JP2018150378A - 標的抗原に対する免疫応答を誘導する抗原結合分子 - Google Patents
標的抗原に対する免疫応答を誘導する抗原結合分子 Download PDFInfo
- Publication number
- JP2018150378A JP2018150378A JP2018109098A JP2018109098A JP2018150378A JP 2018150378 A JP2018150378 A JP 2018150378A JP 2018109098 A JP2018109098 A JP 2018109098A JP 2018109098 A JP2018109098 A JP 2018109098A JP 2018150378 A JP2018150378 A JP 2018150378A
- Authority
- JP
- Japan
- Prior art keywords
- amino acid
- antigen
- tyr
- glu
- ile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/283—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against Fc-receptors, e.g. CD16, CD32, CD64
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/52—Constant or Fc region; Isotype
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
〔1〕イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメイン、およびpH中性域の条件下でFcRnに対する結合活性を有するFcRn結合ドメインを含む抗原結合分子を有効成分として含む前記抗原に対する免疫応答を誘導する医薬組成物。
〔2〕前記イオン濃度が、カルシウムイオン濃度である〔1〕に記載の医薬組成物。
〔3〕前記抗原結合ドメインが、低カルシウムイオン濃度の条件下での当該抗原に対する結合活性よりも高カルシウムイオン濃度の条件下での抗原に対する結合活性が高いという特徴を有する抗原結合ドメインである〔2〕に記載の医薬組成物。
〔4〕前記イオン濃度の条件が、pHの条件である〔1〕に記載の医薬組成物。
〔5〕前記抗原結合ドメインが、pH酸性域の条件下での当該抗原に対する結合活性よりもpH中性域の条件下での抗原に対する結合活性が高いという特徴を有する抗原結合ドメインである〔4〕に記載の医薬組成物。
〔6〕前記抗原結合分子が、前記抗原に対する中和活性を有する抗原結合分子である〔1〕から〔5〕のいずれかに記載の医薬組成物。
〔7〕前記抗原結合分子が、前記抗原を発現する細胞に対する細胞傷害活性を有する抗原結合分子である〔1〕から〔6〕のいずれかに記載の医薬組成物。
〔8〕前記FcRn結合ドメインが、抗体のFc領域を含む〔1〕から〔7〕のいずれかに記載の医薬組成物。
〔9〕前記Fc領域が、Fc領域のEUナンバリングで表される部位のうち、257位、308位、428位および434位の群から選択される少なくともひとつ以上のアミノ酸が、天然型Fc領域の対応する部位のアミノ酸と異なるFc領域である〔8〕に記載の医薬組成物。
〔10〕前記Fc領域が、Fc領域のEUナンバリングで表される;
257位のアミノ酸がAla、
308位のアミノ酸がPro、
428位のアミノ酸がLeu、および
434位のアミノ酸がTyr、
の群から選択される少なくともひとつ以上のアミノ酸を含むFc領域である〔8〕または〔9〕に記載の医薬組成物。
〔11〕前記Fc領域のFcγレセプターに対する結合活性が、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりも高いという特徴を有する〔8〕から〔10〕のいずれかに記載の医薬組成物。
〔12〕前記Fcγレセプターが、FcγRIa、FcγRIIa(R)、FcγRIIa(H)、FcγRIIb、FcγRIIIa(V)、またはFcγRIIIa(F)である〔11〕に記載の医薬組成物。
〔13〕前記Fc領域が、Fc領域におけるEUナンバリングで表される部位のうち、221位、222位、223位、224位、225位、227位、228位、230位、231位、232位、233位、234位、235位、236位、237位、238位、239位、240位、241位、243位、244位、245位、246位、247位、249位、250位、251位、254位、255位、256位、258位、260位、262位、263位、264位、265位、266位、267位、268位、269位、270位、271位、272位、273位、274位、275位、276位、278位、279位、280位、281位、282位、283位、284位、285位、286位、288位、290位、291位、292位、293位、294位、295位、296位、297位、298位、299位、300位、301位、302位、303位、304位、305位、311位、313位、315位、317位、318位、320位、322位、323位、324位、325位、326位、327位、328位、329位、330位、331位、332位、333位、334位、335位、336位、337位、339位、376位、377位、378位、379位、380位、382位、385位、392位、396位、421位、427位、428位、429位、434位、436位および440位の群から選択される少なくともひとつ以上のアミノ酸が、天然型Fc領域の対応する部位のアミノ酸と異なるFc領域である〔11〕または〔12〕に記載の医薬組成物。
〔14〕前記Fc領域が、Fc領域におけるEUナンバリングで表される部位のうち;
221位のアミノ酸がLysまたはTyrのいずれか、
222位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
223位のアミノ酸がPhe、Trp、GluまたはLysのいずれか、
224位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
225位のアミノ酸がGlu、LysまたはTrpのいずれか、
227位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
228位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
230位のアミノ酸がAla、Glu、GlyまたはTyrのいずれか、
231位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
232位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
233位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
234位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
235位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
236位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
237位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
238位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
239位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
240位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
241位のアミノ酸がAsp、Glu、Leu、Arg、TrpまたはTyrのいずれか、
243位のアミノ酸がLeu、Glu、Leu、Gln、Arg、TrpまたはTyrのいずれか、
244位のアミノ酸がHis、
245位のアミノ酸がAla、
246位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
247位のアミノ酸がAla、Phe、Gly、His、Ile、Leu、Met、Thr、ValまたはTyrのいずれか、
249位のアミノ酸がGlu、His、GlnまたはTyrのいずれか、
250位のアミノ酸がGluまたはGlnのいずれか、
251位のアミノ酸がPhe、
254位のアミノ酸がPhe、MetまたはTyrのいずれか、
255位のアミノ酸がGlu、LeuまたはTyrのいずれか、
256位のアミノ酸がAla、MetまたはProのいずれか、
258位のアミノ酸がAsp、Glu、His、SerまたはTyrのいずれか、
260位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
262位のアミノ酸がAla、Glu、Phe、IleまたはThrのいずれか、
263位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
264位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
265位のアミノ酸がAla、Leu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、Val、TrpまたはTyrのいずれか、
266位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
267位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
268位のアミノ酸がAsp、Glu、Phe、Gly、Ile、Lys、Leu、Met、Pro、Gln、Arg、Thr、ValまたはTrpのいずれか、
269位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
270位のアミノ酸がGlu、Phe、Gly、His、Ile、Leu、Met、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
271位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
272位のアミノ酸がAsp、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
273位のアミノ酸がPheまたはIleのいずれか、
274位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
275位のアミノ酸がLeuまたはTrpのいずれか、
276位のアミノ酸が、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
278位のアミノ酸がAsp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
279位のアミノ酸がAla、
280位のアミノ酸がAla、Gly、His、Lys、Leu、Pro、Gln、TrpまたはTyrのいずれか、
281位のアミノ酸がAsp、Lys、ProまたはTyrのいずれか、
282位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
283位のアミノ酸がAla、Gly、His、Ile、Lys、Leu、Met、Pro、ArgまたはTyrのいずれか、
284位のアミノ酸がAsp、Glu、Leu、Asn、ThrまたはTyrのいずれか、
285位のアミノ酸がAsp、Glu、Lys、Gln、TrpまたはTyrのいずれか、
286位のアミノ酸がGlu、Gly、ProまたはTyrのいずれか、
288位のアミノ酸がAsn、Asp、GluまたはTyrのいずれか、
290位のアミノ酸がAsp、Gly、His、Leu、Asn、Ser、Thr、TrpまたはTyrのいずれか、291位のアミノ酸がAsp、Glu、Gly、His、Ile、GlnまたはThrのいずれか、
292位のアミノ酸がAla、Asp、Glu、Pro、ThrまたはTyrのいずれか、
293位のアミノ酸がPhe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
294位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
295位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
296位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、ThrまたはValのいずれか、
297位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
298位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Met、Asn、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
299位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、TrpまたはTyrのいずれか、
300位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
301位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
302位のアミノ酸がIle、
303位のアミノ酸がAsp、GlyまたはTyrのいずれか、
304位のアミノ酸がAsp、His、Leu、AsnまたはThrのいずれか、
305位のアミノ酸がGlu、Ile、ThrまたはTyrのいずれか、
311位のアミノ酸がAla、Asp、Asn、Thr、ValまたはTyrのいずれか、
313位のアミノ酸がPhe、
315位のアミノ酸がLeu、
317位のアミノ酸がGluまたはGln、
318位のアミノ酸がHis、Leu、Asn、Pro、Gln、Arg、Thr、ValまたはTyrのいずれか、
320位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Asn、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
322位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
323位のアミノ酸がIle、
324位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
325位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
326位のアミノ酸がAla、Asp、Glu、Gly、Ile、Leu、Met、Asn、Pro、Gln、Ser、Thr、Val、TrpまたはTyrのいずれか、
327位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
328位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
329位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
330位のアミノ酸がCys、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
331位のアミノ酸がAsp、Phe、His、Ile、Leu、Met、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
332位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
333位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Ser、Thr、ValまたはTyrのいずれか、
334位のアミノ酸がAla、Glu、Phe、Ile、Leu、ProまたはThrのいずれか、
335位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Val、TrpまたはTyrのいずれか、
336位のアミノ酸がGlu、LysまたはTyrのいずれか、
337位のアミノ酸がGlu、HisまたはAsnのいずれか、
339位のアミノ酸がAsp、Phe、Gly、Ile、Lys、Met、Asn、Gln、Arg、SerまたはThrのいずれか、
376位のアミノ酸がAlaまたはValのいずれか、
377位のアミノ酸がGlyまたはLysのいずれか、
378位のアミノ酸がAsp、
379位のアミノ酸がAsn、
380位のアミノ酸がAla、AsnまたはSerのいずれか、
382位のアミノ酸がAlaまたはIleのいずれか、
385位のアミノ酸がGlu、
392位のアミノ酸がThr、
396位のアミノ酸がLeu、
421位のアミノ酸がLys、
427位のアミノ酸がAsn、
428位のアミノ酸がPheまたはLeuのいずれか、
429位のアミノ酸がMet、
434位のアミノ酸がTrp、
436位のアミノ酸がIle、および
440位のアミノ酸がGly、His、Ile、LeuまたはTyrのいずれか、
の群から選択される少なくともひとつ以上のアミノ酸を含むFc領域である〔11〕から〔13〕のいずれかに記載の医薬組成物。
〔15〕前記天然型Fc領域が、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖であるヒトIgG1、ヒトIgG2、ヒトIgG3またはヒトIgG4のいずれかのFc領域である〔11〕から〔14〕のいずれかに記載の医薬組成物。
〔16〕前記Fc領域が、Fc領域のEUナンバリング297位に結合した糖鎖の組成がフコース欠損糖鎖を結合したFc領域の割合が高くなるように、またはバイセクティングN-アセチルグルコサミンが付加したFc領域の割合が高くなるように修飾されたFc領域である〔11〕から〔15〕のいずれかに記載の医薬組成物。
〔17〕〔1〕から〔16〕に記載される抗原結合分子を生体内に投与する工程を含む当該生体の免疫応答を誘導する方法。
〔18〕イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメインを含む抗原結合分子に含まれるFcRn結合ドメインに、pH中性域の条件下でFcRnに対する結合活性を付与することを含む免疫応答を誘導する抗原結合分子の製造方法。
〔19〕前記イオン濃度が、カルシウムイオン濃度である〔18〕に記載の方法。
〔20〕前記抗原結合ドメインが、低カルシウムイオン濃度の条件下での当該抗原に対する結合活性よりも高カルシウムイオン濃度の条件下での抗原に対する結合活性が高いという特徴を有する抗原結合ドメインである〔19〕に記載の方法。
〔21〕前記イオン濃度の条件が、pHの条件である〔18〕に記載の方法。
〔22〕前記抗原結合ドメインが、pH酸性域の条件下での当該抗原に対する結合活性よりもpH中性域の条件下での抗原に対する結合活性が高いという特徴を有する抗原結合ドメインである〔21〕に記載の方法。
〔23〕前記抗原結合分子が、前記抗原に対する中和活性を有する抗原結合分子である〔18〕から〔22〕のいずれかに記載の方法。
〔24〕前記抗原結合分子が、前記抗原を発現する細胞に対する細胞傷害活性を有する抗原結合分子である〔18〕から〔23〕のいずれかに記載の方法。
〔25〕前記FcRn結合ドメインが、抗体のFc領域を含む〔18〕から〔24〕のいずれかに記載の方法。
〔26〕Fc領域のEUナンバリングで表される部位のうち、239位、252位、257位、286位、307位、308位、428位および434位の群から選択される少なくともひとつ以上のアミノ酸を置換する工程を含む〔25〕に記載の方法。
〔27〕Fc領域のEUナンバリングで表される部位のうち;
257位のアミノ酸のAlaへの置換、
308位のアミノ酸のProへの置換、
428位のアミノ酸のLeuへの置換、および
434位のアミノ酸のTyrへの置換、
の群から選択される少なくともひとつ以上のアミノ酸置換を行う工程を含む〔25〕または〔26〕に記載の方法。
〔28〕前記Fc領域のFcγレセプターに対する結合活性を、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりも増強させる工程を含む〔25〕から〔27〕のいずれかに記載の方法。
〔29〕前記Fcγレセプターが、FcγRIa、FcγRIIa(R)、FcγRIIa(H)、FcγRIIb、FcγRIIIa(V)、またはFcγRIIIa(F)である〔28〕に記載の方法。
〔30〕Fc領域におけるEUナンバリングで表される部位のうち、221位、222位、223位、224位、225位、227位、228位、230位、231位、232位、233位、234位、235位、236位、237位、238位、239位、240位、241位、243位、244位、245位、246位、247位、249位、250位、251位、254位、255位、256位、258位、260位、262位、263位、264位、265位、266位、267位、268位、269位、270位、271位、272位、273位、274位、275位、276位、278位、279位、280位、281位、282位、283位、284位、285位、286位、288位、290位、291位、292位、293位、294位、295位、296位、297位、298位、299位、300位、301位、302位、303位、304位、305位、311位、313位、315位、317位、318位、320位、322位、323位、324位、325位、326位、327位、328位、329位、330位、331位、332位、333位、334位、335位、336位、337位、339位、376位、377位、378位、379位、380位、382位、385位、392位、396位、421位、427位、428位、429位、434位、436位および440位の群から選択される少なくともひとつ以上のアミノ酸を置換する工程を含む〔28〕または〔29〕に記載の方法。
〔31〕Fc領域におけるEUナンバリングで表される部位のうち;
221位のアミノ酸のLysまたはTyrのいずれかへの置換、
222位のアミノ酸のPhe、Trp、GluまたはTyrのいずれかへの置換、
223位のアミノ酸のPhe、Trp、GluまたはLysのいずれかへの置換、
224位のアミノ酸のPhe、Trp、GluまたはTyrのいずれかへの置換、
225位のアミノ酸のGlu、LysまたはTrpのいずれかへの置換、
227位のアミノ酸のGlu、Gly、LysまたはTyrのいずれかへの置換、
228位のアミノ酸のGlu、Gly、LysまたはTyrのいずれかへの置換、
230位のアミノ酸のAla、Glu、GlyまたはTyrのいずれかへの置換、
231位のアミノ酸のGlu、Gly、Lys、ProまたはTyrのいずれかへの置換、
232位のアミノ酸のGlu、Gly、LysまたはTyrのいずれかへの置換、
233位のアミノ酸のAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれかへの置換、
234位のアミノ酸のAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれかへの置換、
235位のアミノ酸のAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれかへの置換、
236位のアミノ酸のAla、Asp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれかへの置換、
237位のアミノ酸のAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれかへの置換、
238位のアミノ酸のAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれかへの置換、
239位のアミノ酸のAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれかへの置換、
240位のアミノ酸のAla、Ile、MetまたはThrのいずれかへの置換、
241位のアミノ酸のAsp、Glu、Leu、Arg、TrpまたはTyrのいずれかへの置換、
243位のアミノ酸のLeu、Glu、Leu、Gln、Arg、TrpまたはTyrのいずれかへの置換、
244位のアミノ酸のHisへの置換、
245位のアミノ酸のAlaへの置換、
246位のアミノ酸のAsp、Glu、HisまたはTyrのいずれかへの置換、
247位のアミノ酸のAla、Phe、Gly、His、Ile、Leu、Met、Thr、ValまたはTyrのいずれかへの置換、
249位のアミノ酸のGlu、His、GlnまたはTyrのいずれかへの置換、
250位のアミノ酸のGluまたはGlnのいずれかへの置換、
251位のアミノ酸のPheへの置換、
254位のアミノ酸のPhe、MetまたはTyrのいずれかへの置換、
255位のアミノ酸のGlu、LeuまたはTyrのいずれかへの置換、
256位のアミノ酸のAla、MetまたはProのいずれかへの置換、
258位のアミノ酸のAsp、Glu、His、SerまたはTyrのいずれかへの置換、
260位のアミノ酸のAsp、Glu、HisまたはTyrのいずれかへの置換、
262位のアミノ酸のAla、Glu、Phe、IleまたはThrのいずれかへの置換、
263位のアミノ酸のAla、Ile、MetまたはThrのいずれかへの置換、
264位のアミノ酸のAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれかへの置換、
265位のアミノ酸のAla、Leu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、Val、TrpまたはTyrのいずれかへの置換、
266位のアミノ酸のAla、Ile、MetまたはThrのいずれかへの置換、
267位のアミノ酸のAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれかへの置換、
268位のアミノ酸のAsp、Glu、Phe、Gly、Ile、Lys、Leu、Met、Pro、Gln、Arg、Thr、ValまたはTrpのいずれかへの置換、
269位のアミノ酸のPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれかへの置換、
270位のアミノ酸のGlu、Phe、Gly、His、Ile、Leu、Met、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれかへの置換、
271位のアミノ酸のAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれかへの置換、
272位のアミノ酸のAsp、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれかへの置換、
273位のアミノ酸のPheまたはIleのいずれかへの置換、
274位のアミノ酸のAsp、Glu、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれかへの置換、
275位のアミノ酸のLeuまたはTrpのいずれかへの置換、
276位のアミノ酸の、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれかへの置換、
278位のアミノ酸のAsp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれかへの置換、
279位のアミノ酸のAlaへの置換、
280位のアミノ酸のAla、Gly、His、Lys、Leu、Pro、Gln、TrpまたはTyrのいずれかへの置換、
281位のアミノ酸のAsp、Lys、ProまたはTyrのいずれかへの置換、
282位のアミノ酸のGlu、Gly、Lys、ProまたはTyrのいずれかへの置換、
283位のアミノ酸のAla、Gly、His、Ile、Lys、Leu、Met、Pro、ArgまたはTyrのいずれかへの置換、
284位のアミノ酸のAsp、Glu、Leu、Asn、ThrまたはTyrのいずれかへの置換、
285位のアミノ酸のAsp、Glu、Lys、Gln、TrpまたはTyrのいずれかへの置換、
286位のアミノ酸のGlu、Gly、ProまたはTyrのいずれかへの置換、
288位のアミノ酸のAsn、Asp、GluまたはTyrのいずれかへの置換、
290位のアミノ酸のAsp、Gly、His、Leu、Asn、Ser、Thr、TrpまたはTyrのいずれかへの置換、
291位のアミノ酸のAsp、Glu、Gly、His、Ile、GlnまたはThrのいずれかへの置換、
292位のアミノ酸のAla、Asp、Glu、Pro、ThrまたはTyrのいずれかへの置換、
293位のアミノ酸のPhe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれかへの置換、
294位のアミノ酸のPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれかへの置換、
295位のアミノ酸のAsp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれかへの置換、
296位のアミノ酸のAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、ThrまたはValのいずれかへの置換、
297位のアミノ酸のAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれかへの置換、
298位のアミノ酸のAla、Asp、Glu、Phe、His、Ile、Lys、Met、Asn、Gln、Arg、Thr、Val、TrpまたはTyrのいずれかへの置換、
299位のアミノ酸のAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、TrpまたはTyrのいずれかへの置換、
300位のアミノ酸のAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれかへの置換、
301位のアミノ酸のAsp、Glu、HisまたはTyrのいずれかへの置換、
302位のアミノ酸のIleへの置換、
303位のアミノ酸のAsp、GlyまたはTyrのいずれかへの置換、
304位のアミノ酸のAsp、His、Leu、AsnまたはThrのいずれかへの置換、
305位のアミノ酸のGlu、Ile、ThrまたはTyrのいずれかへの置換、
311位のアミノ酸のAla、Asp、Asn、Thr、ValまたはTyrのいずれかへの置換、
313位のアミノ酸のPheへの置換、
315位のアミノ酸のLeuへの置換、
317位のアミノ酸のGluまたはGlnへの置換、
318位のアミノ酸のHis、Leu、Asn、Pro、Gln、Arg、Thr、ValまたはTyrのいずれかへの置換、
320位のアミノ酸のAsp、Phe、Gly、His、Ile、Leu、Asn、Pro、Ser、Thr、Val、TrpまたはTyrのいずれかへの置換、
322位のアミノ酸のAla、Asp、Phe、Gly、His、Ile、Pro、Ser、Thr、Val、TrpまたはTyrのいずれかへの置換、
323位のアミノ酸のIleへの置換、
324位のアミノ酸のAsp、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Thr、Val、TrpまたはTyrのいずれかへの置換、
325位のアミノ酸のAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれかへの置換、
326位のアミノ酸のAla、Asp、Glu、Gly、Ile、Leu、Met、Asn、Pro、Gln、Ser、Thr、Val、TrpまたはTyrのいずれかへの置換、
327位のアミノ酸のAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Thr、Val、TrpまたはTyrのいずれかへの置換、
328位のアミノ酸のAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれかへの置換、
329位のアミノ酸のAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれかへの置換、
330位のアミノ酸のCys、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれかへの置換、
331位のアミノ酸のAsp、Phe、His、Ile、Leu、Met、Gln、Arg、Thr、Val、TrpまたはTyrのいずれかへの置換、
332位のアミノ酸のAla、Asp、Glu、Phe、Gly、His、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれかへの置換、
333位のアミノ酸のAla、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Ser、Thr、ValまたはTyrのいずれかへの置換、
334位のアミノ酸のAla、Glu、Phe、Ile、Leu、ProまたはThrのいずれかへの置換、
335位のアミノ酸のAsp、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Val、TrpまたはTyrのいずれかへの置換、
336位のアミノ酸のGlu、LysまたはTyrのいずれかへの置換、
337位のアミノ酸のGlu、HisまたはAsnのいずれかへの置換、
339位のアミノ酸のAsp、Phe、Gly、Ile、Lys、Met、Asn、Gln、Arg、SerまたはThrのいずれかへの置換、
376位のアミノ酸のAlaまたはValのいずれかへの置換、
377位のアミノ酸のGlyまたはLysのいずれかへの置換、
378位のアミノ酸のAspへの置換、
379位のアミノ酸のAsnへの置換、
380位のアミノ酸のAla、AsnまたはSerのいずれかへの置換、
382位のアミノ酸のAlaまたはIleのいずれかへの置換、
385位のアミノ酸のGluへの置換、
392位のアミノ酸のThrへの置換、
396位のアミノ酸のLeuへの置換、
421位のアミノ酸のLysへの置換、
427位のアミノ酸のAsnへの置換、
428位のアミノ酸のPheまたはLeuのいずれかへの置換、
429位のアミノ酸のMetへの置換、
434位のアミノ酸のTrpへの置換、
436位のアミノ酸のIleへの置換、および
440位のアミノ酸のGly、His、Ile、LeuまたはTyrのいずれかへの置換、
の群から選択される少なくともひとつ以上のアミノ酸置換を行う工程を含む〔28〕から〔30〕のいずれかに記載の方法。
〔32〕前記天然型Fc領域が、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖であるヒトIgG1、ヒトIgG2、ヒトIgG3またはヒトIgG4のいずれかFc領域である〔28〕から〔31〕のいずれかに記載の方法。
〔33〕Fc領域のEUナンバリング297位に結合した糖鎖の組成がフコース欠損糖鎖を結合したFc領域の割合が高くなるように、またはバイセクティングN-アセチルグルコサミンが付加したFc領域の割合が高くなるように、前記Fc領域を修飾する工程を含む〔28〕から〔32〕のいずれかに記載の方法。
〔34〕以下(a)〜(f)の工程、
(a) 高カルシウムイオン濃度の条件における抗原結合ドメインの抗原に対する結合活性を得る工程、
(b) 低カルシウムイオン濃度の条件における抗原結合ドメインの抗原に対する結合活性を得る工程、
(c) (a)で得られた抗原結合活性が(b)で得られた抗原結合活性より高い抗原結合ドメインを選択する工程、
(d) (c)で選択された抗原結合ドメインをコードするポリヌクレオチドを、pH中性域の条件下でFcRnに対する結合活性を有するFcRn結合ドメインをコードするポリヌクレオチドに連結させる工程、
(e) (d)で得られたポリヌクレオチドが作用可能に連結されたベクターが導入された細胞を培養する工程、および
(f) (e)で培養された細胞の培養液から抗原結合分子を回収する工程、
を含む免疫応答を誘導する医薬組成物の製造方法。
〔35〕以下(a)〜(f)の工程、
(a) 高カルシウムイオン濃度の条件における抗体の抗原に対する結合活性を得る工程、
(b) 低カルシウムイオン濃度の条件における抗体の抗原に対する結合活性を得る工程、
(c) (a)で得られた抗原結合活性が(b)で得られた抗原結合活性より高い抗体を選択する工程、
(d) (c)で選択された抗体の抗原結合ドメインをコードするポリヌクレオチドを、pH中性域の条件下でFcRnに対する結合活性を有するFcRn結合ドメインをコードするポリヌクレオチドに連結させる工程、
(e) (d)で得られたポリヌクレオチドが作用可能に連結されたベクターが導入された細胞を培養する工程、および
(f) (e)で培養された細胞の培養液から抗原結合分子を回収する工程、
を含む免疫応答を誘導する医薬組成物の製造方法。
〔36〕以下(a)〜(f)の工程、
(a) pH中性域の条件における抗原結合ドメインの抗原に対する結合活性を得る工程、
(b) pH酸性域の条件における抗原結合ドメインの抗原に対する結合活性を得る工程、
(c) (a)で得られた抗原結合活性が(b)で得られた抗原結合活性より高い抗原結合ドメインを選択する工程、
(d) (c)で選択された抗原結合ドメインをコードするポリヌクレオチドを、pH中性域の条件下でFcRnに対する結合活性を有するFcRn結合ドメインをコードするポリヌクレオチドに連結させる工程、
(e) (d)で得られたポリヌクレオチドが作用可能に連結されたベクターが導入された細胞を培養する工程、および
(f) (e)で培養された細胞の培養液から抗原結合分子を回収する工程、
を含む抗原結合分子の製造方法。
〔37〕以下(a)〜(f)の工程、
(a) pH中性域の条件における抗体の抗原に対する結合活性を得る工程、
(b) pH酸性域の条件における抗体の抗原に対する結合活性を得る工程、
(c) (a)で得られた抗原結合活性が(b)で得られた抗原結合活性より高い抗体を選択する工程、
(d) (c)で選択された抗体の抗原結合ドメインをコードするポリヌクレオチドを、pH中性域の条件下でFcRnに対する結合活性を有するFcRn結合ドメインをコードするポリヌクレオチドに連結させる工程、
(e) (d)で得られたポリヌクレオチドが作用可能に連結されたベクターが導入された細胞を培養する工程、および
(f) (e)で培養された細胞の培養液から抗原結合分子を回収する工程、
を含む抗原結合分子の製造方法。
〔38〕前記抗原結合分子が、前記抗原に対する中和活性を有する抗原結合分子である〔34〕から〔37〕のいずれかに記載の方法。
〔39〕前記抗原結合分子が、前記抗原を発現する細胞に対する細胞傷害活性を有する抗原結合分子である〔34〕から〔38〕のいずれかに記載の方法。
〔40〕前記FcRn結合ドメインが、抗体のFc領域を含む〔34〕から〔39〕のいずれかに記載の方法。
〔41〕前記Fc領域が、Fc領域のEUナンバリングで表される部位のうち、257位、308位、428位および434位の群から選択される少なくともひとつ以上のアミノ酸が、天然型Fc領域の対応する部位のアミノ酸と異なるFc領域である〔40〕に記載の方法。
〔42〕前記Fc領域が、Fc領域のEUナンバリングで表される;
257位のアミノ酸がAla、
308位のアミノ酸がPro、
428位のアミノ酸がLeu、および
434位のアミノ酸がTyr、
の群から選択される少なくともひとつ以上のアミノ酸を含むFc領域である〔40〕または〔41〕に記載の方法。
〔43〕前記Fc領域のFcγレセプターに対する結合活性が、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりも高いという特徴を有する〔40〕から〔42〕のいずれかに記載の方法。
〔44〕前記FcγレセプターがFcγRIa、FcγRIIa(R)、FcγRIIa(H)、FcγRIIb、FcγRIIIa(V)、またはFcγRIIIa(F)である〔43〕に記載の方法。
〔45〕前記Fc領域が、Fc領域におけるEUナンバリングで表される部位のうち;
221位のアミノ酸がLysまたはTyrのいずれか、
222位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
223位のアミノ酸がPhe、Trp、GluまたはLysのいずれか、
224位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
225位のアミノ酸がGlu、LysまたはTrpのいずれか、
227位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
228位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
230位のアミノ酸がAla、Glu、GlyまたはTyrのいずれか、
231位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
232位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
233位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
234位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
235位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
236位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
237位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
238位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
239位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
240位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
241位のアミノ酸がAsp、Glu、Leu、Arg、TrpまたはTyrのいずれか、
243位のアミノ酸がLeu、Glu、Leu、Gln、Arg、TrpまたはTyrのいずれか、
244位のアミノ酸がHis、
245位のアミノ酸がAla、
246位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
247位のアミノ酸がAla、Phe、Gly、His、Ile、Leu、Met、Thr、ValまたはTyrのいずれか、
249位のアミノ酸がGlu、His、GlnまたはTyrのいずれか、
250位のアミノ酸がGluまたはGlnのいずれか、
251位のアミノ酸がPhe、
254位のアミノ酸がPhe、MetまたはTyrのいずれか、
255位のアミノ酸がGlu、LeuまたはTyrのいずれか、
256位のアミノ酸がAla、MetまたはProのいずれか、
258位のアミノ酸がAsp、Glu、His、SerまたはTyrのいずれか、
260位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
262位のアミノ酸がAla、Glu、Phe、IleまたはThrのいずれか、
263位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
264位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
265位のアミノ酸がAla、Leu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、Val、TrpまたはTyrのいずれか、
266位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
267位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
268位のアミノ酸がAsp、Glu、Phe、Gly、Ile、Lys、Leu、Met、Pro、Gln、Arg、Thr、ValまたはTrpのいずれか、
269位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
270位のアミノ酸がGlu、Phe、Gly、His、Ile、Leu、Met、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
271位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
272位のアミノ酸がAsp、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
273位のアミノ酸がPheまたはIleのいずれか、
274位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
275位のアミノ酸がLeuまたはTrpのいずれか、
276位のアミノ酸が、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
278位のアミノ酸がAsp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
279位のアミノ酸がAla、
280位のアミノ酸がAla、Gly、His、Lys、Leu、Pro、Gln、TrpまたはTyrのいずれか、
281位のアミノ酸がAsp、Lys、ProまたはTyrのいずれか、
282位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
283位のアミノ酸がAla、Gly、His、Ile、Lys、Leu、Met、Pro、ArgまたはTyrのいずれか、
284位のアミノ酸がAsp、Glu、Leu、Asn、ThrまたはTyrのいずれか、
285位のアミノ酸がAsp、Glu、Lys、Gln、TrpまたはTyrのいずれか、
286位のアミノ酸がGlu、Gly、ProまたはTyrのいずれか、
288位のアミノ酸がAsn、Asp、GluまたはTyrのいずれか、
290位のアミノ酸がAsp、Gly、His、Leu、Asn、Ser、Thr、TrpまたはTyrのいずれか、291位のアミノ酸がAsp、Glu、Gly、His、Ile、GlnまたはThrのいずれか、
292位のアミノ酸がAla、Asp、Glu、Pro、ThrまたはTyrのいずれか、
293位のアミノ酸がPhe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
294位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
295位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
296位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、ThrまたはValのいずれか、
297位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
298位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Met、Asn、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
299位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、TrpまたはTyrのいずれか、
300位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
301位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
302位のアミノ酸がIle、
303位のアミノ酸がAsp、GlyまたはTyrのいずれか、
304位のアミノ酸がAsp、His、Leu、AsnまたはThrのいずれか、
305位のアミノ酸がGlu、Ile、ThrまたはTyrのいずれか、
311位のアミノ酸がAla、Asp、Asn、Thr、ValまたはTyrのいずれか、
313位のアミノ酸がPhe、
315位のアミノ酸がLeu、
317位のアミノ酸がGluまたはGln、
318位のアミノ酸がHis、Leu、Asn、Pro、Gln、Arg、Thr、ValまたはTyrのいずれか、
320位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Asn、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
322位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
323位のアミノ酸がIle、
324位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
325位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
326位のアミノ酸がAla、Asp、Glu、Gly、Ile、Leu、Met、Asn、Pro、Gln、Ser、Thr、Val、TrpまたはTyrのいずれか、
327位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
328位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
329位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
330位のアミノ酸がCys、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
331位のアミノ酸がAsp、Phe、His、Ile、Leu、Met、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
332位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
333位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Ser、Thr、ValまたはTyrのいずれか、
334位のアミノ酸がAla、Glu、Phe、Ile、Leu、ProまたはThrのいずれか、
335位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Val、TrpまたはTyrのいずれか、
336位のアミノ酸がGlu、LysまたはTyrのいずれか、
337位のアミノ酸がGlu、HisまたはAsnのいずれか、
339位のアミノ酸がAsp、Phe、Gly、Ile、Lys、Met、Asn、Gln、Arg、SerまたはThrのいずれか、
376位のアミノ酸がAlaまたはValのいずれか、
377位のアミノ酸がGlyまたはLysのいずれか、
378位のアミノ酸がAsp、
379位のアミノ酸がAsn、
380位のアミノ酸がAla、AsnまたはSerのいずれか、
382位のアミノ酸がAlaまたはIleのいずれか、
385位のアミノ酸がGlu、
392位のアミノ酸がThr、
396位のアミノ酸がLeu、
421位のアミノ酸がLys、
427位のアミノ酸がAsn、
428位のアミノ酸がPheまたはLeuのいずれか、
429位のアミノ酸がMet、
434位のアミノ酸がTrp、
436位のアミノ酸がIle、および
440位のアミノ酸がGly、His、Ile、LeuまたはTyrのいずれか、
の群から選択される少なくともひとつ以上のアミノ酸を含むFc領域である〔43〕または〔44〕に記載の方法。
〔46〕前記天然型Fc領域が、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖であるヒトIgG1、ヒトIgG2、ヒトIgG3またはヒトIgG4のいずれかFc領域である〔43〕から〔45〕のいずれかに記載の方法。
〔47〕前記Fc領域が、Fc領域のEUナンバリング297位に結合した糖鎖の組成がフコース欠損糖鎖を結合したFc領域の割合が高くなるように、またはバイセクティングN-アセチルグルコサミンが付加したFc領域の割合が高くなるように修飾されたFc領域である〔43〕から〔46〕のいずれかに記載の方法。
本明細書においては、たとえば、Ala/A、Leu/L、Arg/R、Lys/K、Asn/N、Met/M、Asp/D、Phe/F、Cys/C、Pro/P、Gln/Q、Ser/S、Glu/E、Thr/T、Gly/G、Trp/W、His/H、Tyr/Y、Ile/I、Val/Vと表されるように、アミノ酸を1文字コードまたは3文字コード、またはその両方で表記する。
本明細書において抗原は特に限定されず、生体の免疫応答を誘導することによって当該生体の免疫系の攻撃対象となり得る分子であればどのような抗原でもよい。抗原の例としては、例えば、腫瘍細胞に特異的に発現し正常細胞に発現しない分子(ネオエピトープ)が好適に挙げられる。また、細菌、ウイルス等の生体に感染する外来性の生物種に発現し生体に発現しない分子もまた好適に挙げられる。「腫瘍細胞に特異的に発現し正常細胞に発現しない」または「生体に感染する外来性の生物種に発現し生体に発現しない」とは「腫瘍細胞と正常細胞」または「生体に感染する外来性の生物種と生体」との間において分子の質的または量的な相違があることを表す。例えば、仮に正常細胞に発現していても、腫瘍細胞に発現する量が当該正常細胞に発現する量よりも遥かに大きい分子であれば、本発明において当該分子は腫瘍細胞と正常細胞との間において分子の量的な相違があるといえる。また、仮に同一のアミノ酸配列からなるポリペプチドの腫瘍細胞および正常細胞における発現量が同程度であっても、腫瘍細胞に発現するポリペプチドがリン酸化等の翻訳後修飾等を受けているのに対して、正常細胞に発現するポリペプチドがそのような修飾等を受けていないときは、本発明において当該分子は腫瘍細胞と正常細胞との間において分子の質的な相違があるといえる。
asL、Folate receptor alpha、Glucagon receptor、Glucagon-like peptide 1 receptor、Glutamate carboxypeptidase II、GMCSFR、Hepatitis C virus E2 glycoprotein、Hepcidin、IL-17 receptor、IL-22 receptor、IL-23 receptor、IL-3 receptor、Kit tyrosine kinase、Leucine Rich Alpha-2-Glycoprotein 1 (LRG1)、Lysosphingolipid receptor、Membrane glycoprotein OX2、Mesothelin、MET、MICA、MUC-16、Myelin associated glycoprotein、Neuropilin-1、Neuropilin-2、Nogo receptor、PLXNA1、PLXNA2、PLXNA3、PLXNA4A、PLXNA4B 、PLXNB1、PLXNB2、PLXNB3 、PLXNC1 、PLXND1 、Programmed cell death ligand 1、Proprotein convertase PC9、P-selectin glycoprotein ligand-1、RAGE、Reticulon 4、RF、RON-8、SEMA3A、SEMA3B、SEMA3C、SEMA3D、SEMA3E、SEMA3F、SEMA3G、SEMA4A、SEMA4B、SEMA4C、SEMA4D、SEMA4F、SEMA4G、SEMA5A、SEMA5B、SEMA6A、SEMA6B、SEMA6C、SEMA6D、SEMA7A、Shiga like toxin II、Sphingosine-1-phosphate receptor-1、ST2、Staphylococcal lipoteichoic acid、Tenascin、TG2、Thymic stromal lymphoprotein receptor、TNF superfamily receptor 12A、Transmembrane glycoprotein NMB、TREM-1、TREM-2、Trophoblast glycoprotein、TSH receptor、TTR、Tubulin、ULBP2ならびにホルモンおよび成長因子のための受容体が例示され得る。
抗原中に存在する抗原決定基を意味するエピトープは、本明細書において開示される抗原結合分子中の抗原結合ドメインが結合する抗原上の部位を意味する。よって、例えば、エピトープは、その構造によって定義され得る。また、当該エピトープを認識する抗原結合分子中の抗原に対する結合活性によっても当該エピトープが定義され得る。抗原がペプチド又はポリペプチドである場合には、エピトープを構成するアミノ酸残基によってエピトープを特定することも可能である。また、エピトープが糖鎖である場合には、特定の糖鎖構造によってエピトープを特定することも可能である。
下記にIL-6レセプターに対する抗原結合ドメインを含む被験抗原結合分子によるエピトープに対する結合の確認方法が例示されるが、IL-6レセプター以外の抗原に対する抗原結合ドメインを含む被験抗原結合分子によるエピトープに対する結合の確認方法も下記の例示に準じて適宜実施され得る。
FACSCantoTM II
FACSAriaTM
FACSArrayTM
FACSVantageTM SE
FACSCaliburTM (いずれもBD Biosciences社の商品名)
EPICS ALTRA HyPerSort
Cytomics FC 500
EPICS XL-MCL ADC EPICS XL ADC
Cell Lab Quanta / Cell Lab Quanta SC(いずれもBeckman Coulter社の商品名)
ΔGeo-Mean=Geo-Mean(ポリペプチド会合体存在下)/Geo-Mean(ポリペプチド会合体非存在下)
「抗原結合ドメイン」は目的とする抗原に結合するかぎりどのような構造のドメインも使用され得る。そのようなドメインの例として、例えば、抗体の重鎖および軽鎖の可変領域、生体内に存在する細胞膜タンパクであるAvimerに含まれる35アミノ酸程度のAドメインと呼ばれるモジュール(WO2004/044011、WO2005/040229)、細胞膜に発現する糖たんぱく質であるfibronectin中のタンパク質に結合するドメインである10Fn3ドメインを含むAdnectin(WO2002/032925)、ProteinAの58アミノ酸からなる3つのヘリックスの束(bundle)を構成するIgG結合ドメインをscaffoldとするAffibody(WO1995/001937)、33アミノ酸残基を含むターンと2つの逆並行ヘリックスおよびループのサブユニットが繰り返し積み重なった構造を有するアンキリン反復(ankyrin repeat:AR)の分子表面に露出する領域であるDARPins(Designed Ankyrin Repeat proteins)(WO2002/020565)、好中球ゲラチナーゼ結合リポカリン(neutrophil gelatinase-associated lipocalin(NGAL))等のリポカリン分子において高度に保存された8つの逆並行ストランドが中央方向にねじれたバレル構造の片側を支える4つのループ領域であるAnticalin等(WO2003/029462)、ヤツメウナギ、ヌタウナギなど無顎類の獲得免疫システムとしてイムノグロブリンの構造を有さない可変性リンパ球受容体(variable lymphocyte receptor(VLR))のロイシン残基に富んだリピート(leucine-rich-repeat(LRR))モジュールが繰り返し積み重なった馬てい形の構造の内部の並行型シート構造のくぼんだ領域(WO2008/016854)が好適に挙げられる。本発明の抗原結合ドメインの好適な例として、抗体の重鎖および軽鎖の可変領域を含む抗原結合ドメインが挙げられる。こうした抗原結合ドメインの例としては、「scFv(single chain Fv)」、「単鎖抗体(single chain antibody)」、「Fv」、「scFv2(single chain Fv 2)」、「Fab」または「F(ab')2」等が好適に挙げられる。
特異的とは、特異的に結合する分子の一方の分子がその一または複数の結合する相手方の分子以外の分子に対しては何ら有意な結合を示さない状態をいう。また、抗原結合ドメインが、ある抗原中に含まれる複数のエピトープのうち特定のエピトープに対して特異的である場合にも用いられる。また、抗原結合ドメインが結合するエピトープが複数の異なる抗原に含まれる場合には、当該抗原結合ドメインを有する抗原結合分子は当該エピトープを含む様々な抗原と結合することができる。
本明細書において、抗体とは、天然のものであるかまたは部分的もしくは完全合成により製造された免疫グロブリンをいう。抗体はそれが天然に存在する血漿や血清等の天然資源や抗体を産生するハイブリドーマ細胞の培養上清から単離され得るし、または遺伝子組換え等の手法を用いることによって部分的にもしくは完全に合成され得る。抗体の例としては免疫グロブリンのアイソタイプおよびそれらのアイソタイプのサブクラスが好適に挙げられる。ヒトの免疫グロブリンとして、IgG1、IgG2、IgG3、IgG4、IgA1、IgA2、IgD、IgE、IgMの9種類のクラス(アイソタイプ)が知られている。本発明の抗体には、これらのアイソタイプのうちIgG1、IgG2、IgG3、IgG4が含まれ得る。
−IL-6レセプターのような膜蛋白質の構造を維持して免疫刺激が与えられ得る
−免疫抗原を精製する必要が無い
−グアニジン超遠心法(Biochemistry (1979) 18 (24), 5294-5299)
−AGPC法(Anal. Biochem. (1987) 162 (1), 156-159)
(1)ハイブリドーマから得られたcDNAによってコードされるV領域を含む抗体をIL-6レセプター発現細胞に接触させる工程、
(2)IL-6レセプター発現細胞と抗体との結合を検出する工程、および
(3)IL-6レセプター発現細胞に結合する抗体を選択する工程。
(1)哺乳類細胞、:CHO、COS、ミエローマ、BHK (baby hamster kidney )、Hela、Vero、HEK(human embryonic kidney)293など
(2)両生類細胞:アフリカツメガエル卵母細胞など
(3)昆虫細胞:sf9、sf21、Tn5など
−酵母:サッカロミセス・セレビシエ(Saccharomyces serevisiae)などのサッカロミセス(Saccharomyces )属、メタノール資化酵母(Pichia pastoris)などのPichia属
−糸状菌:アスペスギルス・ニガー(Aspergillus niger)などのアスペルギルス(Aspergillus )属
本発明で使用されている方法によると、抗体のCDRとFRに割り当てられるアミノ酸位置はKabatにしたがって規定される(Sequences of Proteins of Immunological Interest(National Institute of Health, Bethesda, Md., 1987年および1991年)。本明細書において、抗原結合分子が抗体または抗原結合断片である場合、可変領域のアミノ酸はKabatナンバリングにしたがい、定常領域のアミノ酸はKabatのアミノ酸位置に準じたEUナンバリングにしたがって表される。
金属イオン濃度の条件
本発明の非限定の一つの態様では、イオン濃度とは金属イオン濃度のことをいう。「金属イオン」とは、水素を除くアルカリ金属および銅族等の第I族、アルカリ土類金属および亜鉛族等の第II族、ホウ素を除く第III族、炭素とケイ素を除く第IV族、鉄族および白金族等の第VIII族、V、VIおよびVII族の各A亜族に属する元素と、アンチモン、ビスマス、ポロニウム等の金属元素のイオンをいう。金属原子は原子価電子を放出して陽イオンになる性質を有しており、これをイオン化傾向という。イオン化傾向の大きい金属は、化学的に活性に富むとされる。
(a) 低カルシウム濃度の条件における抗原結合ドメインまたは抗体の抗原結合活性を得る工程、
(b) 高カルシウム濃度の条件における抗原結合ドメインまたは抗体の抗原結合活性を得る工程、および
(c) 低カルシウム濃度の条件における抗原結合活性が、高カルシウム濃度の条件における抗原結合活性より低い抗原結合ドメインまたは抗体を選択する工程。
(a) 高カルシウム濃度の条件における抗原結合ドメインまたは抗体もしくはそれらのライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメインまたは抗体を低カルシウム濃度条件下に置く工程、および
(c) 前記工程(b)で解離した抗原結合ドメインまたは抗体を単離する工程。
(b) 前記工程(a)で抗原に結合しない抗原結合ドメイン又は抗体を選択する工程、
(c) 前記工程(b)で選択された抗原結合ドメイン又は抗体を高カルシウム濃度条件下で抗原に結合させる工程、および
(d) 前記工程(c)で抗原に結合した抗原結合ドメイン又は抗体を単離する工程。
(a) 抗原を固定したカラムに高カルシウム濃度条件下で抗原結合ドメイン又は抗体のライブラリを接触させる工程、
(b) 前記工程(a)でカラムに結合した抗原結合ドメイン又は抗体を低カルシウム濃度条件下でカラムから溶出する工程、および
(c) 前記工程(b)で溶出された抗原結合ドメイン又は抗体を単離する工程。
(a) 抗原を固定したカラムに低カルシウム濃度条件下で抗原結合ドメイン又は抗体のライブラリを通過させる工程、
(b) 前記工程(a)でカラムに結合せずに溶出した抗原結合ドメイン又は抗体を回収する工程、
(c) 前記工程(b)で回収された抗原結合ドメイン又は抗体を高カルシウム濃度条件下で抗原に結合させる工程、および
(d) 前記工程(c)で抗原に結合した抗原結合ドメイン又は抗体を単離する工程。
(a) 高カルシウム濃度条件下で抗原結合ドメイン又は抗体のライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメイン又は抗体を取得する工程、
(c) 前記工程(b)で取得した抗原結合ドメイン又は抗体を低カルシウム濃度条件下に置く工程、および
(d) 前記工程(c)で抗原結合活性が、前記工程(b)で選択した基準より弱い抗原結合ドメイン又は抗体を単離する工程。
ある一態様によれば、本発明の抗原結合ドメイン又は抗体は、イオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基が抗原結合ドメインに含まれている互いに配列の異なる複数の抗原結合分子から主としてなるライブラリから取得され得る。イオン濃度の例としては金属イオン濃度や水素イオン濃度が好適に挙げられる。
前記のスクリーニング方法によってスクリーニングされる本発明の抗原結合ドメイン又は抗体はどのように調製されてもよく、例えば、金属イオンがカルシウムイオン濃度である場合には、あらかじめ存在している抗体、あらかじめ存在しているライブラリ(ファージライブラリ等)、動物への免疫から得られたハイブリドーマや免疫動物からのB細胞から作製された抗体又はライブラリ、これらの抗体やライブラリにカルシウムをキレート可能なアミノ酸(例えばアスパラギン酸やグルタミン酸)や非天然アミノ酸変異を導入した抗体又はライブラリ(カルシウムをキレート可能なアミノ酸(例えばアスパラギン酸やグルタミン酸)又は非天然アミノ酸の含有率を高くしたライブラリや特定箇所にカルシウムをキレート可能なアミノ酸(例えばアスパラギン酸やグルタミン酸)又は非天然アミノ酸変異を導入したライブラリ等)などを用いることが可能である 。
また、本発明の一つの態様では、イオン濃度の条件とは水素イオン濃度の条件またはpHの条件をいう。本発明で、プロトンすなわち水素原子の原子核の濃度の条件は、水素指数(pH)の条件とも同義に取り扱われる。水溶液中の水素イオンの活動量をaH+で表すと、pHは-log10aH+と定義される。水溶液中のイオン強度が(例えば10-3より)低ければ、aH+は水素イオン強度にほぼ等しい。例えば25℃、1気圧における水のイオン積はKw=aH+aOH=10-14であるため、純水ではaH+=aOH=10-7である。この場合のpH=7が中性であり、pHが7より小さい水溶液は酸性、pHが7より大きい水溶液はアルカリ性である。
(a) pH酸性域の条件における抗原結合ドメインまたは抗体の抗原結合活性を得る工程、
(b) pH中性域の条件における抗原結合ドメインまたは抗体の抗原結合活性を得る工程、および
(c) pH酸性域の条件における抗原結合活性が、pH中性域の条件における抗原結合活性より低い抗原結合ドメインまたは抗体を選択する工程。
(a) pH中性域の条件における抗原結合ドメインまたは抗体もしくはそれらのライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメインまたは抗体をpH酸性域の条件に置く工程、および
(c) 前記工程(b)で解離した抗原結合ドメインまたは抗体を単離する工程。
(a) pH酸性域の条件で抗原結合ドメイン又は抗体のライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合しない抗原結合ドメイン又は抗体を選択する工程、
(c) 前記工程(b)で選択された抗原結合ドメイン又は抗体をpH中性域の条件で抗原に結合させる工程、および
(d) 前記工程(c)で抗原に結合した抗原結合ドメイン又は抗体を単離する工程。
(a) 抗原を固定したカラムにpH中性域の条件で抗原結合ドメイン又は抗体のライブラリを接触させる工程、
(b) 前記工程(a)でカラムに結合した抗原結合ドメイン又は抗体をpH酸性域の条件でカラムから溶出する工程、および
(c) 前記工程(b)で溶出された抗原結合ドメイン又は抗体を単離する工程。
(a) 抗原を固定したカラムにpH酸性域の条件で抗原結合ドメイン又は抗体のライブラリを通過させる工程、
(b) 前記工程(a)でカラムに結合せずに溶出した抗原結合ドメイン又は抗体を回収する工程、
(c) 前記工程(b)で回収された抗原結合ドメイン又は抗体をpH中性域の条件で抗原に結合させる工程、および
(d) 前記工程(c)で抗原に結合した抗原結合ドメイン又は抗体を単離する工程。
(a) pH中性域の条件で抗原結合ドメイン又は抗体のライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメイン又は抗体を取得する工程、
(c) 前記工程(b)で取得した抗原結合ドメイン又は抗体をpH酸性域の条件に置く工程、および
(d) 前記工程(c)で抗原結合活性が、前記工程(b)で選択した基準より弱い抗原結合ドメイン又は抗体を単離する工程。
前記のスクリーニング方法によってスクリーニングされる本発明の抗原結合ドメイン又は抗体はどのように調製されてもよく、例えば、イオン濃度の条件が水素イオン濃度の条件もしくはpHの条件である場合には、あらかじめ存在している抗体、あらかじめ存在しているライブラリ(ファージライブラリ等)、動物への免疫から得られたハイブリドーマや免疫動物からのB細胞から作製された抗体又はライブラリ、これらの抗体やライブラリに側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の変異を導入した抗体又はライブラリ(側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の含有率を高くしたライブラリや特定箇所に側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の変異を導入したライブラリ等)などを用いることが可能である 。
免疫グロブリンスーパーファミリーに属するFcγレセプターと異なり、FcRn特にヒトFcRnは構造的には主要組織不適合性複合体(MHC)クラスIのポリペプチドに構造的に類似しクラスIのMHC分子と22から29%の配列同一性を有する(Ghetieら,Immunol. Today (1997) 18 (12), 592-598)。FcRnは、可溶性βまたは軽鎖(β2マイクログロブリン)と複合体化された膜貫通αまたは重鎖よりなるヘテロダイマーとして発現される。MHCのように、FcRnのα鎖は3つの細胞外ドメイン(α1、α2、α3)よりなり、短い細胞質ドメインはタンパク質を細胞表面に繋留する。α1およびα2ドメインが抗体のFc領域中のFcRn結合ドメインと相互作用する(Raghavanら(Immunity (1994) 1, 303-315)。
本発明の一つの態様では、イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメイン、およびpH中性域の条件下でFcRnに対する結合活性を有するFcRn結合ドメインを含む抗原結合分子を有効成分として含む前記抗原に対する免疫応答を誘導する医薬組成物が提供される。
257位のアミノ酸がAla、
308位のアミノ酸がPro、
428位のアミノ酸がLeu、および
434位のアミノ酸がTyr、
の群から選択される少なくともひとつ以上のアミノ酸を含むFc領域が好適に挙げられる。
Fcγレセプターとは、IgG1、IgG2、IgG3、IgG4モノクローナル抗体のFc領域に結合し得るレセプターをいい、実質的にFcγレセプター遺伝子にコードされるタンパク質のファミリーのいかなるメンバーをも意味する。ヒトでは、このファミリーには、アイソフォームFcγRIa、FcγRIbおよびFcγRIcを含むFcγRI(CD64);アイソフォームFcγRIIa(アロタイプH131およびR131を含む)、FcγRIIb(FcγRIIb-1およびFcγRIIb-2を含む)およびFcγRIIcを含むFcγRII(CD32);およびアイソフォームFcγRIIIa(アロタイプV158およびF158を含む)およびFcγRIIIb(アロタイプFcγRIIIb-NA1およびFcγRIIIb-NA2を含む)を含むFcγRIII(CD16)、並びにいかなる未発見のヒトFcγR類またはFcγRアイソフォームまたはアロタイプも含まれるが、これらに限定されるものではない。FcγRは、ヒト、マウス、ラット、ウサギおよびサルを含むが、これらに限定されるものではない、いかなる生物由来でもよい。マウスFcγR類には、FcγRI(CD64)、FcγRII(CD32)、FcγRIII(CD16)およびFcγRIII-2(FcγRIV、CD16-2)、並びにいかなる未発見のマウスFcγR類またはFcγRアイソフォームまたはアロタイプも含まれるが、これらに限定されない。こうしたFcγレセプターの好適な例としてはヒトFcγRI(CD64)、FcγRIIa(CD32)、FcγRIIb(CD32)、FcγRIIIa(CD16)及び/又はFcγRIIIb(CD16)が挙げられる。FcγRIのポリヌクレオチド配列及びアミノ酸配列はそれぞれ配列番号:19(NM_000566.3)及び20(NP_000557.1)に、FcγRIIaのポリヌクレオチド配列及びアミノ酸配列はそれぞれ配列番号:21(BC020823.1)及び22(AAH20823.1)に、FcγRIIbのポリヌクレオチド配列及びアミノ酸配列はそれぞれ配列番号:23(BC146678.1)及び24(AAI46679.1)に、FcγRIIIaのポリヌクレオチド配列及びアミノ酸配列はそれぞれ配列番号:25(BC033678.1)及び26(AAH33678.1)に、及びFcγRIIIbのポリヌクレオチド配列及びアミノ酸配列は、それぞれ配列番号:27(BC128562.1)及び28(AAI28563.1)に記載されている(カッコ内はRefSeq登録番号を示す)。Fcγ受容体が、IgG1、IgG2、IgG3、IgG4モノクローナル抗体のFc領域に結合活性を有するか否かは、上記に記載されるFACSやELISAフォーマットのほか、ALPHAスクリーン(Amplified Luminescent Proximity Homogeneous Assay)や表面プラズモン共鳴(SPR)現象を利用したBIACORE法等によって確認され得る(Proc.Natl.Acad.Sci.USA (2006) 103 (11), 4005-4010)。
本発明のある一つの態様では、Fc領域のヒトFcγレセプターに対する結合活性がヒトFcγレセプターに対するヒトIgGのFcの結合活性よりも高いFc領域が含まれるFcRn結合ドメインを含む抗原結合分子を有効成分として含む免疫応答を誘導する医薬組成物が提供される。
221位のアミノ酸がLysまたはTyrのいずれか、
222位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
223位のアミノ酸がPhe、Trp、GluまたはLysのいずれか、
224位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
225位のアミノ酸がGlu、LysまたはTrpのいずれか、
227位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
228位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
230位のアミノ酸がAla、Glu、GlyまたはTyrのいずれか、
231位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
232位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
233位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
234位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
235位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
236位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
237位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
238位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
239位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
240位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
241位のアミノ酸がAsp、Glu、Leu、Arg、TrpまたはTyrのいずれか、
243位のアミノ酸がLeu、Glu、Leu、Gln、Arg、TrpまたはTyrのいずれか、
244位のアミノ酸がHis、
245位のアミノ酸がAla、
246位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
247位のアミノ酸がAla、Phe、Gly、His、Ile、Leu、Met、Thr、ValまたはTyrのいずれか、
249位のアミノ酸がGlu、His、GlnまたはTyrのいずれか、
250位のアミノ酸がGluまたはGlnのいずれか、
251位のアミノ酸がPhe、
254位のアミノ酸がPhe、MetまたはTyrのいずれか、
255位のアミノ酸がGlu、LeuまたはTyrのいずれか、
256位のアミノ酸がAla、MetまたはProのいずれか、
258位のアミノ酸がAsp、Glu、His、SerまたはTyrのいずれか、
260位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
262位のアミノ酸がAla、Glu、Phe、IleまたはThrのいずれか、
263位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
264位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
265位のアミノ酸がAla、Leu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、Val、TrpまたはTyrのいずれか、
266位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
267位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
268位のアミノ酸がAsp、Glu、Phe、Gly、Ile、Lys、Leu、Met、Pro、Gln、Arg、Thr、ValまたはTrpのいずれか、
269位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
270位のアミノ酸がGlu、Phe、Gly、His、Ile、Leu、Met、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
271位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
272位のアミノ酸がAsp、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
273位のアミノ酸がPheまたはIleのいずれか、
274位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
275位のアミノ酸がLeuまたはTrpのいずれか、
276位のアミノ酸が、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
278位のアミノ酸がAsp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
279位のアミノ酸がAla、
280位のアミノ酸がAla、Gly、His、Lys、Leu、Pro、Gln、TrpまたはTyrのいずれか、
281位のアミノ酸がAsp、Lys、ProまたはTyrのいずれか、
282位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
283位のアミノ酸がAla、Gly、His、Ile、Lys、Leu、Met、Pro、ArgまたはTyrのいずれか、
284位のアミノ酸がAsp、Glu、Leu、Asn、ThrまたはTyrのいずれか、
285位のアミノ酸がAsp、Glu、Lys、Gln、TrpまたはTyrのいずれか、
286位のアミノ酸がGlu、Gly、ProまたはTyrのいずれか、
288位のアミノ酸がAsn、Asp、GluまたはTyrのいずれか、
290位のアミノ酸がAsp、Gly、His、Leu、Asn、Ser、Thr、TrpまたはTyrのいずれか、291位のアミノ酸がAsp、Glu、Gly、His、Ile、GlnまたはThrのいずれか、
292位のアミノ酸がAla、Asp、Glu、Pro、ThrまたはTyrのいずれか、
293位のアミノ酸がPhe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
294位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
295位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
296位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、ThrまたはValのいずれか、
297位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
298位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Met、Asn、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
299位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、TrpまたはTyrのいずれか、
300位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
301位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
302位のアミノ酸がIle、
303位のアミノ酸がAsp、GlyまたはTyrのいずれか、
304位のアミノ酸がAsp、His、Leu、AsnまたはThrのいずれか、
305位のアミノ酸がGlu、Ile、ThrまたはTyrのいずれか、
311位のアミノ酸がAla、Asp、Asn、Thr、ValまたはTyrのいずれか、
313位のアミノ酸がPhe、
315位のアミノ酸がLeu、
317位のアミノ酸がGluまたはGln、
318位のアミノ酸がHis、Leu、Asn、Pro、Gln、Arg、Thr、ValまたはTyrのいずれか、
320位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Asn、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
322位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
323位のアミノ酸がIle、
324位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
325位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
326位のアミノ酸がAla、Asp、Glu、Gly、Ile、Leu、Met、Asn、Pro、Gln、Ser、Thr、Val、TrpまたはTyrのいずれか、
327位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
328位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
329位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
330位のアミノ酸がCys、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
331位のアミノ酸がAsp、Phe、His、Ile、Leu、Met、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
332位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
333位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Ser、Thr、ValまたはTyrのいずれか、
334位のアミノ酸がAla、Glu、Phe、Ile、Leu、ProまたはThrのいずれか、
335位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Val、TrpまたはTyrのいずれか、
336位のアミノ酸がGlu、LysまたはTyrのいずれか、
337位のアミノ酸がGlu、HisまたはAsnのいずれか、
339位のアミノ酸がAsp、Phe、Gly、Ile、Lys、Met、Asn、Gln、Arg、SerまたはThrのいずれか、
376位のアミノ酸がAlaまたはValのいずれか、
377位のアミノ酸がGlyまたはLysのいずれか、
378位のアミノ酸がAsp、
379位のアミノ酸がAsn、
380位のアミノ酸がAla、AsnまたはSerのいずれか、
382位のアミノ酸がAlaまたはIleのいずれか、
385位のアミノ酸がGlu、
392位のアミノ酸がThr、
396位のアミノ酸がLeu、
421位のアミノ酸がLys、
427位のアミノ酸がAsn、
428位のアミノ酸がPheまたはLeuのいずれか、
429位のアミノ酸がMet、
434位のアミノ酸がTrp、
436位のアミノ酸がIle、
440位のアミノ酸がGly、His、Ile、LeuまたはTyrのいずれか、
が挙げられる。また、改変されるアミノ酸の数は特に限定されず、一箇所のみのアミノ酸が改変され得るし、二箇所以上のアミノ酸が改変され得る。二箇所以上のアミノ酸の改変の組合せとしては、例えば表6(表6−1〜表6−3)に記載されるような組合せが挙げられる。
本発明が提供するFc領域として、当該Fc領域に結合した糖鎖の組成がフコース欠損糖鎖を結合したFc領域の割合が高くなるように、またはバイセクティングN-アセチルグルコサミンが付加したFc領域の割合が高くなるように修飾されたFc領域も含まれ得る。抗体Fc領域に結合するN -グリコシド結合複合型糖鎖還元末端のN -アセチルグルコサミンからフコース残基を除去すると、FcγRIIIaに対する親和性が増強されることが知られている(非特許文献20)。こうしたFc領域を含むIgG1抗体は、後述するADCC活性が増強されていることが知られていることから、当該Fc領域を含む抗原結合分子は、本発明の医薬組成物に含まれる抗原結合分子としても有用である。抗体Fc領域に結合するN -グリコシド結合複合型糖鎖還元末端のN -アセチルグルコサミンからフコース残基が除去された抗体としては、例えば、次のような抗体;
グリコシル化が修飾された抗体(WO1999/054342等)、
糖鎖に付加するフコースが欠損した抗体(WO2000/061739、WO2002/031140、WO2006/067913等)、
バイセクティングGlcNAcを有する糖鎖を有する抗体(WO2002/079255等)が公知である。これらの抗体の製造方法は本発明のFc領域に結合した糖鎖の組成がフコース欠損糖鎖を結合したFc領域の割合が高くなるように、またはバイセクティングN-アセチルグルコサミンが付加したFc領域の割合が高くなるように修飾された改変Fc領域を含む抗原結合分子の製造方法にも適用することが可能である。
本発明において、イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメイン、およびpH中性域の条件下でFcRnに対する結合活性を有するFcRn結合ドメインを含む分子を表す最も広義な意味として使用されており、具体的には、それらが抗原に対する結合活性を示す限り、様々な分子型が含まれる。例えば、抗原結合ドメインがFc領域と結合した分子の例として、抗体が挙げられる。抗体には、単一のモノクローナル抗体(アゴニストおよびアンタゴニスト抗体を含む)、ヒト抗体、ヒト化抗体、キメラ抗体等が含まれ得る。また抗体の断片として使用される場合としては、抗原結合ドメインおよび抗原結合断片(例えば、Fab、F(ab')2、scFvおよびFv)が好適に挙げられ得る。既存の安定なα/βバレルタンパク質構造等の立体構造が scaffold(土台)として用いられ、その一部分の構造のみが抗原結合ドメインの構築のためにライブラリ化されたスキャフォールド分子も、本発明の抗原結合分子に含まれ得る 。
Ser
Gly・Ser
Gly・Gly・Ser
Ser・Gly・Gly
Gly・Gly・Gly・Ser(配列番号:29)
Ser・Gly・Gly・Gly(配列番号:30)
Gly・Gly・Gly・Gly・Ser(配列番号:31)
Ser・Gly・Gly・Gly・Gly(配列番号:32)
Gly・Gly・Gly・Gly・Gly・Ser(配列番号:33)
Ser・Gly・Gly・Gly・Gly・Gly(配列番号:34)
Gly・Gly・Gly・Gly・Gly・Gly・Ser(配列番号:35)
Ser・Gly・Gly・Gly・Gly・Gly・Gly(配列番号:36)
(Gly・Gly・Gly・Gly・Ser(配列番号:31))n
(Ser・Gly・Gly・Gly・Gly(配列番号:32))n
[nは1以上の整数である]等が好適に挙げられる。但し、ペプチドリンカーの長さや配列は目的に応じて当業者が適宜選択することができる。
また、上記記載で例示されるリンカーのほか、例えばHisタグ、HAタグ、mycタグ、FLAGタグ等のペプチドタグを有するリンカーも適宜使用され得る。また、水素結合、ジスルフィド結合、共有結合、イオン性相互作用またはこれらの結合の組合せにより互いに結合する性質もまた好適に利用され得る。例えば、抗体のCH1とCL間の親和性が利用されたり、ヘテロFc領域の会合に際して前述の二重特異性抗体を起源とするFc領域が用いられたりする。さらに、ドメイン間に形成されるジスルフィド結合もまた好適に利用され得る。
本発明の一態様では、イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメイン、およびpH中性域におけるFcRnに対する結合活性を有するFcRn結合ドメインを含み、抗原に対する中和活性を有する抗原結合分子を有効成分として含む免疫応答を誘導する医薬組成物が提供される。一般的に、中和活性とは、ウイルスや毒素など、細胞に対して生物学的活性を有するリガンドの当該生物学的活性を阻害する活性をいう。即ち、中和活性を有する物質とは、当該リガンド又は当該リガンドが結合するレセプターに結合し、当該リガンドとレセプターの結合を阻害する物質をさす。中和活性によりリガンドとの結合を阻止されたレセプターは、当該レセプターを通じた生物学的活性を発揮することができなくなる。抗原結合分子が抗体である場合、このような中和活性を有する抗体は一般に中和抗体と呼ばれる。ある被検物質の中和活性は、リガンドの存在下における生物学的活性をその被検物質の存在又は非存在下の条件の間で比較することにより測定され得る。
本発明の一態様では、イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメイン、およびpH中性域におけるFcRnに対する結合活性を有するFcRn結合ドメインを含み、抗原を発現する細胞に対する細胞傷害活性を有する抗原結合分子を有効成分として含む免疫応答を誘導する医薬組成物が提供される。本発明において細胞傷害活性とは、例えば抗体依存性細胞介在性細胞傷害(antibody-dependent cell-mediated cytotoxicity:ADCC)活性、補体依存性細胞傷害(complement-dependent cytotoxicity:CDC)活性等が挙げられる。本発明において、CDC活性とは補体系による細胞傷害活性を意味する。一方ADCC活性とは抗原を発現する細胞の表面抗原に特異的抗原結合分子が付着した際、そのFc部分にFcγ受容体を発現する細胞(免疫細胞等)がFcγ受容体を介して結合し、標的細胞に傷害を与える活性を意味する。目的の抗原結合分子がADCC活性を有するか否か、又はCDC活性を有するか否かは公知の方法により測定され得る(例えば、Current protocols in Immunology, Chapter7. Immunologic studies in humans、Coliganら編(1993)等)。
(1)エフェクター細胞の調製
CBA/Nマウスなどから摘出された脾臓から、RPMI1640培地(Invitrogen)中で脾臓細胞が分離される。10%ウシ胎児血清(FBS、HyClone)を含む同培地で洗浄された当該脾臓細胞の濃度を5×106/mlに調製することによって、エフェクター細胞が調製され得る。
(2)補体溶液の調製
10% FBS含有培地(Invitrogen)によってBaby Rabbit Complement(CEDARLANE)を10倍に希釈することによって、補体溶液が調製され得る。
(3)標的細胞の調製
本発明の非限定の一態様において、イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメイン、およびpH中性域におけるFcRnに対する結合活性を有するFcRn結合ドメインを含む抗原結合分子を有効成分として含む前記抗原に対する免疫応答を誘導する医薬組成物が提供される。
別の観点においては、本発明は、イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメイン、およびpH中性域におけるFcRnに対する結合活性を有するFcRn結合ドメインを含む抗原結合分子を有効成分として含む前記抗原に対する免疫応答を誘導する医薬組成物を提供する。又、本発明の異なる一つの態様では、当該抗原結合分子を有効成分として含む前記抗原に対する免疫応答を誘導する細胞増殖抑制剤または抗癌剤に関する。本発明の医薬組成物、細胞増殖抑制剤または抗癌剤は、外来性の生物種の感染症または癌を罹患している対象または再発する可能性がある対象に投与されることが好ましい。
本発明の非限定の一態様では、イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメインを含む抗原結合分子に含まれるFcRn結合ドメインに、pH中性域の条件下でFcRnに対する結合活性を付与することを含む免疫応答を誘導する抗原結合分子の製造方法が提供される。
(a) 高カルシウムイオン濃度の条件における抗原結合ドメインの抗原に対する結合活性を得る工程、
(b) 低カルシウムイオン濃度の条件における抗原結合ドメインの抗原に対する結合活性を得る工程、
(c) (a)で得られた抗原結合活性が(b)で得られた抗原結合活性より高い抗原結合ドメインを選択する工程、
(d) (c)で選択された抗原結合ドメインをコードするポリヌクレオチドを、pH中性域の条件下でFcRnに対する結合活性を有するFcRn結合ドメインをコードするポリヌクレオチドに連結させる工程、
(e) (d)で得られたポリヌクレオチドが作用可能に連結されたベクターが導入された細胞を培養する工程、および
(f) (e)で培養された細胞の培養液から抗原結合分子を回収する工程、
を含む免疫応答を誘導する医薬組成物の製造方法が提供される。
(a) 高カルシウムイオン濃度の条件における抗体の抗原に対する結合活性を得る工程、
(b) 低カルシウムイオン濃度の条件における抗体の抗原に対する結合活性を得る工程、
(c) (a)で得られた抗原結合活性が (b)で得られた抗原結合活性より高い抗体を選択する工程、
(d) (c)で選択された抗体の抗原結合ドメインをコードするポリヌクレオチドを、pH中性域の条件下でFcRnに対する結合活性を有するFcRn結合ドメインをコードするポリヌクレオチドに連結させる工程、
(e) (d)で得られたポリヌクレオチドが作用可能に連結されたベクターが導入された細胞を培養する工程、および
(f) (e)で培養された細胞の培養液から抗原結合分子を回収する工程、
を含む免疫応答を誘導する医薬組成物の製造方法も提供される。
(a) pH中性域の条件における抗原結合ドメインの抗原に対する結合活性を得る工程、
(b) pH酸性域の条件における抗原結合ドメインの抗原に対する結合活性を得る工程、
(c) (a)で得られた抗原結合活性が(b)で得られた抗原結合活性より高い抗原結合ドメインを選択する工程、
(d) (c)で選択された抗原結合ドメインをコードするポリヌクレオチドを、pH中性域の条件下でFcRnに対する結合活性を有するFcRn結合ドメインをコードするポリヌクレオチドに連結させる工程、
(e) (d)で得られたポリヌクレオチドが作用可能に連結されたベクターが導入された細胞を培養する工程、および
(f) (e)で培養された細胞の培養液から抗原結合分子を回収する工程、
を含む抗原結合分子の製造方法が提供される。
(a) pH中性域の条件における抗体の抗原に対する結合活性を得る工程、
(b) pH酸性域の条件における抗体の抗原に対する抗原結合活性を得る工程、
(c) (a)で得られた抗原結合活性が(b)で得られた抗原結合活性より高い抗体を選択する工程、
(d) (c)で選択された抗体の抗原結合ドメインをコードするポリヌクレオチドを、pH中性域の条件下でFcRnに対する結合活性を有するFcRn結合ドメインをコードするポリヌクレオチドに連結させる工程、
(e) (d)で得られたポリヌクレオチドが作用可能に連結されたベクターが導入された細胞を培養する工程、および
(f) (e)で培養された細胞の培養液から抗原結合分子を回収する工程、
を含む抗原結合分子の製造方法も提供される。
(a) pH中性域の条件における抗原結合ドメインのライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメインのライブラリをpH酸性域の条件に置く工程、および
(c) 前記工程(b)で解離した抗原結合ドメインを単離する工程。
(a) 高カルシウムイオン濃度の条件における抗原結合ドメインのライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメインのライブラリを低カルシウムイオン濃度の条件に置く工程、および
(c) 前記工程(b)で解離した抗原結合ドメインを単離する工程。
(a) 抗原を固定したカラムにpH中性域の条件で抗原結合ドメインのライブラリを接触させる工程、
(b) 前記工程(a)でカラムに結合した抗原結合ドメインをpH酸性域の条件でカラムから溶出する工程、および
(c) 前記工程(b)で溶出された抗原結合ドメインを単離する工程。
(a) 抗原を固定したカラムに高カルシウムイオン濃度の条件で抗原結合ドメインのライブラリを接触させる工程、
(b) 前記工程(a)でカラムに結合した抗原結合ドメインを低カルシウムイオン濃度の条件でカラムから溶出する工程、および
(c) 前記工程(b)で溶出された抗原結合ドメインを単離する工程。
(a) 抗原を固定したカラムにpH酸性域の条件で抗原結合ドメインのライブラリを通過させる工程、
(b) 前記工程(a)でカラムに結合せずに溶出した抗原結合ドメインを回収する工程、
(c) 前記工程(b)で回収された抗原結合ドメインをpH中性域の条件で抗原に結合させる工程、および
(d) 前記工程(c)で抗原に結合した抗原結合ドメインを単離する工程。
(a) 抗原を固定したカラムに低カルシウムイオン濃度の条件で抗原結合ドメインのライブラリを通過させる工程、
(b) 前記工程(a)でカラムに結合せずに溶出した抗原結合ドメインを回収する工程、
(c) 前記工程(b)で回収された抗原結合ドメインを高カルシウムイオン濃度の条件で抗原に結合させる工程、および
(d) 前記工程(c)で抗原に結合した抗原結合ドメインを単離する工程。
(a) pH酸性域の条件における抗体の抗原結合活性を得る工程、
(b) pH中性域の条件における抗体の抗原結合活性を得る工程、および
(c) pH酸性域の条件における抗原結合活性が、pH中性域の条件における抗原結合活性より低い抗体を選択する工程。
(a) 低カルシウムイオン濃度の条件における抗体の抗原結合活性を得る工程、
(b) 高カルシウムイオン濃度の条件における抗体の抗原結合活性を得る工程、および
(c) 低カルシウムイオン濃度の条件における抗原結合活性が、高カルシウムイオン濃度の条件における抗原結合活性より低い抗体を選択する工程。
(a) pH中性域の条件で抗体を抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗体を取得する工程、
(c) 前記工程(b)で取得したは抗体をpH酸性域の条件に置く工程、および
(d) 前記工程(c)で抗原結合活性が、前記工程(b)で選択した基準より弱い抗体を選択する工程。
(a) 高カルシウムイオン濃度の条件で抗体を抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗体を取得する工程、
(c) 前記工程(b)で取得したは抗体を低カルシウムイオン濃度の条件に置く工程、および
(d) 前記工程(c)で抗原結合活性が、前記工程(b)で選択した基準より弱い抗体を選択する工程。
Ser
Gly・Ser
Gly・Gly・Ser
Ser・Gly・Gly
Gly・Gly・Gly・Ser(配列番号:29)
Ser・Gly・Gly・Gly(配列番号:30)
Gly・Gly・Gly・Gly・Ser(配列番号:31)
Ser・Gly・Gly・Gly・Gly(配列番号:32)
Gly・Gly・Gly・Gly・Gly・Ser(配列番号:33)
Ser・Gly・Gly・Gly・Gly・Gly(配列番号:34)
Gly・Gly・Gly・Gly・Gly・Gly・Ser(配列番号:35)
Ser・Gly・Gly・Gly・Gly・Gly・Gly(配列番号:36)
(Gly・Gly・Gly・Gly・Ser(配列番号:31))n
(Ser・Gly・Gly・Gly・Gly(配列番号:32))n
[nは1以上の整数である]等が好適に挙げられる。但し、ペプチドリンカーの長さや配列は目的に応じて当業者が適宜選択することができる。
IL-6レセプターは、リガンドであるIL-6が増殖因子である骨髄腫に高発現していることから、抗ヒトIL-6レセプター抗体はヒト骨髄腫の免疫不全マウスxenograftモデルで抗腫瘍効果を発揮することが知られている(Eur. J. Immunol. 22, 1989-93 (1992))。抗IL-6レセプター抗体をマウスに投与することによって、マウス抗IL-6レセプター抗体の産生を誘導させることができれば、その抗IL-6レセプター抗体が獲得免疫を誘導し、その抗IL-6レセプター抗体が癌ワクチンとして有用であることを示すことが可能となる。
標的抗原に対する獲得免疫を誘導するためには、抗原提示細胞の細胞内に取り込まれた標的抗原が当該細胞中のライソソームで適度に分解された後に、MHCクラスI あるいはMHCクラスIIに結合することによって当該標的抗原の断片ペプチドが抗原提示される必要がある。抗原提示されるペプチドが多ければ多いほど、免疫がより強く誘導されると考えられることから、標的抗原に対する獲得免疫の誘導を増強する方法として、抗原提示細胞の細胞内により多くの標的抗原を送りこむ方法が考えられた。
(3−1)概要
通常のIgG1抗体あるいはpH依存的結合IgG1抗体は、標的抗原に対する獲得免疫を誘導することは出来ないことが、実施例2において確認された。一方、T-cell epitope peptideの免疫原性を増強させる方法として、T-cell epitope peptideをFcと融合し、さらにそのFc部分のFcRnに対するpH7.4における結合を増強させることで、T-cell epitope peptideをよりライソソームに移行させる方法が、最近報告された(J. Immunol. 181, 7550-61 (2008))。FcRnは抗原提示細胞に発現していることから、Fc部分のFcRnに対するpH7.4における結合を増強させることで、T-cell epitope peptideの抗原提示が促進され得る。しかしながら、この方法で開示された抗原となるペプチドを直接Fcに融合させた分子は、抗原結合分子として癌抗原に結合することができないため、本分子が癌細胞に対して直接作用を発揮することはできない。さらに、Fc部分のFcRnに対するpH7.4における結合を増強する方法は、in vitroにおいてはT-cell epitope peptideの免疫原性を増強させているものの、in vivoにおいては逆に免疫原性を減少させており、in vivoに効果は示されなかった。このように、pH7.4におけるFcRn結合を増強させたFcと標的抗原とを直接融合させた分子は、標的抗原に対する結合活性を示すことができないため標的抗原に対する直接作用することができず、さらにin vivoにおいてFcRn結合を増強させることが逆に免疫原性を減少させる結果を示した。
FcRn結合が増強された通常の抗ヒトIL-6レセプターIgG抗体として、H54-F157(配列番号:41)およびL28-CK(配列番号:39)からなるH54/L28-F157が用いられた。FcRn結合が増強されたpH依存的抗ヒトIL-6レセプターIgG抗体として、VH3-F157(配列番号:42)とVL3-CK(配列番号:40)からなるFv4-F157が用いられた。抗体の調製は参考実施例1に記した方法を用いて実施された。
実施例2で作製されたFv4-IgG1とFv4-F157のFc部分(それぞれ、IgG1とF157と呼ぶ)のヒトFcRnに対するpH7.0におけるアフィニティを決定するために、VH3-IgG1(配列番号:17)とL(WT)-CK(配列番号:18)からなるVH3/L(WT)-IgG1およびVH3-F157(配列番号:42)とL(WT)-CK(配列番号:18)からなるVH3/L(WT)-F157のヒトFcRnに対するアフィニティが以下に示す方法で測定された。
つぎに、試験1において、ヒトFcRnトランスジェニックマウス(B6.mFcRn-/-.hFcRn Tg line 32 +/+ mouse、Jackson Laboratories、Methods Mol. Biol. (2010) 602, 93-104)から確立されたヒトIL-6レセプター免疫寛容マウスモデルが用いられた。H54/L28-F157およびFv4-F157がヒトIL-6レセプター免疫寛容マウスモデルに投与された。具体的には、実施例1と同様にInfusion pump埋め込みが行われた3日後に抗ヒトIL-6レセプター抗体がその尾静脈に1 mg/kgで単回投与された(各群の個体数は3である)。マウスに対する抗ヒトIL-6レセプター抗体の投与後経時的に採血が行われた。さらに、試験2ではFv4-F157のみが同様に投与された後に経時的に採血が行われた。採取された血液を直ちに4℃、15,000 rpmで15分間遠心分離することによって血漿が得られた。分離された血漿は、測定を実施するまで-20℃以下に設定された冷凍庫に保存された。血漿中hsIL-6R濃度は実施例1に記した方法と同じ方法で測定された。
マウス血漿中のマウス抗ヒトIL-6レセプター抗体の抗体価が電気化学発光法により測定された。まずヒトIL-6レセプターをMA100 PR Uncoated Plate(Meso Scale Discovery)に分注し、4℃で1晩静置することによって、ヒトIL-6レセプター固相化プレートが作成された。50倍希釈されたマウス血漿測定試料が分注されたヒトIL-6レセプター固相化プレートが4℃で1晩静置された。その後、SULFO-TAG NHS Ester(Meso Scale Discovery)でルテニウム化したanti-mouse IgG (whole molecule) (Sigma-Aldrich)を室温で1時間反応させた当該プレートが洗浄された。当該プレートにRead Buffer T(×4)(Meso Scale Discovery)が分注された後に、ただちにSECTOR PR 400 reader(Meso Scale Discovery)で測定が行われた。
標的抗原とpH7.4におけるFcRn結合を増強させたFcを直接融合させた分子を薬剤として用いる上述の方法(J. Immunol. (2008) 181, 7550-7561)によって、仮に標的抗原に対する抗体の産生が可能となっても、標的抗原に対する抗体は薬剤自体に対しても結合してしまうため、抗薬剤抗体として作用し、薬剤の作用を減弱させてしまうことにつながる。そのため、標的抗原が薬剤に直接融合されている分子(例えばJ. Immunol. (2008) 181, 7550-7561やJ. Immunol. (2011), 186, 1218-1227記載の分子)を用いることは、標的抗原に対する抗体産生の誘導、すなわち薬剤の作用を減弱させてしまう薬剤自体に対する抗薬剤抗体の誘導を意味するため、好ましくないと考えられた。
(4−1)概要
実施例3で示されたように、通常のIgG1抗体(H54/L28-IgG1)に対してpH7.4におけるFcRn結合を増強させる改変が導入された抗体(H54/L28-F157)のヒトIL-6レセプター免疫寛容ヒトFcRnトランスジェニックマウスモデルへの投与によって、当該マウスにおける標的抗原に対する獲得免疫が誘導されなかったが、pH依存的結合IgG1抗体(Fv4-IgG1)に対してpH7.4におけるFcRn結合を増強させる改変が導入された抗体(Fv4-F157)の当該マウスへの投与によって、同マウスにおける標的抗原に対する獲得免疫が誘導された。
マウスFcRnに対する結合が増強された通常の抗ヒトIL-6レセプター抗体として、H54-mF3(配列番号:124)およびL28-mCK(配列番号:125)を含むH54/L28-mF3が作製された。pH依存的抗ヒトIL-6レセプターIgG抗体として、VH3-mIgG1(配列番号:126)とVL3-mCK(配列番号:127)を含むFv4-mIgG1、および、VH3-mIgG2a(配列番号:128)とVL3-mCK(配列番号:127)を含むFv4-mIgG2aが作製された。マウスFcRnに対する結合が増強されたpH依存的抗ヒトIL-6レセプターIgG抗体として、VH3-mF3(配列番号:129)とVL3-mCK(配列番号:127)を含むFv4-mF3、および、さらにマウスFcγRに対する結合も増強されたVH3-mFa30(配列番号:130)とVL3-mCK(配列番号:127)を含むFv4-mFa30が作製された。これらの抗体は参考実施例1に記した方法を用いて調製された。
(3−3)で示された方法に準じて測定された値を用いて、作製されたFv4-mIgG1、Fv4-mIgG2a、Fv4-mF3、Fv4-mFa30のFc部分であるmIgG1、mIgG2a、mF3およびmFa30のマウスFcRnに対するpH7.0におけるアフィニティが決定された。
つぎに、Fv4-mIgG1、Fv4-mIgG2a、Fv4-mF3、Fv4-mFa30およびH54/L28-mF3が投与されたヒトIL-6レセプターノックインマウス(参考実施例25)から経時的に採血が行われた。採取された血液を直ちに4℃、15,000 rpmで15分間遠心分離することによって血漿が得られた。分離された血漿は、測定を実施するまで-20℃以下に設定された冷凍庫に保存された。血漿中hsIL-6R濃度は実施例1に記した方法と同じ方法で測定された。
マウスの血漿中抗hsIL-6R抗体価は電気科学発光法にて測定された。50倍に希釈されたマウス血漿試料と、30μg/mLに調製された抗Fv4イディオタイプ抗体を混合し、室温で1時間反応させた。同イディオタイプ抗体はFv4-M73(WO2009/125825)をウサギに免疫した血清をイオン交換樹脂で精製後、Fv4-M73が固定化されたカラムでアフィニティ精製し、その後ヒト固定化カラムで吸収させて得られた。前記の混合溶液に対して、EZ-Link Sulfo-NHS-Biotin and Biotinylation Kits (Pierce)でビオチン化されたhsIL-6Rを1μg/mL, SULFO-TAG NHS Ester(Meso Scale Discovery)でルテニウム化されたSULFO-anti mouse IgG(H+L) antibody(BECKMAN COULTER)を2μg/mLを含む溶液 50μg/mLが添加、混合され、4℃で1晩反応させた。この際、測定試料中に含まれる投与検体がhsIL-6Rと結合し、投与検体に対するADAが検出されることを防ぐことを目的として、過剰量の抗Fv4イディオタイプ抗体が試料に予め添加された。その後、前記の反応液がMA400 PR Streptavidin Plate(Meso Scale Discovery)に分注された。さらに25℃で1時間反応させた後に洗浄された各ウエルに、Read Buffer T(×4)(Meso Scale Discovery)が分注され、ただちに各ウエル中の反応液の吸光度がSECTOR PR 400 reader(Meso Scale Discovery)を用いて測定された。
抗体の発現は以下の方法を用いて行われた。10 % Fetal Bovine Serum(Invitrogen)を含むDMEM培地(Invitrogen)に懸濁されたヒト胎児腎癌細胞由来HEK293H株(Invitrogen)が、5〜6 × 105細胞/mLの細胞密度で接着細胞用ディッシュ(直径10 cm, CORNING)の各ディッシュへ10 mLずつ播種された。当該細胞はCO2インキュベーター(37℃、5 % CO2)内で一昼夜培養された後に、培地が吸引除去された当該ディッシュに、CHO-S-SFM-II(Invitrogen)培地6.9 mLが添加された。調製されたプラスミドがlipofection法によって細胞へ導入された。回収された培養上清から遠心分離(約2000 g、5分間、室温)によって細胞が除去された。さらに培養上清を0.22μmフィルターMILLEX(R)-GV(Millipore)を通して滅菌することによって培養上清が得られた。得られた培養上清から発現した抗体がrProtein A SepharoseTM Fast Flow(Amersham Biosciences)を用いて当業者公知の方法で精製された。精製抗体の濃度は、分光光度計を用いて280 nmでの吸光度の測定値から、Protein Science (1995) 4, 2411-2423に記載された方法により算出された吸光係数を用いて抗体濃度が算出された。
(2−1)カルシウム依存的に抗原に結合する抗体
カルシウム依存的に抗原に結合する抗体(カルシウム依存的抗原結合抗体)はカルシウムの濃度によって抗原との相互作用が変化する抗体である。カルシウム依存的抗原結合抗体は、カルシウムイオンを介して抗原に結合すると考えられるため、抗原側のエピトープを形成するアミノ酸は、カルシウムイオンをキレートすることが可能な負電荷のアミノ酸あるいは水素結合アクセプターとなりうるアミノ酸である。こうしたエピトープを形成するアミノ酸の性質から、ヒスチジンを導入することにより作製されるpH依存的に抗原に結合する結合分子以外のエピトープをターゲットすることが可能となる。さらに、図13に示されるように、カルシウム依存性およびpH依存性に抗原に結合する性質を併せ持つ抗原結合分子を用いることで、幅広い性質を有する多様なエピトープを個々にターゲットすることが可能な抗原結合分子を作製することが可能となると考えられる。そこで、カルシウムが結合するモチーフを含む分子の集合(Caライブラリ)を構築し、この分子の集団から抗原結合分子を取得すれば、カルシウム依存的抗原結合抗体が効率的に得られると考えられる。
カルシウムが結合するモチーフを含む分子の集合の例として、当該分子が抗体である例が考えられる。言い換えればカルシウムが結合するモチーフを含む抗体ライブラリがCaライブラリである場合が考えられる。
取得された5種類のヒト生殖細胞系列配列を含むDNA断片が挿入された動物細胞発現ベクターが動物細胞へ導入された。抗体の発現は以下の方法を用いて行われた。ヒト胎児腎細胞由来FreeStyle 293-F株(Invitrogen)がFreeStyle 293 Expression Medium培地(Invitrogen)に懸濁され、1.33 x 106細胞/mLの細胞密度で6ウェルプレートの各ウェルへ3 mLずつ播種された。調製されたプラスミドは、リポフェクション法によって細胞へ導入される。CO2インキュベーター(37度、8%CO2、90 rpm)中で4日間培養が行われた。rProtein A SepharoseTM Fast Flow(Amersham Biosciences)を用いて当業者公知の方法を用いて、上記で得られた培養上清から抗体が精製された。分光光度計を用いて精製された抗体溶液の280 nmでの吸光度が測定された。PACE法により算出された吸光係数を用いることによって、得られた測定値から抗体濃度が算出された(Protein Science (1995) 4, 2411-2423)。
精製された抗体のカルシウムイオン結合活性が評価された。抗体へのカルシウムイオンの結合の評価の指標として、示差走査型熱量測定(DSC)による熱変性中間温度(Tm値)が測定された(MicroCal VP-Capillary DSC、MicroCal)。熱変性中間温度(Tm値)は安定性の指標であり、カルシウムイオンの結合によってタンパク質が安定化すると、熱変性中間温度(Tm値)はカルシウムイオンが結合していない場合に比べて高くなる(J. Biol. Chem. (2008) 283, 37, 25140-25149)。抗体溶液中のカルシウムイオン濃度の変化に応じた抗体のTm値の変化を評価することによって、抗体へのカルシウムイオンの結合活性が評価された。精製された抗体が20 mM Tris-HCl、150 mM NaCl、2 mM CaCl2(pH7.4)または20 mM Tris-HCl、150 mM NaCl, 3μM CaCl2(pH7.4)の溶液を外液とする透析(EasySEP、TOMY)処理に供された。透析に用いられた溶液を用いておよそ0.1 mg/mLに調製された抗体溶液を被験物質として、20℃から115℃まで240℃/hrの昇温速度でDSC測定が行われた。得られたDSCの変性曲線にもとづいて算出された各抗体のFabドメインの熱変性中間温度(Tm値)を表11に示した。
参考実施例2の(2−2)においてVk5-2(配列番号:43にkappa鎖定常領域である配列番号:44が融合された配列番号:50)のほかにVk5-2に分類されるVk5-2バリアント1(配列番号:51)およびVk5-2バリアント2(配列番号:52)が得られた。これらのバリアントのカルシウム結合活性も評価された。Vk5-2、Vk5-2バリアント1およびVk5-2バリアント2のDNA断片がそれぞれ動物細胞用発現ベクターに組み込まれた。得られた発現ベクターの塩基配列は当業者公知の方法で決定された。Vk5-2、Vk5-2バリアント1およびVk5-2バリアント2のDNA断片がそれぞれ組み込まれた動物細胞用発現ベクターは、重鎖としてCIM_H(配列番号:45)が発現するように組み込まれた動物発現用のベクターと、参考実施例2の(2−3)で記載した方法で共に動物細胞中に導入され、抗体が精製された。精製された抗体のカルシウムイオン結合活性が評価された。精製された抗体が20 mM Tris-HCl、150 mM NaCl、2 mM CaCl2(pH7.5)または20 mM Tris-HCl、150 mM NaCl(pH7.5)の溶液(表12ではカルシウムイオン濃度0mMと表記)を外液とする透析(EasySEP、TOMY)処理に供された。透析に用いられた溶液を用いておよそ0.1 mg/mLに調製された抗体溶液を被験物質として、20℃から115℃まで240℃/hrの昇温速度でDSC測定が行われた。得られたDSCの変性曲線にもとづいて算出された各抗体のFabドメインの熱変性中間温度(Tm値)を表12に示した。
(3−1)hVk5配列
Kabatデータベース中には、hVk5配列としてhVk5-2配列のみが登録されている。以下では、hVk5とhVk5-2は同義で扱われる。WO2010/136598では、hVk5-2配列の生殖細胞系列配列中の存在比は0.4%と記載されている。他の報告でもhVk5-2配列の生殖細胞系列配列中の存在比は0〜0.06%と述べられている(J. Mol. Biol. (2000) 296, 57-86、Proc. Natl. Acad. Sci. (2009) 106, 48, 20216-20221)。上記のように、hVk5-2配列は、生殖細胞系列配列中で出現頻度が低い配列であるため、ヒト生殖細胞系列配列で構成される抗体ライブラリやヒト抗体を発現するマウスへの免疫によって取得されたB細胞から、カルシウムと結合する抗体を取得することは非効率であると考えられた。そこで、ヒトhVk5-2配列を含むCaライブラリを設計する可能性が考えられるが、報告されている合成抗体ライブラリ(WO2010/105256やWO2010/136598)ではhVk5配列は含まれていなかった。さらに、hVk5-2配列の物性は報告されておらず、その可能性の実現は未知であった。
hVk5-2配列は20位(Kabatナンバリング)のアミノ酸にN型糖鎖が付加する配列を有する。タンパク質に付加する糖鎖にはヘテロジェニティーが存在するため、物質の均一性の観点から糖鎖は付加されないほうが望ましい。そこで、20位(Kabatナンバリング)のAsn(N)残基がThr(T)残基に置換された改変体hVk5-2_L65(配列番号:53)が作製された。アミノ酸の置換はQuikChange Site-Directed Mutagenesis Kit(Stratagene)を用いる当業者公知の方法で行われた。改変体hVk5-2_L65をコードするDNAが動物発現用ベクターに組み込まれた。作製された改変体hVk5-2_L65のDNAが組み込まれた動物発現用ベクターは、重鎖としてCIM_H(配列番号:45)が発現するように組み込まれた動物発現用のベクターと、参考実施例2で記載した方法で共に動物細胞中に導入された。導入された動物細胞中で発現したhVk5-2_L65 およびCIM_Hを含む抗体が、参考実施例2で記載した方法で精製された。
取得された改変配列hVk5-2_L65を含む抗体が、改変に供されたもとのhVk5-2配列を含む抗体よりも、そのヘテロジェニティーが減少しているか否かが、イオン交換クロマトグラフィーを用いて分析された。イオン交換クロマトグラフィーの方法を表13に示した。分析の結果、図14に示したように糖鎖付加部位が改変されたhVk5-2_L65は、元のhVk5-2配列よりもヘテロジェニティーが減少していることが示された。
(4−1)hVk5-2配列のCDR配列を含む改変抗体の作製、発現および精製
hVk5-2_L65配列はヒトVk5-2配列のフレームワークに存在する糖鎖付加部位のアミノ酸が改変された配列である。参考実施例3で糖鎖付加部位を改変してもカルシウムイオンが結合することが示されたが、フレームワーク配列は生殖細胞系列の配列であることが免疫原性の観点から一般的には望ましい。そこで、抗体のフレームワーク配列を、当該抗体に対するカルシウムイオンの結合活性を維持しながら、糖鎖が付加されない生殖細胞系列配列のフレームワーク配列に置換することが可能であるか否かが検討された。
hVk5-2配列以外の生殖細胞系列配列(hVk1、hVk2、hVk3、hVk4)のフレームワーク配列およびhVK5-2配列のCDR配列を含む改変抗体に、カルシウムイオンが結合するか否かが参考実施例2に記載された方法によって評価された。評価された結果が表15に示される。各改変抗体のFabドメインのTm値は、抗体溶液中のカルシウムイオン濃度の変化によって変動することが示された。よって、hVk5-2配列のフレームワーク配列以外のフレームワーク配列を含む抗体もカルシウムイオンと結合することが示された。
(5−1)hVk5-2配列のCDR配列中の変異部位の設計
参考実施例4に記載したように、hVk5-2配列のCDR部分が他の生殖細胞系列のフレームワーク配列に導入された軽鎖を含む抗体もカルシウムイオンと結合することが示された。この結果からhVk5-2に存在するカルシウムイオン結合部位はCDRの中に存在することが示唆された。カルシウムイオンと結合する、すなわち、カルシウムイオンをキレートするアミノ酸として、負電荷のアミノ酸もしくは水素結合のアクセプターとなりうるアミノ酸が挙げられる。そこで、hVk5-2配列のCDR配列中に存在するAsp(D)残基またはGlu(E)残基がAla(A)残基に置換された変異hVk5-2配列を含む抗体がカルシウムイオンと結合するか否かが評価された。
hVk5-2配列のCDR配列中に存在するAspおよび/ またはGlu残基がAla残基に改変された軽鎖を含む抗体分子が作製された。参考実施例3で記載されるように、糖鎖が付加されない改変体hVk5-2_L65はカルシウムイオン結合を維持していたことから、カルシウムイオン結合性という観点ではhVk5-2配列と同等と考えられる。本参考実施例ではhVk5-2_L65をテンプレート配列としてアミノ酸置換が行われた。作製された改変体を表16に示した。アミノ酸の置換はQuikChange Site-Directed Mutagenesis Kit(Stratagene)、PCRまたはIn fusion Advantage PCR cloning kit(TAKARA)等の当業者公知の方法によって行われ、アミノ酸が置換された改変軽鎖の発現ベクターが構築された。
得られた精製抗体がカルシウムイオンと結合するか否かが参考実施例2に記載された方法によって判定された。その結果を表17に示した。hVk5-2配列のCDR配列中に存在するAspまたはGlu残基をカルシウムイオンの結合もしくはキレートに関与できないAla残基に置換することによって、抗体溶液のカルシウムイオン濃度の変化によってそのFabドメインのTm値が変動しない抗体が存在した。Ala置換によってTm値が変動しない置換部位(32位および92位(Kabatナンバリング))はカルシウムイオンと抗体の結合に特に重要であることが示された。
(6−1)カルシウムイオン結合モチーフを有するhVk1配列の作製ならびに抗体の発現および精製
参考実施例4で記載されたAla置換体のカルシウムの結合活性の結果から、hVk5-2配列のCDR配列の中でAspやGlu残基がカルシウム結合に重要であることが示された。そこで、30位、31位、32位、50位および92位(Kabatナンバリング)の残基のみを他の生殖細胞系列の可変領域配列に導入してもカルシウムイオンと結合できるか否かが評価された。具体的には、ヒト生殖細胞系配列であるhVk1配列の30位、31位、32位、50位および92位(Kabatナンバリング)の残基がhVk5-2配列の30位、31位、32位、50位および92位(Kabatナンバリング)の残基に置換された改変体LfVk1_Ca(配列番号:66)が作製された。すなわち、hVk5-2配列中のこれらの5残基のみが導入されたhVk1配列を含む抗体がカルシウムと結合できるか否かが判定された。改変体の作製は参考実施例5と同様に行われた。得られた軽鎖改変体LfVk1_Caおよび軽鎖hVk1配列を含むLfVk1(配列番号:67)を、重鎖CIM_H(配列番号:45)と共に発現させた。抗体の発現および精製は参考実施例4と同様の方法で実施された。
上記のように得られた精製抗体がカルシウムイオンと結合するか否かが参考実施例2に記載された方法で判定された。その結果を表18に示す。hVk1配列を有するLfVk1を含む抗体のFabドメインのTm値は抗体溶液中のカルシウムの濃度の変化によっては変動しない一方で、LfVk1_Caを含む抗体配列の、Tm値は、抗体溶液中のカルシウムの濃度の変化によって1℃以上変化したことから、LfVk1_Caを含む抗体がカルシウムと結合することが示された。上記の結果から、カルシウムイオンの結合には、hVk5-2のCDR配列がすべて必要ではなく、LfVk1_Ca配列を構築する際に導入された残基のみでも十分であることが示された。
カルシウム結合モチーフとして、例えばhVk5-2配列やそのCDR配列、さらに残基が絞られた30位、31位、32位、50位、92位(Kabatナンバリング)が好適に挙げられる。他にも、カルシウムと結合するタンパク質が有するEFハンドモチーフ(カルモジュリンなど)やCタイプレクチン(ASGPRなど)もカルシウム結合モチーフに該当する。
ヒトPBMCから作成したポリA RNAや、市販されているヒトポリA RNAなどを鋳型としてPCR法により抗体重鎖可変領域の遺伝子ライブラリが増幅された。抗体軽鎖可変領域部分については、参考実施例7に記載されるように、カルシウム結合モチーフを維持しカルシウム濃度依存的に抗原に対して結合可能な抗体の出現頻度を高めた抗体可変領域軽鎖部分が設計された。また、フレキシブル残基のうちカルシウム結合モチーフが導入された残基以外のアミノ酸残基として、天然ヒト抗体でのアミノ酸出現頻度の情報((KABAT, E.A. ET AL.: 'Sequences of proteins of immunological interest', vol. 91, 1991, NIH PUBLICATION)が参考にされ、天然ヒト抗体の配列中で出現頻度の高いアミノ酸を均等に分布させた抗体軽鎖可変領域のライブラリが設計された。このように作製された抗体重鎖可変領域の遺伝子ライブラリと抗体軽鎖可変領域の遺伝子ライブラリとの組合せがファージミドベクターへ挿入され、ヒト抗体配列からなるFabドメインを提示するヒト抗体ファージディスプレイライブラリ(Methods Mol Biol. (2002) 178, 87-100)が構築された。
(9−1)Caライブラリに含まれる分子のカルシウムイオン結合活性
参考実施例3に示したように、カルシウムイオンと結合することが示されたhVk5-2配列は生殖細胞系列配列中で出現頻度が低い配列であるため、ヒト生殖細胞系列配列で構成される抗体ライブラリやヒト抗体を発現するマウスへの免疫によって取得されたB細胞から、カルシウムと結合する抗体を取得することは非効率であると考えられた。そこで、参考実施例8でCaライブラリが構築された。構築されたCaライブラリにカルシウム結合を示すクローンが存在するか評価された。
Caライブラリに含まれるクローンが、動物細胞発現用プラスミドへ導入される。抗体の発現は以下の方法を用いて行われた。ヒト胎児腎細胞由来FreeStyle 293-F株(Invitrogen)がFreeStyle 293 Expression Medium培地(Invitrogen)に懸濁され、1.33 x 106細胞/mLの細胞密度で6ウェルプレートの各ウェルへ3 mLずつ播種された。調製されたプラスミドは、リポフェクション法によって細胞へ導入された。CO2インキュベーター(37℃、8%CO2、90 rpm)中で4日間培養が行われた。rProtein A SepharoseTM Fast Flow(Amersham Biosciences)を用いて当業者公知の方法を用いて、上記で得られた培養上清から抗体が精製された。分光光度計を用いて精製された抗体溶液の280 nmでの吸光度が測定された。PACE法により算出された吸光係数を用いることによって、得られた測定値から抗体濃度が算出された(Protein Science (1995) 4, 2411-2423)。
上記のように得られた精製抗体がカルシウムイオンと結合するか否かが実施例6に記載された方法で判定された。その結果を表19に示す。Caライブラリに含まれる複数の抗体のFabドメインのTmはカルシウムイオン濃度によって変動し、カルシウムイオンと結合する分子が含まれることが示された。
(10−1)ビーズパンニングによるライブラリからのCa依存的に抗原に結合する抗体断片の取得
構築されたCa依存的にIL-6レセプターに結合する抗体ライブラリからの最初の選抜は、抗原(IL-6レセプター)への結合能をもつ抗体断片のみの濃縮によって実施された。
上記の方法によって得られた大腸菌のシングルコロニーから、常法(Methods Mol. Biol. (2002) 178, 133-145)に習い、ファージ含有培養上清が回収された。
ファージELISAの結果、Ca依存的な抗原に対する結合能があると判断されたクローンが、動物細胞発現用プラスミドへ導入された。抗体の発現は以下の方法を用いて行われた。ヒト胎児腎細胞由来FreeStyle 293-F株(Invitrogen)がFreeStyle 293 Expression Medium培地(Invitrogen)に懸濁され、1.33 x 106細胞/mLの細胞密度で6ウェルプレートの各ウェルへ3 mLずつ播種された。調製されたプラスミドは、リポフェクション法によって細胞へ導入された。CO2インキュベーター(37度、8%CO2、90 rpm)中で4日間培養が行われた。rProtein A SepharoseTM Fast Flow(Amersham Biosciences)を用いて当業者公知の方法を用いて、上記で得られた培養上清から抗体が精製された。分光光度計を用いて精製された抗体溶液の280 nmでの吸光度が測定された。PACE法により算出された吸光係数を用いることによって、得られた測定値から抗体濃度が算出された(Protein Science (1995) 4, 2411-2423)。
参考実施例9で取得された抗体6RC1IgG_010(重鎖配列番号:90、軽鎖配列番号:91)、および、6RC1IgG_012(重鎖配列番号:92、軽鎖配列番号:93)、および、6RC1IgG_019(重鎖配列番号:94、軽鎖配列番号:95)のヒトIL-6レセプターに対する結合活性がCa依存的であるかどうかを判断するため、これらの抗体とヒトIL-6レセプターとの相互作用解析がBiacore T100(GE Healthcare)を用いて行われた。ヒトIL-6レセプターに対するCa依存性の結合活性を有しない対照抗体として、トリシズマブ(重鎖配列番号:96、軽鎖配列番号:97)が用いられた。高カルシウムイオン濃度および低カルシウムイオン濃度の条件として、それぞれ1.2 mMおよび3μMのカルシウムイオン濃度の溶液中で相互作用解析が行われた。アミンカップリング法でprotein A/G(Invitrogen)が適当量固定化されたSensor chip CM5(GE Healthcare)上に、目的の抗体がキャプチャーされた。ランニングバッファーには20 mM ACES、150 mM NaCl、0.05% (w/v) Tween20、1.2 mM CaCl2(pH7.4)または20 mM ACES、150 mM NaCl、0.05% (w/v) Tween20、3μM CaCl2(pH7.4)の2種類の緩衝液が用いられた。ヒトIL-6レセプターの希釈にもそれぞれのバッファーが使用された。測定は全て37℃で実施された。
(11−1)ナイーブヒト抗体ファージディスプレイライブラリの作製
ヒトPBMCから作成したポリA RNAや、市販されているヒトポリA RNAなどを鋳型として当業者に公知な方法にしたがい、互いに異なるヒト抗体配列のFabドメインを提示する複数のファージからなるヒト抗体ファージディスプレイライブラリが構築された。
構築されたナイーブヒト抗体ファージディスプレイライブラリからの最初の選抜は、抗原(IL-6レセプター)への結合能をもつ抗体断片のみの濃縮、または、Ca濃度依存的な抗原(IL-6レセプター)への結合能を指標とした抗体断片の濃縮によって実施された。Ca濃度依存的な抗原(IL-6レセプター)への結合能を指標として抗体断片の濃縮は、CaイオンをキレートするEDTAを用いてCaイオン存在下でIL-6レセプターと結合させたファージライブラリからファージを溶出することによって実施された。抗原としてビオチン標識されたIL-6レセプターが用いられた。
上記の方法によって得られた大腸菌のシングルコロニーから、常法(Methods Mol. Biol. (2002) 178, 133-145)に習い、ファージ含有培養上清が回収された。
ファージELISAの結果、Ca依存的な抗原に対する結合能があると判断されたクローンが、動物細胞発現用プラスミドへ導入された。抗体の発現は以下の方法を用いて行われた。ヒト胎児腎細胞由来FreeStyle 293-F株(Invitrogen)がFreeStyle 293 Expression Medium培地(Invitrogen)に懸濁され、1.33 x 106細胞/mLの細胞密度で6ウェルプレートの各ウェルへ3 mLずつ蒔きこまれた。調製されたプラスミドは、リポフェクション法によって細胞へ導入された。CO2インキュベーター(37度、8%CO2、90 rpm)中で4日間培養が行われる。rProtein A SepharoseTM Fast Flow(Amersham Biosciences)を用いて当業者公知の方法を用いて、上記で得られた培養上清から抗体が精製された。分光光度計を用いて精製された抗体溶液の280 nmでの吸光度が測定された。PACE法により算出された吸光係数を用いることによって、得られた測定値から抗体濃度が算出された(Protein Science (1995) 4, 2411-2423)。
参考実施例11で取得された抗体6RL#9-IgG1(重鎖(配列番号:98にIgG1由来定常領域が連結された配列)、軽鎖(配列番号:99))、および、FH4-IgG1(重鎖配列番号:100、軽鎖配列番号:101))のヒトIL-6レセプターに対する結合活性がCa依存的であるかどうかを判断するため、これらの抗体とヒトIL-6レセプターとの抗原抗体反応の速度論的解析がBiacore T100(GE Healthcare)を用いて行われた。ヒトIL-6レセプターに対するCa依存性の結合活性を有しない対照抗体として、WO2009/125825に記載されているH54/L28-IgG1(重鎖配列番号:102、軽鎖配列番号:103)が用いられた。高カルシウムイオン濃度および低カルシウムイオン濃度の条件として、それぞれ2 mMおよび3μMのカルシウムイオン濃度の溶液中で抗原抗体反応の速度論的解析が行われた。アミンカップリング法でprotein A(Invitrogen)が適当量固定化されたSensor chip CM4(GE Healthcare)上に、目的の抗体がキャプチャーされた。ランニングバッファーには10 mM ACES、150 mM NaCl、0.05% (w/v) Tween20、2 mM CaCl2(pH7.4)または10 mM ACES、150 mM NaCl、0.05% (w/v) Tween20、3μmol/L CaCl2(pH7.4)の2種類の緩衝液が用いられた。ヒトIL-6レセプターの希釈にもそれぞれのバッファーが使用された。測定は全て37℃で実施された。
Req(RU): 定常状態結合レベル(Steady state binding levels)
Rmax(RU):アナライトの表面結合能(Analyte binding capacity of the surface)
RI(RU): 試料中の容積屈折率寄与(Bulk refractive index contribution in the sample)
C(M): アナライト濃度(Analyte concentration)
KD(M): 平衡解離定数(Equilibrium dissociation constant)
で表される。
次に、抗体へのカルシウムイオンの結合の評価の指標として、示差走査型熱量測定(DSC)による熱変性中間温度(Tm値)が測定された(MicroCal VP-Capillary DSC、MicroCal)。熱変性中間温度(Tm値)は安定性の指標であり、カルシウムイオンの結合によってタンパク質が安定化すると、熱変性中間温度(Tm値)はカルシウムイオンが結合していない場合に比べて高くなる(J. Biol. Chem. (2008) 283, 37, 25140-25149)。抗体溶液中のカルシウムイオン濃度の変化に応じた抗体のTm値の変化を評価することによって、抗体へのカルシウムイオンの結合活性が評価された。精製された抗体が20 mM Tris-HCl、150 mM NaCl、2 mM CaCl2(pH7.4)または20 mM Tris-HCl、150 mM NaCl, 3μM CaCl2(pH7.4)の溶液を外液とする透析(EasySEP、TOMY)処理に供された。透析に用いられた溶液を用いておよそ0.1 mg/mLに調製された抗体溶液を被験物質として、20℃から115℃まで240℃/hrの昇温速度でDSC測定が行われた。得られたDSCの変性曲線にもとづいて算出された各抗体のFabドメインの熱変性中間温度(Tm値)を表24に示した。
(14−1)X線結晶構造解析
参考実施例13に示されたように、6RL#9抗体はカルシウムイオンと結合することが熱変性温度Tm値の測定から示唆された。しかし、6RL#9抗体のどの部位がカルシウムイオンと結合しているか予想できなかったため、X線結晶構造解析の手法を用いることによって、カルシウムイオンが相互作用する6RL#9抗体の配列中の残基が特定された。
X線結晶構造解析に用いるために発現させた6RL#9抗体が精製された。具体的には、6RL#9抗体の重鎖(配列番号:98にIgG1由来定常領域が連結された配列)と軽鎖(配列番号:99)をそれぞれ発現させることが出来るように調製された動物発現用プラスミドが動物細胞に一過的に導入された。最終細胞密度1 x 106細胞/mLとなるようにFreeStyle 293 Expression Medium培地(Invitrogen)へ懸濁された800 mLのヒト胎児腎細胞由来FreeStyle 293-F株(Invitrogen)に、リポフェクション法により調製されたプラスミドが導入された。プラスミドが導入された細胞はCO2インキュベーター(37℃、8%CO2、90 rpm)中で5日間培養された。rProtein A SepharoseTM Fast Flow(Amersham Biosciences)を用いた当業者公知の方法にしたがって、上記のように得られた培養上清から抗体が精製された。分光光度計を用いて精製された抗体溶液の280 nmでの吸光度が測定された。PACE法により算出された吸光係数を用いて測定値から抗体濃度が算出された(Protein Science (1995) 4, 2411-2423)。
分子量分画サイズ10000MWCOの限外ろ過膜 を用いて6RL#9抗体が21 mg/mLまで濃縮された。L-Cystein 4 mM、EDTA 5 mM、20 mMリン酸ナトリウム緩衝液(pH 6.5)を用いて5 mg/mLによって希釈された2.5 mLの当該抗体の試料が調製された。0.125 mgのPapain(Roche Applied Science)を加えて攪拌された当該試料が35℃にて2時間静置された。静置後、プロテアーゼインヒビターカクテルミニ、EDTAフリー(Roche Applied Science)1錠を溶かした10 mLの25 mM MES 緩衝液(pH6)をさらに当該試料に加え、氷中に静置することによって、Papainによるプロテアーゼ反応が停止された。次に、当該試料が、下流に1 mLサイズのProteinA担体カラムHiTrap MabSelect Sure(GE Healthcare)がタンデムにつながれた25 mM MES 緩衝液pH6で平衡化された1 mLサイズの陽イオン交換カラムHiTrap SP HP(GE Healthcare)に添加された。同緩衝液中NaCl濃度を300 mMまで直線的に上げて溶出をおこなうことで6RL#9抗体のFabフラグメントの精製画分が得られた。次に、得られた精製画分が5000MWCOの限外ろ過膜 により0.8 mL程度まで濃縮された。50 mM NaCl を含む100 mM HEPES緩衝液(pH 8)で平衡化されたゲルろ過カラムSuperdex 200 10/300 GL(GE Healthcare)に濃縮液が添加された。結晶化用の精製6RL#9抗体のFabフラグメントが同緩衝液を用いてカラムから溶出された。なお、上記のすべてのカラム操作は6から7.5℃の低温下にて実施された。
予め一般的な条件設定で6RL#9 Fabフラグメントの種結晶が得られた。つぎに5 mM となるようにCaCl2が加えられた精製6RL#9抗体のFabフラグメントが5000MWCOの限外ろ過膜を用いて12 mg/mLに濃縮された。つぎに、ハンギングドロップ蒸気拡散法によって、前記のように濃縮された試料の結晶化が実施された。リザーバー溶液として20-29%のPEG4000を含む100 mM HEPES緩衝液(pH7.5)が用いられた。カバーグラス上で0.8μlのリザーバー溶液および0.8μlの前記濃縮試料の混合液に対して、29% PEG4000および5 mM CaCl2を含む100 mM HEPES緩衝液(pH7.5)中で破砕された前記種結晶が100-10000倍に希釈された希釈系列の溶液0.2μlを加えることによって結晶化ドロップが調製された。当該結晶化ドロップを20℃に2日から3日静置することによって得られた薄い板状の結晶のX線回折データが測定された。
精製6RL#9抗体のFabフラグメントが5000MWCOの限外ろ過膜 を用いて15 mg/mlに濃縮された。つぎに、ハンギングドロップ蒸気拡散法によって、前記のように濃縮された試料の結晶化が実施された。リザーバー溶液として18-25%のPEG4000を含む100 mM HEPES緩衝液(pH7.5)が用いられた。カバーグラス上で0.8μlのリザーバー溶液および0.8μlの前記濃縮試料の混合液に対して、25% PEG4000を含む100 mM HEPES緩衝液(pH7.5)中で破砕されたCa存在下で得られた6RL#9抗体のFabフラグメントの結晶が100-10000倍に希釈された希釈系列の溶液0.2μlを加えることによって結晶化ドロップが調製された。当該結晶化ドロップを20℃に2日から3日静置することによって得られた薄い板状の結晶のX線回折データが測定された。
35% PEG4000および5 mM CaCl2を含む100mM HEPES緩衝液(pH7.5)の溶液に浸された6RL#9抗体のFabフラグメントのCa存在下で得られた単結晶一つを、微小なナイロンループ付きのピンを用いて外液ごとすくいとることによって、当該単結晶が液体窒素中で凍結された。高エネルギー加速器研究機構の放射光施設フォトンファクトリーのビームラインBL-17Aを用いて、前記の凍結結晶のX線回折データが測定された。なお、測定中は常に-178℃の窒素気流中に凍結結晶を置くことで凍結状態が維持された。ビームラインに備え付けられたCCDディテクタQuantum315r(ADSC)を用い、結晶を1°ずつ回転させながらトータル180枚の回折画像が収集された。格子定数の決定、回折斑点の指数付け、および回折データの処理がプログラムXia2(CCP4 Software Suite)、XDS Package(Walfgang Kabsch)ならびにScala(CCP4 Software Suite)によって行われた。最終的に分解能2.2Åまでの回折強度データが得られた。本結晶は、空間群P212121に属し、格子定数a=45.47Å、b=79.86Å、c=116.25Å、α=90°、β=90°、γ=90°であった。
35% PEG4000を含む100 mM HEPES緩衝液(pH7.5)の溶液に浸された6RL#9抗体のFabフラグメントのCa非存在下で得られた単結晶一つを、微小なナイロンループ付きのピンを用いて外液ごとすくいとることによって、当該単結晶が液体窒素中で凍結された。高エネルギー加速器研究機構の放射光施設フォトンファクトリーのビームラインBL-5Aを用いて、前記の凍結結晶のX線回折データが測定された。なお、測定中は常に-178℃の窒素気流中に凍結結晶を置くことで凍結状態が維持された。ビームラインに備え付けられたCCDディテクタQuantum210r(ADSC)を用い、結晶を1°ずつ回転させながらトータル180枚の回折画像が収集された。格子定数の決定、回折斑点の指数付け、および回折データの処理がプログラムXia2(CCP4 Software Suite)、XDS Package(Walfgang Kabsch)ならびにScala(CCP4 Software Suite)によって行われた。最終的に分解能2.3Åまでの回折強度データが得られた。本結晶は、空間群P212121に属し、格子定数a=45.40Å、b=79.63Å、c=116.07Å、α=90°、β=90°、γ=90°であり、Ca存在下の結晶と同型であった。
プログラムPhaser(CCP4 Software Suite)を用いた分子置換法によって、6RL#9抗体のFabフラグメントのCa存在下での結晶の構造が決定された。得られた結晶格子の大きさと6RL#9抗体のFabフラグメントの分子量から、非対称単位中の分子数が一個であると予想された。一次配列上の相同性をもとにPDB code: 1ZA6の構造座標から取り出されたA鎖112-220番およびB鎖116-218番のアミノ酸残基部分が、CLおよびCH1領域の探索用モデル分子とされた。次にPDB code: 1ZA6の構造座標から取り出されたB鎖1-115番のアミノ酸残基部分が、VH領域の探索用モデル分子とされた。最後にPDB code 2A9Mの構造座標から取り出された軽鎖3-147番のアミノ酸残基が、VL領域の探索用モデル分子とされた。この順番にしたがい各探索用モデル分子の結晶格子内での向きと位置を回転関数および並進関数から決定することによって、6RL#9抗体のFabフラグメントの初期構造モデルが得られた。当該初期構造モデルに対してVH、VL、CH1、CLの各ドメインを動かす剛体精密化をおこなうことにより、25-3.0Åの反射データに対する結晶学的信頼度因子R値は46.9%、Free R値は48.6%となった。さらにプログラムRefmac5(CCP4 Software Suite)を用いた構造精密化と、実験的に決定された構造因子Foとモデルから計算された構造因子Fcおよび位相を用い計算された2Fo-Fc、Fo-Fcを係数とする電子密度マップを参照しながらモデル修正を繰り返しプログラムCoot(Paul Emsley)上でおこなうことによってモデルの精密化がおこなわれた。最後に2Fo-Fc、Fo-Fcを係数とする電子密度マップをもとにCaイオンおよび水分子をモデルに組み込むことによって、プログラムRefmac5(CCP4 Software Suite)を用いて精密化がおこなわれた。分解能25-2.2Åの21020個の反射データを用いることによって、最終的に3440原子のモデルに対する結晶学的信頼度因子R値は20.0%、Free R値は27.9%となった。
6RL#9抗体のFabフラグメントのCa存在下での結晶およびCa非存在下での結晶の構造を比較すると、重鎖CDR3に大きな変化がみられた。X線結晶構造解析で決定された6RL#9抗体のFabフラグメントの重鎖CDR3の構造を図18に示した。具体的には、Ca存在下での6RL#9抗体のFabフラグメントの結晶では、重鎖CDR3ループ部分の中心部分にカルシウムイオンが存在していた。カルシウムイオンは、重鎖CDR3の95位、96位および100a位(Kabatナンバリング)と相互作用していると考えられた。Ca存在下では、抗原との結合に重要である重鎖CDR3ループがカルシウムと結合することによって安定化し、抗原との結合に最適な構造となっていることが考えられた。抗体の重鎖CDR3にカルシウムが結合する例は今までに報告されておらず、抗体の重鎖CDR3にカルシウムが結合した構造は新規な構造である。
(15−1)ナイーブヒト抗体ファージディスプレイライブラリの作製
ヒトPBMCから作成したポリA RNAや、市販されているヒトポリA RNAなどを鋳型として当業者に公知な方法にしたがい、互いに異なるヒト抗体配列のFabドメインを提示する複数のファージからなるヒト抗体ファージディスプレイライブラリが構築された。
構築されたナイーブヒト抗体ファージディスプレイライブラリからの最初の選抜は、抗原(IL-6)への結合能をもつ抗体断片のみの濃縮によって実施された。抗原としてビオチン標識されたIL-6が用いられた。
上記の方法によって得られた大腸菌のシングルコロニーから、常法(Methods Mol. Biol. (2002) 178, 133-145)に習い、ファージ含有培養上清が回収された。
ファージELISAの結果、Ca依存的な抗原に対する結合能があると判断されたクローン6KC4-1#85が、動物細胞発現用プラスミドへ導入された。抗体の発現は以下の方法を用いて行われた。ヒト胎児腎細胞由来FreeStyle 293-F株(Invitrogen)がFreeStyle 293 Expression Medium培地(Invitrogen)に懸濁され、1.33 x 106細胞/mLの細胞密度で6ウェルプレートの各ウェルへ3 mLずつ播種された。調製されたプラスミドは、リポフェクション法によって細胞へ導入された。CO2インキュベーター(37度、8%CO2、90 rpm)中で4日間培養が行われる。rProtein A SepharoseTM Fast Flow(Amersham Biosciences)を用いて当業者公知の方法を用いて、上記で得られた培養上清から抗体が精製された。分光光度計を用いて精製された抗体溶液の280 nmでの吸光度が測定された。PACE法により算出された吸光係数を用いることによって、得られた測定値から抗体濃度が算出された(Protein Science (1995) 4, 2411-2423)。
ヒト抗体ライブラリから取得されたカルシウム依存的抗原結合抗体6KC4-1#85抗体がカルシウムと結合するか評価された。イオン化カルシウム濃度が異なる条件で、測定されるTm値が変動するか否かが参考実施例2に記載された方法で評価された。
参考実施例16で示されるように、6KC4-1#85抗体はカルシウムイオンと結合することが示されたが、6KC4-1#85はhVk5-2配列の検討から明らかになったカルシウム結合モチーフを持たない。そこで、カルシウムイオンが6KC4-1#85抗体の重鎖に結合するのか、軽鎖に結合するのかまたは両者に結合するのかを確認するために、カルシウムイオンと結合しない抗グリピカン3抗体(重鎖配列GC_H(配列番号:106)、軽鎖配列GC_L(配列番号:107))の重鎖と軽鎖とそれぞれ交換した改変抗体に対するカルシウムイオンの結合が評価された。参考実施例2に示される方法に準じて測定された改変抗体のTm値を表26に示した。その結果、6KC4-1#85抗体の重鎖をもつ改変抗体のTm値がカルシウムイオンの濃度によって変化するため、6KC4-1#85抗体の重鎖でカルシウムと結合していると考えられた。
(18−1)ノーマルマウスを用いたin vivo試験
ノーマルマウス(C57BL/6J mouse、Charles River Japan)にhsIL-6R(可溶型ヒトIL-6レセプター:参考実施例21にて作製)を単独投与もしくはhsIL-6Rおよび抗ヒトIL-6レセプター抗体を同時投与した後のhsIL-6Rおよび抗ヒトIL-6レセプター抗体の体内動態が評価された。hsIL-6R溶液(5μg/mL)、もしくは、hsIL-6Rと抗ヒトIL-6レセプター抗体の混合溶液が尾静脈に10 mL/kgで単回投与された。抗ヒトIL-6レセプター抗体としては、前記のH54/L28-IgG1、6RL#9-IgG1、FH4-IgG1が使用された。
マウス血漿中の抗ヒトIL-6レセプター抗体濃度はELISA法にて測定された。まずAnti-Human IgG(γ-chain specific) F(ab')2 Fragment of Antibody(SIGMA)をNunc-Immuno Plate, MaxiSoup(Nalge nunc International)に分注し、4℃で1晩静置することによってAnti-Human IgG固相化プレートが作成された。血漿中濃度として0.64、0.32、0.16、0.08、0.04、0.02、0.01μg/mLの検量線試料および100倍以上希釈されたマウス血漿測定試料のそれぞれが分注されたAnti-Human IgG固相化プレートが25℃で1時間インキュベーションされた。その後Biotinylated Anti-human IL-6 R Antibody(R&D)を25℃で1時間反応させた後にStreptavidin-PolyHRP80(Stereospecific Detection Technologies)を25℃で0.5時間反応させた。TMB One Component HRP Microwell Substrate(BioFX Laboratories)を基質として用いて発色反応が行われた。1N-Sulfuric acid(Showa Chemical)によって発色反応が停止された後、マイクロプレートリーダーを用いて発色液の450 nmにおける吸光度が測定された。解析ソフトウェアSOFTmax PRO(Molecular Devices)を用いて、マウス血漿中濃度が検量線の吸光度を基準として算出された。この方法で測定された静脈内投与後のノーマルマウスにおけるH54/L28-IgG1、6RL#9-IgG1、FH4-IgG1の血漿中の抗体濃度の推移を図19に示した。
マウスの血漿中hsIL-6R濃度は電気化学発光法にて測定された。2000、1000、500、250、125、62.5、31.25 pg/mLに調整されたhsIL-6R検量線試料および50倍以上希釈されたマウス血漿測定試料と、SULFO-TAG NHS Ester(Meso Scale Discovery)でルテニウム化したMonoclonal Anti-human IL-6R Antibody(R&D)およびBiotinylated Anti-human IL-6 R Antibody (R&D)およびトシリズマブ(重鎖配列番号:96、軽鎖配列番号:97)溶液との混合液を4℃で1晩反応させた。サンプル中のFree Ca濃度を低下させ、サンプル中のほぼ全てのhsIL-6Rが6RL#9-IgG1もしくはFH4-IgG1から解離し、添加したトシリズマブと結合した状態とするために、その際のAssay bufferには10 mM EDTAが含まれていた。その後、当該反応液がMA400 PR Streptavidin Plate(Meso Scale Discovery)に分注された。さらに25℃で1時間反応させたプレートの各ウェルが洗浄された後、各ウェルにRead Buffer T(×4)(Meso Scale Discovery)が分注された。ただちに反応液はSECTOR PR 400 reader(Meso Scale Discovery)を用いて測定された。hSIL-6R濃度は検量線のレスポンスから解析ソフトウェアSOFTmax PRO(Molecular Devices)を用いて算出された。前記の方法で測定された静脈内投与後のノーマルマウスにおける血漿中のhsIL-6Rの濃度推移を図20に示した。
(19−1)IgG抗体のFcRnへの結合に関して
IgG抗体はFcRnに結合することで長い血漿中滞留性を有する。IgGとFcRnの結合は酸性条件下(pH6.0)においてのみ認められ、中性条件下(pH7.4)においてその結合はほとんど認められない。IgG抗体は非特異的に細胞に取り込まれるが、エンドソーム内の酸性条件下においてエンドソーム内のFcRnに結合することによって細胞表面上に戻り、血漿中の中性条件下においてFcRnから解離する。IgGのFc領域に変異を導入し、酸性条件下におけるFcRnへの結合を失わせると、エンドソーム内から血漿中にリサイクルされなくなるため、抗体の血漿中滞留性は著しく損なわれる。
カルシウム依存的抗原結合能を有するFH4-IgG1、6RL#9-IgG1、および対照として用いられたカルシウム依存的抗原結合能を有しないH54/L28-IgG1のFc領域にアミノ酸変異を導入することによって、中性条件下(pH7.4)におけるFcRnに対する結合を有する改変体が作製された。アミノ酸の変異の導入はPCRを用いた当業者公知の方法を用いて行われた。具体的には、IgG1の重鎖定常領域に対して、EUナンバリングで表される434位のアミノ酸であるAsnがTrpに置換されたFH4-N434W(重鎖配列番号:115、軽鎖配列番号:101)と6RL#9-N434W(重鎖配列番号:116、軽鎖配列番号:99)とH54/L28-N434W(重鎖配列番号:117、軽鎖配列番号:39)が作製された。QuikChange Site-Directed Mutagenesis Kit(Stratagene)を用いて、添付説明書記載の方法を用いてそのアミノ酸が置換された変異体をコードするポリヌクレオチドが挿入された動物細胞発現ベクターが作製された。抗体の発現、精製、濃度測定は参考実施例11に記載された方法に準じて実施された。
(20−1)ノーマルマウスを用いたin vivo試験
ノーマルマウス(C57BL/6J mouse、Charles River Japan)にhsIL-6R(可溶型ヒトIL-6レセプター:参考実施例20にて作製)が単独で投与された、もしくはhsIL-6Rおよび抗ヒトIL-6レセプター抗体が同時投与された後のhsIL-6Rおよび抗ヒトIL-6レセプター抗体の体内動態が評価された。hsIL-6R溶液(5μg/mL)、もしくは、hsIL-6Rと抗ヒトIL-6レセプター抗体の混合溶液が尾静脈に10 mL/kgで単回投与された。抗ヒトIL-6レセプター抗体として、上述のH54/L28-N434W、6RL#9-N434W、FH4-N434Wが使用された。
マウス血漿中の抗ヒトIL-6レセプター抗体濃度は参考実施例18と同様のELISA法によって測定された。この方法で測定された静脈内投与後のノーマルマウスにおけるH54/L28-N434W、6RL#9-N434W、FH4-N434W抗体の血漿中の抗体濃度の推移を図21に示した。
マウスの血漿中hsIL-6R濃度が電気化学発光法にて測定された。2000、1000、500、250、125、62.5、31.25 pg/mLに調製されたhsIL-6R検量線試料および50倍以上希釈されたマウス血漿測定試料と、SULFO-TAG NHS Ester(Meso Scale Discovery)でルテニウム化したMonoclonal Anti-human IL-6R Antibody(R&D)およびBiotinylated Anti-human IL-6 R Antibody (R&D)との混合液を4℃で1晩反応させた。サンプル中のFree Ca濃度を低下させ、サンプル中のほぼ全てのhsIL-6Rが6RL#9-N434WもしくはFH4-N434Wから解離し、free体として存在する状態とするために、その際のAssay bufferには10 mM EDTAが含まれていた。その後、当該反応液がMA400 PR Streptavidin Plate(Meso Scale Discovery)に分注された。さらに25℃で1時間反応させたプレートの各ウェルが洗浄された後、各ウェルにRead Buffer T(×4)(Meso Scale Discovery)が分注された。ただちに反応液はSECTOR PR 400 reader(Meso Scale Discovery)を用いて測定された。hSIL-6R濃度は検量線のレスポンスから解析ソフトウェアSOFTmax PRO(Molecular Devices)を用いて算出された。前記の方法で測定された静脈内投与後のノーマルマウスにおける血漿中のhsIL-6Rの濃度推移を図22に示した。
抗原であるヒトIL-6レセプターの組換えヒトIL-6レセプターは以下のように調製された。Mullberg ら(J. Immunol. (1994) 152, 4958-4968)で報告されているN末端側1番目から357番目のアミノ酸配列からなる可溶型ヒトIL-6レセプター(以下、hsIL-6R)のCHO定常発現株が当業者公知の方法で構築された。当該発現株を培養することによって、hsIL-6Rが発現した。得られた培養上清から、Blue Sepharose 6 FFカラムクロマトグラフィー、ゲルろ過カラムクロマトグラフィーによってhsIL-6Rが精製された。最終工程においてメインピークとして溶出された画分が最終精製品として用いられた。
(22−1)pH依存的結合抗体の取得方法
WO2009/125825は抗原結合分子にヒスチジンを導入することにより、pH中性領域とpH酸性領域で性質が変化するpH依存的抗原結合抗体を開示している。開示されたpH依存的結合抗体は、所望の抗原結合分子のアミノ酸配列の一部をヒスチジンに置換する改変によって取得されている。改変する対象の抗原結合分子を予め得ることなく、pH依存的結合抗体をより効率的に取得するために、ヒスチジンが可変領域(より好ましくは抗原結合に関与する可能性がある位置)に導入された抗原結合分子の集団(Hisライブラリと呼ぶ)から所望の抗原に結合する抗原結合分子を取得する方法が考えられる。Hisライブラリから得られる抗原結合分子は通常の抗体ライブラリよりもヒスチジンが高頻度に出現するため、所望の性質を有する抗原結合分子が効率的に取得できると考えられる。
まず、Hisライブラリでヒスチジンを導入する位置が選択された。WO2009/125825ではIL-6レセプター抗体、IL-6抗体およびIL-31レセプター抗体の配列中のアミノ酸残基をヒスチジンに置換することでpH依存的抗原結合抗体が作製されたことが開示されている。さらに、抗原結合分子のアミノ酸配列をヒスチジンに置換することによって、pH依存的抗原結合能を有する、抗卵白リゾチウム抗体(FEBS Letter 11483, 309, 1, 85-88)および抗ヘプシジン抗体(WO2009/139822)が作製されている。IL-6レセプター抗体、IL-6抗体、IL-31レセプター抗体、卵白リゾチウム抗体およびヘプシジン抗体でヒスチジンを導入した位置を表28に示した。表28に示した位置は、抗原と抗体との結合を制御できる位置の候補として挙げられ得る。さらに表28で示された位置以外でも、抗原と接触する可能性が高い位置も、ヒスチジンを導入する位置として適切であると考えられた。
ヒトPBMCから作成したポリA RNAや、市販されているヒトポリA RNAなどを鋳型としてPCR法により抗体重鎖可変領域の遺伝子ライブラリが増幅された。参考実施例22に記載のHisライブラリ1として設計された抗体軽鎖可変領域の遺伝子ライブラリが、PCR法を用いて増幅された。このように作製された抗体重鎖可変領域の遺伝子ライブラリと抗体軽鎖可変領域の遺伝子ライブラリとの組合せがファージミドベクターへ挿入され、ヒト抗体配列からなるFabドメインを提示するヒト抗体ファージディスプレイライブラリが構築された。構築方法として、(Methods Mol Biol. (2002) 178, 87-100)が参考とされた。上記ライブラリの構築に際しては、ファージミドのFabとファージpIIIタンパク質をつなぐリンカー部分、および、ヘルパーファージpIIIタンパク遺伝子のN2ドメインとCTドメインの間にトリプシン切断配列が挿入されたファージディスプレイライブラリの配列が使用された。抗体遺伝子ライブラリが導入された大腸菌から単離された抗体遺伝子部分の配列が確認され、132クローンの配列情報が得られた。設計されたアミノ酸分布と、確認された配列中のアミノ酸の分布を、図23に示した。設計されたアミノ酸分布に対応する多様な配列を含むライブラリが構築された。
(24−1)ビーズパンニングによるライブラリからのpH依存的に抗原に結合する抗体断片の取得
構築されたHisライブラリ1からの最初の選抜は、抗原(IL-6R)への結合能をもつ抗体断片のみの濃縮によって実施された。
上記の方法によって得られた大腸菌のシングルコロニーから、常法(Methods Mol. Biol. (2002) 178, 133-145)に習い、ファージ含有培養上清が回収された。
ファージELISAおよび配列解析の結果を以下の表29に示す。
ファージELISAの結果、pH依存的な抗原に対する結合能があると判断されたクローンが、動物細胞発現用プラスミドへ導入された。抗体の発現は以下の方法を用いて行われた。ヒト胎児腎細胞由来FreeStyle 293-F株(Invitrogen)がFreeStyle 293 Expression Medium培地(Invitrogen)に懸濁され、1.33 x 106細胞/mLの細胞密度で6ウェルプレートの各ウェルへ3 mLずつ蒔きこまれた。調製されたプラスミドは、リポフェクション法によって細胞へ導入された。CO2インキュベーター(37度、8%CO2、90 rpm)中で4日間培養が行われた。rProtein A SepharoseTM Fast Flow(Amersham Biosciences)を用いて当業者公知の方法を用いて、上記で得られた培養上清から抗体が精製された。分光光度計を用いて精製された抗体溶液の280 nmでの吸光度が測定された。PACE法により算出された吸光係数を用いることによって、得られた測定値から抗体濃度が算出された(Protein Science (1995) 4, 2411-2423)。
(24−3)で取得された抗体6RpH#01(重鎖配列番号:118、軽鎖配列番号:119)、および、6RpH#02(重鎖配列番号:120)、軽鎖配列番号:121)、および、6RpH#03(重鎖配列番号:122)、軽鎖配列番号:123)のヒトIL-6レセプターに対する結合活性がpH依存的であるかどうかを判断するため、これらの抗体とヒトIL-6レセプターとの相互作用がBiacore T100(GE Healthcare)を用いて解析された。ヒトIL-6レセプターに対するpH依存性の結合活性を有しない対照抗体として、トシリズマブ(重鎖配列番号:60、軽鎖配列番号:61)が用いられた。中性域pHおよび酸性域pHの条件として、それぞれpH7.4およびpH6.0の溶液中で抗原抗体反応の相互作用が解析された。アミンカップリング法でprotein A/G(Invitrogen)が適当量固定化されたSensor chip CM5(GE Healthcare)上に、目的の抗体がそれぞれ300RU程度キャプチャーされた。ランニングバッファーには20 mM ACES、150 mM NaCl、0.05% (w/v) Tween20、1.2 mM CaCl2(pH7.4)または20 mM ACES、150 mM NaCl、0.05% (w/v) Tween20、1.2mM CaCl2(pH6.0)の2種類の緩衝液が用いられた。ヒトIL-6レセプターの希釈にもそれぞれのバッファーが使用された。測定は全て37℃で実施された。
(25−1)ノックインベクターの構築
マウスインターロイキン−6遺伝子(Il6ra)のゲノム領域がクローニングされている大腸菌人工染色体(BAC)クローンを用いた。このBAC上のマウスIl6ra遺伝子の標的領域に、ヒトインターロイキン−6受容体遺伝子のコーディング配列(GeneBank#NM_000565_)、hp7配列、ポリA付加シグナル、loxP配列、ネオマイシン耐性(neo)遺伝子カセットおよびloxPの順に接続したDNA断片を、Red/ETシステム(GeneBridges)を利用して相同組換にて挿入した。その際、BAC上のマウスIl6ra遺伝子のエクソン1に存在する翻訳開始点とヒトIL6R遺伝子の翻訳開始点を一致させるように挿入し、かつマウスIl6ra遺伝子のエクソン1内部の翻訳開始点以降の塩基配列を40塩基対だけ欠損させた。なお、薬剤耐性遺伝子であるneoにはpgk遺伝子のプロモータが付加されており、ES細胞内ではneo遺伝子が発現する。しかしながら、neo遺伝子は上流に導入したhIL6R遺伝子の発現を抑制する可能性が予測される。そこで、後に、neo遺伝子を除去できるように、neo遺伝子の両側にはloxP配列(ATAACTTCGTATAGCATACATTATACGAAGTTAT(配列番号:131))を配置した。Creを作用させると組換えによって、loxP配列の間に挟まれたneo遺伝子が除去される仕組みになっている。次いで、ノックインベクターを線状化可能とするため、BAC上のマウスIl6ra遺伝子の5'側上流の領域に制限酵素NotI認識配列(GCGGCCGC)をアンピシリン耐性遺伝子とともに挿入した。
ES細胞(129SvEvマウス由来)に上記のhIL6Rノックインベクターをエレクトロポレーションにより導入し、G418による選択培養後に得られた薬剤耐性クローンより、相同組み換え体をPCR法によってスクリーニングした。ノックインベクターは、60μgをNotIで直鎖状化し、フェノール/クロロホルム抽出後、エタノール沈殿させPBSに溶解して用いた。
相同組換えESクローンをトリプシン処理により浮遊させ、ES細胞培地で洗浄した。48時間間隔で5IUのウマ絨毛ゴナドトロピン(eCG)およびヒト絨毛ゴナドトロピン(hCG)を腹腔内投与することにより、過剰排卵処理を施したC57BL/6J(B6)の雌マウスを同系統の雄マウスと交配した。雌マウスのプラグが確認された日を0.5日とし、妊娠2.5日に子宮および卵管を灌流し、8細胞期から桑実期の胚を回収した。回収した胚を37℃にて一晩培養し、胚盤胞に発生した胚を宿主胚として10〜15個のES細胞を注入した。注入後の胚は、偽妊娠2.5日齢のICR系の受容雌の子宮内に移植し、17日後に産仔を得た。ES細胞の胚盤胞への注入により得られた産仔の毛色での判別により、組換えES細胞(野生色)とホスト胚盤胞由来の細胞(黒色)の混在したキメラマウスが得られた。雄キメラマウスは性成熟後にB6雌マウスと交配し、ノックインアレルの次世代マウスへの伝達を、次世代マウスの尾より抽出したゲノムDNAを鋳型としてPCR法により確認した。PCRは上述の相同組換ES細胞のスクリーニングの際に利用した方法にて実施した。その結果、2.2kbのシグナルが検出された個体が得られ、これら個体にはノックインアレルが伝達していることが確認された。
ノックインアレルの伝達が確認された個体の繁殖により得た受精卵の前核に組換酵素Cre発現ベクターを顕微注入することによって、neo遺伝子カセットを除去した。すなわち、一過性にCreを発現させることによって、ノックインアレルに配置した2ヶ所のloxP間を組み換えが誘導され、neo遺伝子カセットが除去された。Cre発現ベクターの顕微注入後の受精卵は、偽妊娠0.5日のICR系受容雌の卵管内に移植し、19日後に産仔を得た。neo遺伝子カセットの除去は、産仔の離乳後に採取した尾より抽出したゲノムDNAを用いてPCR法によって確認された。
(6−1)組織RNAを用いたRT-PCR法での確認
ホモ接合体のノックインマウスおよび野生型マウスの組織RNAを用いてRT-PCR法によりヒトIL6RおよびマウスIL6raの発現を解析した。肝臓、脾臓、胸腺、腎臓、心臓および肺より組織RNAを調製した。各1μgの組織RNAを鋳型として、SuperScript II First Strand cDNA Synthesis Kit(Invitrogen)により、Oligo dT(20)プライマーを用いて逆転写反応を行なうことによってcDNAを合成した。合成されたcDNAを鋳型としてPCRを行なうことによって、ヒトIL6RおよびマウスIL6raを検出した。ヒトIL6Rの検出は、ノックインアレルにおけるhIL6R遺伝子の挿入位置である翻訳開始点よりも上流側の5'非翻訳領域に設定したフォワードプライマー6RIK-s1(5'−CCCGGCTGCGGAGCCGCTCTGC−3'(配列番号:136))およびヒトIL6R特異的なリバースプライマーRLI6-a1(5'−ACAGTGATGCTGGAGGTCCTT−3'(配列番号:137))の組合せを使用して実施した。一方、マウスIL6raの検出は、上述のフォワードプライマー6RIK-s1およびマウスIL6ra特異的なリバースプライマー6RLIcA2(5'−AGCAACACCGTGAACTCCTTTG−3'(配列番号:138))の組合せを使用して実施した。PCR反応液の組成は、12.5μlのサンプル、12.5μl の2xGC緩衝液I、4μlのdNTP(dATP、dCTP、dGTPおよびdTTPが各2.5 mMずつ含まれる)、各0.25μlのプライマー(各50μM)、0.25μlのLA Taq(TAKARA)、および6.75μlの蒸留水を混合して全量25μlとした。また、PCR条件は、94℃にて2分間の前加熱、94℃にて30秒間、62℃にて30秒間、72℃にて1分間の増幅サイクルを30サイクル、並びに72℃にて5分間の複加熱とした。ヒトIL6Rの増幅産物は880 bp、マウスIL6raの増幅産物は846 bpに検出されるが、ホモ接合体のhIL6Rノックインマウスの各組織ではヒトIL6Rのみが検出され、マウスIL6raは検出されなかった。また、野生型マウスの各組織からはヒトIL6Rは検出されず、マウスIL6raのみが検出された(図34)。この結果より、デザイン通りにノックインベクターが相同組み換えを起こし、マウスIL6raのかわりにヒトIL6Rが発現するマウスが得られたことが確認された。
イソフルラン吸入麻酔下にて開腹し、腹部大静脈より採取した血液より分離した血漿中の可溶型ヒトIL-6R濃度を、Quantikin Human IL-6sR Immunoassay Kit(R&D Systems)を用いて測定した。その結果、血漿中可溶型hIL-6R濃度は、ホモ型のノックインマウスでは22.1 + 5.0 ng/ml、ヘテロ型ノックインマウスでは11.5 + 4.1 ng/mlと定量された。なお、野生型マウスにおいては血漿中に可溶型hIL-6Rは検出されなかった(図35)。ホモ型ノックインマウスでは、ヒトにおいて報告されている血中濃度と同等の濃度(Blood (2008) 112, 3959-3969)であった。
ホモ型ノックインマウスおよび野生型マウスに、4μg/体重kgとなるようマウスIL-6あるいはヒトIL-6を腹腔内投与し、その6時間後に採血して、血中の血清アミロイドA(SAA)濃度を、SAA ELISA Kit(Invitrogen)を用いて定量した。なお、投与用IL-6の溶媒としては、マウス血漿が0.5%となるようにリン酸緩衝生理食塩液(PBS)に添加した溶液を使用し、溶媒のみを投与する対照群を設けた。その結果、ホモ型ノックインマウスはヒとIL-6にのみ反応して血漿SAAレベルの上昇が認められたが、マウスIL-6に対する反応性は認められなかった(図36)。一方、野生型マウスはヒトIL-6にもマウスIL-6にも反応して血漿SAAレベルの上昇が認められた(図36)。マウスIL-6raはマウスIL-6にもヒトIL-6にも結合する一方、ヒトIL-6RはヒトIL-6に結合するがマウスIL-6には結合しないことが知られており、本実験の結果は、この知見に合致するものである。従って、ホモ型ノックインマウスでは、設計通り、マウスIL6raが発現せず、代わりにヒトIL6Rが発現し、かつ機能していることが明らかとなった。
Claims (16)
- イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメイン、およびpH中性域の条件下でFcRnに対する結合活性を有するFcRn結合ドメインを含む抗原結合分子を有効成分として含む前記抗原に対する免疫応答を誘導する医薬組成物。
- 前記イオン濃度が、カルシウムイオン濃度である請求項1に記載の医薬組成物。
- 前記抗原結合ドメインが、低カルシウムイオン濃度の条件下での当該抗原に対する結合活性よりも高カルシウムイオン濃度の条件下での抗原に対する結合活性が高いという特徴を有する抗原結合ドメインである請求項2に記載の医薬組成物。
- 前記イオン濃度の条件が、pHの条件である請求項1に記載の医薬組成物。
- 前記抗原結合ドメインが、pH酸性域の条件下での当該抗原に対する結合活性よりもpH中性域の条件下での抗原に対する結合活性が高いという特徴を有する抗原結合ドメインである請求項4に記載の医薬組成物。
- 前記抗原結合分子が、前記抗原に対する中和活性を有する抗原結合分子である請求項1から5のいずれかに記載の医薬組成物。
- 前記抗原結合分子が、前記抗原を発現する細胞に対する細胞傷害活性を有する抗原結合分子である請求項1から6のいずれかに記載の医薬組成物。
- 前記FcRn結合ドメインが、抗体のFc領域を含む請求項1から7のいずれかに記載の医薬組成物。
- 前記Fc領域が、Fc領域のEUナンバリングで表される部位のうち、257位、308位、428位および434位の群から選択される少なくともひとつ以上のアミノ酸が、天然型Fc領域の対応する部位のアミノ酸と異なるFc領域である請求項8に記載の医薬組成物。
- 前記Fc領域が、Fc領域のEUナンバリングで表される;
257位のアミノ酸がAla、
308位のアミノ酸がPro、
428位のアミノ酸がLeu、および
434位のアミノ酸がTyr、
の群から選択される少なくともひとつ以上のアミノ酸を含むFc領域である請求項8または9に記載の医薬組成物。 - 前記Fc領域のFcγレセプターに対する結合活性が、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりも高いという特徴を有する請求項8から10のいずれかに記載の医薬組成物。
- 前記Fcγレセプターが、FcγRIa、FcγRIIa(R)、FcγRIIa(H)、FcγRIIb、FcγRIIIa(V)、またはFcγRIIIa(F)である請求項11に記載の医薬組成物。
- 前記Fc領域が、Fc領域におけるEUナンバリングで表される部位のうち、221位、222位、223位、224位、225位、227位、228位、230位、231位、232位、233位、234位、235位、236位、237位、238位、239位、240位、241位、243位、244位、245位、246位、247位、249位、250位、251位、254位、255位、256位、258位、260位、262位、263位、264位、265位、266位、267位、268位、269位、270位、271位、272位、273位、274位、275位、276位、278位、279位、280位、281位、282位、283位、284位、285位、286位、288位、290位、291位、292位、293位、294位、295位、296位、297位、298位、299位、300位、301位、302位、303位、304位、305位、311位、313位、315位、317位、318位、320位、322位、323位、324位、325位、326位、327位、328位、329位、330位、331位、332位、333位、334位、335位、336位、337位、339位、376位、377位、378位、379位、380位、382位、385位、392位、396位、421位、427位、428位、429位、434位、436位および440位の群から選択される少なくともひとつ以上のアミノ酸が、天然型Fc領域の対応する部位のアミノ酸と異なるFc領域である請求項11または12に記載の医薬組成物。
- 前記Fc領域が、Fc領域におけるEUナンバリングで表される部位のうち;
221位のアミノ酸がLysまたはTyrのいずれか、
222位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
223位のアミノ酸がPhe、Trp、GluまたはLysのいずれか、
224位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
225位のアミノ酸がGlu、LysまたはTrpのいずれか、
227位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
228位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
230位のアミノ酸がAla、Glu、GlyまたはTyrのいずれか、
231位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
232位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
233位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
234位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
235位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
236位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
237位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
238位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
239位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
240位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
241位のアミノ酸がAsp、Glu、Leu、Arg、TrpまたはTyrのいずれか、
243位のアミノ酸がLeu、Glu、Leu、Gln、Arg、TrpまたはTyrのいずれか、
244位のアミノ酸がHis、
245位のアミノ酸がAla、
246位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
247位のアミノ酸がAla、Phe、Gly、His、Ile、Leu、Met、Thr、ValまたはTyrのいずれか、
249位のアミノ酸がGlu、His、GlnまたはTyrのいずれか、
250位のアミノ酸がGluまたはGlnのいずれか、
251位のアミノ酸がPhe、
254位のアミノ酸がPhe、MetまたはTyrのいずれか、
255位のアミノ酸がGlu、LeuまたはTyrのいずれか、
256位のアミノ酸がAla、MetまたはProのいずれか、
258位のアミノ酸がAsp、Glu、His、SerまたはTyrのいずれか、
260位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
262位のアミノ酸がAla、Glu、Phe、IleまたはThrのいずれか、
263位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
264位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
265位のアミノ酸がAla、Leu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、Val、TrpまたはTyrのいずれか、
266位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
267位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
268位のアミノ酸がAsp、Glu、Phe、Gly、Ile、Lys、Leu、Met、Pro、Gln、Arg、Thr、ValまたはTrpのいずれか、
269位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
270位のアミノ酸がGlu、Phe、Gly、His、Ile、Leu、Met、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
271位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
272位のアミノ酸がAsp、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
273位のアミノ酸がPheまたはIleのいずれか、
274位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
275位のアミノ酸がLeuまたはTrpのいずれか、
276位のアミノ酸が、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
278位のアミノ酸がAsp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
279位のアミノ酸がAla、
280位のアミノ酸がAla、Gly、His、Lys、Leu、Pro、Gln、TrpまたはTyrのいずれか、
281位のアミノ酸がAsp、Lys、ProまたはTyrのいずれか、
282位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
283位のアミノ酸がAla、Gly、His、Ile、Lys、Leu、Met、Pro、ArgまたはTyrのいずれか、
284位のアミノ酸がAsp、Glu、Leu、Asn、ThrまたはTyrのいずれか、
285位のアミノ酸がAsp、Glu、Lys、Gln、TrpまたはTyrのいずれか、
286位のアミノ酸がGlu、Gly、ProまたはTyrのいずれか、
288位のアミノ酸がAsn、Asp、GluまたはTyrのいずれか、
290位のアミノ酸がAsp、Gly、His、Leu、Asn、Ser、Thr、TrpまたはTyrのいずれか、291位のアミノ酸がAsp、Glu、Gly、His、Ile、GlnまたはThrのいずれか、
292位のアミノ酸がAla、Asp、Glu、Pro、ThrまたはTyrのいずれか、
293位のアミノ酸がPhe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
294位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
295位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
296位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、ThrまたはValのいずれか、
297位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
298位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Met、Asn、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
299位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、TrpまたはTyrのいずれか、
300位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
301位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
302位のアミノ酸がIle、
303位のアミノ酸がAsp、GlyまたはTyrのいずれか、
304位のアミノ酸がAsp、His、Leu、AsnまたはThrのいずれか、
305位のアミノ酸がGlu、Ile、ThrまたはTyrのいずれか、
311位のアミノ酸がAla、Asp、Asn、Thr、ValまたはTyrのいずれか、
313位のアミノ酸がPhe、
315位のアミノ酸がLeu、
317位のアミノ酸がGluまたはGln、
318位のアミノ酸がHis、Leu、Asn、Pro、Gln、Arg、Thr、ValまたはTyrのいずれか、
320位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Asn、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
322位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
323位のアミノ酸がIle、
324位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
325位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
326位のアミノ酸がAla、Asp、Glu、Gly、Ile、Leu、Met、Asn、Pro、Gln、Ser、Thr、Val、TrpまたはTyrのいずれか、
327位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
328位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
329位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
330位のアミノ酸がCys、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
331位のアミノ酸がAsp、Phe、His、Ile、Leu、Met、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
332位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
333位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Ser、Thr、ValまたはTyrのいずれか、
334位のアミノ酸がAla、Glu、Phe、Ile、Leu、ProまたはThrのいずれか、
335位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Val、TrpまたはTyrのいずれか、
336位のアミノ酸がGlu、LysまたはTyrのいずれか、
337位のアミノ酸がGlu、HisまたはAsnのいずれか、
339位のアミノ酸がAsp、Phe、Gly、Ile、Lys、Met、Asn、Gln、Arg、SerまたはThrのいずれか、
376位のアミノ酸がAlaまたはValのいずれか、
377位のアミノ酸がGlyまたはLysのいずれか、
378位のアミノ酸がAsp、
379位のアミノ酸がAsn、
380位のアミノ酸がAla、AsnまたはSerのいずれか、
382位のアミノ酸がAlaまたはIleのいずれか、
385位のアミノ酸がGlu、
392位のアミノ酸がThr、
396位のアミノ酸がLeu、
421位のアミノ酸がLys、
427位のアミノ酸がAsn、
428位のアミノ酸がPheまたはLeuのいずれか、
429位のアミノ酸がMet、
434位のアミノ酸がTrp、
436位のアミノ酸がIle、および
440位のアミノ酸がGly、His、Ile、LeuまたはTyrのいずれか、
の群から選択される少なくともひとつ以上のアミノ酸を含むFc領域である請求項11から13のいずれかに記載の医薬組成物。 - 前記天然型Fc領域が、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖であるヒトIgG1、ヒトIgG2、ヒトIgG3またはヒトIgG4のいずれかのFc領域である請求項11から14のいずれかに記載の医薬組成物。
- 前記Fc領域が、Fc領域のEUナンバリング297位に結合した糖鎖の組成がフコース欠損糖鎖を結合したFc領域の割合が高くなるように、またはバイセクティングN-アセチルグルコサミンが付加したFc領域の割合が高くなるように修飾されたFc領域である請求項11から15のいずれかに記載の医薬組成物。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021163532A JP2022000472A (ja) | 2011-09-30 | 2021-10-04 | 標的抗原に対する免疫応答を誘導する抗原結合分子 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011216958 | 2011-09-30 | ||
JP2011216958 | 2011-09-30 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013536417A Division JP6352634B2 (ja) | 2011-09-30 | 2012-09-28 | 標的抗原に対する免疫応答を誘導する抗原結合分子 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021163532A Division JP2022000472A (ja) | 2011-09-30 | 2021-10-04 | 標的抗原に対する免疫応答を誘導する抗原結合分子 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018150378A true JP2018150378A (ja) | 2018-09-27 |
JP7029355B2 JP7029355B2 (ja) | 2022-03-03 |
Family
ID=47995754
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013536417A Active JP6352634B2 (ja) | 2011-09-30 | 2012-09-28 | 標的抗原に対する免疫応答を誘導する抗原結合分子 |
JP2018109098A Active JP7029355B2 (ja) | 2011-09-30 | 2018-06-07 | 標的抗原に対する免疫応答を誘導する抗原結合分子 |
JP2021163532A Pending JP2022000472A (ja) | 2011-09-30 | 2021-10-04 | 標的抗原に対する免疫応答を誘導する抗原結合分子 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013536417A Active JP6352634B2 (ja) | 2011-09-30 | 2012-09-28 | 標的抗原に対する免疫応答を誘導する抗原結合分子 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021163532A Pending JP2022000472A (ja) | 2011-09-30 | 2021-10-04 | 標的抗原に対する免疫応答を誘導する抗原結合分子 |
Country Status (14)
Country | Link |
---|---|
US (2) | US10556949B2 (ja) |
EP (1) | EP2752200B1 (ja) |
JP (3) | JP6352634B2 (ja) |
KR (3) | KR102366029B1 (ja) |
CN (4) | CN110680920A (ja) |
AU (1) | AU2012317395B2 (ja) |
BR (1) | BR112014007484A2 (ja) |
CA (1) | CA2850322C (ja) |
HK (1) | HK1198813A1 (ja) |
MX (2) | MX366968B (ja) |
RU (1) | RU2722829C9 (ja) |
SG (2) | SG11201401100UA (ja) |
TW (2) | TW201945034A (ja) |
WO (1) | WO2013047729A1 (ja) |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK2006381T3 (en) | 2006-03-31 | 2016-02-22 | Chugai Pharmaceutical Co Ltd | PROCEDURE FOR REGULATING ANTIBODIES BLOOD PHARMACOKINETICS |
HUE029635T2 (en) | 2007-09-26 | 2017-03-28 | Chugai Pharmaceutical Co Ltd | A method for modifying an isoelectric point of an antibody by amino acid substitution in CDR |
DK2708559T3 (en) | 2008-04-11 | 2018-06-14 | Chugai Pharmaceutical Co Ltd | Antigen-binding molecule capable of repeatedly binding two or more antigen molecules |
TWI812066B (zh) | 2010-11-30 | 2023-08-11 | 日商中外製藥股份有限公司 | 具有鈣依存性的抗原結合能力之抗體 |
KR20230005405A (ko) | 2011-02-25 | 2023-01-09 | 추가이 세이야쿠 가부시키가이샤 | FcγRIIb 특이적 Fc 항체 |
CA2839539C (en) | 2011-06-30 | 2021-06-08 | Chugai Seiyaku Kabushiki Kaisha | Heterodimerized polypeptide |
EP3939996A1 (en) | 2011-09-30 | 2022-01-19 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecule promoting disappearance of antigens having plurality of biological activities |
CN110680920A (zh) | 2011-09-30 | 2020-01-14 | 中外制药株式会社 | 诱导针对靶抗原的免疫应答的抗原结合分子 |
TW201817744A (zh) | 2011-09-30 | 2018-05-16 | 日商中外製藥股份有限公司 | 具有促進抗原清除之FcRn結合域的治療性抗原結合分子 |
CN108866101A (zh) | 2011-10-28 | 2018-11-23 | 瑞泽恩制药公司 | 人源化il-6和il-6受体 |
KR20140100532A (ko) | 2011-11-30 | 2014-08-14 | 추가이 세이야쿠 가부시키가이샤 | 면역 복합체를 형성하는 세포내로의 운반체(캐리어)를 포함하는 의약 |
CA2865158C (en) * | 2012-02-24 | 2022-11-01 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecule for promoting disappearance of antigen via fc.gamma.riib |
TWI797443B (zh) | 2012-05-30 | 2023-04-01 | 日商中外製藥股份有限公司 | 抗原結合分子之篩選或製造方法 |
EP3721900A1 (en) | 2012-08-24 | 2020-10-14 | Chugai Seiyaku Kabushiki Kaisha | Fcgammariib-specific fc region variant |
EP2896291B1 (en) * | 2012-09-13 | 2019-03-20 | Chugai Seiyaku Kabushiki Kaisha | Gene knock-in non-human animal |
CN105102618B (zh) | 2012-12-27 | 2018-04-17 | 中外制药株式会社 | 异源二聚化多肽 |
GB201302878D0 (en) * | 2013-02-19 | 2013-04-03 | Argen X Bv | Modified igG molecules |
TWI636062B (zh) | 2013-04-02 | 2018-09-21 | 中外製藥股份有限公司 | Fc region variant |
JP7060317B2 (ja) | 2013-12-04 | 2022-04-26 | 中外製薬株式会社 | 化合物の濃度に応じて抗原結合能の変化する抗原結合分子及びそのライブラリ |
TWI779010B (zh) | 2014-12-19 | 2022-10-01 | 日商中外製藥股份有限公司 | 抗肌抑素之抗體、含變異Fc區域之多胜肽及使用方法 |
EP3253778A1 (en) | 2015-02-05 | 2017-12-13 | Chugai Seiyaku Kabushiki Kaisha | Antibodies comprising an ion concentration dependent antigen-binding domain, fc region variants, il-8-binding antibodies, and uses therof |
EP3394098A4 (en) | 2015-12-25 | 2019-11-13 | Chugai Seiyaku Kabushiki Kaisha | ANTI-MYOSTATIN ANTIBODIES AND METHODS OF USE |
EP4353750A3 (en) * | 2016-06-24 | 2024-07-24 | iCell Gene Therapeutics LLC | Chimeric antigen receptors (cars), compositions and methods thereof |
EP3481864A1 (en) | 2016-07-08 | 2019-05-15 | Staten Biotechnology B.V. | Anti-apoc3 antibodies and methods of use thereof |
AU2017325654B2 (en) | 2016-08-02 | 2024-09-05 | Visterra, Inc. | Engineered polypeptides and uses thereof |
KR102538749B1 (ko) | 2016-08-05 | 2023-06-01 | 추가이 세이야쿠 가부시키가이샤 | Il-8 관련 질환의 치료용 또는 예방용 조성물 |
SG11201900746RA (en) * | 2016-08-12 | 2019-02-27 | Janssen Biotech Inc | Engineered antibodies and other fc-domain containing molecules with enhanced agonism and effector functions |
MA50958A (fr) | 2017-04-21 | 2020-10-14 | Staten Biotechnology B V | Anticorps anti-apoc3 et leurs méthodes d'utilisation |
US10538583B2 (en) | 2017-10-31 | 2020-01-21 | Staten Biotechnology B.V. | Anti-APOC3 antibodies and compositions thereof |
CN111315772A (zh) | 2017-10-31 | 2020-06-19 | 斯塔顿生物技术有限公司 | 抗apoc3抗体及其使用方法 |
WO2019098212A1 (en) | 2017-11-14 | 2019-05-23 | Chugai Seiyaku Kabushiki Kaisha | Anti-c1s antibodies and methods of use |
US20210324099A1 (en) * | 2018-08-10 | 2021-10-21 | Chugai Seiyaku Kabushiki Kaisha | Anti-cd137 antigen-binding molecule and utilization thereof |
EP3883964A1 (en) | 2018-11-20 | 2021-09-29 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Bispecific antibody targeting transferrin receptor 1 and soluble antigen |
EP3974446A4 (en) * | 2019-05-23 | 2023-08-02 | Xiamen University | ANTIBODIES TO HEPATITIS B VIRUS AND THEIR USE |
EP4086281A4 (en) * | 2019-12-30 | 2024-02-14 | China Immunotech (Beijing) Biotechnology Co., Ltd | IMPROVED T-CELL RECEPTOR STAR AND ITS USE |
CN112779224A (zh) * | 2021-01-27 | 2021-05-11 | 河南省华隆生物技术有限公司 | 一种表达细胞因子组合物的nk滋养层细胞及其制备方法和应用 |
CN112725273A (zh) * | 2021-01-27 | 2021-04-30 | 河南省华隆生物技术有限公司 | 一种nk细胞及其制备方法和应用 |
CN112725284A (zh) * | 2021-01-27 | 2021-04-30 | 河南省华隆生物技术有限公司 | 一种nk滋养层细胞及其应用 |
CN112852744A (zh) * | 2021-01-27 | 2021-05-28 | 河南省华隆生物技术有限公司 | 一种nk滋养层细胞及其制备方法和应用 |
CA3209059A1 (en) * | 2021-02-25 | 2022-09-01 | Leslie W. Tari | Variant fc domains and uses thereof |
CN113332417A (zh) * | 2021-04-27 | 2021-09-03 | 大汉生物科技(广东)有限公司 | Trem-2在制备肿瘤治疗药物和/或诊断试剂中的应用 |
CN114921436B (zh) * | 2022-03-03 | 2023-08-04 | 翌圣生物科技(上海)股份有限公司 | 末端脱氧核苷酸转移酶突变体、其编码基因、重组表达质粒和基因工程菌 |
CN114716547B (zh) * | 2022-05-18 | 2023-11-21 | 珠海丽禾医疗诊断产品有限公司 | 一种包括抗原结合结构域的结合蛋白及其生产方法和应用 |
CN115028685B (zh) * | 2022-06-24 | 2023-10-20 | 张金强 | 一种阳离子双环抗菌肽及其应用 |
CN115353566B (zh) * | 2022-09-14 | 2023-05-09 | 江苏睿源生物技术有限公司 | 用于检测白细胞介素1-β的抗体组合及其应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009125825A1 (ja) * | 2008-04-11 | 2009-10-15 | 中外製薬株式会社 | 複数分子の抗原に繰り返し結合する抗原結合分子 |
WO2010058860A1 (ja) * | 2008-11-18 | 2010-05-27 | 株式会社シノテスト | 試料中のc反応性蛋白質の測定方法及び測定試薬 |
Family Cites Families (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3773919A (en) | 1969-10-23 | 1973-11-20 | Du Pont | Polylactide-drug mixtures |
IE52535B1 (en) | 1981-02-16 | 1987-12-09 | Ici Plc | Continuous release pharmaceutical compositions |
HUT35524A (en) | 1983-08-02 | 1985-07-29 | Hoechst Ag | Process for preparing pharmaceutical compositions containing regulatory /regulative/ peptides providing for the retarded release of the active substance |
GB8607679D0 (en) | 1986-03-27 | 1986-04-30 | Winter G P | Recombinant dna product |
GB9015198D0 (en) | 1990-07-10 | 1990-08-29 | Brien Caroline J O | Binding substance |
JPH06508511A (ja) | 1990-07-10 | 1994-09-29 | ケンブリッジ アンティボディー テクノロジー リミティド | 特異的な結合ペアーの構成員の製造方法 |
DK0814159T3 (da) | 1990-08-29 | 2005-10-24 | Genpharm Int | Transgene, ikke-humane dyr, der er i stand til at danne heterologe antistoffer |
DE69229477T2 (de) | 1991-09-23 | 1999-12-09 | Cambridge Antibody Technology Ltd., Melbourn | Methoden zur Herstellung humanisierter Antikörper |
ES2313867T3 (es) | 1991-12-02 | 2009-03-16 | Medical Research Council | Produccion de anticuerpos anti-auto de repertorios de segmentos de anticuerpo expresados en la superficie de fagos. |
CA2124967C (en) | 1991-12-17 | 2008-04-08 | Nils Lonberg | Transgenic non-human animals capable of producing heterologous antibodies |
WO1993019172A1 (en) | 1992-03-24 | 1993-09-30 | Cambridge Antibody Technology Limited | Methods for producing members of specific binding pairs |
CA2140638C (en) | 1992-07-24 | 2010-05-04 | Raju Kucherlapati | Generation of xenogeneic antibodies |
US5648267A (en) | 1992-11-13 | 1997-07-15 | Idec Pharmaceuticals Corporation | Impaired dominant selectable marker sequence and intronic insertion strategies for enhancement of expression of gene product and expression vector systems comprising same |
CA2161351C (en) | 1993-04-26 | 2010-12-21 | Nils Lonberg | Transgenic non-human animals capable of producing heterologous antibodies |
GB9313509D0 (en) | 1993-06-30 | 1993-08-11 | Medical Res Council | Chemisynthetic libraries |
FR2707189B1 (fr) | 1993-07-09 | 1995-10-13 | Gradient Ass | Procédé de traitement de résidus de combustion et installation de mise en Óoeuvre dudit procédé. |
EP0731842A1 (en) | 1993-12-03 | 1996-09-18 | Medical Research Council | Recombinant binding proteins and peptides |
AU701342B2 (en) | 1994-07-13 | 1999-01-28 | Chugai Seiyaku Kabushiki Kaisha | Reconstituted human antibody against human interleukin-8 |
EP1709970A1 (en) | 1995-04-27 | 2006-10-11 | Abgenix, Inc. | Human antibodies against EGFR, derived from immunized xenomice |
AU2466895A (en) | 1995-04-28 | 1996-11-18 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
US6277375B1 (en) * | 1997-03-03 | 2001-08-21 | Board Of Regents, The University Of Texas System | Immunoglobulin-like domains with increased half-lives |
AU3657899A (en) * | 1998-04-20 | 1999-11-08 | James E. Bailey | Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity |
KR101155191B1 (ko) | 1999-01-15 | 2012-06-13 | 제넨테크, 인크. | 효과기 기능이 변화된 폴리펩티드 변이체 |
US6737056B1 (en) * | 1999-01-15 | 2004-05-18 | Genentech, Inc. | Polypeptide variants with altered effector function |
ES2571230T3 (es) | 1999-04-09 | 2016-05-24 | Kyowa Hakko Kirin Co Ltd | Procedimiento para controlar la actividad de una molécula inmunofuncional |
WO2002020565A2 (en) | 2000-09-08 | 2002-03-14 | Universität Zürich | Collections of repeat proteins comprising repeat modules |
EA013224B1 (ru) | 2000-10-06 | 2010-04-30 | Киова Хакко Кирин Ко., Лтд. | Клетки, продуцирующие композиции антител |
AU2002213251B2 (en) | 2000-10-16 | 2007-06-14 | Bristol-Myers Squibb Company | Protein scaffolds for antibody mimics and other binding proteins |
US7658921B2 (en) * | 2000-12-12 | 2010-02-09 | Medimmune, Llc | Molecules with extended half-lives, compositions and uses thereof |
DE60143544D1 (de) | 2000-12-12 | 2011-01-05 | Medimmune Llc | Moleküle mit längeren halbwertszeiten, zusammensetzungen und deren verwendung |
US20030003097A1 (en) | 2001-04-02 | 2003-01-02 | Idec Pharmaceutical Corporation | Recombinant antibodies coexpressed with GnTIII |
US20030157561A1 (en) | 2001-11-19 | 2003-08-21 | Kolkman Joost A. | Combinatorial libraries of monomer domains |
PT1411118E (pt) | 2001-06-22 | 2008-12-09 | Chugai Pharmaceutical Co Ltd | Inibidores da proliferação celular contendo um anticorpo anti-glipicano 3 |
WO2003029462A1 (en) | 2001-09-27 | 2003-04-10 | Pieris Proteolab Ag | Muteins of human neutrophil gelatinase-associated lipocalin and related proteins |
BRPI0214168B8 (pt) * | 2001-11-14 | 2021-05-25 | Centocor Inc | anticorpos anti-il-6, moléculas de ácido nucleico codificando os mesmos, vetores compreendendo as referidas moléculas, composições e formulações compreendendo os referidos anticorpos, bem como métodos de produção dos mesmos |
US20040132101A1 (en) | 2002-09-27 | 2004-07-08 | Xencor | Optimized Fc variants and methods for their generation |
AU2003242024A1 (en) | 2002-06-05 | 2003-12-22 | Chugai Seiyaku Kabushiki Kaisha | Method of constructing antibody |
AU2003256266A1 (en) | 2002-06-12 | 2003-12-31 | Genencor International, Inc. | Methods and compositions for milieu-dependent binding of a targeted agent to a target |
CN100347994C (zh) * | 2002-06-21 | 2007-11-07 | 汤姆森特许公司 | 可线性扩展的广播路由器装置 |
WO2004022595A1 (ja) | 2002-09-04 | 2004-03-18 | Chugai Seiyaku Kabushiki Kaisha | MRL/lprマウスを用いた抗体の作製 |
EP2364996B1 (en) | 2002-09-27 | 2016-11-09 | Xencor Inc. | Optimized FC variants and methods for their generation |
US7217797B2 (en) | 2002-10-15 | 2007-05-15 | Pdl Biopharma, Inc. | Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis |
US20090010920A1 (en) * | 2003-03-03 | 2009-01-08 | Xencor, Inc. | Fc Variants Having Decreased Affinity for FcyRIIb |
AU2004284090A1 (en) | 2003-10-24 | 2005-05-06 | Avidia, Inc. | LDL receptor class A and EGF domain monomers and multimers |
WO2005047327A2 (en) | 2003-11-12 | 2005-05-26 | Biogen Idec Ma Inc. | NEONATAL Fc RECEPTOR (FcRn)-BINDING POLYPEPTIDE VARIANTS, DIMERIC Fc BINDING PROTEINS AND METHODS RELATED THERETO |
WO2005070963A1 (en) | 2004-01-12 | 2005-08-04 | Applied Molecular Evolution, Inc | Fc region variants |
US20050260711A1 (en) | 2004-03-30 | 2005-11-24 | Deepshikha Datta | Modulating pH-sensitive binding using non-natural amino acids |
CN1997667A (zh) * | 2004-05-10 | 2007-07-11 | 宏观基因有限公司 | 人源化FcγRⅡB特异性抗体及其使用方法 |
NZ579543A (en) | 2004-07-09 | 2011-07-29 | Chugai Pharmaceutical Co Ltd | Anti-glypican 3 antibody |
SI2471813T1 (sl) * | 2004-07-15 | 2015-03-31 | Xencor, Inc. | Optimirane Fc variante |
EP2213683B1 (en) | 2004-08-04 | 2013-06-05 | Mentrik Biotech, LLC | Variant Fc regions |
US7659374B2 (en) | 2004-08-16 | 2010-02-09 | Medimmune, Llc | Eph receptor Fc variants with enhanced antibody dependent cell-mediated cytotoxicity activity |
KR20070057839A (ko) * | 2004-08-19 | 2007-06-07 | 제넨테크, 인크. | 변경된 이펙터 기능을 갖는 폴리펩티드 변이체 |
CA2587766A1 (en) | 2004-11-10 | 2007-03-01 | Macrogenics, Inc. | Engineering fc antibody regions to confer effector function |
AU2005304624B2 (en) * | 2004-11-12 | 2010-10-07 | Xencor, Inc. | Fc variants with altered binding to FcRn |
US20090061485A1 (en) | 2004-12-22 | 2009-03-05 | Chugai Seiyaku Kabushiki Kaisha | Method of Producing an Antibody Using a Cell in Which the Function of Fucose Transporter Is Inhibited |
AU2006230413B8 (en) | 2005-03-31 | 2011-01-20 | Xencor, Inc | Fc variants with optimized properties |
EP1870459B1 (en) * | 2005-03-31 | 2016-06-29 | Chugai Seiyaku Kabushiki Kaisha | Methods for producing polypeptides by regulating polypeptide association |
US8008443B2 (en) | 2005-04-26 | 2011-08-30 | Medimmune, Llc | Modulation of antibody effector function by hinge domain engineering |
BRPI0611445A2 (pt) * | 2005-05-09 | 2010-09-08 | Glycart Biotechnology Ag | molécula de ligação a antìgeno glicomanipulada, polinucleotìdeo, polipeptìdeo, vetor, célula hospedeira, método para produção, uso e composição farmacêutica |
US8191469B2 (en) | 2005-05-27 | 2012-06-05 | The Glad Products Company | Device and method for evacuating a storage bag |
US8163881B2 (en) * | 2005-05-31 | 2012-04-24 | The Board Of Regents Of The University Of Texas System | Immunoglobulin molecules with improved characteristics |
WO2007021841A2 (en) | 2005-08-10 | 2007-02-22 | Macrogenics, Inc. | Identification and engineering of antibodies with variant fc regions and methods of using same |
KR101379568B1 (ko) * | 2005-08-26 | 2014-04-08 | 로슈 글리카트 아게 | 변형된 세포 신호 활성을 가진 개질된 항원 결합 분자 |
DK1931709T3 (en) | 2005-10-03 | 2017-03-13 | Xencor Inc | FC VARIETIES WITH OPTIMIZED FC RECEPTOR BINDING PROPERTIES |
AU2007281284A1 (en) | 2006-08-02 | 2008-02-07 | The Uab Research Foundation | Methods and compositions related to soluble monoclonal variable lymphocyte receptors of defined antigen specificity |
US20100034194A1 (en) * | 2006-10-11 | 2010-02-11 | Siemens Communications Inc. | Eliminating unreachable subscribers in voice-over-ip networks |
AU2008203703C1 (en) | 2007-01-05 | 2014-04-03 | University Of Zurich | Method of providing disease-specific binding molecules and targets |
CN101679966B (zh) * | 2007-01-24 | 2014-03-12 | 协和发酵麒麟株式会社 | 具有增强的效应子活性的遗传重组抗体组合物 |
WO2008092117A2 (en) | 2007-01-25 | 2008-07-31 | Xencor, Inc. | Immunoglobulins with modifications in the fcr binding region |
US8877688B2 (en) | 2007-09-14 | 2014-11-04 | Adimab, Llc | Rationally designed, synthetic antibody libraries and uses therefor |
EP4269443A3 (en) | 2007-12-26 | 2023-12-27 | Xencor, Inc. | Fc variants with altered binding to fcrn |
JP2011519279A (ja) | 2008-05-01 | 2011-07-07 | アムジエン・インコーポレーテツド | 抗ヘプシジン抗体及び使用の方法 |
PE20110707A1 (es) * | 2008-10-14 | 2011-10-11 | Genentech Inc | Variantes de inmunoglobulinas |
JP2012515556A (ja) | 2009-01-23 | 2012-07-12 | バイオジェン・アイデック・エムエイ・インコーポレイテッド | 低下したエフェクタ機能を有する安定化Fcポリペプチドおよび使用方法 |
WO2010088444A1 (en) * | 2009-01-29 | 2010-08-05 | Medimmune, Llc | Human anti-il-6 antibodies with extended in vivo half-life and their use in treatment of oncology, autoimmune diseases and inflammatory diseases |
EP2233500A1 (en) | 2009-03-20 | 2010-09-29 | LFB Biotechnologies | Optimized Fc variants |
DK2435568T3 (da) | 2009-05-29 | 2014-09-08 | Morphosys Ag | Samling af syntetiske antistoffer til behandling af sygdom |
WO2011008517A2 (en) * | 2009-06-30 | 2011-01-20 | Research Development Foundation | Immunoglobulin fc polypeptides |
US8568726B2 (en) | 2009-10-06 | 2013-10-29 | Medimmune Limited | RSV specific binding molecule |
KR20120138241A (ko) | 2010-03-11 | 2012-12-24 | 화이자 인코포레이티드 | pH 의존성 항원 결합을 갖는 항체 |
TWI667257B (zh) | 2010-03-30 | 2019-08-01 | 中外製藥股份有限公司 | 促進抗原消失之具有經修飾的FcRn親和力之抗體 |
TWI812066B (zh) * | 2010-11-30 | 2023-08-11 | 日商中外製藥股份有限公司 | 具有鈣依存性的抗原結合能力之抗體 |
KR20230005405A (ko) * | 2011-02-25 | 2023-01-09 | 추가이 세이야쿠 가부시키가이샤 | FcγRIIb 특이적 Fc 항체 |
EP3939996A1 (en) * | 2011-09-30 | 2022-01-19 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecule promoting disappearance of antigens having plurality of biological activities |
WO2013047752A1 (ja) | 2011-09-30 | 2013-04-04 | 中外製薬株式会社 | 抗原の消失を促進する抗原結合分子 |
CN110680920A (zh) | 2011-09-30 | 2020-01-14 | 中外制药株式会社 | 诱导针对靶抗原的免疫应答的抗原结合分子 |
TW201817744A (zh) | 2011-09-30 | 2018-05-16 | 日商中外製藥股份有限公司 | 具有促進抗原清除之FcRn結合域的治療性抗原結合分子 |
SG11201401102VA (en) | 2011-09-30 | 2014-09-26 | Chugai Pharmaceutical Co Ltd | Ion concentration-dependent binding molecule library |
KR20140100532A (ko) | 2011-11-30 | 2014-08-14 | 추가이 세이야쿠 가부시키가이샤 | 면역 복합체를 형성하는 세포내로의 운반체(캐리어)를 포함하는 의약 |
TWI797443B (zh) | 2012-05-30 | 2023-04-01 | 日商中外製藥股份有限公司 | 抗原結合分子之篩選或製造方法 |
ES2856272T3 (es) | 2012-05-30 | 2021-09-27 | Chugai Pharmaceutical Co Ltd | Molécula de unión a antígenos para eliminar antígenos agregados |
CA2925256C (en) * | 2013-09-27 | 2023-08-15 | Chugai Seiyaku Kabushiki Kaisha | Method for producing polypeptide heteromultimer |
AU2015283270B9 (en) | 2014-06-30 | 2021-04-01 | Merck Patent Gmbh | Anti-TNFa antibodies with pH-dependent antigen binding |
TWI779010B (zh) | 2014-12-19 | 2022-10-01 | 日商中外製藥股份有限公司 | 抗肌抑素之抗體、含變異Fc區域之多胜肽及使用方法 |
PL3233921T3 (pl) | 2014-12-19 | 2022-01-10 | Chugai Seiyaku Kabushiki Kaisha | Przeciwciała anty-c5 i sposoby ich stosowania |
EP3253778A1 (en) | 2015-02-05 | 2017-12-13 | Chugai Seiyaku Kabushiki Kaisha | Antibodies comprising an ion concentration dependent antigen-binding domain, fc region variants, il-8-binding antibodies, and uses therof |
EP3279216A4 (en) * | 2015-04-01 | 2019-06-19 | Chugai Seiyaku Kabushiki Kaisha | PROCESS FOR PREPARING POLYPEPTIDE HETERO OLIGOMER |
-
2012
- 2012-09-28 CN CN201910948771.6A patent/CN110680920A/zh active Pending
- 2012-09-28 WO PCT/JP2012/075043 patent/WO2013047729A1/ja active Application Filing
- 2012-09-28 AU AU2012317395A patent/AU2012317395B2/en active Active
- 2012-09-28 US US14/347,448 patent/US10556949B2/en active Active
- 2012-09-28 MX MX2014003832A patent/MX366968B/es active IP Right Grant
- 2012-09-28 KR KR1020217007933A patent/KR102366029B1/ko active IP Right Grant
- 2012-09-28 KR KR1020227005032A patent/KR102492584B1/ko active IP Right Grant
- 2012-09-28 CN CN201280058767.9A patent/CN104093424A/zh active Pending
- 2012-09-28 SG SG11201401100UA patent/SG11201401100UA/en unknown
- 2012-09-28 CA CA2850322A patent/CA2850322C/en active Active
- 2012-09-28 EP EP12836146.6A patent/EP2752200B1/en active Active
- 2012-09-28 KR KR1020147011134A patent/KR102239138B1/ko active IP Right Grant
- 2012-09-28 TW TW108133038A patent/TW201945034A/zh unknown
- 2012-09-28 TW TW101135762A patent/TWI681970B/zh active
- 2012-09-28 CN CN201910951675.7A patent/CN110655578A/zh active Pending
- 2012-09-28 JP JP2013536417A patent/JP6352634B2/ja active Active
- 2012-09-28 CN CN201910947171.8A patent/CN110627902A/zh active Pending
- 2012-09-28 RU RU2014117504A patent/RU2722829C9/ru active
- 2012-09-28 SG SG10201510341XA patent/SG10201510341XA/en unknown
- 2012-09-28 BR BR112014007484A patent/BR112014007484A2/pt not_active Application Discontinuation
-
2014
- 2014-03-28 MX MX2019006188A patent/MX2019006188A/es unknown
- 2014-12-08 HK HK14112300.4A patent/HK1198813A1/xx unknown
-
2018
- 2018-06-07 JP JP2018109098A patent/JP7029355B2/ja active Active
-
2019
- 2019-12-17 US US16/717,064 patent/US20200115447A1/en active Pending
-
2021
- 2021-10-04 JP JP2021163532A patent/JP2022000472A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009125825A1 (ja) * | 2008-04-11 | 2009-10-15 | 中外製薬株式会社 | 複数分子の抗原に繰り返し結合する抗原結合分子 |
WO2010058860A1 (ja) * | 2008-11-18 | 2010-05-27 | 株式会社シノテスト | 試料中のc反応性蛋白質の測定方法及び測定試薬 |
Non-Patent Citations (3)
Title |
---|
IGAWA,T. ET AL.: "Antibody recycling by engineered pH-dependent antigen binding improves the duration of antigen neutr", NAT. BIOTECHNOL., vol. 28, no. 11, JPN6016022967, November 2010 (2010-11-01), pages 1203 - 1207, XP009153598, ISSN: 0004320656, DOI: 10.1038/nbt.1691 * |
MI,W. ET AL.: "Targeting the neonatal fc receptor for antigen delivery using engineered fc fragments.", J. IMMUNOL., vol. 181, no. 11, JPN6016022973, 1 December 2008 (2008-12-01), pages 7550 - 7561, XP002597457, ISSN: 0004320655 * |
YEUNG,Y.A. ET AL.: "Engineering human IgG1 affinity to human neonatal Fc receptor: impact of affinity improvement on pha", J. IMMUNOL., vol. 182, no. 12, JPN6016022970, 15 June 2009 (2009-06-15), pages 7663 - 7671, ISSN: 0004320654 * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7029355B2 (ja) | 標的抗原に対する免疫応答を誘導する抗原結合分子 | |
JP6998748B2 (ja) | 抗原の消失を促進する抗原結合分子 | |
JP6138108B2 (ja) | FcγRIIBを介して抗原の消失を促進する抗原結合分子 | |
JP6124800B2 (ja) | 免疫複合体を形成する細胞内への運搬体(キャリア)を含む医薬 | |
WO2012132067A1 (ja) | 抗原結合分子の血漿中滞留性と免疫原性を改変する方法 | |
RU2772771C1 (ru) | Антигенсвязывающая молекула для ускорения элиминации антигенов |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180706 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190603 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20190801 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191001 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200401 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200611 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20200611 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20200629 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20200706 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20200807 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20200812 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20201225 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20210331 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20210707 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20210811 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211004 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20211220 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20220120 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20220120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220218 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7029355 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |