JP2017177602A - Polyimide laminate film - Google Patents

Polyimide laminate film Download PDF

Info

Publication number
JP2017177602A
JP2017177602A JP2016069655A JP2016069655A JP2017177602A JP 2017177602 A JP2017177602 A JP 2017177602A JP 2016069655 A JP2016069655 A JP 2016069655A JP 2016069655 A JP2016069655 A JP 2016069655A JP 2017177602 A JP2017177602 A JP 2017177602A
Authority
JP
Japan
Prior art keywords
polyimide
thermoplastic polyimide
added
thermoplastic
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016069655A
Other languages
Japanese (ja)
Inventor
直樹 福島
Naoki Fukushima
直樹 福島
誠二 細貝
Seiji Hosogai
誠二 細貝
隼平 齋藤
Jumpei Saito
隼平 齋藤
多和田 誠
Makoto Tawada
誠 多和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2016069655A priority Critical patent/JP2017177602A/en
Publication of JP2017177602A publication Critical patent/JP2017177602A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polyimide laminate film capable of suppressing crack generation due to alkali environment, when a flexible metal clad laminate is manufactured by using the polyimide laminate film and a flexible printed wiring board is continuously manufactured by a roll-to-roll method.SOLUTION: There is provided a polyamide laminate film using a thermoplastic polyimide by laminating a thermoplastic polyimide layer on at least a single-sided surface of a non-thermoplastic polyimide film. A storage elastic modulus at 300°C and 5 Hz of a thermoplastic polyimide is 1.4×10Pa to 3.5×10Pa, the storage elastic modulus has an inflection point at a higher temperature than a glass transition temperature, and a storage elastic modulus at the inflection point is 0.7×10Pa to 1.6×10Pa.SELECTED DRAWING: None

Description

本発明はフレキシブル金属張積層板に好適に用いることができるポリイミド積層フィルムに関する。   The present invention relates to a polyimide laminated film that can be suitably used for a flexible metal-clad laminate.

近年、スマートフォン、タブレットパソコン、ノートパソコン等を中心としたエレクトロニクス製品の需要拡大に伴い、各種フレキシブルプリント配線板(以下、FPCともいう)の需要が伸びている。   In recent years, demand for various flexible printed circuit boards (hereinafter also referred to as FPCs) has been increasing with increasing demand for electronic products such as smartphones, tablet computers, notebook computers, and the like.

FPCは、例えばポリイミドのような絶縁性フィルム層をコアフィルム(以下、ベースフィルム、また基材と呼ぶこともある)とし、このコアフィルムの表面に、各種接着材料による接着層を介して金属箔層を加熱・圧着することにより貼りあわされたフレキシブル金属張積層板に製造し、さらに回路パターンを形成することで得られる。接着層には従来、エポキシ樹脂やアクリル樹脂が使用されていたが、これらは耐熱性に乏しく、使用用途が限定されてしまう。しかし、接着層として熱可塑性ポリイミドを用いた2層フレキシブルプリント配線板(以下、2層FPCともいう)は、耐熱性、屈曲性に優れることから需要が更に伸びることが期待される。   In FPC, for example, an insulating film layer such as polyimide is used as a core film (hereinafter also referred to as a base film or a base material), and a metal foil is provided on the surface of the core film via adhesive layers made of various adhesive materials. It can be obtained by manufacturing a flexible metal-clad laminate bonded by heating and pressure-bonding the layers, and further forming a circuit pattern. Conventionally, an epoxy resin or an acrylic resin has been used for the adhesive layer, but these have poor heat resistance, and use applications are limited. However, a two-layer flexible printed wiring board (hereinafter also referred to as a two-layer FPC) using thermoplastic polyimide as an adhesive layer is expected to further increase demand because of its excellent heat resistance and flexibility.

また、これまで以上に電子機器の軽量化、小型化、薄膜化の要求が進んでおり、市場からはこれを達成するために、実装するFPCも薄膜化することが望まれている。また、生産性向上(コストダウン化)に伴うフレキシブル銅張積層板の製造工程の変更に伴い、ポリイミドフィルムなどの材料にかかる負荷、特に機械強度の向上などの要求も増している。
FPCの従来の製造方法は、現像工程、エッチング処理工程、レジスト剥離工程などからなる製造工程がバッチ式(非連続工程)で行われていた。現像・エッチング処理・レジスト剥離工程で使用するアルカリ溶液に対するポリイミドの耐性を制御した報告はなされており(例えば、特許文献1)、ポリイミドフィルムの高配向化による高強度化に関しても開示されている(例えば、特許文献2)。
In addition, there is an increasing demand for weight reduction, miniaturization, and thinning of electronic devices more than ever, and in order to achieve this, it is desired to thin the FPC to be mounted. In addition, with the change in the production process of flexible copper clad laminates due to productivity improvement (cost reduction), demands on the load on materials such as polyimide film, particularly improvement in mechanical strength, are increasing.
In the conventional manufacturing method of FPC, a manufacturing process including a developing process, an etching process, a resist stripping process, and the like is performed in a batch system (non-continuous process). There have been reports on controlling the resistance of polyimide to an alkaline solution used in development, etching treatment, and resist stripping process (for example, Patent Document 1), and disclosure has also been made regarding increasing the strength by increasing the orientation of a polyimide film ( For example, Patent Document 2).

特開2012−186377号公報JP 2012-186377 A WO01/081456号公報WO01 / 081456

本発明者らが鋭意検討した結果、FPCに加工する際には、アルカリ水溶液に接触する工程があり、耐アルカリ性も求められている。連続式の一例であるロールツーロール式においては、従来のバッチ式よりも強い荷重がポリイミド積層フィルムにかかった状態でアルカリ水溶液と接触することとなる。その結果として、特許文献1に開示されたような、従来のバッチ式におけるアルカリ処理では認められていなかったポリイミド積層フィルムにおけるクラックや割れ・裂けといった現象が発生するという課題が顕在化した。   As a result of intensive studies by the present inventors, when processing into FPC, there is a step of contacting an alkaline aqueous solution, and alkali resistance is also required. In the roll-to-roll method, which is an example of a continuous method, a load stronger than that in the conventional batch method is applied to the polyimide laminated film and comes into contact with the alkaline aqueous solution. As a result, the problem that a phenomenon such as a crack, a crack, and a tear in the polyimide laminated film that has not been recognized by the alkali treatment in the conventional batch method as disclosed in Patent Document 1 has become apparent.

また、特許文献2に開示された材料では、従来のバッチ式のFPC製造工程においては問題にならずとも、上記のようなロールツーロール式により連続的にFPCを製造する工程に耐えるには不十分であり、このような工程を経てもクラックが発生しないようなポリイミド材料は、これまで提供されていなかった。   In addition, the material disclosed in Patent Document 2 is not enough to withstand the process of continuously manufacturing FPC by the roll-to-roll method as described above, even though it is not a problem in the conventional batch-type FPC manufacturing process. A polyimide material that is sufficient and does not generate cracks even after such a process has not been provided so far.

本発明は上述の課題に鑑みてなされたものであって、ロールツーロール式のフレキシブル金属積層板製造工程中のアルカリ環境下において、フィルムに発生するクラックや割れ・裂けを抑制できるポリイミドフィルム、ポリイミド積層フィルム、並びに金属張積層体を提供することにある。   This invention was made in view of the above-mentioned subject, Comprising: The polyimide film which can suppress the crack which generate | occur | produces in a film, and a crack and a tear under an alkaline environment in the roll-to-roll type flexible metal laminated board manufacturing process, polyimide It is providing a laminated film and a metal-clad laminate.

本発明者らは、上記の課題に鑑み鋭意検討した結果、熱可塑性ポリイミドの一次構造および高次構造を製造方法により制御し、樹脂に凝集構造を形成させることにより、アルカリ環境下でフィルムに発生するクラック(以下、デスミアクラックともいう)を抑制できることを見出し、本発明を完成するに至った。すなわち、本発明は、以下のポリイミド積層フィルムに関する。
1)非熱可塑性ポリイミドフィルムの少なくとも片面に熱可塑性ポリイミド層を積層するポリイミド積層フィルムであって、熱可塑性ポリイミド層が、熱可塑性ポリイミドを含み、熱可塑性ポリイミドの動的粘弾性測定(5Hz)による300℃における貯蔵弾性率が1.4×10Pa〜3.5×10Paであり、貯蔵弾性率の温度依存性曲線が熱可塑性ポリイミドのガラス転移温度より高温において変曲点を有し、前記変曲点における貯蔵弾性率が0.7×10Pa〜1.6×10Paである、熱可塑性ポリイミドであることを特徴とするポリイミド積層フィルム。
2)熱可塑性ポリイミドが、剛直成分を有する酸二無水物成分または剛直成分を有するジアミンの少なくとも一方を含むブロック成分を有することを特徴とする、1)に記載のポリイミド積層フィルム。
3)剛直成分を有する酸二無水物が、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物を少なくとも含み、剛直成分を有するジアミンが4,4’−ジアミノジフェニルエーテルもしくは4,4’−ビス(4-アミノフェノキシ)ビフェニルの少なくとも一方を含むことを特徴とする、1)または2)に記載のポリイミド積層フィルム。
As a result of intensive studies in view of the above-mentioned problems, the present inventors have controlled the primary structure and higher-order structure of thermoplastic polyimide by the manufacturing method, and formed an aggregated structure in the resin, so that the film is generated in an alkaline environment. The present inventors have found that cracks (hereinafter also referred to as desmear cracks) that can be suppressed can be suppressed, and the present invention has been completed. That is, this invention relates to the following polyimide laminated films.
1) A polyimide laminated film in which a thermoplastic polyimide layer is laminated on at least one surface of a non-thermoplastic polyimide film, wherein the thermoplastic polyimide layer contains a thermoplastic polyimide, and measured by dynamic viscoelasticity measurement (5 Hz) of the thermoplastic polyimide. The storage elastic modulus at 300 ° C. is 1.4 × 10 8 Pa to 3.5 × 10 8 Pa, and the temperature dependence curve of the storage elastic modulus has an inflection point at a temperature higher than the glass transition temperature of the thermoplastic polyimide. the storage elastic modulus of 0.7 × 10 8 Pa~1.6 × 10 8 Pa at the inflection point, a polyimide laminate film which is a thermoplastic polyimide.
2) The polyimide laminated film according to 1), wherein the thermoplastic polyimide has a block component containing at least one of an acid dianhydride component having a rigid component or a diamine having a rigid component.
3) The acid dianhydride having a rigid component contains at least 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and the diamine having a rigid component is 4,4′-diaminodiphenyl ether or 4,4 The polyimide laminated film according to 1) or 2), comprising at least one of '-bis (4-aminophenoxy) biphenyl.

本発明により得られるポリイミド積層フィルムはロールツーロール式の連続的なFPCの製造工程においてもポリイミドフィルムに発生するクラックを抑制することができる。   The polyimide laminated film obtained by this invention can suppress the crack which generate | occur | produces in a polyimide film also in the manufacturing process of a roll-to-roll type continuous FPC.

本発明の実施例1の貯蔵弾性率の温度依存性を示す図である。It is a figure which shows the temperature dependence of the storage elastic modulus of Example 1 of this invention. 本発明の比較例3の貯蔵弾性率の温度依存性を示す図である。It is a figure which shows the temperature dependence of the storage elastic modulus of the comparative example 3 of this invention.

本発明の実施の形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能であり、異なる実施形態や実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態や実施例についても本発明の技術的範囲に含まれる。なお、本明細書中に記載された学術文献及び特許文献の全てが、本明細書中において参考として援用される。なお、本明細書において特記しない限り、数値範囲を表す「A〜B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」をそれぞれ意味する。   Embodiments of the present invention will be described below, but the present invention is not limited thereto. The present invention is not limited to each configuration described below, and various modifications can be made within the scope shown in the claims, and technical means disclosed in different embodiments and examples respectively. Embodiments and examples obtained by appropriately combining them are also included in the technical scope of the present invention. In addition, all the academic literatures and patent literatures described in this specification are incorporated by reference in this specification. Unless otherwise specified in this specification, “A to B” indicating a numerical range means “A or more (including A and greater than A) and B or less (including B and less than B)”, respectively.

本発明者らは、ポリイミドが特定の一次構造を有することが、アルカリ環境下での強靭性に有効であることを見出した。つまり、ポリイミド積層フィルムのアルカリ環境下での強靭性を改良するためには、動的粘弾性測定によって得られる貯蔵弾性率の温度依存性曲線(以下、DMA曲線ともいう)において、340℃〜360℃に一定の弾性率を保持しようとするショルダー部を有する熱可塑性ポリイミドによって接着層を形成する多層ポリイミドフィルムが、耐アルカリ性(デスミア耐性)に良好であることを見出した。このような分子設計をすることによって、アルカリ環境下での強靭性が改良されるという知見は、本発明者らが初めて見出したものである。   The present inventors have found that it is effective for toughness in an alkaline environment that polyimide has a specific primary structure. That is, in order to improve the toughness of the polyimide laminated film in an alkaline environment, in a temperature dependence curve (hereinafter also referred to as a DMA curve) of storage elastic modulus obtained by dynamic viscoelasticity measurement, 340 ° C. to 360 ° It has been found that a multilayer polyimide film in which an adhesive layer is formed of a thermoplastic polyimide having a shoulder portion that attempts to maintain a constant elastic modulus at ° C. has good alkali resistance (desmear resistance). The present inventors have found for the first time that such a molecular design improves toughness in an alkaline environment.

本発明の熱可塑性ポリイミドとは、示差走査熱量(DSC)で測定される、ガラス転移温度(Tg)が150℃〜350℃であるものをいう。   The thermoplastic polyimide of the present invention refers to one having a glass transition temperature (Tg) of 150 ° C. to 350 ° C. measured by differential scanning calorimetry (DSC).

本発明の非熱可塑性ポリイミドとは、一般に加熱しても軟化、接着性を示さないポリイミドをいう。つまり本発明の非熱可塑性ポリイミドとは、ガラス転移温度を有しないポリイミドをいい、示差走査熱量測定(DSC)で、ガラス転移温度(Tg)を示さないポリイミドをいう。   The non-thermoplastic polyimide of the present invention generally means a polyimide that does not soften or show adhesiveness even when heated. That is, the non-thermoplastic polyimide of the present invention refers to a polyimide that does not have a glass transition temperature, and refers to a polyimide that does not exhibit a glass transition temperature (Tg) by differential scanning calorimetry (DSC).

(ポリイミド積層フィルム)
本発明のポリイミド積層フィルムは、非熱可塑性ポリイミドフィルムの少なくとも片面に熱可塑性ポリイミド層を積層するポリイミド積層フィルムであって、熱可塑性ポリイミド層が、熱可塑性ポリイミドを含み、熱可塑性ポリイミドの動的粘弾性測定(5Hz)による300℃における貯蔵弾性率(E’とも記載する)が1.4×10Pa〜3.5×10Paであり、貯蔵弾性率の温度依存性曲線(DMA曲線)がガラス転移温度より高温において変曲点( 以下、E’変曲点ということもある)を有し、前記変曲点における貯蔵弾性率が0.7×10Pa〜1.6×10Paである、熱可塑性ポリイミドであることを特徴とするポリイミド積層フィルムであることを特徴とする。
(Polyimide laminated film)
The polyimide laminated film of the present invention is a polyimide laminated film in which a thermoplastic polyimide layer is laminated on at least one surface of a non-thermoplastic polyimide film, the thermoplastic polyimide layer containing thermoplastic polyimide, and the dynamic viscosity of the thermoplastic polyimide. storage elastic modulus at 300 ° C. by elasticity measurement (5 Hz) (also referred to as E ') is 1.4 × 10 8 Pa~3.5 × 10 8 Pa, the temperature dependence curve of the storage modulus (DMA curve) Has an inflection point (hereinafter sometimes referred to as E 'inflection point) at a temperature higher than the glass transition temperature, and the storage elastic modulus at the inflection point is 0.7 × 10 8 Pa to 1.6 × 10 8. It is a polyimide laminated film characterized by being a thermoplastic polyimide which is Pa.

ここで、接着層を形成するポリイミドの動的粘弾性は、当該ポリイミドから得られるフィルムを試験片として用い、動的粘弾性を測定して温度に対して貯蔵弾性率をプロットすることにより求めることができる。   Here, the dynamic viscoelasticity of the polyimide forming the adhesive layer is obtained by measuring the dynamic viscoelasticity using a film obtained from the polyimide as a test piece and plotting the storage elastic modulus against the temperature. Can do.

動的粘弾性測定は、測定周波数が5Hzの条件下において測定する。300℃における貯蔵弾性率が1.4×10Pa〜3.5×10Paであることが好ましく、1.5×10Pa〜3.2×10Paであることがより好ましく、1.6×10Pa〜3.0×10Paであることがさらに好ましい。300℃における貯蔵弾性率がこの範囲内にある場合、デスミア液の耐性のみならず、接着層としての吸湿半田耐熱性も向上されるという点で好適となる。 The dynamic viscoelasticity measurement is performed under the condition where the measurement frequency is 5 Hz. Preferably the storage modulus of 1.4 × 10 8 Pa~3.5 × 10 8 Pa at 300 ° C., more preferably from 1.5 × 10 8 Pa~3.2 × 10 8 Pa, More preferably, it is 1.6 × 10 8 Pa to 3.0 × 10 8 Pa. When the storage elastic modulus at 300 ° C. is within this range, it is preferable in that not only the resistance of the desmear liquid but also the hygroscopic solder heat resistance as an adhesive layer is improved.

貯蔵弾性率の温度依存性曲線(DMA曲線)が熱可塑性ポリイミドのガラス転移温度より高温において変曲点を有することが好ましい。変曲点を有する場合、凝集構造の効果を発現しやすい。   It is preferable that the temperature dependence curve (DMA curve) of the storage elastic modulus has an inflection point at a temperature higher than the glass transition temperature of the thermoplastic polyimide. When it has an inflection point, it is easy to express the effect of the aggregation structure.

DMA曲線の変曲点における貯蔵弾性率が0.7×10Pa〜1.6×10Paであることが好ましく、0.9×10Pa〜1.5×10Paであることがより好ましく、0.8×10Pa〜1.2×10Paであることがさらに好ましい。変曲点における貯蔵弾性率が変曲点における貯蔵弾性率がこの範囲にある場合は、デスミア液中でクラックの発生を抑制する効果を示す凝集構造の貯蔵弾性率が適切となる。 Preferably the storage modulus at the inflection point of the DMA curve is 0.7 × 10 8 Pa~1.6 × 10 8 Pa, it is 0.9 × 10 8 Pa~1.5 × 10 8 Pa are more preferable, further preferably 0.8 × 10 8 Pa~1.2 × 10 8 Pa. When the storage elastic modulus at the inflection point is within this range, the storage elastic modulus of the aggregate structure showing the effect of suppressing the occurrence of cracks in the desmear liquid is appropriate.

(熱可塑性ポリイミド)
本発明における熱可塑性ポリイミド層に含まれる熱可塑性ポリイミドは、その前駆体となる熱可塑性ポリアミド酸(以下、熱可塑性ポリアミド酸ともいうことがある)をイミド化して得られる。
(Thermoplastic polyimide)
The thermoplastic polyimide contained in the thermoplastic polyimide layer in the present invention is obtained by imidizing thermoplastic polyamic acid (hereinafter sometimes referred to as thermoplastic polyamic acid) as a precursor.

本発明において用いられる熱可塑性ポリアミド酸を構成することができる原料モノマーは、前駆体である熱可塑性ポリアミド酸をイミド化した熱可塑性ポリイミドの300℃における貯蔵弾性率が1.6×10Pa〜3.0×10Paであり、ガラス転移温度より高温において貯蔵弾性率の変曲点を有し、貯蔵弾性率が0.7×10Pa〜1.6×10Paであることを発現できれば特に制限されない。ポリアミド酸の合成に通常用いられるジアミンおよび酸ニ無水物を使用可能である。 The raw material monomer that can constitute the thermoplastic polyamic acid used in the present invention has a storage elastic modulus at 300 ° C. of a thermoplastic polyimide obtained by imidizing a thermoplastic polyamic acid as a precursor at 1.6 × 10 8 Pa- a 3.0 × 10 8 Pa, in a temperature higher than the glass transition temperature has an inflection point of the storage modulus, the storage modulus is 0.7 × 10 8 Pa~1.6 × 10 8 Pa There is no particular limitation as long as it can be expressed. Diamines and acid dianhydrides commonly used in the synthesis of polyamic acids can be used.

ジアミンとしては本発明の効果を発現できれば特に制限されないが、芳香族ジアミンが耐熱性などの点において好ましい。例えば、2,2’-ビス[4−(4−アミノフェノキシ)フェニル]プロパン、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、4,4’−オキシジアニリン、3,3’−オキシジアニリン、3,4’−オキシジアニリン、4,4’−ジアミノジフェニルジエチルシラン、4,4’−ジアミノジフェニルシラン、4,4’−ジアミノジフェニルエチルホスフィンオキシド、4,4’−ジアミノジフェニルN−メチルアミン、4,4’−ジアミノジフェニル N−フェニルアミン、1,4−ジアミノベンゼン(p−フェニレンジアミン)、ビス{4−(4−アミノフェノキシ)フェニル}スルホン、ビス{4−(3−アミノフェノキシ)フェニル}スルホン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、3,3’−ジアミノベンゾフェノン、4,4'−ジアミノベンゾフェノン、2,2−ビス(4−アミノフェノキシフェニル)プロパン等が挙げられ、これらを単独または複数併用することができる。   The diamine is not particularly limited as long as the effects of the present invention can be exhibited, but an aromatic diamine is preferable in terms of heat resistance and the like. For example, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl sulfide, 3,3 '-Diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 4,4'-oxydianiline, 3,3'-oxydianiline, 3,4'-oxydianiline, 4,4'-diaminodiphenyldiethyl Silane, 4,4′-diaminodiphenylsilane, 4,4′-diaminodiphenylethylphosphine oxide, 4,4′-diaminodiphenyl N-methylamine, 4,4′-diaminodiphenyl N-phenylamine, 1,4- Diaminobenzene (p-phenylenediamine), bis {4- (4-aminophenoxy) pheny } Sulfone, bis {4- (3-aminophenoxy) phenyl} sulfone, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 3,3′-diaminobenzophenone, 4,4′-diaminobenzophenone, 2,2-bis (4-aminophenoxyphenyl) propane Etc., and these can be used alone or in combination.

酸二無水物としては、本発明の効果を発現できれば特に制限されないが、芳香族酸二無水物が耐熱性などの点において好ましい。例えば、ピロメリット酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’−ベンゾフェノンテトラカルボン酸二無水物、4,4’−オキシフタル酸二無水物、3,4’−オキシフタル酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン酸二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)プロパン酸二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン酸二無水物、ビス(3,4−ジカルボキシフェニル)エタン酸二無水物、オキシジフタル酸二無水物、ビス(3,4−ジカルボキシフェニル)スルホン酸二無水物、p−フェニレンビス(トリメリット酸モノエステル酸無水物)、エチレンビス(トリメリット酸モノエステル酸無水物)、ビスフェノールAビス(トリメリット酸モノエステル酸無水物)及びそれらの類似物等が挙げられる。   The acid dianhydride is not particularly limited as long as the effects of the present invention can be exhibited, but an aromatic acid dianhydride is preferable in terms of heat resistance and the like. For example, pyromellitic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 1,2,5,6 -Naphthalenetetracarboxylic dianhydride, 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride, 3,3', 4,4'-benzophenonetetracarboxylic dianhydride, 2,2 ', 3,3′-benzophenonetetracarboxylic dianhydride, 4,4′-oxyphthalic dianhydride, 3,4′-oxyphthalic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane Acid dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) propanoic dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ) Ethane dianhydride 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphenyl) methanoic dianhydride, bis (3,4-dicarboxyphenyl) ethane dianhydride , Oxydiphthalic acid dianhydride, bis (3,4-dicarboxyphenyl) sulfonic acid dianhydride, p-phenylenebis (trimellitic acid monoester acid anhydride), ethylenebis (trimellitic acid monoester acid anhydride) Bisphenol A bis (trimellitic acid monoester acid anhydride) and the like.

本発明では、熱可塑性ポリイミドの凝集構造がデスミア液の侵入を抑制し、クラックの発生を防ぐ効果をもたらすと考えられる。本発明の凝集構造とは、局所的な秩序性有する分子鎖のパッキングを意味する。ポリイミドは芳香環あるいは芳香族複素環などの剛直な構成単位からなるため絡み合いが少なく、一般的な高分子のような折りたたみ鎖を形成しにくい。一方で、イミド環を有する分子鎖に特有な分子鎖のパッキングが起こり、その局所的な秩序性をもった分子鎖のパッキングが起こる。凝集構造はポリイミドフィルムの製膜条件と熱可塑性ポリイミドの一次構造により、制御することが可能である。熱可塑性ポリイミドの一次構造による凝集構造を実現する手段としては種々の方法があるが、熱可塑性ポリイミドが剛直成分を有する酸二無水物成分または剛直成分を有するジアミンの少なくとも一方を含むブロック成分を有することによっても達成できる。   In the present invention, it is considered that the aggregate structure of the thermoplastic polyimide suppresses the penetration of the desmear liquid and brings about an effect of preventing the occurrence of cracks. The aggregate structure of the present invention means packing of molecular chains having local order. Polyimides are composed of rigid structural units such as aromatic rings or aromatic heterocycles, and therefore have little entanglement and are difficult to form a folded chain like a general polymer. On the other hand, molecular chain packing unique to a molecular chain having an imide ring occurs, and molecular chain packing with the local ordering occurs. The aggregation structure can be controlled by the film forming conditions of the polyimide film and the primary structure of the thermoplastic polyimide. There are various methods for realizing the aggregate structure by the primary structure of the thermoplastic polyimide, but the thermoplastic polyimide has a block component containing at least one of an acid dianhydride component having a rigid component or a diamine having a rigid component. Can also be achieved.

剛直成分を有する酸二無水物が3,3’,4,4’−ビフェニルテトラカルボン酸二無水物を少なくとも含み、かつ、剛直成分を有するジアミンが4,4’−ジアミノジフェニルエーテルまたは4,4’−ビス(4-アミノフェノキシ)ビフェニルの少なくとも一方を含むことがより好ましい。3,3’,4,4’−ビフェニルテトラカルボン酸二無水物に対して、4,4’−ジアミノジフェニルエーテルまたは4,4’−ビス(4−アミノフェノキシ)ビフェニルの少なくとも一方が結合したものであることが特に好ましい。   The acid dianhydride having a rigid component contains at least 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and the diamine having a rigid component is 4,4′-diaminodiphenyl ether or 4,4 ′. More preferably, it contains at least one of -bis (4-aminophenoxy) biphenyl. A compound in which at least one of 4,4′-diaminodiphenyl ether and 4,4′-bis (4-aminophenoxy) biphenyl is bonded to 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride. It is particularly preferred.

ジアミンの中でも特に剛直なパラフェニレンジアミンなどを70モル%以上のように多く含む場合、その剛直さから靭性が失われ、熱可塑性ポリイミド全体がもろくなってしまうことがある。一方で、特に嵩高く柔軟な2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパンなどを含むと、熱可塑性ポリイミド全体が軟化していまい、十分な凝集構造を形成できない。そのため、本発明においては、ジアミンのなかでも、4,4’−ジアミノジフェニルエーテル、4,4'−ビス(4−アミノフェノキシ)ビフェニル、1,3−ビス(4−アミノフェノキシ)ベンゼンを含むことが特に好ましく、酸ニ無水物のなかでも、3,3’,4,4’−ビフェニルテトラカルボン酸ニ無水物、ピロメリット酸二無水物を含むことが特に好ましい。   Among diamines, particularly when a large amount of rigid paraphenylenediamine or the like is contained in an amount of 70 mol% or more, toughness may be lost due to the rigidity, and the entire thermoplastic polyimide may become brittle. On the other hand, when 2,2-bis [4- (4-aminophenoxy) phenyl] propane or the like is particularly bulky and flexible, the entire thermoplastic polyimide is softened and a sufficient aggregate structure cannot be formed. Therefore, in the present invention, among diamines, 4,4′-diaminodiphenyl ether, 4,4′-bis (4-aminophenoxy) biphenyl, and 1,3-bis (4-aminophenoxy) benzene are included. Particularly preferable among acid dianhydrides, it is particularly preferable to include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride.

(熱可塑性ポリアミド酸の製造)
本発明の熱可塑性ポリアミド酸を製造する際に用いられる溶媒は、ポリアミド酸を溶解する溶媒であればいかなるものも用いることができるが、アミド系溶媒、すなわちN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンなどであり、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドが特に好ましく用い得る。
(Production of thermoplastic polyamic acid)
As the solvent used in producing the thermoplastic polyamic acid of the present invention, any solvent can be used as long as it dissolves the polyamic acid, but amide solvents, that is, N, N-dimethylformamide, N, N -Dimethylacetamide, N-methyl-2-pyrrolidone and the like, and N, N-dimethylformamide and N, N-dimethylacetamide can be particularly preferably used.

本発明の熱可塑性ポリイミド酸の製造方法は、本願の目的を達成できる熱可塑性ポリイミドであれば公知のどうような方法も用いることが可能である。   As the method for producing the thermoplastic polyimide acid of the present invention, any known method can be used as long as it is a thermoplastic polyimide capable of achieving the object of the present application.

例えば、下記の工程(A−a)〜(A−c):
(A−a)芳香族ジアミンと、芳香族酸二無水物とを、芳香族ジアミンが過剰の状態で有機極性溶媒中で反応させ、両末端にアミノ基を有するプレポリマーを得る工程、
(A−b)工程(A−a)で用いたものとは構造の異なる芳香族ジアミンを追加添加する工程、
(A−c)更に、工程(A−a)で用いたものとは構造の異なる芳香族酸二無水物を、全工程における芳香族ジアミンと芳香族酸二無水物が実質的に等モルとなるように添加して重合する工程、
によって製造することができる。
For example, the following steps (Aa) to (Ac):
(Aa) a step of reacting an aromatic diamine and an aromatic dianhydride in an organic polar solvent in an excess of aromatic diamine to obtain a prepolymer having amino groups at both ends;
(Ab) a step of additionally adding an aromatic diamine having a structure different from that used in the step (Aa),
(Ac) Further, the aromatic dianhydride having a structure different from that used in the step (Aa) is substantially equal to the aromatic diamine and aromatic dianhydride in all steps. Adding and polymerizing so that
Can be manufactured by.

または、下記の工程(B−a)〜(B−c):
(B−a)芳香族ジアミンと、芳香族酸二無水物とを、芳香族酸二無水物が過剰の状態で有機極性溶媒中で反応させ、両末端に酸無水物基を有するプレポリマーを得る工程、
(B−b)工程(B−a)で用いたものとは構造の異なる芳香族酸二無水物を追加添加する工程、
(B−c)更に、工程(B−a)で用いたものとは構造の異なる芳香族ジアミンを、全工程における芳香族ジアミンと芳香族酸二無水物が実質的に等モルとなるように添加して重合する工程、
を経ることによってポリアミド酸を得ることも可能である。
Alternatively, the following steps (Ba) to (Bc):
(Ba) An aromatic diamine and an aromatic acid dianhydride are reacted in an organic polar solvent in an excess of aromatic acid dianhydride, and a prepolymer having acid anhydride groups at both ends is obtained. Obtaining step,
(Bb) a step of additionally adding an aromatic dianhydride having a structure different from that used in the step (Ba),
(Bc) Furthermore, the aromatic diamine having a different structure from that used in the step (Ba) is used so that the aromatic diamine and the aromatic dianhydride are substantially equimolar in all steps. Adding and polymerizing,
It is also possible to obtain polyamic acid by going through.

任意のジアミンもしくは酸二無水物に、特定のジアミンもしくは酸二無水物が選択的に結合するように添加順序を設定する合成方法(例えば工程(A−a)〜(A−c)、および(B−a)〜(B−c))を本発明ではシーケンス重合と呼ぶ。これに対し、結合するジアミンと酸二無水物を投入順序で選択しない合成方法を本発明ではランダム重合と呼ぶ。   Synthetic methods (for example, steps (Aa) to (Ac), and (A)) in which the order of addition is set so that a specific diamine or acid dianhydride selectively binds to any diamine or acid dianhydride, and ( Ba) to (Bc)) are referred to as sequence polymerization in the present invention. On the other hand, a synthesis method in which the diamine and acid dianhydride to be bonded are not selected in the charging order is referred to as random polymerization in the present invention.

(熱可塑性ポリアミド酸の固形分濃度)
本発明の熱可塑性ポリアミド酸の製造時の固形分濃度は特に限定されず、5重量%〜35重量%の範囲内であれば非熱可塑性ポリイミドとした際に十分な機械強度を有するポリアミド酸が得られる。
(Solid content concentration of thermoplastic polyamic acid)
The solid content concentration during the production of the thermoplastic polyamic acid of the present invention is not particularly limited, and the polyamic acid having sufficient mechanical strength when used as a non-thermoplastic polyimide is within the range of 5 wt% to 35 wt%. can get.

(熱可塑性ポリアミド酸のイミド化)
本発明において製造される熱可塑性ポリイミドは化学イミド化法や熱イミド化法などの種々の方法によりイミド化される。化学イミド化剤は脱水剤またはイミド化触媒の少なくとも一方を含む。ここで、脱水剤とは、ポリアミド酸に対し、脱水閉環作用を示すものであり、例えば、脂肪族酸無水物、芳香族酸無水物、N,N’−ジアルキルカルボジイミド、ハロゲン化低級脂肪族、ハロゲン化低級脂肪酸無水物、アリールホスホン酸ジハロゲン化物、チオニルハロゲン化物、またはそれら2種以上の混合物が挙げられる。中でも入手の容易性、コストの点から、無水酢酸、無水プロピオン酸、無水ラク酸等の脂肪族酸無水物、またはそれら2種以上の混合物を好ましく用いることができる。脱水剤の好ましい量は、ポリアミド酸中のアミド酸ユニット1モルに対して、0.5モル〜5モル、好ましくは1.0モル〜4モルである。
(Imidization of thermoplastic polyamic acid)
The thermoplastic polyimide produced in the present invention is imidized by various methods such as a chemical imidization method and a thermal imidization method. The chemical imidizing agent contains at least one of a dehydrating agent or an imidization catalyst. Here, the dehydrating agent has a dehydrating cyclization action on polyamic acid, and examples thereof include aliphatic acid anhydrides, aromatic acid anhydrides, N, N′-dialkylcarbodiimides, halogenated lower aliphatics, Halogenated lower fatty acid anhydride, arylphosphonic acid dihalide, thionyl halide, or a mixture of two or more thereof. Among these, from the viewpoint of easy availability and cost, aliphatic acid anhydrides such as acetic anhydride, propionic anhydride, and lactic acid anhydride, or a mixture of two or more thereof can be preferably used. The preferable amount of the dehydrating agent is 0.5 mol to 5 mol, preferably 1.0 mol to 4 mol, relative to 1 mol of the amic acid unit in the polyamic acid.

また、イミド化触媒とはポリアミド酸に対する脱水閉環作用を促進する効果を有する成分を意味し、例えば、脂肪族第三級アミン、芳香族第三級アミン、複素環式第三級アミン等が用いられる。中でもイミド化触媒としての反応性の点から、複素環式第三級アミンから選択されるものが特に好ましく用いられる。具体的にはキノリン、イソキノリン、β−ピコリン、ピリジン等が好ましく用いられる。イミド化触媒の好ましい量はポリアミド酸中のアミド酸ユニット1モルに対して、0.05モル〜3モル、好ましくは0.2モル〜2モルである。   Moreover, the imidation catalyst means a component having an effect of promoting dehydration and cyclization action on polyamic acid, for example, aliphatic tertiary amine, aromatic tertiary amine, heterocyclic tertiary amine, etc. are used. It is done. Among them, those selected from heterocyclic tertiary amines are particularly preferably used from the viewpoint of reactivity as an imidization catalyst. Specifically, quinoline, isoquinoline, β-picoline, pyridine and the like are preferably used. A preferable amount of the imidation catalyst is 0.05 mol to 3 mol, preferably 0.2 mol to 2 mol, relative to 1 mol of the amic acid unit in the polyamic acid.

脱水剤及びイミド化触媒がこれらの範囲内の場合、イミド化が十分に進み、またイミド化フィルム製造途中で破断したり、機械的強度が低下したりすることを減少させることが可能となる。   When the dehydrating agent and the imidization catalyst are within these ranges, imidization sufficiently proceeds, and it is possible to reduce the breakage during the production of the imidized film and the decrease in mechanical strength.

(熱可塑性ポリアミド酸の組成物)
本発明の熱可塑性ポリアミド酸には、フィラー、熱安定剤、酸化防止剤、紫外線吸収剤、帯電防止剤、難燃剤、顔料、染料、脂肪酸エステル、有機滑剤(例えばワックス)等の、各種添加剤を加えることができる。
(Composition of thermoplastic polyamic acid)
The thermoplastic polyamic acid of the present invention includes various additives such as fillers, heat stabilizers, antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, pigments, dyes, fatty acid esters, and organic lubricants (for example, waxes). Can be added.

(非熱可塑性ポリイミド)
本発明のポリイミド積層フィルムは、非熱可塑性ポリイミドフィルムの少なくとも片面に本発明の熱可塑性ポリイミド層を有するものを用いることが可能である。以下、本発明において用いられる非熱可塑性ポリイミドフィルムの例を説明する。
(Non-thermoplastic polyimide)
As the polyimide laminated film of the present invention, one having the thermoplastic polyimide layer of the present invention on at least one surface of a non-thermoplastic polyimide film can be used. Hereinafter, examples of the non-thermoplastic polyimide film used in the present invention will be described.

非熱可塑性ポリイミドフィルムに用いられ得る非熱可塑性ポリイミドの製造に使用するジアミンおよびは酸二無水物は特に限定されるものではない。例えば、熱可塑性ポリアミド酸で使用されるジアミンおよび酸二無水物を例示することができる。これらの中でも、ジアミンとしては4,4’−ジアミノジフェニルエーテル、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2’−ジメチル−4,4’−ジアミノ−1,1’−ビフェニル、3,3’−ジメチル−4,4’−ジアミノ−1,1’−ビフェニル、パラフェニレンジアミン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、酸二無水物としてはベンゾフェノンテトラカルボン酸二無水物、無水ピロメリット酸、3,3’,4,4’−ビフェニルテトラカルボン酸ニ無水物、オキシジフタル酸が熱可塑性ポリイミド層との接着性などの点から好ましい。   The diamine and acid dianhydride used for producing the non-thermoplastic polyimide that can be used for the non-thermoplastic polyimide film are not particularly limited. For example, the diamine and acid dianhydride used with a thermoplastic polyamic acid can be illustrated. Among these, diamines include 4,4′-diaminodiphenyl ether, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2′-dimethyl-4,4′-diamino-1,1. '-Biphenyl, 3,3'-dimethyl-4,4'-diamino-1,1'-biphenyl, paraphenylenediamine, 4,4'-bis (4-aminophenoxy) biphenyl, benzophenone as acid dianhydride Tetracarboxylic dianhydride, pyromellitic anhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and oxydiphthalic acid are preferred from the viewpoint of adhesion to the thermoplastic polyimide layer.

非熱可塑性ポリイミドの前駆体であるポリアミド酸(以下、非熱可塑性ポリアミド酸ともいうことがある)は、ジアミンと酸二無水物を有機溶媒中で実質的に略等モルになるように混合、熱処理を行い反応することにより得られる。例えば、原料であるジアミンと酸二無水物の添加順序についても特に限定されない。しかし、原料の化学構造だけでなく、添加順序を制御することによっても、得られる非熱可塑性ポリイミドの特性を制御することが可能である。非熱可塑性ポリイミドの重合方法、重合用溶媒、反応温度や反応時間は特に限定されるのもではない。ポリアミド酸をポリイミドとする際の硬化剤や硬化条件等も特に限定されない。反応させる場合も、熱イミド化や化学イミド化の方法を利用することができる。   Polyamic acid which is a precursor of non-thermoplastic polyimide (hereinafter sometimes referred to as non-thermoplastic polyamic acid) is a mixture of diamine and acid dianhydride in an organic solvent so as to be substantially equimolar, It is obtained by heat treatment and reaction. For example, the order of adding the raw material diamine and acid dianhydride is not particularly limited. However, it is possible to control the characteristics of the obtained non-thermoplastic polyimide by controlling not only the chemical structure of the raw material but also the order of addition. The polymerization method, polymerization solvent, reaction temperature and reaction time of the non-thermoplastic polyimide are not particularly limited. There are no particular limitations on the curing agent, curing conditions, and the like when polyamic acid is used as polyimide. Also when making it react, the method of thermal imidation or chemical imidation can be utilized.

非熱可塑性ポリアミド酸には、摺動性、熱伝導性、導電性、耐コロナ性、ループスティフネス等のフィルムの諸特性を改善する目的でフィラーを添加することもできる。フィラーとしてはいかなるものを用いても良いが、好ましい例としてはシリカ、酸化チタン、アルミナ、窒化珪素、窒化ホウ素、リン酸水素カルシウム、リン酸カルシウム、雲母などが挙げられる。   A filler may be added to the non-thermoplastic polyamic acid for the purpose of improving various film properties such as slidability, thermal conductivity, conductivity, corona resistance, and loop stiffness. Any filler may be used, but preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica and the like.

非熱可塑性ポリアミド酸をイミド化して得られる非熱可塑性ポリイミドフィルム、またはポリイミド積層フィルムとしての特性を損なわない範囲で、エポキシ樹脂、フェノキシ樹脂などの熱硬化性樹脂、ポリエーテルケトン、ポリエーテルエーテルケトンなどの熱可塑性樹脂を混合しても良い。これら樹脂の添加方法も公知の方法を適用することが可能である。   Non-thermoplastic polyimide film obtained by imidizing non-thermoplastic polyamic acid, or thermosetting resin such as epoxy resin and phenoxy resin, polyether ketone, polyether ether ketone as long as the properties as a polyimide laminated film are not impaired A thermoplastic resin such as may be mixed. A known method can be applied to the addition method of these resins.

(ポリイミド積層フィルムの製造)
ポリイミド積層フィルムを製造する方法は、非熱可塑性ポリイミドフィルムの少なくとも片面に熱可塑性ポリイミド層を積層することができれば特に制限されない。例えば、非熱可塑性ポリイミドフィルムに、熱可塑性ポリアミド酸を含むポリマー溶液を塗布し、その後熱処理を行う方法や、非熱可塑性ポリアミド酸を含むポリマー溶液と熱可塑性ポリアミド酸を含むポリマー溶液を多層ダイを用いて支持体(例えば、金属、セラミック、ポリマー製のロールまたはベルト)の表面上に流延して、熱処理を行う方法などが挙げられる。
(Manufacture of polyimide laminated film)
The method for producing the polyimide laminated film is not particularly limited as long as the thermoplastic polyimide layer can be laminated on at least one surface of the non-thermoplastic polyimide film. For example, a method in which a polymer solution containing a thermoplastic polyamic acid is applied to a non-thermoplastic polyimide film followed by heat treatment, or a polymer solution containing a non-thermoplastic polyamic acid and a polymer solution containing a thermoplastic polyamic acid are bonded to a multilayer die. And a method of performing heat treatment by casting on the surface of a support (for example, a metal, ceramic, polymer roll or belt).

非熱可塑性ポリイミドフィルムを得る方法も特に制限されず、種々の公知の方法を適用できる。例えば、非熱可塑性ポリアミド酸を含むポリマー溶液を支持体(例えば、金属、セラミック、ポリマー製のロールまたはベルト)の表面上に流延して、ポリマー溶液膜を形成する。その後必要に応じて熱処理を行い、ポリマー溶液から溶媒を除去して自己支持性フィルムを得て、さらに加熱処理を行い、イミド化反応を進め、非熱可塑性ポリイミドフィルムを製造する方法が挙げられる。   The method for obtaining the non-thermoplastic polyimide film is not particularly limited, and various known methods can be applied. For example, a polymer solution containing non-thermoplastic polyamic acid is cast on the surface of a support (eg, metal, ceramic, polymer roll or belt) to form a polymer solution film. Thereafter, heat treatment is performed as necessary, and the solvent is removed from the polymer solution to obtain a self-supporting film. Further, heat treatment is performed, the imidization reaction is advanced, and a non-thermoplastic polyimide film is produced.

(フレキシブル金属張積層板)
本発明のポリイミド積層フィルムを、銅箔などの金属箔と貼り合わせることによりフレキシブル金属張積層板を製造することができる。フレキシブル金属張積層板の製造方法としては、例えば、一対以上の金属ロールを有する熱ロールラミネート装置或いはダブルベルトプレス(DBP)による連続処理を用いることができる。中でも、装置構成が単純であり保守コストの面で有利であるという点から、一対以上の金属ロールを有する熱ロールラミネート装置を用いることが好ましい。また、一対以上の金属ロールを有する熱ロールラミネート装置で金属箔と貼り合わせた場合に特に寸法変化が発生しやすいことから、本発明の多層ポリイミドフィルムは、熱ロールラミネート装置で金属箔と張り合わせた場合に顕著な効果を発現する。ここでいう「一対以上の金属ロールを有する熱ロールラミネート装置」とは、材料を加熱加圧するための金属ロールを有している装置であればよく、その具体的な装置構成は特に限定されるものではない。
(Flexible metal-clad laminate)
A flexible metal-clad laminate can be produced by bonding the polyimide laminate film of the present invention to a metal foil such as a copper foil. As a manufacturing method of a flexible metal-clad laminate, for example, a hot roll laminating apparatus having a pair of metal rolls or a continuous process using a double belt press (DBP) can be used. Among these, it is preferable to use a hot roll laminating apparatus having a pair of metal rolls because the apparatus configuration is simple and advantageous in terms of maintenance cost. In addition, since a dimensional change is particularly likely to occur when bonded to a metal foil with a hot roll laminating apparatus having a pair of metal rolls, the multilayer polyimide film of the present invention was bonded to the metal foil with a hot roll laminating apparatus. In some cases, a significant effect is exhibited. The “heat roll laminating apparatus having a pair of metal rolls” herein may be an apparatus having a metal roll for heating and pressurizing a material, and the specific apparatus configuration is particularly limited. It is not a thing.

(フレキシブル金属箔積層体のデスミアクラック耐性)
本発明によって得られるポリイミド積層フィルムは、ロールツーロール式で連続的にフレキシブルプリント配線板を製造する際に、デスミアクラックの発生を抑制できる。これを調べる方法として、本発明ではフレキシブル金属箔積層体のデスミア液浸漬時のクラック耐性を評価した。この方法で膨潤液に15分以上浸漬させてもクラックが確認されなかったものはアルカリ環境下に起因するクラックの発生を抑制できるという点で好適であり、45分以上浸漬させてもクラックが確認されなかったものが特に好適である。
(Desmear crack resistance of flexible metal foil laminate)
The polyimide laminated film obtained by the present invention can suppress the occurrence of desmear cracks when a flexible printed wiring board is continuously produced in a roll-to-roll manner. As a method for examining this, in the present invention, the crack resistance of the flexible metal foil laminate when immersed in a desmear solution was evaluated. Those in which cracks were not confirmed even after being immersed in the swelling solution for 15 minutes or more by this method are suitable in that they can suppress the occurrence of cracks caused by an alkaline environment, and cracks were confirmed even after being immersed for 45 minutes or more. Those that have not been performed are particularly suitable.

以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to these Examples.

(動的粘弾性測定)
貯蔵弾性率は、SIIナノテクノロジー社製 DMS6100により窒素雰囲気下にて動的粘弾性を測定し、貯蔵弾性率の温度依存性をプロットした。
サンプル測定範囲;幅9mm
つかみ具間距離20mm
測定温度範囲;0℃〜400℃
昇温速度;3℃/分
歪み振幅;10μm
測定周波数;5Hz
最小張力/圧縮力;100mN
張力/圧縮ゲイン;1.5
力振幅初期値;100mN
(フレキシブル金属箔積層体のデスミア液浸漬時のクラック耐性)
実施例ならびに比較例で得られたフレキシブル金属箔積層体から長手方向に10cm、幅5cmの大きさに切り取り、切り取った積層体の片側の金属箔層をエッチング処理した。このテストピースをクッション材に挟み、180℃、17.23kgf/cm2の条件で90分間熱プレスを行った。その後、50℃に保った膨潤液に90秒、70℃に保ったデスミア液に600秒、室温に保った中和液に40秒、順次浸漬した。浸漬後、水で洗浄した後に60℃で10分間乾燥させた。その後、上記のテストピースを以下のようにプレス処理した。まず、テストピースをクッション材に挟み、180℃、17.23kgf/cm2の条件で90分間熱プレスを行った。この時、FR4基板は1.0cm×2.5cm×8箇所の穴がくり抜かれているものを使用した。以上のテストピースを膨潤液に90秒浸漬後、FR4基板の穴ごとに2.2cm×5.0cmのサイズに切り落とし測定用の試験片とした。上記の測定用試験片を70℃に保ったデスミア液に所定の時間(15、30、45、60分間)浸漬させ、室温に保った中和液に40秒、順次浸漬させた。浸漬後、水で洗浄・60℃で10分間乾燥させた試験片におけるFR4の空洞部分を観察に使用した。観察は光学顕微鏡を用い、50〜200倍でクラックの発生有無を判定した。膨潤液に45分以上浸漬させてもクラックが確認されなかったものを◎、15分以上浸漬させてもクラックが確認されなかったものを○、15分浸漬させた際にクラックが確認されたものを×とした。
(Dynamic viscoelasticity measurement)
The storage elastic modulus was obtained by measuring the dynamic viscoelasticity in a nitrogen atmosphere with DMS6100 manufactured by SII Nano Technology, and plotting the temperature dependence of the storage elastic modulus.
Sample measurement range; width 9 mm
Distance between grips 20mm
Measurement temperature range: 0 ° C to 400 ° C
Temperature increase rate: 3 ° C./min Strain amplitude: 10 μm
Measurement frequency: 5Hz
Minimum tension / compression force: 100mN
Tension / compression gain; 1.5
Initial value of force amplitude: 100mN
(Crack resistance when dipping in flexible metal foil laminate)
The flexible metal foil laminates obtained in Examples and Comparative Examples were cut into a size of 10 cm in the longitudinal direction and a width of 5 cm, and the metal foil layer on one side of the cut laminate was etched. The test piece was sandwiched between cushion materials and hot-pressed for 90 minutes at 180 ° C. and 17.23 kgf / cm 2. Thereafter, the film was immersed in a swelling liquid kept at 50 ° C. for 90 seconds, desmear liquid kept at 70 ° C. for 600 seconds, and neutralized liquid kept at room temperature for 40 seconds. After soaking, it was washed with water and then dried at 60 ° C. for 10 minutes. Thereafter, the test piece was pressed as follows. First, a test piece was sandwiched between cushion materials, and hot pressing was performed for 90 minutes under the conditions of 180 ° C. and 17.23 kgf / cm 2. At this time, an FR4 substrate having 1.0 cm × 2.5 cm × 8 holes cut out was used. The above test piece was immersed in the swelling solution for 90 seconds, and then cut into a size of 2.2 cm × 5.0 cm for each hole of the FR4 substrate to obtain a test piece for measurement. The test piece for measurement was immersed in a desmear liquid maintained at 70 ° C. for a predetermined time (15, 30, 45, 60 minutes), and then sequentially immersed in a neutralizing liquid maintained at room temperature for 40 seconds. After immersing, the FR4 cavity portion in the test piece washed with water and dried at 60 ° C. for 10 minutes was used for observation. Observation was carried out using an optical microscope to determine the presence or absence of cracks at 50 to 200 times. ◎ if no crack was confirmed even if immersed in the swelling liquid for 45 minutes or more, ○ if no crack was confirmed even if immersed for 15 minutes or more, crack was confirmed when immersed for 15 minutes Was marked with x.

(フレキシブル金属張積層板の吸湿半田耐熱性)
実施例ならびに比較例で得られた両面フレキシブル金属張積層板について、3.5cm角に切り出し、片面(便宜的にA面とする)は2.5cm角の銅箔層がサンプル中央に残るように、反対面(便宜的にB面とする)は銅箔層が全面に残るように、エッチング処理で余分な銅箔層を除去してサンプルを五つ作製した。得られたサンプルを85℃、85%R.H.の加湿条件下で、72時間放置し、吸湿処理を行った。吸湿処理後、サンプルを300℃の半田浴に10秒間浸漬させた。半田浸漬後のサンプルについて、B面の銅箔層をエッチングにより完全に除去し、銅箔が重なっていた部分の外観に変化が無い場合は○(良)、多層ポリイミド層の白化、膨れ、銅箔層の剥離のいずれかが確認された場合は×(悪)とした。
(Hygroscopic solder heat resistance of flexible metal-clad laminates)
The double-sided flexible metal-clad laminates obtained in the examples and comparative examples were cut into 3.5 cm squares, and one side (for convenience, the A side) had a 2.5 cm square copper foil layer left in the center of the sample. On the opposite side (for convenience, B side), five samples were prepared by removing the excess copper foil layer by etching treatment so that the copper foil layer remained on the entire surface. The resulting sample was 85 ° C., 85% R.D. H. The sample was left for 72 hours under the humidification conditions, and a moisture absorption treatment was performed. After the moisture absorption treatment, the sample was immersed in a 300 ° C. solder bath for 10 seconds. For the sample after solder immersion, the copper foil layer on the B side is completely removed by etching, and if the appearance of the part where the copper foil overlaps is not changed, ○ (good), whitening of the multilayer polyimide layer, swelling, copper When any peeling of the foil layer was confirmed, it was set as x (bad).

(熱可塑性ポリイミド前駆体の合成)
(合成例1)
反応系内を20℃に保った状態で、DMF321.68gに、ODA12.25gを添加した。続いてBAPB22.54gを添加し、窒素雰囲気下で攪拌しながら、BPDA25.20gを徐々に添加した。BPDAが溶解したことを目視確認した後、PMDA7.21gを添加し30分間攪拌を行った。0.80gのPMDAを固形分濃度7.2%となるようにDMFに溶解した溶液を調製し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加し、粘度が800ポイズに達した時点で重合を終了した。得られた熱可塑性ポリイミド前駆体はランダム重合によって合成された。
(Synthesis of thermoplastic polyimide precursor)
(Synthesis Example 1)
With the reaction system maintained at 20 ° C., 12.25 g of ODA was added to 321.68 g of DMF. Subsequently, 22.54 g of BAPB was added, and 25.20 g of BPDA was gradually added while stirring under a nitrogen atmosphere. After visually confirming that BPDA was dissolved, 7.21 g of PMDA was added and stirred for 30 minutes. A solution in which 0.80 g of PMDA was dissolved in DMF to a solid content concentration of 7.2% was prepared, and this solution was gradually added to the above reaction solution while paying attention to the increase in viscosity, so that the viscosity became 800 poise. The polymerization was terminated when reached. The obtained thermoplastic polyimide precursor was synthesized by random polymerization.

(合成例2)
反応系内を20℃に保った状態で、DMF321.68gに、ODA12.25gを加え、窒素雰囲気下で攪拌しながらBPDA16.20gを徐々に添加した。BPDAが溶解したことを目視確認した後、BAPB22.54gを添加した。続いて、BPDA9.00gを徐々に添加した後、PMDA7.21gを添加し、30分間攪拌を行った。0.80gのPMDAを固形分濃度7.2%となるようにDMFに溶解した溶液を調製し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加し、粘度が800ポイズに達した時点で重合を終了した。得られた熱可塑性ポリイミド前駆体はシーケンス重合によって合成された。
(Synthesis Example 2)
With the reaction system kept at 20 ° C., 12.25 g of ODA was added to 32.68 g of DMF, and 16.20 g of BPDA was gradually added while stirring under a nitrogen atmosphere. After visually confirming that BPDA was dissolved, 22.54 g of BAPB was added. Subsequently, 9.00 g of BPDA was gradually added, and then 7.21 g of PMDA was added and stirred for 30 minutes. A solution in which 0.80 g of PMDA was dissolved in DMF to a solid content concentration of 7.2% was prepared, and this solution was gradually added to the above reaction solution while paying attention to the increase in viscosity, so that the viscosity became 800 poise. The polymerization was terminated when reached. The obtained thermoplastic polyimide precursor was synthesized by sequence polymerization.

(合成例3)
反応系内を20℃に保った状態で、DMF321.77gに、ODA10.93gを添加した。続いてBAPB20.11gを添加し、窒素雰囲気下で攪拌しながら、BPDA21.41gを徐々に添加した。BPDAが溶解したことを目視確認した後、BAPP4.98gを添加した。続いて、PMDA9.79gを添加し、30分間攪拌を行った。0.79gのPMDAを固形分濃度7.2%となるようにDMFに溶解した溶液を調製し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加し、粘度が800ポイズに達した時点で重合を終了した。得られた熱可塑性ポリイミド前駆体はシーケンス重合によって合成された。
(Synthesis Example 3)
With the reaction system maintained at 20 ° C., 10.93 g of ODA was added to 321.77 g of DMF. Subsequently, 20.11 g of BAPB was added, and 21.41 g of BPDA was gradually added while stirring under a nitrogen atmosphere. After visually confirming that BPDA was dissolved, 4.98 g of BAPP was added. Subsequently, 9.79 g of PMDA was added and stirred for 30 minutes. A solution in which 0.79 g of PMDA was dissolved in DMF to a solid content concentration of 7.2% was prepared, and this solution was gradually added to the reaction solution while paying attention to increase in viscosity, so that the viscosity became 800 poise. The polymerization was terminated when reached. The obtained thermoplastic polyimide precursor was synthesized by sequence polymerization.

(合成例4)
反応系内を20℃に保った状態で、DMF322.01gに、ODA7.12gを添加した。続いてBAPB21.82gを添加し、TPE−Rを6.92g添加した。その後、窒素雰囲気下で攪拌しながら、BPDA24.40gを徐々に添加した。BPDAが溶解したことを目視確認した後、PMDA6.98を添加し30分間攪拌を行った。0.78gのPMDAを固形分濃度7.2%となるようにDMFに溶解した溶液を調製し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加し、粘度が800ポイズに達した時点で重合を終了した。得られた熱可塑性ポリイミド前駆体はランダム重合によって合成された。
(Synthesis Example 4)
With the reaction system kept at 20 ° C., 7.12 g of ODA was added to 322.01 g of DMF. Subsequently, 21.82 g of BAPB was added, and 6.92 g of TPE-R was added. Thereafter, 24.40 g of BPDA was gradually added while stirring in a nitrogen atmosphere. After visually confirming that BPDA was dissolved, PMDA 6.98 was added and stirred for 30 minutes. A solution in which 0.78 g of PMDA was dissolved in DMF to a solid content concentration of 7.2% was prepared, and this solution was gradually added to the above reaction solution while paying attention to an increase in viscosity, so that the viscosity became 800 poise. The polymerization was terminated when reached. The obtained thermoplastic polyimide precursor was synthesized by random polymerization.

(合成例5)
反応系内を20℃に保った状態で、DMF321.85gに、ODA9.64gを添加した。続いてBAPB22.17gを添加し、TPE−Rを3.51g添加した。その後、窒素雰囲気下で攪拌しながら、BPDA24.79gを徐々に添加した。BPDAが溶解したことを目視確認した後、PMDA7.09を添加し30分間攪拌を行った。0.79gのPMDAを固形分濃度7.2%となるようにDMFに溶解した溶液を調製し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加し、粘度が800ポイズに達した時点で重合を終了した。得られた熱可塑性ポリイミド前駆体はランダム重合によって合成された。
(Synthesis Example 5)
While maintaining the inside of the reaction system at 20 ° C., 9.64 g of ODA was added to 321.85 g of DMF. Subsequently, 22.17 g of BAPB was added, and 3.51 g of TPE-R was added. Thereafter, 24.79 g of BPDA was gradually added while stirring in a nitrogen atmosphere. After visually confirming that BPDA was dissolved, PMDA 7.09 was added and stirred for 30 minutes. A solution in which 0.79 g of PMDA was dissolved in DMF to a solid content concentration of 7.2% was prepared, and this solution was gradually added to the reaction solution while paying attention to increase in viscosity, so that the viscosity became 800 poise. The polymerization was terminated when reached. The obtained thermoplastic polyimide precursor was synthesized by random polymerization.

(合成例6)
反応系内を20℃に保った状態で、DMF321.51gに、ODA9.97gを添加した。続いてBAPB22.92gを添加し、PDAを1.35g添加した。その後、窒素雰囲気下で攪拌しながら、BPDA25.63gを徐々に添加した。BPDAが溶解したことを目視確認した後、PMDA7.33を添加し30分間攪拌を行った。0.81gのPMDAを固形分濃度7.2%となるようにDMFに溶解した溶液を調製し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加し、粘度が800ポイズに達した時点で重合を終了した。得られた熱可塑性ポリイミド前駆体はランダム重合によって合成された。
(Synthesis Example 6)
With the reaction system kept at 20 ° C., 9.97 g of ODA was added to 321.51 g of DMF. Subsequently, 22.92 g of BAPB was added, and 1.35 g of PDA was added. Thereafter, 25.63 g of BPDA was gradually added while stirring in a nitrogen atmosphere. After visually confirming that BPDA was dissolved, PMDA 7.33 was added and stirred for 30 minutes. A solution in which 0.81 g of PMDA was dissolved in DMF to a solid content concentration of 7.2% was prepared, and this solution was gradually added to the reaction solution while paying attention to an increase in viscosity, so that the viscosity became 800 poise. The polymerization was terminated when reached. The obtained thermoplastic polyimide precursor was synthesized by random polymerization.

(合成例7)
反応系内を20℃に保った状態で、DMF320.78gに、ODA7.99gを添加した。続いてBAPB19.60gを添加し、PDAを4.31g添加した。その後、窒素雰囲気下で攪拌しながら、BPDA27.39gを徐々に添加した。BPDAが溶解したことを目視確認した後、PMDA7.83を添加し30分間攪拌を行った。0.87gのPMDAを固形分濃度7.2%となるようにDMFに溶解した溶液を調製し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加し、粘度が800ポイズに達した時点で重合を終了した。得られた熱可塑性ポリイミド前駆体はランダム重合によって合成された。
(Synthesis Example 7)
With the reaction system kept at 20 ° C., 7.9 g of ODA was added to 300.78 g of DMF. Subsequently, 19.60 g of BAPB was added, and 4.31 g of PDA was added. Thereafter, 27.39 g of BPDA was gradually added while stirring in a nitrogen atmosphere. After visually confirming that BPDA was dissolved, PMDA 7.83 was added and stirred for 30 minutes. A solution in which 0.87 g of PMDA was dissolved in DMF so as to have a solid content concentration of 7.2% was prepared, and this solution was gradually added to the above reaction solution while paying attention to increase in viscosity, so that the viscosity became 800 poise. The polymerization was terminated when reached. The obtained thermoplastic polyimide precursor was synthesized by random polymerization.

(合成例8)
反応系内を20℃に保った状態で、DMF321.70gに、ODA9.78gを添加した。続いてBAPB22.49gを添加し、m−TBを2.59g添加した。その後、窒素雰囲気下で攪拌しながら、BPDA25.15gを徐々に添加した。BPDAが溶解したことを目視確認した後、PMDA7.19を添加し30分間攪拌を行った。0.80gのPMDAを固形分濃度7.2%となるようにDMFに溶解した溶液を調製し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加し、粘度が800ポイズに達した時点で重合を終了した。得られた熱可塑性ポリイミド前駆体はランダム重合によって合成された。
(Synthesis Example 8)
With the reaction system kept at 20 ° C., ODA 9.78 g was added to DMF 321.70 g. Subsequently, 22.49 g of BAPB was added, and 2.59 g of m-TB was added. Thereafter, 25.15 g of BPDA was gradually added while stirring in a nitrogen atmosphere. After visually confirming that BPDA was dissolved, PMDA 7.19 was added and stirred for 30 minutes. A solution in which 0.80 g of PMDA was dissolved in DMF to a solid content concentration of 7.2% was prepared, and this solution was gradually added to the above reaction solution while paying attention to the increase in viscosity, so that the viscosity became 800 poise. The polymerization was terminated when reached. The obtained thermoplastic polyimide precursor was synthesized by random polymerization.

(合成例9)
反応系内を20℃に保った状態で、DMF321.68gに、BAPB22.54gを加え、窒素雰囲気下で攪拌しながらBPDA16.20gを徐々に添加した。BPDAが溶解したことを目視確認した後、ODA12.25gを添加した。続いて、BPDA9.00gを徐々に添加した後、PMDA7.21gを添加し、30分間攪拌を行った。0.80gのPMDAを固形分濃度7.2%となるようにDMFに溶解した溶液を調製し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加し、粘度が800ポイズに達した時点で重合を終了した。得られた熱可塑性ポリイミド前駆体はシーケンス重合によって合成された。
(Synthesis Example 9)
With the reaction system maintained at 20 ° C., 22.54 g of BAPB was added to 32.68 g of DMF, and 16.20 g of BPDA was gradually added while stirring under a nitrogen atmosphere. After visually confirming that BPDA was dissolved, 12.25 g of ODA was added. Subsequently, 9.00 g of BPDA was gradually added, and then 7.21 g of PMDA was added and stirred for 30 minutes. A solution in which 0.80 g of PMDA was dissolved in DMF to a solid content concentration of 7.2% was prepared, and this solution was gradually added to the above reaction solution while paying attention to the increase in viscosity, so that the viscosity became 800 poise. The polymerization was terminated when reached. The obtained thermoplastic polyimide precursor was synthesized by sequence polymerization.

(合成例10)
反応系内を20℃に保った状態で、DMF321.39gに、ODA12.60gを添加した。続いてBAPB13.91gを添加し、TPE−Rを7.35g添加した。その後、窒素雰囲気下で攪拌しながら、BPDA25.91gを徐々に添加した。BPDAが溶解したことを目視確認した後、PMDA6.98を添加し30分間攪拌を行った。0.82gのPMDAを固形分濃度7.2%となるようにDMFに溶解した溶液を調製し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加し、粘度が800ポイズに達した時点で重合を終了した。得られた熱可塑性ポリイミド前駆体はランダム重合によって合成された。
(Synthesis Example 10)
With the inside of the reaction system kept at 20 ° C., 12.60 g of ODA was added to 32.39 g of DMF. Subsequently, 13.91 g of BAPB was added, and 7.35 g of TPE-R was added. Thereafter, 25.91 g of BPDA was gradually added while stirring under a nitrogen atmosphere. After visually confirming that BPDA was dissolved, PMDA 6.98 was added and stirred for 30 minutes. A solution prepared by dissolving 0.82 g of PMDA in DMF to a solid content concentration of 7.2% was prepared, and this solution was gradually added to the above reaction solution while paying attention to increase in viscosity, so that the viscosity became 800 poise. The polymerization was terminated when reached. The obtained thermoplastic polyimide precursor was synthesized by random polymerization.

(合成例11)
反応系内を20℃に保った状態で、DMF321.02gに、ODA18.26gを添加した。続いてBAPB14.40gを添加し、窒素雰囲気下で攪拌しながら、BPDA26.82gを徐々に添加した。BPDAが溶解したことを目視確認した後、PMDA7.67gを添加し30分間攪拌を行った。0.85gのPMDAを固形分濃度7.2%となるようにDMFに溶解した溶液を調製し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加し、粘度が800ポイズに達した時点で重合を終了した。得られた熱可塑性ポリイミド前駆体はランダム重合によって合成された。
(Synthesis Example 11)
With the reaction system maintained at 20 ° C., 18.26 g of ODA was added to 321.02 g of DMF. Subsequently, 14.40 g of BAPB was added, and 26.82 g of BPDA was gradually added while stirring under a nitrogen atmosphere. After visually confirming that BPDA was dissolved, 7.67 g of PMDA was added and stirred for 30 minutes. A solution in which 0.85 g of PMDA was dissolved in DMF to a solid content concentration of 7.2% was prepared, and this solution was gradually added to the above reaction solution while paying attention to an increase in viscosity, so that the viscosity became 800 poise. The polymerization was terminated when reached. The obtained thermoplastic polyimide precursor was synthesized by random polymerization.

(合成例12)
反応系内を20℃に保った状態で、DMF322.27gに、ODA6.93gを添加した。続いてBAPB29.76gを添加し、窒素雰囲気下で攪拌しながら、BPDA23.76gを徐々に添加した。BPDAが溶解したことを目視確認した後、PMDA6.79gを添加し30分間攪拌を行った。0.76gのPMDAを固形分濃度7.2%となるようにDMFに溶解した溶液を調製し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加し、粘度が800ポイズに達した時点で重合を終了した。得られた熱可塑性ポリイミド前駆体はランダム重合によって合成された。
(Synthesis Example 12)
With the reaction system kept at 20 ° C., 6.93 g of ODA was added to 322.27 g of DMF. Subsequently, 29.76 g of BAPB was added, and 23.76 g of BPDA was gradually added while stirring under a nitrogen atmosphere. After visually confirming that BPDA was dissolved, 6.79 g of PMDA was added and stirred for 30 minutes. A solution prepared by dissolving 0.76 g of PMDA in DMF so that the solid content concentration is 7.2% is prepared, and this solution is gradually added to the above reaction solution while paying attention to increase in viscosity, so that the viscosity becomes 800 poise. The polymerization was terminated when reached. The obtained thermoplastic polyimide precursor was synthesized by random polymerization.

(合成例13)
反応系内を20℃に保った状態で、DMF322.00gに、ODA9.50gを添加した。続いてBAPB17.48gを添加し、窒素雰囲気下で攪拌しながら、BPDA20.94gを徐々に添加した。BPDAが溶解したことを目視確認した後、BAPP9.74gを添加した。続いて、PMDA9.57gを添加し、30分間攪拌を行った。0.78gのPMDAを固形分濃度7.2%となるようにDMFに溶解した溶液を調製し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加し、粘度が800ポイズに達した時点で重合を終了した。得られた熱可塑性ポリイミド前駆体はシーケンス重合によって合成された。
(Synthesis Example 13)
With the reaction system kept at 20 ° C., 9.50 g of ODA was added to 322.00 g of DMF. Subsequently, 17.48 g of BAPB was added, and 20.94 g of BPDA was gradually added while stirring under a nitrogen atmosphere. After visually confirming that BPDA was dissolved, 9.74 g of BAPP was added. Subsequently, 9.57 g of PMDA was added and stirred for 30 minutes. A solution in which 0.78 g of PMDA was dissolved in DMF to a solid content concentration of 7.2% was prepared, and this solution was gradually added to the above reaction solution while paying attention to an increase in viscosity, so that the viscosity became 800 poise. The polymerization was terminated when reached. The obtained thermoplastic polyimide precursor was synthesized by sequence polymerization.

(合成例14)
反応系内を20℃に保った状態で、DMF321.91gに、ODA10.78gを添加した。続いてBAPB19.84gを添加し、BAPPを4.91g添加した。その後、窒素雰囲気下で攪拌しながら、BPDA24.64gを徐々に添加した。BPDAが溶解したことを目視確認した後、PMDA7.05を添加し30分間攪拌を行った。0.78gのPMDAを固形分濃度7.2%となるようにDMFに溶解した溶液を調製し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加し、粘度が800ポイズに達した時点で重合を終了した。得られた熱可塑性ポリイミド前駆体はランダム重合によって合成された。
(Synthesis Example 14)
With the reaction system kept at 20 ° C., 10.78 g of ODA was added to 321.91 g of DMF. Subsequently, 19.84 g of BAPB was added, and 4.91 g of BAPP was added. Thereafter, 24.64 g of BPDA was gradually added while stirring in a nitrogen atmosphere. After visually confirming that BPDA was dissolved, PMDA 7.05 was added and stirred for 30 minutes. A solution in which 0.78 g of PMDA was dissolved in DMF to a solid content concentration of 7.2% was prepared, and this solution was gradually added to the above reaction solution while paying attention to an increase in viscosity, so that the viscosity became 800 poise. The polymerization was terminated when reached. The obtained thermoplastic polyimide precursor was synthesized by random polymerization.

(非熱可塑性ポリイミド前駆体の合成)
(合成例15)
反応系内を20℃に保った状態で、DMF657.82gに、ODA10.53gを添加した。続いてBAPP32.39gを添加し、窒素雰囲気下で攪拌しながら、BTDA16.95gを徐々に添加した。BTDAが溶解したことを目視確認した後、PMDA14.34gを添加し、続けてPDA14.22g、PMDA29.83gを添加した後、30分間攪拌を行った。1.72gのPMDAを固形分濃度7.2%となるようにDMFに溶解した溶液を調製し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加し、粘度が2000ポイズに達した時点で重合を終了した。
(Synthesis of non-thermoplastic polyimide precursor)
(Synthesis Example 15)
With the reaction system kept at 20 ° C., 10.53 g of ODA was added to 657.82 g of DMF. Subsequently, 32.39 g of BAPP was added, and 16.95 g of BTDA was gradually added while stirring under a nitrogen atmosphere. After visually confirming that BTDA was dissolved, 14.34 g of PMDA was added, and then 14.22 g of PDA and 29.83 g of PMDA were added, followed by stirring for 30 minutes. A solution in which 1.72 g of PMDA was dissolved in DMF to a solid content concentration of 7.2% was prepared, and this solution was gradually added to the above reaction solution while paying attention to increase in viscosity, so that the viscosity became 2000 poise. The polymerization was terminated when reached.

このポリアミック酸溶液に、無水酢酸/イソキノリン/DMF(重量比2.0/0.6/2.8)からなるイミド化促進剤をポリアミック酸溶液に対して重量比50%で添加し、連続的にミキサーで撹拌しTダイから押出してステンレス製のエンドレスベルト上に流延した。この樹脂膜を130℃×90秒で加熱した後エンドレスベルトから自己支持性のゲル膜を引き剥がしてテンタークリップに固定し、250℃×11秒、350℃×11秒、450℃×120秒で乾燥・イミド化させ、厚み12.5μmのポリイミドフィルムを得た。   To this polyamic acid solution, an imidization accelerator consisting of acetic anhydride / isoquinoline / DMF (weight ratio 2.0 / 0.6 / 2.8) was added at a weight ratio of 50% with respect to the polyamic acid solution. The mixture was stirred with a mixer, extruded from a T die, and cast onto a stainless steel endless belt. This resin film is heated at 130 ° C. for 90 seconds, and then the self-supporting gel film is peeled off from the endless belt and fixed to the tenter clip. At 250 ° C. for 11 seconds, 350 ° C. for 11 seconds, 450 ° C. for 120 seconds. Drying and imidization were performed to obtain a polyimide film having a thickness of 12.5 μm.

合成例1〜15のモノマー添加順序(モル比)、重合方法、ガラス転移温度(Tg)を表1に示す。   Table 1 shows the monomer addition order (molar ratio), polymerization method, and glass transition temperature (Tg) of Synthesis Examples 1 to 15.

(実施例1)
合成例15で得られたポリイミドフィルムの両面に、合成例1で得られたポリアミック酸溶液を、最終片面厚みが3.0μmとなるように塗布し、150℃×68秒、80℃×9秒で乾燥した。続いて、340℃で12秒間加熱してイミド化を行い、総厚み18.5μmの積層ポリイミドフィルムを得た。
Example 1
On both surfaces of the polyimide film obtained in Synthesis Example 15, the polyamic acid solution obtained in Synthesis Example 1 was applied so that the final single-sided thickness was 3.0 μm, and 150 ° C. × 68 seconds, 80 ° C. × 9 seconds. And dried. Subsequently, imidization was performed by heating at 340 ° C. for 12 seconds to obtain a laminated polyimide film having a total thickness of 18.5 μm.

得られた積層ポリイミドフィルムの両面に12μm電解銅箔(3EC−M3S−HTE、三井金属製)を配し、さらに銅箔の両側に保護フィルム(アピカル125NPI;カネカ製)を用いて、ラミネート温度360℃、ラミネート圧力265N/cm(27kgf/cm)、ラミネート速度1.0m/分の条件で熱ラミネートを行い、フレキシブル金属箔積層体を作製した。得られたフレキシブル金属張積層板の吸湿半田耐熱性を評価した。結果を表2に示す。   Lamination temperature 360 using 12 μm electrolytic copper foil (3EC-M3S-HTE, manufactured by Mitsui Metals) on both sides of the obtained laminated polyimide film, and using protective films (Apical 125 NPI; manufactured by Kaneka) on both sides of the copper foil. Thermal lamination was performed under the conditions of ° C., laminating pressure of 265 N / cm (27 kgf / cm), and laminating speed of 1.0 m / min to prepare a flexible metal foil laminate. The hygroscopic solder heat resistance of the obtained flexible metal-clad laminate was evaluated. The results are shown in Table 2.

続いて、合成例1で得られたポリアミック酸溶液をアルミ箔にコンマコーターを用いて塗布し、120℃で180秒間乾燥した。その後、250℃で60秒、更に350℃で200秒加熱し、基材のアルミ箔をエッチング処理することで接着層のポリイミドフィルムを得た。得られたポリイミドフィルムの貯蔵弾性率の測定を行った。結果を表2に示す。   Subsequently, the polyamic acid solution obtained in Synthesis Example 1 was applied to an aluminum foil using a comma coater and dried at 120 ° C. for 180 seconds. Then, the polyimide film of the contact bonding layer was obtained by heating at 250 degreeC for 60 second, and also heating at 350 degreeC for 200 second, and etching the aluminum foil of a base material. The storage elastic modulus of the obtained polyimide film was measured. The results are shown in Table 2.

(実施例2〜比較例6)
熱可塑性ポリイミド前駆体を合成例2〜合成例14に変えた以外は、実施例1と同様に行い、フレキシブル金属箔積層体・接着層のポリイミドフィルムを作製し、吸湿半田耐熱評価ならびに貯蔵弾性率を測定した。結果を表2に示す。
(Example 2 to Comparative Example 6)
Except for changing the thermoplastic polyimide precursor to Synthesis Example 2 to Synthesis Example 14, the same procedure as in Example 1 was carried out to prepare a flexible metal foil laminate / adhesive layer polyimide film, moisture absorption solder heat resistance evaluation, and storage elastic modulus. Was measured. The results are shown in Table 2.

(考察)
表2の結果から、貯蔵弾性率の温度依存性曲線(DMA曲線)がガラス転移温度より高温において変曲点を有し、前記変曲点における貯蔵弾性率が0.7×10Pa〜1.6×10Paである、熱可塑性ポリイミドはデスミアクラック耐性に優れることがわかる。
(Discussion)
From the results of Table 2, the storage elastic modulus temperature dependency curve (DMA curve) has an inflection point at a temperature higher than the glass transition temperature, and the storage elastic modulus at the inflection point is 0.7 × 10 8 Pa-1. It can be seen that the thermoplastic polyimide of .6 × 10 8 Pa is excellent in desmear crack resistance.

1.本発明の動的粘弾性測定から得られる貯蔵弾性率のショルダー部分
2.本発明の動的粘弾性測定から得られる貯蔵弾性率の変曲点
1. 1. The shoulder portion of the storage elastic modulus obtained from the dynamic viscoelasticity measurement of the present invention. Inflection point of storage modulus obtained from dynamic viscoelasticity measurement of the present invention

Claims (3)

非熱可塑性ポリイミドフィルムの少なくとも片面に熱可塑性ポリイミド層を積層するポリイミド積層フィルムであって、熱可塑性ポリイミド層が、熱可塑性ポリイミドを含み、熱可塑性ポリイミドの動的粘弾性測定(5Hz)による300℃における貯蔵弾性率が1.4×10Pa〜3.5×10Paであり、貯蔵弾性率の温度依存性曲線が熱可塑性ポリイミドのガラス転移温度より高温において変曲点を有し、前記変曲点における貯蔵弾性率が0.7×10Pa〜1.6×10Paである、熱可塑性ポリイミドであることを特徴とするポリイミド積層フィルム。 A polyimide laminated film in which a thermoplastic polyimide layer is laminated on at least one surface of a non-thermoplastic polyimide film, the thermoplastic polyimide layer containing a thermoplastic polyimide, and 300 ° C. by dynamic viscoelasticity measurement (5 Hz) of the thermoplastic polyimide. The storage elastic modulus of the resin is 1.4 × 10 8 Pa to 3.5 × 10 8 Pa, and the temperature dependence curve of the storage elastic modulus has an inflection point at a temperature higher than the glass transition temperature of the thermoplastic polyimide, storage modulus at the inflection point is 0.7 × 10 8 Pa~1.6 × 10 8 Pa, polyimide laminate film which is a thermoplastic polyimide. 熱可塑性ポリイミドが、剛直成分を有する酸二無水物成分または剛直成分を有するジアミンの少なくとも一方を含むブロック成分を有することを特徴とする、請求項1に記載のポリイミド積層フィルム。   The polyimide laminated film according to claim 1, wherein the thermoplastic polyimide has a block component containing at least one of an acid dianhydride component having a rigid component or a diamine having a rigid component. 剛直成分を有する酸二無水物が、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物を少なくとも含み、剛直成分を有するジアミンが4,4’−ジアミノジフェニルエーテルもしくは4,4’−ビス(4-アミノフェノキシ)ビフェニルの少なくとも一方を含むことを特徴とする、請求項1または2に記載のポリイミド積層フィルム。
The acid dianhydride having a rigid component contains at least 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and the diamine having a rigid component is 4,4′-diaminodiphenyl ether or 4,4′- The polyimide laminated film according to claim 1, comprising at least one of bis (4-aminophenoxy) biphenyl.
JP2016069655A 2016-03-30 2016-03-30 Polyimide laminate film Pending JP2017177602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016069655A JP2017177602A (en) 2016-03-30 2016-03-30 Polyimide laminate film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016069655A JP2017177602A (en) 2016-03-30 2016-03-30 Polyimide laminate film

Publications (1)

Publication Number Publication Date
JP2017177602A true JP2017177602A (en) 2017-10-05

Family

ID=60004832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016069655A Pending JP2017177602A (en) 2016-03-30 2016-03-30 Polyimide laminate film

Country Status (1)

Country Link
JP (1) JP2017177602A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019202514A (en) * 2018-05-25 2019-11-28 株式会社カネカ Multilayer polyimide film
WO2020105923A1 (en) * 2018-11-22 2020-05-28 주식회사 엘지화학 Foldable backplate, method for manufacturing foldable backplate, and foldable display device comprising same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019202514A (en) * 2018-05-25 2019-11-28 株式会社カネカ Multilayer polyimide film
JP7039390B2 (en) 2018-05-25 2022-03-22 株式会社カネカ Multilayer polyimide film
WO2020105923A1 (en) * 2018-11-22 2020-05-28 주식회사 엘지화학 Foldable backplate, method for manufacturing foldable backplate, and foldable display device comprising same
CN112041162A (en) * 2018-11-22 2020-12-04 株式会社Lg化学 Foldable back plate, method for manufacturing the same, and foldable display device including the same
CN112041162B (en) * 2018-11-22 2022-07-08 株式会社Lg化学 Foldable back plate, method for manufacturing the same, and foldable display device including the same
US11594156B2 (en) 2018-11-22 2023-02-28 Lg Chem, Ltd. Foldable backplate, method for manufacturing foldable backplate, and foldable display device comprising same

Similar Documents

Publication Publication Date Title
JP6971580B2 (en) Multilayer polyimide film and flexible metal-clad laminate
JP6788357B2 (en) Polyimide film, multilayer polyimide film, coverlay, and flexible printed wiring board
JP5069847B2 (en) Novel polyimide film, adhesive film obtained using the same, and flexible metal-clad laminate
JPWO2009019968A1 (en) Multilayer polyimide film, laminate and metal-clad laminate
JPWO2006115258A1 (en) Novel polyimide film and its use
JP5069846B2 (en) Novel polyimide film, adhesive film obtained using the same, and flexible metal-clad laminate
JPWO2005115752A1 (en) Polyimide laminate and method for producing the same
KR20100017883A (en) Process for production of polyimide film having high adhesiveness
JP2008188954A (en) Base material for single-sided metal-clad laminated sheet and manufacturing method of single-sided metal-clad laminated sheet
JP5254752B2 (en) Multilayer polyimide film
JP2017177604A (en) Polyimide laminate film
JP2011143678A (en) Multilayer polyimide film and flexible metal-clad laminate using the same
JP2017179150A (en) Polyimide film
JP2008188843A (en) Multilayer film of polyimide precursor solution, multilayer polyimide film, single sided metal-clad laminated sheet and manufacturing method of multilayer polyimide film
JP4901509B2 (en) Multilayer film of polyimide precursor solution, multilayer polyimide film, single-sided metal-clad laminate, and method for producing multilayer polyimide film
TWI804658B (en) Metal-clad laminates and circuit boards
JP7039390B2 (en) Multilayer polyimide film
JP2017177602A (en) Polyimide laminate film
TWI683836B (en) Polyimide laminated film, method for producing polyimide laminated film, method for producing thermoplastic polyimide, and method for producing flexible metal clad laminate
JP2011195771A (en) Method for producing adhesive film, and flexible metal-clad laminate
JP2020015237A (en) Method for manufacturing metal-clad laminate and method for manufacturing circuit board
JP2017179148A (en) Polyimide film
JP2017177603A (en) Polyimide laminate film
JP2006316232A (en) Adhesive film and its preparation process
JP2007313854A (en) Copper-clad laminated sheet