JP2018139295A - Flexible circuit board - Google Patents

Flexible circuit board Download PDF

Info

Publication number
JP2018139295A
JP2018139295A JP2018071458A JP2018071458A JP2018139295A JP 2018139295 A JP2018139295 A JP 2018139295A JP 2018071458 A JP2018071458 A JP 2018071458A JP 2018071458 A JP2018071458 A JP 2018071458A JP 2018139295 A JP2018139295 A JP 2018139295A
Authority
JP
Japan
Prior art keywords
polyimide layer
copper foil
copper
circuit board
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018071458A
Other languages
Japanese (ja)
Other versions
JP6534471B2 (en
Inventor
利之 中林
Toshiyuki Nakabayashi
利之 中林
桜子 重松
Sakurako Shigematsu
桜子 重松
伸悦 藤元
Nobuetsu Fujimoto
伸悦 藤元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Publication of JP2018139295A publication Critical patent/JP2018139295A/en
Application granted granted Critical
Publication of JP6534471B2 publication Critical patent/JP6534471B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Structure Of Printed Boards (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flexible circuit board having superior durability against bending and folding, which is arranged so that a break of circuitry and a crack of the board can be prevented.SOLUTION: A flexible circuit board comprises: a polyimide layer having a thickness within a range of 5 to 30 μm and a tensile elasticity within a range of 4 to 10 GPa; and copper interconnections laminated on at least one face of the polyimide layer made of copper foil, and having a thickness within a range of 6 to 20 μm and a tensile elasticity within a range of 25 to 35 GPa. The flexible circuit board has a ten-point average roughness (Rz) within a range of 0.7 to 2.2 μm about the copper foil on the face on a side where the circuit board is in contact with the polyimide layer, and a creasing habit coefficient [PF] within a range of 0.96±0.025, which is calculated according to the formula (1) in a bending test with a gap 0.3 mm. [In the formula (1), |ε| denotes an absolute value of a flexural average strain value of the copper interconnections and εc denotes a tensile elastic limit strain of the copper interconnections].SELECTED DRAWING: None

Description

本発明は、電子機器の筐体内に折り畳んで収納され、使用されるフレキシブル回路基板(FPC)に関する。   The present invention relates to a flexible circuit board (FPC) used by being folded and housed in a casing of an electronic device.

近年、電子機器の小型化や高機能化に伴い、これらを構成する電子部品の1つであるFPCにおいても、電気特性、機械特性、耐熱性等、より高性能なものが求められている。FPCの多くは、金属層である銅箔に絶縁層であるポリイミドを積層したフレキシブル銅張積層板の銅箔に回路を形成することで製造される。このようなポリイミドを絶縁層とした銅張積層板は、ポリイミドと銅箔の間にエポキシ樹脂等の熱硬化性接着剤層を介してポリイミドと銅箔を積層した銅張積層板(「三層CCL」とも呼ばれる)と、熱硬化性接着剤層を介さずにポリイミドと銅箔を直接積層した銅張積層板(「二層CCL」とも呼ばれる)とに大別される。   In recent years, with the miniaturization and high functionality of electronic devices, higher performances such as electrical characteristics, mechanical characteristics, heat resistance, and the like have been demanded for FPCs, which are one of the electronic components constituting these. Many of FPCs are manufactured by forming a circuit on a copper foil of a flexible copper-clad laminate obtained by laminating a polyimide foil as an insulating layer on a copper foil as a metal layer. A copper-clad laminate using such polyimide as an insulating layer is a copper-clad laminate (“three layers”) in which polyimide and copper foil are laminated between a polyimide and copper foil via a thermosetting adhesive layer such as an epoxy resin. And a copper-clad laminate (also referred to as “two-layer CCL”) in which polyimide and copper foil are directly laminated without interposing a thermosetting adhesive layer.

上記三層CCLは、接着剤層にエポキシ樹脂等を用いているため、耐熱性に問題がある。具体的には、半田やヒートツールを用い、FPCの配線上の電極と、モニターパネル基板、リジッド基板、半導体チップ等とを接合する工程のように、高温加工を要する工程で問題が生じやすい。また、三層CCLは、二層CCLに対して接着剤層の厚みが加算される点、異種材料間の熱膨張係数差による寸法制御が難しい点、さらに、誘電特性の観点から、ハイエンド電子機器への搭載には問題がある。そこで、特に耐熱性や信頼性の要求が高い用途においては、エポキシ樹脂等の熱硬化性接着剤等を使用しない二層CCLが上市されている。   The three-layer CCL has a problem in heat resistance because an epoxy resin or the like is used for the adhesive layer. Specifically, a problem is likely to occur in a process that requires high-temperature processing, such as a process of bonding an electrode on an FPC wiring to a monitor panel substrate, a rigid substrate, a semiconductor chip, or the like using solder or a heat tool. In addition, the three-layer CCL is a high-end electronic device in that the thickness of the adhesive layer is added to the two-layer CCL, the dimensional control is difficult due to the difference in thermal expansion coefficient between different materials, and from the viewpoint of dielectric characteristics. There is a problem with mounting. In view of this, two-layer CCL that does not use a thermosetting adhesive such as an epoxy resin has been put on the market especially in applications that require high heat resistance and reliability.

ところで、最近の携帯端末機器のモデルの多様化により、そこに使用されるFPCの使用形態も変化してきている。従来の携帯電話にみられるヒンジ屈曲部やスライド屈曲部のような屈曲半径が一定量確保される使用形態とは異なり、薄い筐体へ収納する為に折り目をつけて折り曲げられるような、より厳しい耐折り曲げ性が要求されるようになってきている。以下、本明細書では、FPCの上面側が略180度反転して下面側になるように折り曲げることを「はぜ折り」と呼ぶことがある。   By the way, with the recent diversification of models of portable terminal devices, the usage forms of FPCs used therein are also changing. Unlike usage patterns where a certain amount of bending radius is ensured, such as hinge bending portions and slide bending portions found in conventional mobile phones, it is more severe that it can be folded with a crease for storage in a thin casing. Bending resistance has been demanded. Hereinafter, in this specification, folding the FPC so that the upper surface side of the FPC is inverted by approximately 180 degrees to become the lower surface side may be referred to as “shell folding”.

このような用途への適用を意図したものとして、特許文献1では、高い屈曲性を示し、寸法安定性にすぐれた高屈曲性フレキシブル回路基板が提案されている。しかし、特許文献1の発明は、ポリイミドベースフィルム上に接着剤層を介して金属配線パターンが形成されたものであり、比較的低い弾性率範囲のポリイミドをベース基材とするものである。また、接着剤層を必要とするものであることから、ポリイミドだけによる二層CCLの耐熱性などの特性を十分に生かすことができないものであった。   As intended for application to such applications, Patent Document 1 proposes a highly flexible flexible circuit board that exhibits high flexibility and excellent dimensional stability. However, in the invention of Patent Document 1, a metal wiring pattern is formed on a polyimide base film via an adhesive layer, and a polyimide having a relatively low elastic modulus range is used as a base substrate. Moreover, since an adhesive layer is required, the characteristics such as heat resistance of the two-layer CCL made of only polyimide cannot be fully utilized.

また、特許文献2では、電子機器内に折り曲げた状態で使用される回路基板に適したポリイミド金属積層体が提案されている。しかし、ここに開示されたポリイミド金属積層体は、ポリイミド層を構成する非熱可塑性ポリイミドフィルムの弾性率に着目するものの、共に使用される銅箔側の弾性率については着目しておらず、はぜ折り耐性も1回程度しか示していないため、実用的にも不十分なものであった。   Patent Document 2 proposes a polyimide metal laminate suitable for a circuit board used in a state of being folded in an electronic device. However, although the polyimide metal laminate disclosed here pays attention to the elastic modulus of the non-thermoplastic polyimide film constituting the polyimide layer, it does not pay attention to the elastic modulus of the copper foil side used together. Since the folding resistance is shown only once, it was not practical enough.

また、FPCの設計において、接合先基板とのインピーダンス整合の観点から、フレキシブル銅張積層板の絶縁層であるポリイミド層の厚みが厚ければ配線を太くできる。つまり、配線加工は容易であるが、その反面、薄い或いは狭い筐体へ収納しようとする場合、基板の反発力が影響して折り畳みが難しく、FPCのハンドリング上の問題がある。一方、ポリイミド層の厚みが薄ければ、同じくインピーダンス整合の観点から配線を細くする必要がある。つまり、配線加工性の難易度が上がる反面、低反発であることから、薄い或いは狭い筐体への収納が比較的容易であり、FPCのハンドリング性がよい。   Further, in the FPC design, from the viewpoint of impedance matching with the bonding destination substrate, the wiring can be thickened if the thickness of the polyimide layer that is the insulating layer of the flexible copper-clad laminate is thick. That is, wiring processing is easy, but on the other hand, when it is intended to be housed in a thin or narrow housing, it is difficult to fold due to the repulsive force of the substrate, and there is a problem in handling FPC. On the other hand, if the thickness of the polyimide layer is thin, it is necessary to make the wiring thinner from the viewpoint of impedance matching. That is, while the difficulty of wiring workability is increased, it is low repulsion, so that it is relatively easy to store in a thin or narrow housing, and the handling property of the FPC is good.

特開2007−208087号公報JP 2007-208087 A 特開2012−6200号公報JP 2012-6200 A

本発明は、薄い或いは狭い電子機器の筐体内に使用した場合でも、配線回路の断線や割れを防止し得る、優れた耐折り曲げ性を有するFPCを与えるフレキシブル銅張積層板を提供することを目的とする。   An object of the present invention is to provide a flexible copper-clad laminate that provides an FPC with excellent bending resistance that can prevent disconnection and cracking of a wiring circuit even when used in a thin or narrow electronic device casing. And

本発明者等は鋭意検討した結果、銅箔及びポリイミドフィルムの特性を最適化すると共に、フレキシブル銅張積層板を配線回路加工した配線回路基板の特性に着目することで、上記課題を解決し得るフレキシブル銅張積層板を提供し得ることを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have optimized the characteristics of the copper foil and the polyimide film, and can solve the above problems by paying attention to the characteristics of the printed circuit board obtained by processing the flexible copper-clad laminate. The present inventors have found that a flexible copper-clad laminate can be provided and have completed the present invention.

すなわち、本発明のフレキシブル銅張積層板は、電子機器の筐体内に折り畳んで収納されるフレキシブル回路基板に用いられるフレキシブル銅張積層板であって、
厚み5〜30μmの範囲内、引張弾性率4〜10GPaの範囲内のポリイミド層(A)と、
前記ポリイミド層(A)の少なくとも一方の面に積層された厚み6〜20μmの範囲内、引張弾性率25〜35GPaの範囲内の銅箔(B)と、を有しており、
前記ポリイミド層(A)と接する側の面の銅箔(B)の十点平均粗さ(Rz)が0.7〜2.2μmの範囲内であり、かつ、前記銅箔(B)を配線回路加工して銅配線を形成した任意のフレキシブル回路基板のギャップ0.3mmでの折り曲げ試験での、下記式(1)によって計算される折れ癖係数[PF]が0.96±0.025の範囲内にあることを特徴とする。
That is, the flexible copper-clad laminate of the present invention is a flexible copper-clad laminate used for a flexible circuit board that is folded and stored in a casing of an electronic device,
A polyimide layer (A) having a thickness in the range of 5 to 30 μm and a tensile modulus of elasticity in the range of 4 to 10 GPa;
A copper foil (B) having a thickness of 6 to 20 μm and a tensile modulus of 25 to 35 GPa laminated on at least one surface of the polyimide layer (A),
The ten-point average roughness (Rz) of the copper foil (B) on the surface in contact with the polyimide layer (A) is in the range of 0.7 to 2.2 μm, and the copper foil (B) is wired. The folding coefficient [PF] calculated by the following formula (1) in a bending test with a gap of 0.3 mm of an arbitrary flexible circuit board in which copper wiring is formed by circuit processing is 0.96 ± 0.025 It is in the range.

Figure 2018139295
[式(1)において、|ε|は銅配線の屈曲平均ひずみ値の絶対値であり、εcは銅配線の引張弾性限界ひずみである。]
Figure 2018139295
[In Expression (1), | ε | is the absolute value of the bending average strain value of the copper wiring, and εc is the tensile elastic limit strain of the copper wiring. ]

本発明のフレキシブル銅張積層板は、ポリイミド層(A)が、熱膨張係数30×10−6/K未満の低熱膨張性のポリイミド層(i)と熱膨張係数30×10−6/K以上の高熱膨張性のポリイミド層(ii)とを含み、高熱膨張性のポリイミド層(ii)が直接銅箔(B)と接していることが好ましい。 In the flexible copper-clad laminate of the present invention, the polyimide layer (A) has a low thermal expansion coefficient of less than 30 × 10 −6 / K and a thermal expansion coefficient of 30 × 10 −6 / K or more. It is preferable that the high thermal expansion polyimide layer (ii) is in direct contact with the copper foil (B).

また、本発明のフレキシブル銅張積層板は、上記ポリイミド層(A)の厚みが8〜15μmの範囲内であり、引張弾性率が6〜10GPaの範囲内であることが好ましい。   In the flexible copper-clad laminate of the present invention, it is preferable that the polyimide layer (A) has a thickness in the range of 8 to 15 μm and a tensile elastic modulus in the range of 6 to 10 GPa.

また、本発明のフレキシブル銅張積層板は、ポリイミド層(A)と銅箔(B)との厚み比[ポリイミド層(A)/銅箔(B)]が0.9〜1.1の範囲内にあることが好ましい。   In the flexible copper-clad laminate of the present invention, the thickness ratio [polyimide layer (A) / copper foil (B)] of the polyimide layer (A) and the copper foil (B) is in the range of 0.9 to 1.1. It is preferable to be within.

また、本発明のフレキシブル銅張積層板は、前記銅箔(B)が電解銅箔であることが好ましい。   In the flexible copper-clad laminate of the present invention, the copper foil (B) is preferably an electrolytic copper foil.

本発明のフレキシブル銅張積層板は、配線基板に要求される高い耐折り曲げ性を発現し得ることから、電子機器内に折り曲げた状態での接続信頼性に優れたフレキシブル回路基板用材料を提供することができる。従って、本発明のフレキシブル銅張積層板は、特に、スマートフォン等の小型液晶周りの折り曲げ部分等の耐折り曲げ性が要求される電子部品に好適に用いられる。   Since the flexible copper-clad laminate of the present invention can express the high bending resistance required for a wiring board, it provides a flexible circuit board material that is excellent in connection reliability in a state of being bent in an electronic device. be able to. Therefore, the flexible copper-clad laminate of the present invention is suitably used for electronic parts that require bending resistance such as a bent portion around a small liquid crystal such as a smartphone.

図1は、本発明のフレキシブル銅張積層板の銅箔を配線回路加工して得たフレキシブル回路基板の要部を示す斜視説明図である。FIG. 1 is an explanatory perspective view showing a main part of a flexible circuit board obtained by processing a copper foil of a flexible copper-clad laminate of the present invention on a wiring circuit. 実施例で用いた試験回路基板片の銅配線の様子を示す平面説明図である。It is plane explanatory drawing which shows the mode of the copper wiring of the test circuit board piece used in the Example. 折り曲げ試験での試料ステージと試験回路基板片との様子を示す側面説明図である(試料ステージ上に試験回路基板片を固定した状態図)。It is side surface explanatory drawing which shows the mode of the sample stage and test circuit board piece in a bending test (state figure which fixed the test circuit board piece on the sample stage). 折り曲げ試験での試料ステージと試験回路基板片との様子を示す側面説明図である(試験回路基板片の折り曲げ箇所をローラーで押さえる手前の状態図)。It is side surface explanatory drawing which shows the mode of the sample stage and test circuit board piece in a bending test (state figure before pressing the bending location of a test circuit board piece with a roller). 折り曲げ試験での試料ステージと試験回路基板片との様子を示す側面説明図である(試験回路基板片の折り曲げ箇所をローラーで押さえた状態図)。It is side surface explanatory drawing which shows the mode of the sample stage and test circuit board piece in a bending test (state figure which pressed the bending location of the test circuit board piece with the roller). 折り曲げ試験での試料ステージと試験回路基板片との様子を示す側面説明図である(折り曲げ箇所を開いて試験片を平らな状態に戻した状態図)。It is side surface explanatory drawing which shows the mode of the sample stage and test circuit board piece in a bending test (the state figure which opened the bending location and returned the test piece to the flat state). 折り曲げ試験での試料ステージと試験回路基板片との様子を示す側面説明図である(折り曲げ箇所の折り目部分をローラーで押さえて均す状態図)。It is side surface explanatory drawing which shows the mode of the sample stage and test circuit board piece in a bending test (state figure which presses and equalizes the crease | fold part of a bending location with a roller). フレキシブル回路基板の断面説明図(一部)である。It is a section explanatory view (part) of a flexible circuit board.

以下、本発明の実施の形態について説明する。本実施の形態のフレキシブル銅張積層板は、ポリイミド層(A)と銅箔(B)とから構成される。銅箔(B)はポリイミド層(A)の片面又は両面に設けられており、電解銅箔が好ましい。このフレキシブル銅張積層板は、銅箔をエッチングするなどして配線回路加工して銅配線を形成し、電子機器の筐体内に折り畳んで収納されるFPCに使用される。   Embodiments of the present invention will be described below. The flexible copper clad laminate of this embodiment is composed of a polyimide layer (A) and a copper foil (B). The copper foil (B) is provided on one or both sides of the polyimide layer (A), and an electrolytic copper foil is preferable. This flexible copper-clad laminate is used for an FPC that is processed by wiring circuit processing, such as etching a copper foil, to form a copper wiring, and is folded and housed in a casing of an electronic device.

<ポリイミド層>
本実施の形態のフレキシブル銅張積層板においては、ポリイミド層(A)の厚みは5〜30μmの範囲内であり、8〜15μmの範囲内にあることが好ましく、9〜12μmの範囲内にあることが特に好ましい。ポリイミド層(A)の厚みが30μmを超えると、FPCを折り曲げた際に、銅配線により大きな曲げ応力が加わることとなり、その耐折り曲げ性を著しく低下させてしまう。
<Polyimide layer>
In the flexible copper clad laminate of this embodiment, the thickness of the polyimide layer (A) is in the range of 5 to 30 μm, preferably in the range of 8 to 15 μm, and in the range of 9 to 12 μm. It is particularly preferred. When the thickness of the polyimide layer (A) exceeds 30 μm, when the FPC is bent, a large bending stress is applied to the copper wiring, and the bending resistance is remarkably lowered.

また、ポリイミド層(A)の引張弾性率は4〜10GPaの範囲内であり、好ましくは6〜10GPaの範囲内であるのがよい。ポリイミド層(A)の引張弾性率が4GPaに満たないと、ポリイミド自体の強度が低下することによって、フレキシブル銅張積層板を回路基板へ加工する際にフィルムの裂けなどのハンドリング上の問題が生じることがある。反対に、ポリイミド層(A)の引張弾性率が10GPaを超えると、フレキシブル銅張積層板の折り曲げに対する剛性が上昇する結果、FPCを折り曲げた際に銅配線に加わる曲げ応力が上昇し、耐折り曲げ性が低下してしまう。   Moreover, the tensile elasticity modulus of a polyimide layer (A) is in the range of 4-10 GPa, Preferably it is good in the range of 6-10 GPa. If the tensile modulus of the polyimide layer (A) is less than 4 GPa, the strength of the polyimide itself is reduced, which causes handling problems such as film tearing when the flexible copper clad laminate is processed into a circuit board. Sometimes. On the other hand, if the tensile modulus of the polyimide layer (A) exceeds 10 GPa, the bending resistance of the flexible copper clad laminate increases, resulting in an increase in bending stress applied to the copper wiring when the FPC is bent. The nature will decline.

ポリイミド層(A)は、市販のポリイミドフィルムをそのまま使用することも可能であるが、絶縁層の厚さや物性のコントロールのしやすさから、ポリアミド酸溶液を銅箔上に直接塗布した後、熱処理により乾燥、硬化する所謂キャスト(塗布)法によるものが好ましい。また、ポリイミド層(A)は、単層のみから形成されるものでもよいが、ポリイミド層(A)と銅箔(B)との接着性等を考慮すると複数層からなるものが好ましい。ポリイミド層(A)を複数層とする場合、異なる構成成分からなるポリアミド酸溶液の上に他のポリアミド酸溶液を順次塗布して形成することができる。ポリイミド層(A)が複数層からなる場合、同一の構成のポリイミド前駆体樹脂を2回以上使用してもよい。   As the polyimide layer (A), a commercially available polyimide film can be used as it is. However, in order to easily control the thickness and physical properties of the insulating layer, the polyamic acid solution is directly applied on the copper foil, followed by heat treatment. It is preferable to use a so-called cast (coating) method in which drying and curing are performed. Moreover, although a polyimide layer (A) may be formed only from a single layer, when the adhesiveness etc. of a polyimide layer (A) and copper foil (B) are considered, what consists of multiple layers is preferable. When the polyimide layer (A) has a plurality of layers, it can be formed by sequentially applying another polyamic acid solution on a polyamic acid solution composed of different components. When a polyimide layer (A) consists of multiple layers, you may use the polyimide precursor resin of the same structure twice or more.

ポリイミド層(A)について、より詳しく説明する。上述の通り、ポリイミド層(A)は複数層とすることが好ましいが、その具体例としては、ポリイミド層(A)を、熱膨張係数30×10−6/K未満の低熱膨張性のポリイミド層(i)と、熱膨張係数30×10−6/K以上の高熱膨張性のポリイミド層(ii)と、を含む積層構造とすることが好ましい。より好ましくは、ポリイミド層(A)は、低熱膨張性のポリイミド層(i)の少なくとも一方、好ましくはその両側に、高熱膨張性のポリイミド層(ii)を有する積層構造とし、高熱膨張性のポリイミド層(ii)が直接銅箔(B)と接するようにすることがよい。ここで、「低熱膨張性のポリイミド層(i)」とは、熱膨張係数30×10−6/K未満、好ましくは1×10−6〜25×10−6/Kの範囲内、特に好ましくは3×10−6〜20×10−6/Kの範囲内のポリイミド層をいう。また、「高熱膨張性のポリイミド層(ii)」とは、熱膨張係数30×10−6/K以上のポリイミド層を言い、好ましくは30×10−6〜80×10−6/Kの範囲内、特に好ましくは30×10−6〜70×10−6/Kの範囲内のポリイミド層をいう。このようなポリイミド層は、使用する原料の組合せ、厚み、乾燥・硬化条件を適宜変更することで所望の熱膨張係数を有するポリイミド層とすることができる。 The polyimide layer (A) will be described in more detail. As described above, the polyimide layer (A) is preferably a plurality of layers. As a specific example, the polyimide layer (A) is a low thermal expansion polyimide layer having a thermal expansion coefficient of less than 30 × 10 −6 / K. A laminated structure including (i) and a high thermal expansion polyimide layer (ii) having a thermal expansion coefficient of 30 × 10 −6 / K or more is preferable. More preferably, the polyimide layer (A) has a laminated structure having a high thermal expansion polyimide layer (ii) on at least one of the low thermal expansion polyimide layers (i), preferably on both sides thereof, and a high thermal expansion polyimide. It is preferable that the layer (ii) is in direct contact with the copper foil (B). Here, the “low thermal expansion polyimide layer (i)” is a thermal expansion coefficient of less than 30 × 10 −6 / K, preferably in the range of 1 × 10 −6 to 25 × 10 −6 / K, particularly preferably. Means a polyimide layer in the range of 3 × 10 −6 to 20 × 10 −6 / K. The “high thermal expansion polyimide layer (ii)” refers to a polyimide layer having a thermal expansion coefficient of 30 × 10 −6 / K or more, preferably in the range of 30 × 10 −6 to 80 × 10 −6 / K. Of these, a polyimide layer in the range of 30 × 10 −6 to 70 × 10 −6 / K is particularly preferable. Such a polyimide layer can be made into a polyimide layer having a desired thermal expansion coefficient by appropriately changing the combination of raw materials used, thickness, and drying / curing conditions.

上記ポリイミド層(A)を与えるポリアミド酸溶液は、公知のジアミンと酸無水物とを溶媒の存在下で重合して製造することができる。この際、重合される樹脂粘度は、例えば、500cps以上35,000cps以下の範囲内とすることが好ましい。   The polyamic acid solution that gives the polyimide layer (A) can be produced by polymerizing a known diamine and an acid anhydride in the presence of a solvent. At this time, the viscosity of the resin to be polymerized is preferably in the range of 500 cps to 35,000 cps, for example.

ポリイミドの原料として用いられるジアミンとしては、例えば、4,6-ジメチル-m-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、2,4-ジアミノメシチレン、4,4'-メチレンジ-o-トルイジン、4,4'-メチレンジ-2,6-キシリジン、4,4'-メチレン-2,6-ジエチルアニリン、2,4-トルエンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、4,4'-ジアミノジフェニルプロパン、3,3'-ジアミノジフェニルプロパン、4,4'-ジアミノジフェニルエタン、3,3'-ジアミノジフェニルエタン、4,4'-ジアミノジフェニルメタン、3,3'-ジアミノジフェニルメタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4'-ジアミノジフェニルスルフィド、3,3'-ジアミノジフェニルスルフィド、4,4'-ジアミノジフェニルスルホン、3,3'-ジアミノジフェニルスルホン、4,4'-ジアミノジフェニルエーテル、3,3-ジアミノジフェニルエーテル、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジジン、3,3'-ジアミノビフェニル、3,3'-ジメチル-4,4'-ジアミノビフェニル、3,3'-ジメトキシベンジジン、4,4'-ジアミノ-p-テルフェニル、3,3'-ジアミノ-p-テルフェニル、ビス(p-アミノシクロヘキシル)メタン、ビス(p-β-アミノ-t-ブチルフェニル)エーテル、ビス(p-β-メチル-δ-アミノペンチル)ベンゼン、p-ビス(2-メチル-4-アミノペンチル)ベンゼン、p-ビス(1,1-ジメチル-5-アミノペンチル)ベンゼン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,4-ビス(β-アミノ-t-ブチル)トルエン、2,4-ジアミノトルエン、m-キシレン-2,5-ジアミン、p-キシレン-2,5-ジアミン、m-キシリレンジアミン、p-キシリレンジアミン、2,6-ジアミノピリジン、2,5-ジアミノピリジン、2,5-ジアミノ-1,3,4-オキサジアゾール、ピペラジン、2,2'-ジメチル-4,4'-ジアミノビフェニル、3,7-ジアミノジベンゾフラン、1,5-ジアミノフルオレン、ジベンゾ-p-ジオキシン-2,7-ジアミン、4,4'-ジアミノベンジルなどが挙げられる。   Examples of the diamine used as a raw material for polyimide include 4,6-dimethyl-m-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, 2,4-diaminomesitylene, and 4,4′-methylenedi-o-. Toluidine, 4,4'-methylenedi-2,6-xylidine, 4,4'-methylene-2,6-diethylaniline, 2,4-toluenediamine, m-phenylenediamine, p-phenylenediamine, 4,4 ' -Diaminodiphenylpropane, 3,3'-diaminodiphenylpropane, 4,4'-diaminodiphenylethane, 3,3'-diaminodiphenylethane, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 2, 2-bis [4- (4-aminophenoxy) phenyl] propane, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl Sulfone, 4,4'-diame Diphenyl ether, 3,3-diaminodiphenyl ether, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, benzidine, 3,3'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxybenzidine, 4,4'-diamino-p-terphenyl, 3,3'-diamino- p-terphenyl, bis (p-aminocyclohexyl) methane, bis (p-β-amino-t-butylphenyl) ether, bis (p-β-methyl-δ-aminopentyl) benzene, p-bis (2- Methyl-4-aminopentyl) benzene, p-bis (1,1-dimethyl-5-aminopentyl) benzene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,4-bis (β-amino- t-butyl) toluene, 2,4-diaminotoluene, m-xylene-2,5-diamine, p-xylene-2,5-diamine, m- Silylenediamine, p-xylylenediamine, 2,6-diaminopyridine, 2,5-diaminopyridine, 2,5-diamino-1,3,4-oxadiazole, piperazine, 2,2'-dimethyl-4, 4'-diaminobiphenyl, 3,7-diaminodibenzofuran, 1,5-diaminofluorene, dibenzo-p-dioxin-2,7-diamine, 4,4'-diaminobenzyl and the like.

また、ポリイミドの原料として用いられる酸無水物としては、例えば、ピロメリット酸二無水物、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物、2,2',3,3'-ベンゾフェノンテトラカルボン酸二無水物、2,3,3',4'-ベンゾフェノンテトラカルボン酸二無水物、ナフタレン-1,2,5,6-テトラカルボン酸二無水物、ナフタレン-1,2,4,5-テトラカルボン酸二無水物、ナフタレン-1,4,5,8-テトラカルボン酸二無水物、ナフタレン-1,2,6,7-テトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-1,2,5,6-テトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-2,3,6,7-テトラカルボン酸二無水物、2,6-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,7-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,3,6,7-テトラクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、1,4,5,8-テトラクロロナフタレン-2,3,6,7-テトラカルボン酸二無水物、3,3',4,4'-ビフェニルテトラカルボン酸二無水物、2,2',3,3'-ビフェニルテトラカルボン酸二無水物、2,3,3',4'-ビフェニルテトラカルボン酸二無水物、3,3'',4,4''-p-テルフェニルテトラカルボン酸二無水物、2,2'',3,3''-p-テルフェニルテトラカルボン酸二無水物、2,3,3'',4''-p-テルフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-プロパン二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3.4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ペリレン-2,3,8,9-テトラカルボン酸二無水物、ペリレン-3,4,9,10-テトラカルボン酸二無水物、ペリレン-4,5,10,11-テトラカルボン酸二無水物、ペリレン-5,6,11,12-テトラカルボン酸二無水物、フェナンスレン-1,2,7,8-テトラカルボン酸二無水物、フェナンスレン-1,2,6,7-テトラカルボン酸二無水物、フェナンスレン-1,2,9,10-テトラカルボン酸二無水物、シクロペンタン-1,2,3,4-テトラカルボン酸二無水物、ピラジン-2,3,5,6-テトラカルボン酸二無水物、ピロリジン-2,3,4,5-テトラカルボン酸二無水物、チオフェン-,3,4,5-テトラカルボン酸二無水物、4,4'-オキシジフタル酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物などが挙げられる。   Examples of the acid anhydride used as a raw material for polyimide include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3 ′. -Benzophenone tetracarboxylic dianhydride, 2,3,3 ', 4'-benzophenone tetracarboxylic dianhydride, naphthalene-1,2,5,6-tetracarboxylic dianhydride, naphthalene-1,2, 4,5-tetracarboxylic dianhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride, naphthalene-1,2,6,7-tetracarboxylic dianhydride, 4,8-dimethyl -1,2,3,5,6,7-hexahydronaphthalene-1,2,5,6-tetracarboxylic dianhydride, 4,8-dimethyl-1,2,3,5,6,7- Hexahydronaphthalene-2,3,6,7-tetracarboxylic dianhydride, 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,7-dichloronaphthalene-1, 4,5,8-tetracarboxylic dianhydride, 2,3,6,7-tetrachloro Phthalene-1,4,5,8-tetracarboxylic dianhydride, 1,4,5,8-tetrachloronaphthalene-2,3,6,7-tetracarboxylic dianhydride, 3,3 ', 4 , 4'-biphenyltetracarboxylic dianhydride, 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride, 2,3,3', 4'-biphenyltetracarboxylic dianhydride, 3, 3 '', 4,4 ''-p-terphenyltetracarboxylic dianhydride, 2,2``, 3,3 ''-p-terphenyltetracarboxylic dianhydride, 2,3,3 ' ', 4' '-p-terphenyltetracarboxylic dianhydride, 2,2-bis (2,3-dicarboxyphenyl) -propane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) ) -Propane dianhydride, bis (2,3-dicarboxyphenyl) ether dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3.4-dicarboxyphenyl) methane dianhydride, Bis (2,3-dicarboxyphenyl) sulfone dianhydride, bis (3,4-dicarboxyl) Phenyl) sulfone dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, perylene-2,3 , 8,9-tetracarboxylic dianhydride, perylene-3,4,9,10-tetracarboxylic dianhydride, perylene-4,5,10,11-tetracarboxylic dianhydride, perylene-5, 6,11,12-tetracarboxylic dianhydride, phenanthrene-1,2,7,8-tetracarboxylic dianhydride, phenanthrene-1,2,6,7-tetracarboxylic dianhydride, phenanthrene-1 , 2,9,10-Tetracarboxylic dianhydride, cyclopentane-1,2,3,4-tetracarboxylic dianhydride, pyrazine-2,3,5,6-tetracarboxylic dianhydride, pyrrolidine -2,3,4,5-tetracarboxylic dianhydride, thiophene-, 3,4,5-tetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride, 2,3,6,7 -Naphthalene tetracarboxylic dianhydride, etc. And the like.

上記ジアミン及び酸無水物は、それぞれ1種のみを使用してもよく2種以上を併用することもできる。また、重合に使用される溶媒は、ジメチルアセトアミド、N-メチルピロリジノン、2-ブタノン、ジグライム、キシレン等が挙げられ、1種又は2種以上併用して使用することもできる。   Each of the diamine and acid anhydride may be used alone or in combination of two or more. Examples of the solvent used for the polymerization include dimethylacetamide, N-methylpyrrolidinone, 2-butanone, diglyme, xylene and the like, and they can be used alone or in combination of two or more.

本実施の形態において、熱膨張係数30×10−6/K未満の低熱膨張性のポリイミド層(i)とするには、原料の酸無水物成分としてピロメリット酸二無水物、3,3',4,4'-ビフェニルテトラカルボン酸二無水物を、ジアミン成分としては、2,2'-ジメチル-4,4'-ジアミノビフェニル、2-メトキシ-4,4’-ジアミノベンズアニリドを用いることがよく、特に好ましくは、ピロメリット酸二無水物及び2,2'-ジメチル-4,4'-ジアミノビフェニルを原料各成分の主成分とするものがよい。 In this embodiment, in order to obtain a low thermal expansion polyimide layer (i) having a thermal expansion coefficient of less than 30 × 10 −6 / K, pyromellitic dianhydride, 3,3 ′ , 4,4'-biphenyltetracarboxylic dianhydride and 2,2'-dimethyl-4,4'-diaminobiphenyl, 2-methoxy-4,4'-diaminobenzanilide as the diamine component Particularly preferred are those containing pyromellitic dianhydride and 2,2′-dimethyl-4,4′-diaminobiphenyl as the main components of the respective raw materials.

また、熱膨張係数30×10−6/K以上の高熱膨張性のポリイミド層(ii)とするには、原料の酸無水物成分としてピロメリット酸二無水物、3,3',4,4’-ビフェニルテトラカルボン酸二無水物、3,3',4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3',4,4’-ジフェニルスルホンテトラカルボン酸二無水物を、ジアミン成分としては、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4'-ジアミノジフェニルエーテル、1,3-ビス(4-アミノフェノキシ)ベンゼンを用いることがよく、特に好ましくはピロメリット酸二無水物及び2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパンを原料各成分の主成分とするものがよい。なお、このようにして得られる高熱膨張性のポリイミド層(ii)の好ましいガラス転移温度は、300〜400℃の範囲内である。 In order to obtain a high thermal expansion polyimide layer (ii) having a thermal expansion coefficient of 30 × 10 −6 / K or more, pyromellitic dianhydride, 3,3 ′, 4,4 is used as the raw acid anhydride component. '-Biphenyltetracarboxylic dianhydride, 3,3', 4,4'-benzophenonetetracarboxylic dianhydride, 3,3 ', 4,4'-diphenylsulfone tetracarboxylic dianhydride, diamine component 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, 4,4′-diaminodiphenyl ether, and 1,3-bis (4-aminophenoxy) benzene are particularly preferable. It is preferable that pyromellitic dianhydride and 2,2′-bis [4- (4-aminophenoxy) phenyl] propane are the main components of the raw materials. In addition, the preferable glass transition temperature of the high thermal expansion polyimide layer (ii) obtained in this way is in the range of 300-400 degreeC.

また、ポリイミド層(A)を低熱膨張性のポリイミド層(i)と高熱膨張性のポリイミド層(ii)との積層構造とした場合、好ましくは、低熱膨張性のポリイミド層(i)と高熱膨張性のポリイミド層(ii)との厚み比(低熱膨張性のポリイミド層(i)/高熱膨張性のポリイミド層(ii))が2〜15の範囲内であるのがよい。この比の値が、2に満たないとポリイミド層全体に対する低熱膨張性ポリイミド層が薄くなるため、ポリイミドフィルムの寸法特性の制御が困難となり、銅箔をエッチングした際の寸法変化率が大きくなり、15を超えると高熱膨張性ポリイミド層が薄くなるため、ポリイミドフィルムと銅箔との接着信頼性が低下する。なお、ポリイミド層(A)が複数層からなる場合であっても、上記折れ癖係数[PF]の算出にあたっては、ポリイミド層(A)全体の厚み、弾性率を用いることができる。   Further, when the polyimide layer (A) has a laminated structure of a low thermal expansion polyimide layer (i) and a high thermal expansion polyimide layer (ii), preferably, the low thermal expansion polyimide layer (i) and the high thermal expansion The ratio of the thickness of the conductive polyimide layer (ii) (low thermal expansion polyimide layer (i) / high thermal expansion polyimide layer (ii)) is preferably in the range of 2 to 15. If the value of this ratio is less than 2, the low thermal expansion polyimide layer with respect to the entire polyimide layer becomes thin, so it becomes difficult to control the dimensional characteristics of the polyimide film, and the dimensional change rate when the copper foil is etched increases. If it exceeds 15, the high thermal expansion polyimide layer becomes thin, so that the reliability of adhesion between the polyimide film and the copper foil is lowered. In addition, even when the polyimide layer (A) is composed of a plurality of layers, the thickness and elastic modulus of the entire polyimide layer (A) can be used in calculating the folding coefficient [PF].

<銅箔>
本実施の形態のフレキシブル銅張積層板において、銅箔(B)の厚みは6〜20μmの範囲内であり、8〜15μmの範囲内が好ましい。銅箔(B)の厚みが6μmに満たないと、フレキシブル銅張積層板の製造時、例えば、銅箔上にポリイミド層を形成する工程において銅箔自体の剛性が低下し、その結果、フレキシブル銅張積層板上にシワ等が発生する問題が生じる。また、銅箔(B)の厚みが20μmを超えると、FPCを折り曲げた際の銅配線に加わる曲げ応力が大きくなることにより、耐折り曲げ性が低下することとなる。
<Copper foil>
In the flexible copper clad laminate of the present embodiment, the thickness of the copper foil (B) is in the range of 6 to 20 μm, and preferably in the range of 8 to 15 μm. If the thickness of the copper foil (B) is less than 6 μm, the rigidity of the copper foil itself is reduced during the production of a flexible copper-clad laminate, for example, in the step of forming a polyimide layer on the copper foil. The problem that wrinkles etc. generate | occur | produce on a tension laminated board arises. On the other hand, if the thickness of the copper foil (B) exceeds 20 μm, the bending stress applied to the copper wiring when the FPC is bent increases, so that the bending resistance decreases.

更に、本実施の形態ではポリイミド層(A)と銅箔(B)の厚み比[ポリイミド層(A)/銅箔(B)]が0.9〜1.1の範囲内にあることが好ましい。この厚み比が0.9未満、あるいは1.1より大きくなると、折り曲げ時に塑性変形した部分が伸ばされる際の最大引張りひずみが大きくなることにより、耐折り曲げ性が低下することとなる。   Furthermore, in this Embodiment, it is preferable that the thickness ratio [polyimide layer (A) / copper foil (B)] of a polyimide layer (A) and copper foil (B) exists in the range of 0.9-1.1. . When this thickness ratio is less than 0.9 or greater than 1.1, the bending resistance is lowered due to an increase in the maximum tensile strain when the plastically deformed portion is stretched during bending.

また、銅箔(B)の引張弾性率については、25〜35GPaの範囲内である。銅箔(B)の引張弾性率が25GPaに満たないと、フレキシブル銅張積層板の製造時、例えば、銅箔上にポリイミド層を形成する工程において銅箔自体の加熱条件等が影響し、剛性が低下してしまう。その結果、フレキシブル銅張積層板上にシワ等が発生するという問題が生じる。一方、引張弾性率が35GPaを超えると、FPCを折り曲げた際に銅配線により大きな曲げ応力が加わることとなり、その耐折り曲げ性が著しく低下する。   Moreover, about the tensile elasticity modulus of copper foil (B), it exists in the range of 25-35 GPa. If the tensile elastic modulus of the copper foil (B) is less than 25 GPa, the rigidity of the copper foil itself is affected by the heating conditions of the copper foil itself in the process of forming a polyimide layer on the copper foil, for example, during the production of a flexible copper-clad laminate. Will fall. As a result, the problem that wrinkles etc. generate | occur | produce on a flexible copper clad laminated board arises. On the other hand, when the tensile modulus exceeds 35 GPa, a large bending stress is applied to the copper wiring when the FPC is bent, and the bending resistance is remarkably lowered.

銅箔(B)の表面は、粗化処理されていてもよく、ポリイミド層(A)と接する銅箔表面の表面粗さ(十点平均粗さ;Rz)は0.7〜2.2μmの範囲内であり、0.8〜1.6μmの範囲内が好ましい。銅箔(B)の表面粗さ(Rz)の値が0.7μmに満たないとポリイミドフィルムとの接着信頼性の担保が困難となり、2.2μmを超えるとFPCを繰り返し折り曲げた際に、その粗化粒子の凹凸がクラック発生の起点となりやすい。その結果、FPCの耐折り曲げ性を低下させることとなる。なお、表面粗さRzは、JIS B0601の規定に準じて測定される値である。   The surface of the copper foil (B) may be roughened, and the surface roughness (ten-point average roughness; Rz) of the copper foil surface in contact with the polyimide layer (A) is 0.7 to 2.2 μm. Within the range, preferably within the range of 0.8 to 1.6 μm. When the value of the surface roughness (Rz) of the copper foil (B) is less than 0.7 μm, it is difficult to ensure the reliability of adhesion with the polyimide film, and when it exceeds 2.2 μm, when the FPC is repeatedly bent, Roughness of the roughened particles tends to be the starting point for cracks. As a result, the bending resistance of the FPC is reduced. The surface roughness Rz is a value measured according to JIS B0601.

本実施の形態のフレキシブル銅張積層板に使用する銅箔は、上記特性を充足するものであれば特に限定されるものではなく、電解銅箔でも圧延銅箔でもよいが、薄い銅箔を使用する場合での製造のしやすさや価格の観点から、電解銅箔を用いることが好ましい。電解銅箔としては、市販品を使用可能であり、その具体例としては、古河電気工業株式会社製WS箔、日本電解株式会社製HL箔、三井金属鉱業株式会社製HTE箔などが挙げられる。また、これらの市販品を含めて、それ以外のものを使用した場合であっても、前述した銅箔上へのポリイミド層(A)を形成する際の熱処理条件などにより、銅箔(B)の引張弾性率は変化し得るので、本実施の形態では結果として得られたフレキシブル銅張積層板がこれら所定の範囲になればよい。   The copper foil used for the flexible copper clad laminate of the present embodiment is not particularly limited as long as it satisfies the above characteristics, and may be an electrolytic copper foil or a rolled copper foil, but a thin copper foil is used. From the viewpoint of ease of manufacture and price in the case of performing, it is preferable to use an electrolytic copper foil. Commercially available products can be used as the electrolytic copper foil, and specific examples thereof include WS foil manufactured by Furukawa Electric Co., Ltd., HL foil manufactured by Nihon Electrolytic Co., Ltd., and HTE foil manufactured by Mitsui Metal Mining Co., Ltd. Moreover, even if it is a case where other than that including these commercial items is used, according to the heat processing conditions at the time of forming the polyimide layer (A) on copper foil mentioned above, copper foil (B) Since the tensile elastic modulus of can be changed, it is only necessary that the resultant flexible copper-clad laminate falls within these predetermined ranges in the present embodiment.

本実施の形態のフレキシブル銅張積層板は、例えば、銅箔表面にポリイミド前駆体樹脂溶液(ポリアミド酸溶液ともいう。)を塗工し、次いで、乾燥、硬化させる熱処理工程を経て製造することができる。熱処理工程における熱処理条件は、塗工されたポリアミド酸溶液を160℃未満の温度でポリアミド酸溶液中の溶媒を乾燥除去した後、更に、130℃から400℃の温度範囲内で段階的に昇温し、硬化させることにより行なわれる。このようにして得られた片面フレキシブル銅張積層板を両面銅張積層板とするには、前記片面フレキシブル銅張積層板と、これとは別に準備した銅箔とを300〜400℃の範囲内の温度にて熱圧着する方法が挙げられる。   The flexible copper-clad laminate of the present embodiment can be produced, for example, by applying a polyimide precursor resin solution (also referred to as a polyamic acid solution) to the copper foil surface, and then drying and curing. it can. The heat treatment condition in the heat treatment step is that the coated polyamic acid solution is dried and removed from the polyamic acid solution at a temperature below 160 ° C., and then the temperature is raised stepwise within a temperature range of 130 ° C. to 400 ° C. And curing. In order to make the single-sided flexible copper-clad laminate obtained in this way into a double-sided copper-clad laminate, the single-sided flexible copper-clad laminate and a copper foil prepared separately are within a range of 300 to 400 ° C. A method of thermocompression bonding at a temperature of

<FPC>
本実施の形態のフレキシブル銅張積層板は、主にFPC材料として有用である。すなわち、本実施の形態のフレキシブル銅張積層板の銅箔を常法によってパターン状に加工して配線層を形成することによって、本発明の一実施の形態であるFPCを製造できる。
<FPC>
The flexible copper clad laminate of the present embodiment is mainly useful as an FPC material. That is, the FPC which is one embodiment of the present invention can be manufactured by processing the copper foil of the flexible copper-clad laminate of the present embodiment into a pattern by a conventional method to form a wiring layer.

本発明のフレキシブル銅張積層板は、上記ポリイミド層(A)と上記銅箔(B)により構成されるが、このフレキシブル銅張積層板の銅箔(B)を配線回路加工して銅配線を形成した任意のフレキシブル回路基板の折り曲げ試験(ギャップ0.3mm)での、下記(1)によって計算される折れ癖係数[PF]が0.96±0.025の範囲にあることが必要であり、0.96±0.02の範囲にあることが好ましく、0.96±0.015の範囲にあることがより好ましい。この折れ癖係数[PF]は、使用される銅箔の一軸引張試験より得られる応力−ひずみ曲線によって決まる値である。この折れ癖係数[PF]が上記範囲から外れると、応力が局部的(1点又は2点)に集中することによって、耐折り曲げ性が低下する。逆に、折れ癖係数[PF]が上記範囲にあれば、応力が適度に分散することによってハゼ折りなどの耐折り曲げ性が向上する。例えば、本発明において電解銅箔を用いた場合、本発明で規定する折れ癖係数[PF]を上記範囲とするには、用いられる電解銅箔の一軸引張試験より得られる応力−ひずみ曲線において、初期の直線部分の傾き即ち弾性率が29GPa以下、且つ曲率が最大になる箇所の応力値が130MPa以下、且つひずみが5%で応力が175MPa以下となる銅箔を用いる態様が例示される。   The flexible copper-clad laminate of the present invention is composed of the polyimide layer (A) and the copper foil (B). The copper foil (B) of the flexible copper-clad laminate is processed into a wiring circuit to produce a copper wiring. The bending coefficient [PF] calculated by the following (1) in the bending test (gap 0.3 mm) of an arbitrary flexible circuit board formed must be in the range of 0.96 ± 0.025. , Preferably in the range of 0.96 ± 0.02, more preferably in the range of 0.96 ± 0.015. This crease coefficient [PF] is a value determined by a stress-strain curve obtained from a uniaxial tensile test of the copper foil used. When the folding coefficient [PF] is out of the above range, the stress is concentrated locally (one point or two points), so that the bending resistance is lowered. On the other hand, when the crease coefficient [PF] is in the above range, the bending resistance such as goby folding is improved by the appropriate dispersion of the stress. For example, in the case where an electrolytic copper foil is used in the present invention, in order to make the folding coefficient [PF] defined in the present invention in the above range, in the stress-strain curve obtained from the uniaxial tensile test of the electrolytic copper foil used, An example of using a copper foil in which the slope of the initial straight line portion, that is, the elastic modulus is 29 GPa or less, the stress value at the portion where the curvature is maximum is 130 MPa or less, the strain is 5%, and the stress is 175 MPa or less.

Figure 2018139295
式(1)において、|ε|は銅配線の屈曲平均ひずみ値の絶対値であり、εcは銅配線の引張弾性限界ひずみである。
Figure 2018139295
In equation (1), | ε | is the absolute value of the bending average strain value of the copper wiring, and εc is the tensile elastic limit strain of the copper wiring.

上記のように、折れ癖係数[PF]は、銅配線の屈曲平均ひずみ値εの絶対値|ε|と銅配線の引張弾性限界ひずみεcとによって表され、屈曲平均ひずみ値εは、下記式(2)によって算出される。以下、折れ癖係数[PF]について、図8に示した1層のポリイミドからなるポリイミド層11の片面側に1層の銅箔を配線回路加工した銅配線12が設けられた回路基板をモデルにし、第一層であるポリイミド層11の下面である基準面SPが下側に凸形状(屈曲部の外面)になるように回路基板を屈曲させる場合について説明する。なお、図8に示した回路基板は、回路基板の長手方向に対して垂直に切った断面(すなわち横断面)のうち、銅配線が存在する部分を示すものである。
ε=−(yc−[NP]Line)/R …(2)
As described above, the bending coefficient [PF] is represented by the absolute value | ε | of the bending average strain value ε of the copper wiring and the tensile elastic limit strain εc of the copper wiring. Calculated by (2). In the following, with respect to the folding coefficient [PF], a circuit board provided with a copper wiring 12 in which one layer of copper foil is processed into a wiring circuit on one side of the polyimide layer 11 made of one layer of polyimide shown in FIG. 8 is used as a model. The case where the circuit board is bent so that the reference plane SP that is the lower surface of the polyimide layer 11 that is the first layer has a convex shape downward (outer surface of the bent portion) will be described. The circuit board shown in FIG. 8 shows a portion where copper wiring exists in a cross section (that is, a transverse cross section) cut perpendicular to the longitudinal direction of the circuit board.
ε = − (yc− [NP] Line ) / R (2)

ここで、式(2)について、屈曲平均ひずみεは、回路基板の長手方向を2つ折りした際の純曲げによって銅配線に生じる長手方向の屈曲平均ひずみであり、式中のycは、ポリイミド層12の下面である基準面SPから銅配線12の中央面までの距離である。また、符号NPは回路基板の中立面を表している。ここで、中立面NPと基準面SPとの距離を中立面位置[NP]とし、この中立面位置[NP]については、銅箔の配線回路加工によって形成された銅配線と銅配線間に形成されるスペース部とで別々に計算する。中立面位置[NP]は、次の式(3)によって算出される。   Here, with respect to Equation (2), the bending average strain ε is the bending average strain in the longitudinal direction generated in the copper wiring by pure bending when the longitudinal direction of the circuit board is folded in half, and yc in the equation is the polyimide layer 12 is a distance from the reference plane SP which is the lower surface of 12 to the center plane of the copper wiring 12. The symbol NP represents the neutral plane of the circuit board. Here, the distance between the neutral plane NP and the reference plane SP is defined as a neutral plane position [NP]. The neutral plane position [NP] is formed by copper wiring and copper wiring formed by wiring circuit processing of copper foil. It calculates separately with the space part formed between. The neutral plane position [NP] is calculated by the following equation (3).

Figure 2018139295
Figure 2018139295

ここで、Eは、回路基板における第i層(図8に示した例では、第1層がポリイミド層11であり、第2層が銅配線12である)を構成する材料の引張弾性率である。この弾性率Eは、本実施の形態における「各層における応力とひずみの関係」に対応する。Bは、第i層の幅であり、図8に示した幅B(第1層の下面に平行で、回路基板の長手方向に垂直な方向の寸法)に相当する。 Here, E i is the tensile modulus of the material constituting the i-th layer (in the example shown in FIG. 8, the first layer is the polyimide layer 11 and the second layer is the copper wiring 12) in the circuit board. It is. This elastic modulus E i corresponds to “relation between stress and strain in each layer” in the present embodiment. B i is the width of the i-th layer and corresponds to the width B shown in FIG. 8 (dimension in the direction parallel to the lower surface of the first layer and perpendicular to the longitudinal direction of the circuit board).

銅配線の中立面位置[NP]を求める場合には、Bとして銅配線の線幅LWの値を用い、スペース部の中立面位置[NP]を求める場合には、Bとして銅配線の線間幅SWの値を用いる。hは、第i層の中央面と基準面SPとの距離である。なお、第i層の中央面とは、第i層の厚み方向の中央に位置する仮想の面である。tは、第i層の厚みである。また、記号“Σi=1 ”は、iが1からnまでの総和を表す。また、銅配線における中立面位置については[NP]Lineと記す。 In case of obtaining the neutral plane position of the copper wiring [NP], when a B i using the values of the line width LW of the copper wiring, obtaining the neutral plane position of the space portion [NP], the copper as B i The value of the line width SW of the wiring is used. h i is the distance between the center plane of the i-th layer and the reference plane SP. The central surface of the i-th layer is a virtual surface located at the center in the thickness direction of the i-th layer. t i is the thickness of the i-th layer. Further, the symbol “Σ i = 1 n ” represents the sum of i from 1 to n. The neutral plane position in the copper wiring is denoted as [NP] Line .

また、式(2)中のRは有効曲率半径を表し、有効曲率半径Rは、折り曲げ試験において回路基板を折り曲げた際の、屈曲部における屈曲中心から銅配線の中立面NPまでの距離である。すなわち、有効曲率半径Rは、ギャップ間隔Gと銅配線の中立面位置[NP]Lineとから、次の式(4)によって算出される。
R=G/2−[NP]Line …(4)
Further, R in the expression (2) represents an effective radius of curvature, and the effective radius of curvature R is a distance from the bending center at the bent portion to the neutral plane NP of the copper wiring when the circuit board is bent in the bending test. is there. That is, the effective curvature radius R is calculated by the following equation (4) from the gap interval G and the neutral plane position [NP] Line of the copper wiring.
R = G / 2- [NP] Line (4)

上記のように、中立面位置、有効曲率半径、屈曲平均ひずみを求めることで、回路基板全体の折れ癖の程度を表す折れ癖係数[PF]が算出される。また、この折れ癖係数[PF]は、上記の説明のとおり、回路基板を構成する各層の厚みと、回路基板を構成する各層の弾性率と、折り曲げ試験におけるギャップ間隔Gと、銅配線12における線幅LW等の各情報を用いて算出することができる。   As described above, the crease coefficient [PF] representing the degree of crease of the entire circuit board is calculated by obtaining the neutral plane position, effective radius of curvature, and bending average strain. Further, as described above, the folding coefficient [PF] is the thickness of each layer constituting the circuit board, the elastic modulus of each layer constituting the circuit board, the gap interval G in the bending test, and the copper wiring 12. It can be calculated using each information such as the line width LW.

なお、上記(図8)では、便宜上、回路基板が2層であるモデルを示し説明したが、上記説明は、回路基板が2層以上から形成される場合にも当てはまる。すなわち、回路基板1の層の数をnとした場合、nは2以上の整数であり、この回路基板を構成する各層のうち基準面SPから数えてi番目(i=1,2,…,n)の層を第i層と呼ぶ。   In the above description (FIG. 8), for the sake of convenience, the model in which the circuit board has two layers has been described. However, the above description also applies to the case where the circuit board is formed of two or more layers. That is, when the number of layers of the circuit board 1 is n, n is an integer equal to or greater than 2, and the i-th (i = 1, 2,... The layer n) is called the i-th layer.

また、回路基板は、図1に示したように銅箔が配線回路加工によりパターニングされており、銅配線12が存在する部分と、銅配線12が存在しない部分とがある。ここで、銅配線12が存在する部分を配線部と呼び、銅配線12が存在しない部分をスペース部と呼べば、配線部とスペース部とでは、構成が異なる。例えば、図1に示した回路基板1の場合、ポリイミド層11上の配線部は10列(図1では、4列のみ図示)の銅配線12で構成され、スペース部は配線部以外で、主に銅配線12間の隙間で構成される。以上より、折り癖係数[PF]の算出は、配線部とスペース部とを分けて行うことができる。   Further, as shown in FIG. 1, the circuit board has a copper foil patterned by wiring circuit processing, and has a portion where the copper wiring 12 is present and a portion where the copper wiring 12 is not present. Here, if a portion where the copper wiring 12 exists is called a wiring portion and a portion where the copper wiring 12 does not exist is called a space portion, the wiring portion and the space portion have different configurations. For example, in the case of the circuit board 1 shown in FIG. 1, the wiring portion on the polyimide layer 11 is composed of 10 rows of copper wiring 12 (only four rows are shown in FIG. 1), and the space portion is the main portion other than the wiring portion. And a gap between the copper wirings 12. As described above, the folding coefficient [PF] can be calculated separately for the wiring portion and the space portion.

以下、実施例に基づき本発明をより詳細に説明する。なお、下記の実施例における各特性評価は、以下の方法により行った。   Hereinafter, based on an Example, this invention is demonstrated in detail. In addition, each characteristic evaluation in the following Example was performed with the following method.

[引張弾性率の測定]
株式会社東洋精機製作所製ストログラフR−1を用いて、温度23℃、相対湿度50%の環境下で引張弾性率の値を測定した。
[Measurement of tensile modulus]
The value of the tensile elastic modulus was measured in an environment of a temperature of 23 ° C. and a relative humidity of 50% using a strograph R-1 manufactured by Toyo Seiki Seisakusho.

[熱膨張係数(CTE)の測定]
セイコーインスツルメンツ製のサーモメカニカルアナライザーを使用し、250℃まで昇温し、更にその温度で10分保持した後、5℃/分の速度で冷却し、240℃から100℃までの平均熱膨張係数(線熱膨張係数)を求めた。
[Measurement of coefficient of thermal expansion (CTE)]
Using a thermomechanical analyzer manufactured by Seiko Instruments Inc., the temperature was raised to 250 ° C., held at that temperature for 10 minutes, cooled at a rate of 5 ° C./minute, and an average thermal expansion coefficient from 240 ° C. to 100 ° C. ( (Linear thermal expansion coefficient) was determined.

[表面粗さ(Rz)の測定]
接触式表面粗さ測定機(株式会社小坂研究所製SE1700)を用いて、銅箔のポリイミド層との接触面側の表面粗さを測定した。
[Measurement of surface roughness (Rz)]
The surface roughness of the contact surface side with the polyimide layer of copper foil was measured using the contact-type surface roughness measuring machine (SE1700 by Kosaka Laboratory Ltd.).

[はぜ折りの測定(折り曲げ試験)]
フレキシブル銅張積層板の銅箔をエッチング加工し、その長手方向に沿ってライン幅100μm、スペース幅100μmにて長さが40mmの10列の銅配線を形成した試験片(試験回路基板片)を作製した(図2)。試験片における銅配線のみを表した図2に示したように、その試験片40における10列の銅配線51は、U字部52を介して全て連続して繋がっており、その両端には抵抗値測定用の電極部分(図示外)を設けている。その試験片40を、二つ折りが可能な試料ステージ20及び21上に固定し、抵抗値測定用の配線を接続して、抵抗値のモニタリングを開始した(図3)。折り曲げ試験は、10列の銅配線51に対して長手方向のちょうど中央部分にて、ウレタン製のローラー22を用いて、折り曲げ箇所40CのギャップGが0.3mmとなるように制御しながら折り曲げた線と並行にローラーを移動させ10列の銅配線51を全て折り曲げた後(図4及び図5)、折り曲げ部分を開いて試験片を平らな状態に戻し(図6)、折り目がついている部分を再度ローラーにて抑えたまま移動させ(図7)、この一連の工程をもってはぜ折り回数1回とカウントするようにした。その常時配線の抵抗値をモニタリングしながら、折り曲げ試験を繰り返し、所定の抵抗値(3000Ω)になった時点を配線の破断と判断し、その時までに繰り返した折り曲げ回数をはぜ折り測定値とした。このはぜ折り測定値が50回以上である場合を「良好」、50回未満である場合を「不良」と評価した。
[Measurement of seam fold (bending test)]
A test piece (test circuit board piece) formed by etching copper foil of a flexible copper-clad laminate and forming 10 rows of copper wiring having a line width of 100 μm and a space width of 100 μm and a length of 40 mm along the longitudinal direction. It produced (FIG. 2). As shown in FIG. 2 showing only the copper wiring in the test piece, the 10 rows of copper wirings 51 in the test piece 40 are all continuously connected via the U-shaped portion 52, and resistance is provided at both ends thereof. An electrode portion (not shown) for value measurement is provided. The test piece 40 was fixed on the sample stages 20 and 21 that can be folded in half, and a resistance value measurement wiring was connected to start monitoring of the resistance value (FIG. 3). In the bending test, the copper wiring 51 of 10 rows was bent at the central portion in the longitudinal direction while controlling the gap G of the folding portion 40C to be 0.3 mm using the urethane roller 22. After moving the roller in parallel with the line and bending all 10 rows of copper wiring 51 (FIGS. 4 and 5), the bent portion is opened to return the test piece to a flat state (FIG. 6), and the creased portion Was moved again while being held down by a roller (FIG. 7), and this series of steps was counted as one folding. While constantly monitoring the resistance value of the wiring, the bending test was repeated, and when the predetermined resistance value (3000 Ω) was reached, it was judged that the wiring was broken. . This case was evaluated as “good” when the measured value of the folding angle was 50 times or more, and “bad” when it was less than 50 times.

実施例、比較例に記載のフレキシブル銅張積層板の製造方法について次に示す。   The method for producing the flexible copper-clad laminate described in Examples and Comparative Examples will be described below.

[ポリアミック酸溶液の合成]
(合成例1)
ボトム樹脂の合成:
熱電対及び攪拌機を備えると共に窒素導入が可能な反応容器に、N,N−ジメチルアセトアミドを入れ、さらに、この反応容器に2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を投入して容器中で撹拌しながら溶解させた。次に、ピロメリット酸二無水物(PMDA)をモノマーの投入総量が12質量%となるように投入した。その後、3時間撹拌を続けて重合反応を行い、ポリアミド酸aの樹脂溶液を得た。ポリアミド酸aから形成された厚み25μmのポリイミドフィルムの熱膨張係数(CTE)は、55×10−6/Kであった。
[Synthesis of polyamic acid solution]
(Synthesis Example 1)
Bottom resin synthesis:
A reaction vessel equipped with a thermocouple and a stirrer and capable of introducing nitrogen was charged with N, N-dimethylacetamide, and further, 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP ) Was added and dissolved in the container with stirring. Next, pyromellitic dianhydride (PMDA) was added so that the total amount of monomers added was 12% by mass. Thereafter, stirring was continued for 3 hours to carry out a polymerization reaction to obtain a resin solution of polyamic acid a. The thermal expansion coefficient (CTE) of the polyimide film having a thickness of 25 μm formed from the polyamic acid a was 55 × 10 −6 / K.

(合成例2)
熱電対及び攪拌機を備えると共に窒素導入が可能な反応容器に、N,N−ジメチルアセトアミドを入れ、さらに、この反応容器に2,2'−ジメチル−4,4'−ジアミノビフェニル(m-TB)および4,4’−ジアミノジフェニルエーテル(DAPE)を各ジアミンのモル比率(m-TB:DAPE)が60:40となるように投入して容器中で攪拌しながら溶解させた。次に、ピロメリット酸二無水物(PMDA)をモノマーの投入総量が16質量%となるように投入した。その後、3時間撹拌を続けて重合反応を行い、ポリアミド酸bの樹脂溶液を得た。ポリアミド酸bから形成された厚み25μmのポリイミドフィルムの熱膨張係数(CTE)は、22×10−6/Kであった。
(Synthesis Example 2)
A reaction vessel equipped with a thermocouple and a stirrer and capable of introducing nitrogen is charged with N, N-dimethylacetamide, and this reaction vessel is further filled with 2,2′-dimethyl-4,4′-diaminobiphenyl (m-TB). And 4,4′-diaminodiphenyl ether (DAPE) was added so that the molar ratio of each diamine (m-TB: DAPE) was 60:40, and dissolved in the container with stirring. Next, pyromellitic dianhydride (PMDA) was added so that the total amount of monomers added was 16% by mass. Thereafter, stirring was continued for 3 hours to carry out a polymerization reaction to obtain a resin solution of polyamic acid b. The thermal expansion coefficient (CTE) of the polyimide film having a thickness of 25 μm formed from the polyamic acid b was 22 × 10 −6 / K.

(合成例3)
熱電対及び攪拌機を備えると共に窒素導入が可能な反応容器に、N,N−ジメチルアセトアミドを入れ、さらに、この反応容器に2,2'−ジメチル−4,4'−ジアミノビフェニル(m-TB)を投入して容器中で攪拌しながら溶解させた。次に、3,3',4,4'−ビフェニルテトラカルボン酸二無水物(BPDA)およびピロメリット酸二無水物(PMDA)をモノマーの投入総量が15質量%、各酸無水物のモル比率(BPDA:PMDA)が20:80となるように投入した。その後、3時間撹拌を続けて重合反応を行い、ポリアミド酸cの樹脂溶液を得た。ポリアミド酸cから形成された厚み25μmのポリイミドフィルムの熱膨張係数(CTE)は、22×10−6/Kであった。
(Synthesis Example 3)
A reaction vessel equipped with a thermocouple and a stirrer and capable of introducing nitrogen is charged with N, N-dimethylacetamide, and this reaction vessel is further filled with 2,2′-dimethyl-4,4′-diaminobiphenyl (m-TB). Was dissolved while stirring in a container. Next, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride (BPDA) and pyromellitic dianhydride (PMDA) were added in a total amount of 15% by mass of monomers, and the molar ratio of each acid anhydride. (BPDA: PMDA) was added so as to be 20:80. Thereafter, stirring was continued for 3 hours to carry out a polymerization reaction to obtain a resin solution of polyamic acid c. The thermal expansion coefficient (CTE) of the polyimide film having a thickness of 25 μm formed from the polyamic acid c was 22 × 10 −6 / K.

(実施例1)
厚さ12μmで長尺状の市販の電解銅箔の片面(表面粗さRz=1.2μm)に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが2.5μmとなるように均一に塗布した後、130℃で加熱乾燥し溶媒を除去した。次に、この塗布面側に合成例2で調製したポリアミド酸bの樹脂溶液を硬化後の厚みが20.0μmとなるように均一に塗布し、120℃で加熱乾燥し溶媒を除去した。更に、この塗布面側に第1層目で塗布したものと同じポリアミド酸aの樹脂溶液を硬化後の厚みが2.5μmとなるように均一に塗布し、130℃で加熱乾燥し溶媒を除去した。この長尺状の積層体を130℃から開始して300℃まで段階的に温度が上がるように設定した連続硬化炉にて、合計6分程度の時間をかけて熱処理し、ポリイミド層の厚みが25μmの片面フレキシブル銅張積層板を得た。得られたフレキシブル銅張積層板を構成するポリイミド層及び銅箔の引張弾性率等の物性値、厚み、ポリイミド層と銅箔の厚み比、折れ癖係数、並びに、フレキシブル銅張積層板の耐折り曲げ性(はぜ折り回数)の評価結果を表1に示す(実施例2以下も同様)。なお、ポリイミド層の評価は製造されたフレキシブル銅張積層板から銅箔をエッチング除去したものを用いた。
Example 1
The thickness after curing the resin solution of polyamic acid a prepared in Synthesis Example 1 on one side (surface roughness Rz = 1.2 μm) of a long, commercially available electrolytic copper foil with a thickness of 12 μm is 2.5 μm. After uniformly coating, the solvent was removed by heating at 130 ° C. Next, the resin solution of the polyamic acid b prepared in Synthesis Example 2 was uniformly applied to the coated surface side so that the thickness after curing was 20.0 μm, and the solvent was removed by heating and drying at 120 ° C. Furthermore, the same polyamic acid a resin solution as that applied in the first layer is applied on the coated surface side uniformly so that the thickness after curing is 2.5 μm, and the solvent is removed by heating at 130 ° C. did. This continuous laminate was heat-treated in a continuous curing furnace set so that the temperature gradually increased from 300 ° C. to 300 ° C. over a period of about 6 minutes. A 25 μm single-sided flexible copper-clad laminate was obtained. Properties of the polyimide layer and the copper foil constituting the obtained flexible copper-clad laminate, such as tensile modulus, thickness, thickness ratio between the polyimide layer and the copper foil, folding coefficient, and bending resistance of the flexible copper-clad laminate The evaluation results of the property (number of times of folding) are shown in Table 1 (the same applies to Examples 2 and below). In addition, evaluation of the polyimide layer used what removed the copper foil by etching from the manufactured flexible copper clad laminated board.

ここで、実施例で製造したフレキシブル銅張積層板の折れ癖係数[PF]の算出について、実施例1を例に具体的な計算手順を説明する。
銅配線12が存在する配線部について図8に示すような2層構成を考え、第1層および第2層を構成する材料をそれぞれポリイミドおよび銅とする。表1(実施例1)に示した通り、各層の弾性率はE1=4GPa、E2=29GPa、厚みはt=25μm、t=12μmである。また、各層における厚さ方向での中央面と基準面SPとの距離はそれぞれh=12.5μm、h=31μmである。更に、幅Bについては、銅配線12の幅Bとスペース部の幅B2‘はともに100μmであり、また、銅配線12が存在する直下のポリイミドの幅Bも100μmとした(スペース部の直下のポリイミドの幅B1’も100μmとした)。
Here, a specific calculation procedure for the calculation of the folding coefficient [PF] of the flexible copper-clad laminate manufactured in the example will be described using Example 1 as an example.
Considering a two-layer structure as shown in FIG. 8 for the wiring portion where the copper wiring 12 exists, the materials constituting the first layer and the second layer are polyimide and copper, respectively. As shown in Table 1 (Example 1), the elastic modulus of each layer is E 1 = 4 GPa, E 2 = 29 GPa, and the thicknesses are t 1 = 25 μm and t 2 = 12 μm. Further, the distance between the center plane and the reference plane SP in the thickness direction in each layer is h 1 = 12.5 μm and h 2 = 31 μm, respectively. Further, regarding the width B, the width B 2 of the copper wiring 12 and the width B 2 ′ of the space portion are both 100 μm, and the width B 1 of the polyimide immediately below the copper wiring 12 is also set to 100 μm (space portion). The width B 1 ′ of the polyimide immediately below is also 100 μm).

これらの値を式(3)に代入すると、先ず、銅配線12が存在する配線部での中立面位置は[NP]Line=26.9μmと計算される。次に、この中立面位置[NP]Lineとギャップ間隔G=0.3mmを式(4)に代入して、有効屈曲半径R=0.123mmと計算される。さらに、基準面SPと銅配線12の中央面までの距離ycはyc=h2=31μmであるから、屈曲平均ひずみεはこのycと先に求めた[NP]Line、Rの値を式(2)に代入してε=−0.0333と計算される。ここでマイナスの符号は圧縮ひずみであることを表している。実施例1での銅配線となっている銅箔の引張試験より得た応力−ひずみ曲線より銅配線の引張弾性限界ひずみεcはεc=0.00058と決定した。これと先に求めた屈曲平均ひずみεの値を式(1)に代入すると折れ癖係数[PF]は[PF]=0.983と計算される。なお、本実施例においては、スペース部はポリイミド層のみから構成されていることから[NP]を求める操作は必要とせず、表1中の他の実施例、比較例の折れ癖係数[PF]も以上の手順で計算された値である。 When these values are substituted into Equation (3), first, the neutral plane position in the wiring portion where the copper wiring 12 exists is calculated as [NP] Line = 26.9 μm. Next, the neutral plane position [NP] Line and the gap interval G = 0.3 mm are substituted into the equation (4), and the effective bending radius R = 0.123 mm is calculated. Further, since the distance yc from the reference plane SP to the center plane of the copper wiring 12 is yc = h 2 = 31 μm, the bending average strain ε is the value of [NP] Line , R previously determined by yc and the equation ( Substituting into 2), ε = −0.0333 is calculated. Here, a minus sign indicates a compressive strain. The tensile elastic limit strain εc of the copper wiring was determined to be εc = 0.00058 from the stress-strain curve obtained from the tensile test of the copper foil serving as the copper wiring in Example 1. By substituting this and the value of the bending average strain ε obtained previously into the equation (1), the folding coefficient [PF] is calculated as [PF] = 0.983. In this example, since the space portion is composed only of the polyimide layer, the operation for obtaining [NP] is not required, and the folding coefficient [PF] of other examples and comparative examples in Table 1 is not required. Is a value calculated by the above procedure.

(実施例2)
厚さ12μmで長尺状の市販の電解銅箔の片面(表面粗さRz=1.2μm)に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが2.0μmとなるように均一に塗布した後、130℃で加熱乾燥し溶媒を除去した。次に、この塗布面側に合成例3で調製したポリアミド酸cの樹脂溶液を硬化後の厚みが16μmとなるように均一に塗布し、130℃で加熱乾燥し溶媒を除去した。更に、この塗布面側に第1層目で塗布したものと同じポリアミド酸aの樹脂溶液を硬化後の厚みが2.0μmとなるように均一に塗布し、130℃で加熱乾燥し溶媒を除去した。この長尺状の積層体を130℃から開始して300℃まで段階的に温度が上がるように設定した連続硬化炉にて、合計6分程度の時間をかけて熱処理し、ポリイミド層の厚みが20μmの片面フレキシブル銅張積層板を得た。得られた片面フレキシブル銅張積層板についての耐折り曲げ性の評価結果を表1に示す。
(Example 2)
Thickness after curing the resin solution of polyamic acid a prepared in Synthesis Example 1 on one side (surface roughness Rz = 1.2 μm) of a long commercial electrolytic copper foil with a thickness of 12 μm is 2.0 μm. After uniformly coating, the solvent was removed by heating at 130 ° C. Next, the polyamic acid c resin solution prepared in Synthesis Example 3 was uniformly applied on the coated surface side so that the thickness after curing was 16 μm, and the solvent was removed by heating and drying at 130 ° C. Furthermore, the same polyamic acid a resin solution as that applied in the first layer is applied uniformly to the coated surface so that the thickness after curing is 2.0 μm, and the solvent is removed by heating at 130 ° C. did. This continuous laminate was heat-treated in a continuous curing furnace set so that the temperature gradually increased from 300 ° C. to 300 ° C. over a period of about 6 minutes. A 20 μm single-sided flexible copper-clad laminate was obtained. Table 1 shows the evaluation results of the bending resistance of the obtained single-sided flexible copper-clad laminate.

(実施例3)
厚さ12μmで長尺状の市販の電解銅箔の片面(表面粗さRz=1.2μm)に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが2.2μmとなるように均一に塗布した後、130℃で加熱乾燥し溶媒を除去した。次に、この塗布面側に合成例3で調製したポリアミド酸cの樹脂溶液を硬化後の厚みが7.6μmとなるように均一に塗布し、130℃で加熱乾燥し溶媒を除去した。更に、この塗布面側に第1層目で塗布したものと同じポリアミド酸aの樹脂溶液を硬化後の厚みが2.2μmとなるように均一に塗布し、130℃で加熱乾燥し溶媒を除去した。この長尺状の積層体を130℃から開始して300℃まで段階的に温度が上がるように設定した連続硬化炉にて、合計6分程度の時間をかけて熱処理し、ポリイミド層の厚みが12μmの片面フレキシブル銅張積層板を得た。得られた片面フレキシブル銅張積層板についての耐折り曲げ性の評価結果を表1に示す。
(Example 3)
The thickness after curing the resin solution of the polyamic acid a prepared in Synthesis Example 1 on one side (surface roughness Rz = 1.2 μm) of a long, commercially available electrolytic copper foil with a thickness of 12 μm is 2.2 μm. After uniformly coating, the solvent was removed by heating at 130 ° C. Next, the polyamic acid c resin solution prepared in Synthesis Example 3 was uniformly applied to the coated surface side so that the thickness after curing was 7.6 μm, and the solvent was removed by heating at 130 ° C. Further, apply the same polyamic acid a resin solution as that applied in the first layer on the coated surface side so that the thickness after curing is 2.2 μm, and heat dry at 130 ° C. to remove the solvent. did. This continuous laminate was heat-treated in a continuous curing furnace set so that the temperature gradually increased from 300 ° C. to 300 ° C. over a period of about 6 minutes. A 12 μm single-sided flexible copper-clad laminate was obtained. Table 1 shows the evaluation results of the bending resistance of the obtained single-sided flexible copper-clad laminate.

(実施例4)
厚さ12μmで長尺状の市販の電解銅箔の片面(表面粗さRz=1.20μm)に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが2.0μmとなるように均一に塗布した後、130℃で加熱乾燥し溶媒を除去した。次に、この塗布面側に合成例3で調製したポリアミド酸cの樹脂溶液を硬化後の厚みが5.0μmとなるように均一に塗布し、130℃で加熱乾燥し溶媒を除去した。更に、この塗布面側に第1層目で塗布したものと同じポリアミド酸aの樹脂溶液を硬化後の厚みが2.0μmとなるように均一に塗布し、130℃で加熱乾燥し溶媒を除去した。この長尺状の積層体を130℃から開始して300℃まで段階的に温度が上がるように設定した連続硬化炉にて、合計6分程度の時間をかけて熱処理し、ポリイミド層の厚みが9μmの片面フレキシブル銅張積層板を得た。得られた片面フレキシブル銅張積層板についての耐折り曲げ性の評価結果を表1に示す。
(Example 4)
The thickness after curing the resin solution of polyamic acid a prepared in Synthesis Example 1 on one side (surface roughness Rz = 1.20 μm) of a long, commercially available electrolytic copper foil with a thickness of 12 μm is 2.0 μm. After uniformly coating, the solvent was removed by heating at 130 ° C. Next, the polyamic acid c resin solution prepared in Synthesis Example 3 was uniformly applied to the coated surface side so that the thickness after curing was 5.0 μm, and the solvent was removed by heating and drying at 130 ° C. Furthermore, the same polyamic acid a resin solution as that applied in the first layer is applied uniformly to the coated surface so that the thickness after curing is 2.0 μm, and the solvent is removed by heating at 130 ° C. did. This continuous laminate was heat-treated in a continuous curing furnace set so that the temperature gradually increased from 300 ° C. to 300 ° C. over a period of about 6 minutes. A 9 μm single-sided flexible copper-clad laminate was obtained. Table 1 shows the evaluation results of the bending resistance of the obtained single-sided flexible copper-clad laminate.

(実施例5)
厚さ9μmで長尺状の市販の電解銅箔の片面(表面粗さRz=1.2μm)を使用した以外は、実施例4と同様にしてフレキシブル銅張積層板を得た。得られたフレキシブル銅張積層板の耐折り曲げ性の評価結果を表1に示す。
(Example 5)
A flexible copper-clad laminate was obtained in the same manner as in Example 4 except that one side of a commercially available electrolytic copper foil having a thickness of 9 μm (surface roughness Rz = 1.2 μm) was used. The evaluation results of the bending resistance of the obtained flexible copper-clad laminate are shown in Table 1.

(実施例6)
厚さ12μmで長尺状の市販の電解銅箔の片面(表面粗さRz=1.9μm)を使用した以外は、実施例3と同様にしてフレキシブル銅張積層板を得た。得られたフレキシブル銅張積層板の耐折り曲げ性の評価結果を表1に示す。
(Example 6)
A flexible copper-clad laminate was obtained in the same manner as in Example 3 except that one side (surface roughness Rz = 1.9 μm) of a long commercially available electrolytic copper foil having a thickness of 12 μm was used. The evaluation results of the bending resistance of the obtained flexible copper-clad laminate are shown in Table 1.

(実施例7)
厚さ9μmで長尺状の市販の電解銅箔の片面(表面粗さRz=1.2μm)を使用した以外は、実施例3と同様にしてフレキシブル銅張積層板を得た。得られたフレキシブル銅張積層板の耐折り曲げ性の評価結果を表1に示す。
(Example 7)
A flexible copper-clad laminate was obtained in the same manner as in Example 3 except that one side (surface roughness Rz = 1.2 μm) of a commercially available electrolytic copper foil having a thickness of 9 μm was used. The evaluation results of the bending resistance of the obtained flexible copper-clad laminate are shown in Table 1.

(実施例8)
厚さ12μmで長尺状の市販の電解銅箔の片面(表面粗さRz=2.2μm)を使用した以外は、実施例3と同様にしてフレキシブル銅張積層板を得た。得られたフレキシブル銅張積層板の耐折り曲げ性の評価結果を表1に示す。
(Example 8)
A flexible copper-clad laminate was obtained in the same manner as in Example 3 except that one side (surface roughness Rz = 2.2 μm) of a long commercially available electrolytic copper foil having a thickness of 12 μm was used. The evaluation results of the bending resistance of the obtained flexible copper-clad laminate are shown in Table 1.

(比較例1)
表1に示した特性を有し、厚さ12μmで長尺状の市販の電解銅箔の片面(表面粗さRz=1.2μm)を使用し、ポリイミド層の厚み構成を以下のように変更した以外は実施例1と同様にしてフレキシブル銅張積層板を得た。ここで、ポリイミド層の厚み構成は、銅箔上に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが4.0μm、その上に合成例2で調製したポリアミド酸bの樹脂溶液を硬化後の厚みが42.0μm、更にその上に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが4.0μmとなるようにした。得られたフレキシブル銅張積層板についての耐折り曲げ性の評価結果を表1に示す。
(Comparative Example 1)
Using one side of a commercially available electrolytic copper foil with a thickness of 12 μm and a thickness of 12 μm (surface roughness Rz = 1.2 μm), the thickness configuration of the polyimide layer was changed as follows: A flexible copper clad laminate was obtained in the same manner as in Example 1 except that. Here, the polyimide layer has a thickness of 4.0 μm after curing the polyamic acid a resin solution prepared in Synthesis Example 1 on a copper foil, and the polyamic acid b resin prepared in Synthesis Example 2 thereon. The thickness after curing of the solution was 42.0 μm, and the thickness after curing of the polyamic acid a resin solution prepared in Synthesis Example 1 was set to 4.0 μm. Table 1 shows the evaluation results of the bending resistance of the obtained flexible copper-clad laminate.

(比較例2)
表1に示した特性を有し、厚さ12μmで長尺状の市販の電解銅箔の片面(表面粗さRz=2.0μm)を使用し、ポリイミド層の厚み構成を以下のように変更した以外は実施例2と同様にしてフレキシブル銅張積層板を得た。ここで、ポリイミド層の厚み構成は、銅箔上に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが3.0μm、その上に合成例3で調製したポリアミド酸cの樹脂溶液を硬化後の厚みが32.0μm、更にその上に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが3.0μmとなるようにした。
(Comparative Example 2)
Using one side (surface roughness Rz = 2.0 μm) of a commercially available electrolytic copper foil with a thickness of 12 μm and having the characteristics shown in Table 1, the thickness configuration of the polyimide layer was changed as follows: A flexible copper clad laminate was obtained in the same manner as in Example 2 except that. Here, the thickness structure of the polyimide layer was 3.0 μm after curing the polyamic acid a resin solution prepared in Synthesis Example 1 on a copper foil, and the polyamic acid c resin prepared in Synthesis Example 3 thereon. The thickness after curing of the solution was 32.0 μm, and the thickness after curing of the polyamic acid a resin solution prepared in Synthesis Example 1 was 3.0 μm.

(比較例3)
表1に示した特性を有し、厚さ12μmで長尺状の市販の電解銅箔の片面(表面粗さRz=1.8μm)を使用し、ポリイミド層の厚み構成を以下のように変更した以外は実施例2と同様にしてフレキシブル銅張積層板を得た。ここで、ポリイミド層の厚み構成は、銅箔上に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが2.5μm、その上に合成例3で調製したポリアミド酸cの樹脂溶液を硬化後の厚みが20.0μm、更にその上に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが2.5μmとなるようにした。
(Comparative Example 3)
Using one side of a commercially available electrolytic copper foil with a thickness of 12 μm and a thickness of 12 μm (surface roughness Rz = 1.8 μm), the thickness configuration of the polyimide layer was changed as follows: A flexible copper clad laminate was obtained in the same manner as in Example 2 except that. Here, the thickness structure of the polyimide layer is 2.5 μm after curing the polyamic acid a resin solution prepared in Synthesis Example 1 on a copper foil, and the polyamic acid c resin prepared in Synthesis Example 3 thereon. The thickness after curing of the solution was 20.0 μm, and the thickness after curing of the resin solution of polyamic acid a prepared in Synthesis Example 1 was 2.5 μm.

Figure 2018139295
Figure 2018139295

表1から、ポリイミド層の厚みが5〜30μm、引張弾性率が4〜10GPaであり、銅箔の厚みが6〜20μmの範囲内、引張弾性率が25〜35GPaの範囲内であり、かつ、ポリイミド層と接する面の銅箔の十点平均粗さ(Rz)が0.7〜2.2μmの範囲内であり、かつ、折れ癖係数[PF]が0.96±0.025の範囲内にある実施例1〜8のフレキシブル銅張積層板は、耐折り曲げ性が満足できる結果であった。一方、ポリイミド層の厚みが30μmを超える比較例1及び2、銅箔の引張弾性率が35GPaを超える比較例3では、いずれも、はぜ折り回数が少なく、耐折り曲げ性が不良であった。   From Table 1, the polyimide layer has a thickness of 5 to 30 μm, a tensile modulus of 4 to 10 GPa, a copper foil thickness of 6 to 20 μm, a tensile modulus of 25 to 35 GPa, and The ten-point average roughness (Rz) of the copper foil on the surface in contact with the polyimide layer is in the range of 0.7 to 2.2 μm, and the crease coefficient [PF] is in the range of 0.96 ± 0.025. The flexible copper-clad laminates of Examples 1 to 8 were satisfactory in bending resistance. On the other hand, in Comparative Examples 1 and 2 in which the thickness of the polyimide layer exceeds 30 μm and Comparative Example 3 in which the tensile elastic modulus of the copper foil exceeds 35 GPa, the number of helix folds was small and the bending resistance was poor.

以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはない。   As mentioned above, although embodiment of this invention was described in detail for the purpose of illustration, this invention is not restrict | limited to the said embodiment.

1:回路基板
11:ポリイミド層
12、51:銅配線
20、21:試料ステージ
22:ローラー
40:試験片
40C:試験片の折り曲げ箇所
52:銅配線のU字部
1: Circuit board
11: Polyimide layer
12, 51: Copper wiring
20, 21: Sample stage
22: Roller
40: Test piece
40C: Bending part of the test piece
52: U-shaped part of copper wiring

Claims (5)

電子機器の筐体内に折り畳んで収納されるフレキシブル回路基板であって、
厚み5〜30μmの範囲内、引張弾性率4〜10GPaの範囲内のポリイミド層(A)と、
前記ポリイミド層(A)の少なくとも一方の面に積層された厚み6〜20μmの範囲内、引張弾性率25〜35GPaの範囲内の銅箔(B)からなる銅配線と、を有しており、
前記ポリイミド層(A)と接する側の面の銅箔(B)の十点平均粗さ(Rz)が0.7〜2.2μmの範囲内であり、かつ、前記フレキシブル回路基板のギャップ0.3mmでの折り曲げ試験での、下記式(1)によって計算される折れ癖係数[PF]が0.96±0.025の範囲内にあることを特徴とするフレキシブル回路基板。
Figure 2018139295
[式(1)において、|ε|は銅配線の屈曲平均ひずみ値の絶対値であり、εcは銅配線の引張弾性限界ひずみである。]
A flexible circuit board that is folded and stored in a casing of an electronic device,
A polyimide layer (A) having a thickness in the range of 5 to 30 μm and a tensile modulus of elasticity in the range of 4 to 10 GPa;
A copper wiring made of a copper foil (B) within a range of a thickness of 6 to 20 μm and a tensile modulus of 25 to 35 GPa laminated on at least one surface of the polyimide layer (A),
The ten-point average roughness (Rz) of the copper foil (B) on the surface in contact with the polyimide layer (A) is in the range of 0.7 to 2.2 μm, and the gap of the flexible circuit board is 0. A flexible circuit board having a folding coefficient [PF] calculated by the following formula (1) in a bending test at 3 mm in a range of 0.96 ± 0.025.
Figure 2018139295
[In Expression (1), | ε | is the absolute value of the bending average strain value of the copper wiring, and εc is the tensile elastic limit strain of the copper wiring. ]
ポリイミド層(A)が、熱膨張係数30×10−6/K未満の低熱膨張性のポリイミド層(i)と、熱膨張係数30×10−6/K以上の高熱膨張性のポリイミド層(ii)とを含み、高熱膨張性のポリイミド層(ii)が直接銅箔(B)と接している請求項1に記載のフレキシブル回路基板。 The polyimide layer (A) is a low thermal expansion polyimide layer (i) having a thermal expansion coefficient of less than 30 × 10 −6 / K, and a high thermal expansion polyimide layer (ii) having a thermal expansion coefficient of 30 × 10 −6 / K or more. The flexible circuit board according to claim 1, wherein the high thermal expansion polyimide layer (ii) is in direct contact with the copper foil (B). ポリイミド層(A)の厚みが8〜15μmの範囲内であり、引張弾性率が6〜10GPaの範囲内である請求項1又は2に記載のフレキシブル回路基板。   The flexible circuit board according to claim 1 or 2, wherein the polyimide layer (A) has a thickness in the range of 8 to 15 µm and a tensile modulus in the range of 6 to 10 GPa. ポリイミド層(A)と銅箔(B)との厚み比[ポリイミド層(A)/銅箔(B)]が0.9〜1.1の範囲内にある請求項1〜3のいずれかに記載のフレキシブル回路基板。   The thickness ratio [polyimide layer (A) / copper foil (B)] of the polyimide layer (A) and the copper foil (B) is in the range of 0.9 to 1.1. The flexible circuit board as described. 銅箔(B)が電解銅箔である請求項1〜4のいずれかに記載のフレキシブル回路基板。

The flexible circuit board according to claim 1, wherein the copper foil (B) is an electrolytic copper foil.

JP2018071458A 2012-12-28 2018-04-03 Flexible circuit board Active JP6534471B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012288127 2012-12-28
JP2012288127 2012-12-28

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013267806A Division JP6320031B2 (en) 2012-12-28 2013-12-25 Flexible copper clad laminate

Publications (2)

Publication Number Publication Date
JP2018139295A true JP2018139295A (en) 2018-09-06
JP6534471B2 JP6534471B2 (en) 2019-06-26

Family

ID=51042338

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013267806A Active JP6320031B2 (en) 2012-12-28 2013-12-25 Flexible copper clad laminate
JP2018071458A Active JP6534471B2 (en) 2012-12-28 2018-04-03 Flexible circuit board

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013267806A Active JP6320031B2 (en) 2012-12-28 2013-12-25 Flexible copper clad laminate

Country Status (4)

Country Link
JP (2) JP6320031B2 (en)
KR (2) KR102092419B1 (en)
CN (1) CN103917042B (en)
TW (1) TWI587756B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5968380B2 (en) * 2014-08-16 2016-08-10 ユアサシステム機器株式会社 Bending test machine
JP6360760B2 (en) * 2014-09-19 2018-07-18 新日鉄住金化学株式会社 Copper-clad laminate and circuit board
JP6436809B2 (en) * 2015-02-09 2018-12-12 日鉄ケミカル&マテリアル株式会社 Flexible circuit board and electronic device
CN107113981B (en) 2014-12-22 2019-12-10 住友电气工业株式会社 Substrate for printed wiring board and method for manufacturing substrate for printed wiring board
TW201700302A (en) * 2015-03-31 2017-01-01 鐘化股份有限公司 Multilayer polyimide film, flexible metal foil laminate, method for producing flexible metal foil laminate, and method for producing rigid flexible wiring board
CN106856646A (en) * 2016-11-13 2017-06-16 惠州市大亚湾科翔科技电路板有限公司 A kind of flexibility covers metal lamination
JP2019126982A (en) * 2018-01-25 2019-08-01 宇部エクシモ株式会社 Metal laminate, female connector, male connector and connector structure
CN110570768B (en) * 2019-09-11 2022-08-09 Oppo(重庆)智能科技有限公司 Folding substrate, folding screen and electronic equipment
JP7336614B1 (en) * 2023-03-29 2023-08-31 住友化学株式会社 laminated film
JP7357815B1 (en) * 2023-03-29 2023-10-06 住友化学株式会社 laminated film
CN117250207B (en) * 2023-11-17 2024-01-30 四川睿杰鑫电子股份有限公司 Flexible circuit board detection device and detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273766A (en) * 2006-03-31 2007-10-18 Nippon Steel Chem Co Ltd Laminate for wiring board
WO2012020677A1 (en) * 2010-08-09 2012-02-16 新日鐵化学株式会社 Flexible circuit board for repeated bending use, and electronic device and cellular phone using same
JP2012214894A (en) * 2011-03-31 2012-11-08 Nippon Steel Chem Co Ltd Copper foil, copper-clad laminate, flexible circuit board, and manufacturing method for copper-clad laminate

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309466A (en) * 1979-12-17 1982-01-05 Champion International Corporation Flexible laminated packaging material comprising metallized intermediate layer
JPS63290735A (en) * 1987-05-22 1988-11-28 Matsushita Electric Works Ltd Flexible laminated sheet
JPH04264792A (en) * 1991-02-19 1992-09-21 Sumitomo Electric Ind Ltd Flexible printed wiring board
CN2216318Y (en) * 1994-11-24 1995-12-27 刘宝申 Flexible polyester film coated copper foil plate and film-coated circuit board
JP3490940B2 (en) * 1999-11-02 2004-01-26 ソニーケミカル株式会社 Circuit board manufacturing method
TW591671B (en) * 2001-06-27 2004-06-11 Shinetsu Chemical Co Substrate for flexible printed wiring
JP4443977B2 (en) * 2004-03-30 2010-03-31 新日鐵化学株式会社 Flexible copper clad laminate and manufacturing method thereof
WO2006107043A1 (en) * 2005-04-04 2006-10-12 Ube Industries, Ltd. Copper clad laminate
JP2007208087A (en) 2006-02-03 2007-08-16 Kaneka Corp High turnable flexible printed wiring board
JP2008098613A (en) * 2006-09-12 2008-04-24 Sumitomo Bakelite Co Ltd Flexible print circuit board
JP5031639B2 (en) * 2008-03-31 2012-09-19 新日鐵化学株式会社 Flexible copper clad laminate
JP2011166078A (en) * 2010-02-15 2011-08-25 Fujikura Ltd Flexible printed wiring board
JP2012006200A (en) * 2010-06-23 2012-01-12 Asahi Kasei E-Materials Corp Polyimide metal laminate and printed wiring board obtained by using the same
WO2012090476A1 (en) * 2010-12-28 2012-07-05 三井化学株式会社 Resin composition, protective film containing same, dry film, circuit board, and multilayer circuit board
TWI599277B (en) * 2012-09-28 2017-09-11 新日鐵住金化學股份有限公司 Flexible copper-clad laminate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273766A (en) * 2006-03-31 2007-10-18 Nippon Steel Chem Co Ltd Laminate for wiring board
WO2012020677A1 (en) * 2010-08-09 2012-02-16 新日鐵化学株式会社 Flexible circuit board for repeated bending use, and electronic device and cellular phone using same
JP2012214894A (en) * 2011-03-31 2012-11-08 Nippon Steel Chem Co Ltd Copper foil, copper-clad laminate, flexible circuit board, and manufacturing method for copper-clad laminate

Also Published As

Publication number Publication date
JP2014141083A (en) 2014-08-07
KR20200015643A (en) 2020-02-12
TWI587756B (en) 2017-06-11
TW201440586A (en) 2014-10-16
JP6320031B2 (en) 2018-05-09
KR102092419B1 (en) 2020-03-23
KR20140086899A (en) 2014-07-08
CN103917042A (en) 2014-07-09
JP6534471B2 (en) 2019-06-26
CN103917042B (en) 2018-03-30

Similar Documents

Publication Publication Date Title
JP6534471B2 (en) Flexible circuit board
JP6581224B2 (en) Flexible copper clad laminate
JP2014141083A5 (en)
KR102319574B1 (en) Method of manufacturing flexible copper-clad laminate
JP2010125793A (en) Bilayer double-side flexible metal laminate plate and method of manufacturing the same
JP2015127117A (en) Metal-clad laminate and circuit board
JP2011109082A (en) Flexible double-sided copper-clad laminate, flexible circuit board, and multilayered circuit board
JP2007273766A (en) Laminate for wiring board
JP2015088631A (en) Flexible copper-clad laminate, flexible circuit board and use thereof
TWI660649B (en) Flexible circuit board and electronic equipment
KR102288004B1 (en) Flexible copper-clad laminate and flexible circuit substrate
WO2020022129A1 (en) Metal-cladded laminate plate, and circuit board
JP2007062274A (en) Flexible laminated board cladded with copper layer on single site and manufacturing method of it
JP2015070237A (en) Flexible copper clad laminate and flexible circuit board
KR101546393B1 (en) Flexible metal-clad laminate and method of producing the same
JP4694142B2 (en) Manufacturing method of substrate for flexible printed wiring board
JP6624756B2 (en) Flexible circuit board, method of using the same, and electronic equipment
JP2021009997A (en) Polyimide film, metal-clad laminate, and flexible circuit board
JP2021009997A5 (en)
JP6436809B2 (en) Flexible circuit board and electronic device
JP6461540B2 (en) Flexible circuit board, method of using the same, and electronic device
JP2008177214A (en) Laminate for flexible circuit board and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190528

R150 Certificate of patent or registration of utility model

Ref document number: 6534471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250