JP2018148123A - 半導体装置及び半導体装置の製造方法 - Google Patents

半導体装置及び半導体装置の製造方法 Download PDF

Info

Publication number
JP2018148123A
JP2018148123A JP2017043926A JP2017043926A JP2018148123A JP 2018148123 A JP2018148123 A JP 2018148123A JP 2017043926 A JP2017043926 A JP 2017043926A JP 2017043926 A JP2017043926 A JP 2017043926A JP 2018148123 A JP2018148123 A JP 2018148123A
Authority
JP
Japan
Prior art keywords
semiconductor device
semiconductor layer
film
semiconductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017043926A
Other languages
English (en)
Inventor
勇二 指宿
Yuji Ibusuki
勇二 指宿
大作 岡元
Daisaku Okamoto
大作 岡元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Semiconductor Solutions Corp
Original Assignee
Sony Semiconductor Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Semiconductor Solutions Corp filed Critical Sony Semiconductor Solutions Corp
Priority to JP2017043926A priority Critical patent/JP2018148123A/ja
Priority to DE112018001202.6T priority patent/DE112018001202T5/de
Priority to CN201880015222.7A priority patent/CN110383491B/zh
Priority to PCT/JP2018/001323 priority patent/WO2018163605A1/ja
Priority to US16/488,739 priority patent/US11380710B2/en
Publication of JP2018148123A publication Critical patent/JP2018148123A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7846Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the lateral device isolation region, e.g. STI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823412MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/78654Monocrystalline silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

【課題】寄生容量を低減しつつ、高い信頼性を確保し、且つ、製造コストの増加を抑えることができる半導体装置を提供する。
【解決手段】埋込絶縁膜と、前記埋込絶縁膜上に設けられ、半導体素子が形成される半導体層とを有する基板と、前記半導体層上に設けられたゲート電極と、を備え、前記ゲート電極は、前記基板を上方から見た場合に、第1の方向に沿って前記半導体層の中央部から前記半導体層の端部を超えて延伸した帯状の第1の電極部を有し、前記第1の方向に沿って、前記第1の電極部及び前記基板を切断した場合の断面において、前記半導体層の端部の膜厚が、前記半導体層の中央部の膜厚に比べて厚い、半導体装置を提供する。
【選択図】図1C

Description

本開示は、半導体装置及び半導体装置の製造方法に関する。
無線通信等に用いられる通信装置においては、高周波通信信号を切り替える高周波アンテナスイッチが設けられている。このような高周波アンテナスイッチにおいては、取り扱う信号が高周波であってもデバイス特性が劣化しない、寄生容量の小さなデバイスであることが求められる。
そこで、従来、アンテナスイッチ用デバイスとしては、高周波特性が良いGaAsのような化合物半導体が用いられていた。しかしながら、このような化合物半導体デバイスは高価であり、化合物半導体デバイスを動作させるための周辺回路用デバイスが化合物半導体デバイスとは異なる別のチップ上に作成されることから、モジュール等に組み込む際の製造コストを抑えることが難しい。
そこで、近年、アンテナスイッチ用デバイスと、周辺回路用デバイスとを混載して同一のチップ上に作成可能なSOI(Silicon On Insulator)基板を用いたアンテナスイッチIC(Integrated Circuit)の開発が盛んになっている。SOI基板は、高抵抗支持基板の上に設けられた埋込絶縁膜(BOX層)と、当該埋込絶縁膜上にシリコンからなる半導体層(SOI層)とを有する基板のことをいう。このようなSOI基板を用いることにより、PN接合領域に生じる空乏層による寄生容量を低減することができることから、高周波特性の劣化が生じにくく、上述した化合物半導体と同等のデバイス特性を持つアンテナスイッチ用デバイスを作成することができる。さらには、このようなSOI基板を用いてアンテナスイッチ用デバイスを作成した場合には、同一基板上に周辺回路用デバイスを混載して形成することができる。なお、このようなSOI基板に作成されたデバイスの例としては、下記の特許文献1等に開示の半導体装置を挙げることができる。
特開2000−216391号公報 特開昭57−10266号公報
しかしながら、半導体装置の製造工程において実施される熱酸化処理により、SOI層が部分的に薄くなることがある。このように薄くなったSOI層の部分には、トランジスタの動作中に電界集中が生じ、当該トラジスタの信頼性を低下させる一因となる。また、このようなトランジスタの信頼性の低下を防ぐためにこれまで様々な対策が講じられてきたが、これら対策により、寄生容量が増加してトランジスタの高周波特性が低下したり、製造コストが大幅に増加したりしてしまうことがあった。
そこで、本開示では、寄生容量を低減しつつ、高い信頼性を確保し、且つ、製造コストの増加を抑えることができる半導体装置を提案する。
本開示によれば、埋込絶縁膜と、前記埋込絶縁膜上に設けられ、半導体素子が形成される半導体層とを有する基板と、前記半導体層上に設けられたゲート電極と、を備え、前記ゲート電極は、前記基板を上方から見た場合に、第1の方向に沿って前記半導体層の中央部から前記半導体層の端部を超えて延伸した帯状の第1の電極部を有し、前記第1の方向に沿って、前記第1の電極部及び前記基板を切断した場合の断面において、前記半導体層の端部の膜厚が、前記半導体層の中央部の膜厚に比べて厚い、半導体装置が提供される。
また、本開示によれば、埋込絶縁膜を有する基板上に、膜厚が均一な半導体層を形成し、前記半導体層の中央部を選択的に酸化して、前記半導体層の端部の膜厚を前記中央部の膜厚に比べて厚くすることを含む、半導体装置の製造方法が提供される。
以上説明したように本開示によれば、寄生容量を低減しつつ、高い信頼性を確保し、且つ、製造コストの増加を抑えることができる半導体装置を提供することができる。
なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の一実施形態に係る半導体装置10の平面図である。 図1Aに示した半導体装置10のA−A´における断面図である。 図1Aに示した半導体装置10のB−B´における断面図である。 図1Aに示した半導体装置10のC−C´における断面図である。 本開示の一実施形態に係る変形例に係る半導体装置10aの断面図である。 本開示の一実施形態に係る半導体装置の製造方法における各工程を説明する断面図(その1)である。 本開示の一実施形態に係る半導体装置の製造方法における各工程を説明する断面図(その2)である。 本開示の一実施形態に係る半導体装置の製造方法における各工程を説明する断面図(その3)である。 本開示の一実施形態に係る半導体装置の製造方法における各工程を説明する断面図(その4)である。 本開示の一実施形態に係る半導体装置の製造方法における各工程を説明する断面図(その5)である。 本開示の一実施形態に係る半導体装置の製造方法における各工程を説明する断面図(その6)である。 本開示の一実施形態に係る半導体装置の製造方法における各工程を説明する断面図(その7)である。 本開示の一実施形態に係る半導体装置の製造方法における各工程を説明する断面図(その8)である。 本開示の一実施形態に係る半導体装置の製造方法における各工程を説明する断面図(その9)である。 本開示の一実施形態に係る半導体装置の製造方法における各工程を説明する断面図(その10)である。 本開示の一実施形態に係る半導体装置の製造方法における各工程を説明する断面図(その11)である。 本開示の一実施形態に係る半導体装置の製造方法における各工程を説明する断面図(その12)である。 本開示の一実施形態に係る半導体装置の製造方法における各工程を説明する断面図(その13)である。 本開示の一実施形態に係る半導体装置の製造方法における各工程を説明する断面図(その14)である。 本開示の一実施形態に係る半導体装置の製造方法における各工程を説明する断面図(その15)である。 本開示の一実施形態に係る変形例1に係る半導体装置10bの断面図である。 本開示の一実施形態に係る変形例2に係る半導体装置10cの断面図である。 本開示の一実施形態に係る変形例3に係る半導体装置10dの断面図である。 本開示の一実施形態に係る変形例4に係る半導体装置10eの断面図である。 本開示の一実施形態に係る変形例5に係る半導体装置20aの平面図である。 図22Aに示した半導体装置20aのA−A´における断面図である。 本開示の一実施形態に係る変形例6に係る半導体装置20bの平面図である。 図23Aに示した半導体装置20bのC−C´における断面図である。 本開示の一実施形態に係る変形例7に係る半導体装置20cの平面図である。 図24Aに示した半導体装置20cのC−C´における断面図である。 SOI基板におけるSOI層の膜厚に対する寄生容量の関係を示した図である。 比較例に係る半導体装置90のA−A´断面の模式図である。 比較例に係る半導体装置90のB−B´断面の模式図である。
以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
また、本明細書および図面において、実質的に同一または類似の機能構成を有する複数の構成要素を、同一の符号の後に異なる数字を付して区別する場合がある。ただし、実質的に同一または類似の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。また、異なる実施形態の類似する構成要素については、同一の符号の後に異なるアルファベットを付して区別する場合がある。ただし、類似する構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。
また、以下の説明で参照される図面は、本開示の一実施形態の説明とその理解を促すための図面であり、わかりやすくするために、図中に示される形状や寸法、比などは実際と異なる場合がある。さらに、図中に示される半導体装置等は、以下の説明と公知の技術を参酌して適宜、設計変更することができる。また、以下の説明においては、半導体装置等の積層構造の上下方向は、半導体素子が設けられた基板上の面を上とした場合の相対方向に対応し、実際の重力加速度に従った上下方向とは異なる場合がある。
なお、説明は以下の順序で行うものとする。
1.本開示に係る実施形態を創作するにあたっての背景
2.第1の実施形態
2.1.半導体装置10の構成
2.2.半導体装置10の製造方法
2.3.変形例
3.まとめ
4.補足
<<1.本開示に係る実施形態を創作するにあたっての背景>>
以下に説明する本開示に係る実施形態は、アンテナスイッチ用デバイスと、周辺回路用デバイスとを混載して同一のチップ上に作成可能なSOI基板を用いて作成されたアンテナスイッチ用ICに関するものである。しかしながら、本開示に係る実施形態は、このような半導体装置に適用されることに限定されるものではなく、SOI基板を用いて作成された他の半導体装置に適用されてもよい。まずは、本開示に係る実施形態を説明する前に、本発明者らが本実施形態を創作するにあたっての背景を説明する。
SOI基板は、先に説明した容易に、高抵抗支持基板の上に設けられた埋込絶縁膜と、当該埋込絶縁膜上にシリコンからなる半導体層(以下、SOI層と呼ぶ)とを有する基板のことをいう。このようなSOI基板は、寄生容量を低減できることができることから、高周波信号のためのアンテナスイッチ用デバイスを作成する基板としては好適である。さらに、SOI基板におけるSOI層の膜厚に対する寄生容量の関係を示した図25からも明らかなように、SOI層が薄いほど、寄生容量を小さくすることができる。なお、図25においては、横軸がSOI層の膜厚を示し、図中右側に行くほど膜厚が厚くなる。また、縦軸が寄生容量を示し、図中上側に行くほど寄生容量が大きくなる。このようにSOI層を薄くして寄生容量を小さくすることは、トランジスタのオフ容量を低減することになり、ひいては、高周波アンテナスイッチ用デバイスにおいて重要な指標の1つである挿入損失を低減することになる。
しかしながら、SOI層の膜厚が100nm以下であるといった、SOI層が薄いSOI基板においては、製造工程において実施される熱酸化処理により、SOI層が部分的に薄くなる場合がある。以下に、比較例に係る半導体装置90のA−A´断面の模式図である図26A及び比較例に係る半導体装置90のB−B´断面の模式図である図26Bを参照して、部分的に薄くなったSOI層(拡散層)300について説明する。なお、以下に説明する比較例においては、半導体装置90に設けられたトランジスタ92は、本開示の実施形態に係るトランジスタ12と同様に、n型のMOS-FET(Metal−Oxide−Semiconductor Field−Effect−Transistor)であるとし、その平面構造においてH字型のゲート電極構造を持つ場合とする。従って、比較例の半導体装置90の平面図が横に倒したH字型のゲート電極600を持つものとして示されるとした場合、図26Aに示される断面は、横に倒したH字型のゲート電極600の中央を上記平面図中左右方向に沿って切断した断面に対応する。さらに、また、図26Bに示される断面は、上記平面図中左右方向の延びるゲート電極600に沿って切断した場合の断面に対応する。
比較例においては、図26A及び図26Bに示すように、SOI層300の端部が薄くなっている。詳細には、図26Aにおいては円Dで囲まれたSOI層300の端部、及び、図26Bにおいては円Eで囲まれたSOI層300の端部が、SOI層300の他の部分に比べて薄くなり、これら端部は尖がった形状を持っている。これは、半導体装置の製造の際、SOI層300が設けられた支持基板100に対して、SOI層300を分離するSTI(Shallow Trench Isolation)(図示省略)が作成されるが、この際に行われる熱酸化処理により、SOI層300の端部が薄くなったものと考えられる。さらに、ゲート絶縁膜500の作成においても熱酸化処理が行われることから、この熱酸化処理によっても、SOI層300の端部が薄くなったものと考えられる。上述の熱酸化処理においては、SOI層300の上層部が酸化されるだけでなく、SOI層300の下方に酸素が回り込み、SOI層300の下層部も酸化されるため、SOI層300の端部が薄くなり尖った形状を持つこととなる。
このように、SOI層300が部分的に薄くなり尖った形状を持つ端部には、トランジスタの動作中に電界集中が生じやすい。詳細には、図26Bの円Eに囲まれた領域に示すように、ゲート電極600とSOI層300の端部とが重なる部分において、電界集中が起きやすくなる。その結果、電界集中した箇所におけるゲート絶縁膜500の絶縁破壊が生じやすくなり、ゲート絶縁膜500の信頼性、すなわち、半導体装置90の信頼性が低下することとなる。
そこで、このような信頼性の低下を防ぐために、ゲート絶縁膜500の作成時等の熱酸化処理において酸化量を小さくするように制御することが考えられる。しかしながら、このようにすることで、SOI層300の端部が薄くなることは避けることができるが、ゲート絶縁膜500の膜厚等のようなデバイス設計の自由度に制約がかかることとなる。
そこで、上記特許文献2のように、ゲートを挟んでSOI層300の端部に位置するソース領域/ドレイン領域の膜厚を十分に厚く作成することが考えられる(Raised Source Drain構造)。しかしながら、この方法によれば、SOI層300の端部が薄くなることがないことから、信頼性が低下することはないものの、ソースとゲートとの間、及び、ドレインとゲートとの間の寄生容量が大きくなり、高周波特性が低下する。加えて、この方法においては、SOI層300の厚膜部分を作成するにあたっては、選択エピタキシャル成長を用いることから、製造コストが高くなり、さらには、製造にかかる時間も長くなる。
また、上述の特許文献1においては、ゲートを挟んでSOI層の端部に位置する厚膜部分にソース領域/ドレイン領域を形成し、さらにSOI層を分離するSTIを厚膜化することにより、SOI層の端部における絶縁破壊を防いでいる。当該特許文献1においては、ドレインコンタクト及びソースコンタクトをSOI層の厚膜部分上に設けているため、厚膜部分にコンタクトを高精度でパターニングしなくてはならない。従って、高精度のパターニングは求められるため、製造歩留まりを低下させることなる。また、トランジスタのレイアウトサイズを大きくすることにより、高精度のパターニングの必要はなくなるが、レイアウトサイズが大きくなることから、半導体装置の製造コストを増加させることにつながる。特に、複数のゲートをもつトランジスタにおいては、レイアウトサイズが大きくなりやすいことから、製造コストが大幅に増加することとなる。
このような状況において、本発明者らは、寄生容量を低減しつつ、高い信頼性を確保し、且つ、製造コストの増加を抑えることができる半導体装置を得ようと、鋭意検討を進めてきた。そして、本発明者らは、以下に説明する本開示の一実施形態を創作するに至った。詳細には、本開示の実施形態によれば、寄生容量を低減しつつ、高い信頼性を確保し、且つ、製造コストの増加を抑えることができる半導体装置を提供することができる。以下に、本発明者らが創作した本開示の一実施形態の詳細を説明する。
<<2.第1の実施形態>>
<2.1.半導体装置10の構成>
(平面構成)
まずは、本開示の実施形態に係る半導体装置10の平面構成について、図1Aを参照して説明する。図1Aは、本開示の一実施形態に係る半導体装置10の平面図である。なお、図1Aにおいては、絶縁膜202、絶縁膜400、絶縁膜802及びSTI204については、理解のために図示を省略している。また、以下に説明する本実施形態においては、トランジスタ12はn型のMOS-FETであるとし、その平面構造においてH字型のゲート電極構造をものとして説明する。しかしながら、本実施形態におけるトランジスタ12は、このような例に限定されるものではなく、他の構成を持つトランジスタであってもよい。
本実施形態に係る半導体装置10においては、図1Aの平面図に示すように、抵抗率が500Ωcm以上の高抵抗シリコンであるシリコン支持基板100上に、埋込絶縁膜200(図1B〜図1D参照)が設けられており、さらに、埋込絶縁膜200上に拡散層(半導体層)300が設けられている。
拡散層300には、トランジスタ12が設けられる。詳細には、図1Aに示すように、拡散層300上には、ゲート電極600と、ソース電極800aと、ドレイン電極800bと、ボディコンタクト電極800cとが設けられている。拡散層300上に設けられたゲート電極600は、ポリシリコンからなり、支持基板100の上方から見ると横に倒したH字の形状を持つ。詳細には、H字型のゲート電極600は、図1A中の中央に位置する、図中上下方向(第2の方向)に沿って延びる矩形状の電極部(第2の電極部)602を有する。さらに、ゲート電極600は、上記中央部の矩形状の電極部602を図中上下方向から挟み込むように、図1中左右方向(第1の方向)に延伸する、2つの帯状の配線部(第1の電極部)604を有している。また、上記2つの配線部604は、電極部602の中央で、上記電極部602と接続している。
さらに、図1Aに示されるように、本実施形態においては、ゲート電極600の上記配線部604は、拡散層300上を、その中央部から図中左右方向に沿って延伸しており、さらに拡散層300の端部を超えて図中左右方向に沿って延伸している。
また、拡散層300の中央に位置するゲート電極600の電極部602を左右から挟みこむように、金属膜からなるソース電極800aと、ドレイン電極800bとが設けられている。ソース電極800a及びドレイン電極800bは、トランジスタ12のソース領域及びドレイン領域と接続される配線として機能する。
そして、拡散層300は、所望の不純物が注入されたシリコン層からなる。詳細には、拡散層300のソース電極800a及びドレイン電極800bの下方及びその周辺には、リン、ヒ素等のn型の不純物が拡散しており、拡散層300の他の領域には、ホウ素等のp型の不純物が拡散している。
また、図1Aの右下に示されるように、拡散層300の右下には、ボディコンタクト電極800cが設けられている。当該ボディコンタクト電極800cは、基板浮遊効果の抑制するために、拡散層300の電位を固定、制御するための配線として用いられる。
また、拡散層300の周囲を取り囲むように、シリコン酸化膜等の絶縁膜が埋め込まれたSTI204(図1B〜図1D参照)が設けられ、拡散層300に設けられたトランジスタ12を、支持基板100上に設けられた他の素子から分離する。さらに、上記STI204に、引っ張り応力を持つ膜を埋め込むことにより、トランジスタ12のチャネルに引っ張り応力が生じるようにしてもよい。
(断面構成)
次に、本実施形態における半導体装置10の断面構成について、図1Bから図1Dを参照して説明する。図1Bは、図1Aに示した半導体装置10のA−A´における断面図であり、図1Cは、図1Aに示した半導体装置10のB−B´における断面図であり、さらに、図1Dは、図1Aに示した半導体装置10のC−C´における断面図である。
図1AのA−A´に沿って切断した際の半導体装置10の断面である図1Bに示すように、本実施形態に係る半導体装置10は、先に説明したように、高抵抗シリコンからなる支持基板100の上に設けられたシリコン酸化膜よりなる埋込絶縁膜200を有する。さらに、半導体装置10は、埋込絶縁膜200上に設けられたシリコン層からなる拡散層300を有している。すなわち、本実施形態においては、基板として上述したSOI基板を用いており、拡散層300が上述のSOI層に対応する。本実施形態においては、SOI基板を用いていることにより、トランジスタ12における寄生容量を低減することができる。なお、支持基板100は、半導体装置10の製造後に裏面を研削して薄膜化してもよく、支持基板100の膜厚は特に限定されるものではない。また、埋込絶縁膜200は、100nm〜2000nm程度の膜厚を持ち、好ましくは、トランジスタ12の高周波特性を考慮して、400nm程度の膜厚を持つことが好ましい。
拡散層300は、図1Bに示すように、中央部に膜厚の薄い薄膜部300aと、端部に、薄膜部300aに比べて膜厚の厚い厚膜部300bとを有する。ゲート電極600の下に位置する当該薄膜部300aの中央部は、p型の不純物が拡散したトランジスタ12のゲート領域302にあたる。また、当該ゲート領域302を図中左右から挟み込む薄膜部300aの領域は、n型の不純物が拡散した、ソース領域及びドレイン領域304にあたる。なお、ゲート領域302に隣接するソース領域及びドレイン領域304は、ゲート領域302から離れて位置するソース領域及びドレイン領域304における不純物濃度よりも、不純物濃度が薄いことが好ましい。
また、拡散層300の端部に位置する厚膜部300bは、拡散層300の中央部に位置する薄膜部300aに対して、厚くなっており、詳細には、薄膜部300aの2倍から10倍の膜厚を持つ。より具体的には、トランジスタ12の高周波特性と信頼性との両立を考慮して、厚膜部300bの膜厚は、140nm〜200nmであることが好ましく、薄膜部300aの膜厚は、20nm〜70nmであることが好ましい。
なお、先に説明した図1Aの平面図においては、拡散層300の中央部に位置する薄膜部については300aとして、拡散層300の端部に位置する厚膜部については300bとして、示されている。
さらに、本実施形態に係る半導体装置10においては、拡散層300の中央部に設けられたゲート領域302上にゲート絶縁膜500が設けられている。ゲート絶縁膜500は、シリコン酸化膜から形成されており、その膜厚については任意に選択することができる。
また、ゲート領域302の両側に位置する拡散層300の上面には、ゲート領域302と離隔して2つのシリサイド膜702が設けられている。さらに、シリサイド膜702上には、それぞれソースコンタクトビア700a及びソース電極800aと、ドレインコンタクトビア700b及びドレイン電極800bとが設けられている。すなわち、ソース及びドレインに対応するコンタクトビア700a、700bは、拡散層300の薄膜部300aの上に、ゲート電極600の電極部602を挟み込むように設けられている。薄膜部300a上にソース/ドレインコンタクトビア700a、700bを設けることにより、ソースとドレインとの間の寄生容量を低減することができる。なお、シリサイド膜702は、シリコンと他の元素との化合物膜であり、コンタクトビア700a、700b、ソース電極800a及びドレイン電極800bは、金属膜等から形成される。なお、本実施形態においては、これらシリサイド膜702、コンタクトビア700a、700b、ソース/ドレイン電極800a、800bの膜厚、大きさ、及び形状等については、特に限定されるものではない。また、本実施形態においては、半導体装置10の製造歩留まりを高く維持するために、製造ばらつき等を考慮してトランジスタ12のレイアウトすることが好ましい。
なお、上述の説明においては、ソースとドレインとの間の寄生容量を低減するために、ソース/ドレインコンタクトビア700a、700bは、拡散層300の薄膜部300aの上に設けられている。しかしながら、本実施形態においては、これに限定されるものではなく、上記寄生容量を低減する必要がない場合には、ソース/ドレインコンタクトビア700a、700bは、拡散層300の厚膜部300bの上に設けられていてもよい。
また、拡散層300の周囲には、トランジスタ12を他の素子から分離するために、STI(分離絶縁膜)204が設けられている。詳細には、STI204は、拡散層300の周囲を囲むように設けられたトレンチと、トレンチに埋め込まれたシリコン酸化膜とを有する。なお、本実施形態においては、STI204のトレンチの幅、深さ、形状等については、特に限定されるものではない。
また、ゲート電極600、拡散層300及びSTI204を覆うように、シリコン酸化膜からなる絶縁膜202が設けられている。さらに、上記絶縁膜202を覆うように更なる絶縁膜400が設けられている。加えて、絶縁膜400上であって、コンタクトビア700の間、及び、ソース電極800aとドレイン電極800bとの間には、シリコン酸化膜からなる絶縁膜802が設けられている。なお、本実施形態においては、絶縁膜202、絶縁膜400、802については、その材質、膜厚等は特に限定されるものではない。
次に、図1A中において左右に延びるゲート電極600に沿って切断した、言い換えると図1AのB−B´に沿って切断した断面図である、図1Cを参照して、本実施形態に係る半導体装置10を説明する。先に説明したように、当該断面図においても、半導体装置10は、支持基板100と、支持基板100上に設けられた埋込絶縁膜200と、埋込絶縁膜上に設けられた拡散層300とを有している。
図1Cの断面においても、拡散層300は、図1Bの断面と同様に、中央部に膜厚の薄い薄膜部300aと、端部に膜厚の厚い厚膜部300bとを有する。詳細には、当該断面においても、厚膜部300bは、薄膜部300aの2倍から10倍の膜厚を持ち、より具体的には、厚膜部300bの膜厚は、140nm〜200nmであることが好ましく、薄膜部300aの膜厚は、20nm〜70nmであることが好ましい。
また、図1Cの断面においては、拡散層300の薄膜部300a及び厚膜部300bの上には、ゲート絶縁膜500を介してゲート電極600が設けられている。図1Cに示すように、ゲート電極600は、拡散層300上を図中左右方向に延伸しており、さらに、拡散層300の端部を超えて図中左右方向に延伸している。すなわち、ゲート電極600は、拡散層300の薄膜部300a上だけでなく、厚膜部300b上も通過するように設けられている。
ところで、先に説明した比較例においては、ゲート電極600と拡散層300とが重なっている拡散層300の端部において、拡散層300の膜厚が薄いことから、トランジスタ92の動作の際、膜厚の薄い拡散層300の端部に電界集中が起きやすくなる。その結果、電界集中した箇所におけるゲート絶縁膜500の絶縁破壊が生じやすくなり、ゲート絶縁膜500の信頼性、すなわち、半導体装置90の信頼性が低下していた。それに対して、図1Cに示されているように、本実施形態に係る半導体装置10においては、ゲート電極600と拡散層300とが重なっている拡散層300の端部(厚膜部300b)において、拡散層300の膜厚が厚い。その結果、製造工程において熱酸化処理が施された場合であっても、拡散層300の端部の膜厚が薄くなることはない。従って、本実施形態によれば、拡散層300の端部の厚膜部300bの膜厚が薄くなることはないことから、トランジスタ12の動作の際に拡散層300の端部に電界集中が起きにくくなり、ゲート絶縁膜500の絶縁破壊も生じ難くなる。すなわち、本実施形態によれば、半導体装置10は高い信頼性を維持することができる。
次に、図1A中において上下方向に延びるC−C´に沿って切断した断面図である、図1Dを参照して、本実施形態に係る半導体装置10を説明する。当該断面は、ボディコンタクト電極800cを横切るように切断した場合に得られる断面である。先に説明したように、当該断面図においても、半導体装置10は、支持基板100と、支持基板100上に設けられた埋込絶縁膜200と、埋込絶縁膜上に設けられた拡散層300とを有している。
図1Dの断面においても、拡散層300は、図1Bの断面と同様に、中央部に膜厚の薄い薄膜部300aと、端部に膜厚の厚い厚膜部300bとを有する。詳細には、当該断面においても、厚膜部300bは、薄膜部300aの2倍から10倍の膜厚を持ち、より具体的には、厚膜部300bの膜厚は、140nm〜200nmであることが好ましく、薄膜部300aの膜厚は、20nm〜70nmであることが好ましい。
また、図1Dの断面においても、拡散層300の薄膜部300aの上には、ゲート絶縁膜500を介してゲート電極600が設けられている。
さらに、図1Dの左側に示すように、厚膜部300bの上面には、シリサイド膜702を介して、ボディコンタクトビア700cと、ボディコンタクト電極800cとが設けられている。なお、先に説明したように、シリサイド膜702は、シリコンと他の元素との化合物膜であり、コンタクトビア700c及びボディコンタクト電極800cは、金属膜等から形成される。また、本実施形態においては、これらシリサイド膜702、ボディコンタクトビア700c、ボディコンタクト電極800cの膜厚、大きさ、及び形状等については、特に限定されるものではない。
先に説明したように、ソース/ドレインコンタクトビア700a、700bは、拡散層300の薄膜部300aの上に設けられており、このようにして、ソースとドレインとの間の寄生容量を低減している。一方、ボディコンタクトビア700cは、拡散層300の厚膜部300bの上に設けられている。ボディ(拡散層300)とゲートとの間の寄生容量については、トランジスタ12の高周波特性に対して与える影響は小さいことから、ボディコンタクトコンタクトビア700cは、拡散層300の厚膜部300bの上に設けてもよい。
以上のように、本実施形態においては、拡散層300の端部の厚膜部300bにおいて膜厚が厚くなるように、拡散層300を形成している。その結果、製造工程において熱酸化処理が施された場合であっても、拡散層300の端部の膜厚が薄くなることはない。従って、本実施形態によれば、拡散層300の端部の厚膜部300bの膜厚が薄くなることはないことから、トランジスタ12の動作の際に拡散層300の端部に電界集中が起きにくくなり、ゲート絶縁膜500の絶縁破壊も生じ難くなる。すなわち、本実施形態によれば、半導体装置10は高い信頼性を維持することができる。
さらに、拡散層300に厚膜部300bを形成することにより、拡散層300の表面積が増加し、拡散層300から放熱されやすくなることから、トランジスタ12のチャネル領域の温度が低下することとなる。すなわち、拡散層300に厚膜部300bを形成することにより、トランジスタ12の熱抵抗を下げることができる。また、拡散層300に厚膜部300bを形成することにより、拡散層300の熱容量が増加することから、トランジスタ12は、瞬間的なサージに起因する静電破壊を生じにくくなる。
また、拡散層300の厚膜部300bは、膜厚が厚いことから抵抗が低くなり、高周波に対してはインダクタ成分として動作するようになる。さらに、当該インダクタ成分は、拡散層300下に位置する埋込絶縁膜200に起因する浮遊容量を持つことから、当該インダクタ成分と当該浮遊容量とで共振回路が形成される。当該共振回路は、所望の周波数を持つ高周波のフィルターとして機能することもできる。
さらには、拡散層300に厚膜部300bを形成することにより、拡散層300の反りが緩和され、トランジスタ12のチャネル領域に係る圧縮応力を緩和することもできる。その結果、チャネル領域の電子移動度低下を防ぐ事ができ、アンテナスイッチの挿入損失の劣化を防ぐ事ができる。
以上のように、本実施形態に係る半導体装置10は、寄生容量を低減しつつ、高い信頼性を確保することができることから、例えば、高周波アンテナスイッチIC(高周波アンテナ装置)、もしくは高周波アンテナスイッチデバイスを搭載するICに適用することができる。
なお、本実施形態においては、少なくとも、図1Cに示されるB−B´断面における、ゲート電極600と重なる拡散層300の端部に、膜厚の厚い厚膜部300bが設けられていればよい。特に、上記端部では、ゲート電極600と拡散層300とが広く重なっており、その膜厚が薄くなった場合には、電界集中によりゲート絶縁膜500の絶縁破壊が起きやすくなることから、少なくとも当該端部に厚膜部300bが設けられていることが好ましい。
また、本実施形態に係る半導体装置10は、同一支持基板100上に、トランジスタ12と少なくともゲート領域302の膜厚の異なる他のトランジスタ12aを有していてもよい。このような他のトランジスタ12aを有する半導体装置10aについて、図2を参照して説明する。図2は、本実施形態に係る変形例に係る半導体装置10aの断面図であって、詳細には、図1Bに対応する断面における断面図である。
図2に示すように、変形例に係る半導体装置10aは、トランジスタ12とゲート領域302(312)の膜厚の異なる他のトランジスタ12aを有する。トランジスタ12aは、基本的には、上述のトランジスタ12と同様の構造を有しているが、トランジスタ12aの有するゲート領域312は、トランジスタ12の有するゲート領域302に比べて膜厚が厚い。より具体的には、基板浮遊効果を抑えるために、トランジスタ12aの有するゲート領域312の膜厚は、厚いことが好ましく、具体的には140nm〜200nmであることが好ましい。さらに、当該トランジスタ12aが形成される拡散層310は、トランジスタ12の拡散層300と異なり、薄膜部300a及び厚膜部300bを持たず、均一な膜厚を持つような形態であってもよい。この場合、拡散層310は、拡散層300の薄膜部300aに比べて厚いことから、上述した熱酸化処理等により薄くなることはない。従って、トランジスタ12aは、上述したような電界集中を避けることができることから、高い信頼性を有する。なお、当該トランジスタ12aは、例えば、高周波特性を考慮しなくてもよい周辺回路用デバイスとして用いることができる。すなわち、本実施形態においては、同一の支持基板100上に周辺回路用デバイスを混載して形成することができることから、製造コストの増加を抑えることができる。
<2.2.半導体装置10の製造方法>
次に、図1Aから図1Dに示される本開示の実施形態に係る半導体装置10の製造方法について、図3から図17を参照して説明する。図3から図17は、本開示の一実施形態に係る半導体装置の製造方法における各工程を説明する断面図であって、詳細には、図1Bに示される断面図に対応するものである。
まず、本実施形態に係る製造方法においては、図3に示すように、支持基板100上に、シリコン酸化膜からなる、膜厚が100nm〜2000nm、好ましくは400nmである埋込絶縁膜200を形成する。さらに、埋込絶縁膜200上に、膜厚が30nm〜400nm、好ましくは175nmのシリコン層320を形成する。このようにして、支持基板100、埋込絶縁膜200及びシリコン層320からなるSOI基板を得ることができる。なお、上述の埋込絶縁膜200及びシリコン層320の形成方法は、特に限定されるものではなく、既知の各種の成膜方法を用いることができる。
次に、図4に示すように、シリコン層320の上面に対して酸化処理を行うことにより、膜厚が10nm〜100nm、好ましくは10nmであるシリコン酸化膜900を形成する。なお、上述の酸化処理の方法は、特に限定されるものではなく、既知の各種の酸化処理の方法を用いることができる。さらに、シリコン酸化膜900上に、CVD(Chemical Vapor Deposition)により、膜厚が10nm〜300nm、好ましくは100nmであるシリコン窒化膜902を形成する。
そして、図5に示すように、シリコン窒化膜902の全面にレジストを塗布し、フォトリソグラフィーを用いて露光することにより、レジストパターン904を形成する。当該レジストパターン904は、シリコン層320の膜厚を薄くする箇所に開口部を持つパターンを有する。当該パターンは、シリコン層320の薄膜部(上述の薄膜部300aに対応する)と厚膜部(上述の厚膜部300bに対応する)との間に位置する膜厚が徐々に変化する領域の長さ、すなわち、薄膜部と厚膜部との間の距離が400nm程度になるように考慮したレイアウトパターンとなっていることが好ましい。
その後、上記レジストパターン904をマスクとして用いて、シリコン窒化膜902及びシリコン酸化膜900に対してドライエッチング処理を行う。このようにして、図6に示すように、シリコン層320の上面の一部が露出した開口部906を得た後に、レジストパターン904を除去する。なお、シリコン酸化膜900に対してドライエッチング処理を施した際に、上記開口部906から露出するシリコン層320の上面の一部をエッチングしてもよい。
次に、図7に示すように、上記開口部906から露出するシリコン層320の一部に対して選択的な酸化処理(LOCal Oxidation of Silicon;LOCOS酸化処理)を行う。この際、開口部906に位置するシリコン層320の膜厚が、所望の膜厚になるように、酸化処理によりシリコン層320が酸化される酸化量を制御する。より具体的には、最終的に、シリコン層320の中央部320aの膜厚(すなわち、拡散層300の薄膜部300aの膜厚)を60nmとする場合には、図7の工程においては、開口部906に位置するシリコン層320の膜厚が80nm程度になるように制御することが好ましい。このようにして、シリコン層320については部分的に薄くなる。
すなわち、本実施形態においては、膜厚が均一なシリコン層320を形成し、シリコン層320の中央部320aを選択的に酸化することにより、シリコン層320の端部320bの膜厚を、中央部320aの膜厚に比べて厚くなるようにしている。ところで、先に説明したように、上記特許文献2では、選択エピタキシャル成長を用いて、上述のような構造を持つシリコン層を形成していたが、この場合、製造コスト及び製造時間が増加してしまっていた。しかしながら、本実施形態においては、選択的な酸化処理を行うことにより上述のような構造を持つシリコン層320を形成している。本実施形態によれば、当該酸化処理は選択エピタキシャル成長に比べて安価で、短時間で行うことができることから、半導体装置10の製造における製造コスト及び製造時間の増加を抑えることができる。
続いて、シリコン窒化膜902をリン酸により除去し、さらに、シリコン酸化膜900をフッ酸等により除去すると、図8に示すようなシリコン層320、すなわち、中央部320aが薄くなっているシリコン層320を得ることができる。
さらに、図9に示すように、シリコン層320の上面を酸化処理することにより、シリコン層320上に、膜厚が10nm〜100nm、好ましくは10nmであるシリコン酸化膜910を形成する。さらに、シリコン酸化膜910上に、CVDを用いて、膜厚が10nm〜400nm、好ましくは210nmであるシリコン窒化膜912を形成する。次いで、シリコン窒化膜912の全面にレジストを塗布し、フォトリソグラフィーを用いて露光することにより、レジストパターン914を形成する。当該レジストパターン914は、トランジスタ12を他の素子から分離するためのSTI204を形成する箇所に開口部を持つパターンを有する。
その後、レジストパターン914をマスクとして、シリコン窒化膜912及びシリコン酸化膜910に対してドライエッチング処理を行う。さらに、レジストパターン914に覆われていない箇所のシリコン層320の上面を露出させた後に、レジストパターン914の除去を行う。なお、本実施形態においては、レジストパターン914の除去の方法は、特に限定されるものではなく、アッシング等の既知の各種の除去方法を用いることができる。そして、上述とは異なる条件のドライエッチング処理により、シリコン窒化膜912をマスクとしてシリコン層320をエッチングすることによって、図10に示される構造を得ることができる。
続いて、図11に示すように、HDP(High Density Plasma)等を用いて、シリコン層320の両側に設けられたトレンチ内がシリコン酸化膜920によって埋め込まれるように、支持基板100の上方全体にシリコン酸化膜920を形成する。この際、シリコン酸化膜920は、シリコン窒化膜912の上面を覆うように形成されてもよく、シリコン酸化膜920の膜厚は、50nm〜1000nm、好ましくは400nmとなるように形成される。
次に、シリコン酸化膜920の全面にレジストを塗布し、フォトリソグラフィーを用いて露光することにより、レジストパターン924を形成する。当該レジストパターン924は、シリコン層320の中央部320a上に位置する除去されるシリコン酸化膜910及びシリコン窒化膜912に対応する箇所に開口部916を持つパターンを有する。この際、上記開口部916は、シリコン層320の中央部320aの上方に広がり、さらに、シリコン層320の端部320bのシリコン層320の膜厚の厚い厚膜部にまで広がっていることが好ましい。
そして、レジストパターン924をマスクとして、シリコン酸化膜920に対しドライエッチング処理を施すことにより、シリコン酸化膜920を除去する。このようにすることで、図12に示される構造を得ることができる。なお、後に実施することとなるCMP(Chemical Mechanical Polishing)の条件によっては、中央部320a、及び、中央部320aと端部320bとの間のシリコン層320の膜厚が徐々に変化する領域の上方にシリコン酸化膜920が残存してしまう可能性がある。そこで、このようなシリコン酸化膜920の残存を避けるために、上述のドライエッチング処理は、シリコン窒化膜912もエッチングされる程度のオーバーエッチング条件で実施することが好ましい。
次に、図13に示すように、レジストパターン924を除去する。
さらに、支持基板100の上面にCMPを用いて平坦化処理を施し、図14に示される構造を得ることができる。なお、平坦化されたシリコン酸化膜920は、素子分離のためのSTI204を形成することとなる。
続いて、シリコン窒化膜912をリン酸により除去し、さらに、シリコン酸化膜910をフッ酸等により除去すると、図15に示すような構造を得ることができる。図15においては、シリコン層320は、STI204のシリコン酸化膜920により周囲が囲まれており、さらに、その中央部320aの膜厚は、その端部320bに比べて薄くなっている。ここで、必要に応じて、例えばイオンインプランテーションによって不純物をシリコン層320に注入してもよい。この際、シリコン層320の上面をパターニングされたレジストで覆うことにより、シリコン層320の所望の部分に不純物を注入してもよい。
さらに、シリコン層320及びSTI204上に、シリコン酸化膜からなるゲート絶縁膜500を形成する。また、図16に示すように、ゲート絶縁膜500上の全面にポリシリコン膜を成膜し、さらに、エッチング等を用いて当該ポリシリコン膜を任意の形状にパターニングすることにより、ゲート電極600を形成する。
続いて、ゲート電極600をマスクとして、シリコン層320にイオンインプランテーションによって不純物を注入することにより、拡散層300を形成する。さらに、拡散層300のゲート領域302の周囲に、上述のイオンインプランテーションよりは不純物濃度が薄くなるように所望の不純物を注入し、拡散層300中にLDD(Lightly Doped Drain)領域340を形成する。このようにして、図17に示される構造を得ることができる。なお、LDD領域340を形成した後に、上述のイオンインプランテーションを行ってもよい。
さらに、ゲート電極600をマスクとして、エッチングを行うことにより、ゲート絶縁膜500に対してパターニングを行う。その後、露出した拡散層300の300aの上面であって、ゲート電極600の両側のゲート電極600から離隔した位置にシリサイド膜702を形成してもよい。なお、本実施形態においては、上述のシリサイド膜702の形成方法は、特に限定されるものではなく、既知の各種の形成方法を用いることができる。
続いて、拡散層300、STI204、及びゲート電極600上に、順次、絶縁膜202、絶縁膜400及び絶縁膜802を形成する。そして、絶縁膜802から、絶縁膜400及び絶縁膜202を貫きシリサイド膜702まで到達するコンタクトビア700を形成する。この際、本実施形態においては、広い薄膜部300a上に、ソースコンタクトビア700とドレインコンタクトビア700とを所定の距離だけ離隔して設けることができる。従って、ソースコンタクトビア700とドレインコンタクトビア700とを高精度でパターニングすることを避けることができることから、製造歩留まりの低下を避けることができる。また、ソース/ドレインコンタクトビア700を互いに所定の距離だけ離隔して設けることができることから、特に、複数のゲートを持つトランジスタにおいて、トランジスタのレイアウトサイズの増加を抑え、ひいては製造コストの増加を抑えることができる。
さらに、コンタクトビア700上に、ソース電極800a及びドレイン電極800bをそれぞれ形成する。この際、上述の絶縁膜202、絶縁膜400、絶縁膜802、コンタクトビア700及びソース/ドレイン電極800a、800bの形成方法は、特に限定されるものではなく、半導体装置の製造方法において一般的に用いられている形成方法を用いることができる。さらに、これらソース電極800a及びドレイン電極800bの上に、更なる金属膜を形成してもよい。このようにして、図1Aから図1Dに示される本開示の実施形態に係る半導体装置10を得ることができる。
以上のように、本実施形態に係る半導体装置10は、半導体装置の製造方法において一般的に用いられている既知の各種方法を組み合わせて製造することができる。さらには、これら方法は、安価で、且つ、短時間に実施することができることから、本実施形態に係る半導体装置10の製造方法によれば、製造コストの増加を抑えることができる。
<2.3.変形例>
なお、上述した本開示の実施形態に係る半導体装置10は、以下のように変形することもできる。以下に、本実施形態の変形例1〜7を、図18から図24Bを参照して説明する。なお、変形例1から4に係るトランジスタ12は、上述の実施形態と同様に、H字型のゲート電極600を持つ。
(変形例1)
まずは、変形例1を、図18を参照して説明する。図18は、本実施形態に係る変形例1に係る半導体装置10bの断面図であり、図1Bに示される断面に対応する断面図である。図18に示されるように、変形例1に係る半導体装置10bは、支持基板100上にポリシリコンからなるシリコン層(他の半導体層)720をさらに有する。そして、本変形例1においては、当該シリコン層720上に、上述した埋込絶縁膜200が設けられ、さらに、当該埋込絶縁膜上に拡散層300が設けられている。さらに、当該拡散層300は、上述の実施形態と同様に、中央部に位置する薄膜部300aと、端部に位置する厚膜部300bとを有する。すなわち、本変形例においては、支持基板100上にトラップリッチ層としてシリコン層720を有するトラップリッチ型SOI基板を用いた場合であっても、薄膜部300aと厚膜部300bとを有する拡散層300を適用することができる。
ところで、高周波用デバイスを作成するために用いられる支持基板100の比抵抗は、高周波の歪みや回り込みを低減するために、高いことが望ましいと言われている。しかしながら、SOI基板においては、先に説明したように、支持基板100上にシリコン酸化膜からなる埋込絶縁膜200が設けられている。そして、埋込絶縁膜200からの電荷等により、当該埋込絶縁膜200と支持基板100との間の界面に反転層が形成されやすく、支持基板100(詳細には、支持基板100の表面近傍領域)の比抵抗が低下することがある。そこで、このような反転層の形成を避けるために、電荷をトラップするシリコン層720が設けられている基板は、トラップリッチ型SOI基板と呼ばれている。このようなトラップリッチ型SOI基板を用いることにより、より高周波特性を向上させることができる。
(変形例2)
次に、変形例2を、図19を参照して説明する。図19は、本実施形態に係る変形例2に係る半導体装置10cの断面図であり、図1Bに示される断面に対応する断面図である。図19に示されるように、変形例2に係る半導体装置10cは、支持基板100上に、シリコン酸化膜からなる埋込絶縁膜210と、ポリシリコンからなるシリコン層720とさらに有する。そして、本変形例1においては、上述の変形例1と同様に、当該シリコン層720上に、上述した埋込絶縁膜200が設けられ、さらに、当該埋込絶縁膜200上に拡散層300が設けられている。本変形例においては、上述の変形例1のシリコン層720を支持基板100から分離するために、上記埋込絶縁膜210を設けている。そして、当該拡散層300は、上述の実施形態と同様に、中央部に位置する薄膜部300aと、端部に位置する厚膜部300bとを有する。すなわち、本変形例においては、支持基板100上にBOX層として2つの埋込絶縁膜200、210を有する2段BOX層型のSOI基板を用いた場合であっても、薄膜部300aと厚膜部300bとを有する拡散層300を適用することができる。
なお、図19に示すような2段BOX層型のSOI基板は、支持基板100とシリコン層720との間に埋込絶縁膜210を有するため、高い温度での加熱処理を行っても、図18に示すトラップリッチ型SOI基板に比べて、シリコン層720が再結晶し難い。例えば、シリコン層720が再結晶することにより単結晶化した場合には、シリコン層720からの不純物が支持基板100に到達して、支持基板100の比抵抗が低下することがある。しかしながら、2段BOX層型のSOI基板であれば、シリコン層720が再結晶し難いことから、上述のようなメカニズムに起因して支持基板100の比抵抗が低下することを避けることができる。その結果、2段BOX層型のSOI基板上にトランジスタを設けた場合には、高温加熱処理を行っても、支持基板100の比抵抗を高く維持することができることから、当該トランジスタの高周波特性を良好に維持することができる。
このように、本変形例1及び2によれば、本実施形態は、様々なタイプのSOI基板に適用することが可能である。
(変形例3)
次に、変形例3を、図20を参照して説明する。図20は、本実施形態に係る変形例3に係る半導体装置10dの断面図であり、図1Bに示される断面に対応する断面図である。図20に示されるように、変形例3に係る半導体装置10dにおいては、シリサイド膜702は、拡散層300の薄膜部300aの上面だけでなく、厚膜部300bの上面も覆うように設けられていてもよい。このようにシリサイド膜702を広く設けることで、ソース領域/ドレイン領域304とコンタクトビア700との間の抵抗値を小さくすることができることから、トランジスタ12がより高速に動作することが可能となる。
(変形例4)
次に、変形例4を、図21を参照して説明する。図21は、本実施形態に係る変形例4に係る半導体装置10eの断面図であり、図1Dに示される断面に対応する断面図である。図21に示されるように、変形例4に係る半導体装置10eにおいては、ボディコンタクト電極800cに係るコンタクトビア700は、拡散層300の厚膜部300bの上面上ではなく、薄膜部300aの上面上に設けられてもよい。
ところで、以上の変形例1〜4においては、トランジスタ12はH字型のゲート電極600を持つものとして説明した。しかしながら、本実施形態においては、ゲート電極600はこのような形状の限定されるものではなく、他の形状であってもよい。すなわち、本実施形態においては、トランジスタのゲート構造を自由に設計することができる。そこで、以下に様々な形状のゲート電極600の変形例について説明する。
(変形例5)
まずは、図22A及び図22Bを参照して、本開示の一実施形態の変形例5に係る半導体装置20aを説明する。図22Aは、本実施形態に係る変形例5に係る半導体装置20aの平面図である。なお、図22Aにおいては、絶縁膜202、絶縁膜400、絶縁膜802及びSTI204については、理解のために図示を省略している。図22Bは、図22Aに示した半導体装置20aのA−A´における断面図である。
図22Aに示されるように、変形例5に係る半導体装置20aは、支持基板100の上方から見て、はしご形状のゲート電極600aを有している。詳細には、ゲート電極600aは、図22A中を左右方向に沿って並ぶ複数の矩形型の電極部602と、これら電極部602を図22A中の上下方向に沿って挟み込み、複数の電極部602を互いに接続する2つの配線部604とを有する。すなわち、複数の電極部602と複数の配線部604とにより、はしご状のゲート電極600aは形成される。さらに、各電極部602を図22A中の左右方向から挟み込むように、ソース電極/ドレイン電極800が設けられている。
また、本変形例においても、図22Bに示すように、拡散層300は、上述の実施形態と同様に、中央部に位置する薄膜部300aと、端部に位置する厚膜部300bとを有する。本変形例においても、ゲート領域302、及びソース領域/ドレイン領域304は、拡散層300の薄膜部300aに設けられている。このように、複数のゲート領域302を持つ場合であっても、薄膜部300aと厚膜部300bとを有する拡散層300を適用することができる。
(変形例6)
次に、図23A及び図23Bを参照して、本開示の一実施形態の変形例6に係る半導体装置20bを説明する。図23Aは、本実施形態に係る変形例6に係る半導体装置20bの平面図である。なお、図23Aにおいては、絶縁膜202、絶縁膜400、絶縁膜802及びSTI204については、理解のために図示を省略している。図23Bは、図23Aに示した半導体装置20bのC−C´における断面図である。
図23Aに示されるように、変形例6に係る半導体装置20bは、支持基板100の上方から見て、T字型形状のゲート電極600bを有している。詳細には、ゲート電極600bは、図23A中の上下方向に沿って延びる矩形型の電極部602と、図23A中の左右方向に沿って延びる矩形状の配線部604とを有している。さらに、配線部604が、配線部604の中央部分で電極部602と接続することにより、T字型形状のゲート電極600bをなしている。また、電極部602を図23A中の左右方向から挟み込むように、ソース電極/ドレイン電極800a、800bが設けられている。
また、本変形例においても、図23Bに示すように、拡散層300は、上述の実施形態と同様に、中央部に位置する薄膜部300aと、端部に位置する厚膜部300bとを有する。本変形例においても、ゲート領域302、及びソース領域/ドレイン領域304は、拡散層300の薄膜部300aに設けられている。このように、T字型のゲート電極600bを持つ場合であっても、薄膜部300aと厚膜部300bとを有する拡散層300を適用することができる。
(変形例7)
次に、図24A及び図24Bを参照して、本開示の一実施形態の変形例7に係る半導体装置20cを説明する。図24Aは、本実施形態に係る変形例7に係る半導体装置20cの平面図である。なお、図24Aにおいては、絶縁膜202、絶縁膜400、絶縁膜802及びSTI204については、理解のために図示を省略している。図24Bは、図24Aに示した半導体装置20cのC−C´における断面図である。
図24Aに示されるように、変形例7に係る半導体装置20cは、支持基板100の上方から見て、I字型形状のゲート電極600cを有している。詳細には、ゲート電極600cは、図24A中の上下方向に沿って延びる矩形型の形状を持つ。さらに、ゲート電極600cを図24A中の左右方向から挟み込むように、ソース電極/ドレイン電極800a、800bが設けられている。
また、本変形例においては、拡散層300は、上述の実施形態と同様に、中央部に位置する薄膜部300aと、端部に位置する厚膜部300bとを有する。本変形例においても、ゲート領域302、及びソース領域/ドレイン領域304は、拡散層300の薄膜部300aに設けられている。このように、I字型のゲート電極600cを持つ場合であっても、薄膜部300aと厚膜部300bとを有する拡散層300を適用することができる。
<<3.まとめ>>
以上のように、本実施形態においては、寄生容量を低減しつつ、高い信頼性を確保し、且つ、製造コストの増加を抑えることができる半導体装置を提供することができる。
詳細には、本実施形態においては、寄生容量を低減するために、拡散層300の膜厚が薄い、SOI基板を用いて半導体装置10を形成している。さらに、本実施形態においては、ゲート電極600と拡散層300とが重なっている拡散層300の端部の厚膜部300bにおいて膜厚が厚くなるように、拡散層300を形成している。このようにすることで、製造工程において熱酸化処理が施された場合であっても、拡散層300の端部の膜厚が薄くなることはない。従って、本実施形態によれば、拡散層300の端部の膜厚が薄くなることがないことから、半導体装置10の動作の際、拡散層300の端部に電界集中が起きにくくなり、ゲート絶縁膜500の絶縁破壊も生じ難くなる。その結果、実施形態によれば、高い信頼性を確保した半導体装置を提供することができる。
さらに、本実施形態によれば、半導体装置の製造方法において一般的に用いられている既知の各種方法を組み合わせて用いることで容易に半導体装置10を得ることができることから、製造コストの増加を抑えることができる。
<<4.補足>>
以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
なお、以下のような構成も本開示の技術的範囲に属する。
(1)
埋込絶縁膜と、前記埋込絶縁膜上に設けられ、半導体素子が形成される半導体層とを有する基板と、
前記半導体層上に設けられたゲート電極と、
を備え、
前記ゲート電極は、前記基板を上方から見た場合に、第1の方向に沿って前記半導体層の中央部から前記半導体層の端部を超えて延伸した帯状の第1の電極部を有し、
前記第1の方向に沿って、前記第1の電極部及び前記基板を切断した場合の断面において、前記半導体層の端部の膜厚が、前記半導体層の中央部の膜厚に比べて厚い、
半導体装置。
(2)
前記ゲート電極は、前記基板を上方から見た場合に、前記第1の電極部から、前記第1の方向とは垂直に交わる第2の方向に沿って延伸する第2の電極部をさらに有する、
上記(1)に記載の半導体装置。
(3)
前記第1の方向に沿って、前記第2の電極部及び前記基板を切断した場合において、前記半導体層の端部の膜厚が、前記半導体層の中央部の膜厚に比べて厚い、
上記(2)に記載の半導体装置。
(4)
前記半導体層の前記中央部の上方に、前記基板を上方から見た場合に、前記第2の電極部を挟み込むように設けられたソースコンタクトビア及びドレインコンタクトビアをさらに備える、上記(3)に記載の半導体装置。
(5)
前記半導体層の前記中央部と前記ソースコンタクトビアとの間、及び、前記半導体層と前記ドレインコンタクトビアとの間に設けられたシリサイド膜をさらに備える、上記(4)に記載の半導体装置。
(6)
前記シリサイド膜は、前記半導体層の前記端部も覆っている、上記(5)に記載の半導体装置。
(7)
前記第2の方向に沿って、前記第2の電極部及び前記基板を切断した場合において、前記半導体層の端部の膜厚が、前記半導体層の中央部の膜厚に比べて厚い、上記(2)に記載の半導体装置。
(8)
前記ゲート電極は複数の前記第2の電極部を有する、上記(2)に記載の半導体装置。
(9)
前記半導体層の前記中央部の上方に、前記基板を上方から見た場合に、前記第1の方向とは垂直に交わる第2の方向に沿って、前記第1の電極部を挟み込むように設けられたソースコンタクトビア及びドレインコンタクトビアをさらに備える、上記(1)に記載の半導体装置。
(10)
前記ゲート電極は、前記基板の上方から見て、H字型、T字型、I字型、又は、はしご型のいずれかの形状を持つ、上記(1)に記載の半導体装置。
(11)
前記半導体素子を分離する分離絶縁膜をさらに備え、
前記分離絶縁膜は、前記前記基板を上方から見て前記半導体層を囲むように設けられる、
上記(1)〜(10)のいずれか1つに記載の半導体装置。
(12)
前記基板は、前記埋込絶縁膜の下に設けられた、前記半導体層とは異なる他の半導体層をさらに有する、上記(1)〜(11)に記載の半導体装置。
(13)
前記基板は、前記他の半導体層の下に設けられた、前記埋込絶縁膜とは異なる他の埋込絶縁膜をさらに有する、上記(12)に記載の半導体装置。
(14)
前記半導体層の前記端部は、前記半導体層の前記中央部の膜厚に対して2倍から10倍の膜厚を持つ、上記(1)に記載の半導体装置。
(15)
前記半導体層の前記端部の膜厚は140nm〜200nmであり、
前記半導体層の前記中央部の膜厚は20nm〜70nmである、
上記(1)に記載の半導体装置。
(16)
前記半導体素子とは異なる他の半導体素子が形成される、前記半導体層とは異なる他の半導体層をさらに備え、
前記半導体層の前記中央部の膜厚と、前記他の半導体層の中央部の膜厚とは、互いに異なる、
上記(1)に記載の半導体装置。
(17)
前記半導体層の前記中央部の膜厚は20nm〜70nmであり、
前記他の半導体層の前記中央部の膜厚は140nm〜200nmである、
上記(16)に記載の半導体装置。
(18)
前記半導体装置は高周波アンテナスイッチ装置である、上記(1)〜(17)のいずれか1つに記載の半導体装置。
(19)
埋込絶縁膜を有する基板上に、膜厚が均一な半導体層を形成し、前記半導体層の中央部を選択的に酸化して、前記半導体層の端部の膜厚を前記中央部の膜厚に比べて厚くすることを含む、半導体装置の製造方法。
10、10a、10b、10c、10d、10e、20a、20b、20c、90 半導体装置
12、12a、92 トランジスタ
100 支持基板
200、210 埋込絶縁膜
202、400、802 絶縁膜
204 STI
300、310 拡散層
300a 薄膜部
300b 厚膜部
302、312 ゲート領域
304 ソース/ドレイン領域
320、720 シリコン層
320a 中央部
320b 端部
340 LDD領域
500 ゲート絶縁膜
600、600a、600b、600c ゲート電極
602 電極部
604 配線部
700 コンタクトビア
702 シリサイド膜
800、800a、800b、800c 電極
900、910、920 シリコン酸化膜
902、912 シリコン窒化膜
904、914、924 レジストパターン
906、916 開口部

Claims (19)

  1. 埋込絶縁膜と、前記埋込絶縁膜上に設けられ、半導体素子が形成される半導体層とを有する基板と、
    前記半導体層上に設けられたゲート電極と、
    を備え、
    前記ゲート電極は、前記基板を上方から見た場合に、第1の方向に沿って前記半導体層の中央部から前記半導体層の端部を超えて延伸した帯状の第1の電極部を有し、
    前記第1の方向に沿って、前記第1の電極部及び前記基板を切断した場合の断面において、前記半導体層の端部の膜厚が、前記半導体層の中央部の膜厚に比べて厚い、
    半導体装置。
  2. 前記ゲート電極は、前記基板を上方から見た場合に、前記第1の電極部から、前記第1の方向とは垂直に交わる第2の方向に沿って延伸する第2の電極部をさらに有する、
    請求項1に記載の半導体装置。
  3. 前記第1の方向に沿って、前記第2の電極部及び前記基板を切断した場合において、前記半導体層の端部の膜厚が、前記半導体層の中央部の膜厚に比べて厚い、
    請求項2に記載の半導体装置。
  4. 前記半導体層の前記中央部の上方に、前記基板を上方から見た場合に、前記第2の電極部を挟み込むように設けられたソースコンタクトビア及びドレインコンタクトビアをさらに備える、請求項3に記載の半導体装置。
  5. 前記半導体層の前記中央部と前記ソースコンタクトビアとの間、及び、前記半導体層と前記ドレインコンタクトビアとの間に設けられたシリサイド膜をさらに備える、請求項4に記載の半導体装置。
  6. 前記シリサイド膜は、前記半導体層の前記端部も覆っている、請求項5に記載の半導体装置。
  7. 前記第2の方向に沿って、前記第2の電極部及び前記基板を切断した場合において、前記半導体層の端部の膜厚が、前記半導体層の中央部の膜厚に比べて厚い、請求項2に記載の半導体装置。
  8. 前記ゲート電極は複数の前記第2の電極部を有する、請求項2に記載の半導体装置。
  9. 前記半導体層の前記中央部の上方に、前記基板を上方から見た場合に、前記第1の方向とは垂直に交わる第2の方向に沿って、前記第1の電極部を挟み込むように設けられたソースコンタクトビア及びドレインコンタクトビアをさらに備える、請求項1に記載の半導体装置。
  10. 前記ゲート電極は、前記基板の上方から見て、H字型、T字型、I字型、又は、はしご型のいずれかの形状を持つ、請求項1に記載の半導体装置。
  11. 前記半導体素子を分離する分離絶縁膜をさらに備え、
    前記分離絶縁膜は、前記前記基板を上方から見て前記半導体層を囲むように設けられる、
    請求項1に記載の半導体装置。
  12. 前記基板は、前記埋込絶縁膜の下に設けられた、前記半導体層とは異なる他の半導体層をさらに有する、請求項1に記載の半導体装置。
  13. 前記基板は、前記他の半導体層の下に設けられた、前記埋込絶縁膜とは異なる他の埋込絶縁膜をさらに有する、請求項12に記載の半導体装置。
  14. 前記半導体層の前記端部は、前記半導体層の前記中央部の膜厚に対して2倍から10倍の膜厚を持つ、請求項1に記載の半導体装置。
  15. 前記半導体層の前記端部の膜厚は140nm〜200nmであり、
    前記半導体層の前記中央部の膜厚は20nm〜70nmである、
    請求項1に記載の半導体装置。
  16. 前記半導体素子とは異なる他の半導体素子が形成される、前記半導体層とは異なる他の半導体層をさらに備え、
    前記半導体層の前記中央部の膜厚と、前記他の半導体層の中央部の膜厚とは、互いに異なる、
    請求項1に記載の半導体装置。
  17. 前記半導体層の前記中央部の膜厚は20nm〜70nmであり、
    前記他の半導体層の前記中央部の膜厚は140nm〜200nmである、
    請求項16に記載の半導体装置。
  18. 前記半導体装置は高周波アンテナスイッチ装置である、請求項1に記載の半導体装置。
  19. 埋込絶縁膜を有する基板上に、膜厚が均一な半導体層を形成し、前記半導体層の中央部を選択的に酸化して、前記半導体層の端部の膜厚を前記中央部の膜厚に比べて厚くすることを含む、半導体装置の製造方法。
JP2017043926A 2017-03-08 2017-03-08 半導体装置及び半導体装置の製造方法 Pending JP2018148123A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017043926A JP2018148123A (ja) 2017-03-08 2017-03-08 半導体装置及び半導体装置の製造方法
DE112018001202.6T DE112018001202T5 (de) 2017-03-08 2018-01-18 Halbleitervorrichtung und Verfahren zur Herstellung einer Halbleitervorrichtung
CN201880015222.7A CN110383491B (zh) 2017-03-08 2018-01-18 半导体装置及制造半导体装置的方法
PCT/JP2018/001323 WO2018163605A1 (ja) 2017-03-08 2018-01-18 半導体装置及び半導体装置の製造方法
US16/488,739 US11380710B2 (en) 2017-03-08 2018-01-18 Semiconductor device and method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017043926A JP2018148123A (ja) 2017-03-08 2017-03-08 半導体装置及び半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2018148123A true JP2018148123A (ja) 2018-09-20

Family

ID=63447416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017043926A Pending JP2018148123A (ja) 2017-03-08 2017-03-08 半導体装置及び半導体装置の製造方法

Country Status (5)

Country Link
US (1) US11380710B2 (ja)
JP (1) JP2018148123A (ja)
CN (1) CN110383491B (ja)
DE (1) DE112018001202T5 (ja)
WO (1) WO2018163605A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014152A1 (ja) * 2020-07-13 2022-01-20 ソニーセミコンダクタソリューションズ株式会社 半導体装置及び半導体装置の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7387501B2 (ja) * 2020-03-18 2023-11-28 株式会社東芝 半導体装置およびその制御方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710266A (en) 1980-06-23 1982-01-19 Fujitsu Ltd Mis field effect semiconductor device
US5116771A (en) 1989-03-20 1992-05-26 Massachusetts Institute Of Technology Thick contacts for ultra-thin silicon on insulator films
JP2701821B2 (ja) * 1995-12-27 1998-01-21 日本電気株式会社 半導体基板
JP2000216391A (ja) * 1999-01-25 2000-08-04 Sony Corp Soi型半導体装置の製造方法
JP3463593B2 (ja) * 1999-03-01 2003-11-05 日本電気株式会社 電界効果型トランジスタ及びその製造方法
JP2002064206A (ja) * 2000-06-09 2002-02-28 Toshiba Corp 半導体装置及びその製造方法
KR100374649B1 (en) * 2001-08-04 2003-03-03 Samsung Electronics Co Ltd Structure of semiconductor device and manufacturing method thereof
CN1395316A (zh) * 2001-07-04 2003-02-05 松下电器产业株式会社 半导体器件及其制造方法
JP5000057B2 (ja) * 2001-07-17 2012-08-15 ルネサスエレクトロニクス株式会社 半導体装置及びその製造方法
JP4628644B2 (ja) * 2001-10-04 2011-02-09 富士通セミコンダクター株式会社 半導体装置の製造方法
US6764917B1 (en) * 2001-12-20 2004-07-20 Advanced Micro Devices, Inc. SOI device with different silicon thicknesses
KR100481209B1 (ko) * 2002-10-01 2005-04-08 삼성전자주식회사 다중 채널을 갖는 모스 트랜지스터 및 그 제조방법
JP2006140447A (ja) * 2004-10-14 2006-06-01 Renesas Technology Corp 半導体装置およびその製造方法
JP2007329295A (ja) * 2006-06-08 2007-12-20 Hitachi Ltd 半導体及びその製造方法
JP2011023465A (ja) * 2009-07-14 2011-02-03 Toshiba Corp 半導体装置
JP2011071262A (ja) * 2009-09-25 2011-04-07 Seiko Epson Corp 半導体装置の製造方法
US20130292774A1 (en) * 2012-05-07 2013-11-07 Globalfoundries Inc. Method for forming a semiconductor device having raised drain and source regions and corresponding semiconductor device
JP6275559B2 (ja) * 2014-06-13 2018-02-07 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014152A1 (ja) * 2020-07-13 2022-01-20 ソニーセミコンダクタソリューションズ株式会社 半導体装置及び半導体装置の製造方法

Also Published As

Publication number Publication date
US20210134838A1 (en) 2021-05-06
DE112018001202T5 (de) 2019-11-21
CN110383491B (zh) 2023-09-29
CN110383491A (zh) 2019-10-25
US11380710B2 (en) 2022-07-05
WO2018163605A1 (ja) 2018-09-13

Similar Documents

Publication Publication Date Title
CN109244033B (zh) 具有气隙结构的射频开关
US11695074B2 (en) Semiconductor device, method of manufacturing the same and electronic device including the device
KR101883010B1 (ko) 반도체 소자 및 그 소자의 제조 방법
KR101057651B1 (ko) 반도체 소자의 제조방법
US20130020640A1 (en) Semiconductor device structure insulated from a bulk silicon substrate and method of forming the same
US20110278581A1 (en) Semiconductor device and manufacturing method thereof
JPWO2006006438A1 (ja) 半導体装置及びその製造方法
KR101955055B1 (ko) 전력용 반도체 소자 및 그 소자의 제조 방법
US20220416047A1 (en) Semiconductor device, method for manufacturing semiconductor device, and electronic apparatus including the semiconductor device
US9064742B2 (en) Semiconductor device and manufacturing method thereof
TWI794496B (zh) 半導體裝置及其製造方法
US9525060B2 (en) Reduced area power devices using deep trench isolation
JP2009526409A (ja) 絶縁体上に半導体が設けられた構造(soi)を有するボディコンタクト素子の形成方法及び装置
US7977768B2 (en) Semiconductor devices and methods of manufacture thereof
US8581347B2 (en) Forming bipolar transistor through fast EPI-growth on polysilicon
WO2018163605A1 (ja) 半導体装置及び半導体装置の製造方法
JP2009055027A (ja) Mosトランジスタの製造方法、および、これにより製造されたmosトランジスタ
JP2011071231A (ja) 半導体装置およびその製造方法
WO2022014152A1 (ja) 半導体装置及び半導体装置の製造方法
JP2011044494A (ja) 半導体装置およびその製造方法
JP2013110149A (ja) 半導体装置およびその製造方法
JP2005217237A (ja) 半導体装置及びその製造方法
US20130256810A1 (en) Semiconductor Device and Method for Manufacturing the Same
KR101140205B1 (ko) 반도체 소자 및 그 제조방법
JP3657247B2 (ja) 半導体装置およびその製造方法