JP4443977B2 - Flexible copper clad laminate and manufacturing method thereof - Google Patents

Flexible copper clad laminate and manufacturing method thereof Download PDF

Info

Publication number
JP4443977B2
JP4443977B2 JP2004098865A JP2004098865A JP4443977B2 JP 4443977 B2 JP4443977 B2 JP 4443977B2 JP 2004098865 A JP2004098865 A JP 2004098865A JP 2004098865 A JP2004098865 A JP 2004098865A JP 4443977 B2 JP4443977 B2 JP 4443977B2
Authority
JP
Japan
Prior art keywords
copper foil
copper
clad laminate
elastic modulus
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004098865A
Other languages
Japanese (ja)
Other versions
JP2005280163A (en
Inventor
公一 服部
妙子 財部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2004098865A priority Critical patent/JP4443977B2/en
Priority to TW094109146A priority patent/TW200536628A/en
Priority to KR1020050026663A priority patent/KR101009128B1/en
Priority to CNB2005100595821A priority patent/CN100521866C/en
Publication of JP2005280163A publication Critical patent/JP2005280163A/en
Application granted granted Critical
Publication of JP4443977B2 publication Critical patent/JP4443977B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C37/00Control of fire-fighting equipment
    • A62C37/08Control of fire-fighting equipment comprising an outlet device containing a sensor, or itself being the sensor, i.e. self-contained sprinklers
    • A62C37/10Releasing means, e.g. electrically released
    • A62C37/11Releasing means, e.g. electrically released heat-sensitive
    • A62C37/14Releasing means, e.g. electrically released heat-sensitive with frangible vessels
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C31/00Delivery of fire-extinguishing material
    • A62C31/28Accessories for delivery devices, e.g. supports
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C35/00Permanently-installed equipment
    • A62C35/58Pipe-line systems
    • A62C35/68Details, e.g. of pipes or valve systems

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、フレキシブル銅張積層板に関し、特に耐屈曲性に優れたフレキシブル銅張積層板に関する。   The present invention relates to a flexible copper-clad laminate, and more particularly to a flexible copper-clad laminate excellent in bending resistance.

特開2001-58203号公報Japanese Patent Laid-Open No. 2001-58203 特許第3009383号公報Japanese Patent No. 3009383

フレキシブル銅張積層板は、屈曲性や、柔軟性、高密度実装が要求される電子機器に広く用いられている。近年、機器のメモリ容量の増加によって、配線の狭ピッチ化、高密度実装化が進み、積層板に対する機械的物性の要求水準もより高くなっている。フレキシブル銅張積層板の狭ピッチ化対応には、銅箔の製造方法に由来する特性から、一般的に電解銅箔がよいと考えられている。一方、最近の高密度実装では、積層板を折り曲げて筐体に収納する際の折り曲げ部が増え、折り曲げ角度が小さくなってきている。そのために、従来の電解銅箔のように剛直、且つ、抗張力が高く、延性が低い場合、その銅箔によって製造されるフレキシブル銅張積層板は、銅箔の延性疲労によって、配線が断線し易くなり、電気的信頼性が得られないものが多かった。   Flexible copper-clad laminates are widely used in electronic devices that require flexibility, flexibility, and high-density mounting. In recent years, with the increase in the memory capacity of devices, wiring pitches have been narrowed and high-density mounting has progressed, and the required level of mechanical properties for laminated boards has become higher. Electrolytic copper foil is generally considered good for the narrow pitch of flexible copper clad laminates because of the characteristics derived from the copper foil manufacturing method. On the other hand, in recent high-density mounting, the number of bent portions when the laminated plate is folded and stored in a housing has increased, and the bending angle has become smaller. Therefore, when it is rigid and has high tensile strength and low ductility like conventional electrolytic copper foil, the flexible copper-clad laminate produced by the copper foil is prone to wire breakage due to ductile fatigue of the copper foil. Therefore, there are many cases where electrical reliability cannot be obtained.

特許文献1によれば、焼鈍を行って再結晶組織にした後の圧延面のX線回折で求めた(200)面の強度(I)が、微紛末銅のX線回折で求めた(200)面の強度(I0)に対し、I/I0>20であることで銅箔が高屈曲性を持つことが記載されており、結晶組織の制御によって高屈曲性が発現することが示唆されている。また、特許文献2によれば、特許文献1の結晶組織を得るために、最終冷間圧延の直前の焼鈍を、この焼鈍で得られる再結晶粒の平均粒径が5〜20μmになる条件で行い、次の最終冷間圧延での圧延加工度を90%以上とすることが記載されている。   According to Patent Document 1, the strength (I) of the (200) plane obtained by X-ray diffraction of the rolled surface after annealing to obtain a recrystallized structure was obtained by X-ray diffraction of fine powder copper ( It is described that the copper foil has high flexibility with respect to the strength (I0) of the (200) plane, and that high flexibility is exhibited by controlling the crystal structure. ing. According to Patent Document 2, in order to obtain the crystal structure of Patent Document 1, annealing immediately before the final cold rolling is performed under the condition that the average grain size of recrystallized grains obtained by this annealing is 5 to 20 μm. And the degree of rolling in the next final cold rolling is described as 90% or more.

また、従来の電解銅箔は、熱処理によるアニール後でも抗張力や剛直性があまり変化せず、アニール効果が小さいため、成形品の折り曲げ耐性に着目すると、熱処理前の段階で銅箔の抗張力を抑えた柔軟な銅箔を用いざるを得ず、その場合、フレキシブル銅張積層板の製造時にはテンションの調整が難しく、生産性を落とす要因となっていた。   In addition, the conventional electrolytic copper foil does not change its tensile strength and rigidity even after annealing by heat treatment, and its annealing effect is small. Therefore, focusing on the bending resistance of the molded product, the tensile strength of the copper foil is suppressed before the heat treatment. In this case, it was difficult to adjust the tension during the production of the flexible copper-clad laminate, which was a factor in reducing productivity.

このような背景から、これまでは、延性、折り曲げ耐性、ファインパターン性を両立するため、銅箔厚みを薄くし、積層板全体の柔軟性を高めることで物性を補ってきている。しかし、この技術では、銅張積層板の設計に制約を受けることから銅箔の厚み調整によらずとも上記延性、折り曲げ耐性、ファインパターン性を満足するフレキシブル銅張積層板の開発が望まれていた。   From such a background, until now, in order to achieve both ductility, bending resistance, and fine pattern properties, the physical properties have been compensated by reducing the thickness of the copper foil and increasing the flexibility of the entire laminate. However, because this technology is restricted by the design of copper-clad laminates, the development of flexible copper-clad laminates that satisfy the above-mentioned ductility, bending resistance and fine patternability is desired without adjusting the thickness of the copper foil. It was.

本発明は、銅箔の厚みを薄くすることなく、銅張積層板製造時の取扱いが容易で、成形後の柔軟性が高く、折り曲げ性が良好で、応力緩和効果に長けるフレキシブル銅張積層板を提供することを目的とする。   The present invention is a flexible copper-clad laminate that is easy to handle during the manufacture of copper-clad laminates without reducing the thickness of the copper foil, has high flexibility after molding, has good bendability, and has a long stress relaxation effect. The purpose is to provide a board.

本発明者等は、鋭意検討した結果、フレキシブル銅張積層板に特定の銅箔を使用することで上記課題を解決し得ることを見出し、本発明を完成した。   As a result of intensive studies, the present inventors have found that the above-described problems can be solved by using a specific copper foil for the flexible copper-clad laminate, and have completed the present invention.

すなわち、本発明は、ポリイミド系樹脂層の片面又は両面に熱処理工程を経て銅箔層が形成されてなる銅張積層板において、銅箔層の熱処理前の弾性率が50〜80GPaであり、熱処理前の弾性率(p2)と300℃以上での熱処理後との弾性率(p3)の比(p2/p3)が3.5〜5.5であることを特徴とするフレキシブル銅張積層板である。
本発明のフレキシブル銅張積層板において、銅箔層の厚さが12〜18μm、樹脂層の厚さが15〜25μmであることが好ましい。
That is, the present invention provides a copper clad laminate in which a copper foil layer is formed on one or both sides of a polyimide resin layer through a heat treatment step, and the elastic modulus of the copper foil layer before heat treatment is 50 to 80 GPa, A flexible copper-clad laminate characterized by the ratio (p2 / p3) of the elastic modulus (p3) between the previous elastic modulus (p2) and after heat treatment at 300 ° C. or higher being 3.5 to 5.5. is there.
In the flexible copper-clad laminate of the present invention, the copper foil layer preferably has a thickness of 12 to 18 μm and the resin layer has a thickness of 15 to 25 μm.

本発明のフレキシブル銅張積層板は、銅箔層とポリイミド系樹脂層とから構成される。銅箔層は、ポリイミド樹脂層の片面のみ又は両面に設けることができる。   The flexible copper clad laminate of the present invention is composed of a copper foil layer and a polyimide resin layer. The copper foil layer can be provided on only one side or both sides of the polyimide resin layer.

以下、本発明のフレキシブル銅張積層板を更に説明する。
銅張積層板を構成する銅箔には、公知方法により製造された圧延銅箔、電解銅箔等を使用することができる。本発明において使用される銅箔は、銅箔層の熱処理前の弾性率が50〜80GPaであることが必要である。弾性率が50GPaより低いとフレキシブル銅張積層板の製造時に変形を生じやすく、低過ぎると破断する可能性がある。弾性率が80GPaを超えると剛直性が増し、フレキシブル銅張積層板の製造時の引張応力に対する緩和が低下し、塑性変形を生じやすい。また、この銅箔は、熱処理前の弾性率(p2)と300℃以上での熱処理後の弾性率(p3)との比(p2/p3)が3.5〜5.5であることが必要である。弾性率比が3.5より低いと柔軟性が乏しいフレキシブル銅張積層板しか得られない。
Hereinafter, the flexible copper clad laminate of the present invention will be further described.
The copper foil which comprises a copper clad laminated board can use the rolled copper foil, the electrolytic copper foil, etc. which were manufactured by the well-known method. The copper foil used in the present invention needs to have an elastic modulus of 50 to 80 GPa before the heat treatment of the copper foil layer. If the elastic modulus is lower than 50 GPa, deformation tends to occur during the production of the flexible copper-clad laminate, and if it is too low, it may break. When the elastic modulus exceeds 80 GPa, the rigidity increases, the relaxation of the tensile stress during the production of the flexible copper-clad laminate decreases, and plastic deformation is likely to occur. Moreover, this copper foil needs to have a ratio (p2 / p3) of an elastic modulus (p2) before heat treatment and an elastic modulus (p3) after heat treatment at 300 ° C. or higher of 3.5 to 5.5. It is. If the elastic modulus ratio is lower than 3.5, only a flexible copper-clad laminate with poor flexibility can be obtained.

本発明のフレキシブル銅張積層板は、上記の弾性率及び弾性率比を示す銅箔を使用し、フレキシブル銅張積層板の熱処理工程を有する製造工程で製造される。熱処理工程の熱処理温度は、300℃以上、好ましくは300〜450℃である。熱処理温度が300℃より低いと、推測であるが銅箔の再結晶化が十分でなく、弾性率に変化が見られないことがあり好ましくない。一方、450℃を超えると、銅箔が酸化などにより劣化し、フレキシブル銅張積層板に使用されているポリイミド系樹脂の分解が起こる場合があり、好ましくない。300℃以上の温度での熱処理時間は任意であるが、好ましくは5〜40分間である。熱処理工程は、銅箔に塗布されたポリイミド又はその前駆体の乾燥及びイミド化のために行われる熱処理工程を兼ねることが有利である。   The flexible copper-clad laminate of the present invention is produced by a production process having a heat treatment step of the flexible copper-clad laminate using the copper foil exhibiting the above elastic modulus and elastic modulus ratio. The heat treatment temperature in the heat treatment step is 300 ° C. or higher, preferably 300 to 450 ° C. If the heat treatment temperature is lower than 300 ° C., it is speculated that the copper foil is not sufficiently recrystallized, and the elastic modulus may not be changed, which is not preferable. On the other hand, when it exceeds 450 ° C., the copper foil is deteriorated due to oxidation or the like, and the polyimide resin used in the flexible copper clad laminate may be decomposed, which is not preferable. The heat treatment time at a temperature of 300 ° C. or higher is arbitrary, but is preferably 5 to 40 minutes. It is advantageous that the heat treatment step also serves as a heat treatment step performed for drying and imidization of the polyimide or its precursor applied to the copper foil.

使用される銅箔の厚みは、8〜35μm、好ましくは12〜18μmである。銅箔厚みが8μmに満たないとフレキシブル銅張積層板の製造時にテンション調整が困難となり、35μmを超えるとフレキシブル銅張積層板の屈曲性が劣るので好ましくない。また、銅箔の粗度は、平滑面で、Rz=0.5〜1.5μm、Ra=0.05〜0.25μm、粗面で、Rz=0.5〜1.5μm、Ra=0.05〜0.30μmである。銅箔の粗度をこの範囲のものを使用することで、微細な回路パターンを成形し得る銅張積層板となる。特に、粗面の粗度は、回路加工時のファインパターン性に影響するので、Raが0.05〜0.27の銅箔を使用することが好ましい。   The thickness of the copper foil used is 8 to 35 μm, preferably 12 to 18 μm. If the copper foil thickness is less than 8 μm, it is difficult to adjust the tension during production of the flexible copper-clad laminate, and if it exceeds 35 μm, the flexibility of the flexible copper-clad laminate is inferior, which is not preferable. Further, the roughness of the copper foil is a smooth surface, Rz = 0.5 to 1.5 μm, Ra = 0.05 to 0.25 μm, and the rough surface is Rz = 0.5 to 1.5 μm, Ra = 0. 0.05 to 0.30 μm. By using a copper foil having a roughness in this range, a copper-clad laminate capable of forming a fine circuit pattern is obtained. In particular, since the roughness of the rough surface affects the fine pattern property during circuit processing, it is preferable to use a copper foil having a Ra of 0.05 to 0.27.

上記の弾性率、弾性率比、厚みの条件を満たす銅箔の具体例としては、日鉱金属株式会社製のBHY-HA箔を挙げることができる。   As a specific example of the copper foil satisfying the above elastic modulus, elastic modulus ratio, and thickness, there can be mentioned BHY-HA foil manufactured by Nikko Metal Co., Ltd.

次に、銅張積層板のポリイミド系樹脂層について説明する。
このポリイミド樹脂層は、公知のジアミンと酸無水物とを溶媒の存在下で反応させて得られるポリイミド前駆体樹脂(ポリアミック酸)を熱処理することによって形成することができる。
Next, the polyimide resin layer of the copper clad laminate will be described.
This polyimide resin layer can be formed by heat-treating a polyimide precursor resin (polyamic acid) obtained by reacting a known diamine and acid anhydride in the presence of a solvent.

ポリアミック酸に用いられるジアミンとしては、例えば、4,4'-ジアミノジフェニルエーテル、2'-メトキシ-4,4'-ジアミノベンズアニリド、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2'-ジメチル-4,4'-ジアミノビフェニル、3,3'-ジヒドロキシ-4,4'-ジアミノビフェニル、4,4'-ジアミノベンズアニリド等が挙げられる。また、酸無水物としては、例えば、無水ピロメリット酸、3,3'4,4'-ビフェニルテトラカルボン酸二無水物、3,3'4,4'-ジフェニルスルフォンテトラカルボン酸二無水物、4,4'-オキシジフタル酸無水物等が挙げられる。ジアミンと酸無水物は、それぞれ1種のみを使用してもよいし、2種以上を併用してもよい。   Examples of the diamine used in the polyamic acid include 4,4′-diaminodiphenyl ether, 2′-methoxy-4,4′-diaminobenzanilide, 1,4-bis (4-aminophenoxy) benzene, 1,3- Bis (4-aminophenoxy) benzene, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4 4,4′-diaminobiphenyl, 4,4′-diaminobenzanilide and the like. Examples of the acid anhydride include pyromellitic anhydride, 3,3′4,4′-biphenyltetracarboxylic dianhydride, 3,3′4,4′-diphenylsulfonetetracarboxylic dianhydride, 4,4′-oxydiphthalic anhydride and the like. Each of the diamine and acid anhydride may be used alone or in combination of two or more.

溶媒としては、例えば、ジメチルアセトアミド、n-メチルピロリジノン、2-ブタノン、ジグライム、キシレン等が挙げられ、1種でもよいし、2種以上を併用してもよい。   Examples of the solvent include dimethylacetamide, n-methylpyrrolidinone, 2-butanone, diglyme, xylene and the like. One kind may be used, or two or more kinds may be used in combination.

ポリイミド系樹脂層は、ポリイミド前駆体を溶液状態で銅箔層上に直接塗布して形成することが好ましく、前駆体の樹脂粘度を500〜35000cpsとすることがよい。塗布された前駆体樹脂液は、熱処理を行うことで溶媒の乾燥及びイミド化されるが、熱処理の条件は、温度100〜400℃、処理時間20〜40分間程度がよい。ポリイミド樹脂層は、単層のみからなるものでも、複数層から形成されるものでもよい。複数層のポリイミド樹脂層を形成する場合、異なる構成成分からなるポリイミド系樹脂層の上に他のポリイミド樹脂を順次塗布して形成することができる。ポリイミド樹脂層が3層以上からなる場合、同一の構成のポリイミド樹脂を2回以上使用してもよい。   The polyimide resin layer is preferably formed by directly applying a polyimide precursor on the copper foil layer in a solution state, and the resin viscosity of the precursor is preferably 500 to 35000 cps. The applied precursor resin liquid is dried and imidized by performing a heat treatment, and the heat treatment conditions are preferably a temperature of 100 to 400 ° C. and a treatment time of about 20 to 40 minutes. The polyimide resin layer may be composed of only a single layer or may be formed of a plurality of layers. In the case of forming a plurality of polyimide resin layers, it can be formed by sequentially applying other polyimide resins on a polyimide resin layer made of different components. When the polyimide resin layer is composed of three or more layers, the polyimide resin having the same configuration may be used twice or more.

本発明のフレキシブル銅張積層板は、上記したように銅箔上にポリイミド樹脂を塗布することにより製造することができるが、1層以上のポリイミドフィルムを銅箔にラミネートして製造することもできる。このように製造されたフレキシブル銅張積層板は銅箔層を片面のみに有する片面銅張積層板としてもよく、また、銅箔層を両面に有する両面銅張積層板としてもよい。両面銅張積層体は、片面銅張積層板を形成後、銅箔層を熱プレスにより圧着する方法、2枚の銅箔層間にポリイミドフィルムを挟み、熱プレスにより圧着する方法等が挙げられる。   The flexible copper-clad laminate of the present invention can be produced by applying a polyimide resin on a copper foil as described above, but can also be produced by laminating one or more layers of polyimide film on a copper foil. . The flexible copper-clad laminate thus produced may be a single-sided copper-clad laminate having a copper foil layer only on one side, or a double-sided copper-clad laminate having a copper foil layer on both sides. Examples of the double-sided copper-clad laminate include a method of forming a single-sided copper-clad laminate and then crimping the copper foil layer by hot pressing, a method of sandwiching a polyimide film between two copper foil layers, and crimping by hot pressing.

本発明によれば、フレキシブル銅張積層板の耐折性と耐屈曲性を向上させ、折り曲げて使用される電気、電子部品への使用時に信頼性の高いフレキシブル回路材料を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the flexible circuit material of a flexible copper clad laminated board can be improved, and a flexible circuit material with high reliability can be provided at the time of use to the electric and electronic components used by bending.

以下、本発明を実施例により更に詳細に説明する。
なお、以下の実施例において、特に断りのない限り各種評価は下記によるものである。
Hereinafter, the present invention will be described in more detail with reference to examples.
In the following examples, various evaluations are based on the following unless otherwise specified.

[弾性率の測定]
(株)東洋精機製作所製の万能試験機(STROGRAPH-R1)を使用し、23℃、50%RH環境下で測定した。
[耐折性の評価]
試験片幅:8mm、試験片長さ:150mmのフレキシブル銅張積層板に200μm幅のラインアンドスペース回路を形成し、カバー材としてニッカン工業(株)製のCISV-1215を用い、プレスにより回路上にカバー材を積層し、曲率r:1.25mm、振動ストローク:20mm、振動速度:1500回/分の条件で信越エンジニアリング(株)製IPC屈曲試験機を用いて加速試験を行った。本試験ではサンプルの電気抵抗値が5%上昇するまでの回数を求めた。
[Measurement of elastic modulus]
Using a universal testing machine (STROGRAPH-R1) manufactured by Toyo Seiki Seisakusho Co., Ltd., measurement was performed in an environment of 23 ° C. and 50% RH.
[Evaluation of folding resistance]
A 200 μm wide line and space circuit is formed on a flexible copper-clad laminate with a test piece width of 8 mm and a test piece length of 150 mm, and CISV-1215 manufactured by Nikkan Kogyo Co., Ltd. is used as the cover material. A cover material was laminated, and an acceleration test was performed using an IPC bending tester manufactured by Shin-Etsu Engineering Co., Ltd. under conditions of curvature r: 1.25 mm, vibration stroke: 20 mm, vibration speed: 1500 times / minute. In this test, the number of times until the electrical resistance of the sample increased by 5% was obtained.

実施例に使用したポリイミド前駆体樹脂溶液は、以下の処方によって合成した。
合成例1
熱電対、攪拌機、窒素導入可能な反応容器に、溶媒としてN,N-ジメチルアセトアミドを入れた。この反応容器に4,4'-ジアミノ-2,2'-ジメチルビフェニル(DADMB)及び1,3-ビス(4-アミノフェノキシ)ベンゼン(DAB)を容器中で撹拌しながら溶解させた。次に、3,3',4,4'-ビフェニルテトラカルボン酸二無水物(BPDA)及びピロメリット酸二無水物(PMDA)を加えた。モノマーの投入総量が15wt%、各ジアミンのモル比率(DADMB:BAB)が90:10、各酸無水物のモル比率(BPDA:PMDA)が20:79となるよう投入した。その後、3時間撹拌を続け、得られたポリイミド前駆体樹脂溶液の粘度は20000cpsであった。
The polyimide precursor resin solution used in the examples was synthesized according to the following formulation.
Synthesis example 1
N, N-dimethylacetamide was added as a solvent to a reaction vessel capable of introducing a thermocouple, a stirrer and nitrogen. In this reaction vessel, 4,4′-diamino-2,2′-dimethylbiphenyl (DADMB) and 1,3-bis (4-aminophenoxy) benzene (DAB) were dissolved in the vessel with stirring. Next, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) and pyromellitic dianhydride (PMDA) were added. The total amount of monomers was 15 wt%, the molar ratio of each diamine (DADMB: BAB) was 90:10, and the molar ratio of each acid anhydride (BPDA: PMDA) was 20:79. Thereafter, stirring was continued for 3 hours, and the viscosity of the obtained polyimide precursor resin solution was 20000 cps.

合成例2
熱電対、攪拌機、窒素導入可能な反応容器に、溶媒としてN,N-ジメチルアセトアミドを入れた。この反応容器に2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンを撹拌しながら溶解させた。次に、BPDA及びPMDAを加えた。モノマーの投入総量が15wt%、各酸無水物のモル比率(BPDA:PMDA)が4:69となるよう投入した。その後、3時間撹拌を続け、得られたポリイミド前駆体樹脂溶液の粘度は5000cpsであった。
Synthesis example 2
N, N-dimethylacetamide was added as a solvent to a reaction vessel capable of introducing a thermocouple, a stirrer and nitrogen. 2,2-bis [4- (4-aminophenoxy) phenyl] propane was dissolved in this reaction vessel with stirring. Next, BPDA and PMDA were added. The total amount of monomers charged was 15 wt%, and the molar ratio of each acid anhydride (BPDA: PMDA) was 4:69. Thereafter, stirring was continued for 3 hours, and the viscosity of the obtained polyimide precursor resin solution was 5000 cps.

銅箔として日鉱金属(株)製BHY-HA箔を準備し、この箔上に合成例2で得られたポリイミド前駆体樹脂溶液を塗布、乾燥したのち合成例1で得られたポリイミド前駆体樹脂溶液を塗布、乾燥し、さらにその上に合成例2で得られたポリイミド前駆体樹脂溶液を塗布、乾燥し、銅箔層上にポリイミド前駆体樹脂層が形成された積層体を得た。
この積層体をオーブンに入れて360℃で3分間熱処理し、ポリイミド樹脂厚み25μmの片面銅張積層板を得た。熱処理前の銅箔の弾性率は62GPaであり、熱処理後の銅箔の弾性率は17GPaであり、弾性率比は3.6であった。
得られたフレキシブル銅張積層板の耐折試験結果は、耐折回数55000回であった。
Prepare BHY-HA foil manufactured by Nikko Metal Co., Ltd. as a copper foil, apply the polyimide precursor resin solution obtained in Synthesis Example 2 on this foil, dry it, and then obtain the polyimide precursor resin obtained in Synthesis Example 1. The solution was applied and dried, and the polyimide precursor resin solution obtained in Synthesis Example 2 was further applied and dried thereon to obtain a laminate in which the polyimide precursor resin layer was formed on the copper foil layer.
This laminate was put in an oven and heat-treated at 360 ° C. for 3 minutes to obtain a single-sided copper-clad laminate having a polyimide resin thickness of 25 μm. The elastic modulus of the copper foil before heat treatment was 62 GPa, the elastic modulus of the copper foil after heat treatment was 17 GPa, and the elastic modulus ratio was 3.6.
The folding resistance test result of the obtained flexible copper clad laminate was 55,000 folding resistance.

比較例1
銅箔として日鉱金属(株)製BHY-22BT箔を用いた以外は、実施例1と全く同様にしてフレキシブル銅張積層板を製造した。
熱処理前の銅箔の弾性率は53GPaであり、熱処理後の銅箔の弾性率は23GPaであり、弾性率比は2.3であった。
得られたフレキシブル銅張積層板の耐折試験結果は、耐折回数12500回であった。
Comparative Example 1
A flexible copper clad laminate was produced in the same manner as in Example 1 except that BHY-22BT foil manufactured by Nikko Metal Co., Ltd. was used as the copper foil.
The elastic modulus of the copper foil before heat treatment was 53 GPa, the elastic modulus of the copper foil after heat treatment was 23 GPa, and the elastic modulus ratio was 2.3.
The folding resistance test result of the obtained flexible copper-clad laminate was 1,500 folding resistance times.

銅箔として日鉱金属(株)製BHY-HA箔を準備し、この箔上に合成例2で得られたポリイミド前駆体樹脂溶液を塗布、乾燥したのち合成例1で得られたポリイミド前駆体樹脂溶液を塗布、乾燥し、さらにその上に合成例2で得られたポリイミド前駆体樹脂溶液を塗布、乾燥し、銅箔層上にポリイミド前駆体樹脂層が形成された積層体を得た。この積層体を360℃で6分間熱処理し、ポリイミド樹脂厚み25μmの片面銅張積層板を得た。
熱処理前の銅箔の弾性率は62GPaであり、熱処理後の銅箔の弾性率は16GPaであり、弾性率比は3.9であった。
得られたフレキシブル銅張積層板の耐折試験結果は、耐折回数54000回であった。
Prepare BHY-HA foil manufactured by Nikko Metal Co., Ltd. as a copper foil, apply the polyimide precursor resin solution obtained in Synthesis Example 2 on this foil, dry it, and then obtain the polyimide precursor resin obtained in Synthesis Example 1. The solution was applied and dried, and the polyimide precursor resin solution obtained in Synthesis Example 2 was further applied and dried thereon to obtain a laminate in which the polyimide precursor resin layer was formed on the copper foil layer. This laminate was heat treated at 360 ° C. for 6 minutes to obtain a single-sided copper-clad laminate having a polyimide resin thickness of 25 μm.
The elastic modulus of the copper foil before heat treatment was 62 GPa, the elastic modulus of the copper foil after heat treatment was 16 GPa, and the elastic modulus ratio was 3.9.
The folding resistance test result of the obtained flexible copper clad laminate was 54,000 folding resistance.

比較例2
銅箔として日鉱金属(株)製HY-22BT 箔を用いた以外は、実施例2と全く同様にしてフレキシブル銅張積層板を製造した。
熱処理前の銅箔の弾性率は53GPaであり、熱処理後の銅箔の弾性率は21GPaであり、弾性率比は2.5であった。
得られたフレキシブル銅張積層板の耐折試験結果は、耐折回数12000回であった。
Comparative Example 2
A flexible copper clad laminate was produced in the same manner as in Example 2 except that Nikko Metal Co., Ltd. HY-22BT foil was used as the copper foil.
The elastic modulus of the copper foil before heat treatment was 53 GPa, the elastic modulus of the copper foil after heat treatment was 21 GPa, and the elastic modulus ratio was 2.5.
The folding resistance test result of the obtained flexible copper clad laminate was 12,000 folding resistance.

銅箔として日鉱金属(株)BHY-HA箔を準備し、この箔上に合成例2で得られたポリイミド前駆体樹脂溶液を塗布、乾燥したのち合成例1で得られたポリイミド前駆体樹脂溶液を塗布、乾燥し、さらにその上に合成例2で得られたポリイミド前駆体樹脂溶液を塗布、乾燥し、銅箔層上にポリイミド前駆体樹脂層が形成された積層体を得た。この積層体を360℃で13分間熱処理し、ポリイミド樹脂厚み25μmの片面銅張積層板を得た。
熱処理前の銅箔の弾性率は62GPaであり、熱処理後の銅箔の弾性率は15GPaであり、弾性率比は4.1であった。
得られたフレキシブル銅張積層板の耐折試験結果は、耐折回数52000回であった。
Prepare Nikko Metal Co., Ltd. BHY-HA foil as a copper foil, apply the polyimide precursor resin solution obtained in Synthesis Example 2 on this foil, dry it, and then obtain the polyimide precursor resin solution obtained in Synthesis Example 1 Was applied and dried, and the polyimide precursor resin solution obtained in Synthesis Example 2 was further applied and dried thereon to obtain a laminate in which the polyimide precursor resin layer was formed on the copper foil layer. This laminate was heat-treated at 360 ° C. for 13 minutes to obtain a single-sided copper-clad laminate having a polyimide resin thickness of 25 μm.
The elastic modulus of the copper foil before heat treatment was 62 GPa, the elastic modulus of the copper foil after heat treatment was 15 GPa, and the elastic modulus ratio was 4.1.
The folding resistance test result of the obtained flexible copper clad laminate was 52,000 folding resistance.

比較例3
銅箔として日鉱金属(株)社BHY-22BT箔を用いた以外は、実施例3と全く同様にしてフレキシブル銅張積層板を製造した。
熱処理前の銅箔の弾性率は53GPaであり、熱処理後の銅箔の弾性率は21GPaであり、弾性率比は2.5であった。
得られたフレキシブル銅張積層板の耐折試験結果は、耐折回数12000回であった。
Comparative Example 3
A flexible copper-clad laminate was produced in exactly the same manner as in Example 3 except that Nikko Metal Co., Ltd. BHY-22BT foil was used as the copper foil.
The elastic modulus of the copper foil before heat treatment was 53 GPa, the elastic modulus of the copper foil after heat treatment was 21 GPa, and the elastic modulus ratio was 2.5.
The folding resistance test result of the obtained flexible copper clad laminate was 12,000 folding resistance.

Claims (2)

ポリイミド系樹脂層の片面又は両面に銅箔層が形成されてなる銅張積層板において、銅箔層が300℃以上で熱処理される熱処理工程を経ており、銅箔層に使用される銅箔の熱処理前の弾性率が50〜80GPaであり、熱処理前の弾性率(p2)と300℃以上での熱処理後の弾性率(p3)との比(p2/p3)が3.5〜5.5であることを特徴とするフレキシブル銅張積層板。
In the copper-clad laminate copper foil layer on one or both sides of the polyimide resin layer is formed, and after the heat treatment step of the copper foil layer is heat-treated at 300 ° C. or higher, the copper foil used for the copper foil layer The elastic modulus before heat treatment is 50 to 80 GPa, and the ratio (p2 / p3) of the elastic modulus before heat treatment (p2) to the elastic modulus after heat treatment at 300 ° C. or higher (p3) is 3.5 to 5.5. A flexible copper clad laminate characterized by the above.
銅箔層の厚さが12〜18μmであり、樹脂層の厚さが15〜25μmである請求項1に記載のフレキシブル銅張積層板。   The flexible copper clad laminate according to claim 1, wherein the copper foil layer has a thickness of 12 to 18 μm and the resin layer has a thickness of 15 to 25 μm.
JP2004098865A 2004-03-30 2004-03-30 Flexible copper clad laminate and manufacturing method thereof Expired - Fee Related JP4443977B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004098865A JP4443977B2 (en) 2004-03-30 2004-03-30 Flexible copper clad laminate and manufacturing method thereof
TW094109146A TW200536628A (en) 2004-03-30 2005-03-24 Flexible copper-cladlaminate and method for making the same
KR1020050026663A KR101009128B1 (en) 2004-03-30 2005-03-30 Flexible copper-clad laminate and method for making the same
CNB2005100595821A CN100521866C (en) 2004-03-30 2005-03-30 Flexible copper-coated laminated board and mfg. method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004098865A JP4443977B2 (en) 2004-03-30 2004-03-30 Flexible copper clad laminate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005280163A JP2005280163A (en) 2005-10-13
JP4443977B2 true JP4443977B2 (en) 2010-03-31

Family

ID=35050394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004098865A Expired - Fee Related JP4443977B2 (en) 2004-03-30 2004-03-30 Flexible copper clad laminate and manufacturing method thereof

Country Status (4)

Country Link
JP (1) JP4443977B2 (en)
KR (1) KR101009128B1 (en)
CN (1) CN100521866C (en)
TW (1) TW200536628A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100965441B1 (en) 2005-04-04 2010-06-24 우베 고산 가부시키가이샤 Copper clad laminate
JP4757645B2 (en) * 2006-01-31 2011-08-24 新日鐵化学株式会社 Method for producing double-sided metal-clad laminate
JP2007273766A (en) * 2006-03-31 2007-10-18 Nippon Steel Chem Co Ltd Laminate for wiring board
JP5689277B2 (en) * 2009-10-22 2015-03-25 新日鉄住金化学株式会社 Flexible circuit board and multilayer circuit board
JP5689284B2 (en) * 2009-11-11 2015-03-25 新日鉄住金化学株式会社 Method for producing flexible double-sided copper-clad laminate
JP2012001786A (en) * 2010-06-18 2012-01-05 Jx Nippon Mining & Metals Corp Flexible copper-clad laminate, and method of manufacturing the same
JP6320031B2 (en) * 2012-12-28 2018-05-09 新日鉄住金化学株式会社 Flexible copper clad laminate
JP6461540B2 (en) * 2014-09-30 2019-01-30 日鉄ケミカル&マテリアル株式会社 Flexible circuit board, method of using the same, and electronic device
KR102404294B1 (en) * 2014-09-30 2022-05-31 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Flexible printed circuit board and electronic device
JP6578419B2 (en) * 2018-06-25 2019-09-18 日鉄ケミカル&マテリアル株式会社 Method for producing copper clad laminate
JP6624756B2 (en) * 2018-12-26 2019-12-25 日鉄ケミカル&マテリアル株式会社 Flexible circuit board, method of using the same, and electronic equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480521A (en) * 1987-09-24 1989-03-27 Mitsui Toatsu Chemicals Novel flexible metal plastic laminated sheet
CN1045014A (en) * 1990-02-28 1990-08-29 航空工业部南方动力机械公司 Flexible printed circuit board and method for manufacturing the same
DE4009182A1 (en) * 1990-03-22 1991-09-26 Bayer Ag LAMINATED AREA
JPH06338667A (en) * 1993-05-28 1994-12-06 Sumitomo Bakelite Co Ltd Single surface copper-clad laminate for printed circuit board
CN2216318Y (en) * 1994-11-24 1995-12-27 刘宝申 Flexible polyester film coated copper foil plate and film-coated circuit board
JPH08335607A (en) * 1995-06-05 1996-12-17 Hitachi Cable Ltd One-layer wiring tcp tape

Also Published As

Publication number Publication date
CN1678166A (en) 2005-10-05
KR20060045029A (en) 2006-05-16
TWI317658B (en) 2009-12-01
TW200536628A (en) 2005-11-16
CN100521866C (en) 2009-07-29
JP2005280163A (en) 2005-10-13
KR101009128B1 (en) 2011-01-18

Similar Documents

Publication Publication Date Title
JP5180814B2 (en) Laminated body for flexible wiring board
KR101009128B1 (en) Flexible copper-clad laminate and method for making the same
JP6545302B2 (en) Flexible circuit board
TWI587756B (en) Flexible copper-clad laminate
JP6403460B2 (en) Metal-clad laminate, circuit board and polyimide
JP4756194B2 (en) Method for producing copper clad laminate
JP2015127117A (en) Metal-clad laminate and circuit board
JP2019065180A (en) Polyimide film, metal-clad laminate, and circuit board
KR101333808B1 (en) Laminate for wiring board
JP2006286912A (en) Flexible copper-clad laminated plate showing higher bending property
JP2015193117A (en) metal-clad laminate and circuit board
JP4994992B2 (en) Laminate for wiring board and flexible wiring board for COF
KR20210084275A (en) Metal-clad laminate and circuit board
JP5567283B2 (en) Polyimide film
JP2015127118A (en) Metal-clad laminate and circuit board
KR101440276B1 (en) Polyimide film for electronic device component
JP4936729B2 (en) Flexible printed wiring board substrate and manufacturing method thereof
JP2004237596A (en) Flexible copper-clad laminated plate and its production method
JP5249203B2 (en) Polyimide film
WO2008082152A1 (en) Polyimide film with improved adhesiveness
JP4684601B2 (en) Manufacturing method of flexible laminated substrate
JP4593509B2 (en) Method for producing flexible laminate
JP4541212B2 (en) Copper-clad laminate
JP5009714B2 (en) Laminated body for flexible wiring board and flexible wiring board for COF
JP2005329641A (en) Substrate for flexible printed circuit board and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100113

R150 Certificate of patent or registration of utility model

Ref document number: 4443977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160122

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160122

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees