JP5069846B2 - Novel polyimide film, adhesive film obtained using the same, and flexible metal-clad laminate - Google Patents

Novel polyimide film, adhesive film obtained using the same, and flexible metal-clad laminate Download PDF

Info

Publication number
JP5069846B2
JP5069846B2 JP2005130216A JP2005130216A JP5069846B2 JP 5069846 B2 JP5069846 B2 JP 5069846B2 JP 2005130216 A JP2005130216 A JP 2005130216A JP 2005130216 A JP2005130216 A JP 2005130216A JP 5069846 B2 JP5069846 B2 JP 5069846B2
Authority
JP
Japan
Prior art keywords
film
polyimide film
polyimide
clad laminate
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005130216A
Other languages
Japanese (ja)
Other versions
JP2006306972A (en
Inventor
剛 菊池
永泰 金城
崇晃 松脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2005130216A priority Critical patent/JP5069846B2/en
Publication of JP2006306972A publication Critical patent/JP2006306972A/en
Application granted granted Critical
Publication of JP5069846B2 publication Critical patent/JP5069846B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

本発明は、フレキシブル金属張積層板の製造工程で発生する寸法変化を抑制しうるポリイミドフィルム、特に、接着層を設けて熱ラミネート法で金属箔を貼り合わせた際に、優れた寸法安定性を有するフレキシブル金属張積層板が得られるポリイミドフィルム、並びにそれを用いて得られる接着フィルム、フレキシブル金属張積層板に関する。   The present invention is a polyimide film that can suppress the dimensional change that occurs in the manufacturing process of a flexible metal-clad laminate, and in particular, has excellent dimensional stability when an adhesive layer is provided and a metal foil is bonded by a thermal laminating method. The present invention relates to a polyimide film from which a flexible metal-clad laminate is obtained, an adhesive film obtained by using the polyimide film, and a flexible metal-clad laminate.

近年、エレクトロニクス製品の軽量化、小型化、高密度化にともない、各種プリント配線板の需要が伸びているが、中でもフレキシブルプリント配線板(以下、FPCとも称する)の需要が特に伸びている。フレキシブルプリント配線板は、絶縁性フィルム上に金属箔からなる回路が形成された構造を有している。   In recent years, the demand for various printed wiring boards has increased along with the reduction in weight, size, and density of electronic products. In particular, the demand for flexible printed wiring boards (hereinafter also referred to as FPCs) has increased. The flexible printed wiring board has a structure in which a circuit made of a metal foil is formed on an insulating film.

上記フレキシブル配線板の元となるフレキシブル金属張積層板は、一般に、各種絶縁材料により形成され、柔軟性を有する絶縁性フィルムを基板とし、この基板の表面に、各種接着材料を介して金属箔を加熱・圧着することにより貼りあわせる方法により製造される。上記絶縁性フィルムとしては、ポリイミドフィルム等が好ましく用いられている。上記接着材料としては、エポキシ系、アクリル系等の熱硬化性接着剤が一般的に用いられている(これら熱硬化性接着剤を用いたFPCを以下、三層FPCともいう)。   The flexible metal-clad laminate that is the basis of the flexible wiring board is generally formed of various insulating materials, and a flexible insulating film is used as a substrate, and a metal foil is attached to the surface of the substrate via various adhesive materials. Manufactured by a method of bonding by heating and pressure bonding. A polyimide film or the like is preferably used as the insulating film. As the adhesive material, a thermosetting adhesive such as epoxy or acrylic is generally used (FPC using these thermosetting adhesives is hereinafter also referred to as three-layer FPC).

熱硬化性接着剤は比較的低温での接着が可能であるという利点がある。しかし今後、耐熱性、屈曲性、電気的信頼性といった要求特性が厳しくなるに従い、熱硬化性接着剤を用いた三層FPCでは対応が困難になると考えられる。これに対し、絶縁性フィルムに直接金属層を設けたり、接着層に熱可塑性ポリイミドを使用したFPC(以下、二層FPCともいう)が提案されている。この二層FPCは、三層FPCより優れた特性を有し、今後需要が伸びていくことが期待される。   Thermosetting adhesives have the advantage that they can be bonded at relatively low temperatures. However, in the future, as required characteristics such as heat resistance, flexibility, and electrical reliability become stricter, it is considered that it is difficult to cope with a three-layer FPC using a thermosetting adhesive. On the other hand, an FPC (hereinafter also referred to as a two-layer FPC) in which a metal layer is directly provided on an insulating film or a thermoplastic polyimide is used for an adhesive layer has been proposed. This two-layer FPC has characteristics superior to those of the three-layer FPC, and demand is expected to increase in the future.

二層FPCに用いるフレキシブル金属張積層板の作製方法としては、金属箔上にポリイミドの前駆体であるポリアミド酸を流延、塗布した後イミド化するキャスト法、スパッタ、メッキによりポリイミドフィルム上に直接金属層を設けるメタライジング法、熱可塑性ポリイミドを介してポリイミドフィルムと金属箔とを貼り合わせるラミネート法が挙げられる。この中で、ラミネート法は、対応できる金属箔の厚み範囲がキャスト法よりも広く、装置コストがメタライジング法よりも低いという点で優れている。ラミネートを行う装置としては、ロール状の材料を繰り出しながら連続的にラミネートする熱ロールラミネート装置またはダブルベルトプレス装置等が用いられている。上記の内、生産性の点から見れば、熱ロールラミネート法をより好ましく用いることができる。   As a method for producing a flexible metal-clad laminate for use in a two-layer FPC, a polyamic acid, which is a polyimide precursor, is cast on a metal foil, applied, and then casted directly onto a polyimide film by sputtering or plating. Examples thereof include a metallizing method for providing a metal layer and a laminating method for bonding a polyimide film and a metal foil through a thermoplastic polyimide. Among these, the lamination method is superior in that the thickness range of the metal foil that can be handled is wider than that of the casting method and the apparatus cost is lower than that of the metalizing method. As a device for laminating, a hot roll laminating device or a double belt press device for continuously laminating a roll-shaped material is used. Of these, the hot roll laminating method can be used more preferably from the viewpoint of productivity.

従来の三層FPCをラミネート法で作製する際、接着層に熱硬化性樹脂を用いていたため、ラミネート温度は200℃未満で行うことが可能であった(特許文献1参照)。これに対し、二層FPCは熱可塑性ポリイミドを接着層として用いるため、熱融着性を発現させるために200℃以上、場合によっては400℃近くの高温を加える必要がある。そのため、ラミネートされて得られたフレキシブル金属張積層板に残留歪みが発生し、エッチングして配線を形成する際、並びに部品を実装するために半田リフローを行う際に寸法変化となって現れる。   When a conventional three-layer FPC was produced by a laminating method, a thermosetting resin was used for the adhesive layer, so that the laminating temperature could be less than 200 ° C. (see Patent Document 1). On the other hand, since the two-layer FPC uses thermoplastic polyimide as an adhesive layer, it is necessary to apply a high temperature of 200 ° C. or higher, and in some cases, close to 400 ° C., in order to develop heat-fusibility. Therefore, residual distortion occurs in the flexible metal-clad laminate obtained by laminating, and it appears as a dimensional change when wiring is formed by etching and when solder reflow is performed to mount components.

特にラミネート法は、ポリイミドフィルム上に熱可塑性ポリイミドを含有する接着層を設ける際に、熱可塑性ポリイミドの前駆体であるポリアミド酸を流延、塗布した後に連続的に加熱してイミド化を行い、金属箔を貼り合わせる際も連続的に加熱加圧を行うため、材料は張力がかけられた状態で加熱環境下に置かれることが多い。そのため、MD方向とTD方向で異なる熱応力が発生する。具体的には、張力のかかるMD方向には引張られる力が働き、逆にTD方向には縮む力が働く。その結果、フレキシブル積層板から金属箔をエッチングする際と、半田リフローを通して加熱する際にこの歪みが解放され、MD方向は収縮し、逆にTD方向は膨張してしまう。   In particular, in the laminating method, when an adhesive layer containing a thermoplastic polyimide is provided on a polyimide film, the polyamic acid which is a precursor of the thermoplastic polyimide is cast and applied, and then continuously heated to imidize, Since the heating and pressurization is continuously performed when the metal foil is bonded, the material is often placed in a heating environment under tension. Therefore, different thermal stresses are generated in the MD direction and the TD direction. Specifically, a pulling force acts in the MD direction where tension is applied, and conversely, a shrinking force acts in the TD direction. As a result, when the metal foil is etched from the flexible laminate and when heated through solder reflow, this strain is released, the MD direction contracts, and conversely, the TD direction expands.

近年、電子機器の小型化、軽量化を達成するために、基板に設けられる配線は微細化が進んでおり、実装する部品も小型化、高密度化されたものが搭載される。そのため、微細な配線を形成した後の寸法変化が大きくなると、設計段階での部品搭載位置からずれて、部品と基板とが良好に接続されなくなるという問題が生じる。   In recent years, in order to achieve miniaturization and weight reduction of electronic devices, wiring provided on a substrate has been miniaturized, and components to be mounted are mounted with miniaturization and high density. For this reason, if the dimensional change after forming the fine wiring is increased, there is a problem that the component and the board are not well connected due to deviation from the component mounting position in the design stage.

そこで、ラミネート圧力の制御や、接着フィルムの張力制御により、寸法変化を抑える試みがなされている(特許文献2または3参照)。しかしながら、これらの手段により寸法変化は改善されるものの、まだ充分ではなく、更なる寸法変化の改善が求められている。   Therefore, attempts have been made to suppress dimensional changes by controlling the laminating pressure or controlling the tension of the adhesive film (see Patent Document 2 or 3). However, although the dimensional change is improved by these means, it is not sufficient yet, and further improvement of the dimensional change is demanded.

特に近年では、鉛フリー半田の採用により、吸湿半田耐性の要求レベルが高くなる傾向にあり、それに対応するために接着層の高Tg(ガラス転移温度)化が進んでいるが、その結果としてラミネートに必要な温度も必然的に高くなっている。そのため、材料にかかる熱応力は更に大きくなり、寸法変化が発生しやすい状況となっている。従って、より効率的に、熱応力を緩和する材料設計が必要となる。   Particularly in recent years, the use of lead-free solder tends to increase the required level of moisture-absorbing solder resistance. To meet this trend, the adhesive layer has a higher Tg (glass transition temperature). Necessary temperature is inevitably high. Therefore, the thermal stress applied to the material is further increased, and a dimensional change is likely to occur. Therefore, there is a need for a material design that more efficiently relieves thermal stress.

また、現在の二層FPCに使用される絶縁層の厚みは25μm(1ミル)が主流であるが、基板実装スペースの更なる削減、スプリングバック等の課題から、絶縁層の厚みを15μm以下にした、いわゆる「ハーフミル」の要求も出始めている。しかしながら、ハーフミル品は接着フィルムの厚みが薄くなるため、ラミネート時の熱応力の影響を更に受けやすくなり、1ミル品よりも寸法変化改善のハードルはかなり高くなる。
特開平9−199830号公報 特開2002−326308号公報 特開2002−326280号公報
In addition, the thickness of the insulating layer used in the current two-layer FPC is mainly 25 μm (1 mil). However, the thickness of the insulating layer is reduced to 15 μm or less due to further reduction of the board mounting space and problems such as springback. The so-called “half-mill” demand has begun to appear. However, since the thickness of the adhesive film is thinner in the half-mill product, it is more susceptible to thermal stress during lamination, and the hurdle for improving the dimensional change is considerably higher than that of the 1-mil product.
JP-A-9-199830 JP 2002-326308 A JP 2002-326280 A

本発明は、上記の課題に鑑みてなされたものであって、その目的は、フレキシブル銅張り積層板の製造工程で発生する寸法変化を抑制しうるポリイミドフィルム、特に、ラミネート法で材料にかかる熱歪みを抑制する機能を持ったポリイミドフィルム、及び該ポリイミドフィルムの少なくとも片面に接着層を設けた接着フィルム、そして該接着フィルムに熱ラミネート法で金属箔を貼り合わせて得られる、寸法変化の発生を抑制できるフレキシブル金属張積層板、特に接着フィルムの厚みが薄い場合でも寸法変化の発生を抑制できるフレキシブル金属張積層板を提供することにある。   The present invention has been made in view of the above-described problems, and its purpose is to provide a polyimide film capable of suppressing dimensional changes that occur in the manufacturing process of a flexible copper-clad laminate, particularly heat applied to a material by a laminating method. A polyimide film having a function of suppressing distortion, an adhesive film provided with an adhesive layer on at least one side of the polyimide film, and a dimensional change generated by bonding a metal foil to the adhesive film by a heat laminating method. An object of the present invention is to provide a flexible metal-clad laminate that can be suppressed, particularly a flexible metal-clad laminate that can suppress the occurrence of dimensional changes even when the thickness of an adhesive film is thin.

本発明者らは、上記の課題に鑑み鋭意検討した結果、貯蔵弾性率の値が特定の範囲に制御されたポリイミドフィルムは、これを用いたフレキシブル銅張積層板の製造工程で発生しうる寸法変化を抑制できること、特に、フィルムの少なくとも片面に接着層を設けた接着フィルムのコア層として使用することで、熱ラミネート時における熱歪みを緩和し、寸法変化の発生を効果的に抑制できることを独自に見出し、本発明を完成させるに至った。すなわち、以下の新規なポリイミドフィルム、これを用いた接着フィルムおよびフレキシブル金属張積層板によって、上記目的を達成しうる。
1)芳香族ジアミンと芳香族酸二無水物を反応させて得られるポリアミド酸を、イミド化して得られるポリイミドフィルムであって、下記(1)〜(4)の条件
(1)280℃〜320℃の範囲に貯蔵弾性率の変曲点を有し、
(2)損失弾性率を貯蔵弾性率で割った値であるtanδのピークトップが320℃〜380℃の範囲内にあり、
(3)380℃における貯蔵弾性率が0.4GPa〜2.0GPaであり、
(4)変曲点における貯蔵弾性率α1(GPa)と、380℃における貯蔵弾性率α2(GPa)が下記式(1)の範囲にある
(式1);85≧{(α1−α2)/α1}×100≧65
を全て満たすことを特徴とする、ポリイミドフィルム。
2)前記ポリイミドフィルムが、下記の工程(a)〜(c)
(a)芳香族酸二無水物と、これに対し過剰モル量の芳香族ジアミン化合物とを有機極性溶媒中で反応させ、両末端にアミノ基を有するプレポリマーを得る
(b)続いて、ここに芳香族ジアミン化合物を追加添加する
(c)更に、全工程における芳香族酸二無水物と芳香族ジアミンが実質的に等モルとなるように芳香族酸二無水物を添加して重合する
を経ることによって得られたポリアミド酸溶液をイミド化して得られることを特徴とする1)記載のポリイミドフィルム。
3)前記(a)工程における芳香族ジアミンが屈曲性のジアミンであり、前記(b)工程における芳香族ジアミンが剛直性のジアミンであることを特徴とする2)記載のポリイミドフィルム。
4)前記屈曲性ジアミンとして、4,4’−ジアミノジフェニルエーテルを使用することを特徴とする3)記載のポリイミドフィルム。
5)前記剛直性ジアミンとして、p−フェニレンジアミンを使用することを特徴とする3)または4)記載のポリイミドフィルム。
6)前記(a)工程において、ベンゾフェノンテトラカルボン酸二無水物ならびにピロメリット酸二無水物を使用することを特徴とする、2)乃至5)記載のポリイミドフィルム。
7)前記ポリイミドフィルムの引張弾性率が、7.0GPa以上であることを特徴とする、1)乃至6)記載のポリイミドフィルム。
8)前記ポリイミドフィルムの100℃〜200℃における線膨張係数が、13ppm/℃以下であることを特徴とする、1)乃至7)記載のポリイミドフィルム。
9)1)乃至8)記載のポリイミドフィルムの少なくとも片面に、熱可塑性ポリイミドを含有する接着層を設けた接着フィルム。
10)熱可塑性ポリイミドのガラス転移温度(Tg)が230℃以上であることを特徴とする、9)記載の接着フィルム。
11)フィルム厚みが15μm以下となっている9)または10)記載の接着フィルム。
12)一対以上の金属ロールを有する熱ロールラミネート装置を用いて、請求項9乃至11記載の接着フィルムに金属箔を貼り合わせて得られることを特徴とする、フレキシブル金属張積層板。
13)前記一対以上の金属ロールを有する熱ロールラミネート装置を用いて、接着フィルムに金属箔を貼り合わせる際に、非熱可塑性ポリイミド、またはガラス転移温度(Tg)がラミネート温度よりも50℃以上高い熱可塑性ポリイミドからなる保護フィルムを金属箔とロールの間に配してラミネートを行い、ラミネート後冷却された段階で保護フィルムを剥離して得られることを特徴とする、12)記載のフレキシブル金属張積層板。
14)前記ラミネート後、保護フィルムを剥離する前に、保護フィルムとフレキシブル金属張積層板が密着している積層体を、加熱ロールに0.1〜5秒の範囲で接触させ、その後冷却して積層体から保護材料を剥離することを特徴とする、13)記載のフレキシブル金属張積層板。
15)金属箔除去後に250℃、30分の加熱を行う前後の寸法変化率が、MD方向、TD方向共に−0.04〜+0.04%の範囲にあることを特徴とする、12)乃至14)記載のフレキシブル金属張積層板。
16)接着フィルムの厚みが15μmであり、かつ金属箔除去後に250℃、30分の加熱を行う前後の寸法変化率が、MD方向、TD方向共に−0.05〜+0.05%の範囲にあることを特徴とする12)乃至14)記載のフレキシブル金属張積層板。
As a result of intensive studies in view of the above-mentioned problems, the present inventors have found that a polyimide film whose storage elastic modulus value is controlled within a specific range is a dimension that can occur in a manufacturing process of a flexible copper-clad laminate using the polyimide film. The ability to suppress changes, in particular, it can be used as the core layer of an adhesive film with an adhesive layer on at least one side of the film, thereby reducing thermal distortion during thermal lamination and effectively suppressing the occurrence of dimensional changes. The present invention has been completed. That is, the above object can be achieved by the following novel polyimide film, an adhesive film using the same, and a flexible metal-clad laminate.
1) A polyimide film obtained by imidizing a polyamic acid obtained by reacting an aromatic diamine and an aromatic acid dianhydride, the following conditions (1) to (4) (1) 280 ° C. to 320 Has an inflection point of storage elastic modulus in the range of ℃,
(2) The peak top of tan δ, which is a value obtained by dividing the loss elastic modulus by the storage elastic modulus, is in the range of 320 ° C. to 380 ° C.,
(3) The storage elastic modulus at 380 ° C. is 0.4 GPa to 2.0 GPa,
(4) and the storage modulus alpha 1 (GPa) at the inflection point, storage at 380 ° C. modulus alpha 2 (GPa) is within the range of the following formula (1) (Equation 1); 85 ≧ {(α 1 - α 2 ) / α 1 } × 100 ≧ 65
A polyimide film characterized by satisfying all of the above.
2) The polyimide film has the following steps (a) to (c).
(A) An aromatic acid dianhydride and an excess molar amount of the aromatic diamine compound are reacted in an organic polar solvent to obtain a prepolymer having amino groups at both ends (b) (C) Further, the aromatic dianhydride is added and polymerized so that the aromatic dianhydride and the aromatic diamine are substantially equimolar in all steps. The polyimide film as described in 1), which is obtained by imidizing a polyamic acid solution obtained by passing.
3) The polyimide film according to 2), wherein the aromatic diamine in the step (a) is a flexible diamine, and the aromatic diamine in the step (b) is a rigid diamine.
4) The polyimide film as described in 3), wherein 4,4′-diaminodiphenyl ether is used as the flexible diamine.
5) The polyimide film as described in 3) or 4), wherein p-phenylenediamine is used as the rigid diamine.
6) The polyimide film according to 2) to 5), wherein benzophenone tetracarboxylic dianhydride and pyromellitic dianhydride are used in the step (a).
7) The polyimide film according to 1) to 6), wherein the polyimide film has a tensile modulus of 7.0 GPa or more.
8) The polyimide film according to 1) to 7), wherein the polyimide film has a linear expansion coefficient at 100 ° C. to 200 ° C. of 13 ppm / ° C. or less.
9) An adhesive film in which an adhesive layer containing a thermoplastic polyimide is provided on at least one side of the polyimide film described in 1) to 8).
10) The adhesive film according to 9), wherein the thermoplastic polyimide has a glass transition temperature (Tg) of 230 ° C. or higher.
11) The adhesive film according to 9) or 10), wherein the film thickness is 15 μm or less.
12) A flexible metal-clad laminate obtained by bonding a metal foil to an adhesive film according to any one of claims 9 to 11 using a hot roll laminator having a pair of metal rolls.
13) Non-thermoplastic polyimide or glass transition temperature (Tg) is 50 ° C. or more higher than the laminating temperature when a metal foil is bonded to an adhesive film using a hot roll laminating apparatus having the pair of metal rolls. A flexible metal-clad laminate according to 12), which is obtained by laminating a protective film made of thermoplastic polyimide between a metal foil and a roll, and then peeling off the protective film when cooled after lamination. Laminated board.
14) After the lamination, before peeling off the protective film, the laminate in which the protective film and the flexible metal-clad laminate are in close contact with each other is brought into contact with the heating roll in the range of 0.1 to 5 seconds, and then cooled. The flexible metal-clad laminate according to 13), wherein the protective material is peeled from the laminate.
15) The dimensional change rate before and after heating at 250 ° C. for 30 minutes after removing the metal foil is in the range of −0.04 to + 0.04% in both the MD direction and the TD direction. 14) The flexible metal-clad laminate described in 14).
16) The thickness of the adhesive film is 15 μm, and the dimensional change rate before and after heating at 250 ° C. for 30 minutes after removing the metal foil is in the range of −0.05 to + 0.05% in both the MD direction and the TD direction. The flexible metal-clad laminate according to any one of 12) to 14), wherein the flexible metal-clad laminate is provided.

本発明のポリイミドフィルムは、フレキシブル銅張り積層板の製造工程で発生する寸法変化を抑制することができる。特に、ラミネート時の熱応力を緩和すべく、貯蔵弾性率の変曲点を持たせており、かつその値を制御している。その結果、該ポリイミドフィルムをコアに使用した接着フィルムに、ラミネート法で金属箔を貼り合わせたフレキシブル金属張積層板は、寸法変化の発生が効果的に抑制されている。具体的には、金属箔除去後に250℃、30分の加熱を行う前後の寸法変化率を、MD方向、TD方向共に−0.04〜+0.04%の範囲とすることが可能である。従って、微細な配線を形成したFPC等にも好適に用いることが可能で、位置ずれ等の問題を改善できる。   The polyimide film of this invention can suppress the dimensional change which generate | occur | produces in the manufacturing process of a flexible copper clad laminated board. In particular, in order to relieve thermal stress during lamination, an inflection point of the storage elastic modulus is given and the value is controlled. As a result, in a flexible metal-clad laminate in which a metal foil is bonded to an adhesive film using the polyimide film as a core by a laminating method, the occurrence of dimensional change is effectively suppressed. Specifically, the dimensional change rate before and after heating at 250 ° C. for 30 minutes after removing the metal foil can be set to a range of −0.04 to + 0.04% in both the MD direction and the TD direction. Therefore, it can be suitably used for an FPC or the like in which fine wiring is formed, and problems such as misalignment can be improved.

本発明の実施の形態について、以下に説明する。まず、本発明に係るポリイミドフィルムの場合について、その実施の形態の一例に基づき説明する。   Embodiments of the present invention will be described below. First, the case of the polyimide film according to the present invention will be described based on an example of the embodiment.

(本発明のポリイミドフィルム)
本発明は、ポリイミドフィルムが下記(1)〜(4)のすべての物性を満たせば、これを用いてフレキシブル金属張積層板を製造する際に発生する寸法変化を効果的に抑制しうるというものである。
(1)280℃〜320℃の範囲に貯蔵弾性率の変曲点を有し、
(2)損失弾性率を貯蔵弾性率で割った値であるtanδのピークトップが320℃〜 380℃の範囲内にあり、
(3)380℃における貯蔵弾性率が0.4GPa〜2.0GPaであり、
(4)変曲点における貯蔵弾性率α1(GPa)と、380℃における貯蔵弾性率α2(GPa)が下記式(1)の範囲にある
(式1);85≧{(α1−α2)/α1}×100≧65
貯蔵弾性率の変曲点について説明する。貯蔵弾性率の変曲点は、ラミネート法で金属箔を貼り合わせる際の熱応力の緩和の観点から、280〜320℃、好ましくは290〜310℃の範囲にあることが必要である。ここで、貯蔵弾性率の変曲点が上記範囲よりも低い場合、フレキシブル金属張積層板の加熱後寸法変化を評価する温度(二層FPCの分野においては、250℃で評価されることが多い)において、コア層の軟化が始まるため、寸法変化が悪化する原因となる。逆に上記範囲よりも高い場合、コア層の軟化が始まる温度が高いため、熱ラミネート時に熱応力を十分に緩和せず、やはり寸法変化が悪化する原因となる。
(Polyimide film of the present invention)
In the present invention, if the polyimide film satisfies all of the following physical properties (1) to (4), dimensional changes that occur when a flexible metal-clad laminate is produced using the polyimide film can be effectively suppressed. It is.
(1) having an inflection point of storage elastic modulus in the range of 280 ° C to 320 ° C;
(2) The peak top of tan δ, which is a value obtained by dividing the loss elastic modulus by the storage elastic modulus, is in the range of 320 ° C. to 380 ° C.,
(3) The storage elastic modulus at 380 ° C. is 0.4 GPa to 2.0 GPa,
(4) and the storage modulus alpha 1 (GPa) at the inflection point, storage at 380 ° C. modulus alpha 2 (GPa) is within the range of the following formula (1) (Equation 1); 85 ≧ {(α 1 - α 2 ) / α 1 } × 100 ≧ 65
The inflection point of the storage elastic modulus will be described. The inflection point of the storage elastic modulus needs to be in the range of 280 to 320 ° C., preferably 290 to 310 ° C., from the viewpoint of relaxation of thermal stress when the metal foil is bonded by the laminating method. Here, when the inflection point of the storage elastic modulus is lower than the above range, the temperature at which the dimensional change after heating of the flexible metal-clad laminate is evaluated (in the field of two-layer FPC, it is often evaluated at 250 ° C. ), Since the softening of the core layer starts, the dimensional change becomes worse. On the other hand, when the temperature is higher than the above range, the temperature at which the softening of the core layer starts is high, so that the thermal stress is not sufficiently relaxed at the time of thermal lamination, and the dimensional change is deteriorated.

また、損失弾性率を貯蔵弾性率で割った値であるtanδのピークトップが320℃〜380℃以上、好ましくは330℃〜360℃の範囲内にあることが必要である。tanδのピークトップが上記範囲よりも低い場合、tanδが増加し始める温度が250℃前後もしくはそれ以下になり、寸法変化測定時にコア層が軟化し始める場合があるため、寸法変化率が悪化する可能性がある。逆にtanδのピークトップが上記範囲よりも高い場合、歪みを緩和するのに充分なレベルまでコア層を軟化させるために必要な温度が高くなりすぎ、既存のラミネート装置では熱応力を充分に緩和せず、寸法変化が悪化する可能性がある。上記範囲を外れる場合、貯蔵弾性率の変曲点と同様、寸法変化が悪化する原因となる。   Further, the peak top of tan δ, which is a value obtained by dividing the loss elastic modulus by the storage elastic modulus, needs to be in the range of 320 ° C. to 380 ° C. or more, preferably 330 ° C. to 360 ° C. When the peak top of tan δ is lower than the above range, the temperature at which tan δ begins to increase is around 250 ° C or lower, and the core layer may begin to soften during dimensional change measurement, so the dimensional change rate may deteriorate. There is sex. Conversely, when the peak top of tan δ is higher than the above range, the temperature required to soften the core layer to a level sufficient to alleviate strain becomes too high, and the existing laminating equipment sufficiently relaxes the thermal stress. The dimensional change may get worse. When it is out of the above range, the dimensional change becomes worse as well as the inflection point of the storage elastic modulus.

また、380℃における貯蔵弾性率が、0.4〜2.0GPa、好ましくは0.6〜1.8GPa、更に好ましくは0.7〜1.6GPaの範囲にあることが必要である。本発明者らは鋭意検討を行った結果、半田耐熱性も両立させる場合、接着層のガラス転移温度は240℃〜280℃とする必要があることを見出した。その場合、生産性良くラミネートを行うためには、ラミネート温度が380℃程度必要である。そのため、380℃での貯蔵弾性率制御が非常に重要となる。380℃における貯蔵弾性率が上記範囲よりも低い場合、フィルムのイミド化時または熱ラミネート時に、フィルムが自己支持性を保てなくなり、フィルムの生産性を悪化させたり、得られるフレキシブル金属張積層板の外観を悪化させる原因となる。逆に上記範囲よりも高い場合、コア層が十分に軟化しないため、熱ラミネート時の熱応力緩和効果が十分に発現せず、寸法変化が悪化する原因となる。   Further, the storage elastic modulus at 380 ° C. needs to be in the range of 0.4 to 2.0 GPa, preferably 0.6 to 1.8 GPa, more preferably 0.7 to 1.6 GPa. As a result of intensive studies, the present inventors have found that the glass transition temperature of the adhesive layer needs to be 240 ° C. to 280 ° C. when solder heat resistance is also achieved. In that case, a lamination temperature of about 380 ° C. is necessary in order to perform lamination with high productivity. Therefore, storage elastic modulus control at 380 ° C. is very important. When the storage elastic modulus at 380 ° C. is lower than the above range, the film cannot maintain the self-supporting property at the time of imidization or thermal lamination of the film, and the productivity of the film is deteriorated, or the obtained flexible metal-clad laminate Causes the appearance of the product to deteriorate. On the other hand, when the temperature is higher than the above range, the core layer is not sufficiently softened, so that the thermal stress relaxation effect at the time of thermal lamination is not sufficiently exhibited, and the dimensional change is deteriorated.

また、本発明者らは、変曲点における貯蔵弾性率α1(GPa)と380℃における貯蔵弾性率率α2(GPa)の値の関係について検討した結果、下記式(1)の範囲にあることが、フレキシブル金属張積層板を製造する工程で発生する寸法変化を抑制するのに重要であることを見出した。
85≧{(α1−α2)/α1}×100≧65 (式1)
上記範囲を下回る場合、貯蔵弾性率の低下度合いが少ないため、熱ラミネート時の熱応力緩和効果が十分に発現せず、得られるフレキシブル金属張積層板の寸法変化が悪化する原因となる。逆に上記範囲よりも高い場合、フィルムが自己支持性を保てなくなり、フィルムの生産性を悪化させたり、得られるフレキシブル金属張積層板の外観を悪化させる原因となる。
Further, the present inventors have made study for the relationship between the value of the storage modulus modulus alpha 2 (GPa) at a 380 ° C. storage modulus alpha 1 (GPa) at the inflection point, the range of the following formula (1) It has been found that it is important to suppress dimensional changes that occur in the process of manufacturing a flexible metal-clad laminate.
85 ≧ {(α 1 −α 2 ) / α 1 } × 100 ≧ 65 (Formula 1)
When it falls below the above range, the degree of decrease in the storage elastic modulus is small, so that the thermal stress relaxation effect at the time of thermal lamination is not sufficiently exhibited, and the dimensional change of the resulting flexible metal-clad laminate is deteriorated. On the other hand, when the temperature is higher than the above range, the film cannot maintain the self-supporting property, thereby deteriorating the productivity of the film or deteriorating the appearance of the obtained flexible metal-clad laminate.

寸法安定性に優れたフレキシブル金属張積層板を得るためには、上記三条件を全て満たしたポリイミドフィルムが必要である。   In order to obtain a flexible metal-clad laminate excellent in dimensional stability, a polyimide film that satisfies all the above three conditions is required.

これまで、上記特性のすべてを満たすポリイミドフィルムは知られていなかった。このようなポリイミドフィルムを得る方法は、特に限定はされないが、一例を挙げて説明する。
本発明のポリイミドフィルムは、ポリイミドの前駆体であるポリアミド酸の溶液から得られる。ポリアミド酸は、通常、芳香族ジアミンと芳香族酸二無水物とを、実質的に等モル量となるように有機溶媒中に溶解させて、得られたポリアミド酸有機溶媒溶液を、制御された温度条件下で、上記酸二無水物とジアミンの重合が完了するまで攪拌することによって製造される。これらのポリアミド酸溶液は通常5〜35wt%、好ましくは10〜30wt%の濃度で得られる。この範囲の濃度である場合に適当な分子量と溶液粘度を得る。
So far, no polyimide film satisfying all of the above properties has been known. The method for obtaining such a polyimide film is not particularly limited, but will be described with an example.
The polyimide film of the present invention is obtained from a solution of polyamic acid which is a polyimide precursor. The polyamic acid is usually controlled by dissolving the polyamic acid organic solvent solution obtained by dissolving the aromatic diamine and the aromatic dianhydride in an organic solvent so as to have a substantially equimolar amount. It is produced by stirring under temperature conditions until the polymerization of the acid dianhydride and diamine is completed. These polyamic acid solutions are usually obtained at a concentration of 5 to 35 wt%, preferably 10 to 30 wt%. When the concentration is in this range, an appropriate molecular weight and solution viscosity are obtained.

本発明のポリイミドフィルムは、原料モノマーであるジアミン並びに酸二無水物の構造のみならず、モノマー添加順序を制御することによっても、諸物性を制御することが可能である。従って、本発明のポリイミドフィルムを得るためには、下記(a)〜(c)の工程を経ることによって得られたポリアミド酸溶液をイミド化することが好ましい。
(a)芳香族酸二無水物と、これに対し過剰モル量の芳香族ジアミン化合物とを有機極性溶媒中で反応させ、両末端にアミノ基を有するプレポリマーを得る
(b)続いて、ここに芳香族ジアミン化合物を追加添加する
(c)更に、全工程における芳香族酸二無水物と芳香族ジアミンが実質的に等モルとなるように芳香族酸二無水物を添加して重合する
本発明のポリイミドフィルムの原料モノマーとして使用し得る芳香族ジアミンとしては、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルメタン、ベンジジン、3,3’−ジクロロベンジジン、3,3‘−ジメチルベンジジン、2,2’−ジメチルベンジジン、3,3’−ジメトキシベンジジン、2,2’−ジメトキシベンジジン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、1,5−ジアミノナフタレン、4,4’−ジアミノジフェニルジエチルシラン、4,4’−ジアミノジフェニルシラン、4,4’−ジアミノジフェニルエチルホスフィンオキシド、4,4’−ジアミノジフェニルN−メチルアミン、4,4’−ジアミノジフェニル N−フェニルアミン、1,4−ジアミノベンゼン(p−フェニレンジアミン)、1,3−ジアミノベンゼン、1,2−ジアミノベンゼン、ビス{4−(4−アミノフェノキシ)フェニル}スルホン、ビス{4−(3−アミノフェノキシ)フェニル}スルホン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、ビス{4−(4−アミノフェノキシ)フェニル}プロパン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、3,3’−ジアミノベンゾフェノン、4,4'−ジアミノベンゾフェノン及びそれらの類似物などが挙げられる。
The polyimide film of the present invention can control various physical properties by controlling not only the structure of diamine and acid dianhydride as raw material monomers but also the order of monomer addition. Therefore, in order to obtain the polyimide film of the present invention, it is preferable to imidize the polyamic acid solution obtained through the following steps (a) to (c).
(A) An aromatic acid dianhydride and an excess molar amount of the aromatic diamine compound are reacted in an organic polar solvent to obtain a prepolymer having amino groups at both ends (b) (C) Furthermore, the aromatic dianhydride is added and polymerized so that the aromatic dianhydride and the aromatic diamine are substantially equimolar in all steps. The aromatic diamine that can be used as a raw material monomer for the polyimide film of the invention includes 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenylmethane, benzidine, 3,3′-dichlorobenzidine, and 3,3′-dimethyl. Benzidine, 2,2′-dimethylbenzidine, 3,3′-dimethoxybenzidine, 2,2′-dimethoxybenzidine, 4,4′-diaminodiphenyl sulfide, 3 3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 1,5-diaminonaphthalene, 4,4 '-Diaminodiphenyldiethylsilane, 4,4'-diaminodiphenylsilane, 4,4'-diaminodiphenylethylphosphine oxide, 4,4'-diaminodiphenyl N-methylamine, 4,4'-diaminodiphenyl N-phenylamine 1,4-diaminobenzene (p-phenylenediamine), 1,3-diaminobenzene, 1,2-diaminobenzene, bis {4- (4-aminophenoxy) phenyl} sulfone, bis {4- (3-amino Phenoxy) phenyl} sulfone, 4,4′-bis (4-amino) Phenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, bis {4- (4-aminophenoxy) phenyl} propane, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 3,3′-diaminobenzophenone, 4,4′-diaminobenzophenone and Those analogs are mentioned.

上記(a)工程において、熱可塑性ポリイミド由来のブロック成分を形成するプレポリマーを得ることが好ましい。熱可塑性ポリイミド由来のブロック成分を形成するプレポリマーを得るためには、屈曲性を有するジアミンと酸二無水物とを反応させることが好ましい。本発明において熱可塑性ポリイミド由来のブロック成分とは、その高分子量体のフィルムが400℃に加熱した際に熔融し、フィルムの形状を保持しないようなものを指す。具体的には、(a)工程で用いる芳香族ジアミン化合物および芳香族酸無水物成分を等モル反応させて得られるポリイミドが、上記温度で溶融するか、あるいはフィルムの形状を保持しないかを確認することで、芳香族ジアミン化合物および芳香族酸二無水物成分を選定することができる。このプレポリマーを用いて(b)、(c)工程の反応を進めることにより、熱可塑性部位が分子鎖中に点在したポリアミド酸が得られる。ここで、(b)、(c)工程で用いる芳香族ジアミン化合物および芳香族酸二無水物成分を選択して、最終的に得られるポリイミドが非熱可塑性となるようにポリアミド酸を重合すれば、これをイミド化して得られるポリイミドフィルムは、熱可塑性部位を有することにより、高温領域で貯蔵弾性率の変曲点を発現するようになる。その一方で、分子鎖中の大部分は非熱可塑性の構造であるため、熱可塑性部位と非熱可塑性部位の割合を制御することによって、高温領域で貯蔵弾性率が極端に低下することを防ぐことが可能となる。   In the step (a), it is preferable to obtain a prepolymer that forms a block component derived from thermoplastic polyimide. In order to obtain a prepolymer that forms a block component derived from thermoplastic polyimide, it is preferable to react a flexible diamine with an acid dianhydride. In the present invention, the block component derived from thermoplastic polyimide refers to a component that melts when the high molecular weight film is heated to 400 ° C. and does not retain the shape of the film. Specifically, it is confirmed whether the polyimide obtained by equimolar reaction of the aromatic diamine compound and aromatic acid anhydride component used in step (a) melts at the above temperature or does not maintain the shape of the film. By doing so, an aromatic diamine compound and an aromatic dianhydride component can be selected. By using the prepolymer and proceeding the reactions in the steps (b) and (c), a polyamic acid having thermoplastic sites scattered in the molecular chain can be obtained. Here, if the aromatic diamine compound and the aromatic dianhydride component used in the steps (b) and (c) are selected and the polyamic acid is polymerized so that the finally obtained polyimide becomes non-thermoplastic. The polyimide film obtained by imidizing this has a thermoplastic portion, and thus exhibits an inflection point of the storage elastic modulus in a high temperature region. On the other hand, most of the molecular chain has a non-thermoplastic structure, so controlling the ratio of thermoplastic and non-thermoplastic parts prevents the storage elastic modulus from drastically decreasing at high temperatures. It becomes possible.

ここで、上記(a)工程において、剛直性のジアミン成分と酸二無水物成分とを反応させて非熱可塑性ポリイミド由来のブロック成分を形成するプレポリマーを得て、(b)、(c)工程の反応で上記プレポリマーを熱可塑性ポリイミド由来のブロック成分で繋ぐことによっても、分子鎖中に熱可塑性部位が点在したポリアミド酸を得ることは可能である。しかし、この方法では熱可塑性部位のブロック長さが不均一となり、貯蔵弾性率のバランスを取ることが困難となる。具体的には、E’変曲が低い温度で発生するにもかかわらず、380℃での貯蔵弾性率がそれほど下がらない。
従って、本発明においては、まず熱可塑性ポリイミド由来のブロック成分を形成した後、非熱可塑性ポリイミド成分由来のブロックを形成するようにする必要がある。
本発明において屈曲性を有するジアミンとは、エーテル基、スルホン基、ケトン基、スルフィド基など柔構造を有するジアミン柔構造を有するジアミンであり、好ましくは、下記一般式(1)で表されるものである。
Here, in the step (a), a prepolymer for forming a block component derived from non-thermoplastic polyimide is obtained by reacting a rigid diamine component and an acid dianhydride component, and (b), (c) It is also possible to obtain a polyamic acid in which thermoplastic sites are scattered in the molecular chain by connecting the prepolymer with a block component derived from thermoplastic polyimide in the reaction of the process. However, this method makes the block length of the thermoplastic part non-uniform and makes it difficult to balance the storage elastic modulus. Specifically, the storage elastic modulus at 380 ° C. does not decrease so much even though the E ′ inflection occurs at a low temperature.
Accordingly, in the present invention, it is necessary to first form a block component derived from a thermoplastic polyimide and then form a block derived from a non-thermoplastic polyimide component.
The diamine having flexibility in the present invention is a diamine having a diamine flexible structure having a flexible structure such as an ether group, a sulfone group, a ketone group, or a sulfide group, and preferably represented by the following general formula (1) It is.

Figure 0005069846
(式中のR4は、
Figure 0005069846
(R 4 in the formula is

Figure 0005069846
で表される2価の有機基からなる群から選択される基であり、式中のR5は同一または異なって、H−,CH3−、−OH、−CF3、−SO4、−COOH、−CO-NH2、Cl−、Br−、F−、及びCH3O−からなる群より選択される1つの基である。)
上記工程を経ることによって得られたポリイミドフィルムが、何故無処理でも高接着性を発現するのか、詳しいことはまだ明らかになっていない。分子鎖中に点在する屈曲部位が表面脆弱層の形成を阻害するか、接着層との接着に何らかの関与をしていると考えられる。
Figure 0005069846
R 5 in the formula is the same or different and is H—, CH 3 —, —OH, —CF 3 , —SO 4 , —, or a group selected from the group consisting of divalent organic groups represented by One group selected from the group consisting of COOH, —CO—NH 2 , Cl—, Br—, F—, and CH 3 O—. )
It has not yet been clarified why the polyimide film obtained through the above process exhibits high adhesion even without treatment. It is considered that the bent sites scattered in the molecular chain inhibit the formation of the surface fragile layer or have some involvement in the adhesion with the adhesive layer.

さらに(b)工程で用いるジアミン成分は剛構造のジアミンであることが最終的に得るフィルムを非熱可塑性とすることができる点から好ましい。本発明において剛直構造を有するジアミンとは、     Furthermore, the diamine component used in the step (b) is preferably a rigid diamine from the viewpoint that the film finally obtained can be made non-thermoplastic. In the present invention, the diamine having a rigid structure is

Figure 0005069846
式中のR2は
Figure 0005069846
R2 in the formula is

Figure 0005069846
で表される2価の芳香族基からなる群から選択される基であり、式中のR3は同一または異なってH−,CH3−、−OH、−CF3、−SO4、−COOH、−CO-NH2、Cl−、Br−、F−、及びCH3O−からなる群より選択される何れかの1つの基である)
で表されるものをいう。
Figure 0005069846
And R 3 in the formula is the same or different and is H—, CH 3 —, —OH, —CF 3 , —SO 4 , —, or a group selected from the group consisting of divalent aromatic groups. Any one group selected from the group consisting of COOH, —CO—NH 2 , Cl—, Br—, F—, and CH 3 O—)
The one represented by

ここで、剛構造と柔構造(屈曲性を有するジアミン)のジアミンの使用比率はモル比で80:20〜20:80が好ましく、さらには70:30〜30:70、特には60:40〜40:60の範囲となるようにするのが好ましい。剛構造のジアミンの使用比率が上記範囲を上回ると、得られるフィルムのガラス転移温度が高くなり過ぎる、高温領域の貯蔵弾性率が殆ど低下しない、線膨張係数が小さくなり過ぎるという弊害が発生する場合がある。逆にこの範囲を下回ると、正反対の弊害を発生する場合がある。   Here, the use ratio of the diamine of the rigid structure and the flexible structure (flexible diamine) is preferably 80:20 to 20:80, more preferably 70:30 to 30:70, and particularly 60:40 to 40:40. It is preferable to be in the range of 40:60. When the use ratio of the rigid structure diamine exceeds the above range, the glass transition temperature of the resulting film becomes too high, the storage elastic modulus in the high temperature region hardly decreases, or the linear expansion coefficient becomes too small. There is. On the other hand, if it falls below this range, the opposite adverse effects may occur.

上記柔構造、剛構造のジアミンはそれぞれ複数種を組み合わせて使用しても良く、柔構造ジアミンの好ましい例としてはジアミノジフェニルエーテル、ビス{4−(4−アミノフェノキシ)フェニル}プロパンが挙げられる。また、剛構造ジアミンの好ましい例としては、フェニレンジアミン、ジアミノナフタレンが挙げられる。
しかし、使用する原料の種類を増やすと、重合時に原料を添加する回数が増えるために生産サイクルが低下する原因となる。また、ビス{4−(4−アミノフェノキシ)フェニル}プロパンを使用したポリイミドは、フィルム焼成条件により物性が変化しやすいため、弾性率や線膨張係数等の物性バランスを取るためにはプロセスウインドウが狭くなってしまう場合がある。
従って、本発明のポリイミドフィルムにおいては、柔構造と剛構造のジアミンはそれぞれ一種類ずつ使用することが好ましく、柔構造のジアミンとしては4,4’−ジアミノジフェニルエーテル、剛構造ジアミンとしてはp-フェニレンジアミンを使用することが特に好ましい。
The above-mentioned flexible structure and rigid structure diamines may be used in combination of two or more, and preferred examples of the flexible structure diamine include diaminodiphenyl ether and bis {4- (4-aminophenoxy) phenyl} propane. Preferable examples of the rigid diamine include phenylenediamine and diaminonaphthalene.
However, if the types of raw materials used are increased, the number of times the raw materials are added during polymerization increases, leading to a decrease in production cycle. In addition, polyimides using bis {4- (4-aminophenoxy) phenyl} propane tend to change in physical properties depending on the film firing conditions, so a process window is required to balance physical properties such as elastic modulus and linear expansion coefficient. It may become narrower.
Accordingly, in the polyimide film of the present invention, it is preferable to use one kind each of the flexible structure and the rigid structure diamine, the 4,4′-diaminodiphenyl ether as the flexible structure diamine, and p-phenylene as the rigid structure diamine. Particular preference is given to using diamines.

4,4’−ジアミノジフェニルエーテルは、屈曲部位であるエーテル結合が一つしかないため、上記二種の柔構造ジアミンの中間の性質を示す。即ち、貯蔵弾性率を低下させる効果を有するが、線膨張係数はそれほど増加させない。そのため、得られるポリイミドフィルムの物性バランスを取ることが容易となる。     Since 4,4'-diaminodiphenyl ether has only one ether bond which is a bending site, it exhibits an intermediate property between the two kinds of flexible diamines. That is, it has the effect of lowering the storage elastic modulus, but does not increase the linear expansion coefficient so much. Therefore, it becomes easy to balance the physical properties of the obtained polyimide film.

4,4’−ジアミノジフェニルエーテルの使用量は、全ジアミン成分の10モル%以上であることが好ましく、15モル%以上がより好ましい。これよりも少ないと、上記効果を十分に発現しない場合がある。一方、上限については、50モル%以下が好ましく、40モル%以下がより好ましい。これよりも多いと、剛構造ジアミンとの相乗効果で、得られるポリイミドフィルムの線膨張係数が小さくなり過ぎる場合がある。   The amount of 4,4'-diaminodiphenyl ether used is preferably 10 mol% or more, more preferably 15 mol% or more of the total diamine component. If it is less than this, the above-mentioned effects may not be sufficiently exhibited. On the other hand, about an upper limit, 50 mol% or less is preferable and 40 mol% or less is more preferable. If it is more than this, the linear expansion coefficient of the resulting polyimide film may become too small due to a synergistic effect with the rigid structure diamine.

本発明のポリイミドフィルムの原料モノマーとして使用し得る酸二無水物としては、ピロメリット酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’−ベンゾフェノンテトラカルボン酸二無水物、4,4’−オキシフタル酸二無水物、3,4’−オキシフタル酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)プロパン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)エタン二無水物、オキシジフタル酸二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、p−フェニレンビス(トリメリット酸モノエステル酸無水物)、エチレンビス(トリメリット酸モノエステル酸無水物)、ビスフェノールAビス(トリメリット酸モノエステル酸無水物)及びそれらの類似物等が挙げられる。これらを単独または、任意の割合の混合物が好ましく用い得る。   Examples of the acid dianhydride that can be used as a raw material monomer for the polyimide film of the present invention include pyromellitic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3 ′, 4,4. '-Biphenyltetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,2', 3,3'-biphenyltetracarboxylic dianhydride, 3,3 ', 4 , 4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3′-benzophenone tetracarboxylic dianhydride, 4,4′-oxyphthalic dianhydride, 3,4′-oxyphthalic dianhydride 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) propane 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphenyl) Methane dianhydride, bis (3,4-dicarboxyphenyl) ethane dianhydride, oxydiphthalic dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, p-phenylenebis (trimellitic acid mono Ester acid anhydride), ethylene bis (trimellitic acid monoester acid anhydride), bisphenol A bis (trimellitic acid monoester acid anhydride), and the like. These may be used alone or in any desired mixture.

ジアミンの場合と同様、酸二無水物についても、柔構造と剛構造とに分類し、前者を(a)工程で、後者を(c)工程でそれぞれ使用する。(a)工程で使用する酸二無水物としては、ベンゾフェノンテトラカルボン酸二無水物類、オキシフタル酸二無水物類、ビフェニルテトラカルボン酸二無水物類が好ましい例として挙げられる。この中でも、ベンゾフェノンテトラカルボン酸が好ましい例として挙げられる。(c)工程で使用する酸二無水物としては、ピロメリット酸二無水物が好ましい例として挙げられる。また、ベンゾフェノンテトラカルボン酸二無水物類、オキシフタル酸二無水物類、ビフェニルテトラカルボン酸二無水物類の好ましい使用量は、全酸二無水物に対して10〜50モル%、より好ましくは15〜45モル%、特に好ましくは20〜40モル%である。上記範囲よりも少ない場合、柔構造ジアミンだけでは、得られるポリイミドフィルムのガラス転移温度が高すぎたり、高温領域の貯蔵弾性率が十分に低下しない場合がある。逆に上記範囲よりも多い場合、ガラス転移温度が低すぎたり、高温領域の貯蔵弾性率が低すぎてフィルム製膜が困難になる場合がある。
また、ピロメリット酸二無水物を用いる場合、好ましい使用量は40〜100mol%、更に好ましくは50〜90mol%、特に好ましくは60〜80mol%である。ピロメリット酸二無水物をこの範囲で用いることにより、得られるポリイミドフィルムのガラス転移温度および高温領域の貯蔵弾性率を、使用または製膜に好適な範囲に保ちやすくなる。
As in the case of diamine, acid dianhydrides are also classified into a flexible structure and a rigid structure, and the former is used in step (a) and the latter is used in step (c). Preferred examples of the acid dianhydride used in the step (a) include benzophenone tetracarboxylic dianhydrides, oxyphthalic dianhydrides, and biphenyl tetracarboxylic dianhydrides. Among these, benzophenone tetracarboxylic acid is a preferred example. A preferred example of the acid dianhydride used in the step (c) is pyromellitic dianhydride. Moreover, the preferable usage-amount of benzophenone tetracarboxylic dianhydrides, oxyphthalic dianhydrides, and biphenyl tetracarboxylic dianhydrides is 10-50 mol% with respect to all the acid dianhydrides, More preferably, 15 It is -45 mol%, Most preferably, it is 20-40 mol%. When the amount is less than the above range, the glass transition temperature of the resulting polyimide film may be too high or the storage elastic modulus in the high temperature region may not be sufficiently lowered with the flexible diamine alone. On the other hand, when the amount is larger than the above range, the glass transition temperature may be too low, or the storage elastic modulus in the high temperature region may be too low to make film formation difficult.
Moreover, when using pyromellitic dianhydride, the preferable usage-amount is 40-100 mol%, More preferably, it is 50-90 mol%, Most preferably, it is 60-80 mol%. By using pyromellitic dianhydride in this range, it becomes easy to keep the glass transition temperature and the storage elastic modulus in the high temperature region of the resulting polyimide film in a range suitable for use or film formation.

本発明に係るポリイミドフィルムは、上記の範囲の中で芳香族酸二無水物および芳香族ジアミンの種類、配合比を決定して用いることにより、所望のガラス転移温度、高温領域の貯蔵弾性率を発現することができるが、使用用途である接着フィルムの加工方法、即ち熱ラミネート法で加工することを考えると、引張弾性率が7.0GPa以上であることが好ましく、7.5GPa以上であることがより好ましい。引張弾性率が上記値よりも小さいと、張力の影響を受けやすくなり、フレキシブル金属張積層板に残留応力が発生し、寸法変化の原因となる。また、フィルム厚を薄くした際、フィルムのコシが弱いため、搬送性や取扱い性に問題が生じる場合がある。引張弾性率の上限値としては、10GPa以下が好ましく、9.0GPa以下がより好ましい。上記値よりも大きいと、コシが強すぎて、取扱い性に問題が生じる場合がある。引張弾性率は、剛構造のジアミンまたは酸二無水物、もしくは4,4’−ジアミノジフェニルエーテルの割合を増やすことで値が大きくなり、割合を減らすことで逆に小さくなる。   The polyimide film according to the present invention has a desired glass transition temperature and a storage elastic modulus in a high temperature region by determining and using the types and blending ratios of the aromatic dianhydride and aromatic diamine within the above range. Although it can be expressed, considering the processing method of the adhesive film that is the intended use, that is, processing by the thermal laminating method, the tensile elastic modulus is preferably 7.0 GPa or more, and 7.5 GPa or more. Is more preferable. When the tensile elastic modulus is smaller than the above value, it is easily affected by the tension, and residual stress is generated in the flexible metal-clad laminate, causing a dimensional change. Further, when the film thickness is reduced, the stiffness of the film is weak, which may cause problems in transportability and handleability. As an upper limit of a tensile elasticity modulus, 10 GPa or less is preferable and 9.0 GPa or less is more preferable. If the value is larger than the above value, the stiffness may be too strong, which may cause a problem in handling. The tensile modulus increases as the proportion of the rigid diamine or dianhydride, or 4,4'-diaminodiphenyl ether increases, and decreases as the proportion decreases.

また、寸法変化への影響を考慮すると、前記ポリイミドフィルムの100℃〜200℃における線膨張係数が、13ppm/℃以下であることが好ましく、11ppm/℃以下であることがより好ましい。線膨張係数が上記値よりも大きい場合、接着フィルムにした際の線膨張係数が大きくなり過ぎてしまい、金属箔の線膨張係数との差が大きくなるため、寸法変化の原因となる。逆にポリイミドフィルムの線膨張係数が小さ過ぎると、やはり金属箔の線膨張係数の差が大きくなってしまう。そのため、線膨張係数の下限は5ppm/℃であることが好ましく、6ppm/℃であることがより好ましい。ポリイミドフィルムの線膨張係数が5〜13ppm/℃、好ましくは6〜11ppm/℃の範囲内であれば、接着フィルムの線膨張係数を金属箔のそれに近づけることが容易となる。ポリイミドフィルムの線膨張係数は、上記の通り、柔構造成分と剛構造成分の混合比により調整が可能である。
ポリアミド酸を合成するための好ましい溶媒は、ポリアミド酸を溶解する溶媒であればいかなるものも用いることができるが、アミド系溶媒すなわちN,N−ジメチルフォルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンなどであり、N,N−ジメチルフォルムアミド、N,N−ジメチルアセトアミドが特に好ましく用い得る。
また、摺動性、熱伝導性、導電性、耐コロナ性、ループスティフネス等のフィルムの諸特性を改善する目的でフィラーを添加することもできる。フィラーとしてはいかなるものを用いても良いが、好ましい例としてはシリカ、酸化チタン、アルミナ、窒化珪素、窒化ホウ素、リン酸水素カルシウム、リン酸カルシウム、雲母などが挙げられる。
Moreover, when the influence on a dimensional change is considered, it is preferable that the linear expansion coefficient in 100 to 200 degreeC of the said polyimide film is 13 ppm / degrees C or less, and it is more preferable that it is 11 ppm / degrees C or less. When the linear expansion coefficient is larger than the above value, the linear expansion coefficient when the adhesive film is formed becomes too large, and the difference from the linear expansion coefficient of the metal foil becomes large, which causes a dimensional change. On the other hand, if the linear expansion coefficient of the polyimide film is too small, the difference in the linear expansion coefficient of the metal foil is also increased. Therefore, the lower limit of the linear expansion coefficient is preferably 5 ppm / ° C, and more preferably 6 ppm / ° C. When the linear expansion coefficient of the polyimide film is in the range of 5 to 13 ppm / ° C., preferably 6 to 11 ppm / ° C., it becomes easy to bring the linear expansion coefficient of the adhesive film closer to that of the metal foil. As described above, the linear expansion coefficient of the polyimide film can be adjusted by the mixing ratio of the flexible structural component and the rigid structural component.
As the preferred solvent for synthesizing the polyamic acid, any solvent can be used as long as it dissolves the polyamic acid. However, amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N- Examples thereof include methyl-2-pyrrolidone, and N, N-dimethylformamide and N, N-dimethylacetamide can be particularly preferably used.
In addition, a filler can be added for the purpose of improving various film properties such as slidability, thermal conductivity, conductivity, corona resistance, and loop stiffness. Any filler may be used, but preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica and the like.

フィラーの粒子径は改質すべきフィルム特性と添加するフィラーの種類によって決定されるため、特に限定されるものではないが、一般的には平均粒径が0.05〜100μm、好ましくは0.1〜75μm、更に好ましくは0.1〜50μm、特に好ましくは0.1〜25μmである。粒子径がこの範囲を下回ると改質効果が現れにくくなり、この範囲を上回ると表面性を大きく損なったり、機械的特性が大きく低下したりすることがある。また、フィラーの添加部数についても改質すべきフィルム特性やフィラー粒子径などにより決定されるため特に限定されるものではない。一般的にフィラーの添加量はポリイミド100重量部に対して0.01〜100重量部、好ましくは0.01〜90重量部、更に好ましくは0.02〜80重量部である。フィラー添加量がこの範囲を下回るとフィラーによる改質効果が現れにくく、この範囲を上回るとフィルムの機械的特性が大きく損なわれる可能性がある。フィラーの添加は、
1.重合前または途中に重合反応液に添加する方法
2.重合完了後、3本ロールなどを用いてフィラーを混錬する方法
3.フィラーを含む分散液を用意し、これをポリアミド酸有機溶媒溶液に混合する方法
などいかなる方法を用いてもよいが、フィラーを含む分散液をポリアミド酸溶液に混合する方法、特に製膜直前に混合する方法が製造ラインのフィラーによる汚染が最も少なくすむため、好ましい。フィラーを含む分散液を用意する場合、ポリアミド酸の重合溶媒と同じ溶媒を用いるのが好ましい。また、フィラーを良好に分散させ、また分散状態を安定化させるために分散剤、増粘剤等をフィルム物性に影響を及ぼさない範囲内で用いることもできる。
これらポリアミド酸溶液からポリイミドフィルムを製造する方法については従来公知の方法を用いることができる。この方法には熱イミド化法と化学イミド化法が挙げられる。熱イミド化法は、脱水閉環剤等を作用させずに加熱だけでイミド化反応を進行させる方法であり、化学イミド化法は、ポリアミド酸溶液に、化学的転化剤及び/又は触媒とを作用させてイミド化を促進する方法である。
The particle size of the filler is not particularly limited because it is determined by the film characteristics to be modified and the kind of filler to be added, but generally the average particle size is 0.05 to 100 μm, preferably 0.1. It is -75 micrometers, More preferably, it is 0.1-50 micrometers, Most preferably, it is 0.1-25 micrometers. If the particle diameter is below this range, the modification effect is difficult to appear. If the particle diameter is above this range, the surface properties may be greatly impaired or the mechanical properties may be greatly deteriorated. Further, the number of added parts of the filler is not particularly limited because it is determined by the film properties to be modified, the filler particle diameter, and the like. Generally, the addition amount of the filler is 0.01 to 100 parts by weight, preferably 0.01 to 90 parts by weight, and more preferably 0.02 to 80 parts by weight with respect to 100 parts by weight of the polyimide. If the amount of filler added is less than this range, the effect of modification by the filler hardly appears, and if it exceeds this range, the mechanical properties of the film may be greatly impaired. Addition of filler
1. 1. A method of adding to a polymerization reaction solution before or during polymerization 2. A method of kneading fillers using three rolls after the completion of polymerization. Any method such as preparing a dispersion containing filler and mixing it with a polyamic acid organic solvent solution may be used, but a method of mixing a dispersion containing filler with a polyamic acid solution, particularly immediately before film formation. This method is preferable because the contamination by the filler in the production line is minimized. When preparing a dispersion containing a filler, it is preferable to use the same solvent as the polymerization solvent for the polyamic acid. Further, in order to disperse the filler satisfactorily and stabilize the dispersion state, a dispersant, a thickener and the like can be used within a range not affecting the film physical properties.
A conventionally well-known method can be used about the method of manufacturing a polyimide film from these polyamic-acid solutions. This method includes a thermal imidization method and a chemical imidization method. The thermal imidization method is a method in which an imidization reaction proceeds only by heating without causing a dehydrating ring-closing agent or the like to act. The chemical imidization method acts by applying a chemical conversion agent and / or a catalyst to a polyamic acid solution. This is a method for promoting imidization.

ここで、化学転化剤とは、ポリアミド酸に対する脱水閉環剤を意味し、例えば、脂肪族酸無水物、芳香族酸無水物、N,N’− ジアルキルカルボジイミド、ハロゲン化低級脂肪族、ハロゲン化低級脂肪酸無水物、アリールホスホン酸ジハロゲン化物、チオニルハロゲン化物、またはそれら2種以上の混合物が挙げられる。中でも入手の容易性、コストの点から、無水酢酸、無水プロピオン酸、無水ラク酸等の脂肪族酸無水物、またはそれら2種以上の混合物を好ましく用いることができる。
また、触媒とはポリアミド酸に対する脱水閉環作用を促進する効果を有する成分を意味し、例えば、脂肪族第三級アミン、芳香族第三級アミン、複素環式第三級アミン等が用いられる。中でも触媒としての反応性の点から、複素環式第三級アミンから選択されるものが特に好ましく用いられる。具体的にはキノリン、イソキノリン、β−ピコリン、ピリジン等が好ましく用いられる。
どちらの方法を用いてフィルムを製造してもかまわないが、化学イミド化法によるイミド化の方が本発明に好適に用いられる諸特性を有したポリイミドフィルムを得やすい傾向にある。
また、本発明において特に好ましいポリイミドフィルムの製造工程は、
a) 有機溶剤中で芳香族ジアミンと芳香族テトラカルボン酸二無水物を反応させてポリアミド酸溶液を得る工程、
b)上記ポリアミド酸溶液を含む製膜ドープを支持体上に流延する工程、
c)支持体上で加熱した後、支持体からゲルフィルムを引き剥がす工程、
d)更に加熱して、残ったアミック酸をイミド化し、かつ乾燥させる工程、
を含むことが好ましい。
上記工程において無水酢酸等の酸無水物に代表される脱水剤と、イソキノリン、β−ピコリン、ピリジン等の第三級アミン類等に代表されるイミド化触媒とを含む硬化剤を用いても良い。
以下本発明の好ましい一形態、化学イミド化法を一例にとり、ポリイミドフィルムの製造工程を説明する。ただし、本発明は以下の例により限定されるものではない。製膜条件や加熱条件は、ポリアミド酸の種類、フィルムの厚さ等により、変動し得る。
脱水剤及びイミド化触媒を低温でポリアミド酸溶液中に混合して製膜ドープを得る。引き続いてこの製膜ドープをガラス板、アルミ箔、エンドレスステンレスベルト、ステンレスドラムなどの支持体上にフィルム状にキャストし、支持体上で80℃〜200℃、好ましくは100℃〜180℃の温度領域で加熱することで脱水剤及びイミド化触媒を活性化することによって部分的に硬化及び/または乾燥した後支持体から剥離してポリアミド酸フィルム(以下、ゲルフィルムという)を得る。
ゲルフィルムは、ポリアミド酸からポリイミドへの硬化の中間段階にあり、自己支持性を有し、(式2)
(A−B)×100/B・・・・(式2)
(式2)中
A,Bは以下のものを表す。
A:ゲルフィルムの重量
B:ゲルフィルムを450℃で20分間加熱した後の重量
から算出される揮発分含量は5〜500重量%の範囲、好ましくは5〜200重量%、より好ましくは5〜150重量%の範囲にある。この範囲のフィルムを用いることが好適であり、焼成過程でフィルム破断、乾燥ムラによるフィルムの色調ムラ、特性ばらつき等の不具合が起こることがある。
脱水剤の好ましい量は、ポリアミド酸中のアミド酸ユニット1モルに対して、0.5〜5モル、好ましくは1.0〜4モルである。
また、イミド化触媒の好ましい量はポリアミド酸中のアミド酸ユニット1モルに対して、0.05〜3モル、好ましくは0.2〜2モルである。
脱水剤及びイミド化触媒が上記範囲を下回ると化学的イミド化が不十分で、焼成途中で破断したり、機械的強度が低下したりすることがある。また、これらの量が上記範囲を上回ると、イミド化の進行が早くなりすぎ、フィルム状にキャストすることが困難となることがあるため好ましくない。
Here, the chemical conversion agent means a dehydrating ring-closing agent for polyamic acid, for example, aliphatic acid anhydride, aromatic acid anhydride, N, N′-dialkylcarbodiimide, halogenated lower aliphatic, halogenated lower Examples include fatty acid anhydrides, arylphosphonic acid dihalides, thionyl halides, or mixtures of two or more thereof. Among these, from the viewpoint of easy availability and cost, aliphatic acid anhydrides such as acetic anhydride, propionic anhydride, and lactic acid anhydride, or a mixture of two or more thereof can be preferably used.
The catalyst means a component having an effect of promoting the dehydration ring-closing action on the polyamic acid. For example, an aliphatic tertiary amine, an aromatic tertiary amine, a heterocyclic tertiary amine or the like is used. Among them, those selected from heterocyclic tertiary amines are particularly preferably used from the viewpoint of reactivity as a catalyst. Specifically, quinoline, isoquinoline, β-picoline, pyridine and the like are preferably used.
Either method may be used to produce the film, but the imidization by the chemical imidization method tends to easily obtain a polyimide film having various characteristics suitably used in the present invention.
In addition, the production process of the polyimide film particularly preferable in the present invention is as follows.
a) reacting an aromatic diamine and an aromatic tetracarboxylic dianhydride in an organic solvent to obtain a polyamic acid solution;
b) casting a film-forming dope containing the polyamic acid solution on a support;
c) a step of peeling the gel film from the support after heating on the support;
d) further heating to imidize and dry the remaining amic acid,
It is preferable to contain.
In the above step, a curing agent containing a dehydrating agent typified by an acid anhydride such as acetic anhydride and an imidation catalyst typified by a tertiary amine such as isoquinoline, β-picoline or pyridine may be used. .
In the following, a preferred embodiment of the present invention, a chemical imidization method, is taken as an example to describe the process for producing a polyimide film. However, the present invention is not limited to the following examples. The film forming conditions and heating conditions can vary depending on the type of polyamic acid, the thickness of the film, and the like.
A film forming dope is obtained by mixing a dehydrating agent and an imidization catalyst in a polyamic acid solution at a low temperature. Subsequently, this film-forming dope is cast into a film on a support such as a glass plate, an aluminum foil, an endless stainless steel belt or a stainless drum, and the temperature on the support is 80 ° C. to 200 ° C., preferably 100 ° C. to 180 ° C. By heating in the region, the dehydrating agent and imidization catalyst are activated to partially cure and / or dry and then peel from the support to obtain a polyamic acid film (hereinafter referred to as a gel film).
The gel film is in the intermediate stage of curing from polyamic acid to polyimide and has self-supporting properties (Formula 2)
(AB) × 100 / B (Equation 2)
In (Formula 2), A and B represent the following.
A: Weight of gel film B: The volatile content calculated from the weight after heating the gel film at 450 ° C. for 20 minutes is in the range of 5 to 500% by weight, preferably 5 to 200% by weight, more preferably 5 to 5%. It is in the range of 150% by weight. It is preferable to use a film in this range, and problems such as film breakage, uneven film color due to drying unevenness, and characteristic variations may occur during the baking process.
The preferable amount of the dehydrating agent is 0.5 to 5 mol, preferably 1.0 to 4 mol, relative to 1 mol of the amic acid unit in the polyamic acid.
Moreover, the preferable quantity of an imidation catalyst is 0.05-3 mol with respect to 1 mol of amic acid units in a polyamic acid, Preferably it is 0.2-2 mol.
If the dehydrating agent and the imidization catalyst are below the above ranges, chemical imidization may be insufficient, and may break during firing or mechanical strength may decrease. Moreover, when these amounts exceed the above range, the progress of imidization becomes too fast, and it may be difficult to cast into a film, which is not preferable.

前記ゲルフィルムの端部を固定して硬化時の収縮を回避して乾燥し、水、残留溶媒、残存転化剤及び触媒を除去し、そして残ったアミド酸を完全にイミド化して、本発明のポリイミドフィルムが得られる。
この時、最終的に400〜650℃の温度で5〜400秒加熱するのが好ましい。この温度より高い及び/または時間が長いと、フィルムの熱劣化が起こり問題が生じることがある。逆にこの温度より低い及び/または時間が短いと所定の効果が発現しないことがある。
また、フィルム中に残留している内部応力を緩和させるためにフィルムを搬送するに必要最低限の張力下において加熱処理をすることもできる。この加熱処理はフィルム製造工程において行ってもよいし、また、別途この工程を設けても良い。加熱条件はフィルムの特性や用いる装置に応じて変動するため一概に決定することはできないが、一般的には200℃以上500℃以下、好ましくは250℃以上500℃以下、特に好ましくは300℃以上450℃以下の温度で、1〜300秒、好ましくは2〜250秒、特に好ましくは5〜200秒程度の熱処理により内部応力を緩和することができる。
また、最終的に熱ラミネート法で加工する場合の、張力ならびにラミネートによる延伸の影響をキャンセルするため、搬送方向(MD方向)に分子配向するようにポリイミドフィルムを製膜することができる。ポリイミドフィルムをMD方向に配向させる手段としては、
1)ゲルフィルムをMD方向に延伸する
2)ゲルフィルムのTD方向張力が実質的に無張力となるように固定して搬送する工程を、フィルム焼成工程の一部に導入する
等が挙げられる。ここで、TD方向の張力が実質的に無張力であるとは、フィルムの自重による張力以外に、機械的なハンドリングによる引っ張り張力がTD方向にかからないことを意味している。
The end of the gel film is fixed to avoid shrinkage during curing, water, residual solvent, residual conversion agent and catalyst are removed, and the remaining amic acid is completely imidized to obtain the present invention. A polyimide film is obtained.
At this time, it is preferable to finally heat at a temperature of 400 to 650 ° C. for 5 to 400 seconds. Above this temperature and / or for a long time, the film may suffer from thermal degradation and may cause problems. Conversely, if the temperature is lower than this temperature and / or the time is shorter, the predetermined effect may not be exhibited.
Moreover, in order to relieve the internal stress remaining in the film, heat treatment can be performed under the minimum tension necessary for transporting the film. This heat treatment may be performed in the film manufacturing process, or may be provided separately. The heating conditions vary depending on the characteristics of the film and the apparatus used, and therefore cannot be determined in general. However, it is generally 200 ° C. or higher and 500 ° C. or lower, preferably 250 ° C. or higher and 500 ° C. or lower, particularly preferably 300 ° C. or higher. The internal stress can be relaxed by heat treatment at a temperature of 450 ° C. or lower for 1 to 300 seconds, preferably 2 to 250 seconds, particularly preferably 5 to 200 seconds.
Moreover, in order to cancel the influence of the tension | tensile_strength and the extending | stretching by lamination at the time of finally processing by a thermal laminating method, a polyimide film can be formed so that a molecular orientation may be carried out in a conveyance direction (MD direction). As means for orienting the polyimide film in the MD direction,
1) Stretching the gel film in the MD direction 2) Introducing a step of fixing and transporting the gel film so that the TD direction tension is substantially tensionless is introduced into a part of the film baking step. Here, the fact that the tension in the TD direction is substantially tensionless means that the tensile tension due to mechanical handling is not applied in the TD direction other than the tension due to the weight of the film.

本発明に係る接着フィルムの接着層に含有される熱可塑性ポリイミドとしては、熱可塑性ポリイミド、熱可塑性ポリアミドイミド、熱可塑性ポリエーテルイミド、熱可塑性ポリエステルイミド等を好適に用いることができる。中でも、低吸湿特性の点から、熱可塑性ポリエステルイミドが特に好適に用いられる。   As the thermoplastic polyimide contained in the adhesive layer of the adhesive film according to the present invention, thermoplastic polyimide, thermoplastic polyamideimide, thermoplastic polyetherimide, thermoplastic polyesterimide and the like can be suitably used. Among these, thermoplastic polyesterimide is particularly preferably used from the viewpoint of low moisture absorption characteristics.

また、既存の装置でラミネートが可能であり、かつ得られる金属張積層板の耐熱性を損なわないという点から考えると、本発明における熱可塑性ポリイミドは、150〜300℃の範囲にガラス転移温度(Tg)を有していることが好ましい。更に、吸湿半田耐性も考慮に入れると、Tgは230℃以上であることが好ましく、240℃以上であることがより好ましい。なお、Tgは動的粘弾性測定装置(DMA)により測定した貯蔵弾性率の変曲点の値により求めることができる。   In view of the fact that lamination with an existing apparatus is possible and the heat resistance of the resulting metal-clad laminate is not impaired, the thermoplastic polyimide in the present invention has a glass transition temperature (150 to 300 ° C.). Tg) is preferred. Further, taking into account the hygroscopic solder resistance, Tg is preferably 230 ° C. or higher, and more preferably 240 ° C. or higher. In addition, Tg can be calculated | required from the value of the inflexion point of the storage elastic modulus measured with the dynamic viscoelasticity measuring apparatus (DMA).

熱可塑性ポリイミドの前駆体であるポリアミド酸についても、特に限定されるわけではなく、公知のあらゆるポリアミド酸を用いることができる。その製造に関しても、公知の原料や反応条件等を用いることができる(例えば、後述する実施例参照)。また、必要に応じて無機あるいは有機物のフィラーを添加しても良い。   The polyamic acid that is a precursor of the thermoplastic polyimide is not particularly limited, and any known polyamic acid can be used. Also for the production, known raw materials, reaction conditions, and the like can be used (for example, see Examples described later). Moreover, you may add an inorganic or organic filler as needed.

本発明に係る接着フィルムは、上記ポリイミドフィルムの少なくとも片面に熱可塑性ポリイミドを含有する接着層を設けることにより得られる。接着フィルムの製造方法としては、基材フィルムとなるポリイミドフィルムに接着層を形成する方法、又は接着層をシート状に成形し、これを上記基材フィルムに貼り合わせる方法等が好適に例示され得る。このうち、前者の方法を採る場合、接着層に含有される熱可塑性ポリイミドの前駆体であるポリアミド酸を完全にイミド化してしまうと、有機溶媒への溶解性が低下する場合があることから、基材フィルム上に上記接着層を設けることが困難となることがある。従って、上記観点から、熱可塑性ポリイミドの前駆体であるポリアミド酸を含有する溶液を調製して、これを基材フィルムに塗布し、次いでイミド化する手順を採った方がより好ましい。この時のイミド化の方法としては、熱キュア法若しくはケミカルキュア法のどちらも用いることができる。   The adhesive film according to the present invention is obtained by providing an adhesive layer containing thermoplastic polyimide on at least one surface of the polyimide film. As a method for producing an adhesive film, a method of forming an adhesive layer on a polyimide film to be a base film, or a method of forming an adhesive layer into a sheet and bonding it to the base film can be suitably exemplified. . Among these, when taking the former method, if the polyamic acid that is the precursor of the thermoplastic polyimide contained in the adhesive layer is completely imidized, the solubility in an organic solvent may decrease, It may be difficult to provide the adhesive layer on the base film. Therefore, from the above viewpoint, it is more preferable to prepare a solution containing polyamic acid which is a precursor of thermoplastic polyimide, apply this to a base film, and then imidize. As the imidization method at this time, either a thermal cure method or a chemical cure method can be used.

いずれのイミド化手順を採る場合も、イミド化を効率良く進めることができるという観点から、その時の温度は、(熱可塑性ポリイミドのガラス転移温度−100℃)〜(ガラス転移温度+200℃)の範囲内に設定することが好ましく、(熱可塑性ポリイミドのガラス転移温度−50℃)〜(ガラス転移温度+150℃)の範囲内に設定することがより好ましい。熱キュアの温度は高い方がイミド化が起こりやすいため、キュア速度を速くすることができ、生産性の面で好ましい。但し、高すぎると熱可塑性ポリイミドが熱分解を起こすことがある。一方、熱キュアの温度が低すぎると、ケミカルキュアでもイミド化が進みにくく、キュア工程に要する時間が長くなってしまう。   In any of the imidization procedures, the temperature at that time is in the range of (glass transition temperature of thermoplastic polyimide−100 ° C.) to (glass transition temperature + 200 ° C.) from the viewpoint that imidization can be efficiently advanced. It is preferable to set within the range of (Glass transition temperature of thermoplastic polyimide−50 ° C.) to (Glass transition temperature + 150 ° C.). The higher the temperature of the heat curing, the easier the imidization occurs, so the curing speed can be increased, which is preferable in terms of productivity. However, if it is too high, the thermoplastic polyimide may thermally decompose. On the other hand, if the temperature of the heat curing is too low, imidization is difficult to proceed even with chemical curing, and the time required for the curing process becomes long.

イミド化時間に関しては、実質的にイミド化および乾燥が完結するに十分な時間を取ればよく、一義的に限定されるものではないが、一般的には1〜600秒程度の範囲で適宜設定される。また、接着層の熔融流動性を改善する目的で、意図的にイミド化率を低くする及び/又は溶媒を残留させることもできる。   As for the imidization time, it suffices to take a sufficient time for the imidization and drying to be substantially completed, and although it is not uniquely limited, generally it is appropriately set within a range of about 1 to 600 seconds. Is done. Moreover, in order to improve the melt fluidity of the adhesive layer, it is possible to intentionally lower the imidization rate and / or leave the solvent.

イミド化する際にかける張力としては、1kg/m〜15kg/mの範囲内とすることが好ましく、5kg/m〜10kg/mの範囲内とすることが特に好ましい。張力が上記範囲より小さい場合、フィルム搬送時にたるみが生じ、均一に巻き取れない等の問題が生じることがある。逆に上記範囲よりも大きい場合、接着フィルムに強い張力がかかった状態で高温まで加熱されるため、引張弾性率の高いコアフィルムや、MD配向させたコアフィルムのコアフィルムを用いたとしても接着フィルムに熱応力が発生し、寸法変化に影響を与えることがある。   The tension applied during imidization is preferably in the range of 1 kg / m to 15 kg / m, and particularly preferably in the range of 5 kg / m to 10 kg / m. When the tension is smaller than the above range, sagging may occur when the film is conveyed, and problems such as inability to wind up uniformly may occur. On the other hand, if it is larger than the above range, the adhesive film is heated to a high temperature with a strong tension applied, so even if a core film with a high tensile elastic modulus or a core film of MD oriented core film is used. Thermal stress is generated on the film, which may affect dimensional changes.

上記ポリアミド酸溶液を基材フィルムに流延、塗布する方法については特に限定されず、ダイコーター、リバースコーター、ブレードコーター等、既存の方法を使用することができる。また、前記ポリアミド酸溶液には、用途に応じて、例えば、フィラーのような他の材料を含んでもよい。   The method for casting and applying the polyamic acid solution to the base film is not particularly limited, and existing methods such as a die coater, a reverse coater, and a blade coater can be used. In addition, the polyamic acid solution may contain other materials such as a filler, depending on the application.

接着フィルム各層の厚み構成については、用途に応じた総厚みになるように適宜調整すれば良い。ただし、熱ラミネート時の熱歪みの発生を抑制するという観点から、200〜300℃における接着フィルムの熱膨張係数が金属箔に近くなるように設定することが好ましい。具体的には、金属箔の熱膨張係数の±10ppm以内とすることが好ましく、±5ppm以内とすることがより好ましい。   What is necessary is just to adjust suitably about the thickness structure of each layer of an adhesive film so that it may become the total thickness according to a use. However, it is preferable to set the thermal expansion coefficient of the adhesive film at 200 to 300 ° C. to be close to that of the metal foil from the viewpoint of suppressing the occurrence of thermal strain during thermal lamination. Specifically, it is preferably within ± 10 ppm, more preferably within ± 5 ppm of the thermal expansion coefficient of the metal foil.

また、必要に応じて、接着層を設ける前、もしくは接着層を設けた後にコロナ処理、プラズマ処理、カップリング処理等の各種表面処理をコアフィルム表面に施しても良い。   Further, if necessary, various surface treatments such as corona treatment, plasma treatment, and coupling treatment may be performed on the core film surface before or after providing the adhesive layer.

本発明に係るフレキシブル金属張積層板は、上記接着フィルムに金属箔を貼り合わせることにより得られる。使用する金属箔としては特に限定されるものではないが、電子機器・電気機器用途に本発明のフレキシブル金属張積層板を用いる場合には、例えば、銅若しくは銅合金、ステンレス鋼若しくはその合金、ニッケル若しくはニッケル合金(42合金も含む)、アルミニウム若しくはアルミニウム合金からなる箔を挙げることができる。一般的なフレキシブル金属張積層板では、圧延銅箔、電解銅箔といった銅箔が多用されるが、本発明においても好ましく用いることができる。なお、これらの金属箔の表面には、防錆層や耐熱層あるいは接着層が塗布されていてもよい。   The flexible metal-clad laminate according to the present invention can be obtained by bonding a metal foil to the adhesive film. The metal foil to be used is not particularly limited, but when the flexible metal-clad laminate of the present invention is used for electronic equipment / electric equipment, for example, copper or copper alloy, stainless steel or its alloy, nickel Alternatively, a foil made of a nickel alloy (including 42 alloy), aluminum, or an aluminum alloy can be used. In general flexible metal-clad laminates, copper foil such as rolled copper foil and electrolytic copper foil is frequently used, but it can also be preferably used in the present invention. In addition, the antirust layer, the heat-resistant layer, or the contact bonding layer may be apply | coated to the surface of these metal foil.

本発明において、上記金属箔の厚みについては特に限定されるものではなく、その用途に応じて、十分な機能が発揮できる厚みであればよい。接着フィルムと金属箔の貼り合わせ方法としては、例えば、一対以上の金属ロールを有する熱ロールラミネート装置或いはダブルベルトプレス(DBP)による連続処理を用いることができる。中でも、装置構成が単純であり保守コストの面で有利であるという点から、一対以上の金属ロールを有する熱ロールラミネート装置を用いることが好ましい。また、一対以上の金属ロールを有する熱ロールラミネート装置で金属箔と貼り合わせた場合に特に寸法変化が発生しやすいことから、本発明のポリイミドフィルムおよび接着フィルムは、熱ロールラミネート装置で張り合わせた場合に顕著な効果を発現する。ここでいう「一対以上の金属ロールを有する熱ロールラミネート装置」とは、材料を加熱加圧するための金属ロールを有している装置であればよく、その具体的な装置構成は特に限定されるものではない。   In the present invention, the thickness of the metal foil is not particularly limited, and may be any thickness as long as a sufficient function can be exhibited depending on the application. As a method for bonding the adhesive film and the metal foil, for example, a heat roll laminating apparatus having a pair of metal rolls or a continuous process using a double belt press (DBP) can be used. Among these, it is preferable to use a hot roll laminating apparatus having a pair of metal rolls because the apparatus configuration is simple and advantageous in terms of maintenance cost. In addition, since the dimensional change is particularly likely to occur when bonded to a metal foil with a hot roll laminating apparatus having a pair of metal rolls, the polyimide film and adhesive film of the present invention are bonded with a hot roll laminating apparatus. Has a remarkable effect. The “heat roll laminating apparatus having a pair of metal rolls” herein may be an apparatus having a metal roll for heating and pressurizing a material, and the specific apparatus configuration is particularly limited. It is not a thing.

上記熱ラミネートを実施する手段の具体的な構成は特に限定されるものではないが、得られる積層板の外観を良好なものとするために、加圧面と金属箔との間に保護材料を配置することが好ましい。保護材料としては、熱ラミネート工程の加熱温度に耐えうる材料、即ち、非熱可塑性ポリイミドフィルム等の耐熱性プラスチック、銅箔、アルミニウム箔、SUS箔等の金属箔等が挙げられる。中でも、耐熱性、再使用性等のバランスが優れる点から、非熱可塑性ポリイミドフィルムもしくは、ラミネート温度よりも50℃以上高い熱可塑性ポリイミドからなるフィルムが好ましく用いられる。また、厚みが薄いとラミネート時の緩衝並びに保護の役目を十分に果たさなくなるため、非熱可塑性ポリイミドフィルムの厚みは75μm以上であることが好ましい。
また、この保護材料は必ずしも1層である必要はなく、異なる特性を有する2層以上の多層構造でも良い。
The specific configuration of the means for carrying out the thermal lamination is not particularly limited, but a protective material is disposed between the pressing surface and the metal foil in order to improve the appearance of the resulting laminate. It is preferable to do. Examples of the protective material include materials that can withstand the heating temperature in the heat laminating process, that is, heat-resistant plastics such as non-thermoplastic polyimide films, copper foils, aluminum foils, metal foils such as SUS foils, and the like. Among these, a non-thermoplastic polyimide film or a film made of thermoplastic polyimide that is 50 ° C. higher than the laminating temperature is preferably used from the viewpoint of excellent balance between heat resistance and reusability. In addition, if the thickness is small, the buffering and protecting functions are not sufficiently fulfilled during lamination, so the thickness of the non-thermoplastic polyimide film is preferably 75 μm or more.
Further, the protective material does not necessarily have to be a single layer, and may have a multilayer structure of two or more layers having different characteristics.

また、ラミネート温度が高温の場合、保護材料をそのままラミネートに用いると、急激な熱膨張により、得られるフレキシブル金属張積層板の外観や寸法安定性が充分でない場合がある。従って、ラミネート前に保護材料に予備加熱を施した方が好ましい。予備加熱の手段としては、保護材料を加熱ロールに抱かせるなどして接触させる方法が挙げられる。接触時間としては1秒以上が好ましく、更に好ましくは3秒以上接触させることが好ましい。保護材料の予備加熱を行うことにより、ラミネートする際には保護材料の熱膨張が終了しているため、フレキシブル金属張積層板の外観や寸法特性に影響を与えることが抑制される。接触時間が上記よりも短い場合、保護材料の熱膨張が終了しないままラミネートが行われるため、ラミネート時に保護材料の急激な熱膨張が起こり、得られるフレキシブル金属張積層板の外観や寸法特性が悪化することがある。保護材料を加熱ロールに抱かせる距離については特に限定されず、加熱ロールの径と上記接触時間から適宜調整すれば良い。   Further, when the laminate temperature is high, if the protective material is used as it is for the laminate, the appearance and dimensional stability of the resulting flexible metal-clad laminate may not be sufficient due to rapid thermal expansion. Therefore, it is preferable to preheat the protective material before lamination. Examples of the preheating means include a method of bringing a protective material into contact with a heating roll. The contact time is preferably 1 second or longer, more preferably 3 seconds or longer. By preheating the protective material, since the thermal expansion of the protective material is completed when laminating, the appearance and dimensional characteristics of the flexible metal-clad laminate are suppressed. When the contact time is shorter than the above, since the lamination is performed without the thermal expansion of the protective material, the thermal expansion of the protective material occurs during the lamination, and the appearance and dimensional characteristics of the resulting flexible metal-clad laminate are deteriorated. There are things to do. The distance at which the protective material is held on the heating roll is not particularly limited, and may be appropriately adjusted from the diameter of the heating roll and the contact time.

上記熱ラミネート手段における被積層材料の加熱方式は特に限定されるものではなく、例えば、熱循環方式、熱風加熱方式、誘導加熱方式等、所定の温度で加熱し得る従来公知の方式を採用した加熱手段を用いることができる。同様に、上記熱ラミネート手段における被積層材料の加圧方式も特に限定されるものではなく、例えば、油圧方式、空気圧方式、ギャップ間圧力方式等、所定の圧力を加えることができる従来公知の方式を採用した加圧手段を用いることができる。   The heating method of the material to be laminated in the heat laminating means is not particularly limited. For example, heating using a conventionally known method capable of heating at a predetermined temperature, such as a heat circulation method, a hot air heating method, an induction heating method, or the like. Means can be used. Similarly, the pressurization method of the material to be laminated in the heat laminating means is not particularly limited, and a conventionally known method capable of applying a predetermined pressure such as a hydraulic method, a pneumatic method, a gap pressure method, etc. The pressurizing means adopting can be used.

上記熱ラミネート工程における加熱温度、すなわちラミネート温度は、接着フィルムのガラス転移温度(Tg)+50℃以上の温度であることが好ましく、接着フィルムのTg+100℃以上がより好ましい。Tg+50℃以上の温度であれば、接着フィルムと金属箔とを良好に熱ラミネートすることができる。また、Tg+100℃以上であれば、ラミネート速度を上昇させてその生産性をより向上させることができる。特に、本発明の接着フィルムのコアとして使用しているポリイミドフィルムは、Tg+100℃以上でラミネートを行った場合に、熱応力の緩和が有効に作用するように設計しているため、寸法安定性に優れたフレキシブル金属張積層板を生産性良く得られる。   The heating temperature in the thermal laminating step, that is, the laminating temperature, is preferably a glass transition temperature (Tg) of the adhesive film + 50 ° C. or higher, and more preferably Tg + 100 ° C. or higher of the adhesive film. If it is Tg + 50 degreeC or more temperature, an adhesive film and metal foil can be heat-laminated favorably. Moreover, if it is Tg + 100 degreeC or more, the lamination speed | rate can be raised and the productivity can be improved more. In particular, the polyimide film used as the core of the adhesive film of the present invention is designed to effectively relax thermal stress when laminated at Tg + 100 ° C. or higher. An excellent flexible metal-clad laminate can be obtained with high productivity.

ここで、熱ラミネート時の熱応力の緩和機構について説明する。接着フィルムの接着層に熱可塑性ポリイミドが含有される場合、ラミネート温度が必然的に高くなるため、ラミネート直後のフレキシブル金属張積層板も非常に高温となっている。ここで、接着フィルムのコア層の貯蔵弾性率が一定以上の値にまで低下していると、接着層と合わせて接着フィルム全体が軟化する(但し、自己支持性は保っている)。その際、熱ラミネート時の張力、圧力によって積層板に蓄積された熱応力が緩和されるのである。   Here, the thermal stress relaxation mechanism during thermal lamination will be described. When thermoplastic polyimide is contained in the adhesive layer of the adhesive film, the laminating temperature is inevitably high, so the flexible metal-clad laminate immediately after laminating is also very hot. Here, when the storage elastic modulus of the core layer of the adhesive film is lowered to a certain value or more, the entire adhesive film is softened together with the adhesive layer (however, the self-supporting property is maintained). At that time, the thermal stress accumulated in the laminated plate is relieved by the tension and pressure at the time of thermal lamination.

より効率的に熱応力を緩和する場合、積層板にかかる張力を最小限に留めた方が好ましい。そのため、ラミネート直後のフレキシブル金属張積層板は、保護材料を配したままの状態で加熱ロールに抱かせるなどして接触させ、張力の影響を受けないようにした状態で熱ラミネート時に発生した残留歪みを緩和させ、その後加熱ロールから離すようにした方が好ましい。加熱ロールへの接触時間は0.1秒以上が好ましく、より好ましくは0.2秒以上、0.5秒以上が特に好ましい。接触時間が上記範囲より短い場合、緩和効果が十分に発生しない場合がある。接触時間の上限は、5秒以下が好ましい。5秒以上接触させても緩和効果がより発現するわけではなく、ラミネート速度の低下やラインの取り回しに制約が生じるため好ましくない。   In order to relieve the thermal stress more efficiently, it is preferable to keep the tension applied to the laminated plate to a minimum. For this reason, the flexible metal-clad laminate immediately after lamination is brought into contact with the heating roll while the protective material is still placed, and the residual strain generated during thermal lamination in a state where it is not affected by tension. It is preferable to relax and then separate from the heating roll. The contact time with the heating roll is preferably 0.1 seconds or more, more preferably 0.2 seconds or more, and particularly preferably 0.5 seconds or more. When the contact time is shorter than the above range, the relaxation effect may not be sufficiently generated. The upper limit of the contact time is preferably 5 seconds or less. Even if the contact is made for 5 seconds or more, the relaxation effect does not appear more and it is not preferable because the lowering of the laminating speed and the restriction of the line handling occur.

また、ラミネート後に加熱ロールに接触させて徐冷を行ったとしても、依然としてフレキシブル金属張積層板と室温との差は大きく、また、残留歪みを緩和しきれていない場合もある。そのため、加熱ロールに接触させて徐冷した後のフレキシブル金属張積層板は、保護材料を配したままの状態で後加熱工程を通した方が好ましい。この際の張力は1〜10N/cmの範囲とすることが好ましい。また、後加熱の雰囲気温度は(ラミネート温度−200℃)〜(ラミネート温度+100℃)の範囲とすることが好ましい。ここでいう「雰囲気温度」とは、フレキシブル金属張積層板の両面に密着させている保護材料の外表面温度をいう。実際のフレキシブル金属張積層板の温度は、保護材料の厚みによって多少変化するが、保護材料表面の温度を上記範囲内にすれば、後加熱の効果を発現させることが可能である。保護材料の外表面温度測定は、熱電対や温度計などを用いて行うことができる。   Moreover, even if it is brought into contact with a heating roll after lamination and subjected to slow cooling, the difference between the flexible metal-clad laminate and room temperature is still large, and the residual strain may not be alleviated. Therefore, the flexible metal-clad laminate after being brought into contact with a heating roll and gradually cooled is preferably passed through a post-heating step with the protective material still disposed. The tension at this time is preferably in the range of 1 to 10 N / cm. Moreover, it is preferable to make the atmospheric temperature of post-heating into the range of (lamination temperature -200 degreeC)-(lamination temperature +100 degreeC). The “atmosphere temperature” here refers to the outer surface temperature of the protective material in close contact with both surfaces of the flexible metal-clad laminate. The actual temperature of the flexible metal-clad laminate varies somewhat depending on the thickness of the protective material, but if the temperature of the surface of the protective material is within the above range, the effect of post-heating can be exhibited. The outer surface temperature of the protective material can be measured using a thermocouple or a thermometer.

上記熱ラミネート工程におけるラミネート速度は、0.5m/分以上であることが好ましく、1.0m/分以上であることがより好ましい。0.5m/分以上であれば十分な熱ラミネートが可能になり、1.0m/分以上であれば生産性をより一層向上することができる。   The laminating speed in the thermal laminating step is preferably 0.5 m / min or more, and more preferably 1.0 m / min or more. If it is 0.5 m / min or more, sufficient thermal lamination is possible, and if it is 1.0 m / min or more, productivity can be further improved.

上記熱ラミネート工程における圧力、すなわちラミネート圧力は、高ければ高いほどラミネート温度を低く、かつラミネート速度を速くすることができる利点があるが、一般にラミネート圧力が高すぎると得られる積層板の寸法変化が悪化する傾向がある。また、逆にラミネート圧力が低すぎると得られる積層板の金属箔の接着強度が低くなる。そのためラミネート圧力は、49〜490N/cm(5〜50kgf/cm)の範囲内であることが好ましく、98〜294N/cm(10〜30kgf/cm)の範囲内であることがより好ましい。この範囲内であれば、ラミネート温度、ラミネート速度およびラミネート圧力の三条件を良好なものにすることができ、生産性をより一層向上することができる。   The higher the pressure in the thermal laminating process, that is, the laminating pressure, is advantageous in that the laminating temperature can be lowered and the laminating speed can be increased. There is a tendency to get worse. Conversely, if the laminating pressure is too low, the adhesive strength of the metal foil of the laminate obtained is lowered. Therefore, the laminating pressure is preferably in the range of 49 to 490 N / cm (5 to 50 kgf / cm), and more preferably in the range of 98 to 294 N / cm (10 to 30 kgf / cm). Within this range, the three conditions of the lamination temperature, the lamination speed and the lamination pressure can be made favorable, and the productivity can be further improved.

上記ラミネート工程における接着フィルム張力は、0.01〜4N/cm、さらには0.02〜2.5N/cm、特には0.05〜1.5N/cmが好ましい。張力が上記範囲を下回ると、ラミネートの搬送時にたるみや蛇行が生じ、均一に加熱ロールに送り込まれないために外観の良好なフレキシブル金属張積層板を得ることが困難となることがある。逆に、上記範囲を上回ると、接着層のTgと貯蔵弾性率の制御では緩和できないほど張力の影響が強くなり、寸法安定性が劣ることがある。   The adhesive film tension in the laminating step is preferably 0.01 to 4 N / cm, more preferably 0.02 to 2.5 N / cm, and particularly preferably 0.05 to 1.5 N / cm. When the tension is below the above range, sagging or meandering occurs during the conveyance of the laminate, and it is difficult to obtain a flexible metal-clad laminate having a good appearance because it is not uniformly fed to the heating roll. On the other hand, if it exceeds the above range, the influence of tension becomes so strong that it cannot be relaxed by controlling the Tg and storage modulus of the adhesive layer, and the dimensional stability may be inferior.

本発明にかかるフレキシブル金属張積層板を得るためには、連続的に被積層材料を加熱しながら圧着する熱ラミネート装置を用いることが好ましいが、この熱ラミネート装置では、熱ラミネート手段の前段に、被積層材料を繰り出す被積層材料繰出手段を設けてもよいし、熱ラミネート手段の後段に、被積層材料を巻き取る被積層材料巻取手段を設けてもよい。これらの手段を設けることで、上記熱ラミネート装置の生産性をより一層向上させることができる。上記被積層材料繰出手段および被積層材料巻取手段の具体的な構成は特に限定されるものではなく、例えば、接着フィルムや金属箔、あるいは得られる積層板を巻き取ることのできる公知のロール状巻取機等を挙げることができる。   In order to obtain the flexible metal-clad laminate according to the present invention, it is preferable to use a thermal laminating apparatus that continuously press-bonds the material to be laminated while heating, but in this thermal laminating apparatus, before the thermal laminating means, A laminated material feeding means for feeding the laminated material may be provided, or a laminated material winding means for winding the laminated material may be provided after the thermal laminating means. By providing these means, the productivity of the thermal laminating apparatus can be further improved. The specific configuration of the laminated material feeding means and the laminated material winding means is not particularly limited. For example, a known roll shape capable of winding an adhesive film, a metal foil, or a laminated sheet to be obtained. A winder etc. can be mentioned.

さらに、保護材料を巻き取ったり繰り出したりする保護材料巻取手段や保護材料繰出手段を設けると、より好ましい。これら保護材料巻取手段・保護材料繰出手段を備えていれば、熱ラミネート工程で、一度使用された保護材料を巻き取って繰り出し側に再度設置することで、保護材料を再使用することができる。また、保護材料を巻き取る際に、保護材料の両端部を揃えるために、端部位置検出手段および巻取位置修正手段を設けてもよい。これによって、精度よく保護材料の端部を揃えて巻き取ることができるので、再使用の効率を高めることができる。なお、これら保護材料巻取手段、保護材料繰出手段、端部位置検出手段および巻取位置修正手段の具体的な構成は特に限定されるものではなく、従来公知の各種装置を用いることができる。   Furthermore, it is more preferable to provide a protective material winding means and a protective material feeding means for winding and feeding the protective material. If these protective material take-up means and protective material feeding means are provided, the protective material can be reused by winding the protective material once used in the thermal laminating step and installing it again on the pay-out side. . Further, when winding up the protective material, end position detecting means and winding position correcting means may be provided in order to align both ends of the protective material. As a result, the end portions of the protective material can be aligned and wound with high accuracy, so that the efficiency of reuse can be increased. The specific configurations of the protective material winding means, the protective material feeding means, the end position detecting means, and the winding position correcting means are not particularly limited, and various conventionally known devices can be used.

本発明にかかる製造方法により得られるフレキシブル金属張積層板においては、金属箔除去後に250℃、30分の加熱を行う前後の寸法変化率の合計値が、MD方向、TD方向共に−0.04〜+0.04の範囲にあることが非常に好ましい。加熱前後の寸法変化率は、エッチング工程後のフレキシブル金属張積層板における所定の寸法および加熱工程後の所定の寸法の差分と、上記加熱工程前の所定の寸法との比で表される。   In the flexible metal-clad laminate obtained by the manufacturing method according to the present invention, the total value of the dimensional change rate before and after heating at 250 ° C. for 30 minutes after removing the metal foil is −0.04 in both the MD direction and the TD direction. Very preferably in the range of ~ + 0.04. The dimensional change rate before and after heating is represented by a ratio between a difference between a predetermined dimension in the flexible metal-clad laminate after the etching process and a predetermined dimension after the heating process and a predetermined dimension before the heating process.

寸法変化率がこの範囲内から外れると、フレキシブル金属張積層板において、部品搭載時の寸法変化が大きくなってしまい、設計段階での部品搭載位置からずれることになる。その結果、実装する部品と基板とが良好に接続されなくなるおそれがある。換言すれば、寸法変化率が上記範囲内であれば、部品搭載に支障がないと見なすことが可能になる。   When the dimensional change rate is out of this range, in the flexible metal-clad laminate, the dimensional change at the time of component mounting becomes large, and the dimensional change rate deviates from the component mounting position at the design stage. As a result, there is a possibility that the component to be mounted and the board are not connected well. In other words, if the rate of dimensional change is within the above range, it can be considered that there is no problem in component mounting.

上記寸法変化率の測定方法は特に限定されるものではなく、フレキシブル金属張積層板において、エッチングまたは加熱工程の前後に生じる寸法の増減を測定できる方法であれば、従来公知のどのような方法でも用いることができる。   The method for measuring the dimensional change rate is not particularly limited, and any method known in the art can be used as long as it can measure the increase or decrease in dimensions that occurs before and after the etching or heating process in the flexible metal-clad laminate. Can be used.

ここで、寸法変化率の測定は、MD方向、TD方向の双方について測定することが必須となる。連続的にイミド化並びにラミネートする場合、MD方向およびTD方向では張力のかかり方が異なるため、熱膨張・収縮の度合いに差が現れ、寸法変化率も異なる。   Here, it is essential to measure the dimensional change rate in both the MD direction and the TD direction. In the case of continuous imidization and laminating, the tension is different in the MD direction and the TD direction, so a difference appears in the degree of thermal expansion / contraction and the dimensional change rate is also different.

従って、寸法変化率の小さい材料では、MD方向およびTD方向の双方ともに変化率が小さいことが要求される。本発明においては、フレキシブル金属張積層板の、金属箔除去後に250℃、30分の加熱を行う前後の寸法変化率の合計値が、MD方向、TD方向共に−0.04〜+0.04の範囲にあることが非常に好ましい。                                           Therefore, a material having a small dimensional change rate is required to have a low change rate in both the MD direction and the TD direction. In the present invention, the total value of the dimensional change rate before and after heating of the flexible metal-clad laminate after removing the metal foil at 250 ° C. for 30 minutes is −0.04 to +0.04 in both the MD direction and the TD direction. It is highly preferred that it is in the range.

更に、本発明の接着フィルムに使用しているコア層のポリイミドフィルムは、前述した通り、熱応力を有効に緩和する特性を持たせているため、より熱応力の影響を受けやすい15μm以下の厚みの接着フィルムを用いた場合でも、得られるフレキシブル金属張積層板の寸法変化率を小さくできる。具体的には、金属箔除去後に250℃、30分の加熱を行う前後の寸法変化率の合計値が、MD方向、TD方向共に−0.05〜+0.05の範囲となる。   Furthermore, as described above, the polyimide film of the core layer used in the adhesive film of the present invention has a characteristic of effectively relieving thermal stress, so that it has a thickness of 15 μm or less that is more susceptible to thermal stress. Even when this adhesive film is used, the dimensional change rate of the obtained flexible metal-clad laminate can be reduced. Specifically, the total value of the dimensional change rate before and after heating at 250 ° C. for 30 minutes after removing the metal foil is in the range of −0.05 to +0.05 in both the MD direction and the TD direction.

なお、寸法変化率を測定する際の加熱工程においては、250℃で30分間加熱がなされれば良く、具体的な条件は特に限定されない。   In addition, in the heating process at the time of measuring the dimensional change rate, it is sufficient that heating is performed at 250 ° C. for 30 minutes, and specific conditions are not particularly limited.

本発明にかかる製造方法によって得られるフレキシブル金属張積層板は、前述したように、金属箔をエッチングして所望のパターン配線を形成すれば、各種の小型化、高密度化された部品を実装したフレキシブル配線板として用いることができる。もちろん、本発明の用途はこれに限定されるものではなく、金属箔を含む積層体であれば、種々の用途に利用できることはいうまでもない。   As described above, the flexible metal-clad laminate obtained by the manufacturing method according to the present invention can be mounted with various miniaturized and high-density components by forming a desired pattern wiring by etching the metal foil. It can be used as a flexible wiring board. Of course, the application of the present invention is not limited to this, and it goes without saying that it can be used for various applications as long as it is a laminate including a metal foil.

以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to these Examples.

なお、合成例、実施例及び比較例における熱可塑性ポリイミドのガラス転移温度、ポリイミドフィルムの貯蔵弾性率、引張弾性率、吸湿膨張係数、分子配向軸角度並びに線膨張係数、フレキシブル金属張積層板の寸法変化率、金属箔引き剥し強度、吸湿半田耐性の評価法は次の通りである。   In addition, the glass transition temperature of the thermoplastic polyimide, the storage elastic modulus of the polyimide film, the tensile elastic modulus, the hygroscopic expansion coefficient, the molecular orientation axis angle and the linear expansion coefficient in the synthesis examples, examples and comparative examples, dimensions of the flexible metal-clad laminate The evaluation methods of the rate of change, the peel strength of the metal foil, and the moisture absorption solder resistance are as follows.

(ガラス転移温度)
ガラス転移温度は、SIIナノテクノロジー社製 DMS6100により測定し、貯蔵弾性率の変曲点をガラス転移温度とした。
サンプル測定範囲;幅9mm、つかみ具間距離20mm
測定温度範囲;0〜440℃
昇温速度;3℃/分
歪み振幅;10μm
測定周波数;1,5,10Hz
最小張力/圧縮力;100mN
張力/圧縮ゲイン;1.5
力振幅初期値;100mN
貯蔵弾性率の変曲点は、図1に示すように、変曲前と変曲後の貯蔵弾性率曲線にそれぞれ接線を引き、二つの接線が交わる点(温度)を変曲点とした。
(Glass-transition temperature)
The glass transition temperature was measured with DMS6100 manufactured by SII Nanotechnology, and the inflection point of the storage elastic modulus was taken as the glass transition temperature.
Sample measurement range: width 9 mm, distance between grippers 20 mm
Measurement temperature range: 0 to 440 ° C
Temperature increase rate: 3 ° C./min Strain amplitude: 10 μm
Measurement frequency: 1, 5, 10 Hz
Minimum tension / compression force: 100mN
Tension / compression gain; 1.5
Initial value of force amplitude: 100mN
As shown in FIG. 1, the inflection point of the storage elastic modulus was drawn at each of the storage elastic modulus curves before and after the inflection, and the point (temperature) at which the two tangents intersected was defined as the inflection point.

(コアフィルムの貯蔵弾性率)
貯蔵弾性率は、上記ガラス転移温度の測定の装置、条件で測定した。なお、測定はコアフィルムのMD方向に対して行った。
(Storage elastic modulus of core film)
The storage elastic modulus was measured with the apparatus and conditions for measuring the glass transition temperature. In addition, the measurement was performed with respect to MD direction of a core film.

(引張弾性率)
引張弾性率は、ASTM D882に従い、測定を行った。なお、測定はコアフィルムのMD方向に対して行った。
サンプル測定範囲;幅15mm、つかみ具間距離100mm
引張速度;200mm/min
(線膨張係数)
ポリイミドフィルムの線膨張係数は、SIIナノテクノロジー社製熱機械的分析装置、商品名:TMA/SS6100により0℃〜460℃まで一旦昇温させた後、10℃まで冷却し、さらに10℃/minで昇温させて、2回目の昇温時の、100〜200℃の範囲内の平均値を求めた。なお、測定はコアフィルムのMD方向及びTD方向に対して行った。
サンプル形状;幅3mm、長さ10mm
荷重;29.4mN
測定温度範囲;0〜460℃
昇温速度;10℃/min
(寸法変化率)
JIS C6481に基づいて、フレキシブル積層板に4つの穴を形成し、各穴のそれぞれの距離を測定した。次に、エッチング工程を実施してフレキシブル積層板から金属箔を除去した後に、20℃、60%R.H.の恒温室に24時間放置した。その後、エッチング工程前と同様に、上記4つの穴について、それぞれの距離を測定した。金属箔除去前における各穴の距離の測定値をD1とし、金属箔除去後における各穴の距離の測定値をD2として、次式によりエッチング前後の寸法変化率を求めた。
寸法変化率(%)={(D2−D1)/D1}×100
続いて、エッチング後の測定サンプルを250℃で30分加熱した後、20℃、60%R.H.の恒温室に24時間放置した。その後、上記4つの穴について、それぞれの距離を測定した。加熱後における各穴の距離の測定値をD3として、次式により加熱前後の寸法変化率を求めた。
寸法変化率(%)={(D3−D2)/D2}×100
なお、上記寸法変化率は、MD方向及びTD方向の双方について測定した。
(Tensile modulus)
The tensile elastic modulus was measured according to ASTM D882. In addition, the measurement was performed with respect to MD direction of a core film.
Sample measurement range: width 15mm, distance between grips 100mm
Tensile speed: 200 mm / min
(Linear expansion coefficient)
The linear expansion coefficient of the polyimide film was measured by using a thermomechanical analyzer manufactured by SII Nanotechnology, Inc., trade name: TMA / SS6100, once raised to 0 ° C. to 460 ° C., cooled to 10 ° C., and further 10 ° C./min. The average value within the range of 100 to 200 ° C. at the time of the second temperature increase was determined. In addition, the measurement was performed with respect to MD direction and TD direction of the core film.
Sample shape: width 3mm, length 10mm
Load: 29.4 mN
Measurement temperature range: 0 to 460 ° C
Temperature increase rate: 10 ° C / min
(Dimensional change rate)
Based on JIS C6481, four holes were formed in the flexible laminate, and the distance of each hole was measured. Next, after carrying out an etching process to remove the metal foil from the flexible laminate, 20 ° C., 60% R.D. H. Left in a constant temperature room for 24 hours. Then, each distance was measured about the said four holes similarly to the etching process front. The measured value of the distance between the holes before removing the metal foil was set as D1, and the measured value of the distance between the holes after removing the metal foil was set as D2, and the dimensional change rate before and after etching was obtained by the following equation.
Dimensional change rate (%) = {(D2-D1) / D1} × 100
Subsequently, the measurement sample after etching was heated at 250 ° C. for 30 minutes, and then 20 ° C. and 60% R.D. H. Left in a constant temperature room for 24 hours. Then, each distance was measured about the said four holes. The measured value of the distance of each hole after heating was set to D3, and the dimensional change rate before and after heating was obtained by the following formula.
Dimensional change rate (%) = {(D3-D2) / D2} × 100
In addition, the said dimensional change rate was measured about both MD direction and TD direction.

(金属箔の引き剥がし強度:接着強度)
JIS C6471の「6.5 引きはがし強さ」に従って、サンプルを作製し、5mm幅の金属箔部分を、180度の剥離角度、50mm/分の条件で剥離し、その荷重を測定した。
(Stripping strength of metal foil: Adhesive strength)
A sample was prepared according to “6.5 Peel Strength” of JIS C6471, and a 5 mm wide metal foil part was peeled off at a peeling angle of 180 degrees and 50 mm / min, and the load was measured.

(フレキシブル金属張積層板の半田耐性)
JIS C6471に従ってサンプルを作製した後、常態(20℃、60%RH、24時間調整後)と吸湿(85℃、85%RH、96時間調整後)の2条件で調製したサンプルの半田耐性を測定し、外観上の白化現象と剥離現象の異常の有無を判定した。なお、常態半田は300℃で1分間、吸湿半田は260℃で10秒間、半田浴に浸漬させた。評価については、半田浴への浸漬前後でサンプルの外観に変化が無い場合は○、サンプルからの金属箔層の剥離、接着フィルムの白化、サンプルの膨れのいずれかが確認された場合は×とした。
(Solder resistance of flexible metal-clad laminate)
After preparing a sample according to JIS C6471, the solder resistance of a sample prepared under two conditions of normal (20 ° C., 60% RH, after 24 hours adjustment) and moisture absorption (85 ° C., 85% RH, after 96 hours adjustment) is measured. Then, the presence or absence of abnormality of the whitening phenomenon and the peeling phenomenon on the appearance was judged. The normal solder was immersed in a solder bath at 300 ° C. for 1 minute, and the hygroscopic solder was immersed at 260 ° C. for 10 seconds. For the evaluation, ○ when the sample appearance does not change before and after immersion in the solder bath, × when the peeling of the metal foil layer from the sample, whitening of the adhesive film, or swelling of the sample is confirmed. did.

(合成例1;熱可塑性ポリイミド前駆体の合成)
容量2000mlのガラス製フラスコにDMFを780g、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン(以下、BAPPともいう。)を115.6g加え、窒素雰囲気下で攪拌しながら、BPDAを78.7g徐々に添加した。続いて、TMEGを3.8g添加し、氷浴下で30分間撹拌した。2.0gのTMEGを20gのDMFに溶解させた溶液を別途調製し、これを上記反応溶液に、粘度に注意しながら徐々に添加、撹拌を行った。粘度が3000poiseに達したところで添加、撹拌をやめ、ポリアミド酸溶液を得た。
得られたポリアミド酸溶液を25μmPETフィルム(セラピールHP,東洋メタライジング社製)上に最終厚みが20μmとなるように流延し、120℃で5分間乾燥を行った。乾燥後の自己支持性フィルムをPETから剥離した後、金属製のピン枠に固定し、150℃で5分間、200℃で5分間、250℃で5分間、350℃で5分間乾燥を行った。得られた単層シートのガラス転移温度を測定したところ、240℃であった。
(Synthesis Example 1; Synthesis of thermoplastic polyimide precursor)
While adding 780 g of DMF and 115.6 g of 2,2-bis [4- (4-aminophenoxy) phenyl] propane (hereinafter also referred to as BAPP) to a glass flask having a capacity of 2000 ml, while stirring under a nitrogen atmosphere, 78.7 g of BPDA was gradually added. Subsequently, 3.8 g of TMEG was added and stirred for 30 minutes in an ice bath. A solution in which 2.0 g of TMEG was dissolved in 20 g of DMF was separately prepared, and this was gradually added to the reaction solution while being careful of the viscosity and stirred. When the viscosity reached 3000 poise, addition and stirring were stopped to obtain a polyamic acid solution.
The obtained polyamic acid solution was cast on a 25 μm PET film (Therapy HP, manufactured by Toyo Metallizing Co., Ltd.) so as to have a final thickness of 20 μm, and dried at 120 ° C. for 5 minutes. The dried self-supporting film was peeled off from PET, fixed to a metal pin frame, and dried at 150 ° C. for 5 minutes, 200 ° C. for 5 minutes, 250 ° C. for 5 minutes, and 350 ° C. for 5 minutes. . It was 240 degreeC when the glass transition temperature of the obtained single layer sheet was measured.

(実施例1〜4;ポリイミドフィルムの合成)
反応系内を5℃に保った状態で、N,N−ジメチルホルムアミド(以下、DMFともいう)に、4,4’−ジアミノジフェニルエーテル(以下、4,4’−ODAともいう)を表1に示すモル比で添加し、撹拌を行った。溶解したことを目視確認した後、ベンゾフェノンテトラカルボン酸二無水物(以下、BTDAともいう)を表1に示すモル比で添加し、30分間撹拌を行った。
続いて、ピロメリット酸二無水物(以下、PMDAともいう)を表1に示すモル比で添加し、30分間撹拌を行った。続いて、p−フェニレンジアミン(以下、p−PDAともいう)を表1に示すモル比で添加し、50分間撹拌を行った。続いて、PMDAを再度、表1に示すモル比で添加し、30分間撹拌を行った。
最後に、3モル%分のPMDAを固形分濃度7%となるようにDMFに溶解した溶液を調製し、この溶液を粘度上昇に気をつけながら上記反応溶液に徐々に添加し、20℃での粘度が4000ポイズに達した時点で重合を終了した。
このポリアミド酸溶液に、無水酢酸/イソキノリン/DMF(重量比2.0/0.3/4.0)からなるイミド化促進剤をポリアミド酸溶液に対して重量比45%で添加し、連続的にミキサーで攪拌しTダイから押出してダイの下20mmを走行しているステンレス製のエンドレスベルト上に流延した。この樹脂膜を130℃×100秒で加熱した後エンドレスベルトから自己支持性のゲル膜を引き剥がして(揮発分含量30重量%)テンタークリップに固定し、300℃×30秒、400℃×30秒、500℃×30秒で乾燥・イミド化させ、厚み18μmのポリイミドフィルムを得た。
(Examples 1-4; synthesis of polyimide film)
With the reaction system maintained at 5 ° C., N, N-dimethylformamide (hereinafter also referred to as DMF) and 4,4′-diaminodiphenyl ether (hereinafter also referred to as 4,4′-ODA) are shown in Table 1. They were added at the indicated molar ratio and stirred. After visually confirming dissolution, benzophenone tetracarboxylic dianhydride (hereinafter also referred to as BTDA) was added at a molar ratio shown in Table 1 and stirred for 30 minutes.
Subsequently, pyromellitic dianhydride (hereinafter also referred to as PMDA) was added at a molar ratio shown in Table 1 and stirred for 30 minutes. Subsequently, p-phenylenediamine (hereinafter also referred to as p-PDA) was added at a molar ratio shown in Table 1, and the mixture was stirred for 50 minutes. Subsequently, PMDA was added again at a molar ratio shown in Table 1, and stirring was performed for 30 minutes.
Finally, a solution in which 3 mol% of PMDA was dissolved in DMF to a solid content concentration of 7% was prepared, and this solution was gradually added to the above reaction solution while paying attention to increase in viscosity. The polymerization was terminated when the viscosity of the polymer reached 4000 poise.
To this polyamic acid solution, an imidization accelerator consisting of acetic anhydride / isoquinoline / DMF (weight ratio 2.0 / 0.3 / 4.0) was added at a weight ratio of 45% with respect to the polyamic acid solution. The mixture was stirred with a mixer, extruded from a T die, and cast onto a stainless endless belt running 20 mm below the die. After heating this resin film at 130 ° C. × 100 seconds, the self-supporting gel film is peeled off from the endless belt (volatile content 30% by weight) and fixed to the tenter clip, 300 ° C. × 30 seconds, 400 ° C. × 30 Second, and dried and imidized at 500 ° C. for 30 seconds to obtain a polyimide film having a thickness of 18 μm.

(実施例5〜8)
実施例1〜4と同様の操作で得られたポリアミド酸溶液に、無水酢酸/イソキノリン/DMF(重量比2.0/0.3/4.0)からなるイミド化促進剤をポリアミド酸溶液に対して重量比45%で添加し、連続的にミキサーで攪拌しTダイから押出してダイの下20mmを走行しているステンレス製のエンドレスベルト上に流延した。この樹脂膜を130℃×100秒で加熱した後エンドレスベルトから自己支持性のゲル膜を引き剥がして(揮発分含量30重量%)テンタークリップに固定し、300℃×22秒、400℃×22秒、500℃×22秒で乾燥・イミド化させ、厚み10μmのポリイミドフィルムを得た。
(Examples 5 to 8)
In the polyamic acid solution obtained in the same manner as in Examples 1 to 4, an imidization accelerator composed of acetic anhydride / isoquinoline / DMF (weight ratio 2.0 / 0.3 / 4.0) was added to the polyamic acid solution. The mixture was added at a weight ratio of 45%, continuously stirred by a mixer, extruded from a T die, and cast on a stainless steel endless belt running 20 mm below the die. The resin film was heated at 130 ° C. for 100 seconds, and then the self-supporting gel film was peeled off from the endless belt (volatile content 30% by weight) and fixed to the tenter clip, 300 ° C. × 22 seconds, 400 ° C. × 22 Second, and dried and imidized at 500 ° C. for 22 seconds to obtain a polyimide film having a thickness of 10 μm.

(実施例9〜16)
実施例1〜8で得られたポリイミドフィルムの両面に、実施例1〜4のポリイミドフィルムを用いる場合は熱可塑性ポリイミド層(接着層)の最終片面厚みが3.5μmとなるように、実施例5〜8のポリイミドフィルムを用いる場合は熱可塑性ポリイミド層(接着層)の最終片面厚みが2μmとなるように、合成例1で得た熱可塑性ポリイミド前駆体をグラビアコーターで塗布し、160℃に設定した乾燥炉内を1分間通して加熱を行った。続いて、雰囲気温度390℃の遠赤外線ヒーター炉の中を20秒間通して加熱イミド化を行って、接着フィルムを得た。得られた接着フィルムの両側に18μm圧延銅箔(BHY−22B−T,ジャパンエナジー社製)を、さらに銅箔の両側に保護フィルム(アピカル125NPI;株式会社カネカ製)を用いて、ポリイミドフィルムの張力0.4N/cm、ラミネート温度380℃、ラミネート圧力196N/cm(20kgf/cm)、ラミネート速度1.5m/分の条件で連続的に熱ラミネートを行い、本発明にかかるフレキシブル金属張積層板を作製した。なお、保護フィルムは予め加熱ロールに抱かせる形で3秒間接触させて予熱した後、銅箔の外側に重ねてラミネートを行った。また、ラミネート後、保護フィルムを配したままの状態で積層体を加熱ロールに0.2秒接触させ、その後自然冷却が終了してから保護フィルムを剥離した。
(Examples 9 to 16)
When the polyimide films of Examples 1 to 4 are used on both sides of the polyimide films obtained in Examples 1 to 8, the final one-side thickness of the thermoplastic polyimide layer (adhesive layer) is 3.5 μm. When using a polyimide film of 5 to 8, the thermoplastic polyimide precursor obtained in Synthesis Example 1 is applied with a gravure coater so that the final single-sided thickness of the thermoplastic polyimide layer (adhesive layer) is 2 μm, and is heated to 160 ° C. Heating was performed by passing through the set drying furnace for 1 minute. Then, it passed through the far-infrared heater furnace with an atmospheric temperature of 390 ° C. for 20 seconds to carry out heating imidization to obtain an adhesive film. Using the 18 μm rolled copper foil (BHY-22B-T, manufactured by Japan Energy Co., Ltd.) on both sides of the obtained adhesive film, and further using protective films (Apical 125 NPI; manufactured by Kaneka Corporation) on both sides of the copper foil, The flexible metal-clad laminate according to the present invention is obtained by continuous thermal lamination under conditions of a tension of 0.4 N / cm, a laminating temperature of 380 ° C., a laminating pressure of 196 N / cm (20 kgf / cm), and a laminating speed of 1.5 m / min. Was made. The protective film was preheated by contacting the protective film for 3 seconds in advance and then laminated on the outside of the copper foil. Further, after lamination, the laminate was brought into contact with the heating roll for 0.2 seconds with the protective film still disposed, and then the protective film was peeled off after natural cooling was completed.

(比較例1)
合成例1で得られたポリアミド酸溶液を固形分濃度10重量%になるまでDMFで希釈した後、18μm厚のポリイミドフィルム(アピカル18HPP,株式会社カネカ製)の両面に、最終片面厚みが3.5μmとなるようにグラビアコーターで塗布し、140℃に設定した乾燥炉内を1分間通して加熱を行った。続いて、雰囲気温度390℃の遠赤外線ヒーター炉の中を20秒間通して加熱イミド化を行って、接着フィルムを得た。得られた接着フィルムの両側に18μm圧延銅箔(BHY−22B−T,ジャパンエナジー社製)を、さらに銅箔の両側に保護フィルム(アピカル125NPI;株式会社カネカ製)を用いて、ポリイミドフィルムの張力0.4N/cm、ラミネート温度380℃、ラミネート圧力196N/cm(20kgf/cm)、ラミネート速度1.5m/分の条件で連続的に熱ラミネートを行い、フレキシブル金属張積層板を作製した。
(Comparative Example 1)
After the polyamic acid solution obtained in Synthesis Example 1 is diluted with DMF until the solid content concentration becomes 10% by weight, the final single-sided thickness is 3. on both sides of an 18 μm-thick polyimide film (Apical 18HPP, manufactured by Kaneka Corporation). It apply | coated with the gravure coater so that it might be set to 5 micrometers, and it heated through the inside of the drying furnace set to 140 degreeC for 1 minute. Then, it passed through the far-infrared heater furnace with an atmospheric temperature of 390 ° C. for 20 seconds to carry out heating imidization to obtain an adhesive film. Using the 18 μm rolled copper foil (BHY-22B-T, manufactured by Japan Energy Co., Ltd.) on both sides of the obtained adhesive film, and further using protective films (Apical 125 NPI; manufactured by Kaneka Corporation) on both sides of the copper foil, Thermally laminating was carried out under the conditions of a tension of 0.4 N / cm, a laminating temperature of 380 ° C., a laminating pressure of 196 N / cm (20 kgf / cm), and a laminating speed of 1.5 m / min to produce a flexible metal-clad laminate.

(比較例2)
コアフィルムとして、10μm厚のポリイミドフィルム(アピカル10HPP,株式会社カネカ製)を使用し、塗布厚みを片面あたり2μmとする以外は比較例1と同様の操作を行い、フレキシブル金属張積層板を作製した。
(Comparative Example 2)
A flexible metal-clad laminate was prepared by using a 10 μm-thick polyimide film (Apical 10 HPP, manufactured by Kaneka Corporation) as the core film and performing the same operation as in Comparative Example 1 except that the coating thickness was 2 μm per side. .

(比較例3)
コアフィルムとして、20μm厚のポリイミドフィルム(アピカル20NPP,株式会社カネカ製)を使用し、塗布厚みを片面あたり2μmとする以外は比較例1と同様の操作を行い、フレキシブル金属張積層板を作製した。
(Comparative Example 3)
A flexible metal-clad laminate was prepared by using a 20 μm-thick polyimide film (Apical 20NPP, manufactured by Kaneka Corporation) as the core film and performing the same operation as in Comparative Example 1 except that the coating thickness was 2 μm per side. .

(比較例4)
コアフィルムとして、12.5μm厚のポリイミドフィルム(アピカル12.5NPP,株式会社カネカ製)を使用し、塗布厚みを片面あたり1.5μmとする以外は比較例1と同様の操作を行い、フレキシブル金属張積層板を作製した。
(Comparative Example 4)
As a core film, a polyimide film (Apical 12.5NPP, manufactured by Kaneka Corporation) with a thickness of 12.5 μm was used, and the same operation as in Comparative Example 1 was performed except that the coating thickness was 1.5 μm per side. A tension laminate was produced.

各実施例、比較例で得られたポリイミドフィルムならびにフレキシブル金属張積層板の特性を評価した結果を表2〜3に示す。   The result of having evaluated the characteristic of the polyimide film obtained by each Example and the comparative example and a flexible metal-clad laminated board is shown to Tables 2-3.

Figure 0005069846
Figure 0005069846

Figure 0005069846
Figure 0005069846

Figure 0005069846
比較例1〜4に示すように、コアフィルムの貯蔵弾性率、tanδピークが規定範囲外である場合は、熱ラミネート時に材料にかかる応力を効率良く緩和できず、寸法変化率が大きくなるという結果となった。特に、接着フィルム厚が薄くなると、更に寸法変化率が大きくなるという結果となっている。
Figure 0005069846
As shown in Comparative Examples 1 to 4, when the storage elastic modulus of the core film and the tan δ peak are out of the specified range, the stress applied to the material at the time of thermal lamination cannot be efficiently relaxed, and the dimensional change rate is increased. It became. In particular, when the thickness of the adhesive film is reduced, the dimensional change rate is further increased.

これに対し、全ての特性が所定範囲内となっているコアフィルムを使用した実施例9〜16では熱ラミネート法で作製しても寸法変化の発生が抑制される結果となった。特に、接着フィルム厚が薄い実施例13〜16においても、実施例9〜12と同等の寸法変化率となっている。また、貯蔵弾性率を制御しても接着強度や半田耐性には何ら影響が無く、実使用でも問題無い結果となっている。   On the other hand, in Examples 9 to 16 using the core film in which all the characteristics are within the predetermined range, the generation of the dimensional change was suppressed even when the core film was produced by the thermal laminating method. In particular, in Examples 13 to 16 in which the adhesive film thickness is thin, the dimensional change rate is equivalent to that in Examples 9 to 12. Moreover, even if the storage elastic modulus is controlled, there is no influence on the adhesive strength and solder resistance, and there is no problem even in actual use.

貯蔵弾性率の変曲点の求め方を示す図であるIt is a figure which shows how to obtain | require the inflexion point of storage elastic modulus.

Claims (16)

4,4’−ジアミノジフェニルエーテル及びp−フェニレンジアミンからなる芳香族ジアミンと芳香族酸二無水物を反応させて得られるポリアミド酸を、イミド化して得られるポリイミドフィルムであって、下記(1)〜(4)の条件
(1)280℃〜320℃の範囲に貯蔵弾性率の変曲点を有し、
(2)損失弾性率を貯蔵弾性率で割った値であるtanδのピークトップが320℃〜380℃の範囲内にあり、
(3)380℃における貯蔵弾性率が0.4GPa〜2.0GPaであり、
(4)変曲点における貯蔵弾性率α1(GPa)と、380℃における貯蔵弾性率α2(GPa)が下記式(1)の範囲にある
(式1);85≧{(α1−α2)/α1}×100≧65
を全て満たすことを特徴とする、ポリイミドフィルム。
A polyimide film obtained by imidizing a polyamic acid obtained by reacting an aromatic diamine composed of 4,4′-diaminodiphenyl ether and p-phenylenediamine with an aromatic acid dianhydride, the following (1) to Condition (1) (4) Having an inflection point of storage elastic modulus in the range of 280 ° C to 320 ° C,
(2) The peak top of tan δ, which is a value obtained by dividing the loss elastic modulus by the storage elastic modulus, is in the range of 320 ° C. to 380 ° C.,
(3) The storage elastic modulus at 380 ° C. is 0.4 GPa to 2.0 GPa,
(4) and the storage modulus alpha 1 (GPa) at the inflection point, storage at 380 ° C. modulus alpha 2 (GPa) is within the range of the following formula (1) (Equation 1); 85 ≧ {(α 1 - α 2 ) / α 1 } × 100 ≧ 65
A polyimide film characterized by satisfying all of the above.
前記ポリイミドフィルムが、下記の工程(a)〜(c)
(a)芳香族酸二無水物と、これに対し過剰モル量の芳香族ジアミン化合物とを有機極性溶媒中で反応させ、両末端にアミノ基を有するプレポリマーを得る
(b)続いて、ここに芳香族ジアミン化合物を追加添加する
(c)更に、全工程における芳香族酸二無水物と芳香族ジアミンが実質的に等モルとなるように芳香族酸二無水物を添加して重合する
を経ることによって得られたポリアミド酸溶液をイミド化して得られることを特徴とする、請求項1記載のポリイミドフィルム。
The polyimide film has the following steps (a) to (c).
(A) An aromatic acid dianhydride and an excess molar amount of the aromatic diamine compound are reacted in an organic polar solvent to obtain a prepolymer having amino groups at both ends (b) (C) Further, the aromatic dianhydride is added and polymerized so that the aromatic dianhydride and the aromatic diamine are substantially equimolar in all steps. The polyimide film according to claim 1, wherein the polyimide film is obtained by imidizing a polyamic acid solution obtained by passing.
前記(a)工程における芳香族ジアミンが屈曲性のジアミンであり、前記(b)工程における芳香族ジアミンが剛直性のジアミンであることを特徴とする、請求項2記載のポリイミドフィルム。   The polyimide film according to claim 2, wherein the aromatic diamine in the step (a) is a flexible diamine, and the aromatic diamine in the step (b) is a rigid diamine. 前記屈曲性ジアミンとして、4,4’−ジアミノジフェニルエーテルを使用することを特徴とする、請求項3記載のポリイミドフィルム。   The polyimide film according to claim 3, wherein 4,4'-diaminodiphenyl ether is used as the flexible diamine. 前記剛直性ジアミンとして、p−フェニレンジアミンを使用することを特徴とする、請求項3または4記載のポリイミドフィルム。   The polyimide film according to claim 3, wherein p-phenylenediamine is used as the rigid diamine. 前記(a)工程において、ベンゾフェノンテトラカルボン酸二無水物ならびにピロメリット酸二無水物を使用することを特徴とする、請求項2乃至5のいずれか一つに記載のポリイミドフィルム。 6. The polyimide film according to claim 2, wherein benzophenone tetracarboxylic dianhydride and pyromellitic dianhydride are used in the step (a). 前記ポリイミドフィルムの引張弾性率が、7.0GPa以上であることを特徴とする、請求項1乃至6のいずれか一つに記載のポリイミドフィルム。 The polyimide film according to any one of claims 1 to 6 , wherein the polyimide film has a tensile modulus of 7.0 GPa or more. 前記ポリイミドフィルムの100℃〜200℃における線膨張係数が、13ppm/℃以下であることを特徴とする、請求項1乃至7のいずれか一つに記載のポリイミドフィルム。 The linear expansion coefficient at 100 ° C. to 200 DEG ° C. of polyimide film, and equal to or less than 13 ppm / ° C., the polyimide film according to any one of claims 1 to 7. 請求項1乃至8のいずれか一つに記載のポリイミドフィルムの少なくとも片面に、熱可塑性ポリイミドを含有する接着層を設けた接着フィルム。 The adhesive film which provided the adhesive layer containing a thermoplastic polyimide in the at least single side | surface of the polyimide film as described in any one of Claims 1 thru | or 8. 熱可塑性ポリイミドのガラス転移温度(Tg)が230℃以上であることを特徴とする、請求項9記載の接着フィルム。   The adhesive film according to claim 9, wherein the thermoplastic polyimide has a glass transition temperature (Tg) of 230 ° C. or higher. フィルム厚みが15μm以下となっている請求項9または10記載の接着フィルム。   The adhesive film according to claim 9 or 10, wherein the film thickness is 15 µm or less. 一対以上の金属ロールを有する熱ロールラミネート装置を用いて、請求項9乃至11のいずれか一つに記載の接着フィルムに金属箔を貼り合わせて得られることを特徴とする、フレキシブル金属張積層板。 A flexible metal-clad laminate obtained by bonding a metal foil to the adhesive film according to any one of claims 9 to 11, using a hot roll laminator having a pair of metal rolls. . 前記一対以上の金属ロールを有する熱ロールラミネート装置を用いて、接着フィルムに金属箔を貼り合わせる際に、非熱可塑性ポリイミド、またはガラス転移温度(Tg)がラミネート温度よりも50℃以上高い熱可塑性ポリイミドからなる保護フィルムを金属箔とロールの間に配してラミネートを行い、ラミネート後冷却された段階で保護フィルムを剥離して得られることを特徴とする、請求項12記載のフレキシブル金属張積層板。   Non-thermoplastic polyimide or thermoplastic having a glass transition temperature (Tg) of 50 ° C. or more higher than the laminating temperature when the metal foil is bonded to the adhesive film using the hot roll laminating apparatus having the pair of metal rolls. The flexible metal-clad laminate according to claim 12, wherein a protective film made of polyimide is placed between a metal foil and a roll to perform lamination, and the protective film is peeled off when cooled after lamination. Board. 前記ラミネート後、保護フィルムを剥離する前に、保護フィルムとフレキシブル金属張積層板が密着している積層体を、加熱ロールに0.1〜5秒の範囲で接触させ、その後冷却して積層体から保護材料を剥離することを特徴とする、請求項13記載のフレキシブル金属張積層板。   After the lamination, before the protective film is peeled off, the laminate in which the protective film and the flexible metal-clad laminate are in close contact with each other is brought into contact with a heating roll in the range of 0.1 to 5 seconds, and then cooled and laminated. The flexible metal-clad laminate according to claim 13, wherein the protective material is peeled off. 金属箔除去後に250℃、30分の加熱を行う前後の寸法変化率が、MD方向、TD方向共に−0.04〜+0.04%の範囲にあることを特徴とする、請求項12乃至14のいずれか一つに記載のフレキシブル金属張積層板。 15. The dimensional change rate before and after heating at 250 [deg.] C. for 30 minutes after removing the metal foil is in the range of -0.04 to + 0.04% in both the MD direction and the TD direction. The flexible metal-clad laminate according to any one of the above. 接着フィルムの厚みが15μmであり、かつ金属箔除去後に250℃、30分の加熱を行う前後の寸法変化率が、MD方向、TD方向共に−0.05〜+0.05%の範囲にあることを特徴とする、請求項12乃至14のいずれか一つに記載のフレキシブル金属張積層板。 The thickness of the adhesive film is 15 μm, and the dimensional change rate before and after heating at 250 ° C. for 30 minutes after removing the metal foil is in the range of −0.05 to + 0.05% in both the MD direction and the TD direction. The flexible metal-clad laminate according to any one of claims 12 to 14, characterized in that:
JP2005130216A 2005-04-27 2005-04-27 Novel polyimide film, adhesive film obtained using the same, and flexible metal-clad laminate Active JP5069846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005130216A JP5069846B2 (en) 2005-04-27 2005-04-27 Novel polyimide film, adhesive film obtained using the same, and flexible metal-clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005130216A JP5069846B2 (en) 2005-04-27 2005-04-27 Novel polyimide film, adhesive film obtained using the same, and flexible metal-clad laminate

Publications (2)

Publication Number Publication Date
JP2006306972A JP2006306972A (en) 2006-11-09
JP5069846B2 true JP5069846B2 (en) 2012-11-07

Family

ID=37474231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005130216A Active JP5069846B2 (en) 2005-04-27 2005-04-27 Novel polyimide film, adhesive film obtained using the same, and flexible metal-clad laminate

Country Status (1)

Country Link
JP (1) JP5069846B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5069847B2 (en) * 2005-04-27 2012-11-07 株式会社カネカ Novel polyimide film, adhesive film obtained using the same, and flexible metal-clad laminate
JP2008188843A (en) * 2007-02-02 2008-08-21 Kaneka Corp Multilayer film of polyimide precursor solution, multilayer polyimide film, single sided metal-clad laminated sheet and manufacturing method of multilayer polyimide film
JP2008188954A (en) * 2007-02-07 2008-08-21 Kaneka Corp Base material for single-sided metal-clad laminated sheet and manufacturing method of single-sided metal-clad laminated sheet
KR101293346B1 (en) 2008-09-26 2013-08-06 코오롱인더스트리 주식회사 Polyimide film
JP5180814B2 (en) * 2008-12-26 2013-04-10 新日鉄住金化学株式会社 Laminated body for flexible wiring board
JP6788357B2 (en) * 2016-02-17 2020-11-25 株式会社カネカ Polyimide film, multilayer polyimide film, coverlay, and flexible printed wiring board
CN110938220A (en) * 2018-09-21 2020-03-31 达迈科技股份有限公司 Method for preparing transparent polyimide film
JP7120870B2 (en) * 2018-09-28 2022-08-17 日鉄ケミカル&マテリアル株式会社 Method for producing polyimide film and method for producing metal-clad laminate
WO2020066595A1 (en) * 2018-09-28 2020-04-02 日鉄ケミカル&マテリアル株式会社 Production method for metal clad laminate and production method for circuit board
JP2020075483A (en) * 2018-09-28 2020-05-21 日鉄ケミカル&マテリアル株式会社 Manufacturing method of metal-clad laminate, and manufacturing method of circuit board
KR102634466B1 (en) * 2021-08-20 2024-02-06 에스케이마이크로웍스 주식회사 Polyamide-imide-based film, preparation method thereof, and cover window and display device comprising same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3789296T2 (en) * 1986-11-29 1994-10-13 Kanegafuchi Chemical Ind Polyimide with dimensional stability when heated.
JP2744786B2 (en) * 1987-01-20 1998-04-28 鐘淵化学工業株式会社 Polyimide with excellent thermal dimensional stability and polyamic acid used for it
JP2005026542A (en) * 2003-07-04 2005-01-27 Toray Ind Inc Board for printed circuit and printed circuit board using the same
US8426548B2 (en) * 2004-09-24 2013-04-23 Kaneka Corporation Polyimide film and adhesive film and flexible metal-clad laminate both obtained with the same
TWI417323B (en) * 2005-04-25 2013-12-01 Kaneka Corp Novel polyimide film and usage thereof
JP5069847B2 (en) * 2005-04-27 2012-11-07 株式会社カネカ Novel polyimide film, adhesive film obtained using the same, and flexible metal-clad laminate

Also Published As

Publication number Publication date
JP2006306972A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
JP5613300B2 (en) Novel polyimide film, adhesive film obtained using the same, and flexible metal-clad laminate
JP5069847B2 (en) Novel polyimide film, adhesive film obtained using the same, and flexible metal-clad laminate
JP5069846B2 (en) Novel polyimide film, adhesive film obtained using the same, and flexible metal-clad laminate
KR100958466B1 (en) Novel polyimide film and use thereof
JP5064033B2 (en) Adhesive sheet and copper-clad laminate
JP5750424B2 (en) Isotropic adhesive film, method for producing the same, and flexible metal laminate using the adhesive film
JP4551094B2 (en) Adhesive film, flexible metal-clad laminate with improved dimensional stability obtained therefrom, and method for producing the same
JP5620093B2 (en) Method for producing flexible metal-clad laminate with improved dimensional stability and flexible metal-clad laminate obtained thereby
JP2006052389A (en) Adhesive film, flexible metal-clad laminate, and method for producing the same laminate
JP2007091947A (en) Isotropic adhesive film, method for producing the same and flexible metal laminate produced by using the adhesive film
JP4951513B2 (en) Flexible metal-clad laminate
JP4271563B2 (en) Method for producing flexible metal-clad laminate
JP2005199481A (en) Adhesive film and flexible metal clad laminated sheet enhanced in dimensional stability obtained therefrom
JP5918822B2 (en) Method for producing flexible metal-clad laminate with improved dimensional stability and flexible metal-clad laminate obtained thereby
JP2005193542A (en) Manufacturing method of flexible metal clad laminated sheet enhanced in dimensional stability and flexible metal clad laminated sheet obtained thereby
JP2005178242A (en) Method for producing flexible metal-clad laminated plate improved in dimensional stability
JP4663976B2 (en) Method for producing flexible metal-clad laminate with improved dimensional stability
JP2005193541A (en) Manufacturing method of flexible metal clad laminated sheet enhanced in dimensional stability and flexible metal clad laminated sheet obtained thereby
JP5592463B2 (en) Isotropic adhesive film, method for producing the same, and flexible metal laminate using the adhesive film
JP5758457B2 (en) Method for producing adhesive film and method for producing flexible metal-clad laminate
WO2006082828A1 (en) Isotropic adhesive film and flexible metal-clad laminate
JP2005194395A (en) Adhesive film, and flexible metal-clad laminate obtained therefrom having improved dimensional stability
JP2006027067A (en) Adhesive film, flexible metal-clad laminate, and methods for producing for the same
JP2005335102A (en) Adhesive joining member enhanced in dimensional stability and flexible metal clad laminated sheet
JP2005324403A (en) Adhesive film, flexible metal clad laminated sheet and manufacturing methods of them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5069846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250