WO2022014257A1 - Multilayer polyimide film - Google Patents

Multilayer polyimide film Download PDF

Info

Publication number
WO2022014257A1
WO2022014257A1 PCT/JP2021/023195 JP2021023195W WO2022014257A1 WO 2022014257 A1 WO2022014257 A1 WO 2022014257A1 JP 2021023195 W JP2021023195 W JP 2021023195W WO 2022014257 A1 WO2022014257 A1 WO 2022014257A1
Authority
WO
WIPO (PCT)
Prior art keywords
residue
thermoplastic polyimide
flask
layer
thermoplastic
Prior art date
Application number
PCT/JP2021/023195
Other languages
French (fr)
Japanese (ja)
Inventor
隆宏 秋永
隼平 齋藤
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to KR1020237005185A priority Critical patent/KR20230038757A/en
Priority to CN202180060432.XA priority patent/CN116133855A/en
Priority to JP2022536190A priority patent/JPWO2022014257A1/ja
Publication of WO2022014257A1 publication Critical patent/WO2022014257A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a multi-layer polyimide film.
  • FPC flexible printed wiring boards
  • a flexible printed wiring board using a multi-layer polyimide film containing a thermoplastic polyimide layer as an adhesive layer is expected to further increase in demand because of its excellent heat resistance and flexibility.
  • electronic devices have been made lighter, smaller, and thinner, and there is still a strong demand for miniaturization of FPC wiring.
  • a metal-clad laminate in which a metal foil such as a copper foil is laminated on both sides of a polyimide film.
  • FPC manufacturing there is a step of first drilling a hole (hereinafter, may be referred to as “via”) for conducting conduction between layers.
  • via By plating the inner wall of the via, both sides of the wiring board can be made conductive.
  • a through-hole method is used to make through holes in the metal foil and insulating layer (polygonite layer) on both sides with a drill or laser, and the metal foil and insulating layer on one side are cut with a laser or the like, and the other is used.
  • a blind via method that leaves the metal leaf on the surface of the surface, but the blind via method is frequently used in order to effectively use the area, especially in the fine FPC.
  • Patent Document 1 describes a method of adding a heat treatment step between laser processing and desmear processing to remove residual stress generated by laser processing and suppress the generation of defects.
  • Patent Document 2 discloses a polyimide having resistance to an alkaline solution used in a developing step, an etching treatment step, and a resist stripping step.
  • Patent Document 1 If a method of adding a heat treatment step between laser processing and desmear processing as disclosed in Patent Document 1 is adopted as a method for suppressing the occurrence of cracks, the heat treatment process is separately increased, so that the production of the wiring board is performed. It causes a decrease in sex. Further, the method described in Patent Document 1 has room for improvement in suppressing the occurrence of cracks on the inner wall of the via.
  • Patent Document 2 can suppress the tearing of the film in an alkaline environment, there is still room for improvement in suppressing the occurrence of cracks on the inner wall of the via.
  • the present invention has been made in view of these problems, and an object of the present invention is to provide a multi-layer polyimide film capable of suppressing the occurrence of cracks on the inner wall of a via during desmear treatment after laser processing.
  • the multilayer polyimide film according to the present invention has a non-thermoplastic polyimide layer and a thermoplastic polyimide layer arranged on at least one side of the non-thermoplastic polyimide layer.
  • the non-thermoplastic polyimide contained in the non-thermoplastic polyimide layer has a tetracarboxylic dianhydride residue and a diamine residue.
  • the diamine residue includes a diamine residue having a biphenyl skeleton, a 4,4'-diaminodiphenyl ether residue, and a p-phenylenediamine residue.
  • the content of the diamine residue having the biphenyl skeleton is 20 mol% or more and 35 mol% or less with respect to the total diamine residue constituting the non-thermoplastic polyimide.
  • the diamine residue having the biphenyl skeleton is a 4,4'-diamino-2,2'-dimethylbiphenyl residue.
  • the content of the 4,4'-diaminodiphenyl ether residue is 40 mol% or more 70 with respect to the total diamine residue constituting the non-thermoplastic polyimide. It is less than mol%.
  • the content of the p-phenylenediamine residue is 5 mol% or more and 50 mol% or less with respect to all the diamine residues constituting the non-thermoplastic polyimide. Is.
  • the tetracarboxylic acid dianhydride residue is 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride residue and pyromellitic acid dianhydride residue. Includes one or more selected from the group consisting of substance residues.
  • the tetracarboxylic acid dianhydride residue further contains 4,4'-oxydiphthalic acid anhydride residue.
  • the content of the 4,4'-oxydiphthalic acid anhydride residue is relative to the total tetracarboxylic acid dianhydride residue constituting the non-thermoplastic polyimide. It is 5 mol% or more and 15 mol% or less.
  • the thermoplastic polyimide contained in the thermoplastic polyimide layer is a 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride residue and pyromellitic acid. It has one or more selected from the group consisting of dianhydride residues and 2,2-bis [4- (4-aminophenoxy) phenyl] propane residues.
  • the storage elastic modulus of the non-thermoplastic polyimide layer at a temperature of 380 ° C. is less than 0.350 GPa.
  • the coefficient of linear expansion when the temperature rises from 100 ° C. to 200 ° C. of the non-thermoplastic polyimide layer is 5.0 ppm / K or more and 19.0 ppm / K or less. ..
  • the multilayer polyimide film according to the present invention it is possible to suppress the occurrence of cracks on the inner wall of the via during the desmear treatment after the laser processing without increasing the man-hours in the manufacturing process of the wiring board.
  • Polyimide is a polymer having a structural unit represented by the following general formula (1) as a repeating unit.
  • X represents a tetracarboxylic acid dianhydride residue (a tetravalent organic group derived from a tetracarboxylic acid dianhydride), and Y represents a diamine residue (a divalent organic derived from a diamine). Represents the group).
  • Biphenyl skeleton refers to a bicyclic skeleton in which two benzene rings are bonded by one single bond. Therefore, the diamine residue having a biphenyl skeleton does not include the diamine residue having a condensed ring such as the 9,9-bis (4-aminophenyl) fluorene residue.
  • linear expansion coefficient is, unless otherwise specified, the linear expansion coefficient at the time of temperature rise from 100 ° C to 200 ° C.
  • Non-thermoplastic polyimide is a film shape (flat) that does not wrinkle or stretch when fixed to a metal fixing frame and heated at a heating temperature of 450 ° C for 2 minutes. A polyimide that retains the film shape).
  • the "thermoplastic polyimide” refers to a polyimide that does not retain its film shape when fixed to a metal fixing frame in a film state and heated at a heating temperature of 450 ° C. for 2 minutes.
  • the "main surface" of a layered material refers to a surface orthogonal to the thickness direction of the layered material.
  • the multilayer polyimide film according to the present embodiment has a non-thermoplastic polyimide layer and a thermoplastic polyimide layer arranged on at least one side (one main surface) of the non-thermoplastic polyimide layer.
  • the non-thermoplastic polyimide contained in the non-thermoplastic polyimide layer has a tetracarboxylic dianhydride residue and a diamine residue.
  • the diamine residue includes a diamine residue having a biphenyl skeleton (a residue derived from a diamine having a biphenyl skeleton), a 4,4'-diaminodiphenyl ether residue, and a p-phenylenediamine residue.
  • the content of diamine residues having a biphenyl skeleton is preferably 20 mol% or more and 35 mol% or less with respect to all the diamine residues constituting the non-thermoplastic polyimide.
  • the tetracarboxylic dianhydride may be referred to as "acid dianhydride".
  • a diamine having a biphenyl skeleton may be referred to as "BPDI”.
  • 4,4'-diaminodiphenyl ether may be referred to as "ODA”.
  • P-phenylenediamine may be referred to as "PDA”.
  • the non-thermoplastic polyimide contained in the non-thermoplastic polyimide layer may be simply referred to as "non-thermoplastic polyimide”.
  • the thermoplastic polyimide contained in the thermoplastic polyimide layer may be simply referred to as "thermoplastic polyimide”.
  • the present inventors have diligently studied the molecular design of polyimide that can relieve the stress generated in the film during laser processing while maintaining the heat resistance (linear expansion coefficient, etc.) when used for a metal-clad laminate. As a result, the present inventors have optimized the structure of the non-thermoplastic polyimide contained in the multi-layer polyimide film, so that the desmear treatment after laser processing can be performed without significantly changing the manufacturing process of the wiring board. It was found that the occurrence of cracks on the inner wall of the via can be suppressed.
  • FIG. 1 is a cross-sectional view showing an example of a multi-layer polyimide film according to this embodiment.
  • the multilayer polyimide film 10 has a non-thermoplastic polyimide layer 11 and a thermoplastic polyimide layer 12 arranged on at least one side of the non-thermoplastic polyimide layer 11.
  • the non-thermoplastic polyimide contained in the non-thermoplastic polyimide layer 11 has a tetracarboxylic dianhydride residue and a diamine residue.
  • Diamine residues include BPDI residues, ODA residues, and PDA residues.
  • the content of the BPDI residue is preferably 20 mol% or more and 35 mol% or less with respect to all the diamine residues constituting the non-thermoplastic polyimide contained in the non-thermoplastic polyimide layer 11.
  • the multi-layer polyimide film 10 it is possible to suppress the occurrence of cracks on the inner wall of the via during the desmear treatment after laser processing.
  • the reason is presumed as follows.
  • the non-thermoplastic polyimide contained in the non-thermoplastic polyimide layer 11 has a BPDI residue containing a skeleton having a high degree of free rotation of the molecular chain in a specific range.
  • the non-thermoplastic polyimide contained in the non-thermoplastic polyimide layer 11 has a bent structure ODA residue that contributes to the flexibility of the multi-layer polyimide film 10 and a rigid structure that contributes to the heat resistance of the multi-layer polyimide film 10. It has a PDA residue.
  • the multilayer polyimide film 10 can relieve the stress generated in the film during laser processing while maintaining the heat resistance (linear expansion coefficient and the like) when used for the metal-clad laminate. Therefore, according to the multi-layer polyimide film 10, it is possible to suppress the occurrence of cracks on the inner wall of the via during the desmear treatment after the laser processing.
  • the benzene ring in the BPDI residue preferably has a substituent, more preferably an alkyl group, and methyl. It is more preferable to have a group.
  • thermoplastic polyimide layer 12 is provided only on one side of the non-thermoplastic polyimide layer 11, but heat is generated on both surfaces (both main surfaces) of the non-thermoplastic polyimide layer 11.
  • the plastic polyimide layer 12 may be provided.
  • the two-layer thermoplastic polyimide layer 12 may contain the same type of thermoplastic polyimide, and different types of thermoplastic polyimides may be contained. May include. Further, the thicknesses of the two thermoplastic polyimide layers 12 may be the same or different.
  • both the non-thermoplastic polyimide layer 11 and the thermoplastic polyimide layer 12 may be provided in two or more layers.
  • the "multi-layer polyimide film 10" includes a film in which the thermoplastic polyimide layer 12 is provided on only one side of the non-thermoplastic polyimide layer 11 and a thermoplastic polyimide on both sides of the non-thermoplastic polyimide layer 11.
  • a film provided with the layer 12 and a film provided with two or more layers of both the non-thermoplastic polyimide layer 11 and the thermoplastic polyimide layer 12 are included.
  • the thickness of the multilayer polyimide film 10 (total thickness of each layer) is, for example, 6 ⁇ m or more and 60 ⁇ m or less.
  • the thickness of the multilayer polyimide film 10 is preferably 7 ⁇ m or more and 30 ⁇ m or less, preferably 10 ⁇ m or more. It is more preferably 25 ⁇ m or less.
  • the thickness of the multilayer polyimide film 10 can be measured using a laser holo gauge.
  • the thickness of the thermoplastic polyimide layer 12 (when two or more thermoplastic polyimide layers 12 are provided, the respective heats are provided.
  • the thickness of the plastic polyimide layer 12 is preferably 1 ⁇ m or more and 15 ⁇ m or less.
  • the thickness ratio of the non-thermoplastic polyimide layer 11 and the thermoplastic polyimide layer 12 is preferably 55/45 or more and 95/5 or less.
  • the thickness ratio is the ratio of the total thickness of each. Even if the number of layers of the thermoplastic polyimide layer 12 is increased, it is preferable that the total thickness of the thermoplastic polyimide layer 12 does not exceed the total thickness of the non-thermoplastic polyimide layer 11.
  • thermoplastic polyimide layers 12 are provided on both sides of the non-thermoplastic polyimide layer 11, and the same kind of heat is provided on both sides of the non-thermoplastic polyimide layer 11. It is more preferable that the thermoplastic polyimide layer 12 containing the thermoplastic polyimide is provided.
  • the thermoplastic polyimide layers 12 are provided on both sides of the non-thermoplastic polyimide layer 11, the thicknesses of the two thermoplastic polyimide layers 12 are the same in order to suppress the warp of the multilayer polyimide film 10. Is preferable.
  • the thickness of the other thermoplastic polyimide layer 12 is 40% or more and 100% based on the thickness of the thicker thermoplastic polyimide layer 12. If the range is less than the range, the warp of the multilayer polyimide film 10 can be suppressed.
  • the storage elastic modulus of the non-thermoplastic polyimide layer 11 at a temperature of 380 ° C. is preferably less than 0.350 GPa. It is more preferably less than 200 GPa. Further, from the viewpoint of improving the mechanical strength of the multilayer polyimide film 10 under high temperature, the storage elastic modulus is preferably 0.010 GPa or more, and more preferably 0.050 GPa or more. The storage elastic modulus can be adjusted, for example, by changing the content of BPDI residues. The method for measuring the storage elastic modulus is the same as or similar to that of the examples described later.
  • the temperature indicated by the variation point of the storage elastic modulus is the heat from the viewpoint of stress relaxation during laser processing and when the metal foil is bonded by the laminating method. From the viewpoint of stress relaxation, the range of 270 ° C. or higher and 340 ° C. or lower is preferable, and the range of 280 ° C. or higher and 330 ° C. or lower is more preferable.
  • the temperature indicated by the inflection point of the storage elastic modulus is within this range, the dimensional change at the temperature (for example, 250 ° C.) for evaluating the dimensional change after heating of the flexible metal-clad laminate can be suppressed.
  • the temperature indicated by the inflection point of the storage elastic modulus is low, the stress generated in the multilayer polyimide film 10 during cooling after laser processing becomes small.
  • the coefficient of linear expansion of the non-thermoplastic polyimide layer 11 is preferably 5.0 ppm / K or more and 19.0 ppm / K or less, more preferably 8.0 ppm / K or more and 15.0 ppm / K or less, and further preferably. Is 9.0 ppm / K or more and 12.0 ppm / K or less.
  • the coefficient of linear expansion of the multilayer polyimide film 10 is set to 14.0 ppm / K or more, which is close to that of copper foil, for example.
  • the linear expansion coefficient is, for example, the content of residues derived from a monomer having a rigid structure (more specifically, a PDA residue, etc.) and residues derived from a monomer having a bent structure (more specifically, an ODA residue). It can be adjusted by changing the content of (base, etc.).
  • the method for measuring the coefficient of linear expansion is the same as or similar to the embodiment described later.
  • the non-thermoplastic polyimide layer 11 preferably has a slope of the plastic deformation region in the stress-strain curve of 2.0 or more.
  • the plastic deformation region refers to the region of strain after the yield point in the stress-strain curve in the tensile test of the polyimide film.
  • the "difficult to plastically deform" property means that the stress is greatly increased in the plastic deformation region, or the stress required at the time of plastic deformation is large.
  • the inclination of the plastic deformation region is an index for the characteristic of "hard to be plastically deformed".
  • the slope of the plastic deformation region is, for example, the plastic deformation of the graph in which the vertical axis is "stress (unit: MPa)" and the horizontal axis is "strain (unit: mm)" for the result of measuring the tensile properties according to ASTM D882.
  • the slope of the s—s curve in the plastic deformation region can be calculated by the following formula. In the following equation, stress1 is a stress at 10% strain, stress2 is a fracture stress, strain1 is a 10% strain, and strain2 is a fracture strain.
  • the inclination of the plastic deformation region of the non-thermoplastic polyimide layer 11 is preferably 2.0 or more, more preferably 2.2 or more, and further preferably 2.5 or more.
  • the inclination of the plastic deformation region should be high, but in order to suppress the occurrence of springback and the like, the inclination of the plastic deformation region is preferably 4.5 or less, and 4.0 or less. Is more preferable.
  • the metal foil 13 is attached to at least one side of the multilayer polyimide film 10 (for example, in the case of FIG. 1, the surface 12a of the thermoplastic polyimide layer 12).
  • the metal-clad laminate 20 shown in FIG. 2 is obtained.
  • the method of adhering the metal foil 13 to the surface 12a of the thermoplastic polyimide layer 12 is not particularly limited, and various known methods can be adopted.
  • a thermal roll laminating device having a pair or more of metal rolls or a continuous processing method using a double belt press (DBP) can be adopted.
  • the specific configuration of the means for performing the thermal roll laminating is not particularly limited, but in order to improve the appearance of the obtained multi-layer polyimide film 10, between the pressure surface and the metal foil 13. It is preferable to place a protective material.
  • thermoplastic polyimide layer 12 When the thermoplastic polyimide layer 12 is provided on both sides of the non-thermoplastic polyimide layer 11, the double-sided metal-clad laminate (not shown) is formed by laminating the metal foil 13 on both sides of the multilayer polyimide film 10. can get.
  • the non-thermoplastic polyimide contained in the non-thermoplastic polyimide layer has a BPDI residue, an ODA residue, and a PDA residue as diamine residues.
  • the total content of BPDI residue, ODA residue and PDA residue is contained in all diamine residues constituting the non-thermoplastic polyimide.
  • the ratio is preferably 50 mol% or more, more preferably 70 mol% or more, further preferably 80 mol% or more, further preferably 90 mol% or more, and even more preferably 100 mol%. But it doesn't matter.
  • Examples of the diamine (monomer) for forming the BPDI residue include 4,4'-diamino-2,2'-dimethylbiphenyl (hereinafter, may be referred to as "m-TB"), 4,4. '-Diaminobiphenyl, 4,4'-diamino-3,3'-dimethylbiphenyl, 4,4'-diamino-2,2'-dimethoxybiphenyl, 4,4'-diamino-3,3'-dimethoxybiphenyl, Examples thereof include 3,3', 5,5'-tetramethylbenzidine, 4,4'-bis (4-aminophenoxy) biphenyl and the like.
  • one or more diamines can be used as the diamine for forming the BPDI residue.
  • m-TB is preferable as the diamine (monomer) for forming the BPDI residue. That is, as the BPDI residue, the m-TB residue is preferable.
  • the content of ODA residues with respect to all diamine residues constituting the non-thermoplastic polyimide is set. It is preferably 40 mol% or more and 70 mol% or less, more preferably 45 mol% or more and 65 mol% or less, and further preferably 50 mol% or more and 65 mol% or less.
  • the content of PDA residues to all diamine residues constituting the non-thermoplastic polyimide is set. It is preferably 5 mol% or more and 50 mol% or less, more preferably 10 mol% or more and 40 mol% or less, and further preferably 15 mol% or more and 30 mol% or less.
  • the non-thermoplastic polyimide may have a diamine residue (another diamine residue) other than the BPDI residue, the ODA residue and the PDA residue as the diamine residue.
  • a diamine residue another diamine residue
  • an aromatic diamine having high heat resistance is preferable.
  • diamines for forming other diamine residues include 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, and 4,4'-diaminodiphenyl.
  • Non-thermoplastic polyimide has an acid dianhydride residue in addition to a diamine residue.
  • the acid dianhydride (monomer) for forming the acid dianhydride residue aromatic acid dianhydride is preferable from the viewpoint of improving heat resistance.
  • the acid dianhydride (monomer) for forming the acid dianhydride residue is an acid having a biphenyl skeleton. Dianhydride is preferred.
  • the acid dianhydride (monomer) for forming the acid dianhydride residue include pyromellitic acid dianhydride (hereinafter, may be referred to as "PMDA”), 3, 3', 4 , 4'-biphenyltetracarboxylic acid dianhydride (hereinafter sometimes referred to as "BPDA”), 2,3,6,7-naphthalenetetracarboxylic acid dianhydride, 1,2,5,6-naphthalene Tetracarboxylic acid dianhydride, 2,2', 3,3'-biphenyltetracarboxylic acid dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride (hereinafter referred to as "BTDA").
  • PMDA pyromellitic acid dianhydride
  • BPDA 4,4'-biphenyltetracarboxylic acid dianhydride
  • ODPA 4,4'-oxydiphthalic acid anhydride
  • 3,4 '-Oxydiphthalic anhydride 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 3,4,9,10-perylenetetracarboxylic acid dianhydride, bis (3,4-dicarboxyphenyl) Phenyl) Propane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (2,3) -Dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (3,4-dicarboxyphenyl) sulfon
  • the acid dianhydride residue is preferably one or more selected from the group consisting of BPDA residues and PMDA residues.
  • the BPDA residue having a biphenyl skeleton is preferable as the acid dianhydride residue.
  • the non-thermoplastic polyimide contains a BPDA residue, in order to further suppress the occurrence of cracks on the inner wall of the via during desmear treatment after laser processing while maintaining the linear expansion coefficient, all the non-thermoplastic polyimides are composed.
  • the content of the BPDA residue with respect to the acid dianhydride residue is preferably 10 mol% or more and 60 mol% or less, more preferably 20 mol% or more and 60 mol% or less, and 30 mol% or more and 60 mol. % Or less is more preferable.
  • the content of PMDA residues in the total acid dianhydride residues constituting the non-thermoplastic polyimide is 40 mol% or more and 80 mol% from the viewpoint of maintaining the linear expansion coefficient. It is preferably 40 mol% or more and 75 mol% or less, more preferably 40 mol% or more and 70 mol% or less.
  • the non-thermoplastic polyimide contains a BPDA residue and a PMDA residue
  • the BPDA residue and The total content of PMDA residues is preferably 60 mol% or more, more preferably 70 mol% or more, and more preferably 80 mol% with respect to the total acid dianhydride residues constituting the non-thermoplastic polyimide. It is more preferably% or more, and may be 100 mol%.
  • one or more non-thermoplastic polyimides are selected from the group consisting of BPDA residues and PMDA residues as acid dianhydride residues. And ODPA residues are preferred.
  • ODPA residues are preferred.
  • ODPA for the total acid dianhydride residue constituting the non-thermoplastic polyimide is used.
  • the residue content is preferably 5 mol% or more and 15 mol% or less.
  • the inner wall of the via is subjected to desmear treatment after laser processing while maintaining the coefficient of linear expansion.
  • the total content of BPDA residues, PMDA residues and ODPA residues is 80 mol% with respect to the total acid dianhydride residues constituting the non-thermoplastic polyimide. The above is preferable, 90 mol% or more is more preferable, and 100 mol% may be used.
  • the non-thermoplastic polyimide is represented by the following chemical formula (2). It is preferable to have a segment whose structural unit is a repeating unit.
  • a “segment” means a polymer chain formed from the same repeating unit which constitutes a block copolymer.
  • the "block copolymer” includes any aspect of a pure block copolymer, a random block copolymer, and a copolymer having a tapered block structure.
  • a segment having a structural unit represented by the chemical formula (2) as a repeating unit (hereinafter, may be referred to as a “specific segment”) can be formed by, for example, sequence polymerization described later.
  • the non-thermoplastic polyimide layer may contain components (additives) other than the non-thermoplastic polyimide.
  • a dye, a surfactant, a leveling agent, a plasticizer, a silicone, a filler, a sensitizer and the like can be used as the additive.
  • the content of the non-thermoplastic polyimide in the non-thermoplastic polyimide layer is, for example, 70% by weight or more, preferably 80% by weight or more, and more preferably 90% by weight or more, based on the total amount of the non-thermoplastic polyimide layer. It is more preferable, and it may be 100% by weight.
  • thermoplastic polyimide layer The thermoplastic polyimide contained in the thermoplastic polyimide layer has an acid dianhydride residue and a diamine residue.
  • the acid dianhydride (monomer) for forming the acid dianhydride residue in the thermoplastic polyimide is an acid dianhydride for forming the acid dianhydride residue in the non-thermoplastic polyimide described above (monomer).
  • the same compound as the monomer) can be mentioned.
  • the acid dianhydride residue contained in the thermoplastic polyimide and the acid dianhydride residue contained in the non-thermoplastic polyimide may be of the same type or different types from each other.
  • the diamine residue of the thermoplastic polyimide is preferably a diamine residue having a bent structure.
  • the content of the diamine residue having a bent structure is preferably 50 mol% or more, preferably 70 mol% or more, based on the total diamine residue constituting the thermoplastic polyimide. % Or more is more preferable, 80 mol% or more is further preferable, and 100 mol% may be used.
  • the diamine (monomer) for forming a diamine residue having a bent structure include 4,4'-bis (4-aminophenoxy) biphenyl, 4,4'-bis (3-aminophenoxy) biphenyl, and 1,3.
  • BAPP 2,2-bis [4- (4-aminophenoxy) phenyl] propane
  • the thermoplastic polyimide layer may contain components (additives) other than the thermoplastic polyimide.
  • additive for example, a dye, a surfactant, a leveling agent, a plasticizer, a silicone, a filler, a sensitizer and the like can be used.
  • the content of the thermoplastic polyimide in the thermoplastic polyimide layer is, for example, 70% by weight or more, preferably 80% by weight or more, and more preferably 90% by weight or more, based on the total amount of the thermoplastic polyimide layer. Preferably, it may be 100% by weight.
  • the multilayer polyimide film according to the present embodiment preferably satisfies the following condition 1, and more preferably the following condition 2. It is more preferable to satisfy the following condition 3, still more preferably to satisfy the following condition 4, and particularly preferably to satisfy the following condition 5.
  • Condition 1 The non-thermoplastic polyimide has m-TB residue, ODA residue, PDA residue, BPDA residue and PMDA residue.
  • Condition 2 The content of the ODA residue with respect to all the diamine residues constituting the non-thermoplastic polyimide satisfying the above condition 1 is 40 mol% or more and 70 mol% or less.
  • Condition 3 The content of the PDA residue with respect to all the diamine residues constituting the non-thermoplastic polyimide satisfying the above condition 2 is 5 mol% or more and 50 mol% or less.
  • Condition 4 The non-thermoplastic polyimide satisfying the above condition 3 is a block copolymer having a specific segment.
  • Condition 5 The above condition 4 is satisfied, and the non-thermoplastic polyimide further has an ODPA residue.
  • the amount of each diamine and the amount of tetracarboxylic acid dianhydride (when using multiple types of tetracarboxylic acid dianhydride, when using multiple types of tetracarboxylic acid dianhydride, By adjusting the amount of each tetracarboxylic acid dianhydride), a desired polyamic acid (polymer of diamine and tetracarboxylic acid dianhydride) can be obtained.
  • the amount of substance ratio (molar ratio) of each residue in the polyimide formed from polyamic acid is consistent with, for example, the amount of substance ratio of each monomer (diamine and tetracarboxylic acid dianhydride) used for the synthesis of polyamic acid. ..
  • the temperature conditions for the reaction between the diamine and the tetracarboxylic dianhydride, that is, the synthetic reaction for the polyamic acid are not particularly limited, but are, for example, in the range of 20 ° C. or higher and 150 ° C. or lower.
  • the reaction time of the polyamic acid synthesis reaction is, for example, in the range of 10 minutes or more and 30 hours or less.
  • any method of adding a monomer may be used for producing the polyamic acid. The following methods can be mentioned as a typical method for producing a polyamic acid.
  • Examples of the method for producing a polyamic acid include a method of polymerizing by the following steps (Aa) and (Ab) (hereinafter, may be referred to as "A polymerization method").
  • a polymerization method A step of reacting an aromatic diamine with an aromatic acid dianhydride in an organic solvent in a state where the aromatic diamine is in excess to obtain a prepolymer having amino groups at both ends (A-a).
  • An aromatic dianhydride having a structure different from that used in the step (Aa) is additionally added, and an aromatic acid dianhydride having a structure different from that used in the step (Aa) is further added.
  • a method for producing the polyamic acid a method of polymerizing by the following steps (Ba) and the step (Bb) (hereinafter, may be referred to as “B polymerization method”) can also be mentioned.
  • a step of adding and polymerizing aromatic diamine so that the aromatic diamine and the aromatic acid dianhydride in all steps are substantially equimolar.
  • a polymerization method in which the order of addition of diamine and acid dianhydride is not set (a polymerization method in which monomers react arbitrarily with each other) is described as random polymerization in the present specification.
  • the polymer obtained by random polymerization is called a random copolymer.
  • sequence polymerization is preferable as a polymerization method for obtaining a polyimide effective for suppressing tearing of a film while maintaining the characteristics of a flexible metal-clad laminate.
  • the weight average molecular weight of the polyamic acid obtained by the above-mentioned polymerization method is preferably in the range of 10,000 or more and 1,000,000 or less, and more preferably in the range of 20,000 or more and 500,000 or less. It is more preferably in the range of 30,000 or more and 200,000 or less.
  • the weight average molecular weight used here means a polyethylene oxide equivalent value measured by gel permeation chromatography (GPC).
  • a method of obtaining the polyimide from a polyamic acid solution containing a polyamic acid and an organic solvent may be adopted.
  • the organic solvent that can be used in the polyamic acid solution include urea-based solvents such as tetramethylurea and N, N-dimethylethylurea; sulfoxide-based solvents such as dimethylsulfoxide; and diphenylsulfones and tetramethylsulfones.
  • N N-dimethylacetamide
  • N N-dimethylformamide
  • N N-diethylacetamide
  • N-methyl-2-pyrrolidone hexamethylphosphate
  • Amid solvents such as triamide; ester solvents such as ⁇ -butyrolactone; alkyl halide solvents such as chloroform and methylene chloride; aromatic hydrocarbon solvents such as benzene and toluene; phenol solvents such as phenol and cresol; cyclo Ketone-based solvents such as pentanone; ether-based solvents such as tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, dimethyl ether, diethyl ether, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, and p-cresol methyl ether can be mentioned.
  • the reaction solution solution after the reaction
  • the organic solvent in the polyamic acid solution is the organic solvent used in the reaction in the above polymerization method.
  • a solid polyamic acid obtained by removing the solvent from the reaction solution may be dissolved in an organic solvent to prepare a polyamic acid solution.
  • Additives such as dyes, surfactants, leveling agents, plasticizers, silicones, and sensitizers may be added to the polyamic acid solution.
  • a filler may be added to the polyamic acid solution for the purpose of improving various properties of the film such as slidability, thermal conductivity, conductivity, corona resistance, and loop stiffness. Any filler may be used, and preferred examples thereof include fillers made of silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica and the like.
  • the concentration of the polyamic acid in the polyamic acid solution is not particularly limited, and is, for example, 5% by weight or more and 35% by weight or less, preferably 8% by weight or more and 30% by weight or less, based on the total amount of the polyamic acid solution.
  • concentration of polyamic acid is 5% by weight or more and 35% by weight or less, an appropriate molecular weight and solution viscosity can be obtained.
  • a step of peeling the gel film from the support after heating to obtain a self-supporting polyimide film (hereinafter, may be referred to as "gel film").
  • Step iv) The above gel film is heated.
  • the method of applying the doping solution on the support is not particularly limited, and a method using a conventionally known coating device such as a die coater, a comma coater (registered trademark), a reverse coater, and a knife coater is adopted. can.
  • the steps after step ii) are roughly divided into a thermal imidization method and a chemical imidization method.
  • the thermal imidization method is a method in which a polyamic acid solution is applied as a doping solution on a support and heated to proceed with imidization without using a dehydrating ring-closing agent or the like.
  • the chemical imidization method is a method of promoting imidization by using a polyamic acid solution to which at least one of a dehydration ring-closing agent and a catalyst is added as an imidization accelerator as a dope solution. Either method may be used, but the chemical imidization method is more productive.
  • an acid anhydride typified by acetic anhydride is preferably used.
  • tertiary amines such as aliphatic tertiary amines, aromatic tertiary amines, and heterocyclic tertiary amines are preferably used.
  • step iii As the support to which the dope solution is applied in step ii), a glass plate, aluminum foil, an endless stainless belt, a stainless drum, or the like is preferably used.
  • heating conditions are set according to the thickness of the finally obtained film and the production rate, and after at least one of partial imidization and drying is performed, the film is peeled off from the support to form a polyamic acid film (step iii). Gel film) is obtained.
  • step iv) water, the residual solvent, the imidization accelerator, etc. are removed from the gel film by fixing the end portion of the gel film and heat-treating it while avoiding shrinkage during curing, and the residue remains.
  • the polyamic acid is completely imidized to obtain a polyimide film containing a non-thermoplastic polyimide.
  • the heating conditions may be appropriately set according to the thickness of the finally obtained film and the production rate.
  • thermoplastic polyimide layer is, for example, a polyamic acid containing polyamic acid, which is a precursor of thermoplastic polyimide, on at least one side of a polyimide film (non-thermoplastic polyimide layer) obtained by using the above-mentioned non-thermoplastic polyimide solution.
  • a polyimide film non-thermoplastic polyimide layer obtained by using the above-mentioned non-thermoplastic polyimide solution.
  • thermoplastic polyamic acid solution After applying the solution (hereinafter, may be referred to as "thermoplastic polyamic acid solution"), it can be obtained by the same procedure as the above-mentioned method for forming a non-thermoplastic polyimide layer (polyimide film).
  • thermoplastic polyimide solution a solution containing thermoplastic polyimide (thermoplastic polyimide solution) is used to form a coating film made of the thermoplastic polyimide solution on at least one side of the non-thermoplastic polyimide layer, and this coating is performed.
  • the film may be dried to form a thermoplastic polyimide layer.
  • a coextruding die to form a laminate comprising a layer containing polyamic acid, which is a precursor of non-thermoplastic polyimide, and a layer containing polyamic acid, which is a precursor of thermoplastic polyimide.
  • the obtained laminate may be heated to form a non-thermoplastic polyimide layer and a thermoplastic polyimide layer at the same time.
  • a metal-clad laminate a laminate of a multilayer polyimide film and a metal foil
  • the above-mentioned coating step and heating step are repeated multiple times, or multiple coating films are formed by coextrusion or continuous coating (continuous casting) at one time.
  • the heating method is preferably used. It is also possible to perform various surface treatments such as corona treatment and plasma treatment on the outermost surface of the multi-layer polyimide film.
  • the metal foil one that has been subjected to surface treatment or the like according to the purpose and whose surface roughness or the like has been adjusted can be used. Further, a rust preventive layer, a heat resistant layer, an adhesive layer and the like may be formed on the surface of the metal foil.
  • the thickness of the metal foil is not particularly limited, and may be any thickness as long as it can exhibit sufficient functions depending on the intended use.
  • ⁇ Processing of metal-clad laminate> When a via is formed by laser processing using a metal-clad laminate as a material, the metal-clad laminate can be cut and a hole can be made by irradiating the portion to be processed with a laser.
  • Blind vias can be formed by penetrating a metal-clad laminate to form through holes, or by removing only the exposed polyimide layer after removing a part of the metal foil on the upper surface.
  • the metal foil on the upper surface is removed with a laser, and then the output of the laser is reduced to remove the polyimide layer, whereby the blind via can be stably formed.
  • a known type of laser can be adopted. Short wavelength lasers such as UV-YAG lasers and excimer lasers are preferred because they exhibit very high absorptance for both resins and metals.
  • a method of directly drilling a through hole is also widely used.
  • a desmear treatment method after laser processing a known method can be adopted, for example, a swelling step using an alkaline aqueous solution or a solution containing an organic solvent, an alkaline aqueous solution containing sodium permanganate, potassium permanganate, or the like.
  • a wet desmear treatment method including a roughening step and a neutralization step using the above can be mentioned.
  • the inner wall of the hole after desmear treatment is plated to make both sides of the metal-clad laminate conductive.
  • the plating method there is a method of adhering palladium to the inner wall surface of the hole and then forming an electroless copper plating layer on the inner wall surface using the palladium as a nucleus.
  • a plating layer having a desired thickness may be formed only by electrolytic copper plating, or a plating layer having a desired thickness may be formed by electrolytic copper plating after thinning the electrolytic copper plating layer. ..
  • the sample after laser processing was subjected to desmear treatment under the conditions shown in Table 2, and then the copper foil was removed by etching to obtain a sample for evaluation.
  • the manufacturer of the chemical solution used for the desmia treatment was Roam & Haas Electronic Materials Co., Ltd.
  • a washing step was carried out between the swelling step and the roughening step, between the roughening step and the neutralization step, and after the neutralization step.
  • the obtained evaluation sample was observed with a polarizing microscope under a cross Nicol at a magnification of 200 times to determine the presence or absence of cracks.
  • the state in which light leakage occurs around the holes is judged to be "cracking", and after observing 100 holes, the ratio of the cracked holes ( The crack occurrence rate) was calculated as a percentage.
  • 3 to 5 show an example of a polarizing microscope image used for actual discrimination.
  • FIG. 3 is an example of a hole where no crack has occurred because no light leakage has occurred around the hole.
  • 4 and 5 are examples of holes in which cracks are generated because light leakage occurs around the holes. For holes where the degree of light leakage was so weak that the presence or absence of cracks could not be determined, the cross section of the holes was observed with an electron microscope to determine the presence or absence of cracks.
  • the polyimide obtained from the polyamic acid in the obtained solution P1 was non-thermoplastic by the method shown below.
  • 32.5 g of an imidization accelerator composed of acetic anhydride / isoquinoline / DMF (weight ratio: 11.48 / 3.40 / 18.18) was added to 65 g of the solution P1 to prepare a doping solution.
  • the doping liquid was defoamed while stirring, and then the doping liquid was applied onto the aluminum foil using a comma coater to form a coating film.
  • the coating film was heated for 100 seconds under the condition of a heating temperature of 115 ° C. to obtain a self-supporting gel film.
  • the obtained gel film is peeled off from the aluminum foil, fixed to a metal fixing frame, heated for 15 seconds under the condition of a heating temperature of 250 ° C., and subsequently heated for 79 seconds under the condition of a heating temperature of 350 ° C. to dry. And imidization to obtain a polyimide film having a thickness of 12.5 ⁇ m.
  • the obtained polyimide film was fixed to a fixed frame made of metal and heated at a heating temperature of 450 ° C. for 2 minutes, the shape (film shape) of the polyimide film was maintained. Therefore, the polyimide obtained from the polyamic acid in the solution P1 was a non-thermoplastic polyimide.
  • the polyimide film obtained by the same method as the film forming method using the solution P1 is fixed to a metal fixing frame under the condition of a heating temperature of 450 ° C.
  • a heating temperature of 450 ° C When heated for 2 minutes, the shape of the polyimide film (film shape) was maintained. Therefore, the polyimides obtained from the polyamic acids in the solutions P2 to P12 were all non-thermoplastic polyimides.
  • a PMDA solution prepared in advance (solvent: DMF, PMDA dissolution amount: 0.87 g, PMDA concentration: 7.2% by weight) was added to the flask.
  • solvent DMF, PMDA dissolution amount: 0.87 g, PMDA concentration: 7.2% by weight
  • the addition of the PMDA solution and the stirring of the flask contents were stopped to obtain a solution P3 which is a non-thermoplastic polyamic acid solution.
  • a PMDA solution prepared in advance (solvent: DMF, PMDA dissolution amount: 0.94 g, PMDA concentration: 7.2% by weight) was added to the flask.
  • solvent DMF, PMDA dissolution amount: 0.94 g, PMDA concentration: 7.2% by weight
  • the addition of the PMDA solution and the stirring of the flask contents were stopped to obtain a solution P8 which is a non-thermoplastic polyamic acid solution.
  • a PMDA solution prepared in advance (solvent: DMF, PMDA dissolution amount: 0.89 g, PMDA concentration: 7.2% by weight) was added to the flask.
  • solvent DMF, PMDA dissolution amount: 0.89 g, PMDA concentration: 7.2% by weight
  • the addition of the PMDA solution and the stirring of the flask contents were stopped to obtain a solution P11 which is a non-thermoplastic polyamic acid solution.
  • a PMDA solution (solvent: DMF, PMDA dissolution amount: 0.81 g, PMDA concentration: 7.2% by weight) prepared in advance was added to the flask.
  • PMDA solution solvent: DMF, PMDA dissolution amount: 0.81 g, PMDA concentration: 7.2% by weight
  • the addition of the PMDA solution and the stirring of the flask contents were stopped to obtain a solution P12 which is a non-thermoplastic polyamic acid solution.
  • the polyimide obtained from the polyamic acid in the solution P13 was thermoplastic by the method shown below.
  • 30.0 g of an imidization accelerator composed of acetic anhydride / isoquinoline / DMF (weight ratio: 6.89 / 2.14 / 20.97) was added to 60 g of the solution P13 to prepare a doping solution.
  • the doping liquid was defoamed while stirring, and then the doping liquid was applied onto the aluminum foil using a comma coater to form a coating film.
  • the coating film was heated at a heating temperature of 120 ° C. for 3 minutes to obtain a self-supporting gel film.
  • the obtained gel film is peeled off from the aluminum foil, fixed to a metal fixing frame, heated at a heating temperature of 250 ° C. for 1 minute, and subsequently heated at a heating temperature of 300 ° C. for 200 seconds to dry. And imidization to obtain a polyimide film having a thickness of 20.0 ⁇ m.
  • the polyimide obtained from the polyamic acid in the solution P13 was a thermoplastic polyimide.
  • Example 1 A dope solution was prepared by adding 32.5 g of an imidization accelerator composed of acetic anhydride / isoquinoline / DMF (weight ratio: 11.48 / 3.40 / 18.18) to 65 g of the solution P1. Then, in an atmosphere of 0 ° C. or lower, the doping liquid was defoamed while stirring, and then the doping liquid was applied onto the aluminum foil using a comma coater to form a coating film. Then, the coating film was heated for 100 seconds under the condition of a heating temperature of 115 ° C. to obtain a self-supporting gel film.
  • an imidization accelerator composed of acetic anhydride / isoquinoline / DMF (weight ratio: 11.48 / 3.40 / 18.18)
  • the obtained gel film is peeled off from the aluminum foil, fixed to a metal fixing frame, heated for 15 seconds under the condition of a heating temperature of 250 ° C., and subsequently heated for 79 seconds under the condition of a heating temperature of 350 ° C. to dry. And imidization to obtain a polyimide film having a thickness of 12.5 ⁇ m.
  • Table 4 shows the physical characteristics of the obtained polyimide film (non-thermoplastic polyimide layer).
  • the "physical characteristics of the non-thermoplastic polyimide layer" in Table 4 are the physical characteristics measured using a polyimide film having a thickness of 12.5 ⁇ m.
  • the solution P13 is diluted with DMF until the solid content concentration becomes 8% by weight to prepare a dope solution, and then applied to both sides of the above-mentioned polyimide film (polyimide film obtained by using the solution P1) and applied. A film was formed. The coating amount at this time was adjusted so that the thickness of each formed thermoplastic polyimide layer (adhesive layer) was 3 ⁇ m.
  • the coating film was heated at a heating temperature of 120 ° C. for 2 minutes, and subsequently heated at a heating temperature of 350 ° C. for 15 seconds to dry and imidize, to obtain a multilayer polyimide film of Example 1.
  • Table 4 shows the results (crack generation rate) of the hole crack test of the obtained multi-layer polyimide film.
  • the copper-clad laminate produced during the hole crack test had no wrinkles on the surface and had a good appearance.
  • Example 2 to 7 and Comparative Examples 1 to 5 The multi-layer polyimide films of Examples 2 to 7 and Comparative Examples 1 to 5 were obtained by the same method as in Example 1 except that the non-thermoplastic polyamic acid solution shown in Table 4 was used instead of the solution P1. .. In each of Examples 2 to 7 and Comparative Examples 1 to 5, the amount of the non-thermoplastic polyamic acid solution used was 65 g. Table 4 shows the results (crack generation rate) of the hole crack test of the obtained multi-layer polyimide film. In Examples 2 to 4, Example 6, Example 7, and Comparative Examples 2 to 4, the copper-clad laminates produced during the hole crack test had no wrinkles on the surface and had a good appearance. was gotten. On the other hand, in Example 5, Comparative Example 1 and Comparative Example 5, there were wrinkles on a part of the surface of the copper-clad laminate prepared at the time of the hole crack test.
  • Table 3 shows the materials used for each of the solutions P1 to P13 and their ratios.
  • the substance amount ratio (molar ratio) of each residue in the polyimide obtained by using each of the solutions P1 to P13 is consistent with the substance amount ratio of each monomer (diamine and tetracarboxylic acid dianhydride) used. rice field.
  • Table 4 shows the types of non-thermoplastic polyamic acid solutions used, the physical properties of the non-thermoplastic polyimide layer, and the results of the whole crack test (crack generation rate) for each of Examples 1 to 7 and Comparative Examples 1 to 5. )showed that.
  • "-" means that the said component was not used.
  • the numerical value in the column of "acid dianhydride” is the content ratio (unit: mol%) of each acid dianhydride with respect to the total amount of acid dianhydride used.
  • the numerical value in the column of "diamine” is the content ratio (unit: mol%) of each diamine with respect to the total amount of diamines used.
  • the non-thermoplastic polyimide had an m-TB residue, which is a kind of BPDI residue, an ODA residue, and a PDA residue.
  • the content of m-TB residues was 20 mol% or more and 35 mol% or less with respect to all the diamine residues constituting the non-thermoplastic polyimide.
  • the crack occurrence rate was 50% or less.
  • the non-thermoplastic polyimides of Examples 1 to 4, 6 and 7 were block copolymers having specific segments, but the non-thermoplastic polyimides of Example 5 were random copolymers.
  • the multi-layer polyimide film according to the present invention can suppress the occurrence of cracks on the inner wall of the via during the desmear treatment after laser processing.
  • Multi-layer polyimide film 11 Non-thermoplastic polyimide layer 12: Thermoplastic polyimide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

This multilayer polyimide film (10) comprises a non-thermoplastic polyimide layer (11) and a thermoplastic polyimide layer (12) that is arranged on at least one surface of the non-thermoplastic polyimide layer (11). A non-thermoplastic polyimide that is contained in the non-thermoplastic polyimide layer (11) has tetracarboxylic acid dianhydride residues and diamine residues. The diamine residues include a diamine residue having a biphenyl skeleton, a 4, 4'-diaminodiphenyl ether residue and a p-phenylene diamine residue. The content of the diamine residue having a biphenyl skeleton is from 20% by mole to 35% by mole relative to all diamine residues that constitute the non-thermoplastic polyimide.

Description

複層ポリイミドフィルムMulti-layer polyimide film
 本発明は、複層ポリイミドフィルムに関する。 The present invention relates to a multi-layer polyimide film.
 近年、スマートフォン、タブレットパソコン、ノートパソコン等を中心としたエレクトロニクス製品の需要拡大に伴い、フレキシブルプリント配線板(以下、「FPC」と記載することがある)の需要が伸びている。中でも、接着層として熱可塑性ポリイミド層を含む複層ポリイミドフィルムを材料として使用したフレキシブルプリント配線板は、耐熱性、屈曲性に優れることから需要が更に伸びることが期待される。更に、近年では、電子機器の軽量化、小型化、薄膜化が進んでおり、FPC配線の微細化の要求が依然として強い。 In recent years, with the expansion of demand for electronic products centered on smartphones, tablet PCs, notebook PCs, etc., the demand for flexible printed wiring boards (hereinafter sometimes referred to as "FPC") is increasing. Above all, a flexible printed wiring board using a multi-layer polyimide film containing a thermoplastic polyimide layer as an adhesive layer is expected to further increase in demand because of its excellent heat resistance and flexibility. Furthermore, in recent years, electronic devices have been made lighter, smaller, and thinner, and there is still a strong demand for miniaturization of FPC wiring.
 微細両面FPCや多層FPCを作製する際には、ポリイミドフィルムの両面に銅箔等の金属箔を貼り合わせた金属張積層板を材料として使用するのが一般的である。FPC製造では最初に層間の導通を行うための穴(以下、「ビア」と記載することがある)を開ける工程がある。ビアの内壁にめっきを施すことで配線板の両面を導通させることができる。ビア形成工程には、ドリルやレーザーで両面の金属箔及び絶縁層(ポリイミド層)に貫通孔を開けるスルーホール法と、一方の面の金属箔及び絶縁層をレーザー等で切削して、もう一方の面の金属箔を残すブラインドビア法があるが、とくに微細FPCでは面積を有効に使用するために、ブラインドビア法が高頻度に用いられる。 When producing a fine double-sided FPC or a multi-layer FPC, it is common to use a metal-clad laminate in which a metal foil such as a copper foil is laminated on both sides of a polyimide film. In FPC manufacturing, there is a step of first drilling a hole (hereinafter, may be referred to as “via”) for conducting conduction between layers. By plating the inner wall of the via, both sides of the wiring board can be made conductive. In the via forming process, a through-hole method is used to make through holes in the metal foil and insulating layer (polygonite layer) on both sides with a drill or laser, and the metal foil and insulating layer on one side are cut with a laser or the like, and the other is used. There is a blind via method that leaves the metal leaf on the surface of the surface, but the blind via method is frequently used in order to effectively use the area, especially in the fine FPC.
 従来、このようなビア形成工程では、穴あけ後に穴の内部や金属箔表面を清浄化したり樹脂の残渣を除去したりするために、加熱下においてアルカリ性過マンガン酸カリウム水溶液等で積層板を処理する湿式デスミア処理が行われる。ポリイミドは、ただでさえアルカリ条件下で加水分解しやすいのに、レーザー加工した場合には局所的な加熱を受けることにより残留応力が発生しているため、ビア形成工程後のデスミア処理ではビア内壁にクラック等の欠陥が生じやすい。特許文献1には、レーザー加工とデスミア処理の間に熱処理工程を追加して、レーザー加工で生じた残留応力を除去し、欠陥の発生を抑制する方法が記載されている。特許文献2には、現像工程、エッチング処理工程及びレジスト剥離工程で使用するアルカリ溶液に対する耐性を有するポリイミドが開示されている。 Conventionally, in such a via forming step, a laminated board is treated with an alkaline potassium permanganate aqueous solution or the like under heating in order to clean the inside of the hole and the surface of the metal foil and remove the resin residue after drilling. Wet desmear treatment is performed. Although polyimide is easily hydrolyzed under alkaline conditions, residual stress is generated by receiving local heating when laser processing is performed. Therefore, in the desmear treatment after the via forming process, the inner wall of the via is formed. Defects such as cracks are likely to occur. Patent Document 1 describes a method of adding a heat treatment step between laser processing and desmear processing to remove residual stress generated by laser processing and suppress the generation of defects. Patent Document 2 discloses a polyimide having resistance to an alkaline solution used in a developing step, an etching treatment step, and a resist stripping step.
特開2012-186377号公報Japanese Unexamined Patent Publication No. 2012-186377 特開2017-179148号公報Japanese Unexamined Patent Publication No. 2017-179148
 レーザー加工後のデスミア処理によりビア内壁に発生するクラックは、めっき処理後の工程において、めっき部分を変形させ、接続信頼性を低下させる原因となったり、クラック内に薬液が侵入することで絶縁信頼性を低下させる原因になったりするため、品質に悪影響を与えるものであった。クラックは、スルーホール形成時よりもブラインドビア形成時に発生しやすい。なお、レーザー加工後に、デスミア処理せずにエッチング等で金属箔を除去した場合や、レーザー加工せずに金属箔を除去した状態でデスミア処理した場合は、クラックが生じないことが、本発明者らの検討により判明した。また、レーザー加工後のデスミア処理において、膨潤時間及び粗化時間を長くするとクラックが発生しやすくなることが、本発明者らの検討により判明した。 Cracks generated on the inner wall of vias due to desmear processing after laser processing deform the plated part in the process after plating processing, causing deterioration of connection reliability, or insulation reliability due to chemical solution entering the cracks. It had a bad influence on the quality because it caused the deterioration of the sex. Cracks are more likely to occur during the formation of blind vias than during the formation of through holes. It should be noted that the present inventor does not generate cracks when the metal foil is removed by etching or the like without laser processing after laser processing, or when the metal foil is removed without laser processing and the metal foil is removed. It became clear by the examination of these. Further, it has been found by the present inventors that cracks are likely to occur when the swelling time and the roughening time are lengthened in the desmear treatment after the laser processing.
 クラックの発生を抑制するための方法として、特許文献1に開示されたような、レーザー加工とデスミア処理の間に熱処理工程を追加する方法を採用すると、別途熱処理工程が増えるため、配線板の生産性の低下をもたらす。また、特許文献1に記載の方法は、ビア内壁のクラックの発生を抑制することについて改善の余地が残されている。 If a method of adding a heat treatment step between laser processing and desmear processing as disclosed in Patent Document 1 is adopted as a method for suppressing the occurrence of cracks, the heat treatment process is separately increased, so that the production of the wiring board is performed. It causes a decrease in sex. Further, the method described in Patent Document 1 has room for improvement in suppressing the occurrence of cracks on the inner wall of the via.
 また、特許文献2に記載の方法は、アルカリ環境下でのフィルムの裂けを抑制することは可能であるが、ビア内壁のクラックの発生を抑制することについて改善の余地が残されている。 Further, although the method described in Patent Document 2 can suppress the tearing of the film in an alkaline environment, there is still room for improvement in suppressing the occurrence of cracks on the inner wall of the via.
 本発明はこれらの課題を鑑みてなされたものであって、その目的は、レーザー加工後のデスミア処理時において、ビア内壁のクラックの発生を抑制できる複層ポリイミドフィルムを提供することにある。 The present invention has been made in view of these problems, and an object of the present invention is to provide a multi-layer polyimide film capable of suppressing the occurrence of cracks on the inner wall of a via during desmear treatment after laser processing.
 レーザー加工後のデスミア処理時において、ビア内壁のクラックの発生を抑制するためには、レーザー加工時にポリイミドフィルムに生じた応力を緩和させることが重要である。一方で、柔軟骨格を多く含むポリイミドを用いれば応力を緩和させることが容易になるが、そのようなポリイミドは、貼り合わせる金属よりも線膨張係数が非常に大きくなるため、金属箔との張り合わせ時に反ったり、しわが発生したりする。本発明者らは、鋭意検討した結果、複層ポリイミドフィルムのコア材として使用する非熱可塑性ポリイミドとして特定構造をもつポリイミドを採用することで、金属と同程度の線膨張係数を確保しつつ、レーザー加工時にポリイミドフィルムに生じた応力を緩和できることを見出した。 It is important to alleviate the stress generated in the polyimide film during laser processing in order to suppress the occurrence of cracks on the inner wall of the via during desmear processing after laser processing. On the other hand, it is easy to relieve stress by using a polyimide containing a large amount of flexible skeleton, but since such a polyimide has a much larger coefficient of linear expansion than the metal to be bonded, it is used when bonding with a metal foil. It warps or wrinkles. As a result of diligent studies, the present inventors have adopted a polyimide having a specific structure as a non-thermoplastic polyimide used as a core material of a multi-layer polyimide film, while ensuring a linear expansion coefficient comparable to that of a metal. It has been found that the stress generated in the polyimide film during laser processing can be relieved.
 本発明に係る複層ポリイミドフィルムは、非熱可塑性ポリイミド層と、前記非熱可塑性ポリイミド層の少なくとも片面に配置された熱可塑性ポリイミド層とを有する。前記非熱可塑性ポリイミド層に含まれる非熱可塑性ポリイミドが、テトラカルボン酸二無水物残基及びジアミン残基を有する。前記ジアミン残基は、ビフェニル骨格を有するジアミン残基と、4,4’-ジアミノジフェニルエーテル残基と、p-フェニレンジアミン残基とを含む。前記ビフェニル骨格を有するジアミン残基の含有率が、前記非熱可塑性ポリイミドを構成する全ジアミン残基に対して、20モル%以上35モル%以下である。 The multilayer polyimide film according to the present invention has a non-thermoplastic polyimide layer and a thermoplastic polyimide layer arranged on at least one side of the non-thermoplastic polyimide layer. The non-thermoplastic polyimide contained in the non-thermoplastic polyimide layer has a tetracarboxylic dianhydride residue and a diamine residue. The diamine residue includes a diamine residue having a biphenyl skeleton, a 4,4'-diaminodiphenyl ether residue, and a p-phenylenediamine residue. The content of the diamine residue having the biphenyl skeleton is 20 mol% or more and 35 mol% or less with respect to the total diamine residue constituting the non-thermoplastic polyimide.
 本発明の一実施形態に係る複層ポリイミドフィルムでは、前記ビフェニル骨格を有するジアミン残基が4,4’-ジアミノ-2,2’-ジメチルビフェニル残基である。 In the multilayer polyimide film according to the embodiment of the present invention, the diamine residue having the biphenyl skeleton is a 4,4'-diamino-2,2'-dimethylbiphenyl residue.
 本発明の一実施形態に係る複層ポリイミドフィルムでは、前記4,4’-ジアミノジフェニルエーテル残基の含有率が、前記非熱可塑性ポリイミドを構成する全ジアミン残基に対して、40モル%以上70モル%以下である。 In the multilayer polyimide film according to the embodiment of the present invention, the content of the 4,4'-diaminodiphenyl ether residue is 40 mol% or more 70 with respect to the total diamine residue constituting the non-thermoplastic polyimide. It is less than mol%.
 本発明の一実施形態に係る複層ポリイミドフィルムでは、前記p-フェニレンジアミン残基の含有率が、前記非熱可塑性ポリイミドを構成する全ジアミン残基に対して、5モル%以上50モル%以下である。 In the multilayer polyimide film according to the embodiment of the present invention, the content of the p-phenylenediamine residue is 5 mol% or more and 50 mol% or less with respect to all the diamine residues constituting the non-thermoplastic polyimide. Is.
 本発明の一実施形態に係る複層ポリイミドフィルムでは、前記テトラカルボン酸二無水物残基が、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基及びピロメリット酸二無水物残基からなる群より選ばれる一種以上を含む。 In the multilayer polyimide film according to the embodiment of the present invention, the tetracarboxylic acid dianhydride residue is 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride residue and pyromellitic acid dianhydride residue. Includes one or more selected from the group consisting of substance residues.
 本発明の一実施形態に係る複層ポリイミドフィルムでは、前記テトラカルボン酸二無水物残基が4,4’-オキシジフタル酸無水物残基を更に含む。 In the multilayer polyimide film according to the embodiment of the present invention, the tetracarboxylic acid dianhydride residue further contains 4,4'-oxydiphthalic acid anhydride residue.
 本発明の一実施形態に係る複層ポリイミドフィルムでは、前記4,4’-オキシジフタル酸無水物残基の含有率が、前記非熱可塑性ポリイミドを構成する全テトラカルボン酸二無水物残基に対して、5モル%以上15モル%以下である。 In the multilayer polyimide film according to the embodiment of the present invention, the content of the 4,4'-oxydiphthalic acid anhydride residue is relative to the total tetracarboxylic acid dianhydride residue constituting the non-thermoplastic polyimide. It is 5 mol% or more and 15 mol% or less.
 本発明の一実施形態に係る複層ポリイミドフィルムでは、前記熱可塑性ポリイミド層に含まれる熱可塑性ポリイミドが、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基及びピロメリット酸二無水物残基からなる群より選ばれる一種以上と、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン残基とを有する。 In the multilayer polyimide film according to the embodiment of the present invention, the thermoplastic polyimide contained in the thermoplastic polyimide layer is a 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride residue and pyromellitic acid. It has one or more selected from the group consisting of dianhydride residues and 2,2-bis [4- (4-aminophenoxy) phenyl] propane residues.
 本発明の一実施形態に係る複層ポリイミドフィルムでは、前記非熱可塑性ポリイミド層の温度380℃における貯蔵弾性率が0.350GPa未満である。 In the multilayer polyimide film according to the embodiment of the present invention, the storage elastic modulus of the non-thermoplastic polyimide layer at a temperature of 380 ° C. is less than 0.350 GPa.
 本発明の一実施形態に係る複層ポリイミドフィルムでは、前記非熱可塑性ポリイミド層の温度100℃から200℃における昇温時線膨張係数が、5.0ppm/K以上19.0ppm/K以下である。 In the multilayer polyimide film according to the embodiment of the present invention, the coefficient of linear expansion when the temperature rises from 100 ° C. to 200 ° C. of the non-thermoplastic polyimide layer is 5.0 ppm / K or more and 19.0 ppm / K or less. ..
 本発明に係る複層ポリイミドフィルムによれば、配線板の製造工程において工数を増やすことなく、レーザー加工後のデスミア処理時においてビア内壁のクラックの発生を抑制できる。 According to the multilayer polyimide film according to the present invention, it is possible to suppress the occurrence of cracks on the inner wall of the via during the desmear treatment after the laser processing without increasing the man-hours in the manufacturing process of the wiring board.
本発明に係る複層ポリイミドフィルムの一例を示す断面図である。It is sectional drawing which shows an example of the multilayer polyimide film which concerns on this invention. 本発明に係る複層ポリイミドフィルムの一例を用いて得られた金属張積層板を示す断面図である。It is sectional drawing which shows the metal-clad laminated board obtained by using the example of the multilayer polyimide film which concerns on this invention. ホールクラックテストの判別に使用した偏光顕微鏡画像の一例である。This is an example of a polarizing microscope image used for discrimination of a hole crack test. ホールクラックテストの判別に使用した偏光顕微鏡画像の他の例である。It is another example of the polarizing microscope image used for the determination of the hole crack test. ホールクラックテストの判別に使用した偏光顕微鏡画像の他の例である。It is another example of the polarizing microscope image used for the determination of the hole crack test.
 以下、本発明の好適な実施形態について詳しく説明するが、本発明はこれらに限定されるものではない。また、本明細書中に記載された学術文献及び特許文献の全てが、本明細書中において参考として援用される。 Hereinafter, preferred embodiments of the present invention will be described in detail, but the present invention is not limited thereto. In addition, all of the academic and patent documents described in this specification are incorporated herein by reference.
 まず、本明細書中で使用される用語について説明する。「ポリイミド」は、下記一般式(1)で表される構造単位を繰り返し単位とする重合体である。 First, the terms used in this specification will be described. "Polyimide" is a polymer having a structural unit represented by the following general formula (1) as a repeating unit.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、Xは、テトラカルボン酸二無水物残基(テトラカルボン酸二無水物由来の4価の有機基)を表し、Yは、ジアミン残基(ジアミン由来の2価の有機基)を表す。 In the general formula (1), X represents a tetracarboxylic acid dianhydride residue (a tetravalent organic group derived from a tetracarboxylic acid dianhydride), and Y represents a diamine residue (a divalent organic derived from a diamine). Represents the group).
 「ビフェニル骨格」とは、2つのベンゼン環が1つの単結合で結合した2環構造の骨格をさす。よって、ビフェニル骨格を有するジアミン残基には、9,9-ビス(4-アミノフェニル)フルオレン残基のような縮合環を有するジアミン残基は含まれない。 "Biphenyl skeleton" refers to a bicyclic skeleton in which two benzene rings are bonded by one single bond. Therefore, the diamine residue having a biphenyl skeleton does not include the diamine residue having a condensed ring such as the 9,9-bis (4-aminophenyl) fluorene residue.
 「線膨張係数」は、何ら規定していなければ、温度100℃から200℃における昇温時線膨張係数である。 The "linear expansion coefficient" is, unless otherwise specified, the linear expansion coefficient at the time of temperature rise from 100 ° C to 200 ° C.
 「非熱可塑性ポリイミド」とは、フィルムの状態で金属製の固定枠に固定して加熱温度450℃の条件で2分間加熱した際に、シワが入ったり伸びたりせず、フィルム形状(平坦な膜形状)を保持しているポリイミドをいう。「熱可塑性ポリイミド」とは、フィルムの状態で金属製の固定枠に固定して加熱温度450℃の条件で2分間加熱した際に、フィルム形状を保持していないポリイミドをいう。 "Non-thermoplastic polyimide" is a film shape (flat) that does not wrinkle or stretch when fixed to a metal fixing frame and heated at a heating temperature of 450 ° C for 2 minutes. A polyimide that retains the film shape). The "thermoplastic polyimide" refers to a polyimide that does not retain its film shape when fixed to a metal fixing frame in a film state and heated at a heating temperature of 450 ° C. for 2 minutes.
 層状物(より具体的には、非熱可塑性ポリイミド層、熱可塑性ポリイミド層等)の「主面」とは、層状物の厚さ方向に直交する面をさす。 The "main surface" of a layered material (more specifically, a non-thermoplastic polyimide layer, a thermoplastic polyimide layer, etc.) refers to a surface orthogonal to the thickness direction of the layered material.
 以下、化合物名の後に「系」を付けて、化合物及びその誘導体を包括的に総称する場合がある。 Hereinafter, the compound and its derivatives may be collectively referred to by adding "system" after the compound name.
<複層ポリイミドフィルム>
 本実施形態に係る複層ポリイミドフィルムは、非熱可塑性ポリイミド層と、非熱可塑性ポリイミド層の少なくとも片面(一方の主面)に配置された熱可塑性ポリイミド層とを有する。非熱可塑性ポリイミド層に含まれる非熱可塑性ポリイミドは、テトラカルボン酸二無水物残基及びジアミン残基を有する。ジアミン残基は、ビフェニル骨格を有するジアミン残基(ビフェニル骨格を有するジアミン由来の残基)と、4,4’-ジアミノジフェニルエーテル残基と、p-フェニレンジアミン残基とを含む。ビフェニル骨格を有するジアミン残基の含有率は、非熱可塑性ポリイミドを構成する全ジアミン残基に対して、20モル%以上35モル%以下であることが好ましい。
<Multi-layer polyimide film>
The multilayer polyimide film according to the present embodiment has a non-thermoplastic polyimide layer and a thermoplastic polyimide layer arranged on at least one side (one main surface) of the non-thermoplastic polyimide layer. The non-thermoplastic polyimide contained in the non-thermoplastic polyimide layer has a tetracarboxylic dianhydride residue and a diamine residue. The diamine residue includes a diamine residue having a biphenyl skeleton (a residue derived from a diamine having a biphenyl skeleton), a 4,4'-diaminodiphenyl ether residue, and a p-phenylenediamine residue. The content of diamine residues having a biphenyl skeleton is preferably 20 mol% or more and 35 mol% or less with respect to all the diamine residues constituting the non-thermoplastic polyimide.
 以下、テトラカルボン酸二無水物を「酸二無水物」と記載することがある。ビフェニル骨格を有するジアミンを「BPDI」と記載することがある。4,4’-ジアミノジフェニルエーテルを「ODA」と記載することがある。p-フェニレンジアミンを「PDA」と記載することがある。また、非熱可塑性ポリイミド層に含まれる非熱可塑性ポリイミドを、単に「非熱可塑性ポリイミド」と記載することがある。熱可塑性ポリイミド層に含まれる熱可塑性ポリイミドを、単に「熱可塑性ポリイミド」と記載することがある。 Hereinafter, the tetracarboxylic dianhydride may be referred to as "acid dianhydride". A diamine having a biphenyl skeleton may be referred to as "BPDI". 4,4'-diaminodiphenyl ether may be referred to as "ODA". P-phenylenediamine may be referred to as "PDA". Further, the non-thermoplastic polyimide contained in the non-thermoplastic polyimide layer may be simply referred to as "non-thermoplastic polyimide". The thermoplastic polyimide contained in the thermoplastic polyimide layer may be simply referred to as "thermoplastic polyimide".
 本発明者らは、金属張積層板に使用する際の耐熱性(線膨張係数等)を維持しながらレーザー加工時にフィルムに生じた応力を緩和できるポリイミドの分子設計を鋭意検討した。その結果、本発明者らは、複層ポリイミドフィルムに含まれる非熱可塑性ポリイミドの構造を最適化することにより、配線板の製造工程に大きな変更を加えることなく、レーザー加工後のデスミア処理時においてビア内壁のクラックの発生を抑制できることを見出した。 The present inventors have diligently studied the molecular design of polyimide that can relieve the stress generated in the film during laser processing while maintaining the heat resistance (linear expansion coefficient, etc.) when used for a metal-clad laminate. As a result, the present inventors have optimized the structure of the non-thermoplastic polyimide contained in the multi-layer polyimide film, so that the desmear treatment after laser processing can be performed without significantly changing the manufacturing process of the wiring board. It was found that the occurrence of cracks on the inner wall of the via can be suppressed.
[複層ポリイミドフィルムの構成]
 以下、本実施形態に係る複層ポリイミドフィルムの構成について、図面を参照しながら説明する。なお、参照する図面は、理解しやすくするために、それぞれの構成要素を主体に模式的に示しており、図示された各構成要素の大きさ、個数、形状等は、図面作成の都合上から実際とは異なる場合がある。また、本明細書では、説明の都合上、後に説明する図面において、先に説明した図面と同一構成部分については、同一符号を付して、その説明を省略する場合がある。
[Structure of multi-layer polyimide film]
Hereinafter, the configuration of the multilayer polyimide film according to this embodiment will be described with reference to the drawings. In addition, in order to make it easier to understand, the drawings to be referred to are schematically shown mainly for each component, and the size, number, shape, etc. of each of the illustrated components are shown for convenience of drawing creation. It may be different from the actual one. Further, in the present specification, for convenience of explanation, in the drawings described later, the same components as those in the drawings described above may be designated by the same reference numerals and the description thereof may be omitted.
 図1は、本実施形態に係る複層ポリイミドフィルムの一例を示す断面図である。図1に示すように、複層ポリイミドフィルム10は、非熱可塑性ポリイミド層11と、非熱可塑性ポリイミド層11の少なくとも片面に配置された熱可塑性ポリイミド層12とを有する。非熱可塑性ポリイミド層11に含まれる非熱可塑性ポリイミドは、テトラカルボン酸二無水物残基及びジアミン残基を有する。ジアミン残基は、BPDI残基と、ODA残基と、PDA残基とを含む。BPDI残基の含有率は、非熱可塑性ポリイミド層11に含まれる非熱可塑性ポリイミドを構成する全ジアミン残基に対して、20モル%以上35モル%以下であることが好ましい。 FIG. 1 is a cross-sectional view showing an example of a multi-layer polyimide film according to this embodiment. As shown in FIG. 1, the multilayer polyimide film 10 has a non-thermoplastic polyimide layer 11 and a thermoplastic polyimide layer 12 arranged on at least one side of the non-thermoplastic polyimide layer 11. The non-thermoplastic polyimide contained in the non-thermoplastic polyimide layer 11 has a tetracarboxylic dianhydride residue and a diamine residue. Diamine residues include BPDI residues, ODA residues, and PDA residues. The content of the BPDI residue is preferably 20 mol% or more and 35 mol% or less with respect to all the diamine residues constituting the non-thermoplastic polyimide contained in the non-thermoplastic polyimide layer 11.
 複層ポリイミドフィルム10によれば、レーザー加工後のデスミア処理時においてビア内壁のクラックの発生を抑制できる。その理由は、以下のように推測される。複層ポリイミドフィルム10では、非熱可塑性ポリイミド層11に含まれる非熱可塑性ポリイミドが、分子鎖の自由回転度の高い骨格を含有するBPDI残基を特定範囲内の含有率で有している。更に、非熱可塑性ポリイミド層11に含まれる非熱可塑性ポリイミドが、複層ポリイミドフィルム10の柔軟性に寄与する屈曲構造のODA残基と、複層ポリイミドフィルム10の耐熱性に寄与する剛直構造のPDA残基とを有している。これらのことから、複層ポリイミドフィルム10は、金属張積層板に使用する際の耐熱性(線膨張係数等)を維持しながらレーザー加工時にフィルムに生じた応力を緩和できる。よって、複層ポリイミドフィルム10によれば、レーザー加工後のデスミア処理時においてビア内壁のクラックの発生を抑制できる。ビア内壁のクラックの発生をより効果的に抑制するためには、BPDI残基中のベンゼン環が、置換基を有していることが好ましく、アルキル基を有していることがより好ましく、メチル基を有していることが更に好ましい。BPDI残基中のベンゼン環が置換基を有していると、ポリイミドの一次構造の対称性が低下するため、高分子鎖のパッキングが阻害され、レーザー加工時にフィルムに生じた応力がより緩和される。 According to the multi-layer polyimide film 10, it is possible to suppress the occurrence of cracks on the inner wall of the via during the desmear treatment after laser processing. The reason is presumed as follows. In the multilayer polyimide film 10, the non-thermoplastic polyimide contained in the non-thermoplastic polyimide layer 11 has a BPDI residue containing a skeleton having a high degree of free rotation of the molecular chain in a specific range. Further, the non-thermoplastic polyimide contained in the non-thermoplastic polyimide layer 11 has a bent structure ODA residue that contributes to the flexibility of the multi-layer polyimide film 10 and a rigid structure that contributes to the heat resistance of the multi-layer polyimide film 10. It has a PDA residue. From these facts, the multilayer polyimide film 10 can relieve the stress generated in the film during laser processing while maintaining the heat resistance (linear expansion coefficient and the like) when used for the metal-clad laminate. Therefore, according to the multi-layer polyimide film 10, it is possible to suppress the occurrence of cracks on the inner wall of the via during the desmear treatment after the laser processing. In order to more effectively suppress the generation of cracks on the inner wall of the via, the benzene ring in the BPDI residue preferably has a substituent, more preferably an alkyl group, and methyl. It is more preferable to have a group. When the benzene ring in the BPDI residue has a substituent, the symmetry of the primary structure of the polyimide is lowered, so that the packing of the polymer chain is hindered and the stress generated in the film during laser processing is further relaxed. To.
 なお、図1に示す複層ポリイミドフィルム10では、非熱可塑性ポリイミド層11の片面のみに熱可塑性ポリイミド層12が設けられているが、非熱可塑性ポリイミド層11の両面(両主面)に熱可塑性ポリイミド層12が設けられていてもよい。非熱可塑性ポリイミド層11の両面に熱可塑性ポリイミド層12が設けられている場合、2層の熱可塑性ポリイミド層12は、同種の熱可塑性ポリイミドを含んでいてもよく、互いに異なる種類の熱可塑性ポリイミドを含んでいてもよい。また、2層の熱可塑性ポリイミド層12の厚みは、同一であっても異なっていてもよい。また、本発明では、非熱可塑性ポリイミド層11及び熱可塑性ポリイミド層12の双方が、2層以上設けられていてもよい。以下の説明において、「複層ポリイミドフィルム10」には、非熱可塑性ポリイミド層11の片面のみに熱可塑性ポリイミド層12が設けられているフィルムと、非熱可塑性ポリイミド層11の両面に熱可塑性ポリイミド層12が設けられているフィルムと、非熱可塑性ポリイミド層11及び熱可塑性ポリイミド層12の双方が2層以上設けられたフィルムとが含まれる。 In the multilayer polyimide film 10 shown in FIG. 1, the thermoplastic polyimide layer 12 is provided only on one side of the non-thermoplastic polyimide layer 11, but heat is generated on both surfaces (both main surfaces) of the non-thermoplastic polyimide layer 11. The plastic polyimide layer 12 may be provided. When the thermoplastic polyimide layer 12 is provided on both sides of the non-thermoplastic polyimide layer 11, the two-layer thermoplastic polyimide layer 12 may contain the same type of thermoplastic polyimide, and different types of thermoplastic polyimides may be contained. May include. Further, the thicknesses of the two thermoplastic polyimide layers 12 may be the same or different. Further, in the present invention, both the non-thermoplastic polyimide layer 11 and the thermoplastic polyimide layer 12 may be provided in two or more layers. In the following description, the "multi-layer polyimide film 10" includes a film in which the thermoplastic polyimide layer 12 is provided on only one side of the non-thermoplastic polyimide layer 11 and a thermoplastic polyimide on both sides of the non-thermoplastic polyimide layer 11. A film provided with the layer 12 and a film provided with two or more layers of both the non-thermoplastic polyimide layer 11 and the thermoplastic polyimide layer 12 are included.
 複層ポリイミドフィルム10の厚み(各層の合計厚み)は、例えば6μm以上60μm以下である。複層ポリイミドフィルム10の厚みが薄いほど、得られるFPCの軽量化が容易となり、また得られるFPCの折り曲げ性が向上する。機械的強度を確保しつつFPCの軽量化をより容易とし、かつFPCの折り曲げ性をより向上させるためには、複層ポリイミドフィルム10の厚みは、7μm以上30μm以下であることが好ましく、10μm以上25μm以下であることがより好ましい。複層ポリイミドフィルム10の厚みは、レーザホロゲージを用いて測定することができる。 The thickness of the multilayer polyimide film 10 (total thickness of each layer) is, for example, 6 μm or more and 60 μm or less. The thinner the thickness of the multilayer polyimide film 10, the easier it is to reduce the weight of the obtained FPC, and the more bendable the obtained FPC is. In order to make it easier to reduce the weight of the FPC while ensuring mechanical strength and to further improve the bendability of the FPC, the thickness of the multilayer polyimide film 10 is preferably 7 μm or more and 30 μm or less, preferably 10 μm or more. It is more preferably 25 μm or less. The thickness of the multilayer polyimide film 10 can be measured using a laser holo gauge.
 金属箔との密着性を確保しつつFPCの薄型化を容易に実現するためには、熱可塑性ポリイミド層12の厚み(熱可塑性ポリイミド層12が2層以上設けられている場合は、それぞれの熱可塑性ポリイミド層12の厚み)は、1μm以上15μm以下であることが好ましい。また、複層ポリイミドフィルム10の線膨張係数の調整を容易に行うためには、非熱可塑性ポリイミド層11と熱可塑性ポリイミド層12の厚み比率(非熱可塑性ポリイミド層11の厚み/熱可塑性ポリイミド層12の厚み)は、55/45以上95/5以下であることが好ましい。非熱可塑性ポリイミド層11と熱可塑性ポリイミド層12がそれぞれ複数層設けられている場合、上記厚み比率は、それぞれの総厚みの比率である。熱可塑性ポリイミド層12の層数が多くなっても、熱可塑性ポリイミド層12の総厚みが非熱可塑性ポリイミド層11の総厚みを超えないことが好ましい。 In order to easily realize the thinning of the FPC while ensuring the adhesion to the metal foil, the thickness of the thermoplastic polyimide layer 12 (when two or more thermoplastic polyimide layers 12 are provided, the respective heats are provided. The thickness of the plastic polyimide layer 12) is preferably 1 μm or more and 15 μm or less. Further, in order to easily adjust the linear expansion coefficient of the multilayer polyimide film 10, the thickness ratio of the non-thermoplastic polyimide layer 11 and the thermoplastic polyimide layer 12 (thickness of the non-thermoplastic polyimide layer 11 / thermoplastic polyimide layer). The thickness of 12) is preferably 55/45 or more and 95/5 or less. When a plurality of layers each of the non-thermoplastic polyimide layer 11 and the thermoplastic polyimide layer 12 are provided, the thickness ratio is the ratio of the total thickness of each. Even if the number of layers of the thermoplastic polyimide layer 12 is increased, it is preferable that the total thickness of the thermoplastic polyimide layer 12 does not exceed the total thickness of the non-thermoplastic polyimide layer 11.
 複層ポリイミドフィルム10の反りを抑制するためには、非熱可塑性ポリイミド層11の両面に熱可塑性ポリイミド層12が設けられていることが好ましく、非熱可塑性ポリイミド層11の両面に、同種の熱可塑性ポリイミドを含む熱可塑性ポリイミド層12が設けられていることがより好ましい。非熱可塑性ポリイミド層11の両面に熱可塑性ポリイミド層12が設けられている場合、複層ポリイミドフィルム10の反りを抑制するためには、2層の熱可塑性ポリイミド層12の厚みは、同一であることが好ましい。なお、2層の熱可塑性ポリイミド層12の厚みが互いに異なっていても、より厚い熱可塑性ポリイミド層12の厚みを基準とした際、もう一方の熱可塑性ポリイミド層12の厚みが40%以上100%未満の範囲であれば、複層ポリイミドフィルム10の反りを抑制できる。 In order to suppress the warp of the multilayer polyimide film 10, it is preferable that the thermoplastic polyimide layers 12 are provided on both sides of the non-thermoplastic polyimide layer 11, and the same kind of heat is provided on both sides of the non-thermoplastic polyimide layer 11. It is more preferable that the thermoplastic polyimide layer 12 containing the thermoplastic polyimide is provided. When the thermoplastic polyimide layers 12 are provided on both sides of the non-thermoplastic polyimide layer 11, the thicknesses of the two thermoplastic polyimide layers 12 are the same in order to suppress the warp of the multilayer polyimide film 10. Is preferable. Even if the thicknesses of the two thermoplastic polyimide layers 12 are different from each other, the thickness of the other thermoplastic polyimide layer 12 is 40% or more and 100% based on the thickness of the thicker thermoplastic polyimide layer 12. If the range is less than the range, the warp of the multilayer polyimide film 10 can be suppressed.
 レーザー加工後のデスミア処理時においてビア内壁のクラックの発生をより抑制するためには、非熱可塑性ポリイミド層11の温度380℃における貯蔵弾性率が、0.350GPa未満であることが好ましく、0.200GPa未満であることがより好ましい。また、高温下における複層ポリイミドフィルム10の機械的強度向上の観点から、上記貯蔵弾性率が、0.010GPa以上であることが好ましく、0.050GPa以上であることがより好ましい。上記貯蔵弾性率は、例えばBPDI残基の含有率を変更することにより調整できる。上記貯蔵弾性率の測定方法は、後述する実施例と同じ方法又はそれに準ずる方法である。 In order to further suppress the occurrence of cracks on the inner wall of the via during the desmear treatment after laser processing, the storage elastic modulus of the non-thermoplastic polyimide layer 11 at a temperature of 380 ° C. is preferably less than 0.350 GPa. It is more preferably less than 200 GPa. Further, from the viewpoint of improving the mechanical strength of the multilayer polyimide film 10 under high temperature, the storage elastic modulus is preferably 0.010 GPa or more, and more preferably 0.050 GPa or more. The storage elastic modulus can be adjusted, for example, by changing the content of BPDI residues. The method for measuring the storage elastic modulus is the same as or similar to that of the examples described later.
 非熱可塑性ポリイミド層11について動的粘弾性測定を行った際、貯蔵弾性率の変曲点が示す温度は、レーザー加工時の応力緩和の観点、及びラミネート法で金属箔を貼り合わせる際の熱応力緩和の観点から、270℃以上340℃以下の範囲内が好ましく、280℃以上330℃以下の範囲内がより好ましい。貯蔵弾性率の変曲点が示す温度がこの範囲内であれば、フレキシブル金属張積層板の加熱後の寸法変化を評価する温度(例えば、250℃)における寸法変化を抑制できる。他方、貯蔵弾性率の変曲点が示す温度が低いと、レーザー加工後の冷却時に複層ポリイミドフィルム10内に生じる応力が小さくなる。 When the dynamic viscoelasticity measurement was performed on the non-thermoplastic polyimide layer 11, the temperature indicated by the variation point of the storage elastic modulus is the heat from the viewpoint of stress relaxation during laser processing and when the metal foil is bonded by the laminating method. From the viewpoint of stress relaxation, the range of 270 ° C. or higher and 340 ° C. or lower is preferable, and the range of 280 ° C. or higher and 330 ° C. or lower is more preferable. When the temperature indicated by the inflection point of the storage elastic modulus is within this range, the dimensional change at the temperature (for example, 250 ° C.) for evaluating the dimensional change after heating of the flexible metal-clad laminate can be suppressed. On the other hand, when the temperature indicated by the inflection point of the storage elastic modulus is low, the stress generated in the multilayer polyimide film 10 during cooling after laser processing becomes small.
 非熱可塑性ポリイミド層11の線膨張係数は、5.0ppm/K以上19.0ppm/K以下であることが好ましく、より好ましくは8.0ppm/K以上15.0ppm/K以下であり、更に好ましくは9.0ppm/K以上12.0ppm/K以下である。非熱可塑性ポリイミド層11の線膨張係数が5.0ppm/K以上19.0ppm/K以下であれば、複層ポリイミドフィルム10の線膨張係数を、例えば、銅箔に近い14.0ppm/K以上22.0ppm/K以下に、望ましくは、より銅箔に近い16.0ppm/K以上20.0ppm/K以下に調整可能である。これにより、レーザー加工後の冷却時に複層ポリイミドフィルム10内に生じる応力が小さくなり、レーザー加工後のデスミア処理時においてビア内壁のクラックの発生をより抑制できる。上記線膨張係数は、例えば、剛直構造を有するモノマー由来の残基(より具体的にはPDA残基等)の含有率、及び屈曲構造を有するモノマー由来の残基(より具体的にはODA残基等)の含有率を変更することにより調整できる。上記線膨張係数の測定方法は、後述する実施例と同じ方法又はそれに準ずる方法である。 The coefficient of linear expansion of the non-thermoplastic polyimide layer 11 is preferably 5.0 ppm / K or more and 19.0 ppm / K or less, more preferably 8.0 ppm / K or more and 15.0 ppm / K or less, and further preferably. Is 9.0 ppm / K or more and 12.0 ppm / K or less. When the coefficient of linear expansion of the non-thermoplastic polyimide layer 11 is 5.0 ppm / K or more and 19.0 ppm / K or less, the coefficient of linear expansion of the multilayer polyimide film 10 is set to 14.0 ppm / K or more, which is close to that of copper foil, for example. It can be adjusted to 22.0 ppm / K or less, preferably 16.0 ppm / K or more and 20.0 ppm / K or less, which is closer to the copper foil. As a result, the stress generated in the multilayer polyimide film 10 during cooling after laser processing is reduced, and the occurrence of cracks on the inner wall of the via can be further suppressed during desmear processing after laser processing. The linear expansion coefficient is, for example, the content of residues derived from a monomer having a rigid structure (more specifically, a PDA residue, etc.) and residues derived from a monomer having a bent structure (more specifically, an ODA residue). It can be adjusted by changing the content of (base, etc.). The method for measuring the coefficient of linear expansion is the same as or similar to the embodiment described later.
 非熱可塑性ポリイミド層11は、応力―歪み曲線における塑性変形領域の傾きが2.0以上であることが好ましい。非熱可塑性ポリイミド層11が、塑性変形しにくく、かつ高い降伏強度を有する場合、アルカリ環境下における裂けに対する高い耐久性を示す。塑性変形領域とは、ポリイミドフィルムの引張試験における応力―歪み曲線において、降伏点以降の歪みの領域をいう。「塑性変形しにくい」特性は、塑性変形領域において、応力が大きく増加すること、又は塑性変形時に必要な応力が大きいことを意味する。「塑性変形しにくい」特性は、例えば塑性変形領域の傾きが指標となる。塑性変形領域の傾きは、例えば、ASTM D882に従って引張特性を測定した結果について、縦軸を「応力(単位:MPa)」とし、横軸を「歪み(単位:mm)」としたグラフの塑性変形領域におけるs-s曲線の傾きである。塑性変形領域におけるs-s曲線の傾きは、下記計算式で算出できる。なお、以下の式において、stress1は10%歪み時応力であり、stress2は破断応力であり、strain1は10%歪みであり、strain2は破断歪みである。 The non-thermoplastic polyimide layer 11 preferably has a slope of the plastic deformation region in the stress-strain curve of 2.0 or more. When the non-thermoplastic polyimide layer 11 is not easily plastically deformed and has a high yield strength, it exhibits high durability against tearing in an alkaline environment. The plastic deformation region refers to the region of strain after the yield point in the stress-strain curve in the tensile test of the polyimide film. The "difficult to plastically deform" property means that the stress is greatly increased in the plastic deformation region, or the stress required at the time of plastic deformation is large. For example, the inclination of the plastic deformation region is an index for the characteristic of "hard to be plastically deformed". The slope of the plastic deformation region is, for example, the plastic deformation of the graph in which the vertical axis is "stress (unit: MPa)" and the horizontal axis is "strain (unit: mm)" for the result of measuring the tensile properties according to ASTM D882. The slope of the s-s curve in the region. The slope of the s—s curve in the plastic deformation region can be calculated by the following formula. In the following equation, stress1 is a stress at 10% strain, stress2 is a fracture stress, strain1 is a 10% strain, and strain2 is a fracture strain.
 塑性変形領域におけるs-s曲線の傾き=(stress2-stress1)/(strain2-strain1) Slope of s-s curve in plastic deformation region = (stress2-stress1) / (strine2-strine1)
 非熱可塑性ポリイミド層11の塑性変形領域の傾きは、2.0以上であることが好ましく、2.2以上であることがより好ましく、2.5以上であることが更に好ましい。塑性変形領域の傾きが2.0以上である場合は、高分子鎖のパッキングの程度が高い凝集構造が形成され、連続的なFPCの加工工程においても裂けの発生を抑制できる。上記塑性変形領域の傾きは高い方がよいが、スプリングバック等の発生を抑制するためには、上記塑性変形領域の傾きは、4.5以下であることが好ましく、4.0以下であることがより好ましい。 The inclination of the plastic deformation region of the non-thermoplastic polyimide layer 11 is preferably 2.0 or more, more preferably 2.2 or more, and further preferably 2.5 or more. When the inclination of the plastic deformation region is 2.0 or more, a cohesive structure having a high degree of packing of polymer chains is formed, and the occurrence of tearing can be suppressed even in the continuous FPC processing step. The inclination of the plastic deformation region should be high, but in order to suppress the occurrence of springback and the like, the inclination of the plastic deformation region is preferably 4.5 or less, and 4.0 or less. Is more preferable.
 複層ポリイミドフィルム10を用いて金属張積層板を製造する際は、複層ポリイミドフィルム10の少なくとも片面(例えば図1の場合、熱可塑性ポリイミド層12の表面12a)に金属箔13を貼り合わせる。これにより、図2に示す金属張積層板20が得られる。熱可塑性ポリイミド層12の表面12aに金属箔13を貼り合わせる方法としては、特に制限されず、種々の公知の方法を採用できる。例えば、一対以上の金属ロールを有する熱ロールラミネート装置又はダブルベルトプレス(DBP)による連続処理方法を採用することができる。熱ロールラミネートを実施する手段の具体的な構成は特に限定されるものではないが、得られる複層ポリイミドフィルム10の外観を良好なものとするために、加圧面と金属箔13との間に保護材料を配置することが好ましい。 When manufacturing a metal-clad laminate using the multilayer polyimide film 10, the metal foil 13 is attached to at least one side of the multilayer polyimide film 10 (for example, in the case of FIG. 1, the surface 12a of the thermoplastic polyimide layer 12). As a result, the metal-clad laminate 20 shown in FIG. 2 is obtained. The method of adhering the metal foil 13 to the surface 12a of the thermoplastic polyimide layer 12 is not particularly limited, and various known methods can be adopted. For example, a thermal roll laminating device having a pair or more of metal rolls or a continuous processing method using a double belt press (DBP) can be adopted. The specific configuration of the means for performing the thermal roll laminating is not particularly limited, but in order to improve the appearance of the obtained multi-layer polyimide film 10, between the pressure surface and the metal foil 13. It is preferable to place a protective material.
 非熱可塑性ポリイミド層11の両面に熱可塑性ポリイミド層12が設けられている場合は、複層ポリイミドフィルム10の両面に金属箔13を貼り合わせることにより、両面金属張積層板(図示せず)が得られる。 When the thermoplastic polyimide layer 12 is provided on both sides of the non-thermoplastic polyimide layer 11, the double-sided metal-clad laminate (not shown) is formed by laminating the metal foil 13 on both sides of the multilayer polyimide film 10. can get.
[複層ポリイミドフィルムの要素]
 次に、本実施形態に係る複層ポリイミドフィルムの要素(構成要素)について詳述する。
[Elements of multi-layer polyimide film]
Next, the elements (components) of the multilayer polyimide film according to the present embodiment will be described in detail.
(非熱可塑性ポリイミド層)
 非熱可塑性ポリイミド層に含まれる非熱可塑性ポリイミドは、ジアミン残基として、BPDI残基と、ODA残基と、PDA残基とを有する。レーザー加工後のデスミア処理時においてビア内壁のクラックの発生をより抑制するためには、非熱可塑性ポリイミドを構成する全ジアミン残基に対する、BPDI残基とODA残基とPDA残基との合計含有率は、50モル%以上であることが好ましく、70モル%以上であることがより好ましく、80モル%以上であることが更に好ましく、90モル%以上であることが更により好ましく、100モル%でも構わない。
(Non-thermoplastic polyimide layer)
The non-thermoplastic polyimide contained in the non-thermoplastic polyimide layer has a BPDI residue, an ODA residue, and a PDA residue as diamine residues. In order to further suppress the occurrence of cracks in the inner wall of the via during desmear treatment after laser processing, the total content of BPDI residue, ODA residue and PDA residue is contained in all diamine residues constituting the non-thermoplastic polyimide. The ratio is preferably 50 mol% or more, more preferably 70 mol% or more, further preferably 80 mol% or more, further preferably 90 mol% or more, and even more preferably 100 mol%. But it doesn't matter.
 BPDI残基を形成するためのジアミン(モノマー)としては、例えば、4,4’-ジアミノ-2,2’-ジメチルビフェニル(以下、「m-TB」と記載することがある)、4,4’-ジアミノビフェニル、4,4’-ジアミノ-3,3’-ジメチルビフェニル、4,4’-ジアミノ-2,2’-ジメトキシビフェニル、4,4’-ジアミノ-3,3’-ジメトキシビフェニル、3,3’,5,5’-テトラメチルベンジジン、4,4’-ビス(4-アミノフェノキシ)ビフェニル等が挙げられる。本実施形態では、BPDI残基を形成するためのジアミンとして、一種又は二種以上のジアミンを使用できる。レーザー加工後のデスミア処理時においてビア内壁のクラックの発生をより抑制するためには、BPDI残基を形成するためのジアミン(モノマー)としては、m-TBが好ましい。つまり、BPDI残基としては、m-TB残基が好ましい。 Examples of the diamine (monomer) for forming the BPDI residue include 4,4'-diamino-2,2'-dimethylbiphenyl (hereinafter, may be referred to as "m-TB"), 4,4. '-Diaminobiphenyl, 4,4'-diamino-3,3'-dimethylbiphenyl, 4,4'-diamino-2,2'-dimethoxybiphenyl, 4,4'-diamino-3,3'-dimethoxybiphenyl, Examples thereof include 3,3', 5,5'-tetramethylbenzidine, 4,4'-bis (4-aminophenoxy) biphenyl and the like. In this embodiment, one or more diamines can be used as the diamine for forming the BPDI residue. In order to further suppress the occurrence of cracks on the inner wall of the via during the desmear treatment after laser processing, m-TB is preferable as the diamine (monomer) for forming the BPDI residue. That is, as the BPDI residue, the m-TB residue is preferable.
 線膨張係数を維持しつつ、レーザー加工後のデスミア処理時においてビア内壁のクラックの発生をより抑制するためには、非熱可塑性ポリイミドを構成する全ジアミン残基に対するODA残基の含有率は、40モル%以上70モル%以下であることが好ましく、45モル%以上65モル%以下であることがより好ましく、50モル%以上65モル%以下であることが更に好ましい。線膨張係数を維持しつつ、レーザー加工後のデスミア処理時においてビア内壁のクラックの発生をより抑制するためには、非熱可塑性ポリイミドを構成する全ジアミン残基に対するPDA残基の含有率は、5モル%以上50モル%以下であることが好ましく、10モル%以上40モル%以下であることがより好ましく、15モル%以上30モル%以下であることが更に好ましい。 In order to further suppress the occurrence of cracks on the inner wall of the via during desmear treatment after laser processing while maintaining the linear expansion coefficient, the content of ODA residues with respect to all diamine residues constituting the non-thermoplastic polyimide is set. It is preferably 40 mol% or more and 70 mol% or less, more preferably 45 mol% or more and 65 mol% or less, and further preferably 50 mol% or more and 65 mol% or less. In order to further suppress the occurrence of cracks on the inner wall of the via during desmear treatment after laser processing while maintaining the linear expansion coefficient, the content of PDA residues to all diamine residues constituting the non-thermoplastic polyimide is set. It is preferably 5 mol% or more and 50 mol% or less, more preferably 10 mol% or more and 40 mol% or less, and further preferably 15 mol% or more and 30 mol% or less.
 非熱可塑性ポリイミドは、ジアミン残基として、BPDI残基、ODA残基及びPDA残基以外のジアミン残基(他のジアミン残基)を有してもよい。他のジアミン残基を形成するためのジアミン(モノマー)としては、耐熱性の高い芳香族ジアミンが好ましい。他のジアミン残基を形成するためのジアミンの具体例としては、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、1,5-ジアミノナフタレン、4,4’-ジアミノジフェニルジエチルシラン、4,4’-ジアミノジフェニルシラン、4,4’-ジアミノジフェニルエチルホスフィンオキシド、4,4’-ジアミノジフェニルN-メチルアミン、4,4’-ジアミノジフェニルN-フェニルアミン、1,3-ジアミノベンゼン、1,2-ジアミノベンゼン等が挙げられる。 The non-thermoplastic polyimide may have a diamine residue (another diamine residue) other than the BPDI residue, the ODA residue and the PDA residue as the diamine residue. As the diamine (monomer) for forming another diamine residue, an aromatic diamine having high heat resistance is preferable. Specific examples of diamines for forming other diamine residues include 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, and 4,4'-diaminodiphenyl. Propane, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfide, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylether, 3,4'- Diaminodiphenyl ether, 1,5-diaminonaphthalene, 4,4'-diaminodiphenyldiethylsilane, 4,4'-diaminodiphenylsilane, 4,4'-diaminodiphenylethylphosphine oxide, 4,4'-diaminodiphenylN-methyl Examples thereof include amines, 4,4'-diaminodiphenyl N-phenylamine, 1,3-diaminobenzene, 1,2-diaminobenzene and the like.
 非熱可塑性ポリイミドは、ジアミン残基に加え、酸二無水物残基を有する。酸二無水物残基を形成するための酸二無水物(モノマー)としては、耐熱性向上の観点から芳香族酸二無水物が好ましい。また、レーザー加工後のデスミア処理時においてビア内壁のクラックの発生をより抑制するためには、酸二無水物残基を形成するための酸二無水物(モノマー)としては、ビフェニル骨格を有する酸二無水物が好ましい。酸二無水物残基を形成するための酸二無水物(モノマー)の具体例としては、ピロメリット酸二無水物(以下、「PMDA」と記載することがある)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(以下、「BPDA」と記載することがある)、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(以下、「BTDA」と記載することがある)、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸無水物(以下、「ODPA」と記載することがある)、3,4’-オキシジフタル酸無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、p-フェニレンビス(トリメリット酸モノエステル酸無水物)、エチレンビス(トリメリット酸モノエステル酸無水物)、ビスフェノールAビス(トリメリット酸モノエステル酸無水物)、及びこれらの誘導体等が挙げられる。 Non-thermoplastic polyimide has an acid dianhydride residue in addition to a diamine residue. As the acid dianhydride (monomer) for forming the acid dianhydride residue, aromatic acid dianhydride is preferable from the viewpoint of improving heat resistance. Further, in order to further suppress the generation of cracks on the inner wall of the via during the desmear treatment after laser processing, the acid dianhydride (monomer) for forming the acid dianhydride residue is an acid having a biphenyl skeleton. Dianhydride is preferred. Specific examples of the acid dianhydride (monomer) for forming the acid dianhydride residue include pyromellitic acid dianhydride (hereinafter, may be referred to as "PMDA"), 3, 3', 4 , 4'-biphenyltetracarboxylic acid dianhydride (hereinafter sometimes referred to as "BPDA"), 2,3,6,7-naphthalenetetracarboxylic acid dianhydride, 1,2,5,6-naphthalene Tetracarboxylic acid dianhydride, 2,2', 3,3'-biphenyltetracarboxylic acid dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride (hereinafter referred to as "BTDA"). , 2,2', 3,3'-benzophenone tetracarboxylic acid dianhydride, 4,4'-oxydiphthalic acid anhydride (hereinafter, may be referred to as "ODPA"), 3,4 '-Oxydiphthalic anhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 3,4,9,10-perylenetetracarboxylic acid dianhydride, bis (3,4-dicarboxyphenyl) Phenyl) Propane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (2,3) -Dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (3,4-dicarboxyphenyl) sulfonate dianhydride, p-phenylene bis (trimeritic acid monoester) Acid anhydride), ethylene bis (trimellitic acid monoesteric acid anhydride), bisphenol A bis (trimellitic acid monoesteric acid anhydride), derivatives thereof and the like can be mentioned.
 線膨張係数維持の観点から、酸二無水物残基としては、BPDA残基及びPMDA残基からなる群より選ばれる一種以上が好ましい。また、レーザー加工後のデスミア処理時においてビア内壁のクラックの発生をより抑制するためには、酸二無水物残基としては、ビフェニル骨格を有するBPDA残基が好ましい。非熱可塑性ポリイミドがBPDA残基を含む場合、線膨張係数を維持しつつ、レーザー加工後のデスミア処理時においてビア内壁のクラックの発生をより抑制するためには、非熱可塑性ポリイミドを構成する全酸二無水物残基に対するBPDA残基の含有率は、10モル%以上60モル%以下であることが好ましく、20モル%以上60モル%以下であることがより好ましく、30モル%以上60モル%以下であることが更に好ましい。非熱可塑性ポリイミドがPMDA残基を含む場合、線膨張係数維持の観点から、非熱可塑性ポリイミドを構成する全酸二無水物残基に対するPMDA残基の含有率は、40モル%以上80モル%以下であることが好ましく、40モル%以上75モル%以下であることがより好ましく、40モル%以上70モル%以下であることが更に好ましい。非熱可塑性ポリイミドがBPDA残基及びPMDA残基を含む場合、線膨張係数を維持しつつ、レーザー加工後のデスミア処理時においてビア内壁のクラックの発生をより抑制するためには、BPDA残基及びPMDA残基の合計含有率は、非熱可塑性ポリイミドを構成する全酸二無水物残基に対して、60モル%以上であることが好ましく、70モル%以上であることがより好ましく、80モル%以上であることが更に好ましく、100モル%でも構わない。 From the viewpoint of maintaining the coefficient of linear expansion, the acid dianhydride residue is preferably one or more selected from the group consisting of BPDA residues and PMDA residues. Further, in order to further suppress the generation of cracks on the inner wall of the via during the desmear treatment after laser processing, the BPDA residue having a biphenyl skeleton is preferable as the acid dianhydride residue. When the non-thermoplastic polyimide contains a BPDA residue, in order to further suppress the occurrence of cracks on the inner wall of the via during desmear treatment after laser processing while maintaining the linear expansion coefficient, all the non-thermoplastic polyimides are composed. The content of the BPDA residue with respect to the acid dianhydride residue is preferably 10 mol% or more and 60 mol% or less, more preferably 20 mol% or more and 60 mol% or less, and 30 mol% or more and 60 mol. % Or less is more preferable. When the non-thermoplastic polyimide contains PMDA residues, the content of PMDA residues in the total acid dianhydride residues constituting the non-thermoplastic polyimide is 40 mol% or more and 80 mol% from the viewpoint of maintaining the linear expansion coefficient. It is preferably 40 mol% or more and 75 mol% or less, more preferably 40 mol% or more and 70 mol% or less. When the non-thermoplastic polyimide contains a BPDA residue and a PMDA residue, in order to further suppress the occurrence of cracks on the inner wall of the via during desmear treatment after laser processing while maintaining the coefficient of linear expansion, the BPDA residue and The total content of PMDA residues is preferably 60 mol% or more, more preferably 70 mol% or more, and more preferably 80 mol% with respect to the total acid dianhydride residues constituting the non-thermoplastic polyimide. It is more preferably% or more, and may be 100 mol%.
 レーザー加工後のデスミア処理時においてビア内壁のクラックの発生を更に抑制するためには、非熱可塑性ポリイミドが、酸二無水物残基としてBPDA残基及びPMDA残基からなる群より選ばれる一種以上と、ODPA残基とを有することが好ましい。非熱可塑性ポリイミドがODPA残基を含む場合、レーザー加工後のデスミア処理時においてビア内壁のクラックの発生を更に抑制するためには、非熱可塑性ポリイミドを構成する全酸二無水物残基に対するODPA残基の含有率は、5モル%以上15モル%以下であることが好ましい。非熱可塑性ポリイミドが、BPDA残基及びPMDA残基からなる群より選ばれる一種以上と、ODPA残基とを含む場合、線膨張係数を維持しつつ、レーザー加工後のデスミア処理時においてビア内壁のクラックの発生をより抑制するためには、BPDA残基とPMDA残基とODPA残基との合計含有率は、非熱可塑性ポリイミドを構成する全酸二無水物残基に対して、80モル%以上であることが好ましく、90モル%以上であることがより好ましく、100モル%でも構わない。 In order to further suppress the generation of cracks on the inner wall of the via during the desmear treatment after laser processing, one or more non-thermoplastic polyimides are selected from the group consisting of BPDA residues and PMDA residues as acid dianhydride residues. And ODPA residues are preferred. When the non-thermoplastic polyimide contains ODPA residues, in order to further suppress the generation of cracks on the inner wall of the via during the desmear treatment after laser processing, ODPA for the total acid dianhydride residue constituting the non-thermoplastic polyimide is used. The residue content is preferably 5 mol% or more and 15 mol% or less. When the non-thermoplastic polyimide contains one or more selected from the group consisting of BPDA residues and PMDA residues and ODPA residues, the inner wall of the via is subjected to desmear treatment after laser processing while maintaining the coefficient of linear expansion. In order to further suppress the occurrence of cracks, the total content of BPDA residues, PMDA residues and ODPA residues is 80 mol% with respect to the total acid dianhydride residues constituting the non-thermoplastic polyimide. The above is preferable, 90 mol% or more is more preferable, and 100 mol% may be used.
 金属張積層板の表面の外観を良好に維持しつつ、レーザー加工後のデスミア処理時においてビア内壁のクラックの発生を更に抑制するためには、非熱可塑性ポリイミドが、下記化学式(2)で表される構造単位を繰り返し単位とするセグメントを有することが好ましい。なお、本明細書において、「セグメント」とは、ブロック共重合体を構成する、同じ繰り返し単位から形成されるポリマー鎖のことをいう。また、本明細書において、「ブロック共重合体」には、ピュアブロック共重合体、ランダムブロック共重合体、及びテーパーブロック構造を有する共重合体のいずれの態様も含まれる。 In order to further suppress the occurrence of cracks on the inner wall of the via during the desmear treatment after laser processing while maintaining the good appearance of the surface of the metal-clad laminate, the non-thermoplastic polyimide is represented by the following chemical formula (2). It is preferable to have a segment whose structural unit is a repeating unit. In addition, in this specification, a "segment" means a polymer chain formed from the same repeating unit which constitutes a block copolymer. Further, in the present specification, the "block copolymer" includes any aspect of a pure block copolymer, a random block copolymer, and a copolymer having a tapered block structure.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 化学式(2)で表される構造単位を繰り返し単位とするセグメント(以下、「特定セグメント」と記載する場合がある)は、例えば、後述するシーケンス重合により形成することができる。 A segment having a structural unit represented by the chemical formula (2) as a repeating unit (hereinafter, may be referred to as a “specific segment”) can be formed by, for example, sequence polymerization described later.
 非熱可塑性ポリイミド層には、非熱可塑性ポリイミド以外の成分(添加剤)が含まれていてもよい。添加剤としては、例えば、染料、界面活性剤、レベリング剤、可塑剤、シリコーン、フィラー、増感剤等を用いることができる。非熱可塑性ポリイミド層中の非熱可塑性ポリイミドの含有率は、非熱可塑性ポリイミド層全量に対して、例えば70重量%以上であり、80重量%以上であることが好ましく、90重量%以上であることがより好ましく、100重量%であってもよい。 The non-thermoplastic polyimide layer may contain components (additives) other than the non-thermoplastic polyimide. As the additive, for example, a dye, a surfactant, a leveling agent, a plasticizer, a silicone, a filler, a sensitizer and the like can be used. The content of the non-thermoplastic polyimide in the non-thermoplastic polyimide layer is, for example, 70% by weight or more, preferably 80% by weight or more, and more preferably 90% by weight or more, based on the total amount of the non-thermoplastic polyimide layer. It is more preferable, and it may be 100% by weight.
(熱可塑性ポリイミド層)
 熱可塑性ポリイミド層に含まれる熱可塑性ポリイミドは、酸二無水物残基とジアミン残基とを有する。熱可塑性ポリイミド中の酸二無水物残基を形成するための酸二無水物(モノマー)としては、上述した非熱可塑性ポリイミド中の酸二無水物残基を形成するための酸二無水物(モノマー)と同じ化合物が挙げられる。熱可塑性ポリイミドが有する酸二無水物残基と、非熱可塑性ポリイミドが有する酸二無水物残基とは、同種であっても互いに異なる種類であってもよい。
(Thermoplastic polyimide layer)
The thermoplastic polyimide contained in the thermoplastic polyimide layer has an acid dianhydride residue and a diamine residue. The acid dianhydride (monomer) for forming the acid dianhydride residue in the thermoplastic polyimide is an acid dianhydride for forming the acid dianhydride residue in the non-thermoplastic polyimide described above (monomer). The same compound as the monomer) can be mentioned. The acid dianhydride residue contained in the thermoplastic polyimide and the acid dianhydride residue contained in the non-thermoplastic polyimide may be of the same type or different types from each other.
 熱可塑性を確保するためには、熱可塑性ポリイミドが有するジアミン残基としては、屈曲構造を有するジアミン残基が好ましい。熱可塑性をより容易に確保するためには、屈曲構造を有するジアミン残基の含有率は、熱可塑性ポリイミドを構成する全ジアミン残基に対して、50モル%以上であることが好ましく、70モル%以上であることがより好ましく、80モル%以上であることが更に好ましく、100モル%でも構わない。屈曲構造を有するジアミン残基を形成するためのジアミン(モノマー)としては、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(以下、「BAPP」と記載することがある)等が挙げられる。熱可塑性をより容易に確保するためには、熱可塑性ポリイミドが有するジアミン残基としては、BAPP残基が好ましい。 In order to ensure thermoplasticity, the diamine residue of the thermoplastic polyimide is preferably a diamine residue having a bent structure. In order to more easily secure the thermoplasticity, the content of the diamine residue having a bent structure is preferably 50 mol% or more, preferably 70 mol% or more, based on the total diamine residue constituting the thermoplastic polyimide. % Or more is more preferable, 80 mol% or more is further preferable, and 100 mol% may be used. Examples of the diamine (monomer) for forming a diamine residue having a bent structure include 4,4'-bis (4-aminophenoxy) biphenyl, 4,4'-bis (3-aminophenoxy) biphenyl, and 1,3. -Bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 2,2-bis [4- (4-aminophenoxy) phenyl] propane (hereinafter referred to as "BAPP"). There is) etc. In order to more easily secure the thermoplasticity, the BAPP residue is preferable as the diamine residue contained in the thermoplastic polyimide.
 金属箔との密着性に優れる熱可塑性ポリイミド層を得るためには、熱可塑性ポリイミドが、BPDA残基及びPMDA残基からなる群より選ばれる一種以上と、BAPP残基とを有することが好ましい。 In order to obtain a thermoplastic polyimide layer having excellent adhesion to a metal foil, it is preferable that the thermoplastic polyimide has one or more selected from the group consisting of BPDA residues and PMDA residues, and BAPP residues.
 熱可塑性ポリイミド層には、熱可塑性ポリイミド以外の成分(添加剤)が含まれていてもよい。添加剤としては、例えば、染料、界面活性剤、レベリング剤、可塑剤、シリコーン、フィラー、増感剤等を用いることができる。熱可塑性ポリイミド層中の熱可塑性ポリイミドの含有率は、熱可塑性ポリイミド層全量に対して、例えば70重量%以上であり、80重量%以上であることが好ましく、90重量%以上であることがより好ましく、100重量%であってもよい。 The thermoplastic polyimide layer may contain components (additives) other than the thermoplastic polyimide. As the additive, for example, a dye, a surfactant, a leveling agent, a plasticizer, a silicone, a filler, a sensitizer and the like can be used. The content of the thermoplastic polyimide in the thermoplastic polyimide layer is, for example, 70% by weight or more, preferably 80% by weight or more, and more preferably 90% by weight or more, based on the total amount of the thermoplastic polyimide layer. Preferably, it may be 100% by weight.
 レーザー加工後のデスミア処理時においてビア内壁のクラックの発生を特に抑制するためには、本実施形態に係る複層ポリイミドフィルムは、下記条件1を満たすことが好ましく、下記条件2を満たすことがより好ましく、下記条件3を満たすことが更に好ましく、下記条件4を満たすことが更により好ましく、下記条件5を満たすことが特に好ましい。
 条件1:非熱可塑性ポリイミドが、m-TB残基、ODA残基、PDA残基、BPDA残基及びPMDA残基を有する。
 条件2:上記条件1を満たし、かつ非熱可塑性ポリイミドを構成する全ジアミン残基に対するODA残基の含有率が40モル%以上70モル%以下である。
 条件3:上記条件2を満たし、かつ非熱可塑性ポリイミドを構成する全ジアミン残基に対するPDA残基の含有率が5モル%以上50モル%以下である。
 条件4:上記条件3を満たし、かつ非熱可塑性ポリイミドが、特定セグメントを有するブロック共重合体である。
 条件5:上記条件4を満たし、かつ非熱可塑性ポリイミドが、ODPA残基を更に有する。
In order to particularly suppress the occurrence of cracks on the inner wall of the via during the desmear treatment after laser processing, the multilayer polyimide film according to the present embodiment preferably satisfies the following condition 1, and more preferably the following condition 2. It is more preferable to satisfy the following condition 3, still more preferably to satisfy the following condition 4, and particularly preferably to satisfy the following condition 5.
Condition 1: The non-thermoplastic polyimide has m-TB residue, ODA residue, PDA residue, BPDA residue and PMDA residue.
Condition 2: The content of the ODA residue with respect to all the diamine residues constituting the non-thermoplastic polyimide satisfying the above condition 1 is 40 mol% or more and 70 mol% or less.
Condition 3: The content of the PDA residue with respect to all the diamine residues constituting the non-thermoplastic polyimide satisfying the above condition 2 is 5 mol% or more and 50 mol% or less.
Condition 4: The non-thermoplastic polyimide satisfying the above condition 3 is a block copolymer having a specific segment.
Condition 5: The above condition 4 is satisfied, and the non-thermoplastic polyimide further has an ODPA residue.
<複層ポリイミドフィルムの製造方法及び金属張積層板の製造方法>
 次に、本実施形態に係る複層ポリイミドフィルムの製造方法の一例、及び本実施形態に係る複層ポリイミドフィルムを用いて金属張積層板を製造する方法の一例について説明する。
<Manufacturing method of multi-layer polyimide film and manufacturing method of metal-clad laminate>
Next, an example of a method for manufacturing a multi-layer polyimide film according to the present embodiment and an example of a method for manufacturing a metal-clad laminate using the multi-layer polyimide film according to the present embodiment will be described.
[複層ポリイミドフィルムの製造方法]
(ポリアミド酸の製造方法)
 ポリイミドの前駆体であるポリアミド酸の製造方法(合成方法)としては、あらゆる公知の方法及びそれらを組み合わせた方法を用いることができる。ポリアミド酸の製造における重合方法の特徴は、そのモノマーの添加順序にあり、このモノマーの添加順序を制御することにより得られるポリイミドの諸物性を制御することができる。ジアミンとテトラカルボン酸二無水物とを用いてポリアミド酸を合成する場合、各ジアミンの物質量と、テトラカルボン酸二無水物の物質量(テトラカルボン酸二無水物を複数種使用する場合は、各テトラカルボン酸二無水物の物質量)とを調整することで、所望のポリアミド酸(ジアミンとテトラカルボン酸二無水物との重合体)を得ることができる。ポリアミド酸から形成されるポリイミド中の各残基の物質量比(モル比)は、例えば、ポリアミド酸の合成に使用する各モノマー(ジアミン及びテトラカルボン酸二無水物)の物質量比と一致する。ジアミンとテトラカルボン酸二無水物との反応、即ち、ポリアミド酸の合成反応の温度条件は、特に限定されないが、例えば20℃以上150℃以下の範囲である。ポリアミド酸の合成反応の反応時間は、例えば10分以上30時間以下の範囲である。本実施形態においてポリアミド酸の製造には、いかなるモノマーの添加方法を用いてもよい。代表的なポリアミド酸の製造方法として以下のような方法が挙げられる。
[Manufacturing method of multi-layer polyimide film]
(Manufacturing method of polyamic acid)
As a method for producing polyamic acid (synthesis method) which is a precursor of polyimide, any known method or a method in which they are combined can be used. The characteristic of the polymerization method in the production of polyamic acid lies in the order of addition of the monomers, and various physical properties of the polyimide obtained by controlling the order of addition of the monomers can be controlled. When synthesizing polyamic acid using diamine and tetracarboxylic acid dianhydride, the amount of each diamine and the amount of tetracarboxylic acid dianhydride (when using multiple types of tetracarboxylic acid dianhydride, when using multiple types of tetracarboxylic acid dianhydride, By adjusting the amount of each tetracarboxylic acid dianhydride), a desired polyamic acid (polymer of diamine and tetracarboxylic acid dianhydride) can be obtained. The amount of substance ratio (molar ratio) of each residue in the polyimide formed from polyamic acid is consistent with, for example, the amount of substance ratio of each monomer (diamine and tetracarboxylic acid dianhydride) used for the synthesis of polyamic acid. .. The temperature conditions for the reaction between the diamine and the tetracarboxylic dianhydride, that is, the synthetic reaction for the polyamic acid are not particularly limited, but are, for example, in the range of 20 ° C. or higher and 150 ° C. or lower. The reaction time of the polyamic acid synthesis reaction is, for example, in the range of 10 minutes or more and 30 hours or less. In the present embodiment, any method of adding a monomer may be used for producing the polyamic acid. The following methods can be mentioned as a typical method for producing a polyamic acid.
 ポリアミド酸の製造方法として、例えば、下記の工程(A-a)と工程(A-b)とにより重合する方法(以下、「A重合方法」と記載することがある)が挙げられる。
 (A-a):芳香族ジアミンと、芳香族酸二無水物とを、芳香族ジアミンが過剰の状態で有機溶媒中において反応させ、両末端にアミノ基を有するプレポリマーを得る工程
 (A-b):工程(A-a)で用いたものとは構造の異なる芳香族ジアミンを追加添加し、更に工程(A-a)で用いたものとは構造の異なる芳香族酸二無水物を、全工程における芳香族ジアミンと芳香族酸二無水物とが実質的に等モルとなるように添加して重合する工程
Examples of the method for producing a polyamic acid include a method of polymerizing by the following steps (Aa) and (Ab) (hereinafter, may be referred to as "A polymerization method").
(A-a): A step of reacting an aromatic diamine with an aromatic acid dianhydride in an organic solvent in a state where the aromatic diamine is in excess to obtain a prepolymer having amino groups at both ends (A-a). b): An aromatic dianhydride having a structure different from that used in the step (Aa) is additionally added, and an aromatic acid dianhydride having a structure different from that used in the step (Aa) is further added. A step of adding and polymerizing aromatic diamine and aromatic acid dianhydride so as to be substantially equimolar in all steps.
 また、ポリアミド酸の製造方法として、下記の工程(B-a)と工程(B-b)とにより重合する方法(以下、「B重合方法」と記載することがある)も挙げられる。
 (B-a):芳香族ジアミンと、芳香族酸二無水物とを、芳香族酸二無水物が過剰の状態で有機溶媒中において反応させ、両末端に酸無水物基を有するプレポリマーを得る工程
 (B-b):工程(B-a)で用いたものとは構造の異なる芳香族酸二無水物を追加添加し、更に工程(B-a)で用いたものとは構造の異なる芳香族ジアミンを、全工程における芳香族ジアミンと芳香族酸二無水物とが実質的に等モルとなるように添加して重合する工程
Further, as a method for producing the polyamic acid, a method of polymerizing by the following steps (Ba) and the step (Bb) (hereinafter, may be referred to as “B polymerization method”) can also be mentioned.
(BA): Aromatic diamine and aromatic acid dianhydride are reacted in an organic solvent with an excess of aromatic acid dianhydride to form a prepolymer having acid anhydride groups at both ends. Obtaining step (B-b): An aromatic acid dianhydride having a structure different from that used in the step (B-a) is additionally added, and the structure is different from that used in the step (B-a). A step of adding and polymerizing aromatic diamine so that the aromatic diamine and the aromatic acid dianhydride in all steps are substantially equimolar.
 任意若しくは特定のジアミン、又は任意若しくは特定の酸二無水物に、特定のジアミン又は特定の酸二無水物が選択的に反応するように添加順序を設定する合成方法(例えば、上述したA重合方法、B重合方法等)を、本明細書ではシーケンス重合と記載する。シーケンス重合により得られた重合体のうち、2種類のセグメントを有する重合体をジブロック共重合体、3種類のセグメントを有する重合体をトリブロック共重合体という。これに対し、ジアミン及び酸二無水物の添加順序を設定しない重合方法(モノマー同士が任意に反応する重合方法)を、本明細書ではランダム重合と記載する。ランダム重合により得られた重合体をランダム共重合体という。 A synthetic method for setting the order of addition so that a specific diamine or a specific acid dianhydride selectively reacts with an arbitrary or a specific diamine, or an arbitrary or a specific acid dianhydride (for example, the above-mentioned A polymerization method). , B polymerization method, etc.) is described as sequence polymerization in this specification. Among the polymers obtained by sequence polymerization, a polymer having two types of segments is called a diblock copolymer, and a polymer having three types of segments is called a triblock copolymer. On the other hand, a polymerization method in which the order of addition of diamine and acid dianhydride is not set (a polymerization method in which monomers react arbitrarily with each other) is described as random polymerization in the present specification. The polymer obtained by random polymerization is called a random copolymer.
 本実施形態において、フレキシブル金属張積層板の特性を維持しつつ、フィルムの裂けの抑制に有効なポリイミドを得るための重合方法としては、シーケンス重合が好ましい。 In the present embodiment, sequence polymerization is preferable as a polymerization method for obtaining a polyimide effective for suppressing tearing of a film while maintaining the characteristics of a flexible metal-clad laminate.
 上述した重合方法により得られるポリアミド酸の重量平均分子量は、10,000以上1,000,000以下の範囲であることが好ましく、20,000以上500,000以下の範囲であることがより好ましく、30,000以上200,000以下の範囲であることが更に好ましい。重量平均分子量が10,000以上であれば、ポリアミド酸を塗布膜とすることが容易となる。一方、重量平均分子量が1,000,000以下であると、溶媒に対して十分な溶解性を示すため、後述するポリアミド酸溶液を用いて表面が平滑で厚みが均一な塗布膜が得られる。ここで用いている重量平均分子量とは、ゲルパーミレーションクロマトグラフィー(GPC)を用いて測定したポリエチレンオキシド換算値のことをいう。 The weight average molecular weight of the polyamic acid obtained by the above-mentioned polymerization method is preferably in the range of 10,000 or more and 1,000,000 or less, and more preferably in the range of 20,000 or more and 500,000 or less. It is more preferably in the range of 30,000 or more and 200,000 or less. When the weight average molecular weight is 10,000 or more, it becomes easy to use polyamic acid as a coating film. On the other hand, when the weight average molecular weight is 1,000,000 or less, sufficient solubility in a solvent is exhibited, so that a coating film having a smooth surface and a uniform thickness can be obtained by using a polyamic acid solution described later. The weight average molecular weight used here means a polyethylene oxide equivalent value measured by gel permeation chromatography (GPC).
 ポリイミドを得る際、ポリアミド酸と有機溶媒とを含むポリアミド酸溶液からポリイミドを得る方法を採用してもよい。ポリアミド酸溶液に使用可能な有機溶媒としては、例えば、テトラメチル尿素、N,N-ジメチルエチルウレアのようなウレア系溶媒;ジメチルスルホキシドのようなスルホキシド系溶媒;ジフェニルスルホン、テトラメチルスルホンのようなスルホン系溶媒;N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド(以下、「DMF」と記載することがある)、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン、ヘキサメチルリン酸トリアミド等のアミド系溶媒;γ―ブチロラクトン等のエステル系溶媒;クロロホルム、塩化メチレン等のハロゲン化アルキル系溶媒;ベンゼン、トルエン等の芳香族炭化水素系溶媒;フェノール、クレゾール等のフェノール系溶媒;シクロペンタノン等のケトン系溶媒;テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、ジメチルエーテル、ジエチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、p-クレゾールメチルエーテル等のエーテル系溶媒が挙げられる。通常これらの溶媒を単独で用いるが、必要に応じて2種以上を適宜組合わせて用いてもよい。上述した重合方法でポリアミド酸を得た場合、反応溶液(反応後の溶液)自体を、ポリイミドを得るためのポリアミド酸溶液としてもよい。この場合、ポリアミド酸溶液中の有機溶媒は、上記重合方法において反応に使用した有機溶媒である。また、反応溶液から溶媒を除去して得られた固体のポリアミド酸を、有機溶媒に溶解してポリアミド酸溶液を調製してもよい。 When obtaining the polyimide, a method of obtaining the polyimide from a polyamic acid solution containing a polyamic acid and an organic solvent may be adopted. Examples of the organic solvent that can be used in the polyamic acid solution include urea-based solvents such as tetramethylurea and N, N-dimethylethylurea; sulfoxide-based solvents such as dimethylsulfoxide; and diphenylsulfones and tetramethylsulfones. Sulfon-based solvent; N, N-dimethylacetamide, N, N-dimethylformamide (hereinafter, may be referred to as "DMF"), N, N-diethylacetamide, N-methyl-2-pyrrolidone, hexamethylphosphate. Amid solvents such as triamide; ester solvents such as γ-butyrolactone; alkyl halide solvents such as chloroform and methylene chloride; aromatic hydrocarbon solvents such as benzene and toluene; phenol solvents such as phenol and cresol; cyclo Ketone-based solvents such as pentanone; ether-based solvents such as tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, dimethyl ether, diethyl ether, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, and p-cresol methyl ether can be mentioned. Usually, these solvents are used alone, but if necessary, two or more kinds may be used in combination as appropriate. When the polyamic acid is obtained by the above-mentioned polymerization method, the reaction solution (solution after the reaction) itself may be used as the polyamic acid solution for obtaining the polyimide. In this case, the organic solvent in the polyamic acid solution is the organic solvent used in the reaction in the above polymerization method. Alternatively, a solid polyamic acid obtained by removing the solvent from the reaction solution may be dissolved in an organic solvent to prepare a polyamic acid solution.
 ポリアミド酸溶液には、染料、界面活性剤、レベリング剤、可塑剤、シリコーン、増感剤等の添加剤が添加されていてもよい。また、摺動性、熱伝導性、導電性、耐コロナ性、ループスティフネス等のフィルムの諸特性を改善する目的で、ポリアミド酸溶液にフィラーを添加することもできる。フィラーとしては、いかなるものを用いてもよいが、好ましい例としては、シリカ、酸化チタン、アルミナ、窒化珪素、窒化ホウ素、リン酸水素カルシウム、リン酸カルシウム、雲母等からなるフィラーが挙げられる。 Additives such as dyes, surfactants, leveling agents, plasticizers, silicones, and sensitizers may be added to the polyamic acid solution. Further, a filler may be added to the polyamic acid solution for the purpose of improving various properties of the film such as slidability, thermal conductivity, conductivity, corona resistance, and loop stiffness. Any filler may be used, and preferred examples thereof include fillers made of silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica and the like.
 ポリアミド酸溶液中のポリアミド酸の濃度は、特に限定されず、ポリアミド酸溶液全量に対して、例えば5重量%以上35重量%以下であり、好ましくは8重量%以上30重量%以下である。ポリアミド酸の濃度が5重量%以上35重量%以下である場合、適当な分子量と溶液粘度が得られる。 The concentration of the polyamic acid in the polyamic acid solution is not particularly limited, and is, for example, 5% by weight or more and 35% by weight or less, preferably 8% by weight or more and 30% by weight or less, based on the total amount of the polyamic acid solution. When the concentration of polyamic acid is 5% by weight or more and 35% by weight or less, an appropriate molecular weight and solution viscosity can be obtained.
(非熱可塑性ポリイミド層の形成方法)
 非熱可塑性ポリイミド層の形成方法としては、特に制限されず、種々の公知の方法を適用でき、例えば、以下の工程i)~iv)を経て非熱可塑性ポリイミド層(ポリイミドフィルム)を形成する方法が挙げられる。
 工程i):有機溶媒中で芳香族ジアミンと芳香族テトラカルボン酸二無水物とを反応させて、非熱可塑性ポリイミドの前駆体を含むポリアミド酸溶液(以下、「非熱可塑性ポリアミド酸溶液」と記載することがある)を得る工程
 工程ii):上記非熱可塑性ポリアミド酸溶液を含むドープ液を支持体上に塗布して、塗布膜を形成する工程
 工程iii):上記塗布膜を支持体上で加熱して自己支持性を持つポリアミド酸フィルム(以下、「ゲルフィルム」と記載することがある)とした後、支持体からゲルフィルムを引き剥がす工程
 工程iv)上記ゲルフィルムを加熱して、ゲルフィルム中のポリアミド酸をイミド化し、かつ乾燥させて、非熱可塑性ポリイミドを含むポリイミドフィルム(複層ポリイミドフィルム中の非熱可塑性ポリイミド層となるポリイミドフィルム)を得る工程
(Method for forming non-thermoplastic polyimide layer)
The method for forming the non-thermoplastic polyimide layer is not particularly limited, and various known methods can be applied. For example, a method for forming a non-thermoplastic polyimide layer (polyimide film) through the following steps i) to iv). Can be mentioned.
Step i): A polyamic acid solution containing a precursor of a non-thermoplastic polyimide by reacting an aromatic diamine with an aromatic tetracarboxylic acid dianhydride in an organic solvent (hereinafter referred to as “non-thermoplastic polyamic acid solution”). Step ii): A step of applying a dope solution containing the non-thermoplastic polyimide solution onto a support to form a coating film Step ii): Applying the coating film onto the support. A step of peeling the gel film from the support after heating to obtain a self-supporting polyimide film (hereinafter, may be referred to as "gel film"). Step iv) The above gel film is heated. A step of imidizing the polyamic acid in the gel film and drying it to obtain a polyimide film containing a non-thermoplastic polyimide (a polyimide film that becomes a non-thermoplastic polyimide layer in a multi-layer polyimide film).
 工程ii)において、支持体上にドープ液を塗布する方法については、特に限定されず、ダイコーター、コンマコーター(登録商標)、リバースコーター、ナイフコーター等の従来公知の塗布装置を用いる方法を採用できる。 In step ii), the method of applying the doping solution on the support is not particularly limited, and a method using a conventionally known coating device such as a die coater, a comma coater (registered trademark), a reverse coater, and a knife coater is adopted. can.
 工程ii)以降の工程においては、熱イミド化法と化学イミド化法に大別される。熱イミド化法は、脱水閉環剤等を使用せず、ポリアミド酸溶液をドープ液として支持体上に塗布し、加熱してイミド化を進める方法である。一方の化学イミド化法は、ポリアミド酸溶液に、イミド化促進剤として脱水閉環剤及び触媒の少なくとも一方を添加したものをドープ液として使用し、イミド化を促進する方法である。どちらの方法を用いても構わないが、化学イミド化法の方が生産性に優れる。 The steps after step ii) are roughly divided into a thermal imidization method and a chemical imidization method. The thermal imidization method is a method in which a polyamic acid solution is applied as a doping solution on a support and heated to proceed with imidization without using a dehydrating ring-closing agent or the like. On the other hand, the chemical imidization method is a method of promoting imidization by using a polyamic acid solution to which at least one of a dehydration ring-closing agent and a catalyst is added as an imidization accelerator as a dope solution. Either method may be used, but the chemical imidization method is more productive.
 脱水閉環剤としては、無水酢酸に代表される酸無水物が好適に用いられる。触媒としては、脂肪族第三級アミン、芳香族第三級アミン、複素環式第三級アミン等の三級アミンが好適に用いられる。 As the dehydration ring closure agent, an acid anhydride typified by acetic anhydride is preferably used. As the catalyst, tertiary amines such as aliphatic tertiary amines, aromatic tertiary amines, and heterocyclic tertiary amines are preferably used.
 工程ii)においてドープ液を塗布する支持体としては、ガラス板、アルミ箔、エンドレスステンレスベルト、ステンレスドラム等が好適に用いられる。工程iii)では、最終的に得られるフィルムの厚み、生産速度に応じて加熱条件を設定し、部分的にイミド化又は乾燥の少なくとも一方を行った後、支持体から剥離してポリアミド酸フィルム(ゲルフィルム)を得る。 As the support to which the dope solution is applied in step ii), a glass plate, aluminum foil, an endless stainless belt, a stainless drum, or the like is preferably used. In step iii), heating conditions are set according to the thickness of the finally obtained film and the production rate, and after at least one of partial imidization and drying is performed, the film is peeled off from the support to form a polyamic acid film (step iii). Gel film) is obtained.
 次いで、工程iv)において、上記ゲルフィルムの端部を固定して硬化時の収縮を回避しつつ加熱処理することにより、ゲルフィルムから、水、残留溶媒、イミド化促進剤等を除去し、残ったポリアミド酸を完全にイミド化して、非熱可塑性ポリイミドを含むポリイミドフィルムが得られる。加熱条件については、最終的に得られるフィルムの厚み、生産速度に応じて適宜設定すればよい。 Next, in step iv), water, the residual solvent, the imidization accelerator, etc. are removed from the gel film by fixing the end portion of the gel film and heat-treating it while avoiding shrinkage during curing, and the residue remains. The polyamic acid is completely imidized to obtain a polyimide film containing a non-thermoplastic polyimide. The heating conditions may be appropriately set according to the thickness of the finally obtained film and the production rate.
(熱可塑性ポリイミド層の形成方法)
 熱可塑性ポリイミド層は、例えば、上述した非熱可塑性ポリアミド酸溶液を用いて得られたポリイミドフィルム(非熱可塑性ポリイミド層)の少なくとも片面に、熱可塑性ポリイミドの前駆体であるポリアミド酸を含むポリアミド酸溶液(以下、「熱可塑性ポリアミド酸溶液」と記載することがある)を塗布した後、上述した非熱可塑性ポリイミド層(ポリイミドフィルム)の形成方法と同じ手順で得られる。この方法により、非熱可塑性ポリイミド層と、非熱可塑性ポリイミド層の少なくとも片面に配置された熱可塑性ポリイミド層とを有する複層ポリイミドフィルムが得られる。また、熱可塑性ポリアミド酸溶液の代わりに、熱可塑性ポリイミドを含む溶液(熱可塑性ポリイミド溶液)を用いて、非熱可塑性ポリイミド層の少なくとも片面に熱可塑性ポリイミド溶液からなる塗布膜を形成し、この塗布膜を乾燥して、熱可塑性ポリイミド層を形成してもよい。
(Method of forming a thermoplastic polyimide layer)
The thermoplastic polyimide layer is, for example, a polyamic acid containing polyamic acid, which is a precursor of thermoplastic polyimide, on at least one side of a polyimide film (non-thermoplastic polyimide layer) obtained by using the above-mentioned non-thermoplastic polyimide solution. After applying the solution (hereinafter, may be referred to as "thermoplastic polyamic acid solution"), it can be obtained by the same procedure as the above-mentioned method for forming a non-thermoplastic polyimide layer (polyimide film). By this method, a multi-layer polyimide film having a non-thermoplastic polyimide layer and a thermoplastic polyimide layer arranged on at least one side of the non-thermoplastic polyimide layer can be obtained. Further, instead of the thermoplastic polyamic acid solution, a solution containing thermoplastic polyimide (thermoplastic polyimide solution) is used to form a coating film made of the thermoplastic polyimide solution on at least one side of the non-thermoplastic polyimide layer, and this coating is performed. The film may be dried to form a thermoplastic polyimide layer.
 また、例えば、共押出しダイを使用して、非熱可塑性ポリイミドの前駆体であるポリアミド酸を含む層と、熱可塑性ポリイミドの前駆体であるポリアミド酸を含む層とを備える積層体を形成した後、得られた積層体を加熱して、非熱可塑性ポリイミド層と熱可塑性ポリイミド層とを同時に形成してもよい。この方法では、支持体として金属箔を使用することにより、イミド化が完了すると同時に金属張積層板(複層ポリイミドフィルムと金属箔との積層体)が得られる。3層以上のポリイミド層を含む複層ポリイミドフィルムを製造する場合、上述した塗布工程及び加熱工程を複数回繰り返すか、共押出しや連続塗布(連続キャスト)により複数の塗布膜を形成して一度に加熱する方法が好適に用いられる。複層ポリイミドフィルムの最表面に、コロナ処理やプラズマ処理のような種々の表面処理を行うことも可能である。 Also, for example, after using a coextruding die to form a laminate comprising a layer containing polyamic acid, which is a precursor of non-thermoplastic polyimide, and a layer containing polyamic acid, which is a precursor of thermoplastic polyimide. The obtained laminate may be heated to form a non-thermoplastic polyimide layer and a thermoplastic polyimide layer at the same time. In this method, by using a metal foil as a support, a metal-clad laminate (a laminate of a multilayer polyimide film and a metal foil) can be obtained at the same time as imidization is completed. When producing a multi-layer polyimide film containing three or more polyimide layers, the above-mentioned coating step and heating step are repeated multiple times, or multiple coating films are formed by coextrusion or continuous coating (continuous casting) at one time. The heating method is preferably used. It is also possible to perform various surface treatments such as corona treatment and plasma treatment on the outermost surface of the multi-layer polyimide film.
[金属張積層板の製造方法]
 上述の方法で得られた複層ポリイミドフィルムを用いて金属張積層板を製造する際は、上述したように、複層ポリイミドフィルムの少なくとも片面に金属箔を貼り合わせる。金属箔は、特に限定されるものではなく、あらゆる金属箔を用いることができる。例えば、銅、ステンレス鋼、ニッケル、アルミニウム、及びこれら金属の合金等を材料とする金属箔が好適に用いられる。また、一般的な金属張積層板では、圧延銅箔、電解銅箔等の銅箔が多用されるが、本実施形態においても、銅箔が好ましく用いられる。
[Manufacturing method of metal-clad laminate]
When a metal-clad laminate is manufactured using the multilayer polyimide film obtained by the above method, a metal foil is bonded to at least one surface of the multilayer polyimide film as described above. The metal foil is not particularly limited, and any metal foil can be used. For example, a metal foil made of copper, stainless steel, nickel, aluminum, an alloy of these metals, or the like is preferably used. Further, in a general metal-clad laminate, copper foil such as rolled copper foil and electrolytic copper foil is often used, but the copper foil is also preferably used in this embodiment.
 また、金属箔は、目的に応じて表面処理等を施して、表面粗さ等を調整したものを使用できる。更に、金属箔の表面には、防錆層、耐熱層、接着層等が形成されていてもよい。金属箔の厚みについては特に限定されるものではなく、その用途に応じて、十分な機能が発揮できる厚みであればよい。 In addition, as the metal foil, one that has been subjected to surface treatment or the like according to the purpose and whose surface roughness or the like has been adjusted can be used. Further, a rust preventive layer, a heat resistant layer, an adhesive layer and the like may be formed on the surface of the metal foil. The thickness of the metal foil is not particularly limited, and may be any thickness as long as it can exhibit sufficient functions depending on the intended use.
<金属張積層板の加工>
 金属張積層板を材料としてレーザー加工によりビアを形成する場合、加工したい部位にレーザーを照射することで、金属張積層板を切削し、穴を開けることができる。金属張積層板を貫通させてスルーホールを形成したり、上面の金属箔の一部を除去した後で露出したポリイミド層のみを除去することにより、ブラインドビアを形成したりすることができる。ブラインドビアの形成の際には、上面の金属箔をレーザーで除去し、続けてレーザーの出力を落としてポリイミド層を除去することで安定してブラインドビアを形成することができる。
<Processing of metal-clad laminate>
When a via is formed by laser processing using a metal-clad laminate as a material, the metal-clad laminate can be cut and a hole can be made by irradiating the portion to be processed with a laser. Blind vias can be formed by penetrating a metal-clad laminate to form through holes, or by removing only the exposed polyimide layer after removing a part of the metal foil on the upper surface. When forming the blind via, the metal foil on the upper surface is removed with a laser, and then the output of the laser is reduced to remove the polyimide layer, whereby the blind via can be stably formed.
 レーザーとしては公知の種類を採用することができる。UV-YAGレーザーやエキシマレーザー等の短波長レーザーは、樹脂に対しても金属に対しても非常に高い吸収率を示すため好ましい。なお、スルーホールの形成に関しては、直接ドリルを用いて貫通孔を開ける方法も広く用いられている。レーザー加工後のデスミア処理方法としては、公知の方法を採用することができ、例えば、アルカリ水溶液や有機溶媒を含む溶液を用いた膨潤工程、過マンガン酸ナトリウムや過マンガン酸カリウム等を含むアルカリ水溶液を用いた粗化工程、及び中和工程を備える湿式デスミア処理方法が挙げられる。 A known type of laser can be adopted. Short wavelength lasers such as UV-YAG lasers and excimer lasers are preferred because they exhibit very high absorptance for both resins and metals. As for the formation of through holes, a method of directly drilling a through hole is also widely used. As a desmear treatment method after laser processing, a known method can be adopted, for example, a swelling step using an alkaline aqueous solution or a solution containing an organic solvent, an alkaline aqueous solution containing sodium permanganate, potassium permanganate, or the like. A wet desmear treatment method including a roughening step and a neutralization step using the above can be mentioned.
 両面金属張積層板の場合、デスミア処理後の穴の内壁をめっきして、金属張積層板の両面を導通させる。めっき方法の一例としては、穴の内壁にパラジウムを付着させた後、そのパラジウムを核として無電解銅めっき層を内壁面に形成する方法が挙げられる。この場合、無電解銅めっきのみで所望の厚みのめっき層を形成してもよいし、無電解銅めっき層を薄付けした後、電解銅めっきにより所望の厚みのめっき層を形成してもよい。 In the case of a double-sided metal-clad laminate, the inner wall of the hole after desmear treatment is plated to make both sides of the metal-clad laminate conductive. As an example of the plating method, there is a method of adhering palladium to the inner wall surface of the hole and then forming an electroless copper plating layer on the inner wall surface using the palladium as a nucleus. In this case, a plating layer having a desired thickness may be formed only by electrolytic copper plating, or a plating layer having a desired thickness may be formed by electrolytic copper plating after thinning the electrolytic copper plating layer. ..
 以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
<物性の測定方法及び評価方法>
 まず、ポリイミドフィルムの貯蔵弾性率及び線膨張係数、並びに実施例及び比較例の評価方法(ホールクラックテスト)について説明する。
<Measurement method and evaluation method of physical properties>
First, the storage elastic modulus and the coefficient of linear expansion of the polyimide film, and the evaluation method (hole crack test) of Examples and Comparative Examples will be described.
[温度380℃における貯蔵弾性率]
 動的粘弾性測定装置(日立ハイテクサイエンス社製「DM6100」)を用いて、空気雰囲気下においてポリイミドフィルムの動的粘弾性を測定し、貯蔵弾性率と測定温度との相関をプロットして、測定温度380℃における貯蔵弾性率を読み取った。測定条件を以下に示す。
 サンプル(ポリイミドフィルム)の幅:9mm
 サンプル保持具(つかみ具)の間隔:20mm
 測定温度範囲:0℃~440℃
 昇温速度:3℃/分
 歪み振幅:10μm
 測定周波数:1Hz,5Hz,10Hz
 最小張力/圧縮力:100mN
 張力/圧縮ゲイン:1.5
 力振幅初期値:100mN
[Storage modulus at a temperature of 380 ° C]
Using a dynamic viscoelasticity measuring device (“DM6100” manufactured by Hitachi High-Tech Science Co., Ltd.), the dynamic viscoelasticity of a polyimide film is measured in an air atmosphere, and the correlation between the storage elastic modulus and the measured temperature is plotted and measured. The storage elastic modulus at a temperature of 380 ° C. was read. The measurement conditions are shown below.
Sample (polyimide film) width: 9 mm
Sample holder (grasping tool) spacing: 20 mm
Measurement temperature range: 0 ° C to 440 ° C
Temperature rise rate: 3 ° C / min Strain amplitude: 10 μm
Measurement frequency: 1Hz, 5Hz, 10Hz
Minimum tension / compressive force: 100mN
Tension / compression gain: 1.5
Initial force amplitude: 100mN
[線膨張係数]
 熱分析装置(日立ハイテクサイエンス社製「TMA/SS6100」)を用いて、窒素雰囲気下においてポリイミドフィルムを、-10℃から400℃まで昇温させた後、-10℃まで冷却し、更に再度400℃まで昇温させて、2回目の昇温時の100℃から200℃における歪み量から線膨張係数を求めた。測定条件を以下に示す。
 サンプル(ポリイミドフィルム)のサイズ:幅3mm、長さ10mm
 荷重:3g(29.4mN)
 昇温速度:10℃/分
[Coefficient of linear expansion]
Using a thermal analyzer (Hitachi High-Tech Science Co., Ltd. "TMA / SS6100"), the polyimide film was heated from -10 ° C to 400 ° C in a nitrogen atmosphere, cooled to -10 ° C, and then 400 again. The temperature was raised to ° C., and the coefficient of linear expansion was obtained from the strain amount from 100 ° C. to 200 ° C. at the time of the second temperature rise. The measurement conditions are shown below.
Sample (polyimide film) size: width 3 mm, length 10 mm
Load: 3g (29.4mN)
Temperature rise rate: 10 ° C / min
[ホールクラックテスト]
 後述する実施例及び比較例で得られた複層ポリイミドフィルムの両面に厚み12μmの電解銅箔(三井金属鉱業社製「3EC-M3S-HTE」)を配し、更にそれぞれの電解銅箔の外表面に保護フィルム(カネカ社製「アピカル(登録商標)125NPI」、厚み:125μm)を配した状態で、ラミネート温度360℃、ラミネート圧力265N/cm(27kgf/cm)、ラミネート速度1.0m/分の条件でラミネートを行い、フレキシブル銅張積層板を得た。次いで、得られたフレキシブル銅張積層板を、5.0cm×20.0cmの長方形状に切り取り、加工用サンプルを得た。次いで、UV-YAGレーザーを用いて、表1に記載のレーザー加工条件で、加工用サンプルに直径75μmの大きさのブラインドビア(縦10×横10=100個、間隔:1mm)を形成した。
[Hole crack test]
An electrolytic copper foil (“3EC-M3S-HTE” manufactured by Mitsui Mining & Smelting Co., Ltd.) having a thickness of 12 μm was arranged on both sides of the multi-layer polyimide film obtained in Examples and Comparative Examples described later, and further outside each electrolytic copper foil. With a protective film (Kaneka's "Apical (registered trademark) 125 NPI", thickness: 125 μm) placed on the surface, the laminating temperature is 360 ° C, the laminating pressure is 265 N / cm (27 kgf / cm), and the laminating speed is 1.0 m / min. Laminating was performed under the conditions of (1) to obtain a flexible copper-clad laminate. Next, the obtained flexible copper-clad laminate was cut into a rectangular shape of 5.0 cm × 20.0 cm to obtain a sample for processing. Then, using a UV-YAG laser, blind vias (length 10 x width 10 = 100 pieces, spacing: 1 mm) having a diameter of 75 μm were formed on the processing sample under the laser processing conditions shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 次いで、レーザー加工後のサンプルを表2に示す条件でデスミア処理した後、銅箔をエッチングで除去し、評価用サンプルを得た。なお、デスミア処理に用いた薬液の製造元は、いずれもローム・アンド・ハース電子材料社であった。また、膨潤工程と粗化工程の間、粗化工程と中和工程の間、及び中和工程後には、水洗工程を実施した。 Next, the sample after laser processing was subjected to desmear treatment under the conditions shown in Table 2, and then the copper foil was removed by etching to obtain a sample for evaluation. The manufacturer of the chemical solution used for the desmia treatment was Roam & Haas Electronic Materials Co., Ltd. In addition, a washing step was carried out between the swelling step and the roughening step, between the roughening step and the neutralization step, and after the neutralization step.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 そして、得られた評価用サンプルについて、クロスニコル下にて倍率200倍で偏光顕微鏡観察し、クラックの有無を判別した。具体的には、穴部の周囲に光漏れが発生している状態を「クラックが発生している」と判断し、100個の穴部について観察した後、クラックが発生した穴部の比率(クラック発生率)を百分率で求めた。図3~図5に、実際の判別に用いた偏光顕微鏡画像の一例を示す。図3は、穴部の周囲に光漏れが発生していないため、クラックが発生していない穴部の例である。図4及び図5は、穴部の周囲に光漏れが発生しているため、クラックが発生している穴部の例である。なお、光漏れの程度が弱くクラックの有無を判別できない穴部については、穴部断面を電子顕微鏡により観察し、クラックの有無を判別した。 Then, the obtained evaluation sample was observed with a polarizing microscope under a cross Nicol at a magnification of 200 times to determine the presence or absence of cracks. Specifically, the state in which light leakage occurs around the holes is judged to be "cracking", and after observing 100 holes, the ratio of the cracked holes ( The crack occurrence rate) was calculated as a percentage. 3 to 5 show an example of a polarizing microscope image used for actual discrimination. FIG. 3 is an example of a hole where no crack has occurred because no light leakage has occurred around the hole. 4 and 5 are examples of holes in which cracks are generated because light leakage occurs around the holes. For holes where the degree of light leakage was so weak that the presence or absence of cracks could not be determined, the cross section of the holes was observed with an electron microscope to determine the presence or absence of cracks.
<ポリアミド酸溶液の調製>
 以下、非熱可塑性ポリアミド酸溶液である溶液P1~P12、及び熱可塑性ポリアミド酸溶液である溶液P13の調製方法について説明する。なお、溶液P1~P13の調製は、いずれも温度20℃の窒素雰囲気下で行った。
<Preparation of polyamic acid solution>
Hereinafter, a method for preparing solutions P1 to P12 which are non-thermoplastic polyamic acid solutions and solutions P13 which are thermoplastic polyamic acid solutions will be described. The solutions P1 to P13 were all prepared in a nitrogen atmosphere at a temperature of 20 ° C.
[溶液P1の調製]
 容量2Lのガラス製フラスコに328.53gのDMFと17.70gのODAとを入れた後、フラスコ内容物を攪拌しながらフラスコに18.01gのBPDAを徐々に添加した。BPDAが溶解したことを目視で確認後、フラスコ内容物を攪拌しながらフラスコに4.00gのPMDAを徐々に添加した。PMDAが溶解したことを目視で確認後、更にフラスコ内容物を30分間攪拌した。次いで、フラスコ内容物を攪拌しながらフラスコに5.77gのm-TBを加えた後、2.21gのPDAを加え、続けて11.42gのPMDAを加えて、更にフラスコ内容物を30分間攪拌した。次いで、フラスコ内容物を攪拌しながら、予め調製しておいたPMDA溶液(溶媒:DMF、PMDAの溶解量:0.89g、PMDAの濃度:7.2重量%)をフラスコに添加した。PMDA溶液をフラスコに添加する際は、フラスコ内容物の粘度が急激に上昇しないように徐々に添加した。そして、フラスコ内容物の温度23℃での粘度が2500ポイズに達した時点でPMDA溶液の添加及びフラスコ内容物の攪拌を止めて、非熱可塑性ポリアミド酸溶液である溶液P1を得た。
[Preparation of solution P1]
After putting 328.53 g of DMF and 17.70 g of ODA into a glass flask having a capacity of 2 L, 18.01 g of BPDA was gradually added to the flask while stirring the contents of the flask. After visually confirming that BPDA had dissolved, 4.00 g of PMDA was gradually added to the flask while stirring the contents of the flask. After visually confirming that PMDA had dissolved, the contents of the flask were further stirred for 30 minutes. Then, while stirring the contents of the flask, 5.77 g of m-TB was added to the flask, 2.21 g of PDA was added, and then 11.42 g of PMDA was added, and the contents of the flask were further stirred for 30 minutes. did. Then, while stirring the contents of the flask, a PMDA solution prepared in advance (solvent: DMF, PMDA dissolution amount: 0.89 g, PMDA concentration: 7.2% by weight) was added to the flask. When the PMDA solution was added to the flask, it was gradually added so that the viscosity of the contents of the flask did not increase sharply. Then, when the viscosity of the flask contents at the temperature of 23 ° C. reached 2500 poisons, the addition of the PMDA solution and the stirring of the flask contents were stopped to obtain a solution P1 which is a non-thermoplastic polyamic acid solution.
 得られた溶液P1中のポリアミド酸から得られるポリイミドについて、以下に示す方法で非熱可塑性であることを確認した。まず、65gの溶液P1に、無水酢酸/イソキノリン/DMF(重量比:11.48/3.40/18.18)からなるイミド化促進剤を32.5g添加してドープ液を調製した。次いで、温度0℃以下の雰囲気下、ドープ液を攪拌しながら脱泡した後、コンマコーターを用いてドープ液をアルミ箔上に塗布し、塗布膜を形成した。次いで、塗布膜を、加熱温度115℃の条件で100秒間加熱することにより、自己支持性のゲルフィルムを得た。得られたゲルフィルムを、アルミ箔から引き剥がして、金属製の固定枠に固定し、加熱温度250℃の条件で15秒間加熱し、引き続き加熱温度350℃の条件で79秒間加熱して、乾燥及びイミド化させ、厚み12.5μmのポリイミドフィルムを得た。得られたポリイミドフィルムを金属製の固定枠に固定し、加熱温度450℃の条件で2分間加熱したところ、ポリイミドフィルムの形状(フィルム形状)が保持されていた。よって、溶液P1中のポリアミド酸から得られるポリイミドは、非熱可塑性ポリイミドであった。なお、以下に調製方法を示す溶液P2~P12についても、上記溶液P1を用いたフィルム形成方法と同じ方法で得られたポリイミドフィルムを金属製の固定枠に固定し、加熱温度450℃の条件で2分間加熱したところ、ポリイミドフィルムの形状(フィルム形状)が保持されていた。よって、溶液P2~P12中のポリアミド酸から得られるポリイミドは、いずれも非熱可塑性ポリイミドであった。 It was confirmed that the polyimide obtained from the polyamic acid in the obtained solution P1 was non-thermoplastic by the method shown below. First, 32.5 g of an imidization accelerator composed of acetic anhydride / isoquinoline / DMF (weight ratio: 11.48 / 3.40 / 18.18) was added to 65 g of the solution P1 to prepare a doping solution. Then, in an atmosphere of 0 ° C. or lower, the doping liquid was defoamed while stirring, and then the doping liquid was applied onto the aluminum foil using a comma coater to form a coating film. Then, the coating film was heated for 100 seconds under the condition of a heating temperature of 115 ° C. to obtain a self-supporting gel film. The obtained gel film is peeled off from the aluminum foil, fixed to a metal fixing frame, heated for 15 seconds under the condition of a heating temperature of 250 ° C., and subsequently heated for 79 seconds under the condition of a heating temperature of 350 ° C. to dry. And imidization to obtain a polyimide film having a thickness of 12.5 μm. When the obtained polyimide film was fixed to a fixed frame made of metal and heated at a heating temperature of 450 ° C. for 2 minutes, the shape (film shape) of the polyimide film was maintained. Therefore, the polyimide obtained from the polyamic acid in the solution P1 was a non-thermoplastic polyimide. As for the solutions P2 to P12 shown below, the polyimide film obtained by the same method as the film forming method using the solution P1 is fixed to a metal fixing frame under the condition of a heating temperature of 450 ° C. When heated for 2 minutes, the shape of the polyimide film (film shape) was maintained. Therefore, the polyimides obtained from the polyamic acids in the solutions P2 to P12 were all non-thermoplastic polyimides.
[溶液P2の調製]
 容量2Lのガラス製フラスコに328.55gのDMFと16.32gのODAとを入れた後、フラスコ内容物を攪拌しながらフラスコに17.98gのBPDAを徐々に添加した。BPDAが溶解したことを目視で確認後、フラスコ内容物を攪拌しながらフラスコに2.67gのPMDAを徐々に添加した。PMDAが溶解したことを目視で確認後、更にフラスコ内容物を30分間攪拌した。次いで、フラスコ内容物を攪拌しながらフラスコに7.21gのm-TBを加えた後、2.20gのPDAを加え、続けて12.74gのPMDAを加えて、更にフラスコ内容物を30分間攪拌した。次いで、フラスコ内容物を攪拌しながら、予め調製しておいたPMDA溶液(溶媒:DMF、PMDAの溶解量:0.89g、PMDAの濃度:7.2重量%)をフラスコに添加した。PMDA溶液をフラスコに添加する際は、フラスコ内容物の粘度が急激に上昇しないように徐々に添加した。そして、フラスコ内容物の温度23℃での粘度が2500ポイズに達した時点でPMDA溶液の添加及びフラスコ内容物の攪拌を止めて、非熱可塑性ポリアミド酸溶液である溶液P2を得た。
[Preparation of solution P2]
After putting 328.55 g of DMF and 16.32 g of ODA into a glass flask having a capacity of 2 L, 17.98 g of BPDA was gradually added to the flask while stirring the contents of the flask. After visually confirming that BPDA had dissolved, 2.67 g of PMDA was gradually added to the flask while stirring the contents of the flask. After visually confirming that PMDA had dissolved, the contents of the flask were further stirred for 30 minutes. Then, while stirring the contents of the flask, 7.21 g of m-TB was added to the flask, 2.20 g of PDA was added, and then 12.74 g of PMDA was added, and the contents of the flask were further stirred for 30 minutes. did. Then, while stirring the contents of the flask, a PMDA solution prepared in advance (solvent: DMF, PMDA dissolution amount: 0.89 g, PMDA concentration: 7.2% by weight) was added to the flask. When the PMDA solution was added to the flask, it was gradually added so that the viscosity of the contents of the flask did not increase sharply. Then, when the viscosity of the flask contents at the temperature of 23 ° C. reached 2500 poisons, the addition of the PMDA solution and the stirring of the flask contents were stopped to obtain a solution P2 which is a non-thermoplastic polyamic acid solution.
[溶液P3の調製]
 容量2Lのガラス製フラスコに328.78gのDMFと17.31gのODAとを入れた後、フラスコ内容物を攪拌しながらフラスコに22.70gのBPDAを徐々に添加した。BPDAが溶解したことを目視で確認後、更にフラスコ内容物を30分間攪拌した。次いで、フラスコ内容物を攪拌しながらフラスコに5.65gのm-TBを加えた後、2.16gのPDAを加え、続けて11.31gのPMDAを加えて、更にフラスコ内容物を30分間攪拌した。次いで、フラスコ内容物を攪拌しながら、予め調製しておいたPMDA溶液(溶媒:DMF、PMDAの溶解量:0.87g、PMDAの濃度:7.2重量%)をフラスコに添加した。PMDA溶液をフラスコに添加する際は、フラスコ内容物の粘度が急激に上昇しないように徐々に添加した。そして、フラスコ内容物の温度23℃での粘度が2500ポイズに達した時点でPMDA溶液の添加及びフラスコ内容物の攪拌を止めて、非熱可塑性ポリアミド酸溶液である溶液P3を得た。
[Preparation of solution P3]
After putting 328.78 g of DMF and 17.31 g of ODA in a glass flask having a capacity of 2 L, 22.70 g of BPDA was gradually added to the flask while stirring the contents of the flask. After visually confirming that BPDA had dissolved, the contents of the flask were further stirred for 30 minutes. Then, while stirring the contents of the flask, 5.65 g of m-TB was added to the flask, 2.16 g of PDA was added, and then 11.31 g of PMDA was added, and the contents of the flask were further stirred for 30 minutes. did. Then, while stirring the contents of the flask, a PMDA solution prepared in advance (solvent: DMF, PMDA dissolution amount: 0.87 g, PMDA concentration: 7.2% by weight) was added to the flask. When the PMDA solution was added to the flask, it was gradually added so that the viscosity of the contents of the flask did not increase sharply. Then, when the viscosity of the flask contents at the temperature of 23 ° C. reached 2500 poisons, the addition of the PMDA solution and the stirring of the flask contents were stopped to obtain a solution P3 which is a non-thermoplastic polyamic acid solution.
[溶液P4の調製]
 容量2Lのガラス製フラスコに328.41gのDMFと16.51gのODAとを入れた後、フラスコ内容物を攪拌しながらフラスコに18.20gのBPDAを徐々に添加した。BPDAが溶解したことを目視で確認後、フラスコ内容物を攪拌しながらフラスコに2.70gのPMDAを徐々に添加した。PMDAが溶解したことを目視で確認後、更にフラスコ内容物を30分間攪拌した。次いで、フラスコ内容物を攪拌しながらフラスコに5.83gのm-TBを加えた後、2.97gのPDAを加え、続けて12.89gのPMDAを加えて、更にフラスコ内容物を30分間攪拌した。次いで、フラスコ内容物を攪拌しながら、予め調製しておいたPMDA溶液(溶媒:DMF、PMDAの溶解量:0.90g、PMDAの濃度:7.2重量%)をフラスコに添加した。PMDA溶液をフラスコに添加する際は、フラスコ内容物の粘度が急激に上昇しないように徐々に添加した。そして、フラスコ内容物の温度23℃での粘度が2500ポイズに達した時点でPMDA溶液の添加及びフラスコ内容物の攪拌を止めて、非熱可塑性ポリアミド酸溶液である溶液P4を得た。
[Preparation of solution P4]
After putting 328.41 g of DMF and 16.51 g of ODA into a glass flask having a capacity of 2 L, 18.20 g of BPDA was gradually added to the flask while stirring the contents of the flask. After visually confirming that BPDA had dissolved, 2.70 g of PMDA was gradually added to the flask while stirring the contents of the flask. After visually confirming that PMDA had dissolved, the contents of the flask were further stirred for 30 minutes. Then, while stirring the contents of the flask, 5.83 g of m-TB was added to the flask, 2.97 g of PDA was added, and then 12.89 g of PMDA was added, and the contents of the flask were further stirred for 30 minutes. did. Then, while stirring the contents of the flask, a PMDA solution (solvent: DMF, PMDA dissolution amount: 0.90 g, PMDA concentration: 7.2% by weight) prepared in advance was added to the flask. When the PMDA solution was added to the flask, it was gradually added so that the viscosity of the contents of the flask did not increase sharply. Then, when the viscosity of the flask contents at the temperature of 23 ° C. reached 2500 poise, the addition of the PMDA solution and the stirring of the flask contents were stopped to obtain a solution P4 which is a non-thermoplastic polyamic acid solution.
[溶液P5の調製]
 容量2Lのガラス製フラスコに、328.29gのDMFと、5.90gのm-TBと、3.75gのPDAと、15.30gのODAとを入れた後、フラスコ内容物を攪拌しながらフラスコに18.39gのBPDAを徐々に添加した。BPDAが溶解したことを目視で確認後、フラスコ内容物を攪拌しながらフラスコに15.75gのPMDAを徐々に添加した。PMDAが溶解したことを目視で確認後、更にフラスコ内容物を30分間攪拌した。次いで、フラスコ内容物を攪拌しながら、予め調製しておいたPMDA溶液(溶媒:DMF、PMDAの溶解量:0.91g、PMDAの濃度:7.2重量%)をフラスコに添加した。PMDA溶液をフラスコに添加する際は、フラスコ内容物の粘度が急激に上昇しないように徐々に添加した。そして、フラスコ内容物の温度23℃での粘度が2500ポイズに達した時点でPMDA溶液の添加及びフラスコ内容物の攪拌を止めて、非熱可塑性ポリアミド酸溶液である溶液P5を得た。
[Preparation of solution P5]
After putting 328.29 g of DMF, 5.90 g of m-TB, 3.75 g of PDA and 15.30 g of ODA in a glass flask with a capacity of 2 L, the flask is stirred while stirring the contents of the flask. 18.39 g of BPDA was gradually added to the mixture. After visually confirming that BPDA had dissolved, 15.75 g of PMDA was gradually added to the flask while stirring the contents of the flask. After visually confirming that PMDA had dissolved, the contents of the flask were further stirred for 30 minutes. Then, while stirring the contents of the flask, a PMDA solution (solvent: DMF, PMDA dissolution amount: 0.91 g, PMDA concentration: 7.2% by weight) prepared in advance was added to the flask. When the PMDA solution was added to the flask, it was gradually added so that the viscosity of the contents of the flask did not increase sharply. Then, when the viscosity of the flask contents at the temperature of 23 ° C. reached 2500 poisons, the addition of the PMDA solution and the stirring of the flask contents were stopped to obtain a solution P5 which is a non-thermoplastic polyamic acid solution.
[溶液P6の調製]
 容量2Lのガラス製フラスコに328.57gのDMFと17.64gのODAとを入れた後、フラスコ内容物を攪拌しながらフラスコに13.95gのBPDAを徐々に添加した。BPDAが溶解したことを目視で確認後、フラスコ内容物を攪拌しながらフラスコに4.20gのODPAを徐々に添加した。ODPAが溶解したことを目視で確認後、フラスコ内容物を攪拌しながらフラスコに3.99gのPMDAを徐々に添加した。PMDAが溶解したことを目視で確認後、更にフラスコ内容物を30分間攪拌した。次いで、フラスコ内容物を攪拌しながらフラスコに5.75gのm-TBを加えた後、2.20gのPDAを加え、続けて11.38gのPMDAを加えて、更にフラスコ内容物を30分間攪拌した。次いで、フラスコ内容物を攪拌しながら、予め調製しておいたPMDA溶液(溶媒:DMF、PMDAの溶解量:0.89g、PMDAの濃度:7.2重量%)をフラスコに添加した。PMDA溶液をフラスコに添加する際は、フラスコ内容物の粘度が急激に上昇しないように徐々に添加した。そして、フラスコ内容物の温度23℃での粘度が2500ポイズに達した時点でPMDA溶液の添加及びフラスコ内容物の攪拌を止めて、非熱可塑性ポリアミド酸溶液である溶液P6を得た。
[Preparation of solution P6]
After putting 328.57 g of DMF and 17.64 g of ODA into a glass flask having a capacity of 2 L, 13.95 g of BPDA was gradually added to the flask while stirring the contents of the flask. After visually confirming that BPDA had dissolved, 4.20 g of ODPA was gradually added to the flask while stirring the contents of the flask. After visually confirming that the ODPA had dissolved, 3.99 g of PMDA was gradually added to the flask while stirring the contents of the flask. After visually confirming that PMDA had dissolved, the contents of the flask were further stirred for 30 minutes. Then, while stirring the contents of the flask, 5.75 g of m-TB was added to the flask, 2.20 g of PDA was added, and then 11.38 g of PMDA was added, and the contents of the flask were further stirred for 30 minutes. did. Then, while stirring the contents of the flask, a PMDA solution prepared in advance (solvent: DMF, PMDA dissolution amount: 0.89 g, PMDA concentration: 7.2% by weight) was added to the flask. When the PMDA solution was added to the flask, it was gradually added so that the viscosity of the contents of the flask did not increase sharply. Then, when the viscosity of the flask contents at the temperature of 23 ° C. reached 2500 poisons, the addition of the PMDA solution and the stirring of the flask contents were stopped to obtain a solution P6 which is a non-thermoplastic polyamic acid solution.
[溶液P7の調製]
 容量2Lのガラス製フラスコに328.81gのDMFと15.94gのODAとを入れた後、フラスコ内容物を攪拌しながらフラスコに17.57gのBPDAを徐々に添加した。BPDAが溶解したことを目視で確認後、フラスコ内容物を攪拌しながらフラスコに2.60gのPMDAを徐々に添加した。PMDAが溶解したことを目視で確認後、更にフラスコ内容物を30分間攪拌した。次いで、フラスコ内容物を攪拌しながらフラスコに9.86gのm-TBを加えた後、0.72gのPDAを加え、続けて12.44gのPMDAを加えて、更にフラスコ内容物を30分間攪拌した。次いで、フラスコ内容物を攪拌しながら、予め調製しておいたPMDA溶液(溶媒:DMF、PMDAの溶解量:0.87g、PMDAの濃度:7.2重量%)をフラスコに添加した。PMDA溶液をフラスコに添加する際は、フラスコ内容物の粘度が急激に上昇しないように徐々に添加した。そして、フラスコ内容物の温度23℃での粘度が2500ポイズに達した時点でPMDA溶液の添加及びフラスコ内容物の攪拌を止めて、非熱可塑性ポリアミド酸溶液である溶液P7を得た。
[Preparation of solution P7]
After putting 328.81 g of DMF and 15.94 g of ODA into a glass flask having a capacity of 2 L, 17.57 g of BPDA was gradually added to the flask while stirring the contents of the flask. After visually confirming that BPDA had dissolved, 2.60 g of PMDA was gradually added to the flask while stirring the contents of the flask. After visually confirming that PMDA had dissolved, the contents of the flask were further stirred for 30 minutes. Then, while stirring the contents of the flask, 9.86 g of m-TB was added to the flask, 0.72 g of PDA was added, and then 12.44 g of PMDA was added, and the contents of the flask were further stirred for 30 minutes. did. Then, while stirring the contents of the flask, a PMDA solution prepared in advance (solvent: DMF, PMDA dissolution amount: 0.87 g, PMDA concentration: 7.2% by weight) was added to the flask. When the PMDA solution was added to the flask, it was gradually added so that the viscosity of the contents of the flask did not increase sharply. Then, when the viscosity of the flask contents at the temperature of 23 ° C. reached 2500 poisons, the addition of the PMDA solution and the stirring of the flask contents were stopped to obtain a solution P7 which is a non-thermoplastic polyamic acid solution.
[溶液P8の調製]
 容量2Lのガラス製フラスコに、327.90gのDMFと、4.57gのm-TBと、5.43gのPDAと、14.36gのODAとを入れた後、フラスコ内容物を攪拌しながらフラスコに16.88gのBPDAを徐々に添加した。BPDAが溶解したことを目視で確認後、フラスコ内容物を攪拌しながらフラスコに17.83gのPMDAを徐々に添加した。PMDAが溶解したことを目視で確認後、更にフラスコ内容物を30分間攪拌した。次いで、フラスコ内容物を攪拌しながら、予め調製しておいたPMDA溶液(溶媒:DMF、PMDAの溶解量:0.94g、PMDAの濃度:7.2重量%)をフラスコに添加した。PMDA溶液をフラスコに添加する際は、フラスコ内容物の粘度が急激に上昇しないように徐々に添加した。そして、フラスコ内容物の温度23℃での粘度が2500ポイズに達した時点でPMDA溶液の添加及びフラスコ内容物の攪拌を止めて、非熱可塑性ポリアミド酸溶液である溶液P8を得た。
[Preparation of solution P8]
After putting 327.90 g of DMF, 4.57 g of m-TB, 5.43 g of PDA and 14.36 g of ODA in a glass flask with a capacity of 2 L, the flask is stirred while stirring the contents of the flask. 16.88 g of BPDA was gradually added to the mixture. After visually confirming that BPDA had dissolved, 17.83 g of PMDA was gradually added to the flask while stirring the contents of the flask. After visually confirming that PMDA had dissolved, the contents of the flask were further stirred for 30 minutes. Then, while stirring the contents of the flask, a PMDA solution prepared in advance (solvent: DMF, PMDA dissolution amount: 0.94 g, PMDA concentration: 7.2% by weight) was added to the flask. When the PMDA solution was added to the flask, it was gradually added so that the viscosity of the contents of the flask did not increase sharply. Then, when the viscosity of the flask contents at the temperature of 23 ° C. reached 2500 poisons, the addition of the PMDA solution and the stirring of the flask contents were stopped to obtain a solution P8 which is a non-thermoplastic polyamic acid solution.
[溶液P9の調製]
 容量2Lのガラス製フラスコに328.27gのDMFと16.71gのODAとを入れた後、フラスコ内容物を攪拌しながらフラスコに18.41gのBPDAを徐々に添加した。BPDAが溶解したことを目視で確認後、フラスコ内容物を攪拌しながらフラスコに2.73gのPMDAを徐々に添加した。PMDAが溶解したことを目視で確認後、更にフラスコ内容物を30分間攪拌した。次いで、フラスコ内容物を攪拌しながらフラスコに4.43gのm-TBを加えた後、3.76gのPDAを加え、続けて13.05gのPMDAを加えて、更にフラスコ内容物を30分間攪拌した。次いで、フラスコ内容物を攪拌しながら、予め調製しておいたPMDA溶液(溶媒:DMF、PMDAの溶解量:0.91g、PMDAの濃度:7.2重量%)をフラスコに添加した。PMDA溶液をフラスコに添加する際は、フラスコ内容物の粘度が急激に上昇しないように徐々に添加した。そして、フラスコ内容物の温度23℃での粘度が2500ポイズに達した時点でPMDA溶液の添加及びフラスコ内容物の攪拌を止めて、非熱可塑性ポリアミド酸溶液である溶液P9を得た。
[Preparation of solution P9]
After placing 328.27 g of DMF and 16.71 g of ODA in a glass flask having a capacity of 2 L, 18.41 g of BPDA was gradually added to the flask while stirring the contents of the flask. After visually confirming that BPDA had dissolved, 2.73 g of PMDA was gradually added to the flask while stirring the contents of the flask. After visually confirming that PMDA had dissolved, the contents of the flask were further stirred for 30 minutes. Then, while stirring the contents of the flask, 4.43 g of m-TB was added to the flask, 3.76 g of PDA was added, and then 13.05 g of PMDA was added, and the contents of the flask were further stirred for 30 minutes. did. Then, while stirring the contents of the flask, a PMDA solution (solvent: DMF, PMDA dissolution amount: 0.91 g, PMDA concentration: 7.2% by weight) prepared in advance was added to the flask. When the PMDA solution was added to the flask, it was gradually added so that the viscosity of the contents of the flask did not increase sharply. Then, when the viscosity of the flask contents at the temperature of 23 ° C. reached 2500 poisons, the addition of the PMDA solution and the stirring of the flask contents were stopped to obtain a solution P9 which is a non-thermoplastic polyamic acid solution.
[溶液P10の調製]
 容量2Lのガラス製フラスコに328.91gのDMFと5.27gのODAと16.20gのBAPPとを入れた後、フラスコ内容物を攪拌しながらフラスコに8.48gのBTDAを徐々に添加した。BTDAが溶解したことを目視で確認後、フラスコ内容物を攪拌しながらフラスコに7.17gのPMDAを徐々に添加した。PMDAが溶解したことを目視で確認後、更にフラスコ内容物を30分間攪拌した。次いで、フラスコ内容物を攪拌しながらフラスコに7.11gのPDAを加え、続けて14.92gのPMDAを加えて、更にフラスコ内容物を30分間攪拌した。次いで、フラスコ内容物を攪拌しながら、予め調製しておいたPMDA溶液(溶媒:DMF、PMDAの溶解量:0.86g、PMDAの濃度:7.2重量%)をフラスコに添加した。PMDA溶液をフラスコに添加する際は、フラスコ内容物の粘度が急激に上昇しないように徐々に添加した。そして、フラスコ内容物の温度23℃での粘度が2500ポイズに達した時点でPMDA溶液の添加及びフラスコ内容物の攪拌を止めて、非熱可塑性ポリアミド酸溶液である溶液P10を得た。
[Preparation of solution P10]
After putting 328.91 g of DMF, 5.27 g of ODA and 16.20 g of BAPP into a glass flask having a capacity of 2 L, 8.48 g of BTDA was gradually added to the flask while stirring the contents of the flask. After visually confirming that BTDA had dissolved, 7.17 g of PMDA was gradually added to the flask while stirring the contents of the flask. After visually confirming that PMDA had dissolved, the contents of the flask were further stirred for 30 minutes. Next, 7.11 g of PDA was added to the flask while stirring the contents of the flask, followed by addition of 14.92 g of PMDA, and the contents of the flask were further stirred for 30 minutes. Then, while stirring the contents of the flask, a PMDA solution prepared in advance (solvent: DMF, PMDA dissolution amount: 0.86 g, PMDA concentration: 7.2% by weight) was added to the flask. When the PMDA solution was added to the flask, it was gradually added so that the viscosity of the contents of the flask did not increase sharply. Then, when the viscosity of the flask contents at the temperature of 23 ° C. reached 2500 poisons, the addition of the PMDA solution and the stirring of the flask contents were stopped to obtain a solution P10 which is a non-thermoplastic polyamic acid solution.
[溶液P11の調製]
 容量2Lのガラス製フラスコに328.49gのDMFと12.29gのODAとを入れた後、フラスコ内容物を攪拌しながらフラスコに16.06gのBPDAを徐々に添加した。BPDAが溶解したことを目視で確認後、更にフラスコ内容物を30分間攪拌した。次いで、フラスコ内容物を攪拌しながらフラスコに11.58gのm-TBを加えた後、2.21gのPDAを加え、続けて16.96gのPMDAを加えて、更にフラスコ内容物を30分間攪拌した。次いで、フラスコ内容物を攪拌しながら、予め調製しておいたPMDA溶液(溶媒:DMF、PMDAの溶解量:0.89g、PMDAの濃度:7.2重量%)をフラスコに添加した。PMDA溶液をフラスコに添加する際は、フラスコ内容物の粘度が急激に上昇しないように徐々に添加した。そして、フラスコ内容物の温度23℃での粘度が2500ポイズに達した時点でPMDA溶液の添加及びフラスコ内容物の攪拌を止めて、非熱可塑性ポリアミド酸溶液である溶液P11を得た。
[Preparation of solution P11]
After placing 328.49 g of DMF and 12.29 g of ODA in a glass flask having a capacity of 2 L, 16.06 g of BPDA was gradually added to the flask while stirring the contents of the flask. After visually confirming that BPDA had dissolved, the contents of the flask were further stirred for 30 minutes. Then, while stirring the contents of the flask, 11.58 g of m-TB was added to the flask, 2.21 g of PDA was added, and then 16.96 g of PMDA was added, and the contents of the flask were further stirred for 30 minutes. did. Then, while stirring the contents of the flask, a PMDA solution prepared in advance (solvent: DMF, PMDA dissolution amount: 0.89 g, PMDA concentration: 7.2% by weight) was added to the flask. When the PMDA solution was added to the flask, it was gradually added so that the viscosity of the contents of the flask did not increase sharply. Then, when the viscosity of the flask contents at the temperature of 23 ° C. reached 2500 poisons, the addition of the PMDA solution and the stirring of the flask contents were stopped to obtain a solution P11 which is a non-thermoplastic polyamic acid solution.
[溶液P12の調製]
 容量2Lのガラス製フラスコに、329.58gのDMFと、7.86gのm-TBと、12.36gのODAと、8.61gの9,9-ビス(4-アミノフェニル)フルオレン(以下、「BAFL」と記載することがある)とを入れた後、フラスコ内容物を攪拌しながらフラスコに16.35gのBPDAを徐々に添加した。BPDAが溶解したことを目視で確認後、フラスコ内容物を攪拌しながらフラスコに14.01gのPMDAを徐々に添加した。PMDAが溶解したことを目視で確認後、更にフラスコ内容物を30分間攪拌した。次いで、フラスコ内容物を攪拌しながら、予め調製しておいたPMDA溶液(溶媒:DMF、PMDAの溶解量:0.81g、PMDAの濃度:7.2重量%)をフラスコに添加した。PMDA溶液をフラスコに添加する際は、フラスコ内容物の粘度が急激に上昇しないように徐々に添加した。そして、フラスコ内容物の温度23℃での粘度が2500ポイズに達した時点でPMDA溶液の添加及びフラスコ内容物の攪拌を止めて、非熱可塑性ポリアミド酸溶液である溶液P12を得た。
[Preparation of solution P12]
In a glass flask with a capacity of 2 L, 329.58 g of DMF, 7.86 g of m-TB, 12.36 g of ODA, and 8.61 g of 9,9-bis (4-aminophenyl) fluorene (hereinafter referred to as "4"). After adding (sometimes referred to as "BAFL"), 16.35 g of BPDA was gradually added to the flask while stirring the contents of the flask. After visually confirming that BPDA had dissolved, 14.01 g of PMDA was gradually added to the flask while stirring the contents of the flask. After visually confirming that PMDA had dissolved, the contents of the flask were further stirred for 30 minutes. Then, while stirring the contents of the flask, a PMDA solution (solvent: DMF, PMDA dissolution amount: 0.81 g, PMDA concentration: 7.2% by weight) prepared in advance was added to the flask. When the PMDA solution was added to the flask, it was gradually added so that the viscosity of the contents of the flask did not increase sharply. Then, when the viscosity of the flask contents at the temperature of 23 ° C. reached 2500 poisons, the addition of the PMDA solution and the stirring of the flask contents were stopped to obtain a solution P12 which is a non-thermoplastic polyamic acid solution.
[溶液P13の調製]
 容量2Lのガラス製フラスコに673.24gのDMFと71.83gのBAPPとを入れた後、フラスコ内容物を攪拌しながらフラスコに7.72gのBPDAを徐々に添加した。BPDAが溶解したことを目視で確認後、フラスコ内容物を攪拌しながらフラスコに31.30gのPMDAを徐々に添加した。PMDAが溶解したことを目視で確認後、更にフラスコ内容物を30分間攪拌した。次いで、フラスコ内容物を攪拌しながら、予め調製しておいたPMDA溶液(溶媒:DMF、PMDAの溶解量:1.15g、PMDAの濃度:7.2重量%)をフラスコに添加した。PMDA溶液をフラスコに添加する際は、フラスコ内容物の粘度が急激に上昇しないように徐々に添加した。そして、フラスコ内容物の温度23℃での粘度が300ポイズに達した時点でPMDA溶液の添加及びフラスコ内容物の攪拌を止めて、熱可塑性ポリアミド酸溶液である溶液P13を得た。
[Preparation of solution P13]
After putting 673.24 g of DMF and 71.83 g of BAPP in a glass flask having a capacity of 2 L, 7.72 g of BPDA was gradually added to the flask while stirring the contents of the flask. After visually confirming that BPDA had dissolved, 31.30 g of PMDA was gradually added to the flask while stirring the contents of the flask. After visually confirming that PMDA had dissolved, the contents of the flask were further stirred for 30 minutes. Then, while stirring the contents of the flask, a PMDA solution prepared in advance (solvent: DMF, PMDA dissolution amount: 1.15 g, PMDA concentration: 7.2% by weight) was added to the flask. When the PMDA solution was added to the flask, it was gradually added so that the viscosity of the contents of the flask did not increase sharply. Then, when the viscosity of the flask contents at the temperature of 23 ° C. reached 300 poise, the addition of the PMDA solution and the stirring of the flask contents were stopped to obtain a solution P13 which is a thermoplastic polyamic acid solution.
 溶液P13中のポリアミド酸から得られるポリイミドについて、以下に示す方法で熱可塑性であることを確認した。まず、60gの溶液P13に、無水酢酸/イソキノリン/DMF(重量比:6.89/2.14/20.97)からなるイミド化促進剤を30.0g添加してドープ液を調製した。次いで、温度0℃以下の雰囲気下、ドープ液を攪拌しながら脱泡した後、コンマコーターを用いてドープ液をアルミ箔上に塗布し、塗布膜を形成した。次いで、塗布膜を、加熱温度120℃の条件で3分間加熱することにより、自己支持性のゲルフィルムを得た。得られたゲルフィルムを、アルミ箔から引き剥がして、金属製の固定枠に固定し、加熱温度250℃の条件で1分間加熱し、引き続き加熱温度300℃の条件で200秒間加熱して、乾燥及びイミド化させ、厚み20.0μmのポリイミドフィルムを得た。得られたポリイミドフィルムを金属製の固定枠に固定し、加熱温度450℃の条件で2分間加熱したところ、ポリイミドフィルムの形状(フィルム形状)が保持されていなかった。よって、溶液P13中のポリアミド酸から得られるポリイミドは、熱可塑性ポリイミドであった。 It was confirmed that the polyimide obtained from the polyamic acid in the solution P13 was thermoplastic by the method shown below. First, 30.0 g of an imidization accelerator composed of acetic anhydride / isoquinoline / DMF (weight ratio: 6.89 / 2.14 / 20.97) was added to 60 g of the solution P13 to prepare a doping solution. Then, in an atmosphere of 0 ° C. or lower, the doping liquid was defoamed while stirring, and then the doping liquid was applied onto the aluminum foil using a comma coater to form a coating film. Next, the coating film was heated at a heating temperature of 120 ° C. for 3 minutes to obtain a self-supporting gel film. The obtained gel film is peeled off from the aluminum foil, fixed to a metal fixing frame, heated at a heating temperature of 250 ° C. for 1 minute, and subsequently heated at a heating temperature of 300 ° C. for 200 seconds to dry. And imidization to obtain a polyimide film having a thickness of 20.0 μm. When the obtained polyimide film was fixed to a metal fixing frame and heated at a heating temperature of 450 ° C. for 2 minutes, the shape (film shape) of the polyimide film was not maintained. Therefore, the polyimide obtained from the polyamic acid in the solution P13 was a thermoplastic polyimide.
<複層ポリイミドフィルムの作製>
 以下、実施例1~7及び比較例1~5の複層ポリイミドフィルムの作製方法について説明する。
<Manufacturing of multi-layer polyimide film>
Hereinafter, methods for producing the multilayer polyimide films of Examples 1 to 7 and Comparative Examples 1 to 5 will be described.
[実施例1]
 65gの溶液P1に、無水酢酸/イソキノリン/DMF(重量比:11.48/3.40/18.18)からなるイミド化促進剤を32.5g添加してドープ液を調製した。次いで、温度0℃以下の雰囲気下、ドープ液を攪拌しながら脱泡した後、コンマコーターを用いてドープ液をアルミ箔上に塗布し、塗布膜を形成した。次いで、塗布膜を、加熱温度115℃の条件で100秒間加熱することにより、自己支持性のゲルフィルムを得た。得られたゲルフィルムを、アルミ箔から引き剥がして、金属製の固定枠に固定し、加熱温度250℃の条件で15秒間加熱し、引き続き加熱温度350℃の条件で79秒間加熱して、乾燥及びイミド化させ、厚み12.5μmのポリイミドフィルムを得た。得られたポリイミドフィルム(非熱可塑性ポリイミド層)の物性を表4に示す。なお、表4における「非熱可塑性ポリイミド層の物性」は、厚み12.5μmのポリイミドフィルムを用いて測定された物性である。
[Example 1]
A dope solution was prepared by adding 32.5 g of an imidization accelerator composed of acetic anhydride / isoquinoline / DMF (weight ratio: 11.48 / 3.40 / 18.18) to 65 g of the solution P1. Then, in an atmosphere of 0 ° C. or lower, the doping liquid was defoamed while stirring, and then the doping liquid was applied onto the aluminum foil using a comma coater to form a coating film. Then, the coating film was heated for 100 seconds under the condition of a heating temperature of 115 ° C. to obtain a self-supporting gel film. The obtained gel film is peeled off from the aluminum foil, fixed to a metal fixing frame, heated for 15 seconds under the condition of a heating temperature of 250 ° C., and subsequently heated for 79 seconds under the condition of a heating temperature of 350 ° C. to dry. And imidization to obtain a polyimide film having a thickness of 12.5 μm. Table 4 shows the physical characteristics of the obtained polyimide film (non-thermoplastic polyimide layer). The "physical characteristics of the non-thermoplastic polyimide layer" in Table 4 are the physical characteristics measured using a polyimide film having a thickness of 12.5 μm.
 次いで、溶液P13を、固形分濃度が8重量%になるまでDMFで希釈してドープ液を調製した後、上記ポリイミドフィルム(溶液P1を用いて得られたポリイミドフィルム)の両面に塗布し、塗布膜を形成した。この際の塗布量は、形成される各熱可塑性ポリイミド層(接着層)の厚みが3μmになるように調整した。次いで、塗布膜を、加熱温度120℃の条件で2分間加熱し、引き続き加熱温度350℃の条件で15秒間加熱して、乾燥及びイミド化させ、実施例1の複層ポリイミドフィルムを得た。得られた複層ポリイミドフィルムのホールクラックテストの結果(クラック発生率)を表4に示す。なお、ホールクラックテスト時に作製した銅張積層板は、表面にシワ等がなく良好な外観であった。 Next, the solution P13 is diluted with DMF until the solid content concentration becomes 8% by weight to prepare a dope solution, and then applied to both sides of the above-mentioned polyimide film (polyimide film obtained by using the solution P1) and applied. A film was formed. The coating amount at this time was adjusted so that the thickness of each formed thermoplastic polyimide layer (adhesive layer) was 3 μm. Next, the coating film was heated at a heating temperature of 120 ° C. for 2 minutes, and subsequently heated at a heating temperature of 350 ° C. for 15 seconds to dry and imidize, to obtain a multilayer polyimide film of Example 1. Table 4 shows the results (crack generation rate) of the hole crack test of the obtained multi-layer polyimide film. The copper-clad laminate produced during the hole crack test had no wrinkles on the surface and had a good appearance.
[実施例2~7及び比較例1~5]
 溶液P1の代わりに表4に示す非熱可塑性ポリアミド酸溶液を使用したこと以外は、実施例1と同じ方法で、実施例2~7及び比較例1~5の複層ポリイミドフィルムをそれぞれ得た。なお、実施例2~7及び比較例1~5のいずれについても、非熱可塑性ポリアミド酸溶液の使用量は、65gであった。得られた複層ポリイミドフィルムのホールクラックテストの結果(クラック発生率)を表4に示す。なお、実施例2~4、実施例6、実施例7及び比較例2~4については、ホールクラックテスト時に作製した銅張積層板の表面にシワ等がなく、良好な外観の銅張積層板が得られた。一方、実施例5、比較例1及び比較例5については、ホールクラックテスト時に作製した銅張積層板の表面の一部にシワがあった。
[Examples 2 to 7 and Comparative Examples 1 to 5]
The multi-layer polyimide films of Examples 2 to 7 and Comparative Examples 1 to 5 were obtained by the same method as in Example 1 except that the non-thermoplastic polyamic acid solution shown in Table 4 was used instead of the solution P1. .. In each of Examples 2 to 7 and Comparative Examples 1 to 5, the amount of the non-thermoplastic polyamic acid solution used was 65 g. Table 4 shows the results (crack generation rate) of the hole crack test of the obtained multi-layer polyimide film. In Examples 2 to 4, Example 6, Example 7, and Comparative Examples 2 to 4, the copper-clad laminates produced during the hole crack test had no wrinkles on the surface and had a good appearance. was gotten. On the other hand, in Example 5, Comparative Example 1 and Comparative Example 5, there were wrinkles on a part of the surface of the copper-clad laminate prepared at the time of the hole crack test.
<評価結果>
 表3に、溶液P1~P13のそれぞれについて使用した材料及びその割合を示した。溶液P1~P13のそれぞれを用いて得られたポリイミド中の各残基の物質量比(モル比)は、使用した各モノマー(ジアミン及びテトラカルボン酸二無水物)の物質量比と一致していた。また、表4に、実施例1~7及び比較例1~5のそれぞれについて、使用した非熱可塑性ポリアミド酸溶液の種類、非熱可塑性ポリイミド層の物性、及びホールクラックテストの結果(クラック発生率)を示した。なお、表3において、「-」は、当該成分を使用しなかったことを意味する。また、表3において、「酸二無水物」の欄の数値は、使用した酸二無水物の全量に対する各酸二無水物の含有率(単位:モル%)である。「ジアミン」の欄の数値は、使用したジアミンの全量に対する各ジアミンの含有率(単位:モル%)である。
<Evaluation result>
Table 3 shows the materials used for each of the solutions P1 to P13 and their ratios. The substance amount ratio (molar ratio) of each residue in the polyimide obtained by using each of the solutions P1 to P13 is consistent with the substance amount ratio of each monomer (diamine and tetracarboxylic acid dianhydride) used. rice field. In addition, Table 4 shows the types of non-thermoplastic polyamic acid solutions used, the physical properties of the non-thermoplastic polyimide layer, and the results of the whole crack test (crack generation rate) for each of Examples 1 to 7 and Comparative Examples 1 to 5. )showed that. In addition, in Table 3, "-" means that the said component was not used. Further, in Table 3, the numerical value in the column of "acid dianhydride" is the content ratio (unit: mol%) of each acid dianhydride with respect to the total amount of acid dianhydride used. The numerical value in the column of "diamine" is the content ratio (unit: mol%) of each diamine with respect to the total amount of diamines used.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例1~7では、非熱可塑性ポリイミドが、BPDI残基の一種であるm-TB残基と、ODA残基と、PDA残基とを有していた。実施例1~7では、m-TB残基の含有率が、非熱可塑性ポリイミドを構成する全ジアミン残基に対して、20モル%以上35モル%以下であった。実施例1~7では、クラック発生率が50%以下であった。なお、実施例1~4、6及び7の非熱可塑性ポリイミドは、特定セグメントを有するブロック共重合体であったが、実施例5の非熱可塑性ポリイミドは、ランダム共重合体であった。 In Examples 1 to 7, the non-thermoplastic polyimide had an m-TB residue, which is a kind of BPDI residue, an ODA residue, and a PDA residue. In Examples 1 to 7, the content of m-TB residues was 20 mol% or more and 35 mol% or less with respect to all the diamine residues constituting the non-thermoplastic polyimide. In Examples 1 to 7, the crack occurrence rate was 50% or less. The non-thermoplastic polyimides of Examples 1 to 4, 6 and 7 were block copolymers having specific segments, but the non-thermoplastic polyimides of Example 5 were random copolymers.
 比較例1及び2では、BPDI残基(m-TB残基)の含有率が、非熱可塑性ポリイミドを構成する全ジアミン残基に対して、20モル%未満であった。比較例3では、非熱可塑性ポリイミドが、BPDI残基を有していなかった。比較例4では、BPDI残基(m-TB残基)の含有率が、非熱可塑性ポリイミドを構成する全ジアミン残基に対して、35モル%を超えていた。比較例5では、非熱可塑性ポリイミドが、PDA残基を有していなかった。比較例1~5では、クラック発生率が50%を超えていた。 In Comparative Examples 1 and 2, the content of BPDI residues (m-TB residues) was less than 20 mol% with respect to all the diamine residues constituting the non-thermoplastic polyimide. In Comparative Example 3, the non-thermoplastic polyimide did not have a BPDI residue. In Comparative Example 4, the content of BPDI residues (m-TB residues) exceeded 35 mol% with respect to all the diamine residues constituting the non-thermoplastic polyimide. In Comparative Example 5, the non-thermoplastic polyimide did not have a PDA residue. In Comparative Examples 1 to 5, the crack occurrence rate exceeded 50%.
 以上の結果から、本発明に係る複層ポリイミドフィルムが、レーザー加工後のデスミア処理時においてビア内壁のクラックの発生を抑制できることが示された。 From the above results, it was shown that the multi-layer polyimide film according to the present invention can suppress the occurrence of cracks on the inner wall of the via during the desmear treatment after laser processing.
10  :複層ポリイミドフィルム
11  :非熱可塑性ポリイミド層
12  :熱可塑性ポリイミド層

 
10: Multi-layer polyimide film 11: Non-thermoplastic polyimide layer 12: Thermoplastic polyimide layer

Claims (10)

  1.  非熱可塑性ポリイミド層と、前記非熱可塑性ポリイミド層の少なくとも片面に配置された熱可塑性ポリイミド層とを有する複層ポリイミドフィルムであって、
     前記非熱可塑性ポリイミド層に含まれる非熱可塑性ポリイミドが、テトラカルボン酸二無水物残基及びジアミン残基を有し、
     前記ジアミン残基は、ビフェニル骨格を有するジアミン残基と、4,4’-ジアミノジフェニルエーテル残基と、p-フェニレンジアミン残基とを含み、
     前記ビフェニル骨格を有するジアミン残基の含有率が、前記非熱可塑性ポリイミドを構成する全ジアミン残基に対して、20モル%以上35モル%以下である、複層ポリイミドフィルム。
    A multi-layer polyimide film having a non-thermoplastic polyimide layer and a thermoplastic polyimide layer arranged on at least one side of the non-thermoplastic polyimide layer.
    The non-thermoplastic polyimide contained in the non-thermoplastic polyimide layer has a tetracarboxylic dianhydride residue and a diamine residue, and has a tetracarboxylic dianhydride residue and a diamine residue.
    The diamine residue contains a diamine residue having a biphenyl skeleton, a 4,4'-diaminodiphenyl ether residue, and a p-phenylenediamine residue.
    A multilayer polyimide film in which the content of diamine residues having a biphenyl skeleton is 20 mol% or more and 35 mol% or less with respect to all the diamine residues constituting the non-thermoplastic polyimide.
  2.  前記ビフェニル骨格を有するジアミン残基は、4,4’-ジアミノ-2,2’-ジメチルビフェニル残基である、請求項1に記載の複層ポリイミドフィルム。 The multilayer polyimide film according to claim 1, wherein the diamine residue having the biphenyl skeleton is a 4,4'-diamino-2,2'-dimethylbiphenyl residue.
  3.  前記4,4’-ジアミノジフェニルエーテル残基の含有率が、前記非熱可塑性ポリイミドを構成する全ジアミン残基に対して、40モル%以上70モル%以下である、請求項1又は2に記載の複層ポリイミドフィルム。 The 4,4'-diaminodiphenyl ether residue is 40 mol% or more and 70 mol% or less with respect to all the diamine residues constituting the non-thermoplastic polyimide, according to claim 1 or 2. Multi-layer polyimide film.
  4.  前記p-フェニレンジアミン残基の含有率が、前記非熱可塑性ポリイミドを構成する全ジアミン残基に対して、5モル%以上50モル%以下である、請求項1~3のいずれか一項に記載の複層ポリイミドフィルム。 The item according to any one of claims 1 to 3, wherein the content of the p-phenylenediamine residue is 5 mol% or more and 50 mol% or less with respect to all the diamine residues constituting the non-thermoplastic polyimide. The multi-layer polyimide film described.
  5.  前記テトラカルボン酸二無水物残基は、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基及びピロメリット酸二無水物残基からなる群より選ばれる一種以上を含む、請求項1~4のいずれか一項に記載の複層ポリイミドフィルム。 The tetracarboxylic dianhydride residue comprises one or more selected from the group consisting of 3,3', 4,4'-biphenyltetracarboxylic dianhydride residue and pyromellitic dianhydride residue. The multilayer polyimide film according to any one of claims 1 to 4.
  6.  前記テトラカルボン酸二無水物残基は、4,4’-オキシジフタル酸無水物残基を更に含む、請求項5に記載の複層ポリイミドフィルム。 The multilayer polyimide film according to claim 5, wherein the tetracarboxylic dianhydride residue further contains a 4,4'-oxydiphthalic acid anhydride residue.
  7.  前記4,4’-オキシジフタル酸無水物残基の含有率が、前記非熱可塑性ポリイミドを構成する全テトラカルボン酸二無水物残基に対して、5モル%以上15モル%以下である、請求項6に記載の複層ポリイミドフィルム。 Claimed that the content of the 4,4'-oxydiphthalic anhydride residue is 5 mol% or more and 15 mol% or less with respect to the total tetracarboxylic acid dianhydride residue constituting the non-thermoplastic polyimide. Item 6. The multilayer polyimide film according to Item 6.
  8.  前記熱可塑性ポリイミド層に含まれる熱可塑性ポリイミドが、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基及びピロメリット酸二無水物残基からなる群より選ばれる一種以上と、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン残基とを有する、請求項1~7のいずれか一項に記載の複層ポリイミドフィルム。 The thermoplastic polyimide contained in the thermoplastic polyimide layer is one or more selected from the group consisting of 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride residue and pyromellitic acid dianhydride residue. , 2,2-Bis [4- (4-aminophenoxy) phenyl] The multilayer polyimide film according to any one of claims 1 to 7, which has a propane residue.
  9.  前記非熱可塑性ポリイミド層の温度380℃における貯蔵弾性率が、0.350GPa未満である、請求項1~8のいずれか一項に記載の複層ポリイミドフィルム。 The multilayer polyimide film according to any one of claims 1 to 8, wherein the non-thermoplastic polyimide layer has a storage elastic modulus of less than 0.350 GPa at a temperature of 380 ° C.
  10.  前記非熱可塑性ポリイミド層の温度100℃から200℃における昇温時線膨張係数が、5.0ppm/K以上19.0ppm/K以下である、請求項1~9のいずれか一項に記載の複層ポリイミドフィルム。

     
    The invention according to any one of claims 1 to 9, wherein the non-thermoplastic polyimide layer has a coefficient of linear expansion during temperature rise from 100 ° C. to 200 ° C. of 5.0 ppm / K or more and 19.0 ppm / K or less. Multi-layer polyimide film.

PCT/JP2021/023195 2020-07-17 2021-06-18 Multilayer polyimide film WO2022014257A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237005185A KR20230038757A (en) 2020-07-17 2021-06-18 Multi-layer polyimide film
CN202180060432.XA CN116133855A (en) 2020-07-17 2021-06-18 Multilayer polyimide film
JP2022536190A JPWO2022014257A1 (en) 2020-07-17 2021-06-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020122732 2020-07-17
JP2020-122732 2020-07-17

Publications (1)

Publication Number Publication Date
WO2022014257A1 true WO2022014257A1 (en) 2022-01-20

Family

ID=79555209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023195 WO2022014257A1 (en) 2020-07-17 2021-06-18 Multilayer polyimide film

Country Status (5)

Country Link
JP (1) JPWO2022014257A1 (en)
KR (1) KR20230038757A (en)
CN (1) CN116133855A (en)
TW (1) TW202208513A (en)
WO (1) WO2022014257A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114815508B (en) * 2022-06-30 2022-09-23 杭州福斯特应用材料股份有限公司 Photosensitive dry film resist laminate and wiring board

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017177604A (en) * 2016-03-30 2017-10-05 株式会社カネカ Polyimide laminate film
JP2017179150A (en) * 2016-03-30 2017-10-05 株式会社カネカ Polyimide film
JP2019065180A (en) * 2017-09-29 2019-04-25 日鉄ケミカル&マテリアル株式会社 Polyimide film, metal-clad laminate, and circuit board

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5724468B2 (en) 2011-03-07 2015-05-27 宇部興産株式会社 Method for producing polyimide metal laminate
JP6691412B2 (en) 2016-03-30 2020-04-28 株式会社カネカ Polyimide film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017177604A (en) * 2016-03-30 2017-10-05 株式会社カネカ Polyimide laminate film
JP2017179150A (en) * 2016-03-30 2017-10-05 株式会社カネカ Polyimide film
JP2019065180A (en) * 2017-09-29 2019-04-25 日鉄ケミカル&マテリアル株式会社 Polyimide film, metal-clad laminate, and circuit board

Also Published As

Publication number Publication date
TW202208513A (en) 2022-03-01
JPWO2022014257A1 (en) 2022-01-20
CN116133855A (en) 2023-05-16
KR20230038757A (en) 2023-03-21

Similar Documents

Publication Publication Date Title
KR20190055809A (en) Polyimide film, copper clad laminate, and circuit board
JP6788357B2 (en) Polyimide film, multilayer polyimide film, coverlay, and flexible printed wiring board
JP6793232B2 (en) Rigid flexible board
JP2008188954A (en) Base material for single-sided metal-clad laminated sheet and manufacturing method of single-sided metal-clad laminated sheet
WO2022085619A1 (en) Non-thermoplastic polyimide film, multilayer polyimide film, and metal-clad laminated plate
JP5254752B2 (en) Multilayer polyimide film
JP7212480B2 (en) Polyimide films, metal-clad laminates and circuit boards
WO2022014257A1 (en) Multilayer polyimide film
KR20070094810A (en) Novel polyimide film with improved adhesiveness
JP2017179150A (en) Polyimide film
JP2017177604A (en) Polyimide laminate film
JP2011143678A (en) Multilayer polyimide film and flexible metal-clad laminate using the same
KR20230117670A (en) Metal clad laminate and circuit board
JP7039390B2 (en) Multilayer polyimide film
KR102560356B1 (en) Polyimide film and metal-clad laminated body
JP6691412B2 (en) Polyimide film
TWI683836B (en) Polyimide laminated film, method for producing polyimide laminated film, method for producing thermoplastic polyimide, and method for producing flexible metal clad laminate
WO2024085047A1 (en) Multilayer polyimide film
JP2006291150A (en) Heat resistant adhesive sheet
JP2006116738A (en) Adhesive laminated film
JP2007230019A (en) Manufacturing method of metal clad laminated sheet
WO2022080314A1 (en) Multilayer polyimide film, metal-clad laminated plate, and method for producing multilayer polyimide film
JP5069844B2 (en) Method for producing insulating film for printed wiring board, polyimide / copper laminate and printed wiring board
JP2022062784A (en) Polyimide laminated film
JP2022062785A (en) Polyimide laminated film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21843213

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536190

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237005185

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21843213

Country of ref document: EP

Kind code of ref document: A1