JP5567283B2 - Polyimide film - Google Patents

Polyimide film Download PDF

Info

Publication number
JP5567283B2
JP5567283B2 JP2009046475A JP2009046475A JP5567283B2 JP 5567283 B2 JP5567283 B2 JP 5567283B2 JP 2009046475 A JP2009046475 A JP 2009046475A JP 2009046475 A JP2009046475 A JP 2009046475A JP 5567283 B2 JP5567283 B2 JP 5567283B2
Authority
JP
Japan
Prior art keywords
polyimide
resin layer
general formula
structural unit
polyimide resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009046475A
Other languages
Japanese (ja)
Other versions
JP2010202681A (en
Inventor
広徳 永岡
芳樹 須藤
宏遠 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2009046475A priority Critical patent/JP5567283B2/en
Publication of JP2010202681A publication Critical patent/JP2010202681A/en
Application granted granted Critical
Publication of JP5567283B2 publication Critical patent/JP5567283B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、吸湿膨張率が小さく、寸法安定性に優れ、配線基板の絶縁層に適したポリイミドフィルムに関する。   The present invention relates to a polyimide film having a small hygroscopic expansion coefficient, excellent dimensional stability, and suitable for an insulating layer of a wiring board.

一般にポリイミド樹脂は優れた耐熱性、耐薬品性、電気特性、機械特性を有していることから、電子、電気機器の材料として、特に耐熱性を要する電気絶縁材料などの用途に広く利用されている。これまでポリイミドを絶縁層とする様々なフレキシブル銅張積層板が検討されてきているが、ポリイミド樹脂フィルムをエポキシ系樹脂などの接着剤を用いて金属層と積層したいわゆる3層タイプの積層体と、絶縁層と金属層を接着剤を用いずに積層した2層タイプの積層体が知られている。そして、耐熱性や屈曲特性などの面から2層タイプのフレキシブル配線基板用積層体が優れた特性を示すものとして使用されている。   In general, polyimide resins have excellent heat resistance, chemical resistance, electrical properties, and mechanical properties, so they are widely used as materials for electronic and electrical equipment, especially for electrical insulation materials that require heat resistance. Yes. Various flexible copper-clad laminates using polyimide as an insulating layer have been studied so far, and a so-called three-layer type laminate in which a polyimide resin film is laminated with a metal layer using an adhesive such as an epoxy resin, A two-layer type laminate in which an insulating layer and a metal layer are laminated without using an adhesive is known. And the laminated body for 2 layers type flexible wiring boards is used as what shows the outstanding characteristic from surfaces, such as heat resistance and a bending characteristic.

近年、電子情報機器の高機能化、軽薄短小化に伴い、配線基板の高密度化が要求され、配線パターンの更なる狭ピッチ化が進んでいる。この配線パターンの狭ピッチ化が進む中で、寸法安定性の低い材料は回路基板の加工工程で配線の位置ずれなどの実装不具合が発生し易くなるため、基板の更なる高寸法安定性が求められている。これまでこの課題に対して、絶縁層となるポリイミド層に線熱膨張係数(CTE)の低い材料を用いることで改善を図る検討がなされてきたが、CTEを低下させた結果として、相対的にポリイミド樹脂材料の吸湿による膨張、すなわち吸湿による寸法変化が大きくなり、基板が反ってしまうといった問題が発生していた。また、微細配線が要求されるCOF(チップオンフィルム)用途では、加工や実装の段階で高い引き裂き強度や耐熱性も要求されている。   2. Description of the Related Art In recent years, with higher functionality and lighter, thinner and smaller electronic information equipment, higher wiring board density is required, and the wiring pattern is becoming increasingly narrower. As the wiring pattern becomes narrower, materials with low dimensional stability are likely to cause mounting defects such as misalignment of the wiring during the circuit board processing process, and therefore higher dimensional stability of the board is required. It has been. To date, studies have been made to improve the problem by using a material having a low coefficient of linear thermal expansion (CTE) for the polyimide layer serving as an insulating layer. As a result of lowering the CTE, There has been a problem in that the polyimide resin material expands due to moisture absorption, that is, the dimensional change due to moisture absorption increases, causing the substrate to warp. Further, in COF (chip on film) applications that require fine wiring, high tear strength and heat resistance are also required at the stage of processing and mounting.

低吸湿特性を示す樹脂として、撥水性などの特異な性質を示すフッ素樹脂が知られている。また、フッ素化ポリイミド共重合体及びフッ素化ポリイミドを絶縁層に用いたポリイミド−金属複合フィルムが報告されている(特許文献1、2参照)。しかし、これらに報告された材料ではポリイミドの吸湿膨張が十分に抑制されておらず、強度も低いため、加工や実装の段階で破断や変形が生じやすいといった問題があった。一方で、吸湿膨張係数の改善を目的とし、耐熱性や強度の高いポリイミドを用いたフレキシブル配線基板用積層体も報告されているが(特許文献3、4参照)、これらはポリイミドの吸湿率、吸湿膨張係数の点で不十分であった。したがって、十分な耐熱性、フィルム強度、その他のポリイミド樹脂の優れた特性を生かしながら、吸湿膨張が小さく、寸法安定性に優れたポリイミドフィルムの開発が望まれていた。   As a resin exhibiting low moisture absorption characteristics, a fluororesin exhibiting unique properties such as water repellency is known. Moreover, the polyimide metal composite film which used the fluorinated polyimide copolymer and the fluorinated polyimide for the insulating layer is reported (refer patent document 1, 2). However, the materials reported in these materials have a problem in that the hygroscopic expansion of polyimide is not sufficiently suppressed and the strength is low, so that breakage and deformation are likely to occur at the stage of processing and mounting. On the other hand, for the purpose of improving the hygroscopic expansion coefficient, a laminate for a flexible wiring board using polyimide having high heat resistance and high strength has also been reported (see Patent Documents 3 and 4). It was insufficient in terms of the hygroscopic expansion coefficient. Accordingly, it has been desired to develop a polyimide film that has sufficient heat resistance, film strength, and other excellent polyimide resin properties, and has low hygroscopic expansion and excellent dimensional stability.

特開平4−8734号公報Japanese Patent Laid-Open No. 4-8734 特開平4−47933号公報JP-A-4-47933 WO01/028767号公報WO01 / 028767 WO02/085616号公報WO02 / 085616

本発明は、ポリイミド樹脂の優れた特性を生かしながら、吸湿膨張が小さく寸法安定性に優れ、かつ高い耐熱性、十分なフィルム強度を有し、加工時や実装時のハンドリング性が良好なポリイミドフィルムを提供することを目的とする。   The present invention is a polyimide film that takes advantage of the excellent properties of polyimide resin, has low hygroscopic expansion, excellent dimensional stability, high heat resistance, sufficient film strength, and good handling properties during processing and mounting. The purpose is to provide.

本発明者等は、上記課題を解決するために鋭意検討した結果、ポリイミドフィルムを構成するポリイミドが特定の構造を有し、かつ一定の関係式を満たすことで上記課題を解決し得ることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the polyimide constituting the polyimide film has a specific structure and can solve the above problems by satisfying a certain relational expression. The present invention has been completed.

すなわち、本発明は、下記一般式(1)で表される構造単位を50〜95モル%と、下記一般式(2)で表される構造単位を0〜45モル%、一般式(3)で表される構造単位を5〜50モル%、一般式(2)で表される構造単位と一般式(3)で表される構造単位を合わせて5〜50モル%含有し、吸湿膨張係数が9ppm/%RH以下であるポリイミド樹脂層(A)を主たる層とすることを特徴とするポリイミドフィルムである。

Figure 0005567283
Figure 0005567283
(一般式(2)において、Rは炭素数1〜6の低級アルキル基、フェニル基又は炭素数1〜6のハロゲン化アルキル基を示すが、一般式(2)で表される構造単位が一般式(1)で表される構造単位と同じとなることはない。一般式(2)及び(3)において、Ar1は芳香族テトラカルボン酸残基であり、一般式(3)中、Ar2は下記式(c)及び(d)から選択される芳香族基のいずれかを示し、式(c)及び(d)において、Ar3は二価の芳香族基である。)
Figure 0005567283
That is, the present invention provides 50 to 95 mol% of the structural unit represented by the following general formula (1), 0 to 45 mol% of the structural unit represented by the following general formula (2), and general formula (3). 5 to 50 mol%, 5 to 50 mol% of the structural unit represented by the general formula (2) and the structural unit represented by the general formula (3) are contained, and the hygroscopic expansion coefficient The polyimide film is characterized in that the main layer is a polyimide resin layer (A) having a content of 9 ppm /% RH or less.
Figure 0005567283
Figure 0005567283
(In the general formula (2), R represents a lower alkyl group having 1 to 6 carbon atoms, a phenyl group, or a halogenated alkyl group having 1 to 6 carbon atoms, but the structural unit represented by the general formula (2) is generally used. It is not the same as the structural unit represented by the formula (1) In the general formulas (2) and (3), Ar 1 is an aromatic tetracarboxylic acid residue. 2 represents any one of the aromatic groups selected from the following formulas (c) and (d), and in the formulas (c) and (d), Ar 3 is a divalent aromatic group.
Figure 0005567283

ここで、一般式(2)及び(3)において、Ar1が下記(a)又は(b)の何れかの芳香族基であることが好ましい。そして、Ar 3 は下記式(e)で表される二価の芳香族基である。 Here, in the general formulas (2) and (3), Ar 1 is preferably any one of the following aromatic groups (a) or (b). Ar 3 is a divalent aromatic group represented by the following formula (e) .

Figure 0005567283
Figure 0005567283

Figure 0005567283
Figure 0005567283

また、本発明のポリイミドフィルムは、更に下記要件のいずれか1つ以上を充足することが好ましい。
(1)ポリイミド樹脂層(A)の線膨張係数が25ppm/℃以下であること。
(2)ポリイミド樹脂層(A)の片面又は両面に、線膨張係数が30ppm/℃以上の熱可塑性ポリイミド樹脂層(B)を有し、ポリイミド樹脂層(A)と熱可塑性ポリイミド樹脂層(B)の厚み比(B)/(A)が0.02〜1の範囲にあること。
(3)絶縁層のガラス転移温度が310℃以上、引き裂き伝播抵抗が3.0kN/m以上、さらに吸湿率が0.7wt%以下であること。
Moreover, it is preferable that the polyimide film of the present invention further satisfies any one or more of the following requirements.
(1) The linear expansion coefficient of the polyimide resin layer (A) is 25 ppm / ° C. or less.
(2) The polyimide resin layer (A) has a thermoplastic polyimide resin layer (B) having a linear expansion coefficient of 30 ppm / ° C. or more on one side or both sides of the polyimide resin layer (A), and the polyimide resin layer (A) and the thermoplastic polyimide resin layer (B ) Thickness ratio (B) / (A) is in the range of 0.02-1.
(3) The glass transition temperature of the insulating layer is 310 ° C. or higher, the tear propagation resistance is 3.0 kN / m or higher, and the moisture absorption is 0.7 wt% or lower.

本発明によれば、ポリイミドフィルムの吸湿率が低く、低吸湿膨張であることから寸法安定性に優れており、高い寸法安定性が必要なフレキシブル配線基板の絶縁層などに好適に使用することができる。   According to the present invention, the polyimide film has low moisture absorption and low hygroscopic expansion, so that it has excellent dimensional stability and can be suitably used for an insulating layer of a flexible wiring board that requires high dimensional stability. it can.

本発明のポリイミドフィルムを製造する方法は、特に限定されるものではないが、例えば、ポリイミドフィルムの原料であるポリイミド前駆体(ポリアミック酸)の樹脂溶液を任意の支持基体上に流延塗布してフィルム状に成型し、支持体上で加熱乾燥することにより自己支持性を有するゲルフィルムとした後、支持体より剥離して、更に高温で熱処理してイミド化させてポリイミドフィルムとする方法が一般的である。ポリアミック酸を銅箔などの任意の基材上にアプリケーターを用いて流延塗布し、予備乾燥した後、更に、溶剤除去、イミド化のために熱処理し、イミド化時に使用した基材を剥離又はエッチング等により除去する方法も挙げられる。この際、樹脂溶液の粘度を500〜70000cpsの範囲とすることが好ましい。ポリイミド絶縁層を複数層とする場合、異なる構成成分からなるポリイミド前駆体樹脂の上に他のポリイミド前駆体樹脂を順次塗工して形成することができる。ポリイミド絶縁層が3層以上からなる場合、同一の構成のポリイミド前駆体樹脂を2回以上使用してもよい。なお、樹脂溶液の塗布面となる金属層表面に対して適宜表面処理した後に塗工を行ってもよい。乾燥条件は150℃以下で2〜30分、また、イミド化のための熱処理は130〜360℃程度の温度で2〜30分程度行うことが適当である。   The method for producing the polyimide film of the present invention is not particularly limited. For example, a polyimide precursor (polyamic acid) resin solution, which is a raw material of the polyimide film, is cast on an arbitrary support substrate. After forming into a film and heating and drying on a support to form a gel film having a self-supporting property, it is generally peeled off from the support and then heat-treated at a high temperature to be imidized to form a polyimide film. Is. After polyamic acid is cast-applied on an arbitrary substrate such as copper foil using an applicator and pre-dried, it is further heat-treated for solvent removal and imidization, and the substrate used at the time of imidation is peeled off or The method of removing by etching etc. is also mentioned. At this time, the viscosity of the resin solution is preferably in the range of 500 to 70000 cps. When making a polyimide insulating layer into multiple layers, it can form by coating another polyimide precursor resin sequentially on the polyimide precursor resin which consists of a different structural component. When the polyimide insulating layer is composed of three or more layers, the polyimide precursor resin having the same configuration may be used twice or more. The coating may be carried out after appropriately treating the surface of the metal layer to be the application surface of the resin solution. It is appropriate that the drying conditions are 150 ° C. or lower for 2 to 30 minutes, and the heat treatment for imidization is performed at a temperature of about 130 to 360 ° C. for about 2 to 30 minutes.

本発明のポリイミドフィルムは、ポリイミド樹脂層(A)を主たるポリイミド樹脂層として有する。ここで、主たるとは、ポリイミドフィルムを構成するポリイミド樹脂層の中で最も厚い層を意味するが、好ましくはポリイミド樹脂層の全厚みの60%以上、特に好ましくは70%以上、最も好ましくは75〜95%の厚みを有する層をいう。ポリイミドフィルムは、ポリイミド樹脂層(A)と熱可塑性ポリイミド樹脂層(B)からなることが好ましく、それぞれの層は少なくとも1層を有すればよく、2層以上からなっていてもよい。ポリイミド樹脂層(A)と熱可塑性ポリイミド樹脂層(B)からなる場合、ポリイミド樹脂層(A)と熱可塑性ポリイミド樹脂層(B)の厚みの割合は、(B)/(A)が0.02〜1、好ましくは0.05〜0.4の範囲とすることがよい。   The polyimide film of the present invention has a polyimide resin layer (A) as a main polyimide resin layer. Here, the main means the thickest layer among the polyimide resin layers constituting the polyimide film, preferably 60% or more, particularly preferably 70% or more, most preferably 75% of the total thickness of the polyimide resin layer. Refers to a layer having a thickness of ~ 95%. It is preferable that a polyimide film consists of a polyimide resin layer (A) and a thermoplastic polyimide resin layer (B), and each layer should just have at least 1 layer and may consist of two or more layers. When it consists of a polyimide resin layer (A) and a thermoplastic polyimide resin layer (B), (B) / (A) is the ratio of the thickness of a polyimide resin layer (A) and a thermoplastic polyimide resin layer (B). The range is 02 to 1, preferably 0.05 to 0.4.

フレキシブル配線基板用積層体の製造において加熱加圧によって本発明のポリイミドフィルムと金属層を積層する場合には、有利には、金属層に接するポリイミド樹脂層を熱可塑性ポリイミド樹脂層(B)とし、熱可塑性ポリイミド樹脂層(B)に接して、金属層に接しないポリイミド樹脂層をポリイミド樹脂層(A)とすることがよい。熱可塑性ポリイミド樹脂層(B)の厚みは、ポリイミド樹脂層(A)の片面にのみ熱可塑性ポリイミド樹脂層(B)を有する場合は、ポリイミド樹脂層(A)と熱可塑性ポリイミド樹脂層(B)の厚みの割合、(B)/(A)が0.05〜0.2の範囲が好ましく、ポリイミド樹脂層(A)の両面に熱可塑性ポリイミド樹脂層(B)を有する場合は、0.1〜0.4の範囲が好ましい。   When the polyimide film of the present invention and a metal layer are laminated by heating and pressing in the production of a laminate for a flexible wiring board, advantageously, the polyimide resin layer in contact with the metal layer is a thermoplastic polyimide resin layer (B), The polyimide resin layer (A) may be a polyimide resin layer that is in contact with the thermoplastic polyimide resin layer (B) but not in contact with the metal layer. When the thermoplastic polyimide resin layer (B) has the thermoplastic polyimide resin layer (B) only on one side of the polyimide resin layer (A), the polyimide resin layer (A) and the thermoplastic polyimide resin layer (B) The thickness ratio of (B) / (A) is preferably in the range of 0.05 to 0.2. When the thermoplastic polyimide resin layer (B) is provided on both sides of the polyimide resin layer (A), 0.1% is obtained. A range of ~ 0.4 is preferred.

ポリイミド樹脂層(A)は、上記一般式(1)で表される構造単位を50〜95モル%、上記一般式(2)及び(3)で表される構造単位を合わせて5〜50モル%含有し、吸湿膨張係数が9ppm/%RH以下である。ここで、一般式(2)で表される構造単位は0であってもよく、一般式(3)で表される構造単位は5モル%以上含有する。   The polyimide resin layer (A) is 50 to 95 mol% of the structural unit represented by the general formula (1), and 5 to 50 mol in total of the structural units represented by the general formulas (2) and (3). %, And the hygroscopic expansion coefficient is 9 ppm /% RH or less. Here, 0 may be sufficient as the structural unit represented by General formula (2), and the structural unit represented by General formula (3) contains 5 mol% or more.

ポリイミド樹脂層(A)は、上記一般式(1)で表される構造単位を50〜95モル%の範囲で含有するものであることが必要であるが、他の構成単位は、ポリイミド原料である公知の酸無水物やジアミンを適宜選択して用いることができる。本発明では、一般式(1)で表される構造単位と共に、上記一般式(2)及び(3)で表される構造単位を合わせて5〜50モル%の範囲で含有することが有利である。ここで、一般式(1)〜(3)の構造単位の好ましい割合は、lを一般式(1)の構造単位の存在モル比、mを一般式(2)の構造単位の存在モル比、nを一般式(3)の構造単位の存在モル比としたとき、lは0.5〜0.95、mは0〜0.45、nは0.05〜0.50の範囲であるが、mとnの合計は0.05〜0.50の範囲である。そして、lは0.6〜0.9、mは0.05〜0.3、nは0.05〜0.3で、mとnの合計が0.1〜0.4の範囲がより好ましい。なお、存在モル比が1.0の場合、その構造単位の含有割合は100%と計算される。   The polyimide resin layer (A) needs to contain the structural unit represented by the general formula (1) in the range of 50 to 95 mol%, but the other structural units are polyimide raw materials. Certain known acid anhydrides and diamines can be appropriately selected and used. In the present invention, it is advantageous that the structural unit represented by the general formulas (2) and (3) together with the structural unit represented by the general formula (1) is contained in a range of 5 to 50 mol%. is there. Here, the preferred ratio of the structural units of the general formulas (1) to (3) is such that l is the molar ratio of the structural units of the general formula (1), m is the molar ratio of the structural units of the general formula (2), When n is the molar ratio of the structural unit of the general formula (3), l is 0.5 to 0.95, m is 0 to 0.45, and n is 0.05 to 0.50, but the total of m and n is 0.05 to 0.50. Range. L is 0.6 to 0.9, m is 0.05 to 0.3, n is 0.05 to 0.3, and the total of m and n is more preferably in the range of 0.1 to 0.4. When the molar ratio is 1.0, the content ratio of the structural unit is calculated as 100%.

一般式(2)において、Rは炭素数1〜6の低級アルキル基、フェニル基又は炭素数1〜6のハロゲン化アルキル基を示す。好ましくは炭素数1〜3の低級アルキル基、フェニル基又は炭素数1〜3のハロゲン化アルキル基である。なお、一般式(2)で表わされる構造単位が一般式(1)で表わされる構造単位と同じとなることはない。すなわち、一般式(1)で表わされる構造単位は、一般式(2)で表わされる構造単位としては扱わない。   In General formula (2), R shows a C1-C6 lower alkyl group, a phenyl group, or a C1-C6 halogenated alkyl group. Preferably they are a C1-C3 lower alkyl group, a phenyl group, or a C1-C3 halogenated alkyl group. The structural unit represented by the general formula (2) is not the same as the structural unit represented by the general formula (1). That is, the structural unit represented by the general formula (1) is not treated as the structural unit represented by the general formula (2).

また、一般式(2)及び(3)において、Ar1は、上記式(a)及び(b)から選択される芳香族基のいずれかであることが好ましく、一般式(3)において、Ar2は上記式(c)及び(d)から選択される芳香族基のいずれである。式(c)及び(d)において、Ar3は式(e)及び(f)から選択される芳香族基のいずれかであることが好ましい。 In the general formulas (2) and (3), Ar 1 is preferably any one of aromatic groups selected from the above formulas (a) and (b). In the general formula (3), Ar 1 2 is any aromatic group selected from the above formulas (c) and (d). In the formulas (c) and (d), Ar 3 is preferably any one of aromatic groups selected from the formulas (e) and (f).

上記一般式(2)で表される構造単位の好ましい具体例としては、下記式(4)で表される構造単位が例示される。

Figure 0005567283
Preferable specific examples of the structural unit represented by the general formula (2) include a structural unit represented by the following formula (4).
Figure 0005567283

上記一般式(1)の構造単位は主に低湿度膨張性と高耐熱性等の性質を向上させ、一般式(2)の構造単位は低熱膨張性と高耐熱性を向上させるのに有効である。一般式(3)の構造単位は主に強靭性や接着性等の性質を向上させると考えられるが、相乗効果や分子量の影響があるため厳密ではない。しかし、強靭性等を増加させるためには、一般式(3)の構造単位を増やすことが通常、有効である。   The structural unit of the general formula (1) mainly improves properties such as low-humidity expansion and high heat resistance, and the structural unit of the general formula (2) is effective for improving low thermal expansion and high heat resistance. is there. The structural unit of the general formula (3) is considered to improve mainly properties such as toughness and adhesiveness, but is not strict because of synergistic effects and molecular weight effects. However, in order to increase toughness and the like, it is usually effective to increase the structural unit of the general formula (3).

一般式(3)の構造単位を与えるために用いられるジアミンとしては、1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE−R)、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)又は4,4'-ジアミノジフェニルエーテル(4,4'-DAPE)等がある   Examples of the diamine used to give the structural unit of the general formula (3) include 1,3-bis (4-aminophenoxy) benzene (TPE-R), 1,3-bis (3-aminophenoxy) benzene (APB). ) Or 4,4'-diaminodiphenyl ether (4,4'-DAPE)

一般式(2)及び一般式(3)の構造単位を与えるために用いられる酸無水物としては、ピロメリット酸二無水物(PMDA)、ビフェニルテトラカルボン酸二無水物(BPDA)がある。   Examples of the acid anhydride used to give the structural units of the general formula (2) and the general formula (3) include pyromellitic dianhydride (PMDA) and biphenyltetracarboxylic dianhydride (BPDA).

ポリイミド樹脂層(A)の原料となるジアミン及び酸無水物は、上記式及びモル比を満足し、上記樹脂層特性を満足する限り、複数のジアミン及び酸無水物を使用してもよく、他のジアミン及び酸無水物を使用してもよい。   The diamine and acid anhydride used as the raw material for the polyimide resin layer (A) satisfy the above formula and molar ratio, and a plurality of diamines and acid anhydrides may be used as long as the above resin layer characteristics are satisfied. The diamines and acid anhydrides may be used.

熱可塑性ポリイミド樹脂層(B)は、線膨張係数が30ppm/℃より大きいものであり、そのガラス転移温度は350℃以下であることが好ましく、250〜330℃の範囲にあることがより好ましい。そのような特性を満たすポリイミド樹脂を得るには、公知の酸無水物とジアミンを原料として、それらを適宜組み合わせて反応して得ることができる。   The thermoplastic polyimide resin layer (B) has a linear expansion coefficient larger than 30 ppm / ° C., and its glass transition temperature is preferably 350 ° C. or less, and more preferably in the range of 250 to 330 ° C. In order to obtain a polyimide resin satisfying such characteristics, a known acid anhydride and diamine can be used as raw materials, and they can be appropriately combined and reacted.

熱可塑性ポリイミド樹脂層(B)を形成するために用いられる酸無水物としては、酸無水物を O(OC)2Ar4(CO)2O で表した際、Ar4が下記式で表わされる芳香族酸二無水物残基が例示される。 As an acid anhydride used for forming the thermoplastic polyimide resin layer (B), when the acid anhydride is represented by O (OC) 2 Ar 4 (CO) 2 O, Ar 4 is represented by the following formula. Aromatic dianhydride residues are exemplified.

Figure 0005567283
Figure 0005567283

これらの中でも、PMDA、3,3',4,4'-ビフェニルテトラカルボン酸二無水物(BPDA)、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物(BTDA)又は3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物(DSDA)が好適なものとして例示される。   Among these, PMDA, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride (BTDA) or 3, 3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride (DSDA) is exemplified as a suitable one.

また、熱可塑性ポリイミド樹脂層(B)を形成するために用いられるジアミン成分としては、ジアミンを H2N−Ar5−NH2 で表したとき、Ar5が下記式で表されるジアミンが例示される。 As the diamine component that is used to form a thermoplastic polyimide resin layer (B), when representing the diamine H 2 N-Ar 5 -NH 2 , diamine exemplary Ar 5 is represented by the following formula Is done.

Figure 0005567283
Figure 0005567283

これらの中でも、4,4'-DAPE、TPE-R、APB又は2,2-ビス(4-アミノフェノキシフェニル)プロパン(BAPP)が好適なものとして挙げられる。   Among these, 4,4′-DAPE, TPE-R, APB or 2,2-bis (4-aminophenoxyphenyl) propane (BAPP) is preferable.

本発明のポリイミドフィルムは、上述の通り単層、又は複数のポリイミド樹脂層からなり、複数層の場合は、ポリイミド樹脂層(A)を主たる層として、その少なくとも片面に熱可塑性ポリイミド樹脂層(B)を有することがよい。ポリイミド樹脂層の合計の厚さは、好ましくは10〜40μm、より好ましくは15〜35μmの範囲あることがよい。また、ポリイミド層全体厚みに対するポリイミド樹脂層(A)の厚み比率は、上記したとおりであるが、特に、ポリイミド樹脂層(A)と熱可塑性ポリイミド樹脂層(B)の厚み比(B)/(A)は、0.02〜1の範囲とすることで、特に引裂き強さと屈曲性のバランスに優れたポリイミドフィルムとすることができる。   As described above, the polyimide film of the present invention comprises a single layer or a plurality of polyimide resin layers. In the case of a plurality of layers, the polyimide resin layer (A) is the main layer, and at least one surface thereof is a thermoplastic polyimide resin layer (B ). The total thickness of the polyimide resin layer is preferably 10 to 40 μm, more preferably 15 to 35 μm. Moreover, although the thickness ratio of the polyimide resin layer (A) with respect to the polyimide layer whole thickness is as above-mentioned, especially the thickness ratio (B) / (of a polyimide resin layer (A) and a thermoplastic polyimide resin layer (B). A) can be made into the polyimide film excellent in the balance of tear strength and flexibility especially by setting it as the range of 0.02-1.

ポリイミドフィルムは、原料のジアミンと酸無水物とを溶媒の存在下で重合し、ポリイミド前駆体樹脂とした後、熱処理によりイミド化することによって製造することができる。ポリイミド樹脂の分子量は、原料のジアミンと酸無水物のモル比を変化させることで主に制御可能である。モル比は通常1:1である。溶媒は、ジメチルアセトアミド、ジメチルホルムアミド、n-メチルピロリジノン、2-ブタノン、ジグライム、キシレン等が挙げられ、1種若しくは2種以上併用して使用することもできる。   The polyimide film can be produced by polymerizing raw material diamine and acid anhydride in the presence of a solvent to obtain a polyimide precursor resin, and then imidizing by heat treatment. The molecular weight of the polyimide resin can be mainly controlled by changing the molar ratio of the raw material diamine and acid anhydride. The molar ratio is usually 1: 1. Examples of the solvent include dimethylacetamide, dimethylformamide, n-methylpyrrolidinone, 2-butanone, diglyme, xylene and the like, and they can be used alone or in combination of two or more.

本発明のポリイミドフィルムを用いたフレキシブル配線基板において、ピール強度を制御するためには、熱可塑性ポリイミド樹脂層(B)が金属層に接することが有効である。また、ポリイミドフィルムのガラス転移温度が310℃以上で、引き裂き伝播抵抗が3.0kN/m以上であり、さらに吸湿膨張係数が9ppm/%RH以下であることが、形状安定性に優れ、微細な回路形成を可能とするため有効である。特に、ポリイミドフィルムのカールを減少させるためにはポリイミド樹脂層(A)と熱可塑性ポリイミド樹脂層(B)の両方の層を有することが有効であり、その効果はポリイミド樹脂層(A)と熱可塑性ポリイミド樹脂層(B)の積層順序や厚み比で異なる。   In the flexible wiring board using the polyimide film of the present invention, in order to control the peel strength, it is effective that the thermoplastic polyimide resin layer (B) is in contact with the metal layer. In addition, the polyimide film has a glass transition temperature of 310 ° C. or higher, a tear propagation resistance of 3.0 kN / m or higher, and a hygroscopic expansion coefficient of 9 ppm /% RH or lower. This is effective to enable circuit formation. In particular, in order to reduce the curl of the polyimide film, it is effective to have both the polyimide resin layer (A) and the thermoplastic polyimide resin layer (B), and the effect is the same as the polyimide resin layer (A) and the heat. It differs depending on the stacking order and thickness ratio of the plastic polyimide resin layer (B).

以下、実施例に基づいて本発明の内容を具体的に説明するが、本発明はこれらの実施例の範囲に限定されるものではない。   EXAMPLES Hereinafter, although the content of this invention is demonstrated concretely based on an Example, this invention is not limited to the range of these Examples.

実施例等に用いた略号を下記に示す。
・PMDA :ピロメリット酸二無水物
・BPDA :3,3',4,4'-ビフェニルテトラカルボン酸二無水物
・TFMB :2,2'-ジトリフルオロメチルベンジジン
・TPE-R :1,3-ビス(4-アミノフェノキシ)ベンゼン
・m-TB :2,2'-ジメチルベンジジン
・BAPP :2,2-ビス(4-アミノフェノキシフェニル)プロパン
・DMAc :N,N-ジメチルアセトアミド
Abbreviations used in Examples and the like are shown below.
-PMDA: pyromellitic dianhydride-BPDA: 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride-TFMB: 2,2'-ditrifluoromethylbenzidine-TPE-R: 1,3- Bis (4-aminophenoxy) benzene / m-TB: 2,2'-dimethylbenzidine / BAPP: 2,2-bis (4-aminophenoxyphenyl) propane / DMAc: N, N-dimethylacetamide

また、実施例中の各種物性の測定方法と条件を以下に示す。なお、以下ポリイミドフィルムと表現したものは、銅箔を支持基体とした積層体の銅箔をエッチング除去して得られたポリイミドフィルムを指す。   In addition, measurement methods and conditions for various physical properties in the examples are shown below. In addition, what was expressed as a polyimide film below refers to the polyimide film obtained by carrying out the etching removal of the copper foil of the laminated body which used copper foil as a support base.

[引裂き伝播抵抗の測定]
ポリイミドフィルム(63.5mm×50mm)の試験片を準備し、試験片に長さ12.7mmの切り込みを入れ、東洋精機製の軽荷重引裂き試験機を用いて室温で測定した。
[Measurement of tear propagation resistance]
A test piece of polyimide film (63.5 mm × 50 mm) was prepared, a cut of 12.7 mm in length was made in the test piece, and measurement was performed at room temperature using a light load tear tester manufactured by Toyo Seiki.

[熱膨張係数(CTE)の測定]
ポリイミドフィルム(3mm×15mm)を、熱機械分析(TMA)装置にて5gの荷重を加えながら一定の昇温速度で30℃から260℃の温度範囲で引張り試験を行った。温度に対するポリイミドフィルムの伸び量から熱膨張係数を測定した。
[Measurement of coefficient of thermal expansion (CTE)]
The polyimide film (3 mm × 15 mm) was subjected to a tensile test in a temperature range from 30 ° C. to 260 ° C. at a constant temperature increase rate while applying a 5 g load with a thermomechanical analysis (TMA) apparatus. The thermal expansion coefficient was measured from the amount of elongation of the polyimide film with respect to temperature.

[ガラス転移温度(Tg)の測定]
ポリイミドフィルム(10mm×22.6 mm)をDMAにて20℃から500℃まで5℃/分で昇温させたときの動的粘弾性を測定し、ガラス転移温度Tg(tanδ極大値)を求めた。
[Measurement of glass transition temperature (Tg)]
The dynamic viscoelasticity when a polyimide film (10 mm × 22.6 mm) was heated from 20 ° C. to 500 ° C. at a rate of 5 ° C./min was measured by DMA to determine the glass transition temperature Tg (tan δ maximum value). It was.

[フィルムカールの測定]
ポリイミドフィルム(50mm×50mm)を恒温恒湿下(23℃、50%RH)で24時間調湿し、その後、フィルムの曲率半径を測定した。
[Measurement of film curl]
A polyimide film (50 mm × 50 mm) was conditioned under constant temperature and humidity (23 ° C., 50% RH) for 24 hours, and then the curvature radius of the film was measured.

[吸湿率の測定]
ポリイミドフィルム(4cm×20cm)を、120℃で2時間乾燥した後、23℃/50%RHの恒温恒湿機で24時間静置し、その前後の重量変化から次式により求めた。
吸湿率(%)=[(吸湿後重量-乾燥後重量)/乾燥後重量]×100
[Measurement of moisture absorption rate]
A polyimide film (4 cm × 20 cm) was dried at 120 ° C. for 2 hours, and then allowed to stand for 24 hours in a constant temperature and humidity chamber of 23 ° C./50% RH.
Moisture absorption rate (%) = [(weight after moisture absorption−weight after drying) / weight after drying] × 100

[吸湿膨張係数(CHE)の測定]
35cm×35cmの銅張品の銅箔上に、エッチングレジスト層を設け、これを一辺が30cmの正方形の四辺に10cm間隔で直径1mmの点が16箇所配置するパターンに形成した。エッチングレジスト開孔部の露出部分をエッチングし、16箇所の銅箔残存点を有するCHE測定用ポリイミドフィルムを得た。このフィルムを120℃で2時間乾燥した後、23℃/30%RH・50%RH・70%RHの恒温恒湿機で各湿度において24時間静置し、二次元測長機により測定した各湿度での銅箔点間の寸法変化から湿度膨張係数(ppm/%RH)を求めた。
[Measurement of hygroscopic expansion coefficient (CHE)]
An etching resist layer was provided on a copper foil of a 35 cm × 35 cm copper-clad product, and this was formed into a pattern in which 16 points with a diameter of 1 mm were arranged at intervals of 10 cm on four sides of a square with a side of 30 cm. The exposed portion of the etching resist opening was etched to obtain a CHE measurement polyimide film having 16 copper foil remaining points. After drying this film at 120 ° C. for 2 hours, each film was allowed to stand for 24 hours at 23 ° C./30% RH / 50% RH / 70% RH constant temperature and humidity at 24 ° C. and measured with a two-dimensional measuring machine. The humidity expansion coefficient (ppm /% RH) was determined from the dimensional change between the copper foil points at humidity.

合成例1
A〜Iのポリイミド前駆体樹脂(ポリアミック酸)を合成するため、窒素気流下で、表1に示したジアミンを500mlのセパラブルフラスコの中で攪拌しながら溶剤DMAc 250〜300g程度に溶解させた。次いで、表1に示したテトラカルボン酸二無水物を加えた。その後、溶液を室温で4時間攪拌を続けて重合反応を行い、ポリイミド前駆体樹脂A〜Iの黄褐色の粘稠な溶液を得た。表1中の数値は原料使用量(g)を表す。
Synthesis example 1
In order to synthesize polyimide precursor resins A to I (polyamic acid), the diamines shown in Table 1 were dissolved in about 250 to 300 g of solvent DMAc while stirring in a 500 ml separable flask under a nitrogen stream. . Subsequently, the tetracarboxylic dianhydride shown in Table 1 was added. Thereafter, the solution was continuously stirred at room temperature for 4 hours to carry out a polymerization reaction, thereby obtaining a yellowish brown viscous solution of polyimide precursor resins A to I. Numerical values in Table 1 represent raw material usage (g).

Figure 0005567283
Figure 0005567283

実施例1〜4
厚さ12μmの銅箔上に、前駆体樹脂溶液A〜Dを、アプリケータを用いて均一に塗布し、50〜130℃で2〜60分間乾燥した後、更に130℃、160℃、200℃、230℃、280℃、320℃、360℃で各2〜60分段階的な熱処理を行い、ポリイミド樹脂層を形成した積層体とした。続いて第二塩化鉄水溶液を用いて銅箔をエッチング除去してポリイミドフィルムを得た。
Examples 1-4
Precursor resin solutions A to D were uniformly applied on a copper foil having a thickness of 12 μm using an applicator, dried at 50 to 130 ° C. for 2 to 60 minutes, and then further 130 ° C., 160 ° C. and 200 ° C. , 230 ° C., 280 ° C., 320 ° C., 360 ° C., each of which was subjected to stepwise heat treatment for 2 to 60 minutes to obtain a laminate having a polyimide resin layer formed thereon. Subsequently, the copper foil was etched away using an aqueous ferric chloride solution to obtain a polyimide film.

実施例5
厚さ12μmの電解銅箔上に、ポリイミド前駆体樹脂溶液Aを、硬化後の厚みが23μmとなるようにアプリケータを用いて均一に塗布し、50〜130℃で2〜60分間乾燥した。次に、前駆体樹脂溶液Iを、硬化後の厚みが2μmとなるようにアプリケータを用いて均一に塗布し、50〜130℃で2〜60分間乾燥した。更に130℃、160℃、200℃、230℃、280℃、320℃、360℃で各2〜60分段階的な熱処理を行い、2層のポリイミド樹脂層を形成した積層体とした。次に第二塩化鉄水溶液を用いて銅箔をエッチング除去してポリイミドフィルム得た。
Example 5
On the electrolytic copper foil having a thickness of 12 μm, the polyimide precursor resin solution A was uniformly applied using an applicator so that the thickness after curing was 23 μm, and dried at 50 to 130 ° C. for 2 to 60 minutes. Next, the precursor resin solution I was uniformly applied using an applicator so that the thickness after curing was 2 μm, and dried at 50 to 130 ° C. for 2 to 60 minutes. Further, stepwise heat treatment was performed at 130 ° C., 160 ° C., 200 ° C., 230 ° C., 280 ° C., 320 ° C., and 360 ° C. for 2 to 60 minutes each to obtain a laminate having two polyimide resin layers. Next, the copper foil was removed by etching using an aqueous ferric chloride solution to obtain a polyimide film.

実施例6
厚さ12μmの電解銅箔上に、ポリイミド前駆体樹脂溶液Bを、硬化後の厚みが23μmとなるようにアプリケータを用いて均一に塗布し、50〜130℃で2〜60分間乾燥した。次に、前駆体樹脂溶液Iを、硬化後の厚みが2μmとなるようにアプリケータを用いて均一に塗布し、50〜130℃で2〜60分間乾燥した。更に130℃、160℃、200℃、230℃、280℃、320℃、360℃で各2〜60分段階的な熱処理を行い、2層のポリイミド樹脂層を形成した積層体とした。次に第二塩化鉄水溶液を用いて銅箔をエッチング除去してポリイミドフィルムを得た。
Example 6
On the electrolytic copper foil having a thickness of 12 μm, the polyimide precursor resin solution B was uniformly applied using an applicator so that the thickness after curing was 23 μm, and dried at 50 to 130 ° C. for 2 to 60 minutes. Next, the precursor resin solution I was uniformly applied using an applicator so that the thickness after curing was 2 μm, and dried at 50 to 130 ° C. for 2 to 60 minutes. Further, stepwise heat treatment was performed at 130 ° C., 160 ° C., 200 ° C., 230 ° C., 280 ° C., 320 ° C., and 360 ° C. for 2 to 60 minutes each to obtain a laminate having two polyimide resin layers. Next, the copper foil was etched away using an aqueous ferric chloride solution to obtain a polyimide film.

実施例7
厚さ12μmの電解銅箔上に、前駆体樹脂溶液Iを、硬化後の厚みが2μmとなるようにアプリケータを用いて均一に塗布し、50〜130℃で2〜60分間乾燥した。次に、前駆体樹脂溶液Aを、硬化後の厚みが21μmとなるようにアプリケータを用いて均一に塗布し、50〜130℃で2〜60分間乾燥した。更に、前駆体樹脂溶液Iを、硬化後の厚みが2μmとなるようにアプリケータを用いて均一に塗布し、50〜130℃で2〜60分間乾燥した。その後130℃、160℃、200℃、230℃、280℃、320℃、360℃で各2〜60分段階的な熱処理を行い、3層のポリイミド樹脂層を形成した積層体とした。続いて第二塩化鉄水溶液を用いて銅箔をエッチング除去してポリイミドフィルムを得た。
Example 7
On the electrolytic copper foil having a thickness of 12 μm, the precursor resin solution I was uniformly applied using an applicator so that the thickness after curing was 2 μm, and dried at 50 to 130 ° C. for 2 to 60 minutes. Next, the precursor resin solution A was uniformly applied using an applicator so that the thickness after curing was 21 μm, and dried at 50 to 130 ° C. for 2 to 60 minutes. Further, the precursor resin solution I was uniformly applied using an applicator so that the thickness after curing was 2 μm, and dried at 50 to 130 ° C. for 2 to 60 minutes. Thereafter, stepwise heat treatment was performed at 130 ° C., 160 ° C., 200 ° C., 230 ° C., 280 ° C., 320 ° C., and 360 ° C. for 2 to 60 minutes each to obtain a laminate having three polyimide resin layers. Subsequently, the copper foil was etched away using an aqueous ferric chloride solution to obtain a polyimide film.

実施例8
厚さ12μmの電解銅箔上に、前駆体樹脂溶液Iを、硬化後の厚みが2μmとなるようにアプリケータを用いて均一に塗布し、50〜130℃で2〜60分間乾燥した。次に、前駆体樹脂溶液Dを、硬化後の厚みが21μmとなるようにアプリケータを用いて均一に塗布し、50〜130℃で2〜60分間乾燥した。更に、前駆体樹脂溶液Iを、硬化後の厚みが2μmとなるようにアプリケータを用いて均一に塗布し、50〜130℃で2〜60分間乾燥した。その後130℃、160℃、200℃、230℃、280℃、320℃、360℃で各2〜60分段階的な熱処理を行い、3層のポリイミド樹脂層を形成した積層体とした。続いて第二塩化鉄水溶液を用いて銅箔をエッチング除去してポリイミドフィルムを得た。
Example 8
On the electrolytic copper foil having a thickness of 12 μm, the precursor resin solution I was uniformly applied using an applicator so that the thickness after curing was 2 μm, and dried at 50 to 130 ° C. for 2 to 60 minutes. Next, the precursor resin solution D was uniformly applied using an applicator so that the thickness after curing was 21 μm, and dried at 50 to 130 ° C. for 2 to 60 minutes. Further, the precursor resin solution I was uniformly applied using an applicator so that the thickness after curing was 2 μm, and dried at 50 to 130 ° C. for 2 to 60 minutes. Thereafter, stepwise heat treatment was performed at 130 ° C., 160 ° C., 200 ° C., 230 ° C., 280 ° C., 320 ° C., and 360 ° C. for 2 to 60 minutes each to obtain a laminate having three polyimide resin layers. Subsequently, the copper foil was etched away using an aqueous ferric chloride solution to obtain a polyimide film.

比較例1〜4
厚さ12μmの電解銅箔上に、前駆体樹脂溶液E〜Hを、硬化後の厚みが25μmとなるようにアプリケータを用いて均一に塗布し、50〜130℃で2〜60分間乾燥した後、更に130℃、160℃、200℃、230℃、280℃、320℃、360℃で各2〜60分段階的な熱処理を行い、ポリイミド樹脂層を形成した積層体とした。続いて第二塩化鉄水溶液を用いて銅箔をエッチング除去してポリイミドフィルムを得た。
Comparative Examples 1-4
On the electrolytic copper foil having a thickness of 12 μm, the precursor resin solutions E to H were uniformly applied using an applicator so that the thickness after curing was 25 μm, and dried at 50 to 130 ° C. for 2 to 60 minutes. Thereafter, stepwise heat treatment was further performed at 130 ° C., 160 ° C., 200 ° C., 230 ° C., 280 ° C., 320 ° C., and 360 ° C. for 2 to 60 minutes each to obtain a laminate having a polyimide resin layer formed thereon. Subsequently, the copper foil was etched away using an aqueous ferric chloride solution to obtain a polyimide film.

得られたポリイミドフィルムについて、前述の測定方法にて、各種特性を評価した。結果を表2及び表3に示す。なお、比較例1中のピール強度は、フィルムがもろく測定することでできなかった。表中、引裂きは、引裂き伝播抵抗を意味する。

About the obtained polyimide film, various characteristics were evaluated with the above-mentioned measuring method. The results are shown in Tables 2 and 3. Note that the peel strength in Comparative Example 1 could not be measured because the film was brittle. In the table, tearing means tear propagation resistance.

Figure 0005567283
Figure 0005567283

Figure 0005567283
Figure 0005567283

Claims (5)

下記一般式(1)で表される構造単位を50〜95モル%と、下記一般式(2)で表される構造単位を0〜45モル%、一般式(3)で表される構造単位を5〜50モル%、一般式(2)で表される構造単位と一般式(3)で表される構造単位を合わせて5〜50モル%含有し、吸湿膨張係数が9ppm/%RH以下であるポリイミド樹脂層(A)を主たる層とすることを特徴とするポリイミドフィルム。
Figure 0005567283
Figure 0005567283
(一般式(2)において、Rは炭素数1〜6の低級アルキル基、フェニル基又は炭素数1〜6のハロゲン化アルキル基を示すが、一般式(2)で表される構造単位が一般式(1)で表される構造単位と同じとなることはない。一般式(2)及び(3)において、Ar1は芳香族テトラカルボン酸残基であり、一般式(3)中、Ar2は下記式(c)及び(d)から選択される芳香族基のいずれかを示し、式(c)及び(d)において、Ar3下記式(e)で表される二価の芳香族基である。)
Figure 0005567283
Figure 0005567283
The structural unit represented by the following general formula (1) is 50 to 95 mol%, the structural unit represented by the following general formula (2) is 0 to 45 mol%, and the structural unit represented by the general formula (3) 5-50 mol%, the structural unit represented by the general formula (2) and the structural unit represented by the general formula (3) are contained in an amount of 5 to 50 mol%, and the hygroscopic expansion coefficient is 9 ppm /% RH or less. A polyimide film characterized by comprising a polyimide resin layer (A) as a main layer.
Figure 0005567283
Figure 0005567283
(In the general formula (2), R represents a lower alkyl group having 1 to 6 carbon atoms, a phenyl group, or a halogenated alkyl group having 1 to 6 carbon atoms, but the structural unit represented by the general formula (2) is generally used. It is not the same as the structural unit represented by the formula (1) In the general formulas (2) and (3), Ar 1 is an aromatic tetracarboxylic acid residue. 2 represents any one of aromatic groups selected from the following formulas (c) and (d), and in formulas (c) and (d), Ar 3 represents a divalent aromatic represented by the following formula (e) A group.)
Figure 0005567283
Figure 0005567283
一般式(2)及び(3)において、Ar1が下記(a)又は(b)の何れかの芳香族基である請求項1記載のポリイミドフィルム。
Figure 0005567283
2. The polyimide film according to claim 1, wherein in the general formulas (2) and (3), Ar 1 is an aromatic group of any one of the following (a) or (b).
Figure 0005567283
ポリイミドフィルムのガラス転移温度が310℃以上で、引き裂き伝播抵抗が3.0kN/m以上であり、さらに吸湿率が0.7wt%以下である請求項1又は2に記載のポリイミドフィルム。 The polyimide film according to claim 1 or 2, wherein the polyimide film has a glass transition temperature of 310 ° C or higher, a tear propagation resistance of 3.0 kN / m or higher, and a moisture absorption of 0.7 wt% or lower . ポリイミド樹脂層(A)の線膨張係数が25ppm/℃以下である請求項1〜3のいずれかに記載のポリイミドフィルム。   The polyimide film according to claim 1, wherein the polyimide resin layer (A) has a linear expansion coefficient of 25 ppm / ° C. or less. ポリイミドフィルムが複数層からなり、ポリイミド樹脂層(A)の片面又は両面に、線膨張係数が30ppm/℃以上の熱可塑性ポリイミド樹脂層(B)を有し、ポリイミド樹脂層(A)と熱可塑性ポリイミド樹脂層(B)の厚み比(B)/(A)が0.02〜1の範囲にある請求項1〜4のいずれかに記載のポリイミドフィルム。   The polyimide film consists of a plurality of layers, and has a thermoplastic polyimide resin layer (B) having a linear expansion coefficient of 30 ppm / ° C. or more on one or both sides of the polyimide resin layer (A), and the polyimide resin layer (A) and the thermoplastic resin. The polyimide film according to any one of claims 1 to 4, wherein a thickness ratio (B) / (A) of the polyimide resin layer (B) is in a range of 0.02-1.
JP2009046475A 2009-02-27 2009-02-27 Polyimide film Active JP5567283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009046475A JP5567283B2 (en) 2009-02-27 2009-02-27 Polyimide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009046475A JP5567283B2 (en) 2009-02-27 2009-02-27 Polyimide film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014126179A Division JP5844853B2 (en) 2014-06-19 2014-06-19 Polyimide film

Publications (2)

Publication Number Publication Date
JP2010202681A JP2010202681A (en) 2010-09-16
JP5567283B2 true JP5567283B2 (en) 2014-08-06

Family

ID=42964504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009046475A Active JP5567283B2 (en) 2009-02-27 2009-02-27 Polyimide film

Country Status (1)

Country Link
JP (1) JP5567283B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5822352B2 (en) * 2012-02-10 2015-11-24 新日鉄住金化学株式会社 Transparent flexible laminate and laminate roll
JP6839594B2 (en) * 2016-04-27 2021-03-10 日鉄ケミカル&マテリアル株式会社 Polyimide film and copper-clad laminate
CN110621721B (en) * 2017-05-11 2022-02-18 株式会社钟化 Polyamic acid, polyimide film, laminate, flexible device, and method for producing polyimide film
JP7356243B2 (en) 2018-03-31 2023-10-04 日鉄ケミカル&マテリアル株式会社 Metal-clad laminates and circuit boards

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3676099B2 (en) * 1998-12-01 2005-07-27 株式会社カネカ Polyimide film and method for producing the same
JP2001019847A (en) * 1999-07-09 2001-01-23 Toray Ind Inc Photosensitive polyimide precursor composition and metal foil/polyimide composite material
JP2002060490A (en) * 1999-12-10 2002-02-26 Nitto Denko Corp Polyamic acid and polyimide resin obtainable therefrom and utilization of them to circuit substrate
JP4757575B2 (en) * 2005-02-23 2011-08-24 新日鐵化学株式会社 Laminate for wiring board
US8338560B2 (en) * 2005-04-25 2012-12-25 Kaneka Corporation Polyimide film and use thereof
JP4994992B2 (en) * 2006-08-10 2012-08-08 新日鐵化学株式会社 Laminate for wiring board and flexible wiring board for COF
JP5180814B2 (en) * 2008-12-26 2013-04-10 新日鉄住金化学株式会社 Laminated body for flexible wiring board

Also Published As

Publication number Publication date
JP2010202681A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
JP5180814B2 (en) Laminated body for flexible wiring board
KR20190055809A (en) Polyimide film, copper clad laminate, and circuit board
KR20080074558A (en) Method for preparing polyimide and polyimide prepared by the same method
JP2006270029A (en) Laminate for wiring board
KR101416782B1 (en) Flexilbe Metal Clad Laminate
JP2017165909A (en) Polyimide, resin film, and metal clad laminate
CN109575283B (en) Polyimide film, metal-clad laminate, and circuit board
JP7428646B2 (en) Metal-clad laminates and circuit boards
JP4757864B2 (en) Laminated body for flexible printed wiring board
JP5567283B2 (en) Polyimide film
JP4768606B2 (en) Laminate for wiring board
KR20230004322A (en) Polyamide acid, polyimide, polyimide film, metal-clad laminate and circuit
JP2015193117A (en) metal-clad laminate and circuit board
JP6936639B2 (en) Laminates, flexible metal-clad laminates, and flexible printed circuit boards
KR20210084275A (en) Metal-clad laminate and circuit board
JP5844853B2 (en) Polyimide film
JP7230148B2 (en) Metal-clad laminates and circuit boards
JP5249203B2 (en) Polyimide film
JP2020104390A (en) Metal-clad laminate, method for manufacturing the same, and circuit board
JP4805173B2 (en) Multilayer laminate and method for producing flexible copper clad laminate
KR20170132801A (en) Polyimide laminated film, process for producing polyimide laminated film, process for producing thermoplastic polyimide and process for producing flexible metal clad laminate
JP5235079B2 (en) Multilayer laminate and method for producing flexible copper clad laminate
JP2007230019A (en) Manufacturing method of metal clad laminated sheet
KR101720218B1 (en) Low hygroscopicity flexible metal clad laminate
JP7573961B2 (en) METAL CLAD LAMINATE MANUFACTURING METHOD AND CIRCUIT BOARD MANUFACTURING METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140619

R150 Certificate of patent or registration of utility model

Ref document number: 5567283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250