JP6936639B2 - Laminates, flexible metal-clad laminates, and flexible printed circuit boards - Google Patents

Laminates, flexible metal-clad laminates, and flexible printed circuit boards Download PDF

Info

Publication number
JP6936639B2
JP6936639B2 JP2017130774A JP2017130774A JP6936639B2 JP 6936639 B2 JP6936639 B2 JP 6936639B2 JP 2017130774 A JP2017130774 A JP 2017130774A JP 2017130774 A JP2017130774 A JP 2017130774A JP 6936639 B2 JP6936639 B2 JP 6936639B2
Authority
JP
Japan
Prior art keywords
laminate
layer
polyimide layer
thermosetting resin
polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017130774A
Other languages
Japanese (ja)
Other versions
JP2019014062A (en
Inventor
直樹 福島
直樹 福島
誠二 細貝
誠二 細貝
小野 和宏
和宏 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2017130774A priority Critical patent/JP6936639B2/en
Publication of JP2019014062A publication Critical patent/JP2019014062A/en
Application granted granted Critical
Publication of JP6936639B2 publication Critical patent/JP6936639B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Structure Of Printed Boards (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、高周波回路基板に好適に使用できる積層体とその片面または両面に金属箔が設けられたフレキシブル金属張積層板およびフレキシブルプリント回路基板に関する。 The present invention relates to a laminate that can be suitably used for a high-frequency circuit board, a flexible metal-clad laminate having metal foils on one or both sides thereof, and a flexible printed circuit board.

近年、電子機器における情報処理能力の向上を目的として、回路を伝達する電気信号の高周波化が進められている。この電気信号の高周波化に伴い、回路基板に対しては、電気信頼性を保つとともに、回路における電気信号の伝達速度の低下の抑制及び電気信号の損失の抑制が望まれており、高周波(1〜10GHz)領域において比誘電率及び誘電正接の低い材料が求められている。 In recent years, for the purpose of improving the information processing capability of electronic devices, the frequency of electric signals transmitted through circuits has been increased. With the increase in the frequency of the electric signal, it is desired for the circuit board to maintain the electric reliability, suppress the decrease in the transmission speed of the electric signal in the circuit, and suppress the loss of the electric signal. A material having a low relative permittivity and a dielectric loss tangent is required in the region of 10 GHz).

回路基板の製造に使用されるフレキシブル金属張積層板(以下、FCCLとも言う)は、基材樹脂フィルムの片面または両面に金属箔を設けることで得られる。フレキシブル金属張積層板の作製方法としては、金属箔上にポリイミドの前駆体であるポリアミド酸の溶液を流延または塗布した後イミド化するキャス卜法、スパッタまたはメッキ等によりポリイミドフィルム上に直接金属層を設けるメタライジング法、並びに熱可塑性ポリイミド等の接着層を介してポリイミドフィルムと金属箔とを貼り合わせる熱ラミネー卜法等が挙げられる。この中で、熱ラミネー卜法は、対応できる金属箔の厚み範囲がキャス卜法よりも広く、装置コストがメタライジング法よりも低いという点で、他の方法より優れている。 The flexible metal-clad laminate (hereinafter, also referred to as FCCL) used for manufacturing a circuit board is obtained by providing a metal foil on one side or both sides of a base resin film. As a method for producing a flexible metal-clad laminate, a metal foil is cast or coated with a solution of polyamic acid, which is a precursor of polyimide, and then imidized. Examples thereof include a metallizing method in which a layer is provided, and a thermal lamination method in which a polyimide film and a metal foil are bonded together via an adhesive layer such as a thermoplastic polyimide. Among these, the thermal lamine method is superior to other methods in that the thickness range of the metal foil that can be supported is wider than that of the Cass method and the equipment cost is lower than that of the metallizing method.

近年は、鉛フリー半田の採用により、吸湿半田耐性の要求レベルが従来にまして高くなっており、それに対応するために金属箔と接するフィルムの高Tg(ガラス転移温度)化が進んでいる。その結果として、熱ラミネー卜に必要な温度も必然的に高くなっている。そのため、基材樹脂フィルム及び接着層などの材料にかかる熱応力は大きくなり、寸法変化が発生しやすい状況になっている。 In recent years, with the adoption of lead-free solder, the required level of moisture-absorbing solder resistance has become higher than before, and in order to cope with this, the Tg (glass transition temperature) of the film in contact with the metal foil is increasing. As a result, the temperature required for thermal lamination is also inevitably high. Therefore, the thermal stress applied to the material such as the base resin film and the adhesive layer becomes large, and the dimensional change is likely to occur.

ところで、高周波回路基板として利用できるフレキシブル金属張積層板に用いられる多層フィルムとして、ポリイミドが好適に使用されている。動的粘弾性測定により得られる特性が特定の範囲に入っている非熱可塑性ポリイミドフィルムの少なくとも片面に熱可塑性ポリイミドを含有する接着層を設けた多層フィルムが知られており、非熱可塑性ポリイミドフィルムにフッ素樹脂を含有させることが開示されている(例えば、特許文献1)。 By the way, polyimide is preferably used as a multilayer film used for a flexible metal-clad laminate that can be used as a high-frequency circuit board. A multilayer film in which an adhesive layer containing thermoplastic polyimide is provided on at least one side of a non-thermoplastic polyimide film whose properties obtained by dynamic viscoelasticity measurement are within a specific range is known, and is a non-thermoplastic polyimide film. Is disclosed to contain a fluororesin (for example, Patent Document 1).

特許文献1には、伝送損失を低減できるような低誘電率、低誘電正接及び低吸湿率であり、かつ熱ラミネートに好適な寸法変化率の小さいポリイミド積層フィルムが開示されている。さらなる信号の高速化に伴い、伝送損失の小さいフレキシブルプリント配線板(以下FPCとも言う)が要求され、基板材料のさらなる低誘電率化、低誘電正接化が求められている。 Patent Document 1 discloses a polyimide laminated film having a low dielectric constant, a low dielectric loss tangent, a low moisture absorption factor, and a small dimensional change rate suitable for thermal lamination so as to reduce transmission loss. Along with further speeding up of signals, a flexible printed wiring board (hereinafter, also referred to as FPC) having a small transmission loss is required, and further lower dielectric constant and lower dielectric loss tangent of the substrate material are required.

しかしながら、ポリイミドの誘電正接は、例えば特許文献1では最も小さいものでも0.005(10GHzで測定)となり、伝送損失の低減に効果は得られるものの、従来の要求特性である寸法安定性、耐熱性などと誘電特性がトレードオフになることが多く、ポリイミド単体で誘電特性を劇的に向上させることは難しいと考えられる。 However, the dielectric loss tangent of polyimide is 0.005 (measured at 10 GHz) even if it is the smallest in Patent Document 1, and although it is effective in reducing transmission loss, it has dimensional stability and heat resistance, which are the conventional required characteristics. In many cases, there is a trade-off between the dielectric properties, and it is considered difficult to dramatically improve the dielectric properties of polyimide alone.

WO2016/159060号公報WO2016 / 159060

このことから、今後、さらに高速化が進んだ場合に備えて、新たな材料の提供が望まれる。そこで本発明者らは、ポリイミド材料よりも優れた誘電特性を持つ材料との複合化を試みた。複合化の手段として、ポリイミド樹脂に誘電特性の優れた異なる樹脂を配合する、ポリイミドフィルム上に誘電特性の優れた異なる樹脂を塗布する方法を含め、種々の複合化を検討した。 For this reason, it is desired to provide new materials in case the speed is further increased in the future. Therefore, the present inventors have attempted to combine the material with a material having better dielectric properties than the polyimide material. As a means of compositing, various compositing methods have been studied, including a method of blending different resins having excellent dielectric properties with a polyimide resin and applying different resins having excellent dielectric properties on a polyimide film.

そして、誘電特性を付与する樹脂層として、動的粘弾性の測定により得られる20℃における貯蔵弾性率が5.0GPa以下の熱硬化性樹脂層を用いることを試みた。当該熱硬化性樹脂層は、いわゆる低弾性を示すので、FPCに求められる低線膨張係数や優れた寸法安定性などのFPC基板材料の基本特性を満足することは一般的には難しい。また、当該熱硬化性樹脂層は炎の伝達が容易に進むことから、一般的に難燃性の確保が難しい。このため、これまで当該熱硬化性樹脂層をFPCとして用いる検討はなされていなかった。 Then, as a resin layer that imparts dielectric properties, an attempt was made to use a thermosetting resin layer having a storage elastic modulus at 20 ° C. of 5.0 GPa or less, which is obtained by measuring dynamic viscoelasticity. Since the thermosetting resin layer exhibits so-called low elasticity, it is generally difficult to satisfy the basic characteristics of the FPC substrate material such as the low coefficient of linear expansion required for FPC and excellent dimensional stability. Further, since the thermosetting resin layer easily transmits flames, it is generally difficult to secure flame retardancy. Therefore, until now, no study has been made on using the thermosetting resin layer as an FPC.

上記の現状を鑑み、本発明者らは鋭意研究を行った結果、特定の熱特性を有し、誘電特性に優れた熱硬化性樹脂を用い、当該熱硬化性樹脂の両方の面に、ポリイミド層が被覆された樹脂積層体を用いることによって、優れた誘電特性を実現できるとともに、FPCとして求められる低い線膨張係数、寸法安定性、半田耐熱性も同時に兼ね備えることがわかった。 In view of the above situation, as a result of diligent research, the present inventors have used a thermosetting resin having specific thermal properties and excellent dielectric properties, and polyimide is used on both surfaces of the thermosetting resin. It was found that by using a resin laminate coated with a layer, excellent dielectric properties can be realized, and at the same time, low linear expansion coefficient, dimensional stability, and solder heat resistance required for FPC are also exhibited.

すなわち、本発明は以下に関する。 That is, the present invention relates to the following.

本発明は、熱硬化性樹脂層とポリイミド層とを有する積層体であって、前記熱硬化性樹脂層は、10GHzにおける比誘電率が3.0以下で、誘電正接は0.003以下であり、かつ、動的粘弾性の測定により得られる20℃における貯蔵弾性率が0.1GPa以上5.0GPa以下であり、前記ポリイミド層は前記熱硬化性樹脂層の両面を被覆している。 The present invention is a laminate having a thermosetting resin layer and a polyimide layer, and the thermosetting resin layer has a specific dielectric constant of 3.0 or less and a dielectric loss tangent of 0.003 or less at 10 GHz. Moreover, the storage elastic coefficient at 20 ° C. obtained by measuring the dynamic viscoelasticity is 0.1 GPa or more and 5.0 GPa or less, and the polyimide layer covers both sides of the thermosetting resin layer.

前記積層体の厚みが25μm以上であり、片面のポリイミド層の厚みが0.5μm以上かつ、積層体の総厚みに対するポリイミド層の厚みの比が4%以上30%以下であることが好ましい。 It is preferable that the thickness of the laminate is 25 μm or more, the thickness of the polyimide layer on one side is 0.5 μm or more, and the ratio of the thickness of the polyimide layer to the total thickness of the laminate is 4% or more and 30% or less.

前記ポリイミド層は、非熱可塑性ポリイミド層と熱可塑性ポリイミド層を有する多層ポリイミド層であることが好ましい。 The polyimide layer is preferably a multilayer polyimide layer having a non-thermoplastic polyimide layer and a thermoplastic polyimide layer.

前記多層ポリイミド層は、非熱可塑性ポリイミド層が、前記熱硬化性樹脂層に隣接するよう設けられていることが好ましい。 The multilayer polyimide layer is preferably provided with a non-thermoplastic polyimide layer adjacent to the thermosetting resin layer.

前記多層ポリイミド層は、最外層が熱可塑性ポリイミド層であることが好ましい。 The outermost layer of the multilayer polyimide layer is preferably a thermoplastic polyimide layer.

前記積層体の10GHzにおける比誘電率が3.0以下であり、誘電正接は0.004以下であり、50℃〜250℃における線膨張係数が22ppm以下であることが好ましい。 It is preferable that the relative permittivity of the laminate at 10 GHz is 3.0 or less, the dielectric loss tangent is 0.004 or less, and the linear expansion coefficient at 50 ° C. to 250 ° C. is 22 ppm or less.

前記積層体の少なくとも一方の面に、さらに金属層を設けたフレキシブル金属張積層板を用いることが好ましい。 It is preferable to use a flexible metal-clad laminate provided with a metal layer on at least one surface of the laminate.

前記金属張積層板を有するフレキシブルプリント回路基板を用いることが好ましい。 It is preferable to use a flexible printed circuit board having the metal-clad laminate.

フレキシブルプリント回路基板に用いるための積層体であって、前記積層体は熱硬化性樹脂層とポリイミド層とを有し、前記熱硬化性樹脂層は、10GHzにおける比誘電率が3.0以下で、誘電正接は0.003以下であり、かつ、動的粘弾性の測定により得られる20℃における貯蔵弾性率が0.1GPa以上5.0GPa以下であり、前記ポリイミド層は熱硬化性樹脂層の両面を被覆していることが好ましい。 A laminate for use in a flexible printed circuit board, the laminate having a thermosetting resin layer and a polyimide layer, and the thermosetting resin layer has a specific dielectric constant of 3.0 or less at 10 GHz. The dielectric loss tangent is 0.003 or less, and the storage elastic coefficient at 20 ° C. obtained by measuring the dynamic viscoelasticity is 0.1 GPa or more and 5.0 GPa or less, and the polyimide layer is a thermosetting resin layer. It is preferable to cover both sides.

本発明に係る積層体によれば、当該積層体に金属箔を配したフレキシブル金属張積層板について、従来使用されているフレキシブル金属張積層板よりも、さらに優れた低伝送損失とすることが可能である。このため、本発明は、高周波回路基板に有用である。 According to the laminate according to the present invention, the flexible metal-clad laminate in which the metal foil is arranged on the laminate can have a lower transmission loss even more excellent than the conventionally used flexible metal-clad laminate. Is. Therefore, the present invention is useful for high frequency circuit boards.

本発明における樹脂積層体は従来のフレキシブルプリント基板材料に求められる金属箔との接着性、半田耐熱性や寸法安定性を満足するのみならず、難燃性の大幅な向上も達成できる。 The resin laminate in the present invention not only satisfies the adhesiveness to the metal foil, solder heat resistance and dimensional stability required for the conventional flexible printed circuit board material, but also can achieve a significant improvement in flame retardancy.

本発明の積層体は、熱硬化性樹脂層とポリイミド層とを有する。前記熱硬化性樹脂層は、10GHzにおける比誘電率が3.0以下で、誘電正接は0.003以下であり、かつ、動的粘弾性の測定により得られる20℃における貯蔵弾性率が0.1GPa以上5.0GPa以下である。前記ポリイミド層は前記熱硬化性樹脂層の両面を被覆している。 The laminate of the present invention has a thermosetting resin layer and a polyimide layer. The thermosetting resin layer has a relative permittivity of 3.0 or less at 10 GHz, a dielectric loss tangent of 0.003 or less, and a storage elastic modulus at 20 ° C. obtained by measuring dynamic viscoelasticity. It is 1 GPa or more and 5.0 GPa or less. The polyimide layer covers both sides of the thermosetting resin layer.

(熱硬化性樹脂層)
本発明で用いる熱硬化性樹脂層は、10GHzにおける比誘電率が3.0以下で、誘電正接は0.003以下となっているので、積層体に低誘電特性を付与し、これを用いたFPCの伝送損失の低下に大きく寄与する。10GHzにおける比誘電率と誘電正接は空洞共振器法によって得られるもので、10GHzにおける値と設定した理由は、プリント配線板の基板に使用する材料に対して高周波領域とされる電子信号の領域が1GHz〜10GHzとされ、その中でも10GHzにおける電気信号損失を低減できる材料が有用なためである。熱硬化性樹脂を用いるので、被積層材料との密着性を良好なものにすることができる。
(Thermosetting resin layer)
The thermosetting resin layer used in the present invention has a relative permittivity of 3.0 or less at 10 GHz and a dielectric loss tangent of 0.003 or less. It greatly contributes to the reduction of FPC transmission loss. The relative permittivity and dielectric loss tangent at 10 GHz are obtained by the cavity resonator method, and the reason for setting the value at 10 GHz is that the region of the electronic signal, which is the high frequency region for the material used for the substrate of the printed wiring board, is This is because a material that can reduce the electrical signal loss at 10 GHz is useful because it is set to 1 GHz to 10 GHz. Since a thermosetting resin is used, the adhesion to the material to be laminated can be improved.

このようにして得られる熱硬化性樹脂層の比誘電率は、好ましくは2.5以下、さらに好ましくは2.3以下である。誘電正接は、好ましくは0.0025以下、さらに好ましくは0.0015以下である。 The relative permittivity of the thermosetting resin layer thus obtained is preferably 2.5 or less, more preferably 2.3 or less. The dielectric loss tangent is preferably 0.0025 or less, more preferably 0.0015 or less.

また、本発明で用いられる熱硬化性樹脂層は、原料の樹脂を硬化後、低弾性(低貯蔵弾性率)を示すものを意味する。低弾性とは、具体的には、動的粘弾性の測定により得られる20℃における貯蔵弾性率が0.1GPa以上5.0GPa以下であることをいう。さらに貯蔵弾性率が4.0GPa以下であることが好ましく、3.5GPa以下であることがより好ましい。また、本発明で用いられる熱硬化性樹脂層の20℃における貯蔵弾性率は、ラミネートできるものであればよく、0.1GPa以上であり、0.5GPa以上が好ましい。動的粘弾性の測定は、SIIナノテクノロジー社製DMS6100により窒素雰囲気下にて行い、5Hzにおける貯蔵弾性率の温度依存性を得る。 Further, the thermosetting resin layer used in the present invention means a layer that exhibits low elasticity (low storage elastic modulus) after curing the raw material resin. Specifically, low elasticity means that the storage elastic modulus at 20 ° C. obtained by measuring dynamic viscoelasticity is 0.1 GPa or more and 5.0 GPa or less. Further, the storage elastic modulus is preferably 4.0 GPa or less, and more preferably 3.5 GPa or less. The storage elastic modulus of the thermosetting resin layer used in the present invention at 20 ° C. may be as long as it can be laminated, and is 0.1 GPa or more, preferably 0.5 GPa or more. The dynamic viscoelasticity is measured by DMS6100 manufactured by SII Nanotechnology Co., Ltd. in a nitrogen atmosphere to obtain the temperature dependence of the storage elastic modulus at 5 Hz.

本発明に用いられる10GHzにおける比誘電率が3.0以下で、誘電正接は0.003以下であり、動的粘弾性の測定により得られる20℃における貯蔵弾性率が5.0GPa以下である樹脂としては、疎水効果のある長鎖の炭化水素基を有する構造や誘電特性を損なう極性を有しない構造として、例えば日立化成株式会社製のSF樹脂、ナミックス株式会社製のアドフレマ(登録商標)、などを用いればよく、誘電特性を損なう極性を有しない構造として、例えばポリテトラフルオロエチレン(以下、PTFE)、液晶ポリマー(以下、LCP)などを用いればよい。 A resin used in the present invention having a relative permittivity of 3.0 or less at 10 GHz, a dielectric loss tangent of 0.003 or less, and a storage elasticity at 20 ° C. obtained by measuring dynamic viscoelasticity of 5.0 GPa or less. As a structure having a long-chain hydrocarbon group having a hydrophobic effect or a structure having no polarity that impairs the dielectric property, for example, SF resin manufactured by Hitachi Kasei Co., Ltd., Adflema (registered trademark) manufactured by Namix Co., Ltd., etc. As a structure having no polarity that impairs the dielectric properties, for example, polytetrafluoroethylene (hereinafter, PTFE), liquid crystal polymer (hereinafter, LCP), or the like may be used.

本発明に用いられる10GHzにおける比誘電率が3.0以下で、誘電正接は0.003以下であり、動的粘弾性の測定により得られる20℃における貯蔵弾性率が5.0GPa以下である樹脂としては、耐熱性に優れ、隣接するポリイミドとの接着性が優れることから日立化成株式会社製のSF樹脂を用いることが好ましい。 A resin used in the present invention having a relative permittivity of 3.0 or less at 10 GHz, a dielectric loss tangent of 0.003 or less, and a storage elastic modulus of 5.0 GPa or less at 20 ° C. obtained by measuring dynamic viscoelasticity. It is preferable to use a SF resin manufactured by Hitachi Kasei Co., Ltd. because it has excellent heat resistance and adhesiveness to an adjacent polyimide.

本発明の積層体は、前記熱硬化性樹脂層の両面が、ポリイミド層で被覆されている。優れた誘電特性を発現するため、熱硬化性樹脂層の厚みは、その両方の面を被覆するポリイミド層と比して実質的に十分厚いものとなっている。 In the laminate of the present invention, both sides of the thermosetting resin layer are coated with a polyimide layer. In order to exhibit excellent dielectric properties, the thickness of the thermosetting resin layer is substantially sufficiently thicker than that of the polyimide layer covering both surfaces.

上述のように、本発明における熱硬化性樹脂層の20℃における貯蔵弾性率は0.1GPa以上5.0GPa以下であり、寸法安定性も低い。従って、上述のように当該熱硬化性樹脂層のFPC基板材料の基本特性は悪化すると考えられる。しかしながら、本発明者らがこれら基本特性を確認したところ、驚くべきことに従来のフレキシブルプリント基板材料に要求される寸法安定性や耐熱性を十分満たす良好な結果が得られた。これはポリイミド層の20℃における貯蔵弾性率が6.0GPa程度以上であり、熱硬化性樹脂層の両面にポリイミド層を有することで、寸法安定性が保持されるためと考えられる。 As described above, the storage elastic modulus of the thermosetting resin layer in the present invention at 20 ° C. is 0.1 GPa or more and 5.0 GPa or less, and the dimensional stability is also low. Therefore, as described above, it is considered that the basic characteristics of the FPC substrate material of the thermosetting resin layer deteriorate. However, when the present inventors confirmed these basic characteristics, surprisingly, good results were obtained that sufficiently satisfied the dimensional stability and heat resistance required for the conventional flexible printed circuit board material. It is considered that this is because the storage elastic modulus of the polyimide layer at 20 ° C. is about 6.0 GPa or more, and the dimensional stability is maintained by having the polyimide layers on both sides of the thermosetting resin layer.

しかも、積層体のうち熱硬化性樹脂層の割合が大きいにも関わらず、本発明の構成により、ポリイミドの優れた難燃性が活かされて、積層体においても優れた難燃性をも有する。これは、熱硬化性樹脂層の両方の面がポリイミド樹脂で被覆されているため、炎が近づいても中央部への伝達がくい止められるためと考えられる。 Moreover, despite the large proportion of the thermosetting resin layer in the laminate, the configuration of the present invention makes use of the excellent flame retardancy of polyimide, and the laminate also has excellent flame retardancy. .. It is considered that this is because both surfaces of the thermosetting resin layer are coated with the polyimide resin, so that the transmission to the central portion is blocked even when the flame approaches.

熱硬化性樹脂層の両面のポリイミド層に用いられるポリイミドの種類は、同じであっても異なっていてもよいが、線膨張の均一性を保持し、樹脂積層体の反りを抑制する観点から、同じであることが好ましい。 The type of polyimide used for the polyimide layers on both sides of the thermosetting resin layer may be the same or different, but from the viewpoint of maintaining the uniformity of linear expansion and suppressing the warp of the resin laminate. It is preferable that they are the same.

本発明において樹脂積層体の厚みは25μm以上であることが好ましく、さらには50μm以上がより好ましく、好ましい上限値は100μm以下である。片面のポリイミド層の厚みは、難燃性の確保の観点から0.5μm以上が好ましく、1μm以上がより好ましい。優れた誘電特性を得る観点から、積層体全体の厚みに対するポリイミド層の厚みの比は30%以下であることが好ましく、25%以下であることがさらに好ましい。 In the present invention, the thickness of the resin laminate is preferably 25 μm or more, more preferably 50 μm or more, and the preferable upper limit value is 100 μm or less. The thickness of the polyimide layer on one side is preferably 0.5 μm or more, more preferably 1 μm or more, from the viewpoint of ensuring flame retardancy. From the viewpoint of obtaining excellent dielectric properties, the ratio of the thickness of the polyimide layer to the thickness of the entire laminate is preferably 30% or less, and more preferably 25% or less.

また、両面のポリイミド層の厚みは同じであることが好ましく、両面のポリイミド層の厚みが各々0.5μm以上であることが好ましく、各々1μm以上がより好ましい。積層体全体の厚みに対するポリイミド層の厚み(両面のポリイミド層の厚み)の比は4%以上であることが好ましく、5%以上であることがさらに好ましい。 Further, the thickness of the polyimide layers on both sides is preferably the same, the thickness of the polyimide layers on both sides is preferably 0.5 μm or more, and more preferably 1 μm or more. The ratio of the thickness of the polyimide layer (thickness of the polyimide layers on both sides) to the thickness of the entire laminate is preferably 4% or more, and more preferably 5% or more.

以上から、積層体の厚みは25μm以上であり、片面のポリイミド層の厚みは0.5μm以上、積層体全体の厚みに対するポリイミド層の厚みの比が4%以上であることが好ましく、30%以下であることが好ましい。熱硬化性樹脂層とポリイミド層の厚みの関係がこの範囲にあると、誘電特性の低下を招くことなく、FPC基板材料としての特性および難燃性が良好なものになる。 From the above, the thickness of the laminate is preferably 25 μm or more, the thickness of the polyimide layer on one side is 0.5 μm or more, and the ratio of the thickness of the polyimide layer to the thickness of the entire laminate is preferably 4% or more, preferably 30% or less. Is preferable. When the relationship between the thicknesses of the thermosetting resin layer and the polyimide layer is within this range, the characteristics as the FPC substrate material and the flame retardancy are improved without causing deterioration of the dielectric properties.

本発明の積層体は、比誘電率を3.0以下、誘電正接が0.004以下とすることが可能となる。積層体の比誘電率は、2.8以下がより好ましく、2.5以下が特に好ましい。誘電正接は、0.0035以下が好ましく、0.003以下がより好ましい。また線膨張係数は22ppm以下にすることが好ましく、20ppm以下がより好ましい。上述のようにして得られるFPCは、電気特性に優れるだけでなく、低線膨張係数、優れた寸法安定性など、FPCとしての特性に優れる。 The laminate of the present invention can have a relative permittivity of 3.0 or less and a dielectric loss tangent of 0.004 or less. The relative permittivity of the laminate is more preferably 2.8 or less, and particularly preferably 2.5 or less. The dielectric loss tangent is preferably 0.0035 or less, more preferably 0.003 or less. The coefficient of linear expansion is preferably 22 ppm or less, more preferably 20 ppm or less. The FPC obtained as described above is not only excellent in electrical characteristics, but also excellent in characteristics as an FPC such as a low coefficient of linear expansion and excellent dimensional stability.

(ポリイミド層)
本発明に用いられるポリイミド層は、非熱可塑性ポリイミド層と熱可塑性ポリイミド層からなる多層ポリイミド層であることが好ましい。多層ポリイミド層は、非熱可塑性ポリイミド層が、熱硬化性樹脂層に隣接するよう設けられていることが好ましい。すなわち、熱可塑性ポリイミド層/非熱可塑性ポリイミド層/熱硬化性樹脂層/非熱可塑性ポリイミド層/熱可塑性ポリイミド層の構成であることが好ましい。
(Polyimide layer)
The polyimide layer used in the present invention is preferably a multilayer polyimide layer composed of a non-thermoplastic polyimide layer and a thermoplastic polyimide layer. The multilayer polyimide layer is preferably provided so that the non-thermoplastic polyimide layer is adjacent to the thermosetting resin layer. That is, it is preferably composed of a thermoplastic polyimide layer / a non-thermoplastic polyimide layer / a thermosetting resin layer / a non-thermoplastic polyimide layer / a thermoplastic polyimide layer.

以下、非熱可塑性ポリイミド層に使用される非熱可塑性ポリイミドの前駆体であるポリアミド酸の原料モノマー、前記非熱可塑性ポリイミドの前駆体のポリアミド酸の製造、非熱可塑性ポリイミドフィルムの製造方法、熱可塑性ポリイミド層の順に詳述する。 Hereinafter, a raw material monomer of polyamic acid which is a precursor of non-thermoplastic polyimide used for a non-thermoplastic polyimide layer, production of polyamic acid which is a precursor of the non-thermoplastic polyimide, a method for producing a non-thermoplastic polyimide film, heat. The plastic polyimide layer will be described in detail in this order.

(非熱可塑性ポリイミドの前駆体であるポリアミド酸の原料モノマー)
本発明における非熱可塑性ポリイミドの前駆体であるポリアミド酸の原料モノマーは、前駆体であるポリアミド酸をイミド化した非熱可塑性ポリイミドが、従来のフレキシブルプリント基板材料に求められる半田耐熱性、寸法安定性、難燃性を有し、一次構造と製造方法によりそれが制御されれば特に制限されない。ポリアミド酸の合成に通常用いられるジアミンおよび酸二無水物を使用可能である。
(Raw material monomer for polyamic acid, which is a precursor of non-thermoplastic polyimide)
The raw material monomer of polyamic acid, which is a precursor of non-thermoplastic polyimide in the present invention, is a non-thermoplastic polyimide imidized with polyamic acid, which is a precursor, and has solder heat resistance and dimensional stability required for conventional flexible printed substrate materials. It has property and flame retardancy, and is not particularly limited as long as it is controlled by the primary structure and the manufacturing method. Diamines and acid dianhydrides commonly used in the synthesis of polyamic acids can be used.

芳香族ジアミンとしては本発明の効果を発現できれば特に制限されないが、2,2’-ビス[4−(4−アミノフェノキシ)フェニル]プロパン、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、4,4’−オキシジアニリン、3,3’−オキシジアニリン、3,4’−オキシジアニリン、4,4’−ジアミノジフェニルジエチルシラン、4,4’−ジアミノジフェニルシラン、4,4’−ジアミノジフェニルエチルホスフィンオキシド、4,4’−ジアミノジフェニルN−メチルアミン、4,4’−ジアミノジフェニル N−フェニルアミン、1,4−ジアミノベンゼン(p−フェニレンジアミン)、ビス{4−(4−アミノフェノキシ)フェニル}スルホン、ビス{4−(3−アミノフェノキシ)フェニル}スルホン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、3,3’−ジアミノベンゾフェノン、4,4'−ジアミノベンゾフェノン、2,2−ビス(4−アミノフェノキシフェニル)プロパン等が挙げられ、これらを単独または複数併用することができる。 The aromatic diamine is not particularly limited as long as the effects of the present invention can be exhibited, but is 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, 4,4'-diaminodiphenyl propane, 4,4'-. Diaminodiphenylmethane, 4,4'-diaminodiphenylsulfide, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 4,4'-oxydianiline, 3,3'-oxydianiline, 3, 4'-Oxydianiline, 4,4'-diaminodiphenyldiethylsilane, 4,4'-diaminodiphenylsilane, 4,4'-diaminodiphenylethylphosphine oxide, 4,4'-diaminodiphenylN-methylamine, 4 , 4'-Diaminodiphenyl N-phenylamine, 1,4-diaminobenzene (p-phenylenediamine), bis {4- (4-aminophenoxy) phenyl} sulfone, bis {4- (3-aminophenoxy) phenyl} Pulmonate, 4,4'-bis (4-aminophenoxy) biphenyl, 4,4'-bis (3-aminophenoxy) biphenyl, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (3) -Aminophenoxy) benzene, 3,3'-diaminobenzophenone, 4,4'-diaminobenzophenone, 2,2-bis (4-aminophenoxyphenyl) propane and the like can be mentioned, and these can be used alone or in combination of two or more. ..

また、ポリアミド酸の原料モノマーとして使用し得る酸二無水物系化合物としては本発明の効果を発現できれば特に制限されないが、ピロメリット酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’−ベンゾフェノンテトラカルボン酸二無水物、4,4’−オキシフタル酸二無水物、3,4’−オキシフタル酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン酸二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)プロパン酸二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン酸二無水物、ビス(3,4−ジカルボキシフェニル)エタン酸二無水物、オキシジフタル酸二無水物、ビス(3,4−ジカルボキシフェニル)スルホン酸二無水物、p−フェニレンビス(トリメリット酸モノエステル酸無水物)、エチレンビス(トリメリット酸モノエステル酸無水物)、ビスフェノールAビス(トリメリット酸モノエステル酸無水物)及びそれらの類似物等が挙げられる。 The acid dianhydride compound that can be used as a raw material monomer for polyamic acid is not particularly limited as long as the effects of the present invention can be exhibited, but pyromellitic hydride, 2,3,6,7-naphthalenetetracarboxylic acid. Dianhydride, 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride, 1,2,5,6-naphthalenetetracarboxylic acid dianhydride, 2,2', 3,3'-biphenyltetra Carboxyl dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic hydride, 2,2', 3,3'-benzophenone tetracarboxylic hydride, 4,4'-oxyphthalic acid dianhydride Anhydride, 3,4'-oxyphthalic acid dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propanoic hydride, 3,4,9,10-perylenetetracarboxylic hydride, Bis (3,4-dicarboxyphenyl) propanoic dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane Dianhydride, bis (2,3-dicarboxyphenyl) metanic dianhydride, bis (3,4-dicarboxyphenyl) ethaneic hydride, oxydiphthalic dianhydride, bis (3,4-dicarboxyphenyl) Phenyl) sulfonic acid dianhydride, p-phenylenebis (trimellitic acid monoesteric anhydride), ethylenebis (trimellitic acid monoesteric anhydride), bisphenol A bis (trimellitic acid monoesteric anhydride) and Examples thereof include similar products.

(非熱可塑性ポリイミドの前駆体であるポリアミド酸の製造)
非熱可塑性ポリイミドの前駆体であるポリアミド酸の製造の際に使用する有機溶媒は、非熱可塑性ポリアミド酸を溶解する溶媒であればいかなるものも用いることができる。例えば、アミド系溶媒すなわちN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンなどが好ましく、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドがより好ましく用いられ得る。非熱可塑性ポリイミドの前駆体であるポリアミド酸の固形分濃度は特に限定されず、5重量%〜35重量%の範囲内であれば非熱可塑性ポリイミドフィルムとした際に十分な機械強度を有する非熱可塑性ポリイミドの前駆体であるポリアミド酸が得られる。
(Manufacture of polyamic acid, which is a precursor of non-thermoplastic polyimide)
As the organic solvent used in the production of the polyamic acid which is a precursor of the non-thermoplastic polyimide, any solvent can be used as long as it is a solvent that dissolves the non-thermoplastic polyamic acid. For example, an amide solvent, that is, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and the like are preferable, and N, N-dimethylformamide and N, N-dimethylacetamide can be more preferably used. .. The solid content concentration of the polyamic acid, which is a precursor of the non-thermoplastic polyimide, is not particularly limited, and if it is in the range of 5% by weight to 35% by weight, the non-thermoplastic polyimide film has sufficient mechanical strength. Polyamic acid, which is a precursor of thermoplastic polyimide, can be obtained.

原料である芳香族ジアミンと芳香族酸二無水物の添加順序についても特に限定されないが、原料の化学構造だけでなく、添加順序を制御することによっても、得られる非熱可塑性ポリイミドの特性を制御することが可能である。 The order of addition of the raw materials aromatic diamine and aromatic acid dianhydride is not particularly limited, but the characteristics of the obtained non-thermoplastic polyimide can be controlled not only by controlling the chemical structure of the raw materials but also by controlling the order of addition. It is possible to do.

上記非熱可塑性ポリアミド酸には、摺動性、熱伝導性、導電性、耐コロナ性、ループスティフネス等のフィルムの諸特性を改善する目的でフィラーを添加することもできる。フィラーとしてはいかなるものを用いても良いが、好ましい例としてはシリカ、酸化チタン、アルミナ、窒化珪素、窒化ホウ素、リン酸水素カルシウム、リン酸カルシウム、雲母などが挙げられる。 A filler can be added to the non-thermoplastic polyamic acid for the purpose of improving various properties of the film such as slidability, thermal conductivity, conductivity, corona resistance, and loop stiffness. Any filler may be used, and preferred examples thereof include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, and mica.

(非熱可塑性ポリイミドフィルムの製造方法)
本発明における非熱可塑性ポリイミドフィルムを得るには、以下の工程
i)有機溶剤中で芳香族ジアミンと芳香族酸二無水物を反応させて非熱可塑性ポリイミドの前駆体であるポリアミド酸溶液(以下、非熱可塑性ポリアミド酸ともいう)を得る工程、
ii)上記非熱可塑性ポリアミド酸溶液を含む製膜ドープをダイスから支持体上に流延して、樹脂層(液膜ともいうことがある)を形成する工程、
iii)樹脂層を支持体上で加熱して自己支持性を持ったゲルフィルムとした後、支持体からゲルフィルムを引き剥がす工程、
iv)更に加熱して、残ったアミド酸をイミド化し、かつ乾燥させ非熱可塑性ポリイミドフィルムを得る工程、
を含むことが好ましい。
(Manufacturing method of non-thermoplastic polyimide film)
To obtain the non-thermoplastic polyimide film in the present invention, the following steps i) A polyamic acid solution which is a precursor of the non-thermoplastic polyimide by reacting an aromatic diamine with an aromatic acid dianhydride in an organic solvent (hereinafter, , Also called non-thermoplastic polyimide)
ii) A step of casting a film-forming dope containing the non-thermoplastic polyamic acid solution from a die onto a support to form a resin layer (sometimes referred to as a liquid film).
iii) A step of heating a resin layer on a support to form a self-supporting gel film, and then peeling the gel film from the support.
iv) A step of further heating to imidize the remaining amic acid and drying to obtain a non-thermoplastic polyimide film.
Is preferably included.

ii)以降の工程においては、熱イミド化法と化学イミド化法に大別される。熱イミド化法は、脱水閉環剤等を使用せず、ポリアミド酸溶液を製膜ドープとして支持体に流延、加熱だけでイミド化を進める方法である。一方の化学イミド化法は、ポリアミド酸溶液に、イミド化促進剤として脱水閉環剤及び触媒の少なくともいずれかを添加したものを製膜ドープとして使用し、イミド化を促進する方法である。どちらの方法を用いても構わないが、化学イミド化法の方が生産性に優れる。 The steps after ii) are roughly classified into a thermal imidization method and a chemical imidization method. The thermal imidization method is a method in which a polyamic acid solution is cast on a support as a film-forming dope without using a dehydration ring closure agent or the like, and imidization is promoted only by heating. On the other hand, the chemical imidization method is a method of promoting imidization by using a polyamic acid solution to which at least one of a dehydration ring-closing agent and a catalyst is added as an imidization accelerator as a film-forming dope. Either method may be used, but the chemical imidization method is more productive.

脱水閉環剤としては、無水酢酸に代表される酸無水物が好適に用いられ得る。触媒としては、脂肪族第三級アミン、芳香族第三級アミン、複素環式第三級アミン等の三級アミンが好適に用いられ得る。 As the dehydration ring closure agent, an acid anhydride typified by acetic anhydride can be preferably used. As the catalyst, tertiary amines such as aliphatic tertiary amines, aromatic tertiary amines, and heterocyclic tertiary amines can be preferably used.

製膜ドープを流延する支持体としては、ガラス板、アルミ箔、エンドレスステンレスベルト、ステンレスドラム等が好適に用いられ得る。最終的に得られるフィルムの厚み、生産速度に応じて加熱条件を設定し、部分的にイミド化または乾燥の少なくとも一方を行った後、支持体から剥離してポリアミド酸フィルム(以下、ゲルフィルムという)を得る。 As the support for spreading the film-forming dope, a glass plate, an aluminum foil, an endless stainless belt, a stainless drum, or the like can be preferably used. Heating conditions are set according to the thickness of the finally obtained film and the production rate, and after at least one of partial imidization and drying is performed, the film is peeled off from the support and is referred to as a polyamic acid film (hereinafter referred to as gel film). ).

上記ゲルフィルムの端部を固定して硬化時の収縮を回避して乾燥し、ゲルフィルムから、水、残留溶媒、イミド化促進剤を除去し、そして残ったアミド酸を完全にイミド化して、ポリイミドを含有するフィルムが得られる。加熱条件については、最終的に得られるフィルムの厚み、生産速度に応じて適宜設定すれば良い。 The edges of the gel film were fixed to avoid shrinkage during curing and dried, water, residual solvent, imidization accelerators were removed from the gel film, and the remaining amic acid was completely imidized. A film containing polyimide can be obtained. The heating conditions may be appropriately set according to the thickness of the finally obtained film and the production rate.

(熱可塑性ポリイミド層)
本発明における熱可塑性ポリイミド層に含まれる熱可塑性ポリイミドは、その前駆体であるポリアミド酸をイミド化して得られる。
(Thermoplastic polyimide layer)
The thermoplastic polyimide contained in the thermoplastic polyimide layer in the present invention is obtained by imidizing the polyamic acid as a precursor thereof.

FPCは、例えばポリイミドのような絶縁性フィルム層をコアフィルムとし、このコアフィルムの表面に、各種接着材料による接着層を介して金属箔層を加熱・圧着することにより貼り合わされたフレキシブル金属張積層板に製造し、さらに回路パターンを形成することで得られる。接着層には従来、エポキシ樹脂やアクリル樹脂が使用されていたが、これらは耐熱性に乏しく、使用用途が限定されてしまう。しかし、接着層として熱可塑性ポリイミドを用いた2層フレキシブルプリント配線板(以下、2層FPCともいう)は、耐熱性、屈曲性に優れることから需要が更に伸びることが期待される。 In FPC, an insulating film layer such as polyimide is used as a core film, and a flexible metal-clad laminate is bonded to the surface of the core film by heating and pressure-bonding a metal foil layer via an adhesive layer made of various adhesive materials. It is obtained by manufacturing on a plate and further forming a circuit pattern. Epoxy resins and acrylic resins have been conventionally used for the adhesive layer, but these have poor heat resistance and their uses are limited. However, a two-layer flexible printed wiring board (hereinafter, also referred to as a two-layer FPC) using a thermoplastic polyimide as an adhesive layer is expected to further increase in demand because it is excellent in heat resistance and flexibility.

本発明において用いられる熱可塑性ポリイミドの前駆体であるポリアミド酸に使用される芳香族ジアミンと芳香族テトラカルボン酸二無水物は、非熱可塑性ポリイミド層に使用されるそれらと同じものが挙げられるが、熱可塑性のポリイミドフィルムとするためには、屈曲性を有するジアミンと酸二無水物とを反応させることが好ましい。屈曲性を有するジアミンの例として、4,4‘−ジアミノジフェニルエーテル 、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、2,2−ビス(4−アミノフェノキシフェニル)プロパンなどが挙げられる。またこれらのジアミンと好適に組合せられる酸二無水物の例としては、ピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、4,4’−オキシジフタル酸二無水物などが挙げられる。 The aromatic diamine and aromatic tetracarboxylic acid dianhydride used for the polyamic acid which is the precursor of the thermoplastic polyimide used in the present invention include the same ones used for the non-thermoplastic polyimide layer. In order to obtain a thermoplastic polyimide film, it is preferable to react a flexible diamine with an acid dianhydride. Examples of flexible diamines are 4,4'-diaminodiphenyl ether, 4,4'-bis (4-aminophenoxy) biphenyl, 4,4'-bis (3-aminophenoxy) biphenyl, 1,3-bis. Examples thereof include (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, and 2,2-bis (4-aminophenoxyphenyl) propane. Examples of acid dianhydrides that are preferably combined with these diamines include pyromellitic acid dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride, 3,3', 4, Examples thereof include 4'-biphenyltetracarboxylic acid dianhydride and 4,4'-oxydiphthalic acid dianhydride.

本発明における熱可塑性ポリアミド酸の製造方法は、得られるポリアミド酸をイミド化して得られる熱可塑性ポリイミドが従来のフレキシブルプリント基板材料に求められる金属箔との接着性、半田耐熱性、寸法安定性、難燃性を有するものであれば、公知のどうような方法も用いることが可能である。 例えば、下記の工程(A−a)〜(A−c):
(A−a)芳香族ジアミンと、芳香族酸二無水物とを、芳香族ジアミンが過剰の状態で有機溶媒中で反応させ、両末端にアミノ基を有するプレポリマーを得る工程、
(A−b)工程(A−a)で用いたものとは構造の異なる芳香族ジアミンを追加添加する工程、
(A−c)更に、工程(A−a)で用いたものとは構造の異なる芳香族酸二無水物を、全工程における芳香族ジアミンと芳香族酸二無水物が実質的に等モルとなるように添加して重合する工程、
によって製造することができる。
In the method for producing a thermoplastic polyamic acid in the present invention, the thermoplastic polyimide obtained by imidizing the obtained polyamic acid has adhesiveness to a metal foil, solder heat resistance, and dimensional stability, which are required for conventional flexible printed substrate materials. Any known method can be used as long as it is flame-retardant. For example, the following steps (A) to (Ac):
(A-a) A step of reacting an aromatic diamine with an aromatic acid dianhydride in an organic solvent in an excess of the aromatic diamine to obtain a prepolymer having amino groups at both ends.
(A-b) A step of additionally adding an aromatic diamine having a structure different from that used in the step (A-a).
(Ac) Further, the aromatic acid dianhydride having a structure different from that used in the step (Aa) is substantially equimolar of the aromatic diamine and the aromatic acid dianhydride in all the steps. The process of adding and polymerizing so that
Can be manufactured by.

または、下記の工程(B−a)〜(B−c):
(B−a)芳香族ジアミンと、芳香族酸二無水物とを、芳香族酸二無水物が過剰の状態で有機極性溶媒中で反応させ、両末端に酸無水物基を有するプレポリマーを得る工程、
(B−b)工程(B−a)で用いたものとは構造の異なる芳香族酸二無水物を追加添加する工程、
(B−c)更に、工程(B−a)で用いたものとは構造の異なる芳香族ジアミンを、全工程における芳香族ジアミンと芳香族酸二無水物が実質的に等モルとなるように添加して重合する工程、
を経ることによってポリアミド酸を得ることも可能である。
Alternatively, the following steps (B-a) to (B-c):
(BA) Aromatic diamine and aromatic acid dianhydride are reacted in an organic polar solvent with an excess of aromatic acid dianhydride to form a prepolymer having acid anhydride groups at both ends. Getting process,
(B-b) A step of additionally adding an aromatic acid dianhydride having a structure different from that used in the step (B-a).
(B-c) Further, the aromatic diamine having a structure different from that used in the step (BA) is used so that the aromatic diamine and the aromatic acid dianhydride in all the steps are substantially equimolar. The process of adding and polymerizing,
It is also possible to obtain polyamic acid by passing through.

(ポリアミド酸の固形分濃度)
本発明のポリアミド酸の固形分濃度は特に限定されず、通常5重量%〜35重量%、好ましくは10重量%〜30重量%の濃度で得られる。この範囲の濃度である場合に適当な分子量と溶液粘度を得る。
(Solid content concentration of polyamic acid)
The solid content concentration of the polyamic acid of the present invention is not particularly limited, and is usually obtained in a concentration of 5% by weight to 35% by weight, preferably 10% by weight to 30% by weight. When the concentration is in this range, an appropriate molecular weight and solution viscosity are obtained.

(熱硬化性樹脂層とポリイミド層とを有する積層体の製造方法)
本発明における熱硬化性樹脂層とポリイミド層とを有する積層体の製造方法について詳述する。本発明における積層体の製造方法は、例えば、上記i)において非熱可塑性ポリアミド酸を合成し、その後上記ii)〜iv)工程まで進めて一旦回収した非熱可塑性ポリイミドフィルムを熱硬化性樹脂フィルムの両面に挟み、加熱圧着などで熱硬化性樹脂を硬化させながら積層させる。その後、熱可塑性ポリイミド層を設ける場合には、塗工により該層を設けることでも可能である。
(Manufacturing method of a laminate having a thermosetting resin layer and a polyimide layer)
The method for producing a laminate having a thermosetting resin layer and a polyimide layer in the present invention will be described in detail. In the method for producing a laminate in the present invention, for example, a non-thermoplastic polyimide film obtained by synthesizing a non-thermoplastic polyamic acid in the above i) and then proceeding to the above steps ii) to iv) is used as a thermosetting resin film. It is sandwiched between both sides of the resin and laminated while curing the thermosetting resin by heat crimping or the like. After that, when the thermoplastic polyimide layer is provided, it is also possible to provide the layer by coating.

塗工により熱可塑性ポリイミド層を設ける場合は、熱可塑性ポリアミド酸を塗布し、その後イミド化を行ってもよいし、熱可塑性ポリイミド層を形成することができる熱可塑性ポリイミド溶液を塗布・乾燥してもよい。このようにして得られる積層体に金属層を設けることでFCCLを製造することができる。 When the thermoplastic polyimide layer is provided by coating, the thermoplastic polyamic acid may be applied and then imidized, or a thermoplastic polyimide solution capable of forming the thermoplastic polyimide layer may be applied and dried. May be good. FCCL can be manufactured by providing a metal layer on the laminate thus obtained.

本発明の積層体を用いて、金属箔と積層することにより、2層FPCに加工されるフレキシブル金属張積層板を製造することができる。金属箔上に積層体を形成する手段としては、上述のようにして積層体を得た後、加熱加圧により金属箔を貼り合せてフレキシブル金属張積層板を得る手段(熱ラミネート法)が挙げられる。金属箔を貼り合せる手段、条件については、従来公知のものを適宜選択すればよい。 By laminating with a metal foil using the laminate of the present invention, a flexible metal-clad laminate processed into a two-layer FPC can be manufactured. As a means for forming the laminate on the metal foil, there is a means (thermal lamination method) for obtaining a flexible metal-clad laminate by laminating the metal foil by heating and pressurizing after obtaining the laminate as described above. Be done. As the means and conditions for laminating the metal foils, conventionally known ones may be appropriately selected.

金属箔は、特に限定されるものではなく、あらゆる金属箔を用いることができる。例えば、銅、ステンレス、ニッケル、アルミニウム、およびこれら金属の合金などを好適に用いることができる。また、一般的な金属張積層板では、圧延銅、電解銅といった銅が多用されるが、本発明においても好ましく用いることができる。 The metal foil is not particularly limited, and any metal foil can be used. For example, copper, stainless steel, nickel, aluminum, alloys of these metals, and the like can be preferably used. Further, in a general metal-clad laminate, copper such as rolled copper and electrolytic copper is often used, but it can also be preferably used in the present invention.

また、上記金属箔は、目的に応じて表面処理、表面粗さ等種々特性を有したものを選択できる。さらに、上記金属箔の表面には、防錆剤や耐熱処理剤あるいは接着剤が塗布されていてもよい。上記金属箔の厚みについては特に限定されるものではなく、その用途に応じて、十分な機能が発揮できる厚みであればよい。このようにして得られるFCCLの金属層をエッチングして、FPCを得ることができる。 Further, as the metal foil, one having various characteristics such as surface treatment and surface roughness can be selected according to the purpose. Further, a rust preventive, a heat resistant treatment agent or an adhesive may be applied to the surface of the metal foil. The thickness of the metal foil is not particularly limited as long as it can exhibit a sufficient function depending on the application. The metal layer of FCCL thus obtained can be etched to obtain FPC.

以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。なお、合成例、実施例及び比較例における積層体の比誘電率、誘電正接、線膨張係数、難燃性、フレキシブル金属箔積層板のピール強度、吸湿半田耐熱性、寸法変化率の評価方法は次の通りである。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The methods for evaluating the relative permittivity, dielectric loss tangent, linear expansion coefficient, flame retardancy, peel strength of flexible metal leaf laminate, moisture absorption solder heat resistance, and dimensional change rate in the synthetic examples, examples, and comparative examples are as follows. It is as follows.

<比誘電率及び誘電正接の測定>
誘電率及び誘電正接は、HEWLETTPACKARD社製のネットワークアナライザ8719Cと株式会社関東電子応用開発製の空洞共振器振動法誘電率測定装置CP511とを用いて測定した。サンプルを2mm×100mmに切り出し、23℃/50%R.H.環境下で24時間調湿後に測定を行った。測定は10GHzで行った。
<Measurement of relative permittivity and dielectric loss tangent>
The permittivity and the dielectric loss tangent were measured using a network analyzer 8719C manufactured by Hewlett-Packard Co., Ltd. and a cavity resonator vibration method dielectric constant measuring device CP511 manufactured by Kanto Denshi Applied Development Co., Ltd. The sample was cut into 2 mm x 100 mm and 23 ° C./50% R. H. The measurement was performed after humidity control for 24 hours in the environment. The measurement was performed at 10 GHz.

<吸水率>
50mm×50mmに切り出した積層体を150℃×30min乾燥させ、絶乾状態での重量(w1)を測定した後、水に浸漬させた。24hr後、試験片を水から取り出し、表面の水分をふき取って重量(w2)を測定した。得られたw1、w2を用いて式(1)より吸水率を算出した。
<Water absorption rate>
The laminate cut out to 50 mm × 50 mm was dried at 150 ° C. × 30 min, the weight (w1) in an absolutely dry state was measured, and then the laminate was immersed in water. After 24 hours, the test piece was taken out from water, the water on the surface was wiped off, and the weight (w2) was measured. The water absorption rate was calculated from the formula (1) using the obtained w1 and w2.

吸水率(%)={(w2−w1)/w1}×100・・・式(1) Water absorption rate (%) = {(w2-w1) / w1} × 100 ... Equation (1)

<線膨張係数(CTE)の測定>
線膨張係数は、SIIナノテクノ口ジ一社製熱機械的分析装置、商品名:TMA/SS6100により、−10℃〜300℃まで10℃/minで昇温させた後、―10℃まで40℃/minで冷却し、さらに10℃/minで昇温させて、2回目の昇温時の、50〜250℃の値を見積もった。測定条件を以下に示す。
サンプル形状:幅3mm、長さ10mm
荷重:1g
測定温度範囲:−10℃〜300℃
雰囲気:空気雰囲気下
<Measurement of coefficient of linear expansion (CTE)>
The coefficient of linear expansion is 40 ° C to -10 ° C after raising the temperature from -10 ° C to 300 ° C at 10 ° C / min using a thermomechanical analyzer manufactured by SII Nanotechnoguchiji Co., Ltd., trade name: TMA / SS6100. The temperature was further increased at 10 ° C./min after cooling at / min, and the value at 50 to 250 ° C. at the time of the second temperature increase was estimated. The measurement conditions are shown below.
Sample shape: width 3 mm, length 10 mm
Load: 1g
Measurement temperature range: -10 ° C to 300 ° C
Atmosphere: Under the air atmosphere

<難燃性>
200mm×50mmに切り出した積層体を用いてUL−94規格に準拠した試験片を作製し、VTM試験に準拠して燃焼試験を実施した。VTM−0の判定基準を合格した場合を○(良)、不合格の場合を×(悪)とした。
<Flame retardant>
A test piece conforming to the UL-94 standard was prepared using a laminate cut out to a size of 200 mm × 50 mm, and a combustion test was carried out in accordance with the VTM test. The case where the judgment standard of VTM-0 was passed was evaluated as ◯ (good), and the case where it failed was evaluated as × (bad).

<ピール強度>
実施例ならびに比較例で得られた両面フレキシブル金属張積層板に形成した1mmの金属配線パターンを90度に剥離する際のピール強度を測定した。ピール強度はJISC−6471にしたがって評価した。
<Peel strength>
The peel strength when the 1 mm metal wiring pattern formed on the double-sided flexible metal-clad laminate obtained in Examples and Comparative Examples was peeled off at 90 degrees was measured. Peel strength was evaluated according to JISC-6471.

<吸湿半田耐熱性>
実施例ならびに比較例で得られた両面フレキシブル金属張積層板について、3.5cm角に切り出し、片面(便宜的にA面とする)は2.5cm角の銅箔層がサンプル中央に残るように、反対面(便宜的にB面とする)は銅箔層が全面に残るように、エッチング処理で余分な銅箔層を除去してサンプルを5つ作製した。得られたサンプルをそれぞれ85℃、85%R.H.の加湿条件下で、72時間放置し、吸湿処理を行った。吸湿処理後、サンプルをそれぞれ300℃の半田浴に10秒間浸漬させた。半田浸漬後のサンプルについて、B面の銅箔層をエッチングにより完全に除去し、5つ全てのサンプルにおいて銅箔が重なっていた部分の外観に変化が無い場合は○(良)、5つのサンプルのうち1つ以上のサンプルに樹脂層の白化、膨れ、銅箔の剥離のいずれかが確認された場合は×(悪)とした。
<Hygroscopic solder heat resistance>
The double-sided flexible metal-clad laminates obtained in Examples and Comparative Examples were cut into 3.5 cm squares so that a 2.5 cm square copper foil layer remained in the center of the sample on one side (referred to as side A for convenience). Five samples were prepared by removing the excess copper foil layer by etching so that the copper foil layer remained on the entire surface of the opposite surface (referred to as the B surface for convenience). The obtained samples were subjected to 85 ° C. and 85% R. H. Under the humidified conditions of No. 1, it was left for 72 hours to perform a moisture absorption treatment. After the moisture absorption treatment, each sample was immersed in a solder bath at 300 ° C. for 10 seconds. For the samples after solder immersion, the copper foil layer on the B side is completely removed by etching, and if there is no change in the appearance of the overlapping part of the copper foil in all five samples, ○ (good), five samples When any of whitening, swelling, and peeling of the copper foil was confirmed in one or more of the samples, it was evaluated as x (bad).

<寸法変化率の測定>
JISC6481に基づいて、フレキシブル金属張積層板に4つの穴を形成し、各穴のそれぞれの距離を測定した。次に、エッチング工程を実施してフレキシブル金属張積層板から金属箔を除去した後に、23℃/55%R.H.の恒温室に24時間放置した。その後、エッチング工程前と同様に、上記4つの穴について、それぞれの距離を測定した。金属箔除去前における各穴の距離の測定値をD1とし、金属箔除去後における各穴の距離の測定値をD2として、次式(2)によりエッチング前後の寸法変化率を求めた。なお、上記寸法変化率は、MD方向(フィルム搬送方向)およびTD方向(フィルム搬送方向と直行する方向)の双方について測定した。
<Measurement of dimensional change rate>
Based on JISC6481, four holes were formed in the flexible metal-clad laminate, and the distances between the holes were measured. Next, after performing an etching step to remove the metal leaf from the flexible metal-clad laminate, 23 ° C./55% R.M. H. It was left in the constant temperature room for 24 hours. After that, the distances of the four holes were measured in the same manner as before the etching step. The measured value of the distance of each hole before removing the metal foil was set to D1, and the measured value of the distance of each hole after removing the metal foil was set to D2, and the dimensional change rate before and after etching was obtained by the following equation (2). The dimensional change rate was measured in both the MD direction (film transport direction) and the TD direction (direction orthogonal to the film transport direction).

寸法変化率(%)={(D2−D1)/D1}×100・・・式(2) Dimensional change rate (%) = {(D2-D1) / D1} x 100 ... Equation (2)

<動的粘弾性の測定>
SIIナノテクノロジー社製 DMS6100を用いて(サンプルサイズ 巾9mm、長さ40mm)、周波数5Hzで昇温速度3℃/minで−50〜450℃の温度範囲で測定した。温度に対して貯蔵弾性率をプロットした曲線から20℃における貯蔵弾性率を見積もった。
<Measurement of dynamic viscoelasticity>
Measurements were made using a DMS6100 manufactured by SII Nanotechnology Inc. (sample size width 9 mm, length 40 mm) at a frequency of 5 Hz and a temperature rise rate of 3 ° C./min in a temperature range of −50 to 450 ° C. The storage elastic modulus at 20 ° C. was estimated from the curve plotting the storage elastic modulus with respect to temperature.

<非熱可塑性ポリイミド前駆体の合成>
(合成例1)
容量2000mlのガラス製フラスコにN,N−ジメチルホルムアミド(以下、DMFともいう)を657.8g、ジアミノジフェニルエーテル(以下、ODAともいう)を10.5gと2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(以下、BAPPともいう)を32.4g添加し、窒素雰囲気下で攪拌しながら、ベンゾフェノンテトラカルボン酸二無水物(以下、BTDAともいう)17.0gとピロメリット酸二無水物(以下、PMDAともいう)14.3gを徐々に添加した。BTDAとPMDAが溶解したことを目視で確認後、p−フェニレンジアミン(以下、PDAともいう)を14.2g加えて5分間攪拌を行った。続いて、PMDAを28.7g添加した後、30分攪拌した。最後に、1.7gのPMDAを固形分濃度7.2%ととなるようにDMFに溶解した溶液を調製し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加して、23℃での粘度が2000ポイズに達した時点で添加、撹拌をやめ、ポリアミド酸溶液を得た。
<Synthesis of non-thermoplastic polyimide precursor>
(Synthesis Example 1)
In a glass flask with a capacity of 2000 ml, 657.8 g of N, N-dimethylformamide (hereinafter, also referred to as DMF), 10.5 g of diaminodiphenyl ether (hereinafter, also referred to as ODA) and 2,2-bis [4- (4- (4- (4- (4- (4- (4-) 4-) Aminophenoxy) phenyl] Propane (hereinafter, also referred to as BAPP) 32.4 g was added, and while stirring under a nitrogen atmosphere, 17.0 g of benzophenone tetracarboxylic acid dianhydride (hereinafter, also referred to as BTDA) and pyromellitic acid dianhydride were added. 14.3 g of anhydride (hereinafter, also referred to as PMDA) was gradually added. After visually confirming that BTDA and PMDA were dissolved, 14.2 g of p-phenylenediamine (hereinafter, also referred to as PDA) was added, and the mixture was stirred for 5 minutes. Subsequently, after adding 28.7 g of PMDA, the mixture was stirred for 30 minutes. Finally, a solution prepared by dissolving 1.7 g of PMDA in DMF so as to have a solid content concentration of 7.2% was prepared, and this solution was gradually added to the above reaction solution while paying attention to the increase in viscosity. When the viscosity at 23 ° C. reached 2000 poisons, the addition and stirring were stopped to obtain a polyamic acid solution.

(合成例2)
容量2000mlのガラス製フラスコにDMFを625.9g、PDAを23.45gを添加し窒素雰囲気下で攪拌しながら、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(以下、BPDAともいう)を57.4gを徐々に添加した。BPDAが溶解したことを目視で確認後、4,4’−ビス(4−アミノフェノキシ)ビフェニル(以下、BAPBともいう)を17.1gと、BAPP19.0gを添加し窒素雰囲気下で攪拌しながら、BPDAを6.4gを徐々に添加した。BPDAが溶解したことを目視で確認後、4,4’−オキシジフタル酸無水物(以下、ODPAともいう)を14.4gとPMDA8.1gを添加し30分攪拌した後、PTFE粒子116gを添加し、さらに30分攪拌した。攪拌後、1.7gのPMDAを固形分濃度7.2%ととなるようにDMFに溶解した溶液を調製し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加して、23℃での粘度が2000ポイズに達した時点で添加、撹拌をやめ、ポリアミド酸溶液を得た。
(Synthesis Example 2)
Add 625.9 g of DMF and 23.45 g of PDA to a glass flask with a capacity of 2000 ml, and while stirring in a nitrogen atmosphere, 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (hereinafter, BPDA). (Also referred to as) was gradually added in an amount of 57.4 g. After visually confirming that BPDA was dissolved, add 17.1 g of 4,4'-bis (4-aminophenoxy) biphenyl (hereinafter, also referred to as BABP) and 19.0 g of BAPP, and stir in a nitrogen atmosphere. , 6.4 g of BPDA was gradually added. After visually confirming that BPDA was dissolved, 14.4 g of 4,4'-oxydiphthalic anhydride (hereinafter, also referred to as ODPA) and 8.1 g of PMDA were added, and the mixture was stirred for 30 minutes, and then 116 g of PTFE particles were added. , Stirred for another 30 minutes. After stirring, a solution prepared by dissolving 1.7 g of PMDA in DMF so as to have a solid content concentration of 7.2% was prepared, and this solution was gradually added to the above reaction solution while paying attention to the increase in viscosity. When the viscosity at 23 ° C. reached 2000 poisons, the addition and stirring were stopped to obtain a polyamic acid solution.

<熱可塑性ポリイミド前駆体の合成>
(合成例3)
反応系内を20℃に保った状態で、DMF323.0gに、BAPP43.6gを添加し、窒素雰囲気下で攪拌しながら、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(以下、BPDAともいう)43.6gを徐々に添加した。BPDAが溶解したことを目視確認した後、PMDA19.0gを添加し30分間攪拌を行った。0.7gのPMDAを固形分濃度7.2%となるようにDMFに溶解した溶液を調製し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加し、粘度が800ポイズに達した時点で重合を終了した。
<Synthesis of thermoplastic polyimide precursor>
(Synthesis Example 3)
While keeping the inside of the reaction system at 20 ° C., 43.6 g of BAPP was added to 323.0 g of DMF, and while stirring in a nitrogen atmosphere, 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride ( Hereinafter, 43.6 g (also referred to as BPDA) was gradually added. After visually confirming that BPDA was dissolved, 19.0 g of PMDA was added and the mixture was stirred for 30 minutes. A solution prepared by dissolving 0.7 g of PMDA in DMF so as to have a solid content concentration of 7.2% was gradually added to the above reaction solution while paying attention to the increase in viscosity, and the viscosity became 800 poisons. When it reached, the polymerization was terminated.

<積層体の作製>
(実施例1)
合成例2で得られたポリアミド酸溶液に無水酢酸/イソキノリン/DMF(重量比7.2/2.2/10.6)からなるイミド化促進剤をポリアミド酸溶液に対して重量比50%で添加し、連続的にミキサーで撹拌しTダイから押出してステンレス製のエンドレスベルト上に流延した。この樹脂膜を120℃×60秒で加熱した後エンドレスベルトから自己支持性のゲル膜を引き剥がしてテンタークリップに固定し、250℃×8秒、350℃×8秒、400℃×60秒で乾燥・イミド化させ、厚み4μmのポリイミドフィルムを得た。得られたポリイミドフィルムを38μmの日立化成株式会社製SF樹脂(製品名:AS−8000)フィルムの両面に介し、185℃、2.0MPa、90minの条件で加熱圧着した後、得られた積層体の両面に合成例3で得られたポリアミド酸溶液を、最終片面厚みが3.0μmとなるように塗布し、120℃×120秒で乾燥した。続いて、350℃で11秒間加熱してイミド化を行い、総厚み52μmの積層体を得た。得られた積層体を用いて比誘電率、誘電正接、吸水率、難燃性、CTEを評価した。
<Manufacturing of laminated body>
(Example 1)
An imidization accelerator composed of acetic anhydride / isoquinoline / DMF (weight ratio 7.2 / 2.2 / 10.6) was added to the polyamic acid solution obtained in Synthesis Example 2 at a weight ratio of 50% with respect to the polyamic acid solution. It was added, continuously stirred with a mixer, extruded from a T-die and cast on a stainless steel endless belt. After heating this resin film at 120 ° C. × 60 seconds, the self-supporting gel film is peeled off from the endless belt and fixed to the tenter clip, and at 250 ° C. × 8 seconds, 350 ° C. × 8 seconds, 400 ° C. × 60 seconds. It was dried and imidized to obtain a polyimide film having a thickness of 4 μm. The obtained polyimide film was heat-bonded to both sides of a 38 μm SF resin (product name: AS-8000) film manufactured by Hitachi Kasei Co., Ltd. under the conditions of 185 ° C., 2.0 MPa, and 90 min, and then the obtained laminate was obtained. The polyamic acid solution obtained in Synthesis Example 3 was applied to both sides of the above so that the final single-sided thickness was 3.0 μm, and dried at 120 ° C. × 120 seconds. Subsequently, it was heated at 350 ° C. for 11 seconds for imidization to obtain a laminate having a total thickness of 52 μm. The obtained laminate was used to evaluate the relative permittivity, dielectric loss tangent, water absorption rate, flame retardancy, and CTE.

さらに、得られた積層体の両面に12μm電解銅箔(3EC−M3S−HTE、三井金属製)を配し、さらに銅箔の両側に保護フィルム(アピカル125NPI;カネカ製)を用いて、ラミネート温度360℃、ラミネート圧力265N/cm(27kgf/cm)、ラミネート速度1.0m/分の条件で熱ラミネートを行い、得られたフレキシブル金属張積層板のピール強度、吸湿半田耐熱性、寸法変化率を評価した。結果を表1に示す。 Further, 12 μm electrolytic copper foil (3EC-M3S-HTE, manufactured by Mitsui Metal Co., Ltd.) was arranged on both sides of the obtained laminate, and protective films (Apical 125 NPI; manufactured by Kaneka) were used on both sides of the copper foil to prepare the lamination temperature. Thermal laminating was performed under the conditions of 360 ° C., laminating pressure 265 N / cm (27 kgf / cm), and laminating speed 1.0 m / min, and the peel strength, moisture absorption solder heat resistance, and dimensional change rate of the obtained flexible metal-clad laminate were determined. evaluated. The results are shown in Table 1.

(実施例2)
合成例2で得られたポリアミド酸溶液を用いて、実施例1で用いたポリイミドフィルムの製造と同様な方法で得られた厚み4μmのポリイミドフィルムを28μmの日立化成株式会社製SF樹脂(製品名:AS−400HS)フィルムの両面に介し、185℃、2.0MPa、90minの条件で加熱圧着した後、得られた積層体の両面に合成例3で得られたポリアミック酸溶液を、最終片面厚みが2.0μmとなるように塗布し、120℃×120秒で乾燥した。続いて、350℃で11秒間加熱してイミド化を行い、総厚み40μmの積層体を得た。得られた積層体を用いて比誘電率、誘電正接、吸水率、難燃性、CTEを評価した。
(Example 2)
Using the polyamic acid solution obtained in Synthesis Example 2, a polyimide film having a thickness of 4 μm obtained in the same manner as in the production of the polyimide film used in Example 1 was used as a 28 μm SF resin manufactured by Hitachi Kasei Co., Ltd. (product name). : AS-400HS) After heat-pressing on both sides of the film under the conditions of 185 ° C., 2.0 MPa, 90 min, the polyamic acid solution obtained in Synthesis Example 3 was applied to both sides of the obtained laminate to the final single-sided thickness. The film was applied so as to have a thickness of 2.0 μm, and dried at 120 ° C. × 120 seconds. Subsequently, imidization was carried out by heating at 350 ° C. for 11 seconds to obtain a laminate having a total thickness of 40 μm. The obtained laminate was used to evaluate the relative permittivity, dielectric loss tangent, water absorption rate, flame retardancy, and CTE.

さらに、得られた積層体の両面に実施例1と同様の条件で熱ラミネートを行い、得られたフレキシブル金属張積層板のピール強度、吸湿半田耐熱性、寸法変化率を評価した。結果を表1に示す。 Further, both sides of the obtained laminate were heat-laminated under the same conditions as in Example 1, and the peel strength, moisture absorption solder heat resistance, and dimensional change rate of the obtained flexible metal-clad laminate were evaluated. The results are shown in Table 1.

(実施例3)
合成例1で得られたポリアミド酸溶液に無水酢酸/イソキノリン/DMF(重量比7.2/2.2/10.6)からなるイミド化促進剤をポリアミック酸溶液に対して重量比50%で添加し、連続的にミキサーで撹拌しTダイから押出してステンレス製のエンドレスベルト上に流延した。この樹脂膜を120℃×60秒で加熱した後エンドレスベルトから自己支持性のゲル膜を引き剥がしてテンタークリップに固定し、250℃×8秒、350℃×8秒、400℃×60秒で乾燥・イミド化させ、厚み3μmのポリイミドフィルムを得た。得られたポリイミドフィルムを40μmの日立化成株式会社製SF樹脂(製品名:AS−8000)フィルムの両面に介し、185℃、2.0MPa、90minの条件で加熱圧着した後、得られた積層体の両面に合成例3で得られたポリアミド酸溶液を、最終片面厚みが3.0μmとなるように塗布し、120℃×120秒で乾燥した。続いて、350℃で11秒間加熱してイミド化を行い、総厚み52μmの積層体を得た。得られた積層体を用いて比誘電率、誘電正接、吸水率、難燃性、線膨張係数(CTE)を評価した。
(Example 3)
An imidization accelerator composed of acetic anhydride / isoquinoline / DMF (weight ratio 7.2 / 2.2 / 10.6) was added to the polyamic acid solution obtained in Synthesis Example 1 at a weight ratio of 50% with respect to the polyamic acid solution. It was added, continuously stirred with a mixer, extruded from a T-die and cast on a stainless steel endless belt. After heating this resin film at 120 ° C. × 60 seconds, the self-supporting gel film is peeled off from the endless belt and fixed to the tenter clip, and at 250 ° C. × 8 seconds, 350 ° C. × 8 seconds, 400 ° C. × 60 seconds. It was dried and imidized to obtain a polyimide film having a thickness of 3 μm. The obtained polyimide film was heat-bonded to both sides of a 40 μm SF resin (product name: AS-8000) film manufactured by Hitachi Kasei Co., Ltd. under the conditions of 185 ° C., 2.0 MPa, and 90 min, and then the obtained laminate was obtained. The polyamic acid solution obtained in Synthesis Example 3 was applied to both sides of the above so that the final single-sided thickness was 3.0 μm, and dried at 120 ° C. × 120 seconds. Subsequently, it was heated at 350 ° C. for 11 seconds for imidization to obtain a laminate having a total thickness of 52 μm. The obtained laminate was used to evaluate the relative permittivity, dielectric loss tangent, water absorption, flame retardancy, and coefficient of linear expansion (CTE).

さらに、得られた積層体の両面に12μm電解銅箔(3EC−M3S−HTE、三井金属製)を配し、さらに銅箔の両側に保護フィルム(アピカル125NPI;カネカ製)を用いて、ラミネート温度360℃、ラミネート圧力265N/cm(27kgf/cm)、ラミネート速度1.0m/分の条件で熱ラミネートを行い、得られたフレキシブル金属張積層板のピール強度、吸湿半田耐熱性、寸法変化率を評価した。結果を表1に示す。 Further, 12 μm electrolytic copper foil (3EC-M3S-HTE, manufactured by Mitsui Metal Co., Ltd.) was arranged on both sides of the obtained laminate, and protective films (Apical 125 NPI; manufactured by Kaneka) were used on both sides of the copper foil to prepare the lamination temperature. Thermal laminating was performed under the conditions of 360 ° C., laminating pressure 265 N / cm (27 kgf / cm), and laminating speed 1.0 m / min, and the peel strength, moisture absorption solder heat resistance, and dimensional change rate of the obtained flexible metal-clad laminate were determined. evaluated. The results are shown in Table 1.

(実施例4)
合成例1で得られたポリアミド酸溶液を用いて、実施例3で用いたポリイミドフィルムの製造と同様な方法で得られた厚み3μmのポリイミドフィルムを38μmの日立化成株式会社製SF樹脂(製品名:AS−400HS)フィルムの両面に介し、185℃、2.0MPa、90minの条件で加熱圧着した後、得られた積層体の両面に合成例3で得られたポリアミック酸溶液を、最終片面厚みが3.0μmとなるように塗布し、120℃×120秒で乾燥した。続いて、350℃で11秒間加熱してイミド化を行い、総厚み50μmの積層体を得た。得られた積層体を用いて比誘電率、誘電正接、吸水率、難燃性、CTEを評価した。
(Example 4)
Using the polyamic acid solution obtained in Synthesis Example 1, a polyimide film having a thickness of 3 μm obtained in the same manner as in the production of the polyimide film used in Example 3 was used as a 38 μm SF resin manufactured by Hitachi Kasei Co., Ltd. (product name). : AS-400HS) After heat-pressing on both sides of the film under the conditions of 185 ° C., 2.0 MPa, 90 min, the polyamic acid solution obtained in Synthesis Example 3 was applied to both sides of the obtained laminate to the final single-sided thickness. The film was applied so as to have a thickness of 3.0 μm, and dried at 120 ° C. × 120 seconds. Subsequently, it was heated at 350 ° C. for 11 seconds for imidization to obtain a laminate having a total thickness of 50 μm. The obtained laminate was used to evaluate the relative permittivity, dielectric loss tangent, water absorption rate, flame retardancy, and CTE.

さらに、得られた積層体の両面に実施例1と同様の条件で熱ラミネートを行い、得られたフレキシブル金属張積層板のピール強度、吸湿半田耐熱性、寸法変化率を評価した。結果を表1に示す。 Further, both sides of the obtained laminate were heat-laminated under the same conditions as in Example 1, and the peel strength, moisture absorption solder heat resistance, and dimensional change rate of the obtained flexible metal-clad laminate were evaluated. The results are shown in Table 1.

(比較例1)
合成例1で得られたポリアミド酸溶液に無水酢酸/イソキノリン/DMF(重量比7.2/2.2/10.6)からなるイミド化促進剤をポリアミック酸溶液に対して重量比50%で添加し、連続的にミキサーで撹拌しTダイから押出してステンレス製のエンドレスベルト上に流延した。この樹脂膜を120℃×120秒で加熱した後エンドレスベルトから自己支持性のゲル膜を引き剥がしてテンタークリップに固定し、250℃×11秒、350℃×11秒、450℃×120秒で乾燥・イミド化させ、厚み17μmのポリイミドフィルムを得た。得られたポリイミドフィルムに固形分濃度20%になるようにトルエンで希釈した日立化成株式会社製SF樹脂(製品名:SFR−2300MR)を、最終片面厚みが4μmとなるように、ポリイミドフィルムの両面に塗布し、110℃×600秒で乾燥した。続いて、185℃で60分間加熱硬化を行い、総厚み25μmの積層体を得た。得られた積層体を用いて比誘電率、誘電正接、吸水率、難燃性、CTEを評価した。
(Comparative Example 1)
An imidization accelerator composed of acetic anhydride / isoquinoline / DMF (weight ratio 7.2 / 2.2 / 10.6) was added to the polyamic acid solution obtained in Synthesis Example 1 at a weight ratio of 50% with respect to the polyamic acid solution. It was added, continuously stirred with a mixer, extruded from a T-die and cast on a stainless steel endless belt. After heating this resin film at 120 ° C. × 120 seconds, the self-supporting gel film is peeled off from the endless belt and fixed to the tenter clip, and at 250 ° C. × 11 seconds, 350 ° C. × 11 seconds, 450 ° C. × 120 seconds. It was dried and imidized to obtain a polyimide film having a thickness of 17 μm. The obtained polyimide film was diluted with toluene so that the solid content concentration was 20%, and SF resin (product name: SFR-2300MR) manufactured by Hitachi Kasei Co., Ltd. was applied to both sides of the polyimide film so that the final one-sided thickness was 4 μm. And dried at 110 ° C. x 600 seconds. Subsequently, it was heat-cured at 185 ° C. for 60 minutes to obtain a laminate having a total thickness of 25 μm. The obtained laminate was used to evaluate the relative permittivity, dielectric loss tangent, water absorption rate, flame retardancy, and CTE.

さらに、得られた積層体の両面に12μm電解銅箔(3EC−M3S−HTE、三井金属製)を配し、さらに銅箔の両側に保護フィルム(アピカル125NPI;カネカ製)を用いて、ラミネート温度360℃、ラミネート圧力265N/cm(27kgf/cm)、ラミネート速度1.0m/分の条件で熱ラミネートを行ったところ、積層体中の樹脂層が流動し、好適なフレキシブル金属張積層板を得ることができなかった。 Further, 12 μm electrolytic copper foil (3EC-M3S-HTE, manufactured by Mitsui Metal Co., Ltd.) was arranged on both sides of the obtained laminate, and protective films (Apical 125 NPI; manufactured by Kaneka) were used on both sides of the copper foil to prepare the lamination temperature. When thermal laminating was performed under the conditions of 360 ° C., a laminating pressure of 265 N / cm (27 kgf / cm), and a laminating speed of 1.0 m / min, the resin layer in the laminated body flowed to obtain a suitable flexible metal-clad laminate. I couldn't.

(比較例2)
合成例1で得られたポリアミド酸溶液を用いて、比較例1で用いたポリイミドフィルムの製造と同様な方法で得られた厚み12.5μmのポリイミドフィルムの両面に厚み6.5μmの日立化成株式会社製SF樹脂(製品名:AS−8000)フィルムを、70℃、0.4MPaで加熱圧着し、総厚み25.5μmの積層体を得た。得られた積層体を用いて比誘電率、誘電正接、吸水率、難燃性、CTEを評価した。
(Comparative Example 2)
Hitachi Kasei Co., Ltd. with a thickness of 6.5 μm on both sides of a polyimide film with a thickness of 12.5 μm obtained by the same method as the production of the polyimide film used in Comparative Example 1 using the polyamic acid solution obtained in Synthesis Example 1. A SF resin (product name: AS-8000) film manufactured by the company was heat-bonded at 70 ° C. and 0.4 MPa to obtain a laminate having a total thickness of 25.5 μm. The obtained laminate was used to evaluate the relative permittivity, dielectric loss tangent, water absorption rate, flame retardancy, and CTE.

さらに、得られた積層体の両面に12μm電解銅箔(3EC−M3S−HTE、三井金属製)を配し、さらに銅箔の両側に保護フィルム(アピカル125NPI;カネカ製)を用いて、ラミネート温度360℃、ラミネート圧力265N/cm(27kgf/cm)、ラミネート速度1.0m/分の条件で熱ラミネートを行ったところ、積層体中の樹脂層が流動し、好適なフレキシブル金属張積層板を得ることができなかった。 Further, 12 μm electrolytic copper foil (3EC-M3S-HTE, manufactured by Mitsui Metal Co., Ltd.) was arranged on both sides of the obtained laminate, and protective films (Apical 125 NPI; manufactured by Kaneka) were used on both sides of the copper foil to prepare the lamination temperature. When thermal laminating was performed under the conditions of 360 ° C., a laminating pressure of 265 N / cm (27 kgf / cm), and a laminating speed of 1.0 m / min, the resin layer in the laminated body flowed to obtain a suitable flexible metal-clad laminate. I couldn't.

(比較例3)
合成例1で得られたポリアミド酸溶液を用いて、比較例1で用いたポリイミドフィルムの製造と同様な方法で得られた厚み17.0μmのポリイミドフィルムの両面に厚み6.5μmの日立化成株式会社製SF樹脂(製品名:AS−8000)フィルムを、70℃、0.4MPaで加熱圧着し、総厚み30μmの積層体を得た。得られた積層体を用いて比誘電率、誘電正接、吸水率、難燃性、CTEを評価した。
(Comparative Example 3)
Hitachi Kasei Co., Ltd. with a thickness of 6.5 μm on both sides of a polyimide film with a thickness of 17.0 μm obtained by the same method as the production of the polyimide film used in Comparative Example 1 using the polyamic acid solution obtained in Synthesis Example 1. A company-made SF resin (product name: AS-8000) film was heat-bonded at 70 ° C. and 0.4 MPa to obtain a laminate having a total thickness of 30 μm. The obtained laminate was used to evaluate the relative permittivity, dielectric loss tangent, water absorption rate, flame retardancy, and CTE.

さらに、得られた積層体の両面に12μm電解銅箔(3EC−M3S−HTE、三井金属製)を配し、さらに銅箔の両側に保護フィルム(アピカル125NPI;カネカ製)を用いて、ラミネート温度360℃、ラミネート圧力265N/cm(27kgf/cm)、ラミネート速度1.0m/分の条件で熱ラミネートを行ったところ、積層体中の樹脂層が流動し、好適なフレキシブル金属張積層板を得ることができなかった。 Further, 12 μm electrolytic copper foil (3EC-M3S-HTE, manufactured by Mitsui Metal Co., Ltd.) was arranged on both sides of the obtained laminate, and protective films (Apical 125 NPI; manufactured by Kaneka) were used on both sides of the copper foil to prepare the lamination temperature. When thermal laminating was performed under the conditions of 360 ° C., a laminating pressure of 265 N / cm (27 kgf / cm), and a laminating speed of 1.0 m / min, the resin layer in the laminated body flowed to obtain a suitable flexible metal-clad laminate. I couldn't.

(比較例4)
合成例1で得られたポリアミド酸溶液を用いて、比較例1で用いたポリイミドフィルムの製造と同様な方法で得られた厚み17.0μmのポリイミドフィルムの両面に厚み13μmの日立化成株式会社製SF樹脂(製品名:AS−8000)フィルムを、70℃、0.4MPaで加熱圧着し、総厚み43μmの積層体を得た。得られた積層体を用いて比誘電率、誘電正接、吸水率、難燃性、CTEを評価した。
(Comparative Example 4)
Using the polyamic acid solution obtained in Synthesis Example 1, a polyimide film having a thickness of 17.0 μm obtained in the same manner as in the production of the polyimide film used in Comparative Example 1 was manufactured by Hitachi Kasei Co., Ltd. with a thickness of 13 μm on both sides. A SF resin (product name: AS-8000) film was heat-bonded at 70 ° C. and 0.4 MPa to obtain a laminate having a total thickness of 43 μm. The obtained laminate was used to evaluate the relative permittivity, dielectric loss tangent, water absorption rate, flame retardancy, and CTE.

さらに、得られた積層体の両面に12μm電解銅箔(3EC−M3S−HTE、三井金属製)を配し、さらに銅箔の両側に保護フィルム(アピカル125NPI;カネカ製)を用いて、ラミネート温度360℃、ラミネート圧力265N/cm(27kgf/cm)、ラミネート速度1.0m/分の条件で熱ラミネートを行ったところ、積層体中の樹脂層が流動し、好適なフレキシブル金属張積層板を得ることができなかった。 Further, 12 μm electrolytic copper foil (3EC-M3S-HTE, manufactured by Mitsui Metal Co., Ltd.) was arranged on both sides of the obtained laminate, and protective films (Apical 125 NPI; manufactured by Kaneka) were used on both sides of the copper foil to prepare the lamination temperature. When thermal laminating was performed under the conditions of 360 ° C., a laminating pressure of 265 N / cm (27 kgf / cm), and a laminating speed of 1.0 m / min, the resin layer in the laminated body flowed to obtain a suitable flexible metal-clad laminate. I couldn't.

(比較例5)
合成例2で得られたポリアミド酸溶液に無水酢酸/イソキノリン/DMF(重量比7.2/2.2/10.6)からなるイミド化促進剤をポリアミック酸溶液に対して重量比50%で添加し、連続的にミキサーで撹拌しTダイから押出してステンレス製のエンドレスベルト上に流延した。この樹脂膜を120℃×120秒で加熱した後エンドレスベルトから自己支持性のゲル膜を引き剥がしてテンタークリップに固定し、250℃×25秒、350℃×20秒、400℃×200秒で乾燥・イミド化させ、厚み44μmのポリイミドフィルムを得た。得られたポリイミドフィルムの両面に、合成例3で得られたポリアミック酸溶液を、最終片面厚みが3.0μmとなるように塗布し、120℃×120秒で乾燥した。続いて、350℃で11秒間加熱してイミド化を行い、総厚み50μmの積層体を得た。得られた積層体を用いて比誘電率、誘電正接、吸水率、難燃性、CTEを評価した。
(Comparative Example 5)
An imidization accelerator composed of acetic anhydride / isoquinoline / DMF (weight ratio 7.2 / 2.2 / 10.6) was added to the polyamic acid solution obtained in Synthesis Example 2 at a weight ratio of 50% with respect to the polyamic acid solution. It was added, continuously stirred with a mixer, extruded from a T-die and cast on a stainless steel endless belt. After heating this resin film at 120 ° C. × 120 seconds, the self-supporting gel film is peeled off from the endless belt and fixed to the tenter clip, and at 250 ° C. × 25 seconds, 350 ° C. × 20 seconds, 400 ° C. × 200 seconds. It was dried and imidized to obtain a polyimide film having a thickness of 44 μm. The polyamic acid solution obtained in Synthesis Example 3 was applied to both sides of the obtained polyimide film so that the final single-sided thickness was 3.0 μm, and dried at 120 ° C. × 120 seconds. Subsequently, it was heated at 350 ° C. for 11 seconds for imidization to obtain a laminate having a total thickness of 50 μm. The obtained laminate was used to evaluate the relative permittivity, dielectric loss tangent, water absorption rate, flame retardancy, and CTE.

さらに、得られた積層体の両面に12μm電解銅箔(3EC−M3S−HTE、三井金属製)を配し、さらに銅箔の両側に保護フィルム(アピカル125NPI;カネカ製)を用いて、ラミネート温度360℃、ラミネート圧力265N/cm(27kgf/cm)、ラミネート速度1.0m/分の条件で熱ラミネートを行い、得られたフレキシブル金属張積層板のピール強度、吸湿半田耐熱性、寸法変化率を評価した。結果を表1に示す。 Further, 12 μm electrolytic copper foil (3EC-M3S-HTE, manufactured by Mitsui Metal Co., Ltd.) was arranged on both sides of the obtained laminate, and protective films (Apical 125 NPI; manufactured by Kaneka) were used on both sides of the copper foil to prepare the lamination temperature. Thermal laminating was performed under the conditions of 360 ° C., laminating pressure 265 N / cm (27 kgf / cm), and laminating speed 1.0 m / min, and the peel strength, moisture absorption solder heat resistance, and dimensional change rate of the obtained flexible metal-clad laminate were determined. evaluated. The results are shown in Table 1.

(比較例6)
合成例2で得られたポリアミド酸溶液に無水酢酸/イソキノリン/DMF(重量比7.2/2.2/10.6)からなるイミド化促進剤をポリアミック酸溶液に対して重量比50%で添加し、連続的にミキサーで撹拌しTダイから押出してステンレス製のエンドレスベルト上に流延した。この樹脂膜を120℃×240秒で加熱した後エンドレスベルトから自己支持性のゲル膜を引き剥がしてテンタークリップに固定し、250℃×22秒、350℃×35秒、400℃×240秒で乾燥・イミド化させ、厚み34μmのポリイミドフィルムを得た。得られたポリイミドフィルムの両面に、合成例3で得られたポリアミック酸溶液を、最終片面厚みが8.0μmとなるように塗布し、120℃×240秒で乾燥した。続いて、350℃で25秒間加熱してイミド化を行い、総厚み50μmの積層体を得た。得られた積層体を用いて比誘電率、誘電正接、吸水率、難燃性、CTEを評価した。
(Comparative Example 6)
An imidization accelerator composed of acetic anhydride / isoquinoline / DMF (weight ratio 7.2 / 2.2 / 10.6) was added to the polyamic acid solution obtained in Synthesis Example 2 at a weight ratio of 50% with respect to the polyamic acid solution. It was added, continuously stirred with a mixer, extruded from a T-die and cast on a stainless steel endless belt. After heating this resin film at 120 ° C. × 240 seconds, the self-supporting gel film is peeled off from the endless belt and fixed to the tenter clip, and at 250 ° C. × 22 seconds, 350 ° C. × 35 seconds, 400 ° C. × 240 seconds. It was dried and imidized to obtain a polyimide film having a thickness of 34 μm. The polyamic acid solution obtained in Synthesis Example 3 was applied to both sides of the obtained polyimide film so that the final single-sided thickness was 8.0 μm, and dried at 120 ° C. × 240 seconds. Subsequently, it was heated at 350 ° C. for 25 seconds for imidization to obtain a laminate having a total thickness of 50 μm. The obtained laminate was used to evaluate the relative permittivity, dielectric loss tangent, water absorption rate, flame retardancy, and CTE.

さらに、得られた積層体の両面に12μm電解銅箔(3EC−M3S−HTE、三井金属製)を配し、さらに銅箔の両側に保護フィルム(アピカル125NPI;カネカ製)を用いて、ラミネート温度360℃、ラミネート圧力265N/cm(27kgf/cm)、ラミネート速度1.0m/分の条件で熱ラミネートを行い、得られたフレキシブル金属張積層板のピール強度、吸湿半田耐熱性、寸法変化率を評価した。結果を表1に示す。 Further, 12 μm electrolytic copper foil (3EC-M3S-HTE, manufactured by Mitsui Metal Co., Ltd.) was arranged on both sides of the obtained laminate, and protective films (Apical 125 NPI; manufactured by Kaneka) were used on both sides of the copper foil to prepare the lamination temperature. Thermal laminating was performed under the conditions of 360 ° C., laminating pressure 265 N / cm (27 kgf / cm), and laminating speed 1.0 m / min, and the peel strength, moisture absorption solder heat resistance, and dimensional change rate of the obtained flexible metal-clad laminate were determined. evaluated. The results are shown in Table 1.

(比較例7)
合成例2で得られたポリアミド酸溶液を用いて、比較例6で用いたポリイミドフィルムの製造と同様な方法で得られた厚み17.0μmのポリイミドフィルムを用いて比誘電率、誘電正接、吸水率、難燃性、CTEを評価した。
(Comparative Example 7)
Using the polyamic acid solution obtained in Synthesis Example 2, a polyimide film having a thickness of 17.0 μm obtained in the same manner as in the production of the polyimide film used in Comparative Example 6 was used for relative permittivity, dielectric loss tangent, and water absorption. Rate, flame retardancy and CTE were evaluated.

さらに、得られた積層体の両面に12μm電解銅箔(3EC−M3S−HTE、三井金属製)を配し、さらに銅箔の両側に保護フィルム(アピカル125NPI;カネカ製)を用いて、ラミネート温度360℃、ラミネート圧力265N/cm(27kgf/cm)、ラミネート速度1.0m/分の条件で熱ラミネートを行ったところ、積層体が銅箔と接着せず、好適なフレキシブル金属張積層板を得ることができなかった。 Further, 12 μm electrolytic copper foil (3EC-M3S-HTE, manufactured by Mitsui Metals) was arranged on both sides of the obtained laminate, and protective films (Apical 125 NPI; manufactured by Kaneka) were used on both sides of the copper foil to prepare the lamination temperature. When thermal laminating was performed under the conditions of 360 ° C., laminating pressure 265 N / cm (27 kgf / cm), and laminating speed 1.0 m / min, the laminated body did not adhere to the copper foil, and a suitable flexible metal-clad laminate was obtained. I couldn't.

(比較例8)
合成例2で得られたポリアミド酸溶液を用いて、比較例6で用いたポリイミドフィルムの製造と同様な方法で得られた厚み34.0μmのポリイミドフィルムを用いて比誘電率、誘電正接、吸水率、難燃性、CTEを評価した。
(Comparative Example 8)
Using the polyamic acid solution obtained in Synthesis Example 2, a polyimide film having a thickness of 34.0 μm obtained in the same manner as in the production of the polyimide film used in Comparative Example 6 was used for relative permittivity, dielectric loss tangent, and water absorption. Rate, flame retardancy and CTE were evaluated.

さらに、得られた積層体の両面に12μm電解銅箔(3EC−M3S−HTE、三井金属製)を配し、さらに銅箔の両側に保護フィルム(アピカル125NPI;カネカ製)を用いて、ラミネート温度360℃、ラミネート圧力265N/cm(27kgf/cm)、ラミネート速度1.0m/分の条件で熱ラミネートを行ったところ、積層体が銅箔と接着せず、好適なフレキシブル金属張積層板を得ることができなかった。 Further, 12 μm electrolytic copper foil (3EC-M3S-HTE, manufactured by Mitsui Metals) was arranged on both sides of the obtained laminate, and protective films (Apical 125 NPI; manufactured by Kaneka) were used on both sides of the copper foil to prepare the lamination temperature. When thermal laminating was performed under the conditions of 360 ° C., laminating pressure 265 N / cm (27 kgf / cm), and laminating speed 1.0 m / min, the laminated body did not adhere to the copper foil, and a suitable flexible metal-clad laminate was obtained. I couldn't.

(比較例9)
38μmの日立化成株式会社製SF樹脂(製品名:AS−8000)フィルムを用いて比誘電率、誘電正接、吸水率、難燃性、CTEを評価した。
(Comparative Example 9)
The relative permittivity, dielectric loss tangent, water absorption rate, flame retardancy, and CTE were evaluated using a 38 μm SF resin (product name: AS-8000) film manufactured by Hitachi Kasei Co., Ltd.

さらに、得られた積層体の両面に12μm電解銅箔(3EC−M3S−HTE、三井金属製)を配し、さらに銅箔の両側に保護フィルム(アピカル125NPI;カネカ製)を用いて、ラミネート温度360℃、ラミネート圧力265N/cm(27kgf/cm)、ラミネート速度1.0m/分の条件で熱ラミネートを行いったところ、積層体中の樹脂層が流動し、好適なフレキシブル金属張積層板を得ることができなかった。 Further, 12 μm electrolytic copper foil (3EC-M3S-HTE, manufactured by Mitsui Mining & Smelting Co., Ltd.) was arranged on both sides of the obtained laminate, and protective films (Apical 125 NPI; manufactured by Kaneka) were used on both sides of the copper foil to prepare the lamination temperature. When thermal laminating was performed under the conditions of 360 ° C., laminating pressure 265 N / cm (27 kgf / cm), and laminating speed 1.0 m / min, the resin layer in the laminated body flowed, and a suitable flexible metal-clad laminate was obtained. I couldn't get it.

(比較例10)
33μmの日立化成株式会社製SF樹脂(製品名:AS−400HS)フィルムを用いて比誘電率、誘電正接、吸水率、難燃性、CTEを評価した。
(Comparative Example 10)
The relative permittivity, dielectric loss tangent, water absorption rate, flame retardancy, and CTE were evaluated using a 33 μm SF resin (product name: AS-400HS) film manufactured by Hitachi Kasei Co., Ltd.

さらに、得られた積層体の両面に12μm電解銅箔(3EC−M3S−HTE、三井金属製)を配し、さらに銅箔の両側に保護フィルム(アピカル125NPI;カネカ製)を用いて、ラミネート温度360℃、ラミネート圧力265N/cm(27kgf/cm)、ラミネート速度1.0m/分の条件で熱ラミネートを行いったところ、積層体中の樹脂層が流動し、好適なフレキシブル金属張積層板を得ることができなかった。 Further, 12 μm electrolytic copper foil (3EC-M3S-HTE, manufactured by Mitsui Mining & Smelting Co., Ltd.) was arranged on both sides of the obtained laminate, and protective films (Apical 125 NPI; manufactured by Kaneka) were used on both sides of the copper foil to prepare the lamination temperature. When thermal laminating was performed under the conditions of 360 ° C., laminating pressure 265 N / cm (27 kgf / cm), and laminating speed 1.0 m / min, the resin layer in the laminated body flowed, and a suitable flexible metal-clad laminate was obtained. I couldn't get it.

Figure 0006936639
Figure 0006936639

表1より、中心に本発明の熱硬化性樹脂層を有し、熱硬化性樹脂層の両面にポリイミド層を有する実施例では、ポリイミド層のみを有する比較例5〜8に比べて比誘電率や誘電正接が低下し、誘電特性が良好となった。また、実施例1〜4では、貯蔵弾性率が低い熱硬化性樹脂層を用いているものの、ポリイミド層のみを有する比較例5、6と寸法安定率が同程度になり、線膨張係数も同程度となった。すなわち、寸法安定率の増加や、線膨張係数の増加を抑制することができた。 From Table 1, in the example having the thermosetting resin layer of the present invention in the center and having the polyimide layers on both sides of the thermosetting resin layer, the relative permittivity is higher than that of Comparative Examples 5 to 8 having only the polyimide layer. And the dielectric loss tangent decreased, and the dielectric characteristics became good. Further, in Examples 1 to 4, although the thermosetting resin layer having a low storage elastic modulus is used, the dimensional stability is about the same as that of Comparative Examples 5 and 6 having only the polyimide layer, and the linear expansion coefficient is also the same. It became a degree. That is, it was possible to suppress an increase in the dimensional stability rate and an increase in the coefficient of linear expansion.

中心にポリイミド層を有し、ポリイミド層の両面に熱硬化性樹脂層を有する比較例1〜4や、熱硬化性樹脂層のみを有する比較例9、10では、難燃性が低かった。すなわち、FCCLとしての使用が難しいということがわかった。 In Comparative Examples 1 to 4 having a polyimide layer in the center and thermosetting resin layers on both sides of the polyimide layer, and Comparative Examples 9 and 10 having only a thermosetting resin layer, the flame retardancy was low. That is, it was found that it was difficult to use as FCCL.

Claims (7)

熱硬化性樹脂層とポリイミド層とを有する積層体であって、前記熱硬化性樹脂層は、10GHzにおける比誘電率が3.0以下で、誘電正接は0.003以下であり、かつ、動的粘弾性の測定により得られる20℃における貯蔵弾性率が0.1GPa以上5.0GPa以下であり、前記ポリイミド層は前記熱硬化性樹脂層の両面を被覆しており、
前記積層体の厚みが25μm以上であり、片面の前記ポリイミド層の厚みが0.5μm以上かつ、積層体の総厚みに対する両面の前記ポリイミド層の厚みの比が4%以上30%以下であり、
前記ポリイミド層は、非熱可塑性ポリイミド層と熱可塑性ポリイミド層を有する多層ポリイミド層であり、
前記多層ポリイミド層は、前記非熱可塑性ポリイミド層が、前記熱硬化性樹脂層に隣接するよう設けられており、
前記熱硬化性樹脂層は、SF樹脂からなることを特徴とする積層体。
A laminate having a thermosetting resin layer and a polyimide layer, the thermosetting resin layer having a specific dielectric constant of 3.0 or less at 10 GHz, a dielectric loss tangent of 0.003 or less, and moving. The storage elasticity at 20 ° C. obtained by measuring the viscoelasticity is 0.1 GPa or more and 5.0 GPa or less, and the polyimide layer covers both sides of the thermosetting resin layer .
The thickness of the laminate is 25 μm or more, the thickness of the polyimide layer on one side is 0.5 μm or more, and the ratio of the thickness of the polyimide layers on both sides to the total thickness of the laminate is 4% or more and 30% or less.
The polyimide layer is a multilayer polyimide layer having a non-thermoplastic polyimide layer and a thermoplastic polyimide layer.
The multilayer polyimide layer is provided so that the non-thermoplastic polyimide layer is adjacent to the thermosetting resin layer.
The thermosetting resin layer is a laminate characterized by being made of SF resin.
請求項1に記載の積層体(ただし、前記熱硬化性樹脂層と前記多層ポリイミド層との間に金属配線パターンが形成されたものを除く)。The laminate according to claim 1 (excluding those in which a metal wiring pattern is formed between the thermosetting resin layer and the multilayer polyimide layer). 前記多層ポリイミド層は、最外層が熱可塑性ポリイミド層であることを特徴とする請求項1または2に記載の積層体。 The laminate according to claim 1 or 2, wherein the outermost layer of the multilayer polyimide layer is a thermoplastic polyimide layer. 前記積層体の10GHzにおける比誘電率が3.0以下で、誘電正接は0.004以下であり、50℃〜250℃における線膨張係数が22ppm以下であることを特徴とする請求項1〜3のいずれか一項に記載の積層体。 Claims 1 to 3 are characterized in that the relative permittivity of the laminate at 10 GHz is 3.0 or less, the dielectric loss tangent is 0.004 or less, and the linear expansion coefficient at 50 ° C to 250 ° C is 22 ppm or less. The laminate according to any one of the above items. 請求項1〜のいずれか一項に記載の積層体の少なくとも一方の面に、さらに金属層を設けたフレキシブル金属張積層板。 A flexible metal-clad laminate in which a metal layer is further provided on at least one surface of the laminate according to any one of claims 1 to 4. 請求項記載の金属張積層板を有するフレキシブルプリント回路基板。 A flexible printed circuit board having the metal-clad laminate according to claim 5. フレキシブルプリント回路基板に用いるための積層体であって、前記積層体は熱硬化性樹脂層とポリイミド層とを有し、前記熱硬化性樹脂層は、10GHzにおける比誘電率が3.0以下で、誘電正接は0.003以下であり、かつ、動的粘弾性の測定により得られる20℃における貯蔵弾性率が0.1GPa以上5.0GPa以下であり、前記ポリイミド層は前記熱硬化性樹脂層の両面を被覆しており、
前記積層体の厚みが25μm以上であり、片面の前記ポリイミド層の厚みが0.5μm以上かつ、積層体の総厚みに対する両面の前記ポリイミド層の厚みの比が4%以上30%以下であり、
前記ポリイミド層は、非熱可塑性ポリイミド層と熱可塑性ポリイミド層を有する多層ポリイミド層であり、
前記多層ポリイミド層は、前記非熱可塑性ポリイミド層が、前記熱硬化性樹脂層に隣接するよう設けられており、
前記熱硬化性樹脂層は、SF樹脂からなることを特徴とする積層体。
A laminate for use in a flexible printed circuit board, the laminate having a thermosetting resin layer and a polyimide layer, and the thermosetting resin layer has a specific dielectric constant of 3.0 or less at 10 GHz. The dielectric loss tangent is 0.003 or less, and the storage elastic coefficient at 20 ° C. obtained by measuring the dynamic viscoelasticity is 0.1 GPa or more and 5.0 GPa or less, and the polyimide layer is the thermosetting resin layer. of it has been coated on both sides,
The thickness of the laminate is 25 μm or more, the thickness of the polyimide layer on one side is 0.5 μm or more, and the ratio of the thickness of the polyimide layers on both sides to the total thickness of the laminate is 4% or more and 30% or less.
The polyimide layer is a multilayer polyimide layer having a non-thermoplastic polyimide layer and a thermoplastic polyimide layer.
The multilayer polyimide layer is provided so that the non-thermoplastic polyimide layer is adjacent to the thermosetting resin layer.
The thermosetting resin layer is a laminate characterized by being made of SF resin.
JP2017130774A 2017-07-04 2017-07-04 Laminates, flexible metal-clad laminates, and flexible printed circuit boards Active JP6936639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017130774A JP6936639B2 (en) 2017-07-04 2017-07-04 Laminates, flexible metal-clad laminates, and flexible printed circuit boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017130774A JP6936639B2 (en) 2017-07-04 2017-07-04 Laminates, flexible metal-clad laminates, and flexible printed circuit boards

Publications (2)

Publication Number Publication Date
JP2019014062A JP2019014062A (en) 2019-01-31
JP6936639B2 true JP6936639B2 (en) 2021-09-22

Family

ID=65356795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017130774A Active JP6936639B2 (en) 2017-07-04 2017-07-04 Laminates, flexible metal-clad laminates, and flexible printed circuit boards

Country Status (1)

Country Link
JP (1) JP6936639B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7509560B2 (en) * 2020-03-31 2024-07-02 日鉄ケミカル&マテリアル株式会社 Resin films, metal-clad laminates and circuit boards
CN116507667A (en) * 2020-10-14 2023-07-28 株式会社钟化 Multilayer polyimide film, metal foil-clad laminate, and method for producing multilayer polyimide film
WO2022080314A1 (en) * 2020-10-14 2022-04-21 株式会社カネカ Multilayer polyimide film, metal-clad laminated plate, and method for producing multilayer polyimide film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224644A (en) * 2005-01-18 2006-08-31 Kaneka Corp Insulating sheet, metallic layer and insulating sheet laminate, and printed wiring board using same
JP2015127117A (en) * 2013-12-27 2015-07-09 新日鉄住金化学株式会社 Metal-clad laminate and circuit board
KR101962986B1 (en) * 2014-11-18 2019-03-27 셍기 테크놀로지 코. 엘티디. Flexible metal laminate
TW201640963A (en) * 2015-01-13 2016-11-16 Hitachi Chemical Co Ltd Resin film for flexible printed circuit board, metal foil provided with resin, coverlay film, bonding sheet, and flexible printed circuit board
TWI682019B (en) * 2015-03-31 2020-01-11 日商鐘化股份有限公司 Multilayer adhesive film and flexible metal-clad laminate

Also Published As

Publication number Publication date
JP2019014062A (en) 2019-01-31

Similar Documents

Publication Publication Date Title
JP6971580B2 (en) Multilayer polyimide film and flexible metal-clad laminate
KR100963376B1 (en) Method for preparing polyimide and polyimide prepared by the same method
JP4625458B2 (en) Adhesive film and use thereof
JP6767759B2 (en) Polyimide, resin film and metal-clad laminate
JP2001072781A (en) Polyimide film and substrate for electric and electronic apparatus using same
JP6788357B2 (en) Polyimide film, multilayer polyimide film, coverlay, and flexible printed wiring board
JP6403460B2 (en) Metal-clad laminate, circuit board and polyimide
JP7122162B2 (en) Thermoplastic Polyimide Films, Multilayer Polyimide Films, and Flexible Metal-Clad Laminates
JP2018145303A (en) Multilayer polyimide film
JP2021074894A (en) Multilayer polyimide film
JP6936639B2 (en) Laminates, flexible metal-clad laminates, and flexible printed circuit boards
JP2008188954A (en) Base material for single-sided metal-clad laminated sheet and manufacturing method of single-sided metal-clad laminated sheet
JP5468913B2 (en) Multilayer polyimide film with resist and method for producing the same
WO2022080314A1 (en) Multilayer polyimide film, metal-clad laminated plate, and method for producing multilayer polyimide film
JPWO2020022129A1 (en) Metal-clad laminate and circuit board
KR101195719B1 (en) Adhesive film, flexible metal-clad laminate of enhanced dimensional stability obtained therefrom and process for producing the same
JP2020015237A (en) Method for manufacturing metal-clad laminate and method for manufacturing circuit board
CN107428146B (en) Polyimide laminate film, method for producing thermoplastic polyimide, and method for producing flexible metal-clad laminate
JP2017177602A (en) Polyimide laminate film
JP2007230019A (en) Manufacturing method of metal clad laminated sheet
JP5069844B2 (en) Method for producing insulating film for printed wiring board, polyimide / copper laminate and printed wiring board
JP2006316232A (en) Adhesive film and its preparation process
JP2006328407A (en) Polyimide film and substrate for electric and electronic apparatus using same
JP5355993B2 (en) Adhesive film
JP2023146680A (en) Polyamic acid, polyimide, polyimide film and multilayer film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210827

R150 Certificate of patent or registration of utility model

Ref document number: 6936639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150