JP2017179150A - Polyimide film - Google Patents
Polyimide film Download PDFInfo
- Publication number
- JP2017179150A JP2017179150A JP2016069659A JP2016069659A JP2017179150A JP 2017179150 A JP2017179150 A JP 2017179150A JP 2016069659 A JP2016069659 A JP 2016069659A JP 2016069659 A JP2016069659 A JP 2016069659A JP 2017179150 A JP2017179150 A JP 2017179150A
- Authority
- JP
- Japan
- Prior art keywords
- polyimide
- film
- thermoplastic
- thermoplastic polyimide
- dianhydride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
Description
本発明は、フレキシブル金属張積層板の製造工程におけるフィルムの裂けの発生を抑制し得るポリイミドに関するものである。 The present invention relates to a polyimide capable of suppressing the occurrence of film tearing in the production process of a flexible metal-clad laminate.
近年、スマートフォン、タブレットパソコン、ノートパソコン等を中心としたエレクトロニクス製品の需要拡大に伴い、各種フレキシブルプリント配線板(以下、FPCともいう)の需要が伸びている。中でも接着層として熱可塑性ポリイミドを用いた2層フレキシブルプリント配線板(以下、2層FPCともいう)は、耐熱性、屈曲性に優れることから需要が更に伸びることが期待される。最近は、従来以上の電子機器の軽量化、小型化、薄膜化の要求が進んでおり、市場からはこれを達成するために、実装するFPCも薄膜化することが望まれている。また、生産性向上(コストダウン化)に伴うフレキシブル銅張積層板の製造工程の変更に伴い、ポリイミドフィルムなどの材料にかかる負荷、特に機械強度の向上などの要求も増している。 In recent years, demand for various flexible printed circuit boards (hereinafter also referred to as FPCs) has been increasing with increasing demand for electronic products such as smartphones, tablet computers, notebook computers, and the like. Among these, a two-layer flexible printed wiring board (hereinafter also referred to as a two-layer FPC) using thermoplastic polyimide as an adhesive layer is expected to further increase demand because of its excellent heat resistance and flexibility. Recently, demands for lighter, smaller and thinner electronic devices are increasing, and in order to achieve this, the FPC to be mounted is also desired to be thinner. In addition, with the change in the production process of flexible copper clad laminates due to productivity improvement (cost reduction), demands on the load on materials such as polyimide film, particularly improvement in mechanical strength, are increasing.
FPCの従来の製造方法は、現像工程、エッチング処理工程、レジスト剥離工程などからなる製造工程が、各工程をバッチ式(非連続工程)で行っていた。従来、現像・エッチング処理・レジスト剥離工程で使用するアルカリ溶液に対する耐性を制御したポリイミド(例えば、特許文献1)により報告がなされている。また、高配向化によりポリイミドフィルムの強度を改善する方法も開示されている(例えば、特許文献2)。また、ポリイミド樹脂として、3つのブロック成分から構成されるポリイミドブロック共重合体に関する技術(例えば、特許文献3、4)が開示されている。 In the conventional manufacturing method of FPC, a manufacturing process including a developing process, an etching process, a resist stripping process, and the like is performed in a batch manner (non-continuous process). Conventionally, a polyimide (for example, Patent Document 1) whose resistance to an alkaline solution used in development, etching, and resist stripping processes is controlled has been reported. Moreover, the method of improving the intensity | strength of a polyimide film by high orientation is also disclosed (for example, patent document 2). Moreover, the technique (for example, patent document 3, 4) regarding the polyimide block copolymer comprised from three block components is disclosed as a polyimide resin.
FPCに加工する際には、アルカリ水溶液に接触する工程があり、耐アルカリ性も求められているが、連続式の一例であるロールトゥロール式においては、従来のバッチ式とは異なり、基材の長手方向に張力がかかった状態でアルカリ水溶液と接触することとなる。その結果、本発明者らの検討の結果、従来のバッチ式におけるアルカリ処理では認められていなかったポリイミド積層フィルムにおける裂けといった現象が発生するという課題が生じることが顕在化した。また、アルカリ水溶液に接触する工程では、薬液のスプレー噴射により基材の厚み方向に繰り返し応力がかかる状態となる。更に、基材の搬送時には、基材を支持するロールに沿って基材が搬送されるため、薬液と接触した状態で、フィルムには曲げ応力も発生することとなる。これらの応力もフィルムに対する負荷を与えるために、フィルムの裂けの原因となることも明らかにした。 When processing into FPC, there is a step of contacting with an alkaline aqueous solution, and alkali resistance is also required. However, in the roll-to-roll type which is an example of a continuous type, unlike the conventional batch type, It will contact with alkaline aqueous solution in the state where tension was applied to the longitudinal direction. As a result, as a result of the study by the present inventors, it has become apparent that there arises a problem that a phenomenon such as tearing occurs in the polyimide laminated film, which has not been recognized by the alkali treatment in the conventional batch method. Further, in the step of contacting with the alkaline aqueous solution, a state in which stress is repeatedly applied in the thickness direction of the base material by spraying the chemical solution. Furthermore, since a base material is conveyed along the roll which supports a base material at the time of conveyance of a base material, a bending stress will also generate | occur | produce in a state contacted with the chemical | medical solution. It has also been clarified that these stresses cause the film to tear because they exert a load on the film.
これらの課題に対して、特許文献1に開示されたようなβ緩和温度域で熱処理を施して裂けを抑制する方法が報告されているが、この方法では、別途熱処理の工程が増えるため生産性の低下をもたらす。 In order to solve these problems, a method for suppressing cracking by performing a heat treatment in the β relaxation temperature range as disclosed in Patent Document 1 has been reported. Bring about a decline.
更に、特許文献2に開示された材料では、靭性と高強度化の達成のためにゲル状フィルムの二軸延伸を行っている。そのため、工程が増加し、生産性の低下をもたらす。また、延伸されたフィルムにおいては分子鎖の強い面内配向のため、比較的靭性に乏しくなる傾向にある。そのため、従来のバッチ式のFPC製造工程においては問題にならずとも、上記のようなロールツーロール式により連続的にFPCを製造する工程に耐えるには靭性が不十分であり、このような工程を経ても裂けが発生しないようなポリイミド材料は、これまで提供されていなかった。 Furthermore, in the material disclosed in Patent Document 2, biaxial stretching of the gel film is performed in order to achieve toughness and high strength. As a result, the number of processes increases and productivity decreases. In addition, the stretched film tends to be relatively poor in toughness due to the strong in-plane orientation of molecular chains. Therefore, even if there is no problem in the conventional batch type FPC manufacturing process, the toughness is insufficient to withstand the process of continuously manufacturing the FPC by the roll-to-roll method as described above. No polyimide material has been provided so far that does not tear even after passing through.
また、特許文献3、4にポリイミド樹脂として、3つのブロック成分から構成されるポリイミド共重合体であることを特徴とする技術が開示されている。しかしながら、特許文献3は、液晶配向剤およびそれから得られる液晶配向膜に関する技術であり、上記のようなアルカリ環境下におけるフィルムの裂けに関しては、開示も示唆もない。特許文献4は、親水性、疎水性のポリイミドに加えて、第三のブロック成分としてシロキサン結合を有する構造単位を導入することで燃料電池用の固体電解質膜のプロトン伝導性と耐久性を改善する技術であり、上記のようなアルカリ環境下におけるフィルムの裂けに関しては、開示も示唆もない。 Patent Documents 3 and 4 disclose a technique characterized by a polyimide copolymer composed of three block components as a polyimide resin. However, Patent Document 3 is a technique relating to a liquid crystal aligning agent and a liquid crystal alignment film obtained therefrom, and there is no disclosure or suggestion regarding the tearing of the film in the above alkaline environment. Patent Document 4 improves proton conductivity and durability of a solid electrolyte membrane for a fuel cell by introducing a structural unit having a siloxane bond as a third block component in addition to hydrophilic and hydrophobic polyimide. There is no disclosure or suggestion regarding the tearing of the film in the alkaline environment as described above.
本発明はこれらの課題に鑑みてなされたものであって、その目的は、近年の材料の薄化、生産性向上のためのロールツーロール式への工程変更に伴うフレキシブル金属積層板の製造工程におけるアルカリ環境下で発生するフィルムの裂けを、別途熱処理や延伸を行わずに抑制できるポリイミドを提供することにある。 The present invention has been made in view of these problems, and its purpose is to manufacture a flexible metal laminate in accordance with a process change to a roll-to-roll system for thinning the material and improving productivity in recent years. It is in providing the polyimide which can suppress the tearing of the film which generate | occur | produces in the alkaline environment in without performing heat processing and extending | stretching separately.
本発明者らは、上記の課題に鑑み鋭意検討をした結果、フィルムの裂けを抑制するためには、非熱可塑性ポリイミドに凝集構造を持たせることが重要であることを見出した。凝集構造は、ポリイミドフィルムの「降伏強度」と「塑性変形のしにくさ」に関係しており、本発明では、この二つを凝集構造の指標とした。本発明では、特定の骨格を持つ樹脂を採用することで凝集構造を制御することにより、フィルム製造工程に大きな変更を加えることなく、アルカリ環境下でのフィルムの裂けを抑制して強靭性を改良することが可能となることを見出した。更に、重合方法に関しても検討を行い、非熱可塑性ポリイミドフィルムを構成するポリイミド樹脂を異なる3つのブロック成分を用いて合成することで、その効果が最終的に得られるフィルムの特性により顕著に発現することを見出した。これらの「特定の骨格の導入」並びに「3つの異なるブロック成分を用いた重合」の組み合わせにより、本発明を完成するに至った。 As a result of intensive studies in view of the above-mentioned problems, the present inventors have found that it is important to give a non-thermoplastic polyimide an aggregated structure in order to suppress film tearing. The agglomerated structure is related to the “yield strength” and “hardness of plastic deformation” of the polyimide film. In the present invention, these two are used as indicators of the agglomerated structure. In the present invention, by controlling the agglomeration structure by adopting a resin having a specific skeleton, the toughness is improved by suppressing film tearing in an alkaline environment without major changes to the film manufacturing process. I found out that it would be possible. Furthermore, the polymerization method is also examined, and the effect is remarkably expressed by the properties of the film finally obtained by synthesizing the polyimide resin constituting the non-thermoplastic polyimide film using three different block components. I found out. The combination of these “introduction of a specific skeleton” and “polymerization using three different block components” has led to the completion of the present invention.
すなわち、本発明は以下のポリイミドに関する。
1)少なくとも3つの異なるブロック成分を含有することを特徴とする非熱可塑性ポリイミド。
2)1)記載の非熱可塑性ポリイミドであって、該非熱可塑性ポリイミドは、熱可塑性ポリイミド由来のブロック成分と、非熱可塑性ポリイミド由来のブロック成分から構成される非熱可塑性ポリイミド樹脂を含むことを特徴とする、1)に記載の非熱可塑性ポリイミド。
3)応力―歪み曲線における塑性領域の傾きが2.0以上であることを特徴とする、1)または2)に記載の非熱可塑性ポリイミド。
4)応力―歪み曲線における10%歪み時応力が190MPa以上であることを特徴とする、1)〜3)のいずれか1項に記載の非熱可塑性ポリイミド。
5)非熱可塑性ポリイミドを構成する芳香族ジアミンが少なくとも4,4’−ジアミノ−2,2’−ジメチルビフェニルもしくは4,4’−ジアミノ−3,3’−ジメチルビフェニルを含有することを特徴とする、1)〜4)のいずれか1項に記載の非熱可塑性ポリイミド。
6)非熱可塑性ポリイミドを構成するブロック成分は、少なくとも応力―歪み曲線における塑性変形領域の傾きが3.0以上のブロック成分を含むことを特徴とする、1)〜5)のいずれか1項に記載の非熱可塑性ポリイミド。
7)非熱可塑性ポリイミドを構成するブロック成分は、少なくともCTEが40ppm以上の熱可塑性ブロック成分と10ppm以下の非熱可塑性ブロック成分を含むことを特徴とする、1)〜6)のいずれか1項に記載の非熱可塑性ポリイミド。
8)熱可塑性ブロック成分を構成するジアミン成分が、エーテル結合とベンゼン環からなる骨格のみで構成されることを特徴とする、1)〜7)のいずれか1項に記載の非熱可塑性ポリイミド。
9)非熱可塑性ブロック成分を構成するジアミン成分が、ベンゼン環骨格のみから構成されることを特徴とする、1)〜8)のいずれか1項に記載の非熱可塑性ポリイミド。
That is, this invention relates to the following polyimides.
1) A non-thermoplastic polyimide characterized by containing at least three different block components.
2) The non-thermoplastic polyimide described in 1), wherein the non-thermoplastic polyimide includes a non-thermoplastic polyimide resin composed of a block component derived from a thermoplastic polyimide and a block component derived from the non-thermoplastic polyimide. The non-thermoplastic polyimide described in 1), which is characterized.
3) The non-thermoplastic polyimide according to 1) or 2), wherein the slope of the plastic region in the stress-strain curve is 2.0 or more.
4) The non-thermoplastic polyimide according to any one of 1) to 3), wherein a stress at 10% strain in a stress-strain curve is 190 MPa or more.
5) The aromatic diamine constituting the non-thermoplastic polyimide contains at least 4,4′-diamino-2,2′-dimethylbiphenyl or 4,4′-diamino-3,3′-dimethylbiphenyl. The non-thermoplastic polyimide according to any one of 1) to 4).
6) The block component constituting the non-thermoplastic polyimide includes at least a block component having a slope of the plastic deformation region in the stress-strain curve of 3.0 or more, and any one of 1) to 5) The non-thermoplastic polyimide described in 1.
7) The block component constituting the non-thermoplastic polyimide includes at least a thermoplastic block component having a CTE of 40 ppm or more and a non-thermoplastic block component having a CTE of 10 ppm or less, and any one of 1) to 6) The non-thermoplastic polyimide described in 1.
8) The non-thermoplastic polyimide according to any one of 1) to 7), wherein the diamine component constituting the thermoplastic block component is composed only of a skeleton composed of an ether bond and a benzene ring.
9) The non-thermoplastic polyimide according to any one of 1) to 8), wherein the diamine component constituting the non-thermoplastic block component is composed only of a benzene ring skeleton.
本発明により得られるポリイミドは、フィルムの製造工程に特別な変更を施さずに、アルカリ環境化、ロールツーロール式での製造工程において発生するフィルムの裂けを抑制したフレキシブル金属張積層体を提供できる。 The polyimide obtained by the present invention can provide a flexible metal-clad laminate that suppresses the tearing of the film that occurs in the production process of an alkaline environment and a roll-to-roll method, without specially changing the film production process. .
本発明の実施の形態について、以下に説明する。まず、本発明に係るポリイミドの場合について、その実施の形態の一例に基づき説明するが、本発明は、これに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能であり、異なる実施形態や実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態や実施例についても本発明の技術的範囲に含まれる。なお、本明細書中に記載された学術文献及び特許文献の全てが、本明細書中において参考として援用される。なお、本明細書において特記しない限り、数値範囲を表す「A〜B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」をそれぞれ意味する。 Embodiments of the present invention will be described below. First, although the case of the polyimide which concerns on this invention is demonstrated based on the example of the embodiment, this invention is not limited to this. The present invention is not limited to each configuration described below, and various modifications can be made within the scope shown in the claims, and technical means disclosed in different embodiments and examples respectively. Embodiments and examples obtained by appropriately combining them are also included in the technical scope of the present invention. In addition, all the academic literatures and patent literatures described in this specification are incorporated by reference in this specification. Unless otherwise specified in this specification, “A to B” indicating a numerical range means “A or more (including A and greater than A) and B or less (including B and less than B)”, respectively.
ロールトゥロール式でFPCを加工する場合、基材にはアルカリ水溶液の存在下において、長手方向への張力に加えて、厚み方向への繰り返し応力や曲げ応力などのバッチ式よりも基材に負荷がかかった状態となる。溶剤が介在する場合、一般的に高分子の強度は溶剤が介在しない場合と比較して低くなる。そのため、塑性変形を抑制するためにも降伏強度は高い方が好ましい。また、繰り返し応力下では、高分子は疲労し、徐々に塑性変形を開始する。そのため、塑性変形が開始した後も、その応力に対する抵抗値が大きい(塑性変形しにくさ)方が、裂けの抑制には有効なのではないかと考えた。 When processing FPC with the roll-to-roll method, in the presence of an alkaline aqueous solution on the substrate, in addition to the tension in the longitudinal direction, the substrate is loaded more than the batch method such as repeated stress or bending stress in the thickness direction. It will be in the state where it took. When a solvent is present, the strength of the polymer is generally lower than when no solvent is present. Therefore, it is preferable that the yield strength is high in order to suppress plastic deformation. Also, under repeated stress, the polymer fatigues and gradually begins plastic deformation. For this reason, even after plastic deformation has started, it was considered that the resistance value against the stress being greater (harder to plastic deformation) would be more effective in suppressing cracking.
本発明者らは、ポリイミド積層フィルムのアルカリ環境下での強靭性を改良するためにポリイミドの分子設計を鋭意検討した。その結果、ポリイミド積層フィルムに含まれる非熱可塑性ポリイミド層の凝集構造がポリイミドフィルムのアルカリ環境下での強靭化に寄与しており、ポリイミドの一次構造およびポリイミドの製造方法により凝集構造を制御することにより、フィルム製造工程に大きな変更を加えることなく、アルカリ環境下でのフィルムの裂けを抑制可能であることを見出した。つまり、ポリマーが凝集構造を形成しやすくすることにより、これらの特性を発現できるような分子設計を行い、アルカリ環境下での強靭性が改良されるという知見は、本発明者らが初めて見出したものである。 The present inventors diligently studied the molecular design of polyimide in order to improve the toughness of the polyimide laminated film in an alkaline environment. As a result, the aggregate structure of the non-thermoplastic polyimide layer contained in the polyimide laminate film contributes to the toughening of the polyimide film in an alkaline environment, and the aggregate structure is controlled by the primary structure of the polyimide and the polyimide production method. Thus, it was found that tearing of the film in an alkaline environment can be suppressed without greatly changing the film manufacturing process. In other words, the present inventors have found for the first time the knowledge that the polymer can easily form an agglomerated structure to perform molecular design that can express these characteristics and the toughness in an alkaline environment is improved. Is.
本発明における凝集構造とは、局所的な秩序性を持った分子鎖のパッキングを意味する。ポリイミドは芳香環あるいは芳香族複素環などの剛直な構成単位からなるため、絡み合いも少なく、一般的な高分子のように折りたたみ鎖を形成しにくい。一方でイミド環を有する分子鎖に特有な分子鎖のパッキングが起こり、その局所的な秩序性をもった分子鎖のパッキングが起こる。そのポリイミドの凝集構造がアルカリ環境下での強靭性に関係していることを本発明で見出した。凝集構造はポリイミドフィルムの製膜条件と一次構造により、制御することが可能である。本発明における熱可塑性ポリイミドとは、フィルムの状態で金属製の固定枠に固定して450℃で2分間加熱した際に軟化し、元の形状を保持しないようポリイミドをいう。 The aggregated structure in the present invention means packing of molecular chains having local order. Polyimide is composed of rigid structural units such as an aromatic ring or an aromatic heterocycle, and therefore has little entanglement and hardly forms a folded chain like a general polymer. On the other hand, molecular chain packing unique to the molecular chain having an imide ring occurs, and packing of the molecular chain having the local ordering occurs. It has been found in the present invention that the aggregation structure of the polyimide is related to the toughness in an alkaline environment. The aggregation structure can be controlled by the film forming conditions and the primary structure of the polyimide film. The thermoplastic polyimide in the present invention refers to a polyimide that is softened when it is fixed to a metal fixed frame in the state of a film and heated at 450 ° C. for 2 minutes so that the original shape is not retained.
本発明における非熱可塑性ポリイミドとは、フィルムの状態で金属製の固定枠に固定して450℃、2分間加熱を行った際に、シワが入ったり伸びたりせず、形状を保持しているポリイミドをいう。 The non-thermoplastic polyimide in the present invention retains its shape without being wrinkled or stretched when it is fixed to a metal fixed frame in the state of a film and heated at 450 ° C. for 2 minutes. Refers to polyimide.
(応力―歪み曲線における塑性変形領域の傾き)
本発明のポリイミドは、該ポリイミドを成型して得られるフィルムの応力―歪み曲線における塑性変形領域の傾きが2.0以上であることを特徴とする。
(Slope of plastic deformation region in stress-strain curve)
The polyimide of the present invention is characterized in that the slope of the plastic deformation region in a stress-strain curve of a film obtained by molding the polyimide is 2.0 or more.
本発明者らは、アルカリ環境下におけるポリイミドフィルムの裂けに対する耐久性について鋭意検討を重ねた結果、ポリイミドフィルムが、塑性変形しにくいこと、かつ高い降伏強度を有すること、の二つの条件を満たす場合、アルカリ環境下における裂けに対する高い耐久性を示すという新規知見を見出した。本発明では、熱可塑性ポリイミドと非熱可塑性ポリイミドを含むポリイミド積層フィルムにおいて、特に非熱可塑性ポリイミドに対して、応力−歪み曲線における塑性変形領域の傾きを大きくすること、かつ降伏強度を高くすることの二つの特性を付与することでより効果を得やすい。 As a result of earnestly examining the durability against the tear of the polyimide film in an alkaline environment, the present inventors have satisfied the two conditions that the polyimide film is difficult to plastically deform and has a high yield strength. The present inventors have found a new finding that it exhibits high durability against tearing in an alkaline environment. In the present invention, in a polyimide laminated film containing thermoplastic polyimide and non-thermoplastic polyimide, particularly for non-thermoplastic polyimide, increasing the slope of the plastic deformation region in the stress-strain curve and increasing the yield strength. It is easier to obtain the effect by giving these two characteristics.
本発明における塑性変形領域およびその傾きについて説明する。塑性変形領域とは、ポリイミドフィルムを用いる引張試験における応力―歪み曲線において、降伏点以降の歪みの領域をいう。「塑性変形しにくい」特性は、塑性変形領域において、応力が大きく増加すること、又は塑性変形時に必要な応力が大きいこと、を意図したものである。「塑性変形しにくい」特性は、塑性変形領域における傾きと言い換えることが出来る。例えば、ASTM D882にしたがって引張特性を測定した結果を、縦軸に“応力(MPa)”、横軸に“歪み(ストロークともいう(mm))”のグラフとして表した際の「傾き(すなわちs−s曲線の傾き)」である。本発明においては、s−s曲線における“10%歪み時応力”〜“破断応力”の間の傾きである。計算式を下記に示す。
塑性変形領域の傾き=(stress2−stress1)/(strain2−strain1)
ここで、
stress1:10%歪み時応力
stress2:破断応力
strain1:10%歪み
strain2:破断歪み
である。
The plastic deformation region and its inclination in the present invention will be described. The plastic deformation region refers to a strain region after the yield point in a stress-strain curve in a tensile test using a polyimide film. The property of “not easily plastically deformed” is intended to increase the stress greatly in the plastic deformation region, or to increase the stress required at the time of plastic deformation. The characteristic of “not easily plastically deformed” can be rephrased as the inclination in the plastic deformation region. For example, the results of measuring tensile properties according to ASTM D882 are expressed as “slope (ie, s) when the vertical axis represents“ stress (MPa) ”and the horizontal axis represents“ strain (also referred to as stroke (mm)) ”. −s curve slope) ”. In the present invention, the slope is between “10% strain stress” and “breaking stress” in the s-s curve. The calculation formula is shown below.
Inclination of plastic deformation region = (stress2-stress1) / (strain2-strain1)
here,
stress1: Stress at 10% strain stress2: Breaking stress strain1: 10% strain strain2: Breaking strain.
本発明における「塑性変形しにくい材料」とは、「塑性変形領域の傾きが2.0以上」であることを特徴とする。2.2以上であることがより好ましく、2.5以上であることがさらに好ましい。2.0以上である場合は、分子鎖のパッキングの程度が高い凝集構造が形成され、連続的なFPCの加工工程においても裂けの発生しないフレキシブル金属張積層板として適切となり、好適である。応力―歪み曲線における塑性変形領域の傾きは高い方がよいが、過度に高い場合はスプリングバックなどが発生することもある。4.5以下が好ましく、4.0以下がより好ましい。4.5以下の場合はコシが適切となり、フィルムとしての取扱いがしやすくなる。 The “material which is difficult to plastically deform” in the present invention is characterized in that “the inclination of the plastic deformation region is 2.0 or more”. It is more preferably 2.2 or more, and further preferably 2.5 or more. When it is 2.0 or more, an aggregated structure having a high degree of packing of molecular chains is formed, which is suitable and suitable as a flexible metal-clad laminate that does not tear even in a continuous FPC processing step. The slope of the plastic deformation region in the stress-strain curve should be high, but if it is too high, springback may occur. 4.5 or less is preferable and 4.0 or less is more preferable. When it is 4.5 or less, the stiffness is appropriate and the film can be easily handled.
「降伏強度」は、ASTM D882にしたがって引張特性を測定した際の「10%歪み時応力」により評価することが出来る。例えば、「高い降伏強度を有する材料」とは、本明細書では「10%歪み時応力が190MPa以上であること」を意図する。 “Yield strength” can be evaluated by “stress at 10% strain” when tensile properties are measured according to ASTM D882. For example, “a material having a high yield strength” is intended herein as “a stress at 10% strain is 190 MPa or more”.
(シェイキングテスト)
ロールツーロール式で連続的にFPCを製造する工程を経ても裂けない材料かどうかを確認するには、幅広かつ長尺の材料に連続的方法で金属箔を設け、得られた幅広かつ長尺のフレキシブル金属張積層板を用いてロールツーロール式で現像工程、エッチング処理工程、レジスト剥離工程の3つの工程を含むFPCの製造工程により回路を形成する作業が必要になる。しかし、この方法はコストと時間がかかるため、現実的ではない。本発明者らは、材料となる長尺フィルムまたは長尺フレキシブル金属張積層板として、その両端部および中央部から試験片を切り出し、シェイキングテストにおけるSTを測定した場合に900秒以上となっているような材料を用いれば、裂けが発生しないことを見出した。シェイキングテストは簡単かつ低コストで行うことができ、STが900秒以上となっている材料を用いることにより、きわめて簡単に裂けを発生しないフレキシブル金属張積層体を得ることができる。
(Shaking test)
In order to confirm whether or not the material is not torn even after the process of continuously manufacturing FPC in a roll-to-roll method, a wide and long material is obtained by providing a metal foil with a continuous method on a wide and long material. Using a flexible metal-clad laminate, a circuit is required to be formed by an FPC manufacturing process including a development process, an etching process, and a resist stripping process in a roll-to-roll manner. However, this method is not practical because it is costly and time consuming. As a long film or a long flexible metal-clad laminate as a material, the inventors cut out a test piece from both ends and a central part, and when ST was measured in a shaking test, it was 900 seconds or more. It has been found that no tearing occurs when such a material is used. The shaking test can be performed easily and at low cost, and by using a material having an ST of 900 seconds or more, a flexible metal-clad laminate that does not easily tear can be obtained.
フィルムの両端部および中央部においてシェイキングテストを行ったときのポリイミドフィルムのSTが900秒以上であると、これを用いてフレキシブル金属張積層板とし、ロールツーロール式の連続的なFPC製造工程によってフレキシブル配線板を製造した場合であっても、裂けの発生が抑制されるが、好ましくは1500秒以上であり、さらに好ましくは2000秒以上である。 When ST of the polyimide film when the shaking test is performed at both ends and the center of the film is 900 seconds or more, it is used as a flexible metal-clad laminate, and a roll-to-roll continuous FPC manufacturing process Even when a flexible wiring board is manufactured, the occurrence of tearing is suppressed, but it is preferably 1500 seconds or longer, and more preferably 2000 seconds or longer.
本発明のポリイミドフィルムは、上述のように連続的なFPCの製造に使用される材料となるので、幅広かつ長尺状のポリイミドフィルムである。そして、フィルムの両端および中央部の3点において、シェイキングテストを行った場合のSTが900秒以上となっているフィルムである。このようなフィルムを用いれば、連続的なFPCの工程を経ても得られるFPCに裂けが発生しないので、FPCを効率よく生産することが可能となる。 Since the polyimide film of the present invention is a material used for continuous FPC production as described above, it is a wide and long polyimide film. And it is a film in which ST is 900 seconds or more when a shaking test is performed at three points on both ends and the center of the film. If such a film is used, the FPC obtained through the continuous FPC process does not tear, so that the FPC can be produced efficiently.
(ポリイミド)
本発明のポリイミドは、少なくとも3つの異なるブロック成分を有するポリイミドから構成されることを特徴とする。
(Polyimide)
The polyimide of the present invention is characterized by being composed of polyimide having at least three different block components.
本発明のポリイミドが含む3つのブロック成分としては、少なくとも熱可塑性ポリイミド由来のブロック成分と、非熱可塑性ポリイミド由来のブロック成分を含むことが好ましい。 The three block components contained in the polyimide of the present invention preferably include at least a block component derived from a thermoplastic polyimide and a block component derived from a non-thermoplastic polyimide.
熱可塑性ブロック成分は、柔軟性ブロック成分の側鎖に嵩高い置換基を含まず、平面性の高い骨格とエーテル結合などの分子鎖の分子運動性が高い骨格から構成されることがより好ましい。これにより分子鎖のパッキングが密となり、凝集構造の成長が促進され、最終的なフィルムに強靭性を付与することが可能となる。 More preferably, the thermoplastic block component does not contain a bulky substituent in the side chain of the flexible block component, and is composed of a highly planar skeleton and a skeleton having a high molecular mobility of a molecular chain such as an ether bond. As a result, the packing of the molecular chains becomes dense, the growth of the aggregate structure is promoted, and the final film can be provided with toughness.
本発明のポリイミドフィルムが含む非熱可塑性ブロック成分は、モノマーがビフェニル構造などの剛直かつ分子鎖の自由回転度の高い骨格を含有することがより好ましい。ブロック成分の分子鎖が剛直すぎる場合、ポリマーの分子鎖の分子運動性が不十分となる可能性があるため、自由回転度の高いビフェニル骨格の導入により分子運動性を増加させ、凝集構造の形成を促進することが可能となり、最終的に得られるフィルムのアルカリ環境下における裂けが抑制される。剛直且つ自由回転度の高い骨格を有するモノマーはビフェニル構造を有すれば制限されないが、例えば、4,4’−ジアミノビフェニル、4,4’−ジアミノ−2,2’−ジメチルビフェニル、4,4’−ジアミノ−3,3’−ジメチルビフェニル、4,4’−ジアミノ−2,2’−ジメトキシビフェニル、4,4’−ジアミノ−3,3’−ジメトキシビフェニル、3,3’,5,5’−テトラメチルベンジジン、4,4’−ビス(4−アミノフェノキシ)ビフェニルなどを例示することができる。非熱可塑性ブロック成分を構成するジアミンモノマー成分100%のうち、剛直かつ自由回転度の高いモノマー成分は、多いほど凝集構造の形成に有効であるが、含有量が多すぎる場合は、結果として得られるフィルムの線膨張係数が著しく低下するために25モル%〜45モル%である範囲が好ましい。 The non-thermoplastic block component contained in the polyimide film of the present invention more preferably contains a monomer having a rigid skeleton having a high degree of free rotation of molecular chains such as a biphenyl structure. If the molecular chain of the block component is too rigid, the molecular mobility of the polymer molecular chain may be insufficient, so the introduction of a biphenyl skeleton with a high degree of free rotation increases the molecular mobility and forms an aggregate structure. And the tear of the finally obtained film in an alkaline environment is suppressed. A monomer having a skeleton having a rigid and high degree of free rotation is not limited as long as it has a biphenyl structure. For example, 4,4′-diaminobiphenyl, 4,4′-diamino-2,2′-dimethylbiphenyl, 4,4 '-Diamino-3,3'-dimethylbiphenyl, 4,4'-diamino-2,2'-dimethoxybiphenyl, 4,4'-diamino-3,3'-dimethoxybiphenyl, 3,3', 5,5 Examples include '-tetramethylbenzidine, 4,4'-bis (4-aminophenoxy) biphenyl, and the like. Of the 100% diamine monomer component that constitutes the non-thermoplastic block component, the more rigid and the higher the degree of free rotation of the monomer component, the more effective the formation of an agglomerated structure. A range of 25 mol% to 45 mol% is preferable because the linear expansion coefficient of the obtained film is remarkably lowered.
本発明が含むもう一つのブロック成分は、ジアミンと酸二無水物の組み合わせにより種々特性が変化するために一概に規定することは出来ないが、ジアミンとしては剛直な成分、例えばp−フェニレンジアミンおよびその誘導体を主成分として用いることが好ましい。これら剛直構造を有するジアミンを用いることにより非熱可塑性とし、且つ高い弾性率を達成しやすくなる。また、酸二無水物としては、ピロメリット酸二無水物を主成分として用いることが好ましい。ピロメリット酸に無水物は、良く知られているようにその剛直性から非熱可塑性ポリイミドを与えやすい傾向にある。 Another block component included in the present invention cannot be defined unconditionally because various properties change depending on the combination of diamine and acid dianhydride, but diamines are rigid components such as p-phenylenediamine and the like. It is preferable to use the derivative as a main component. By using these diamines having a rigid structure, it becomes non-thermoplastic and it is easy to achieve a high elastic modulus. Further, as the acid dianhydride, it is preferable to use pyromellitic dianhydride as a main component. As is well known, pyromellitic acid anhydride tends to give non-thermoplastic polyimide due to its rigidity.
これら3つのブロック成分を組み合わせて、最終的に得られるポリイミドが非熱可塑性となるように、分子設計を行う。 By combining these three block components, molecular design is performed so that the final polyimide is non-thermoplastic.
本発明のポリイミドは前駆体となるポリアミド酸をイミド化して得られる。ポリアミド酸を形成するモノマーについて下記にて説明する。 The polyimide of this invention is obtained by imidating the polyamic acid used as a precursor. The monomer that forms the polyamic acid will be described below.
本発明のポリイミドに用いられるジアミンは特に制限されないが、耐熱性等の点から芳香族ジアミンが好ましい。例えば、2,2’-ビス[4−(4−アミノフェノキシ)フェニル]プロパン、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、4,4’−オキシジアニリン、3,3’−オキシジアニリン、3,4’−オキシジアニリン、4,4’−ジアミノジフェニルジエチルシラン、4,4’−ジアミノジフェニルシラン、4,4’−ジアミノジフェニルエチルホスフィンオキシド、4,4’−ジアミノジフェニルN−メチルアミン、4,4’−ジアミノジフェニル N−フェニルアミン、1,4−ジアミノベンゼン(p−フェニレンジアミン)、ビス{4−(4−アミノフェノキシ)フェニル}スルホン、ビス{4−(3−アミノフェノキシ)フェニル}スルホン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、3,3’−ジアミノベンゾフェノン、4,4'−ジアミノベンゾフェノン、2,2−ビス(4−アミノフェノキシフェニル)プロパン、2,2’−ジメチルベンジジン等が挙げられ、これらを単独または複数併用することができる。本発明のポリイミドに特に好適に用いられる芳香族ジアミンは、4,4’−ジアミノビフェニル、4,4’−ジアミノ−2,2’−ジメチルビフェニル、4,4’−ジアミノ−3,3’−ジメチルビフェニル、4,4’−ジアミノ−2,2’−ジメトキシビフェニル、4,4’−ジアミノ−3,3’−ジメトキシビフェニル、3,3’,5,5’−テトラメチルベンジジン、4,4’−ビス(4−アミノフェノキシ)ビフェニル4,4’−ジアミノジフェニルエーテル、2,2’−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、p−フェニレンジアミン、1,3−ビス(4―アミノフェノキシ)ベンゼンなどが例示される。 The diamine used in the polyimide of the present invention is not particularly limited, but an aromatic diamine is preferable from the viewpoint of heat resistance and the like. For example, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl sulfide, 3,3 '-Diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 4,4'-oxydianiline, 3,3'-oxydianiline, 3,4'-oxydianiline, 4,4'-diaminodiphenyldiethyl Silane, 4,4′-diaminodiphenylsilane, 4,4′-diaminodiphenylethylphosphine oxide, 4,4′-diaminodiphenyl N-methylamine, 4,4′-diaminodiphenyl N-phenylamine, 1,4- Diaminobenzene (p-phenylenediamine), bis {4- (4-aminophenoxy) pheny } Sulfone, bis {4- (3-aminophenoxy) phenyl} sulfone, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 3,3′-diaminobenzophenone, 4,4′-diaminobenzophenone, 2,2-bis (4-aminophenoxyphenyl) propane 2,2′-dimethylbenzidine and the like, and these can be used alone or in combination. Aromatic diamines particularly preferably used for the polyimide of the present invention are 4,4′-diaminobiphenyl, 4,4′-diamino-2,2′-dimethylbiphenyl, 4,4′-diamino-3,3′-. Dimethylbiphenyl, 4,4′-diamino-2,2′-dimethoxybiphenyl, 4,4′-diamino-3,3′-dimethoxybiphenyl, 3,3 ′, 5,5′-tetramethylbenzidine, 4,4 '-Bis (4-aminophenoxy) biphenyl 4,4'-diaminodiphenyl ether, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, p-phenylenediamine, 1,3-bis (4- Aminophenoxy) benzene and the like are exemplified.
本発明のポリイミドに用いられる酸二無水物は特に制限されないが、耐熱性等の点から芳香族酸二無水物が好ましい。例えば、ピロメリット酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’−ベンゾフェノンテトラカルボン酸二無水物、4,4’−オキシフタル酸二無水物、3,4’−オキシフタル酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン酸二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)プロパン酸二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン酸二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン酸二無水物、ビス(2,3−ジカルボキシフェニル)メタン酸二無水物、ビス(3,4−ジカルボキシフェニル)エタン酸二無水物、オキシジフタル酸二無水物、ビス(3,4−ジカルボキシフェニル)スルホン酸二無水物、p−フェニレンビス(トリメリット酸モノエステル酸無水物)、エチレンビス(トリメリット酸モノエステル酸無水物)、ビスフェノールAビス(トリメリット酸モノエステル酸無水物)及びそれらの類似物等が挙げられる。本発明のポリイミドに特に好適に用いられる酸二無水物は、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、4,4’−オキシフタル酸二無水物などが例示される。 The acid dianhydride used in the polyimide of the present invention is not particularly limited, but an aromatic acid dianhydride is preferable from the viewpoint of heat resistance and the like. For example, pyromellitic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 1,2,5,6 -Naphthalenetetracarboxylic dianhydride, 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride, 3,3', 4,4'-benzophenonetetracarboxylic dianhydride, 2,2 ', 3,3′-benzophenonetetracarboxylic dianhydride, 4,4′-oxyphthalic dianhydride, 3,4′-oxyphthalic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane Acid dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) propanoic dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ) Ethanoic acid dianhydride 1,1-bis (3,4-dicarboxyphenyl) ethanoic dianhydride, bis (2,3-dicarboxyphenyl) methanoic dianhydride, bis (3,4-dicarboxyphenyl) ethanoic acid Anhydride, oxydiphthalic dianhydride, bis (3,4-dicarboxyphenyl) sulfonic dianhydride, p-phenylenebis (trimellitic acid monoester anhydride), ethylene bis (trimellitic acid monoester anhydride) Product), bisphenol A bis (trimellitic acid monoester anhydride), and the like. Acid dianhydrides particularly preferably used for the polyimide of the present invention are pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, benzophenone tetracarboxylic dianhydride, 4 , 4′-oxyphthalic dianhydride and the like.
本発明の熱可塑性ブロック成分のジアミンとしては、4,4’−ジアミノジフェニルエーテル、4,4’―ビス(4−アミノフェノキシ)ビフェニル、p−フェニレンジアミン、1,3−ビス(4―アミノフェノキシ)ベンゼンが好適に用いられる。また、酸二無水物としては、4,4’−ビフェニルテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、ピロメリット酸二無水物が好適に用いられる。さらに、4,4’−ジアミノジフェニルエーテル、4,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物を含む組み合わせが特に好ましい。 As the diamine of the thermoplastic block component of the present invention, 4,4′-diaminodiphenyl ether, 4,4′-bis (4-aminophenoxy) biphenyl, p-phenylenediamine, 1,3-bis (4-aminophenoxy) Benzene is preferably used. As the acid dianhydride, 4,4′-biphenyltetracarboxylic dianhydride, benzophenone tetracarboxylic dianhydride, and pyromellitic dianhydride are preferably used. Furthermore, a combination including 4,4'-diaminodiphenyl ether, 4,4'-biphenyltetracarboxylic dianhydride, and pyromellitic dianhydride is particularly preferable.
本発明の非熱可塑性ブロック成分のジアミンとしては、4,4’−ジアミノビフェニル、4,4’−ジアミノ−2,2’−ジメチルビフェニル、4,4’−ジアミノ−3,3’−ジメチルビフェニル、4,4’−ジアミノ−2,2’−ジメトキシビフェニル、4,4’−ジアミノ−3,3’−ジメトキシビフェニル、3,3’,5,5’−テトラメチルベンジジン、4,4’−ビス(4−アミノフェノキシ)ビフェニル4,4’−ジアミノジフェニルエーテル、p−フェニレンジアミン、1,3−ビス(4―アミノフェノキシ)ベンゼンが好適に用いられる。また、酸二無水物としては、4,4’−ビフェニルテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、ピロメリット酸二無水物が好適に用いられる。裂けの抑制に有効なブロック成分としては、4,4’−ジアミノ−2,2’−ジメチルビフェニルもしくは4,4’−ジアミノ−3,3’−ジメチルビフェニル、4,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物を含む組み合わせが特に好ましい。高い弾性率の達成に有効なブロック成分としては、p−フェニレンジアミンとピロメリット酸二無水物を含む組み合わせが特に好ましい。 Examples of the diamine of the non-thermoplastic block component of the present invention include 4,4′-diaminobiphenyl, 4,4′-diamino-2,2′-dimethylbiphenyl, and 4,4′-diamino-3,3′-dimethylbiphenyl. 4,4′-diamino-2,2′-dimethoxybiphenyl, 4,4′-diamino-3,3′-dimethoxybiphenyl, 3,3 ′, 5,5′-tetramethylbenzidine, 4,4′- Bis (4-aminophenoxy) biphenyl 4,4′-diaminodiphenyl ether, p-phenylenediamine, and 1,3-bis (4-aminophenoxy) benzene are preferably used. As the acid dianhydride, 4,4′-biphenyltetracarboxylic dianhydride, benzophenone tetracarboxylic dianhydride, and pyromellitic dianhydride are preferably used. Examples of the block component effective for inhibiting cracking include 4,4′-diamino-2,2′-dimethylbiphenyl, 4,4′-diamino-3,3′-dimethylbiphenyl, and 4,4′-biphenyltetracarboxylic acid. A combination containing dianhydride and pyromellitic dianhydride is particularly preferred. As a block component effective for achieving a high elastic modulus, a combination containing p-phenylenediamine and pyromellitic dianhydride is particularly preferable.
(ポリイミドフィルムの線膨張係数)
本発明の非熱可塑性ポリイミドフィルムの線膨張係数は、5〜15ppmであることが好ましい。線膨張係数は、通常組成を変えることによって変動しうるが、本発明の熱可塑性ブロック成分の選び方を変更することによってもコントロールが可能である。
(Linear expansion coefficient of polyimide film)
The linear expansion coefficient of the non-thermoplastic polyimide film of the present invention is preferably 5 to 15 ppm. The linear expansion coefficient can usually be changed by changing the composition, but can also be controlled by changing the method of selecting the thermoplastic block component of the present invention.
(ポリアミド酸製造時の溶媒)
ポリアミド酸を製造するための好ましい溶媒は、ポリアミド酸を溶解する溶媒であればいかなるものも用いることができる。例えば、、アミド系溶媒、すなわちN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンなどを例示することができる。これらの中でも、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドが特に好ましい。
(Solvent for polyamic acid production)
As the preferred solvent for producing the polyamic acid, any solvent that dissolves the polyamic acid can be used. For example, amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and the like can be exemplified. Among these, N, N-dimethylformamide and N, N-dimethylacetamide are particularly preferable.
(ポリアミド酸の製造)
本発明におけるポリアミド酸の製造方法としては、あらゆる公知の方法およびそれらを組み合わせた方法を用いることができる。ポリアミド酸の製造における重合方法の特徴は、そのモノマーの添加順序にあり、このモノマーの添加順序を制御することにより得られるポリイミドの諸物性を制御することができる。従い、本発明においてポリアミド酸の製造にはいかなるモノマーの添加方法を用いても良い。代表的な重合方法として以下のような方法が挙げられる。
(Production of polyamic acid)
As the method for producing the polyamic acid in the present invention, any known method and a combination thereof can be used. The characteristic of the polymerization method in the production of polyamic acid is the order of addition of the monomers, and various physical properties of the polyimide obtained can be controlled by controlling the order of addition of the monomers. Therefore, in the present invention, any method for adding monomers may be used for the production of polyamic acid. Examples of typical polymerization methods include the following methods.
例えば、下記の工程(A−a)〜(A−c):
(A−a)芳香族ジアミンと、芳香族酸二無水物とを、芳香族ジアミンが過剰の状態で有機極性溶媒中で反応させ、両末端にアミノ基を有するプレポリマーを得る工程、
(A−b)工程(A−a)で用いたものとは構造の異なる芳香族ジアミンを追加添加する工程。更に、工程(A−a)で用いたものとは構造の異なる芳香族酸二無水物を、芳香族ジアミンが過剰になる範囲で添加して反応させ、両末端にアミノ基を有するプレポリマーを得る工程、
(A−c)工程(A−a)及び工程(A−b)で用いたものとは構造の異なる芳香族ジアミンを追加添加する工程。更に、工程(A−a)で用いたものとは構造の異なる芳香族酸二無水物を、全工程における芳香族ジアミンと芳香族酸二無水物が実質的に等モルとなるように添加して重合する工程、
によって製造することができる。
For example, the following steps (Aa) to (Ac):
(Aa) a step of reacting an aromatic diamine and an aromatic dianhydride in an organic polar solvent in an excess of aromatic diamine to obtain a prepolymer having amino groups at both ends;
(Ab) A step of additionally adding an aromatic diamine having a structure different from that used in the step (Aa). Further, an aromatic acid dianhydride having a different structure from that used in the step (Aa) is added and reacted within a range where the aromatic diamine becomes excessive, and a prepolymer having amino groups at both ends is obtained. Obtaining step,
(Ac) A step of additionally adding an aromatic diamine having a structure different from that used in the steps (Aa) and (Ab). Further, an aromatic dianhydride having a different structure from that used in the step (Aa) was added so that the aromatic diamine and the aromatic dianhydride in all steps were substantially equimolar. Polymerization step,
Can be manufactured by.
または、下記の工程(B−a)〜(B−c):
(B−a)芳香族ジアミンと、芳香族酸二無水物とを、芳香族酸二無水物が過剰の状態で有機極性溶媒中で反応させ、両末端に酸無水物基を有するプレポリマーを得る工程、
(B−b)工程(B−a)で用いたものとは構造の異なる芳香族酸二を無水物を追加添加する工程。更に、工程(B−a)で用いたものとは構造の異なる芳香族ジアミンを、芳香族酸二無水物が過剰になる範囲で添加して反応させ、両末端に酸無水物基を有するプレポリマーを得る工程、
(B−c)工程(B−a)及び工程(B−b)で用いたものとは構造の異なる芳香族酸二無水物を追加添加する工程。更に、工程(B−a)工程(B−b)で用いたものとは構造の異なる芳香族ジアミンを、全工程における芳香族ジアミンと芳香族酸二無水物が実質的に等モルとなるように添加して重合する工程、
を経ることによってポリアミド酸を得ることも可能である。
Alternatively, the following steps (Ba) to (Bc):
(Ba) An aromatic diamine and an aromatic acid dianhydride are reacted in an organic polar solvent in an excess of aromatic acid dianhydride, and a prepolymer having acid anhydride groups at both ends is obtained. Obtaining step,
(Bb) A step of additionally adding an anhydride of an aromatic acid di having a different structure from that used in the step (Ba). Further, an aromatic diamine having a different structure from that used in the step (Ba) is added and reacted within a range in which the aromatic acid dianhydride becomes excessive, and a prepolymer having acid anhydride groups at both ends is added. Obtaining a polymer;
(Bc) A step of additionally adding an aromatic acid dianhydride having a different structure from that used in the steps (Ba) and (Bb). Furthermore, in the step (Ba), the aromatic diamine having a different structure from that used in the step (BB) is used so that the aromatic diamine and the aromatic dianhydride are substantially equimolar in all steps. Adding to and polymerizing,
It is also possible to obtain polyamic acid by going through.
任意のジアミンもしくは酸二無水物に、特定のジアミンもしくは酸二無水物が選択的に結合するように添加順序を設定する合成方法(例えば工程(A−a)〜(A−b)、および(B−a)〜(B−b))を本発明ではシーケンス重合と呼ぶ。シーケンス重合により得られたポリマーのうち、ブロック成分が二つの場合をジブロック共重合体、3つの場合をトリブロック共重合体と呼ぶ。これに対し、結合するジアミンと酸二無水物を投入順序で選択しない合成方法を本発明ではランダム重合と呼ぶ。ランダム重合により得られたポリマーをランダム共重合体と呼ぶ。 A synthetic method (for example, steps (Aa) to (Ab), and (Ab), and (Ab), and (Ab), and Ba) to (Bb)) are referred to as sequence polymerization in the present invention. Of the polymers obtained by sequence polymerization, the case where there are two block components is called a diblock copolymer, and the case where there are three block components is called a triblock copolymer. On the other hand, a synthesis method in which the diamine and acid dianhydride to be bonded are not selected in the charging order is called random polymerization in the present invention. A polymer obtained by random polymerization is called a random copolymer.
本発明において、フレキシブル金属張積層板として特性を維持しつつ、フィルムの裂けの抑制に有効なポリイミド樹脂を得るための好ましい重合方法としては、ランダム重合よりもシーケンス重合が好ましく、シークエンス重合でも、ジブロック共重合体よりもトリブロック共重合体を形成する方法を用いるのが特に好ましい。 In the present invention, as a preferred polymerization method for obtaining a polyimide resin effective for suppressing film tearing while maintaining the properties as a flexible metal-clad laminate, sequence polymerization is preferable to random polymerization, and even in sequence polymerization, It is particularly preferred to use a method of forming a triblock copolymer rather than a block copolymer.
(ポリアミド酸の固形分濃度)
本発明の非熱可塑性ポリアミド酸の固形分濃度は特に限定されず、通常5重量%〜35重量%、好ましくは10重量%〜30重量%の濃度で得られる。この範囲の濃度である場合に適当な分子量と溶液粘度を得る。
(Solid content concentration of polyamic acid)
The solid content concentration of the non-thermoplastic polyamic acid of the present invention is not particularly limited, and it is usually 5% to 35% by weight, preferably 10% to 30% by weight. When the concentration is in this range, an appropriate molecular weight and solution viscosity are obtained.
(ポリアミド酸の組成物)
本発明の非熱可塑性ポリアミド酸には、摺動性、熱伝導性、導電性、耐コロナ性、ループスティフネス等のフィルムの諸特性を改善する目的でフィラーを添加することもできる。フィラーとしてはいかなるものを用いても良いが、好ましい例としてはシリカ、酸化チタン、アルミナ、窒化珪素、窒化ホウ素、リン酸水素カルシウム、リン酸カルシウム、雲母などが挙げられる。
(Polyamide acid composition)
A filler may be added to the non-thermoplastic polyamic acid of the present invention for the purpose of improving various film properties such as slidability, thermal conductivity, conductivity, corona resistance, and loop stiffness. Any filler may be used, but preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica and the like.
得られるポリイミドフィルムとしての特性を損なわない範囲で、他の熱硬化性樹脂や熱可塑性樹脂を本発明のポリイミドと混合しても良い。これらの熱硬化性樹脂や熱可塑性樹脂の添加方法も種々の公知の技術を適用できる。例えば、溶剤に可溶のものであればポリイミドの前駆体であるポリアミド酸の状態に添加する方法が挙げられる。 Other thermosetting resins and thermoplastic resins may be mixed with the polyimide of the present invention as long as the properties of the obtained polyimide film are not impaired. Various known techniques can be applied to the method of adding these thermosetting resins and thermoplastic resins. For example, if it is soluble in a solvent, a method of adding it to the state of polyamic acid which is a precursor of polyimide can be mentioned.
(ポリイミドフィルムの製造方法)
本発明におけるポリイミドフィルムを得る方法も特に制限されず、種々の公知の方法を適用できる。例えば、以下の工程
i)有機溶剤中で芳香族ジアミンと芳香族テトラカルボン酸二無水物を反応させて非熱可塑性ポリアミド酸溶液を得る工程、
ii)上記非熱可塑性ポリアミド酸溶液を含む製膜ドープをダイスから支持体上に流延して、樹脂層(液膜ともいうことがある)を形成する工程、
iii)樹脂層を支持体上で加熱して自己支持性を持ったゲルフィルムとした後、支持体からゲルフィルムを引き剥がす工程、
iv)更に加熱して、残ったアミド酸をイミド化し、かつ乾燥させ非熱可塑性ポリイミドフィルムを得る工程、
を含むことが好ましい。
(Production method of polyimide film)
The method for obtaining the polyimide film in the present invention is not particularly limited, and various known methods can be applied. For example, the following step i) a step of reacting an aromatic diamine and an aromatic tetracarboxylic dianhydride in an organic solvent to obtain a non-thermoplastic polyamic acid solution;
ii) casting a film-forming dope containing the non-thermoplastic polyamic acid solution from a die onto a support to form a resin layer (sometimes referred to as a liquid film);
iii) a step of peeling the gel film from the support after the resin layer is heated on the support to obtain a self-supporting gel film,
iv) further heating, imidizing the remaining amic acid and drying to obtain a non-thermoplastic polyimide film;
It is preferable to contain.
ii)以降の工程においては、熱イミド化法と化学イミド化法に大別される。熱イミド化法は、脱水閉環剤等を使用せず、ポリアミド酸溶液を製膜ドープとして支持体に流延、加熱だけでイミド化を進める方法である。一方の化学イミド化法は、ポリアミド酸溶液に、イミド化促進剤として脱水閉環剤及び触媒の少なくともいずれかを添加したものを製膜ドープとして使用し、イミド化を促進する方法である。どちらの方法を用いても構わないが、化学イミド化法の方が生産性に優れる。 ii) Subsequent steps are roughly divided into a thermal imidization method and a chemical imidization method. The thermal imidization method is a method in which a polyamic acid solution is cast as a film-forming dope without using a dehydrating ring-closing agent or the like, and imidation is advanced only by heating. One chemical imidization method is a method of promoting imidization by using, as a film-forming dope, a polyamic acid solution to which at least one of a dehydrating cyclization agent and a catalyst is added as an imidization accelerator. Either method may be used, but the chemical imidation method is superior in productivity.
脱水閉環剤としては、無水酢酸に代表される酸無水物が好適に用いられ得る。触媒としては、脂肪族第三級アミン、芳香族第三級アミン、複素環式第三級アミン等の三級アミンが好適に用いられ得る。 As the dehydrating ring-closing agent, acid anhydrides typified by acetic anhydride can be suitably used. As the catalyst, tertiary amines such as aliphatic tertiary amines, aromatic tertiary amines, and heterocyclic tertiary amines can be suitably used.
製膜ドープを流延する支持体としては、ガラス板、アルミ箔、エンドレスステンレスベルト、ステンレスドラム等が好適に用いられ得る。最終的に得られるフィルムの厚み、生産速度に応じて加熱条件を設定し、部分的にイミド化または乾燥の少なくとも一方を行った後、支持体から剥離してポリアミド酸フィルム(以下、ゲルフィルムという)を得る。 As the support for casting the film-forming dope, a glass plate, aluminum foil, endless stainless steel belt, stainless steel drum or the like can be suitably used. The heating conditions are set according to the thickness of the finally obtained film and the production rate, and after at least one of imidization or drying is partially performed, the film is peeled off from the support and is called a polyamic acid film (hereinafter referred to as a gel film). )
上記ゲルフィルムの端部を固定して硬化時の収縮を回避して加熱処理し、ゲルフィルムから、水、残留溶媒、イミド化促進剤、脱水閉環剤等を除去し、そして残ったアミド酸を完全にイミド化して、ポリイミドを含有するフィルムが得られる。加熱条件については、最終的に得られるフィルムの厚み、生産速度に応じて適宜設定すれば良い。 Fix the end of the gel film and heat treatment to avoid shrinkage during curing, remove water, residual solvent, imidization accelerator, dehydrating ring closure agent, etc. from the gel film, and remove the remaining amic acid. Fully imidized to obtain a film containing polyimide. About a heating condition, what is necessary is just to set suitably according to the thickness and production rate of the film finally obtained.
(ポリイミド積層フィルムの製造)
本発明のポリイミドフィルムを用いて、その少なくとも片面に、他のポリイミド層や接着剤層などを積層したポリイミド積層フィルムを製造することも可能である。ポリイミド積層フィルムを製造する方法も特に制限されず、種々の公知の方法を適用できる。例えば、共押出しダイを使用して、本発明のポリイミドの前駆体である非熱可塑性ポリアミド酸および接着層となりうる熱可塑性ポリアミド酸を含む複層の樹脂層を同時に形成しても良い。また本発明のポリイミドの前駆体であるポリアミド酸を合成し、それを用いてフィルム化して得られたポリイミドフィルムを一旦回収した後、その上に塗工などで新たに熱可塑性ポリアミド酸を含む樹脂層を形成しても良い。イミド化には非常に高い温度が必要となるため、ポリイミド以外の樹脂層を設ける場合は、熱分解を抑えるために後者の手段を採る方が好ましい。なお、塗工により熱可塑性ポリイミド層を設ける場合は、熱可塑性ポリアミド酸を塗布し、その後イミド化を行ってもよいし、熱可塑性ポリイミド層を形成することができる熱可塑性ポリイミド溶液を塗布・乾燥してもよい。また、ポリイミドフィルムに、アクリル系接着剤やエポキシ系接着剤などを塗布して、ポリイミド積層フィルムを製造することも可能である。ポリイミド積層フィルムの最表面に、コロナ処理やプラズマ処理のような種々の表面処理を行うことも可能である。
(Manufacture of polyimide laminated film)
Using the polyimide film of the present invention, it is also possible to produce a polyimide laminated film in which another polyimide layer or an adhesive layer is laminated on at least one surface thereof. The method for producing the polyimide laminated film is not particularly limited, and various known methods can be applied. For example, a co-extrusion die may be used to simultaneously form a multilayer resin layer containing a non-thermoplastic polyamic acid that is a precursor of the polyimide of the present invention and a thermoplastic polyamic acid that can be an adhesive layer. In addition, a polyamide acid which is a precursor of the polyimide of the present invention is synthesized, and a polyimide film obtained by using the polyamide acid is collected once, and then a resin containing a thermoplastic polyamide acid newly by coating or the like thereon A layer may be formed. Since a very high temperature is required for imidization, when the resin layer other than polyimide is provided, it is preferable to adopt the latter means in order to suppress thermal decomposition. When a thermoplastic polyimide layer is provided by coating, a thermoplastic polyamic acid may be applied and then imidized, or a thermoplastic polyimide solution capable of forming a thermoplastic polyimide layer may be applied and dried. May be. Moreover, it is also possible to manufacture a polyimide laminated film by applying an acrylic adhesive or an epoxy adhesive to a polyimide film. Various surface treatments such as corona treatment and plasma treatment can be performed on the outermost surface of the polyimide laminated film.
本発明のポリイミド積層フィルム全体の厚みは6μm〜60μmであることが好ましい。その範囲内でも厚みが薄い方が、FPCとしての軽量化に貢献し、また折り曲げ性が向上するので好ましく、例えば、7μm〜20μmがより好ましく、7μm〜15μmがさらに好ましい。 The total thickness of the polyimide laminated film of the present invention is preferably 6 μm to 60 μm. Even within this range, a thinner thickness is preferable because it contributes to weight reduction as an FPC and improves bendability. For example, the thickness is preferably 7 μm to 20 μm, and more preferably 7 μm to 15 μm.
(フレキシブル金属張積層体)
ポリイミド積層フィルムの少なくとも片面に金属箔を貼り合わせることより、フレキシブル金属張積層板を製造することが可能である。フレキシブル金属張積層板を製造する方法も特に制限されず、種々の公知の方法を適用できる。例えば、一対以上の金属ロールを有する熱ロールラミネート装置或いはダブルベルトプレス(DBP)による連続処理を用いることができる。
(Flexible metal-clad laminate)
A flexible metal-clad laminate can be produced by attaching a metal foil to at least one surface of a polyimide laminate film. The method for producing the flexible metal-clad laminate is not particularly limited, and various known methods can be applied. For example, a continuous process by a hot roll laminating apparatus having a pair of metal rolls or a double belt press (DBP) can be used.
熱ラミネートを実施する手段の具体的な構成は特に限定されるものではないが、得られる積層板の外観を良好なものとするために、加圧面と金属箔との間に保護材料を配置することも好ましい。 The specific configuration of the means for carrying out the thermal lamination is not particularly limited, but a protective material is disposed between the pressing surface and the metal foil in order to improve the appearance of the resulting laminate. It is also preferable.
金属箔上に熱可塑性ポリアミド酸溶液または非熱可塑性ポリアミド酸溶液の少なくともいずれか一方の溶液を含有する多層の有機溶剤溶液をキャストする手段も用いることが出来る。金属箔上にポリアミド酸を含有する有機溶剤溶液をキャストする手段については特に限定されず、ダイコーターやコンマコーター(登録商標)、リバースコーター、ナイフコーターなどの従来公知の手段を使用できる。本発明における熱可塑性ポリイミド層と非熱可塑性ポリイミドフィルムを含む場合などポリイミド樹脂層を複層設ける場合、もしくはポリイミド以外の樹脂層も設ける場合は、上記キャスト、加熱工程を複数回繰り返すか、共押出しや連続キャストによりキャスト層を複層形成して一度に加熱する手段が好適に用いられうる。この手段では、イミド化が完了すると同時に、フレキシブル金属張積層体が得られる。樹脂層の両面に金属箔を設ける場合、加熱加圧により反対側の樹脂層面に金属箔を貼り合わせれば良い。 A means of casting a multilayer organic solvent solution containing at least one of a thermoplastic polyamic acid solution and a non-thermoplastic polyamic acid solution on the metal foil can also be used. The means for casting the organic solvent solution containing the polyamic acid on the metal foil is not particularly limited, and conventionally known means such as a die coater, comma coater (registered trademark), reverse coater, knife coater and the like can be used. When the polyimide resin layer and the non-thermoplastic polyimide film in the present invention are included, or when the polyimide resin layer is provided in multiple layers, or when a resin layer other than the polyimide is provided, the above casting and heating processes are repeated a plurality of times or co-extruded. Alternatively, a means of forming a cast layer by continuous casting and heating it at a time can be suitably used. By this means, a flexible metal-clad laminate is obtained at the same time as imidization is completed. When providing metal foil on both surfaces of the resin layer, the metal foil may be bonded to the opposite resin layer surface by heat and pressure.
金属箔は、特に限定されるものではなく、あらゆる金属箔を用いることができる。例えば、銅、ステンレス、ニッケル、アルミニウム、およびこれら金属の合金などを好適に用いることができる。また、一般的な金属張積層板では、圧延銅、電解銅といった銅が多用されるが、本発明においても好ましく用いることができる。 The metal foil is not particularly limited, and any metal foil can be used. For example, copper, stainless steel, nickel, aluminum, and alloys of these metals can be suitably used. In general metal-clad laminates, copper such as rolled copper and electrolytic copper is frequently used, but can be preferably used in the present invention.
また、金属箔は、目的に応じて表面処理、表面粗さ等種々特性を有したものを選択できる。さらに、上記金属箔の表面には、防錆層や耐熱層あるいは接着層が塗布されていてもよい。上記金属箔の厚みについては特に限定されるものではなく、その用途に応じて、十分な機能が発揮できる厚みであればよい。 Further, the metal foil having various characteristics such as surface treatment and surface roughness can be selected according to the purpose. Furthermore, a rust preventive layer, a heat resistant layer or an adhesive layer may be applied to the surface of the metal foil. The thickness of the metal foil is not particularly limited, and may be any thickness that can exhibit a sufficient function depending on the application.
以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to these Examples.
なお、合成例、実施例及び比較例における非熱可塑性ポリイミドの動的粘弾性、線膨張係数、引張特性、10%歪み時応力、強靭性の指標となるSTの求め方、寸法特性の評価方法は次の通りである。 In addition, the dynamic viscoelasticity, linear expansion coefficient, tensile characteristics, stress at 10% strain, how to obtain ST as an index of toughness, and evaluation method of dimensional characteristics of non-thermoplastic polyimide in synthesis examples, examples and comparative examples Is as follows.
(動的粘弾性)
貯蔵弾性率は、SIIナノテクノロジー社製 DM6100により空気雰囲気下において動的粘弾性を測定し、測定温度との相関をプロットして変曲点温度及び380℃における貯蔵弾性率を読み取った。
サンプル測定範囲;幅9mm、つかみ具間距離;20mm
測定温度範囲;0℃〜440℃
昇温速度;3℃/min
歪み振幅;10μm
測定周波数;1Hz,5Hz,10Hz
最小張力/圧縮力;100mN
張力/圧縮ゲイン;1.5
力振幅初期値;100mN
(Dynamic viscoelasticity)
The storage elastic modulus was obtained by measuring dynamic viscoelasticity in an air atmosphere using DM6100 manufactured by SII Nanotechnology, and plotting the correlation with the measurement temperature to read the inflection point temperature and the storage elastic modulus at 380 ° C.
Sample measurement range: width 9 mm, distance between grippers: 20 mm
Measurement temperature range: 0 ° C to 440 ° C
Temperature increase rate: 3 ° C / min
Strain amplitude: 10 μm
Measurement frequency: 1Hz, 5Hz, 10Hz
Minimum tension / compression force: 100mN
Tension / compression gain; 1.5
Initial value of force amplitude: 100mN
(線膨張係数)
線膨張係数の測定は、SIIナノテクノロジー社製TMA/SS6100を用いて窒素雰囲気下において−10℃から400℃まで一旦昇温させた後、−10℃まで冷却し、さらに再度400℃まで昇温させて、2回目の昇温時の100℃から200℃における線熱膨張率から平均値として計算した。
サンプル形状;幅3mm、長さ10mm
荷重;3g(29.4mN)
昇温速度;10℃/min
(Linear expansion coefficient)
The linear expansion coefficient was measured by using TMA / SS6100 manufactured by SII Nanotechnology, Inc., once heated from −10 ° C. to 400 ° C. in a nitrogen atmosphere, cooled to −10 ° C., and then again raised to 400 ° C. It was made to calculate as an average value from the linear thermal expansion coefficient in 100 to 200 degreeC at the time of the 2nd temperature increase.
Sample shape: width 3mm, length 10mm
Load; 3g (29.4mN)
Temperature increase rate: 10 ° C / min
(引張特性、10%歪み時応力、塑性変形領域の傾き)
引張弾性率の測定データから10%歪み時応力は求められる。引張弾性率はASTM D882に準じて行った。測定には、島津製作所製のAUTOGRAPH AGS−Jを使用し、23℃、55%RHの環境下で測定した。
サンプル測定範囲;15mm
つかみ具間距離;100mm
引張速度;200mm/min
(Tensile properties, 10% strain stress, slope of plastic deformation region)
The stress at 10% strain can be obtained from the measurement data of the tensile modulus. The tensile elastic modulus was measured according to ASTM D882. For the measurement, AUTOGRAPH AGS-J manufactured by Shimadzu Corporation was used, and measurement was performed in an environment of 23 ° C. and 55% RH.
Sample measurement range: 15 mm
Distance between grips: 100mm
Tensile speed: 200 mm / min
(シェイキングテスト)
合成例9で得られたポリイミド前駆体を固形分濃度8重量%になるまでDMFで希釈した後、ポリイミドフィルムの両面に、熱可塑性ポリイミド層(接着層)の最終片面厚みが3μmになるようにポリイミド前駆体を塗布した。その後、120℃で2分間加熱を行った。続いて、350℃で15秒間加熱・イミド化を行い、ポリイミド積層フィルムを得た。得られたポリイミド積層フィルムの両面に12μm電解銅箔(3EC−M3S−HTE、三井金属製)を配し、さらに銅箔の両側に保護フィルム(アピカル125NPI;カネカ製、厚み125μm)を用いて、ラミネート温度360℃、ラミネート圧力265N/cm(27kgf/cm)、ラミネート速度1.0m/分の条件で熱ラミネートを行い、フレキシブル金属張積層板とした。6.0cm×5.5cm角の大きさにフレキシブル金属張積層板を切り取り、その金属箔の一部を図1に示すように格子状(格子サイズ;1.3mm×1.5mm、)にエッチングして試験片を得た。800mLの濃度4%の水酸化ナトリウム水溶液(23±2℃)が入った容器に試験片を入れ、230rpmの振とう速度で、23±2℃において振とうしてフィルムが裂けるまでの時間(ST(秒))を測定する。なお、エッチング後、格子状の各角部の内側の曲率半径が50μm以下となっていることを光学顕微鏡にて確認して、50μm以下となっているものを試験片とした。この試験片を水酸化ナトリウム水溶液に投入した。フィルムが裂けたどうかの判定は、震とうを100秒毎に止め、試験片を入れた容器ごとにライトボックスにより光を当てて、試験片に光が透過したらフィルムが裂けたと判断した。
(Shaking test)
After diluting the polyimide precursor obtained in Synthesis Example 9 with DMF until the solid content concentration becomes 8% by weight, the final single-sided thickness of the thermoplastic polyimide layer (adhesive layer) is 3 μm on both sides of the polyimide film. A polyimide precursor was applied. Thereafter, heating was performed at 120 ° C. for 2 minutes. Subsequently, heating and imidization were performed at 350 ° C. for 15 seconds to obtain a polyimide laminated film. 12 μm electrolytic copper foil (3EC-M3S-HTE, made by Mitsui Metals) is arranged on both sides of the obtained polyimide laminated film, and further, protective films (Apical 125 NPI; Kaneka, thickness 125 μm) are used on both sides of the copper foil, Thermal lamination was performed under the conditions of a laminating temperature of 360 ° C., a laminating pressure of 265 N / cm (27 kgf / cm), and a laminating speed of 1.0 m / min to obtain a flexible metal-clad laminate. A flexible metal-clad laminate is cut to a size of 6.0 cm × 5.5 cm square, and a part of the metal foil is etched into a lattice shape (lattice size: 1.3 mm × 1.5 mm) as shown in FIG. A test piece was obtained. The test piece is placed in a container containing 800 mL of a 4% aqueous sodium hydroxide solution (23 ± 2 ° C.) and shaken at 23 ± 2 ° C. at a shaking speed of 230 rpm (ST) (Sec)). After etching, it was confirmed with an optical microscope that the radius of curvature inside each corner of the lattice was 50 μm or less, and a specimen having a radius of 50 μm or less was used. This test piece was put into a sodium hydroxide aqueous solution. Whether the film was torn or not was judged by stopping shaking every 100 seconds, applying light with a light box to each container in which the test piece was put, and judging that the film was torn when light passed through the test piece.
(FPC製造工程における模擬試験)
導体パターンをあらかじめ形成した長尺のフレキシブル金属張積層板に張力60Nをかけ、45℃の5%水酸化ナトリウム水溶液をスプレーで吹きつけた際の裂け発生有無を目視で観察した。裂けが発生するまでの時間が1500秒未満の場合を(×)、1500秒以上の場合を(○)とした。1500秒以上の場合は、実工程での使用上、裂けが発生する可能性が特に低い。
(Mock test in FPC manufacturing process)
A tension was applied to a long flexible metal-clad laminate on which a conductor pattern had been formed in advance, and the presence or absence of tearing when spraying a 5% aqueous sodium hydroxide solution at 45 ° C. with a spray was visually observed. The case where the time until tearing occurred was less than 1500 seconds was indicated as (X), and the case where it was 1500 seconds or longer was indicated as (◯). In the case of 1500 seconds or more, the possibility of tearing is particularly low in use in an actual process.
(非熱可塑性ポリイミド前駆体の合成)
(合成例1)
容量2000mlのガラス製フラスコにN,N−ジメチルホルムアミド(以下、DMFともいう)を334.12g、4,4’−ジアミノジフェニルエーテル(以下、ODAともいう)を15.36g加え、窒素雰囲気下で攪拌しながら、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(以下、BPDAともいう)20.31gを徐々に添加した。BPDAが溶解したことを目視で確認後、4’−ジアミノ−2,2’−ジメチルビフェニル(以下、m−TBともいう)を4.44gを加え、ピロメリット酸二無水物(以下、PMDAともいう)4.11gを徐々に添加した。PMDAが溶解したことを目視で確認後30分間攪拌を行った。その後、p−フェニレンジアミン(以下、PDAともいう)を4.52gを加え、続いて、PMDA10.80gを添加し、30分間撹拌した。最後に、0.46gのPMDAを固形分濃度7.2%となるようにDMFに溶解した溶液を調整し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加して、23℃での粘度が2500ポイズに達した時点で添加、撹拌をやめ、ポリイミド前駆体を得た。
(Synthesis of non-thermoplastic polyimide precursor)
(Synthesis Example 1)
Add 334.12 g of N, N-dimethylformamide (hereinafter also referred to as DMF) and 15.36 g of 4,4′-diaminodiphenyl ether (hereinafter also referred to as ODA) to a glass flask having a volume of 2000 ml, and stir in a nitrogen atmosphere. Then, 20.31 g of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (hereinafter also referred to as BPDA) was gradually added. After visually confirming that BPDA was dissolved, 4.44 g of 4′-diamino-2,2′-dimethylbiphenyl (hereinafter also referred to as m-TB) was added, and pyromellitic dianhydride (hereinafter also referred to as PMDA). 4.11 g) was gradually added. Stirring was performed for 30 minutes after visually confirming that PMDA was dissolved. Thereafter, 4.52 g of p-phenylenediamine (hereinafter also referred to as PDA) was added, and then 10.80 g of PMDA was added and stirred for 30 minutes. Finally, a solution prepared by dissolving 0.46 g of PMDA in DMF so that the solid content concentration becomes 7.2% is prepared, and this solution is gradually added to the reaction solution while paying attention to increase in viscosity. When the viscosity at ℃ reached 2500 poise, addition and stirring were stopped to obtain a polyimide precursor.
(合成例2)
容量2000mlのガラス製フラスコにDMFを334.12g、m−TBを4.44g加え、窒素雰囲気下で攪拌しながら、PMDAを4.11gを徐々に添加した。PMDAが溶解したことを目視で確認後30分間攪拌を行った。その後、ODAを15.36gを加え、BPDA20.31gを徐々に添加した。BPDAが溶解したことを目視で確認後、PDA4.52gを加え、続いて、PMDA10.80gを添加し、30分間撹拌した。最後に、0.46gのPMDAを固形分濃度7.2%となるようにDMFに溶解した溶液を調整し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加して、23℃での粘度が2500ポイズに達した時点で添加、撹拌をやめ、ポリイミド前駆体を得た。
(Synthesis Example 2)
To a glass flask having a capacity of 2000 ml, 334.12 g of DMF and 4.44 g of m-TB were added, and 4.11 g of PMDA was gradually added while stirring in a nitrogen atmosphere. Stirring was performed for 30 minutes after visually confirming that PMDA was dissolved. Thereafter, 15.36 g of ODA was added, and 20.31 g of BPDA was gradually added. After visually confirming that BPDA was dissolved, 4.52 g of PDA was added, and then 10.80 g of PMDA was added and stirred for 30 minutes. Finally, a solution prepared by dissolving 0.46 g of PMDA in DMF so that the solid content concentration becomes 7.2% is prepared, and this solution is gradually added to the reaction solution while paying attention to increase in viscosity. When the viscosity at ℃ reached 2500 poise, addition and stirring were stopped to obtain a polyimide precursor.
(合成例3)
容量2000mlのガラス製フラスコにDMFを334.12g、ODA15.36gを加え、窒素雰囲気下で攪拌しながら、BPDA20.31gを徐々に添加した。BPDAが溶解したことを目視で確認後、m−TB4.44g、PDA4.52gを加え、続いて、PMDA14.91gを添加し、30分間撹拌した。最後に、0.46gのPMDAを固形分濃度7.2%となるようにDMFに溶解した溶液を調整し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加して、23℃での粘度が2500ポイズに達した時点で添加、撹拌をやめ、ポリイミド前駆体を得た。
(Synthesis Example 3)
To a glass flask having a capacity of 2000 ml, 334.12 g of DMF and 15.36 g of ODA were added, and 20.31 g of BPDA was gradually added while stirring under a nitrogen atmosphere. After visually confirming that BPDA was dissolved, 4.44 g of m-TB and 4.52 g of PDA were added, and then 14.91 g of PMDA was added and stirred for 30 minutes. Finally, a solution prepared by dissolving 0.46 g of PMDA in DMF so that the solid content concentration becomes 7.2% is prepared, and this solution is gradually added to the reaction solution while paying attention to increase in viscosity. When the viscosity at ℃ reached 2500 poise, addition and stirring were stopped to obtain a polyimide precursor.
(合成例4)
容量2000mlのガラス製フラスコにDMFを334.12g、m−TB4.44g、ODA15.36g、PDA4.52gを加え、窒素雰囲気下で攪拌しながら、BPDA20.31gを徐々に添加した。BPDAが溶解したことを目視で確認後、PMDA14.91gを添加し、30分間撹拌した。最後に、0.46gのPMDAを固形分濃度7.2%ととなるようにDMFに溶解した溶液を調整し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加して、23℃での粘度が2500ポイズに達した時点で添加、撹拌をやめ、ポリイミド前駆体を得た。
(Synthesis Example 4)
334.12 g of DMF, 4.44 g of m-TB, 15.36 g of ODA and 4.52 g of PDA were added to a glass flask having a capacity of 2000 ml, and 20.31 g of BPDA was gradually added while stirring in a nitrogen atmosphere. After visually confirming that BPDA was dissolved, 14.91 g of PMDA was added and stirred for 30 minutes. Finally, a solution prepared by dissolving 0.46 g of PMDA in DMF so as to have a solid content concentration of 7.2% is prepared, and this solution is gradually added to the reaction solution while paying attention to an increase in viscosity. When the viscosity at 23 ° C. reached 2500 poise, addition and stirring were stopped to obtain a polyimide precursor.
(熱可塑性ポリイミド前駆体の合成)
(合成例5)
容量2000mlのガラス製フラスコにDMFを645.94g、4,4’−ビス(4−アミノフェノキシ)ビフェニル(以下、BAPBともいう)を23.67gを加え、窒素雰囲気下で攪拌しながら、BPDA15.75gを徐々に添加した。BPDAが溶解したことを目視で確認後、BAPP61.54gを加え、続いて、PMDA33.63gを添加し、30分間攪拌を行った。最後に、1.40gのPMDAを固形分濃度7.2%となるようにDMFに溶解した溶液を調整し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加して、23℃での粘度が1000ポイズに達した時点で添加、撹拌をやめ、ポリイミド前駆体を得た。
(Synthesis of thermoplastic polyimide precursor)
(Synthesis Example 5)
To a glass flask having a volume of 2000 ml, 645.94 g of DMF and 23.67 g of 4,4′-bis (4-aminophenoxy) biphenyl (hereinafter also referred to as BAPB) were added, and BPDA 15. 75 g was gradually added. After visually confirming that BPDA was dissolved, 61.54 g of BAPP was added, and then 33.63 g of PMDA was added, followed by stirring for 30 minutes. Finally, a solution in which 1.40 g of PMDA was dissolved in DMF to a solid content concentration of 7.2% was prepared, and this solution was gradually added to the reaction solution while paying attention to increase in viscosity. When the viscosity at 1000C reached 1000 poise, addition and stirring were stopped to obtain a polyimide precursor.
このポリイミド前駆体(65g)に無水酢酸/イソキノリン/DMF(重量比8.53/2.52/21.46)からなる硬化剤を32.5g添加して0℃以下の温度で攪拌・脱泡し、コンマコーターを用いてアルミ箔上に流延塗布した。この樹脂膜を120℃×3分間秒で加熱した後、アルミ箔から自己支持性のゲル膜を引き剥がして金属製の固定枠に固定し、250℃×1分間、300℃×200秒で乾燥・イミド化させて厚み20μmのポリイミドフィルムを得た。このフィルムを金属製の固定枠に固定し、450℃で2分間加熱したところ形態を保持せず、熱可塑性であることが確認出来た。 32.5 g of a curing agent composed of acetic anhydride / isoquinoline / DMF (weight ratio 8.53 / 2.52 / 21.46) was added to the polyimide precursor (65 g), and stirring and defoaming were performed at a temperature of 0 ° C. or less. And it cast-coated on the aluminum foil using the comma coater. This resin film is heated at 120 ° C. for 3 minutes, then the self-supporting gel film is peeled off from the aluminum foil and fixed on a metal fixing frame, and dried at 250 ° C. for 1 minute, 300 ° C. for 200 seconds. -A polyimide film having a thickness of 20 μm was obtained by imidization. When this film was fixed to a metal fixing frame and heated at 450 ° C. for 2 minutes, it was confirmed that the film did not retain its shape and was thermoplastic.
合成例1〜4の重合処方および重合方法を表1に示す。 Table 1 shows polymerization formulations and polymerization methods of Synthesis Examples 1 to 4.
(実施例1)
合成例1で得られたポリイミド前駆体(65g)に、無水酢酸/イソキノリン/DMF(重量比12.59/3.72/16.20)からなる硬化剤を32.5g添加して0℃以下の温度で攪拌・脱泡し、コンマコーターを用いてアルミ箔上に流延塗布した。この樹脂膜を115℃×100秒で加熱した後、アルミ箔から自己支持性のゲル膜を引き剥がして金属製の固定枠に固定し、250℃×15秒、350℃×79秒で乾燥・イミド化させて厚み12.5μmのポリイミドフィルムを得た。このフィルムを金属製の固定枠に固定し、450℃で2分間加熱したところ形態を保持し、非熱可塑性であることが確認出来た。得られたポリイミドフィルムのフィルム特性およびSTを表2に示す。
Example 1
32.5 g of a curing agent composed of acetic anhydride / isoquinoline / DMF (weight ratio: 12.59 / 3.72 / 16.20) was added to the polyimide precursor (65 g) obtained in Synthesis Example 1, and 0 ° C. or less. The mixture was stirred and degassed at a temperature of 5 ° C and cast onto an aluminum foil using a comma coater. After heating this resin film at 115 ° C. × 100 seconds, the self-supporting gel film is peeled off from the aluminum foil and fixed to a metal fixing frame, and dried at 250 ° C. × 15 seconds, 350 ° C. × 79 seconds. A polyimide film having a thickness of 12.5 μm was obtained by imidization. When this film was fixed to a metal fixing frame and heated at 450 ° C. for 2 minutes, the shape was maintained, and it was confirmed that the film was non-thermoplastic. Table 2 shows the film properties and ST of the obtained polyimide film.
(実施例2)
合成例1で得られたポリイミド前駆体を合成例2に変更する以外は、実施例1と同様に実施した。このフィルムを金属製の固定枠に固定し、450℃で2分間加熱したところ形態を保持し、非熱可塑性であることが確認出来た。フィルム特性及びSTを表2に示す。
(Example 2)
The same procedure as in Example 1 was performed except that the polyimide precursor obtained in Synthesis Example 1 was changed to Synthesis Example 2. When this film was fixed to a metal fixing frame and heated at 450 ° C. for 2 minutes, the shape was maintained, and it was confirmed that the film was non-thermoplastic. Table 2 shows the film characteristics and ST.
(比較例1〜比較例2)
合成例1で得られたポリイミド前駆体を合成例3、4に変更する以外は、実施例1と同様に実施した。このフィルムを金属製の固定枠に固定し、450℃で2分間加熱したところ形態を保持し、非熱可塑性であることが確認出来た。フィルム特性及びSTを表2に示す
(Comparative Examples 1 to 2)
The same procedure as in Example 1 was performed except that the polyimide precursor obtained in Synthesis Example 1 was changed to Synthesis Examples 3 and 4. When this film was fixed to a metal fixing frame and heated at 450 ° C. for 2 minutes, the shape was maintained, and it was confirmed that the film was non-thermoplastic. Table 2 shows the film characteristics and ST.
(参考例)
容量2000mlのガラス製フラスコにDMFを657.82g、ODA10.53g、BAPP32.39gを加え、窒素雰囲気下で攪拌しながら、BTDA16.95gを徐々に添加した。BTDAが溶解したことを目視で確認後、PMDA14.34gを添加し、30分間攪拌を行った。その後、PDAを14.22g加えて5分間攪拌を行った。続いて、PMDA29.83gを添加し、30分間撹拌した。最後に、1.72gのPMDAを固形分濃度7.2%ととなるようにDMFに溶解した溶液を調整し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加して、23℃での粘度が2500ポイズに達した時点で添加、撹拌をやめ、ポリイミド前駆体を得た。
(Reference example)
To a glass flask having a capacity of 2000 ml, 657.82 g of DMF, 10.53 g of ODA, and 32.39 g of BAPP were added, and 16.95 g of BTDA was gradually added while stirring under a nitrogen atmosphere. After visually confirming that BTDA was dissolved, 14.34 g of PMDA was added and stirred for 30 minutes. Thereafter, 14.22 g of PDA was added and stirred for 5 minutes. Subsequently, 29.83 g of PMDA was added and stirred for 30 minutes. Finally, a solution in which 1.72 g of PMDA was dissolved in DMF to a solid content concentration of 7.2% was prepared, and this solution was gradually added to the above reaction solution while paying attention to an increase in viscosity. When the viscosity at 23 ° C. reached 2500 poise, addition and stirring were stopped to obtain a polyimide precursor.
このポリイミド前駆体(65g)に、無水酢酸/イソキノリン/DMF(重量比10.47/3.26/18.77)からなる硬化剤を32.5g添加して0℃以下の温度で攪拌・脱泡し、コンマコーターを用いてアルミ箔上に流延塗布した。この樹脂膜を115℃×100秒で加熱した後、アルミ箔から自己支持性のゲル膜を引き剥がして金属製の固定枠に固定し、250℃×15秒、350℃×79秒で乾燥・イミド化させて厚み12.5μmのポリイミドフィルムを得た。このフィルムを金属製の固定枠に固定し、450℃で2分間加熱したところ形態を保持し、非熱可塑性であることが確認出来た。 To this polyimide precursor (65 g), 32.5 g of a curing agent composed of acetic anhydride / isoquinoline / DMF (weight ratio 10.47 / 3.26 / 18.77) was added, and stirring and desorption were performed at a temperature of 0 ° C. or less. Foaming was carried out and cast on an aluminum foil using a comma coater. After heating this resin film at 115 ° C. × 100 seconds, the self-supporting gel film is peeled off from the aluminum foil and fixed to a metal fixing frame, and dried at 250 ° C. × 15 seconds, 350 ° C. × 79 seconds. A polyimide film having a thickness of 12.5 μm was obtained by imidization. When this film was fixed to a metal fixing frame and heated at 450 ° C. for 2 minutes, the shape was maintained, and it was confirmed that the film was non-thermoplastic.
(考察)
表2の結果から、3つのブロック成分を含むポリイミドから得られたフィルム(実施例1および2)では、二つのブロック成分を含むポリイミドから得られたフィルム(比較例1)と比べて、塑性変形領域の傾きは大きくなり、それに伴いSTも長くなった。また、ランダム重合した系(比較例2)と比較すると、380℃における貯蔵弾性率や線膨張係数の変化は比較的小さく抑えられている。これらの結果から、3つのブロック成分をポリイミド樹脂の一次構造に組み込むことにより、フレキシブル銅張積層板用途の材料として特性を維持しつつ、凝集構造の形成を促すことで、裂け耐性に優れた材料を提供することが可能となる。
(Discussion)
From the results of Table 2, in the films obtained from the polyimide containing three block components (Examples 1 and 2), compared to the film obtained from the polyimide containing two block components (Comparative Example 1), the plastic deformation The slope of the region increased, and ST was also increased accordingly. In addition, changes in the storage elastic modulus and linear expansion coefficient at 380 ° C. are suppressed to be relatively small as compared with the randomly polymerized system (Comparative Example 2). From these results, by incorporating the three block components into the primary structure of the polyimide resin, while maintaining the properties as a material for flexible copper clad laminates, it promotes the formation of an agglomerated structure. Can be provided.
1.金属箔
2.ポリイミドフィルム
3.Strain1(10%歪み)
4.Strain2(破断歪み)
5.Stress1(10%歪み時応力)
6.Stress2(破断応力)
7.参考例のs−s曲線
8.実施例1のs−s曲線
1. Metal foil Polyimide film Strain 1 (10% strain)
4). Strain 2 (breaking strain)
5). Stress1 (Stress at 10% strain)
6). Stress2 (breaking stress)
7). 7. s-s curve of reference example S-s curve of Example 1
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016069659A JP2017179150A (en) | 2016-03-30 | 2016-03-30 | Polyimide film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016069659A JP2017179150A (en) | 2016-03-30 | 2016-03-30 | Polyimide film |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017179150A true JP2017179150A (en) | 2017-10-05 |
Family
ID=60008376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016069659A Pending JP2017179150A (en) | 2016-03-30 | 2016-03-30 | Polyimide film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017179150A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022502554A (en) * | 2018-10-11 | 2022-01-11 | ピーアイ・アドバンスド・マテリアルズ・カンパニー・リミテッド | A polyamic acid composition for producing a polyimide resin having excellent adhesive strength and a polyimide resin produced thereby. |
WO2022014257A1 (en) * | 2020-07-17 | 2022-01-20 | 株式会社カネカ | Multilayer polyimide film |
CN114599519A (en) * | 2019-10-24 | 2022-06-07 | 日东电工株式会社 | Method for producing laminate, method for producing coated article, method for producing bonded structure, thermal transfer sheet, and laminate |
JP2023500716A (en) * | 2019-11-07 | 2023-01-10 | ピーアイ アドヴァンスド マテリアルズ カンパニー リミテッド | High heat resistance and low dielectric polyimide film and its manufacturing method |
JP2023503090A (en) * | 2019-11-21 | 2023-01-26 | ピーアイ・アドバンスド・マテリアルズ・カンパニー・リミテッド | Polyimide film and its manufacturing method |
-
2016
- 2016-03-30 JP JP2016069659A patent/JP2017179150A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022502554A (en) * | 2018-10-11 | 2022-01-11 | ピーアイ・アドバンスド・マテリアルズ・カンパニー・リミテッド | A polyamic acid composition for producing a polyimide resin having excellent adhesive strength and a polyimide resin produced thereby. |
JP7152812B2 (en) | 2018-10-11 | 2022-10-13 | ピーアイ・アドバンスド・マテリアルズ・カンパニー・リミテッド | Polyamic acid composition for producing polyimide resin having excellent adhesion and polyimide resin produced by the same |
CN114599519A (en) * | 2019-10-24 | 2022-06-07 | 日东电工株式会社 | Method for producing laminate, method for producing coated article, method for producing bonded structure, thermal transfer sheet, and laminate |
JP2023500716A (en) * | 2019-11-07 | 2023-01-10 | ピーアイ アドヴァンスド マテリアルズ カンパニー リミテッド | High heat resistance and low dielectric polyimide film and its manufacturing method |
JP7354440B2 (en) | 2019-11-07 | 2023-10-02 | ピーアイ アドヴァンスド マテリアルズ カンパニー リミテッド | High heat resistant low dielectric polyimide film and its manufacturing method |
US11905372B2 (en) | 2019-11-07 | 2024-02-20 | Pi Advanced Materials Co., Ltd. | Highly heat-resistant and low dielectric-polymide film and method for producing same |
JP2023503090A (en) * | 2019-11-21 | 2023-01-26 | ピーアイ・アドバンスド・マテリアルズ・カンパニー・リミテッド | Polyimide film and its manufacturing method |
JP7496417B2 (en) | 2019-11-21 | 2024-06-06 | ピーアイ・アドバンスド・マテリアルズ・カンパニー・リミテッド | Polyimide film and its manufacturing method |
WO2022014257A1 (en) * | 2020-07-17 | 2022-01-20 | 株式会社カネカ | Multilayer polyimide film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100958466B1 (en) | Novel polyimide film and use thereof | |
JPWO2009019968A1 (en) | Multilayer polyimide film, laminate and metal-clad laminate | |
JP6788357B2 (en) | Polyimide film, multilayer polyimide film, coverlay, and flexible printed wiring board | |
TWI382040B (en) | And a method for producing a polyimide film having high adhesion | |
JP2017179150A (en) | Polyimide film | |
JPWO2007108284A1 (en) | Adhesive film | |
JPWO2006011404A1 (en) | Adhesive film and use thereof | |
KR20070053781A (en) | Highly adhesive polyimide film and method for producing same | |
JP2017177604A (en) | Polyimide laminate film | |
JP5191419B2 (en) | Method for producing polyimide film | |
JP5254752B2 (en) | Multilayer polyimide film | |
JP7039390B2 (en) | Multilayer polyimide film | |
JP2008188954A (en) | Base material for single-sided metal-clad laminated sheet and manufacturing method of single-sided metal-clad laminated sheet | |
JP6691412B2 (en) | Polyimide film | |
JP2017179149A (en) | Polyimide film | |
TWI683836B (en) | Polyimide laminated film, method for producing polyimide laminated film, method for producing thermoplastic polyimide, and method for producing flexible metal clad laminate | |
WO2022014257A1 (en) | Multilayer polyimide film | |
JP4951513B2 (en) | Flexible metal-clad laminate | |
JP2017177602A (en) | Polyimide laminate film | |
JP2005199481A (en) | Adhesive film and flexible metal clad laminated sheet enhanced in dimensional stability obtained therefrom | |
JP2006291150A (en) | Heat resistant adhesive sheet | |
WO2024203377A1 (en) | Multilayer polyimide film and metal-clad laminate sheet | |
JP5297573B2 (en) | Polyimide film with high adhesiveness | |
JP2006137114A (en) | Manufacturing method of flexible metal stretched laminate and flexible metal stretched laminate obtained by the method | |
JP2024066868A (en) | Polyimide film laminate |