルオロスルホン酸リチウムのモル含有量が、0.0005mol/L以上0.5mol/L以下であり、かつ、該非水系電解液中の硫酸イオン分のモル含有量が1.0×10−7mol/L以上1.0×10−2mol/L以下である非水系電解液。
<9> フルオロスルホン酸リチウム以外のリチウム塩が、LiPF及びLiBFの少なくとも一方である前記<7>または<8>に記載の非水系電解液。
<10> 非水系電解液が、フッ素原子を有する環状カーボネートを含有する前記<7>〜<9>の何れか1項に記載の非水系電解液。
<11> 前記フッ素原子を有する環状カーボネートが、非水系電解液中に0.001質量%以上85質量%以下含有されている前記<10>に記載の非水系電解液。
<12> 炭素−炭素不飽和結合を有する環状カーボネートを含有する前記<7>〜<11>の何れか1項に記載の非水系電解液。
<13> 前記炭素−炭素不飽和結合を有する環状カーボネートが、非水系電解液中に0.001質量%以上10質量%以下含有されている前記<12>に記載の非水系電解液。<14> 環状スルホン酸エステルを含有する前記<7>〜<13>の何れか1項に記載の非水系電解液。
<15> 前記環状スルホン酸エステルの非水系電解液中における含有量が0.001質量%以上10質量%以下である前記<14>に記載の非水系電解液。
<16> シアノ基を有する化合物を含有する前記<7>〜<15>のいずれか1項に記載の非水系電解液。
<17> 前記シアノ基を有する化合物の非水系電解液中における含有量が0.001質量%以上10質量%以下である前記<16>に記載の非水系電解液。
<18> ジイソシアネート化合物を含有する前記<7>〜<17>の何れか1項に記載の非水系電解液。
<19> 前記ジイソシアネート化合物の非水系電解液中における含有量が0.001質量%以上5質量%以下である前記<18>に記載の非水系電解液。
<20> リチウムオキサラート塩類を含有する前記<7>〜<19>の何れか1項に記載の非水系電解液。
<21> リチウムイオンを吸蔵・放出可能な負極及び正極、並びに前記<7>〜<20>のいずれか1項に記載の非水系電解液を含む非水系電解液二次電池。
<22> 前記負極は、集電体上に負極活物質層を有し、前記負極活物質層は、ケイ素の単体金属、合金及び化合物、並びにスズの単体金属、合金及び化合物のうちの少なくとも1種を含有する負極活物質を含む前記<21>に記載の非水系電解液二次電池。
<23> 前記負極は、集電体上に負極活物質層を有し、前記負極活物質層は、炭素質材料を含有する負極活物質を含む前記<21>に記載の非水系電解液二次電池。
<24> 前記負極は、集電体上に負極活物質層を有し、前記負極活物質層は、リチウムチタン複合酸化物を含有する負極活物質を含む前記<21>に記載の非水系電解液二次電池。
<25> 前記正極は、集電体上に正極活物質層を有し、前記正極活物質層は、リチウム・コバルト複合酸化物、リチウム・コバルト・ニッケル複合酸化物、リチウム・マンガン複合酸化物、リチウム・コバルト・マンガン複合酸化物、リチウム・ニッケル複合酸化物、リチウム・コバルト・ニッケル複合酸化物、リチウム・ニッケル・マンガン複合酸化物、及びリチウム・ニッケル・コバルト・マンガン複合酸化物、からなる群より選ばれた少なくとも一種を含有する前記<21>〜<24>のいずれか1項に記載の非水系電解液二次電池。
<26> 前記正極は、集電体上に正極活物質層を有し、前記正極活物質層は、LixMPO(Mは周期表の第4周期の第4族〜第11族の遷移金属からなる群より選ばれた少なくとも一種の元素、xは0<x<1.2)を含有する前記<21>〜<24>のいずれか1項に記載の非水系電解液二次電池。
<フルオロスルホン酸リチウム>
フルオロスルホン酸リチウムを電池等に用いた場合により高い性能を示す為に、純度は高いことが好ましい。
その中でも、例えばカルボン酸リチウムを用いて製造した場合、電池内で容易に酸化されるカルボン酸イオンが電解液中に溶解しないように除去されていることが電池特性を制御する上で望ましい。これは、水に溶かした際のカルボン酸イオン量を測定することで確認が出来る
また、フルオロスルホン酸リチウムを電解液中に含有する場合、非水系電解液中の硫酸イオンの含有量は、上限値としては、1.0×10−2mol/L以下であり、好ましくは8.0×10−3mol/L以下、より好ましくは5.0×10−3mol/L以下、更に好ましくは1.0×10−3mol/L以下、最も好ましくは5.0×10−4mol/L以下である。一方で、下限値としては、1.0×10−7mol/L以上であり、好ましくは5.0×10−7mol/L以上、より好ましくは8.0×10−7mol/L以上である。硫酸イオンのモル濃度が上記範囲内であると、耐久性がより発現し易くなる。また、上記値は、添加量から算出される値及び電解液を分析して、電解液中に含まれる含有量から適宜算出される値のうち少なくとも一方である。
表2より、製造された電解液の硫酸イオンの量が1.00×10−7×mol/L〜1.00×10−2mol/Lの範囲内であれば、初期放電容量が向上し、高温保存時のガス発生量が低下することから、電池特性が向上することが分かる
発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。

Claims (16)

  1. リチウムイオンを吸蔵・放出可能な正極及び負極、並びに非水系電解液が外装ケースに封入された非水系電解液二次電池であって、該非水系電解液は、フルオロスルホン酸リチウム及び硫酸イオンを含有し、非水系電解液中の硫酸イオンの含有量が、1.0×10−7mol/L以上1.0×10−2mol/L以下であり、かつ該負極が集電体上に負極活物質層を有し、該負極活物質層は、炭素質材料を含有する負極活物質を含む、非水系電解液二次電池。
  2. 前記負極活物質層を形成する負極材中における負極活物質の含有量が70質量%以上である、請求項1に記載の非水系電解液二次電池。
  3. 前記負極活物質層がバインダーを含む、請求項1または2に記載の非水系電解液二次電池。
  4. 前記非水系電解液がフルオロスルホン酸リチウム以外のリチウム塩を含有する、請求項1〜3の何れか1項に記載の非水系電解液二次電池。
  5. 前記フルオロスルホン酸リチウム以外のリチウム塩がLiPF及びLiBFの少なくとも一方である、請求項4に記載の非水系電解液二次電池。
  6. 前記非水系電解液がフッ素原子を有する環状カーボネートを含有する請求項1〜5の何れか1項に記載の非水系電解液二次電池。
  7. 前記フッ素原子を有する環状カーボネートが非水系電解液中に0.001質量%以上85質量%以下含有されている、請求項6に記載の非水系電解液二次電池。
  8. 前記非水系電解液が炭素−炭素不飽和結合を有する環状カーボネートを含有する、請求項1〜7の何れか1項に記載の非水系電解液二次電池。
  9. 前記炭素−炭素不飽和結合を有する環状カーボネートが非水系電解液中に0.001質量%以上10質量%以下含有されている、請求項8に記載の非水系電解液二次電池。
  10. 前記非水系電解液が環状スルホン酸エステルを含有する、請求項1〜9の何れか1項に記載の非水系電解液二次電池。
  11. 前記環状スルホン酸エステルの非水系電解液中における含有量が0.001質量%以上10質量%以下である、請求項10に記載の非水系電解液二次電池。
  12. 前記非水系電解液がシアノ基を有する化合物を含有する、請求項1〜11の何れか1項に記載の非水系電解液二次電池。
  13. 前記シアノ基を有する化合物の非水系電解液中における含有量が0.001質量%以上10質量%以下である、請求項12に記載の非水系電解液二次電池。
  14. 前記非水系電解液がジイソシアネート化合物を含有する請求項1〜13の何れか1項に記載の非水系電解液二次電池。
  15. 前記ジイソシアネート化合物の非水系電解液中における含有量が0.001質量%以上5質量%以下である、請求項14に記載の非水系電解液二次電池。
  16. 前記非水系電解液がリチウムオキサラート塩類を含有する、請求項1〜15の何れか1項に記載の非水系電解液二次電池。
JP2018138133A 2011-04-13 2018-07-24 フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池 Active JP6555400B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011089341 2011-04-13
JP2011089341 2011-04-13

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017079873A Division JP6380600B2 (ja) 2011-04-13 2017-04-13 フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019129014A Division JP6750716B2 (ja) 2011-04-13 2019-07-11 フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池

Publications (2)

Publication Number Publication Date
JP2018181855A true JP2018181855A (ja) 2018-11-15
JP6555400B2 JP6555400B2 (ja) 2019-08-07

Family

ID=47432267

Family Applications (6)

Application Number Title Priority Date Filing Date
JP2012092111A Active JP5987431B2 (ja) 2011-04-13 2012-04-13 フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池
JP2016023960A Active JP6128242B2 (ja) 2011-04-13 2016-02-10 非水系電解液用添加剤
JP2017079873A Active JP6380600B2 (ja) 2011-04-13 2017-04-13 フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池
JP2018138133A Active JP6555400B2 (ja) 2011-04-13 2018-07-24 フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池
JP2019129014A Active JP6750716B2 (ja) 2011-04-13 2019-07-11 フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池
JP2020136707A Pending JP2020181834A (ja) 2011-04-13 2020-08-13 フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2012092111A Active JP5987431B2 (ja) 2011-04-13 2012-04-13 フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池
JP2016023960A Active JP6128242B2 (ja) 2011-04-13 2016-02-10 非水系電解液用添加剤
JP2017079873A Active JP6380600B2 (ja) 2011-04-13 2017-04-13 フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2019129014A Active JP6750716B2 (ja) 2011-04-13 2019-07-11 フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池
JP2020136707A Pending JP2020181834A (ja) 2011-04-13 2020-08-13 フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池

Country Status (1)

Country Link
JP (6) JP5987431B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021044136A (ja) * 2019-09-10 2021-03-18 トヨタ自動車株式会社 非水電解液二次電池

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108502904B (zh) 2011-04-11 2021-06-08 三菱化学株式会社 氟磺酸锂的制造方法、氟磺酸锂、非水电解液、以及非水电解质二次电池
JP6035835B2 (ja) * 2011-04-19 2016-11-30 三菱化学株式会社 フルオロスルホン酸リチウムの製造方法、およびフルオロスルホン酸リチウム
CN109301162A (zh) * 2013-03-27 2019-02-01 三菱化学株式会社 非水电解液及使用该非水电解液的非水电解质电池
WO2014155708A1 (ja) * 2013-03-29 2014-10-02 株式会社日立製作所 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
JP6287187B2 (ja) * 2013-12-26 2018-03-07 三洋電機株式会社 非水電解質二次電池
JP6292996B2 (ja) * 2014-06-23 2018-03-14 森田化学工業株式会社 フルオロ硫酸リチウムとそれを含む溶液の製造方法
JP6279707B2 (ja) 2015-03-12 2018-02-14 株式会社東芝 非水電解質電池及び電池パック
JP6582605B2 (ja) * 2015-06-24 2019-10-02 三洋電機株式会社 非水電解質二次電池及びその製造方法
CN108140891B (zh) * 2015-10-15 2021-06-04 中央硝子株式会社 非水电解液电池用电解液和使用其的非水电解液电池
US11031597B2 (en) * 2017-01-06 2021-06-08 Showa Denko Materials Co., Ltd. Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2019040796A (ja) * 2017-08-28 2019-03-14 トヨタ自動車株式会社 非水電解質二次電池
US12002926B2 (en) * 2017-12-01 2024-06-04 Daikin Industries, Ltd. Electrolyte, electrochemical device, lithium ion secondary battery, and module
JP7116311B2 (ja) * 2017-12-12 2022-08-10 セントラル硝子株式会社 非水電解液電池用電解液及びそれを用いた非水電解液電池
WO2019117101A1 (ja) * 2017-12-12 2019-06-20 セントラル硝子株式会社 非水電解液電池用電解液及びそれを用いた非水電解液電池
JP7116312B2 (ja) * 2018-11-26 2022-08-10 セントラル硝子株式会社 非水電解液電池用電解液及びそれを用いた非水電解液電池
JP7182198B2 (ja) * 2018-01-31 2022-12-02 パナソニックIpマネジメント株式会社 非水電解質二次電池、電解液及び非水電解質二次電池の製造方法
CN113228368B (zh) * 2018-12-28 2024-10-18 三洋电机株式会社 非水电解质二次电池和其制造方法
WO2020137818A1 (ja) 2018-12-28 2020-07-02 三洋電機株式会社 非水電解質二次電池及びその製造方法
JP7378033B2 (ja) * 2019-01-31 2023-11-13 パナソニックIpマネジメント株式会社 リチウム金属二次電池
JP2020140927A (ja) * 2019-03-01 2020-09-03 三菱ケミカル株式会社 非水系電解液及びそれを用いたエネルギーデバイス
JPWO2020246540A1 (ja) * 2019-06-04 2020-12-10
JP7167117B2 (ja) * 2020-12-07 2022-11-08 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144663A (en) * 1979-04-27 1980-11-11 Sanyo Electric Co Ltd Battery with non-aqueous electrolyte
JP2008091196A (ja) * 2006-10-02 2008-04-17 Samsung Sdi Co Ltd リチウム二次電池
JP2010254543A (ja) * 2009-03-31 2010-11-11 Mitsubishi Materials Corp ビス(フルオロスルホニル)イミド塩の製造方法及びフルオロ硫酸塩の製造方法、並びにビス(フルオロスルホニル)イミド・オニウム塩の製造方法
WO2012141180A1 (ja) * 2011-04-11 2012-10-18 三菱化学株式会社 フルオロスルホン酸リチウムの製造方法、フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3415687A (en) * 1966-03-29 1968-12-10 Honeywell Inc Electric current producing cell
JPS61252619A (ja) * 1985-05-02 1986-11-10 旭硝子株式会社 新規な電気二重層コンデンサ
JPH07296849A (ja) * 1994-04-28 1995-11-10 Japan Storage Battery Co Ltd 非水電解質二次電池
JP3071393B2 (ja) * 1996-11-08 2000-07-31 セントラル硝子株式会社 リチウム電池用電解液の製造方法
US6350546B1 (en) * 1998-01-20 2002-02-26 Wilson Greatbatch Ltd. Sulfate additives for nonaqueous electrolyte rechargeable cells
JP4017386B2 (ja) * 2001-12-17 2007-12-05 スリーエム イノベイティブ プロパティズ カンパニー 非水溶媒中におけるフルオロアルキルスルホニル基含有アルカリ金属塩の製造方法及びその使用方法
JP4649113B2 (ja) * 2004-01-20 2011-03-09 株式会社東芝 非水電解質二次電池
JP5433953B2 (ja) * 2008-02-07 2014-03-05 株式会社Gsユアサ 非水電解質二次電池
JP2009269810A (ja) * 2008-05-07 2009-11-19 Kee:Kk 高純度水酸化リチウムの製造法
JP5339869B2 (ja) * 2008-11-28 2013-11-13 三洋電機株式会社 二次電池用非水電解液及び非水電解液二次電池
JP2010225522A (ja) * 2009-03-25 2010-10-07 Sony Corp 電解質および二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144663A (en) * 1979-04-27 1980-11-11 Sanyo Electric Co Ltd Battery with non-aqueous electrolyte
JP2008091196A (ja) * 2006-10-02 2008-04-17 Samsung Sdi Co Ltd リチウム二次電池
JP2010254543A (ja) * 2009-03-31 2010-11-11 Mitsubishi Materials Corp ビス(フルオロスルホニル)イミド塩の製造方法及びフルオロ硫酸塩の製造方法、並びにビス(フルオロスルホニル)イミド・オニウム塩の製造方法
WO2012141180A1 (ja) * 2011-04-11 2012-10-18 三菱化学株式会社 フルオロスルホン酸リチウムの製造方法、フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021044136A (ja) * 2019-09-10 2021-03-18 トヨタ自動車株式会社 非水電解液二次電池
JP7290087B2 (ja) 2019-09-10 2023-06-13 トヨタ自動車株式会社 非水電解液二次電池

Also Published As

Publication number Publication date
JP6750716B2 (ja) 2020-09-02
JP2020181834A (ja) 2020-11-05
JP2016106369A (ja) 2016-06-16
JP6128242B2 (ja) 2017-05-17
JP6555400B2 (ja) 2019-08-07
JP2012230897A (ja) 2012-11-22
JP6380600B2 (ja) 2018-08-29
JP5987431B2 (ja) 2016-09-07
JP2018088386A (ja) 2018-06-07
JP2019204791A (ja) 2019-11-28

Similar Documents

Publication Publication Date Title
JP6750716B2 (ja) フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池
JP6485485B2 (ja) 非水系電解液及び非水系電解液二次電池
JP6187566B2 (ja) 非水系電解液及び非水系電解液二次電池
KR102071839B1 (ko) 플루오로술폰산리튬의 제조 방법, 플루오로술폰산리튬, 비수계 전해액, 및 비수계 전해액 2 차 전지
WO2019059365A1 (ja) 非水系電解液、非水系電解液二次電池、及びエネルギーデバイス
JP5962028B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
WO2012035821A1 (ja) 非水系電解液及び非水系電解液二次電池
JP6520151B2 (ja) 非水系電解液及び非水系電解液二次電池
JP6031868B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP2014086221A (ja) 非水系電解液二次電池
JP6221201B2 (ja) 非水系電解液、および非水系電解液二次電池
JP5664056B2 (ja) 非水系電解液及び非水系電解液電池
JP5760665B2 (ja) 非水系電解液及び非水系電解液電池
JP5948755B2 (ja) 非水系電解液及び非水系電解液電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190624

R151 Written notification of patent or utility model registration

Ref document number: 6555400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350