WO2020066595A1 - Production method for metal clad laminate and production method for circuit board - Google Patents

Production method for metal clad laminate and production method for circuit board Download PDF

Info

Publication number
WO2020066595A1
WO2020066595A1 PCT/JP2019/035510 JP2019035510W WO2020066595A1 WO 2020066595 A1 WO2020066595 A1 WO 2020066595A1 JP 2019035510 W JP2019035510 W JP 2019035510W WO 2020066595 A1 WO2020066595 A1 WO 2020066595A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamic acid
polyimide
layer
acid solution
polyimide layer
Prior art date
Application number
PCT/JP2019/035510
Other languages
French (fr)
Japanese (ja)
Inventor
裕明 山田
平石 克文
哲平 西山
康弘 安達
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018185876A external-priority patent/JP2020055148A/en
Priority claimed from JP2018185874A external-priority patent/JP7120870B2/en
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Priority to CN202211730860.1A priority Critical patent/CN115971017B/en
Priority to KR1020217008713A priority patent/KR20210068022A/en
Priority to CN201980055481.7A priority patent/CN112601656A/en
Publication of WO2020066595A1 publication Critical patent/WO2020066595A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • B05D1/265Extrusion coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/70Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide

Definitions

  • the present invention relates to a method for manufacturing a metal-clad laminate that can be used as a material for a circuit board and the like, and a method for manufacturing a circuit board.
  • a casting method is known in which a polyimide precursor layer is formed by applying a polyamic acid resin solution on a metal foil, and then imidized to form a polyimide layer.
  • a metal-clad laminate having a plurality of polyimide layers as an insulating resin layer by a casting method, generally, on a substrate such as a copper foil, after sequentially forming a plurality of polyimide precursor layers, these Are collectively imidized.
  • An object of the present invention is to improve adhesion between polyimide layers while suppressing foaming when a metal-clad laminate having a plurality of polyimide layers as insulating resin layers is manufactured by a casting method.
  • the present inventors have found that by controlling the thickness of a plurality of polyimide layers formed by a casting method, it is possible to suppress foaming and improve the adhesion between polyimide layers, and have completed the present invention.
  • a method of manufacturing a metal-clad laminate of the present invention includes a metal-clad laminate including: an insulating resin layer including a plurality of polyimide layers; and a metal layer laminated on at least one surface of the insulating resin layer. It is a method of manufacturing.
  • the method for producing a metal-clad laminate of the present invention comprises the following steps 1 to 5: Step 1) a step of forming a single layer or a plurality of first polyamide resin layers by applying a polyamic acid solution on the metal layer; Step 2) a step of imidizing the polyamic acid in the first polyamide resin layer to form a single polyimide layer or a plurality of first polyimide layers; Step 3) performing a surface treatment on the surface of the first polyimide layer; Step 4) a step of forming a single-layer or multiple-layer second polyamide resin layer by applying a polyamic acid solution on the first polyimide layer, Step 5) Polyamide acid in the second polyamide resin layer is imidized to form a second polyimide layer composed of a single layer or a plurality of layers, and the first polyimide layer and the second polyimide layer are Forming the laminated insulating resin layer, Contains.
  • the thickness (L1) of the first polyimide layer is in the range of 0.5 ⁇ m or more and 100 ⁇ m or less, and the thickness (L) of the entire insulating resin layer is Is in the range of 5 ⁇ m or more and less than 200 ⁇ m, and the ratio (L / L1) of L and L1 is more than 1 and less than 400.
  • a polyimide constituting a layer in contact with the metal layer in the first polyimide layer may be a thermoplastic polyimide.
  • the moisture permeability of the metal layer, the thickness 25 [mu] m, when the 25 ° C., may be not more than 100g / m 2 / 24hr.
  • the method for manufacturing a circuit board according to the present invention includes a step of processing a wiring circuit on the metal layer of the metal-clad laminate manufactured by the above method.
  • a metal-clad laminate having an insulating resin layer having excellent adhesion between polyimide layers can be manufactured by using a casting method while suppressing foaming.
  • a method for manufacturing a metal-clad laminate according to a first embodiment of the present invention includes an insulating resin layer including a plurality of polyimide layers, and a metal layer stacked on at least one surface of the insulating resin layer. This is a method for producing a metal-clad laminate.
  • FIG. 1 is a process chart showing main procedures of a method for manufacturing a metal-clad laminate according to the first embodiment.
  • the method of the present embodiment includes the following steps 1 to 5.
  • the numbers next to the arrows represent steps 1 to 5.
  • Step 1) a polyamic acid solution is applied onto the metal foil 10A to be the metal layer 10 to form a single-layer or multiple-layer first polyamide resin layer 20A.
  • the method of applying the polyamic acid resin solution onto the metal foil 10A by the casting method is not particularly limited, and for example, it can be applied by a coater such as a comma, a die, a knife, a lip, or the like.
  • a coater such as a comma, a die, a knife, a lip, or the like.
  • a method of repeatedly applying and drying a polyamic acid solution to the metal foil 10A or a multi-layer extrusion may be used on the metal foil 10A.
  • a method of applying and drying polyamic acid in a state of being laminated in multiple layers can be adopted.
  • the first polyamide resin layer 20A is cured so that the thickness (L1) of the first polyimide layer 20 after curing in step 2 is in the range of 0.5 ⁇ m to 100 ⁇ m. Preferably, it is formed.
  • the polyamic acid resin layer is imidized while being fixed to the metal foil 10A, a change in expansion and contraction of the polyimide layer during the imidization process can be suppressed, and the thickness and dimensional accuracy can be maintained.
  • the material of the metal foil 10A is not particularly limited, and examples thereof include copper, stainless steel, iron, nickel, beryllium, aluminum, zinc, indium, silver, gold, tin, zirconium, tantalum, titanium, lead, magnesium, manganese, and the like. These alloys etc. are mentioned. Among them, copper or a copper alloy is particularly preferable.
  • the copper foil a rolled copper foil or an electrolytic copper foil may be used, and a commercially available copper foil can be preferably used.
  • the thickness of the metal layer 10 when used for manufacturing an FPC is preferably in the range of 3 to 80 ⁇ m, more preferably in the range of 5 to 30 ⁇ m.
  • the surface of the metal foil 10A used as the metal layer 10 may be subjected to surface treatment such as rust prevention treatment, siding, aluminum alcoholate, aluminum chelate, and silane coupling agent. Further, the metal foil 10A can be formed in a cut sheet shape, a roll shape, an endless belt shape, or the like. It is efficient to have a format that is possible. Further, from the viewpoint of further improving the effect of improving the wiring pattern accuracy in the circuit board, the metal foil 10A is preferably a long roll-shaped metal foil.
  • the moisture permeability of the metal layer 10 for example a thickness 25 [mu] m, at 25 ° C., preferably not more than 100g / m 2 / 24hr.
  • Step 2) the polyamic acid in the first polyamide resin layer 20A formed in step 1 is imidized to form a single polyimide layer 20 or a plurality of first polyimide layers 20.
  • imidizing the polyamic acid contained in the first polyamide resin layer 20A most of the solvent and imidized water contained in the first polyamide resin layer 20A can be removed.
  • the method for imidizing the polyamic acid is not particularly limited, and for example, a heat treatment of heating at a temperature in the range of 80 to 400 ° C for a time in the range of 1 to 60 minutes is preferable.
  • the heat treatment is preferably performed in a low oxygen atmosphere in order to suppress oxidation of the metal layer 10, specifically, in an inert gas atmosphere such as nitrogen or a rare gas, in a reducing gas atmosphere such as hydrogen, or in a vacuum. It is preferably carried out in a low oxygen atmosphere in order to suppress oxidation of the metal layer 10, specifically, in an inert gas atmosphere such as nitrogen or a rare gas, in a reducing gas atmosphere such as hydrogen, or in a vacuum. It is preferably carried out in
  • Step 3 the surface of the first polyimide layer 20 is subjected to a surface treatment.
  • the surface treatment is not particularly limited as long as it can improve the interlayer adhesion between the first polyimide layer 20 and the second polyimide layer 30.
  • plasma treatment, corona treatment, flame treatment, ultraviolet treatment, ozone Examples include treatment, electron beam treatment, radiation treatment, sandblasting, hairline treatment, embossing, chemical treatment, steam treatment, surface grafting treatment, electrochemical treatment, and primer treatment.
  • the first polyimide layer 20 is a thermoplastic polyimide layer
  • a surface treatment such as a plasma treatment, a corona treatment, and an ultraviolet treatment is preferable, and the condition is, for example, 300 W / min / m 2 or less. preferable.
  • Step 4 a single-layer or multiple-layer second polyamide resin layer 30A is formed by applying a polyamic acid solution on the first polyimide layer 20 that has been subjected to the surface treatment in step 3, I do.
  • the method of applying the polyamic acid resin solution on the first polyimide layer 20 by the casting method is not particularly limited, and for example, it can be applied by a coater such as a comma, a die, a knife, and a lip.
  • the second polyamide resin layer 30A has a plurality of layers, for example, a method of repeatedly applying and drying a solution of a polyamic acid on the first polyimide layer 20 a plurality of times, or by multilayer extrusion, A method of applying and drying the polyamic acid in a state of being simultaneously laminated in multiple layers on the first polyimide layer 20 can be adopted.
  • step 4 the second polyamide resin layer 30A is formed such that the thickness (L) of the entire insulating resin layer 40 is in the range of 5 ⁇ m or more and less than 200 ⁇ m after the next step 5, as described later. Is preferred.
  • Step 5 the polyamide acid contained in the second polyamide resin layer 30A is imidized to be converted into the second polyimide layer 30, and the insulating resin containing the first polyimide layer 20 and the second polyimide layer 30 The layer 40 is formed.
  • the polyamide acid contained in the second polyamide resin layer 30A is imidized to synthesize polyimide.
  • the imidation method is not particularly limited, and can be carried out under the same conditions as in Step 2.
  • the method of the present embodiment can include any other steps than the above.
  • the metal-clad laminate 100 having the insulating resin layer 40 having excellent adhesion between the first polyimide layer 20 and the second polyimide layer 30 can be manufactured.
  • the imidation is performed before the formation of the second polyimide layer 30 so that the solvent or the imidization is performed. Since water is removed, problems such as foaming and delamination do not occur.
  • the first polyimide layer 20 is subjected to a surface treatment to secure the adhesion between the first polyimide layer 20 and the second polyimide layer 30. it can.
  • the thickness (L1) of the first polyimide layer is in the range of 0.5 ⁇ m to 100 ⁇ m.
  • its thickness (L1) is preferably in the range of 0.5 ⁇ m or more and 5 ⁇ m or less, more preferably in the range of 1 ⁇ m or more and 3 ⁇ m or less.
  • the solvent and imidized water can be almost removed by curing in a thin state in which the thickness (L1) after imidization is 5 ⁇ m or less.
  • the first polyimide layer 20 when the first polyimide layer 20 is a single layer, by controlling the thickness (L1) to 5 ⁇ m or less, the first polyimide layer 20 may be in contact with the metal layer 10 which is one of the causes of lowering the peel strength with the metal layer 10. Since the polyamic acid remains at the interface and can be completely imidized, the peel strength can be improved.
  • the thickness (L1) is less than 0.5 ⁇ m, the adhesion to the metal layer 10 is reduced, and the insulating resin layer 40 is easily peeled.
  • the thickness (L1) is preferably in the range of 5 ⁇ m to 100 ⁇ m, and more preferably in the range of 25 ⁇ m to 100 ⁇ m.
  • the thickness (L1) exceeds 100 ⁇ m, foaming easily occurs.
  • the thickness (L) of the entire insulating resin layer 40 is in the range of 5 ⁇ m or more and less than 200 ⁇ m.
  • the thickness (L) of the entire insulating resin layer 40 is preferably in a range of 5 ⁇ m or more and less than 30 ⁇ m, and more preferably in a range of 10 ⁇ m or more and 25 ⁇ m or less.
  • the foaming suppression effect which is an effect of the present invention, is hardly exhibited and the dimensional stability is improved. The effect is difficult to obtain.
  • the thickness (L) of the entire insulating resin layer 40 is preferably in a range from 10 ⁇ m to less than 200 ⁇ m, and more preferably in a range from 50 ⁇ m to less than 200 ⁇ m.
  • the thickness (L) of the entire insulating resin layer 40 is 200 ⁇ m or more, foaming is likely to occur.
  • the thickness (L1) of the first polyimide layer 20 and the thickness (L) of the entire insulating resin layer 40 affect the suppression of foaming, the improvement in dimensional stability, and the adhesiveness to the metal layer 10.
  • the ratio (L / L1) between the thickness (L) and the thickness (L1) is in the range of more than 1 and less than 400.
  • the ratio (L / L1) is preferably in the range of more than 1 and less than 60, more preferably 4 or more and 45 or less, and most preferably 5 or more and 30 or less.
  • the insulating resin layer 40 may include a polyimide layer other than the first polyimide layer 20 and the second polyimide layer 30.
  • the polyimide layer constituting the insulating resin layer 40 may contain an inorganic filler as necessary. Specific examples include silicon dioxide, aluminum oxide, magnesium oxide, beryllium oxide, boron nitride, aluminum nitride, silicon nitride, aluminum fluoride, calcium fluoride, and the like. These can be used alone or in combination of two or more.
  • a preferred polyimide for forming the first polyimide layer 20 and the second polyimide layer 30 will be described.
  • an acid anhydride component and a diamine component generally used as a raw material for synthesizing polyimide can be used without any particular limitation.
  • the polyimide constituting the first polyimide layer 20 may be either a thermoplastic polyimide or a non-thermoplastic polyimide, but it is easy to secure the adhesiveness with the metal layer 10 serving as a base. For that reason, thermoplastic polyimides are preferred.
  • the polyimide constituting the second polyimide layer 30 may be either a thermoplastic polyimide or a non-thermoplastic polyimide, but when the non-thermoplastic polyimide is used, the effect of the invention is remarkably exhibited. That is, even if imidization is performed by laminating a resin layer of a polyamic acid that is a precursor of a non-thermoplastic polyimide on a polyimide layer that has been imidized by a method such as a casting method, the adhesion between the polyimide layers is usually The property is hardly obtained.
  • the surface of the first polyimide layer 20 is subjected to the surface treatment as described above, and then the second polyamide resin layer 30A is laminated, so that the polyimide constituting the second polyimide layer 30 is thermally heated. Regardless of whether it is plastic or non-thermoplastic, excellent adhesion between the first polyimide layer 20 and the first polyimide layer 20 can be obtained.
  • the second polyimide layer 30 is made of non-thermoplastic polyimide, it can function as a main layer (base layer) that secures the mechanical strength of the polyimide layer in the metal-clad laminate 100.
  • thermoplastic polyimide layer is laminated as the first polyimide layer 20 and the non-thermoplastic polyimide layer is laminated as the second polyimide layer 30.
  • Polyimides include low-thermal-expansion polyimide and high-thermal-expansion polyimide.
  • thermoplastic polyimide has high-thermal expansion and non-thermoplastic polyimide has low-thermal expansion.
  • the coefficient of thermal expansion is preferably in the range of more than 30 ⁇ 10 ⁇ 6 and 80 ⁇ 10 ⁇ 6 / K or less.
  • the second polyimide layer 30 when the second polyimide layer 30 is a low-expansion polyimide layer, it can function as a main layer (base layer) that secures the dimensional stability of the polyimide layer in the metal-clad laminate 100.
  • the thermal expansion coefficient of the low-expansion polyimide layer is in the range of 1 ⁇ 10 ⁇ 6 to 30 ⁇ 10 ⁇ 6 (1 / K), preferably 1 ⁇ 10 ⁇ 6 to 25 ⁇ 10 ⁇ 6 ( 1 / K), more preferably 10 ⁇ 10 ⁇ 6 to 25 ⁇ 10 ⁇ 6 (1 / K).
  • the thermal expansion coefficient can be suppressed low by increasing the thickness ratio of the non-thermoplastic polyimide layer.
  • the first polyimide layer 20 and the second polyimide layer 30 can be formed into polyimide layers having a desired coefficient of thermal expansion by appropriately changing the combination of the materials used, the thickness, and the drying and curing conditions.
  • thermoplastic polyimide generally refers to a polyimide whose glass transition temperature (Tg) can be clearly confirmed. In the present invention, 30 ° C. was measured using a dynamic viscoelasticity measuring device (DMA). Is a polyimide having a storage elastic modulus of 1.0 ⁇ 10 9 Pa or more and a storage elastic modulus at 350 ° C. of less than 1.0 ⁇ 10 8 Pa.
  • non-thermoplastic polyimide generally refers to a polyimide that does not soften or exhibit adhesiveness even when heated, but in the present invention, it is measured using a dynamic viscoelasticity measuring device (DMA). It refers to a polyimide having a storage elastic modulus at 1.0 ° C. of 1.0 ⁇ 10 9 Pa or more and a storage elastic modulus at 350 ° C. of 1.0 ⁇ 10 8 Pa or more.
  • an aromatic diamine compound As the diamine compound serving as a raw material of the polyimide, an aromatic diamine compound, an aliphatic diamine compound, or the like can be used.
  • an aromatic diamine compound represented by NH 2 —Ar 1 -NH 2 is preferable.
  • Ar1 is exemplified by one selected from the group represented by the following formula.
  • Ar1 can have a substituent, but preferably does not, or if it does, the substituent is preferably a lower alkyl or lower alkoxy group having 1 to 6 carbon atoms.
  • One of these aromatic diamine compounds may be used alone, or two or more thereof may be used in combination.
  • an aromatic tetracarboxylic anhydride is preferable from the viewpoint of easy synthesis of polyamic acid.
  • the aromatic tetracarboxylic anhydride is not particularly limited, but for example, a compound represented by O (CO) 2 Ar 2 (CO) 2 O is preferable.
  • Ar2 is exemplified by a tetravalent aromatic group represented by the following formula.
  • the substitution position of the acid anhydride group [(CO) 2 O] is arbitrary, but a symmetric position is preferable.
  • Ar2 can have a substituent, but preferably does not, or if it does, the substituent is preferably a lower alkyl group having 1 to 6 carbon atoms.
  • the polyimide constituting the polyimide layer can be produced by reacting an acid anhydride and a diamine in a solvent to form a precursor resin, and then heating and closing the ring.
  • a polyimide precursor is obtained by dissolving an acid anhydride component and a diamine component in substantially equimolar amounts in an organic solvent, and stirring at a temperature within a range of 0 to 100 ° C. for 30 minutes to 24 hours to cause a polymerization reaction.
  • a polyamic acid is obtained.
  • the reaction components are dissolved in an organic solvent so that the amount of the produced precursor is in the range of 5 to 30% by weight, preferably in the range of 10 to 20% by weight.
  • organic solvent used in the polymerization reaction examples include N, N-dimethylformamide, N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone, 2-butanone, dimethyl sulfoxide, dimethyl sulfate, cyclohexanone, and dioxane. , Tetrahydrofuran, diglyme, triglyme and the like. Two or more of these solvents can be used in combination, and further, an aromatic hydrocarbon such as xylene or toluene can be used in combination.
  • the amount of the organic solvent used is not particularly limited, but may be such that the concentration of the polyamic acid solution (polyimide precursor solution) obtained by the polymerization reaction is about 5 to 30% by weight. It is preferable to use it after adjusting.
  • the synthesized precursor is advantageously used as a reaction solvent solution, but can be concentrated, diluted, or replaced with another organic solvent if necessary. Further, the precursor is generally used because it is excellent in solvent solubility.
  • each of the above-mentioned acid anhydrides and diamines may be used alone or in combination of two or more. Controlling thermal expansion, adhesion, storage modulus, glass transition temperature, etc. by selecting the type of acid anhydride and diamine, and the molar ratio when using two or more acid anhydrides or diamines can do.
  • the polyimide has a plurality of polyimide structural units, it may be present as a block or may be present at random, but is preferably present at random.
  • the metal-clad laminate obtained in the present embodiment has excellent adhesion between the first polyimide layer 20 and the second polyimide layer 30, and can be used as a circuit board material represented by FPC. Thus, the reliability of the electronic device can be improved.
  • the polyimide precursor layer formed by the casting method is laminated with the next polyimide precursor layer in a semi-cured state, thereby suppressing foaming.
  • the adhesiveness between polyimide layers can be improved without requiring a special step such as surface treatment.
  • the method for manufacturing a metal-clad laminate according to the second embodiment of the present invention includes an insulating resin layer including a plurality of polyimide layers, and a metal layer stacked on at least one surface of the insulating resin layer. This is a method for manufacturing a metal-clad laminate provided with the above.
  • FIG. 2 is a process chart showing main procedures of a method for manufacturing a metal-clad laminate according to the second embodiment.
  • the method of the present embodiment includes the following steps (a) to (d).
  • the English characters next to the arrows represent steps (a) to (d).
  • the description of the same configuration as that of the first embodiment may be omitted by referring to the first embodiment.
  • Step (a) a single-layer or multiple-layer first polyamide resin layer 20A is formed on the metal foil 10A to be the metal layer 10 by applying a polyamic acid solution.
  • the method of applying the polyamic acid resin solution onto the metal foil 10A by the casting method is not particularly limited, and for example, it can be applied by a coater such as a comma, a die, a knife, a lip, or the like.
  • a method of repeatedly applying and drying a polyamic acid solution to the metal foil 10A or a multi-layer extrusion may be used on the metal foil 10A.
  • a method of applying and drying polyamic acid in a state of being laminated in multiple layers can be adopted.
  • the first polyamide layer 20 is cured so that the thickness (L1) of the first polyimide layer 20 after curing in the step (d) is in the range of 0.5 ⁇ m to 10 ⁇ m. It is preferable to form the resin layer 20A.
  • the polyamic acid resin layer is imidized while being fixed to the metal foil 10A, a change in expansion and contraction of the polyimide layer during the imidization process can be suppressed, and the thickness and dimensional accuracy can be maintained.
  • the material, thickness, surface treatment, shape and form, and moisture permeability of the metal foil 10A are the same as in the first embodiment.
  • Step (b) The first polyamide resin layer such that the weight loss rate in the temperature range from 100 ° C. to 360 ° C. measured by a thermogravimetric differential thermal analyzer (TG-DTA) is in the range of 0.1 to 20%.
  • most of the solvent and imidized water contained in the first polyamide resin layer 20A can be removed by semi-curing the polyamic acid contained in the first polyamide resin layer 20A. .
  • the semi-cured state unlike the cured state in which imidization has been completed, there is sufficient space between the second polyimide layer 30 formed in the subsequent steps (c) and (d). Interlayer adhesion can be obtained.
  • the partially imidized semi-cured state is different from a mere dry state or a cured state in which imidization has been completed, and is a state in which an imidization reaction has occurred in the polyamic acid but has not been completed.
  • the degree of imidization can be evaluated, for example, by a weight reduction rate in a temperature range from 100 ° C. to 360 ° C. measured by a thermogravimetric differential thermal analyzer (TG-DTA). If the weight loss rate in this temperature range is within the range of 0.1 to 20%, it can be considered that the partially cured semi-cured state is imidized. If the weight reduction ratio is less than 0.1%, imidization may have progressed excessively, and sufficient interlayer adhesion may not be obtained.
  • the degree of imidation is in the range of 1 to 15%.
  • the degree of imidization can also be evaluated by the imidization rate.
  • the imidization ratio of the semi-cured resin layer 20B it is preferable to adjust the imidization ratio of the semi-cured resin layer 20B to be in the range of 20 to 95%, and more preferably to be in the range of 22 to 90%. .
  • the imidation ratio is less than 20%, the imidization reaction hardly progresses and cannot be distinguished from mere drying, so that there is a high possibility that the solvent contained in the first polyamide resin layer 20A remains, so that there is a high possibility that the solvent contained in the first polyamide resin layer 20A remains, In addition, since the amount of imidized water generated before the completion of imidization is large, it may cause foaming. On the other hand, if the imidization ratio exceeds 95%, imidization may have progressed excessively, and sufficient interlayer adhesion may not be obtained.
  • the imidation ratio was determined by measuring the infrared absorption spectrum of the resin layer by a single reflection ATR method using a Fourier transform infrared spectrophotometer, and based on a benzene ring carbon-hydrogen bond at 1009 cm ⁇ 1 , It can be calculated from the absorbance derived from the imide group of -1 .
  • the stepwise heat treatment from 120 ° C. to 360 ° C. is performed on the first polyamide resin layer 20A, and the imidation ratio after the heat treatment at 360 ° C. is set to 100%.
  • the method for semi-curing the polyamic acid in the step (b) is not particularly limited, and for example, the above-mentioned weight loss rate or imide under the temperature condition in the range of 120 to 300 ° C, preferably 140 to 280 ° C.
  • Heat treatment in which the time is adjusted so as to obtain a conversion rate and heating is preferred.
  • the heat treatment is preferably performed in a low oxygen atmosphere in order to suppress oxidation of the metal layer 10, specifically, in an inert gas atmosphere such as nitrogen or a rare gas, or in a reducing gas atmosphere such as hydrogen. Alternatively, it is preferably performed in a vacuum.
  • Step (c) a single-layer or multiple-layer second polyamide resin layer 30A is formed on the semi-cured resin layer 20B formed in the step (b) by further applying a polyamic acid solution.
  • the method of applying the polyamic acid resin solution on the semi-cured resin layer 20B by the casting method is not particularly limited, and the application can be performed by a coater such as a comma, a die, a knife, and a lip.
  • a coater such as a comma, a die, a knife, and a lip.
  • a method of repeatedly applying and drying a polyamic acid solution on the semi-cured resin layer 20B a plurality of times or a multilayer extrusion method is used.
  • a method of applying and drying the polyamic acid in a state of being simultaneously laminated in multiple layers on the cured resin layer 20B can be adopted.
  • the second polyamide resin layer 30A is formed after the step (d) such that the thickness (L) of the entire insulating resin layer 40 is in the range of 10 ⁇ m to 200 ⁇ m. Is preferred.
  • Step (d) In the step (d), the polyamic acid contained in the semi-cured resin layer 20B and the polyamic acid contained in the second polyamide resin layer 30A are imidized to form the first polyimide layer 20 and the second polyimide layer 30. By changing, the insulating resin layer 40 is formed. In the step (d), the polyamide acid contained in the semi-cured resin layer 20B and the second polyamide resin layer 30A is simultaneously imidized to synthesize polyimide.
  • the imidation method is not particularly limited, and a heat treatment such as heating at a temperature in the range of 80 to 400 ° C. for a time in the range of 1 to 60 minutes is preferably employed.
  • the heat treatment is preferably performed in a low oxygen atmosphere in order to suppress oxidation of the metal layer 10, specifically, in an inert gas atmosphere such as nitrogen or a rare gas, in a reducing gas atmosphere such as hydrogen, or in a vacuum. It is preferably carried out in Note that the end point of the imidization in the step (d) is, for example, that the weight loss rate in a temperature range from 100 ° C. to 360 ° C. measured by a thermogravimetric differential thermal analyzer (TG-DTA) is less than 0.1. It can be used as an index to indicate that there is, or that the imidation ratio exceeds 95%.
  • TG-DTA thermogravimetric differential thermal analyzer
  • the method of the present embodiment can include any other steps than the above.
  • a step of performing a surface treatment on the surface of the semi-cured resin layer 20B after the step (b) and before the step (c) may be further included as long as the effects of the invention are not impaired.
  • the surface treatment is not particularly limited as long as it can improve the interlayer adhesion between the first polyimide layer 20 and the second polyimide layer 30, and the same treatment as in the first embodiment can be mentioned. .
  • the insulating resin layer 40 having excellent adhesion between the first polyimide layer 20 and the second polyimide layer 30 without causing a decrease in throughput due to an increase in the number of steps. Can be manufactured.
  • the first polyimide layer 20 is formed on the metal layer 10 by a casting method, the first polyimide layer 20 is semi-cured before the formation of the second polyimide layer 30 to provide a solvent or imidized water. Is removed, and problems such as foaming and delamination do not occur.
  • the thickness (L1) of the first polyimide layer 20 is preferably in a range from 0.5 ⁇ m to 10 ⁇ m, More preferably, it is in the range of 1 ⁇ m or more and 7 ⁇ m or less.
  • the step (b) most of the solvent and imidized water can be removed by semi-curing in a state where the thickness (L1) after imidization is 10 ⁇ m or less. If the thickness (L1) after imidization exceeds 10 ⁇ m, it becomes difficult to remove the solvent and the imidized water, and the dimensional stability also deteriorates. If the thickness (L1) of the first polyimide layer 20 is less than 0.5 ⁇ m, the adhesiveness with the metal layer 10 is reduced, and the insulating resin layer 40 is easily peeled.
  • the thickness (L) of the entire insulating resin layer 40 is preferably in the range of 10 ⁇ m to 200 ⁇ m, and more preferably in the range of 12 ⁇ m to 150 ⁇ m.
  • the thickness (L) is less than 10 ⁇ m, it is difficult to exhibit the foam suppressing effect, and it is difficult to obtain the effect of improving the dimensional stability.
  • the thickness (L) exceeds 200 ⁇ m, foaming tends to occur.
  • the thickness (L1) of the first polyimide layer 20 and the thickness (L) of the entire insulating resin layer 40 affect the suppression of foaming and the improvement of dimensional stability. Is preferably in the range of more than 1 and less than 400, more preferably 4 or more and 200 or less, further preferably 5 or more and 100 or less.
  • the insulating resin layer 40 may include a polyimide layer other than the first polyimide layer 20 and the second polyimide layer 30.
  • the polyimide layer constituting the insulating resin layer 40 may contain an inorganic filler as necessary. Specific examples include silicon dioxide, aluminum oxide, magnesium oxide, beryllium oxide, boron nitride, aluminum nitride, silicon nitride, aluminum fluoride, calcium fluoride, and the like. These can be used alone or in combination of two or more.
  • a preferred polyimide for forming the first polyimide layer 20 and the second polyimide layer 30 will be described.
  • an acid anhydride component and a diamine component generally used as a raw material for synthesizing polyimide can be used without any particular limitation.
  • the polyimide constituting the first polyimide layer 20 may be either a thermoplastic polyimide or a non-thermoplastic polyimide, but it is easy to secure the adhesiveness with the metal layer 10 serving as a base. For that reason, thermoplastic polyimides are preferred.
  • the polyimide constituting the second polyimide layer 30 may be either a thermoplastic polyimide or a non-thermoplastic polyimide, but when the non-thermoplastic polyimide is used, the effect of the invention is remarkably exhibited. That is, even if imidization is performed by laminating a resin layer of a polyamic acid that is a precursor of a non-thermoplastic polyimide on a polyimide layer that has been imidized by a method such as a casting method, the adhesion between the polyimide layers is usually The property is hardly obtained.
  • the polyimide constituting the second polyimide layer 30 is formed by laminating the second polyamide resin layer 30A in a state where the first polyamide resin layer 20A is semi-cured as described above. Regardless of whether it is thermoplastic or non-thermoplastic, excellent adhesion between the first polyimide layer 20 and the first polyimide layer 20 can be obtained.
  • the second polyimide layer 30 is made of non-thermoplastic polyimide, it can function as a main layer (base layer) that secures the mechanical strength of the polyimide layer in the metal-clad laminate 100.
  • thermoplastic polyimide layer is laminated as the first polyimide layer 20 and the non-thermoplastic polyimide layer is laminated as the second polyimide layer 30.
  • the contents of the diamine compound and the acid anhydride as the raw materials of the polyimide, the synthesis of the polyimide, and the like are the same as those in the first embodiment.
  • the method for manufacturing a metal-clad laminate according to the second embodiment of the present invention includes the following steps (a) to (d); Step (a) a step of forming a single layer or a plurality of first polyamide resin layers by applying a polyamic acid solution on the metal layer; Step (b) The first step is performed so that the weight loss rate in the temperature range from 100 ° C. to 360 ° C. measured by a thermogravimetric differential thermal analyzer (TG-DTA) is in the range of 0.1 to 20%.
  • TG-DTA thermogravimetric differential thermal analyzer
  • a step of partially imidizing the polyamic acid contained in the polyamide resin layer of 1 to form a single layer or a plurality of semi-cured resin layers Step (c) a step of forming a single-layer or plural-layer second polyamide resin layer by applying a polyamic acid solution on the semi-cured resin layer, (D) imidizing the polyamic acid contained in the semi-cured resin layer and the polyamic acid contained in the second polyamide resin layer to form the insulating resin layer; Is included.
  • the imidation ratio in the step (b) may be in the range of 20 to 95%.
  • the thickness (L1) of the resin layer formed by the first polyamide resin layer is in the range of 0.5 ⁇ m to 10 ⁇ m.
  • the thickness (L) of the entire insulating resin layer is in the range of 10 ⁇ m or more and 200 ⁇ m or less, and the ratio (L / L1) of L to L1 is more than 1 and less than 400. You may.
  • the polyimide constituting a layer in contact with the metal layer among the resin layers formed by the first polyamide resin layer is heat-resistant. It may be a plastic polyimide.
  • the moisture permeability of the metal layer, the thickness 25 [mu] m, when the 25 ° C. may be not more than 100g / m 2 / 24hr.
  • a surface treatment is performed on the surface of the semi-cured resin layer after the step (b) and before the step (c).
  • the method may further include a step.
  • a method of manufacturing a circuit board according to the second embodiment of the present invention includes a step of processing a wiring circuit of the metal layer of the metal-clad laminate manufactured by any of the above methods.
  • the metal-clad laminate obtained in the present embodiment has excellent adhesion between the first polyimide layer 20 and the second polyimide layer 30, and can be used as a circuit board material represented by FPC. Thus, the reliability of the electronic device can be improved.
  • the surface treatment is performed on the imidized polyimide in order to obtain the adhesion between the layers.
  • the surface treatment requires facilities for the treatment and increases the number of steps. There are cases. Therefore, in a third embodiment and a fourth embodiment of the present invention described below, the resin component of the polyimide precursor layer formed by the casting method and the resin component of the polyimide layer serving as the base are formed. By utilizing the interaction, the adhesion between polyimide layers can be improved without requiring a special step such as surface treatment.
  • the method for manufacturing a polyimide film according to the third embodiment includes a first polyimide layer (A) and a second polyimide layer (B) laminated on at least one surface of the first polyimide layer (A).
  • This is a method for producing a polyimide film comprising:
  • the polyimide film obtained according to the present embodiment may have a polyimide layer other than the first polyimide layer (A) and the second polyimide layer (B), and may be laminated on any substrate. You may.
  • the method for producing a polyimide film of the present embodiment includes the following steps I to III.
  • Step I a first polyimide layer (A) containing a polyimide having a ketone group is prepared.
  • a polyimide having a ketone group has a ketone group (—CO—) in the molecule.
  • the ketone group is derived from an acid dianhydride and / or a diamine compound which is a raw material for polyimide. That is, the polyimide constituting the first polyimide layer (A) contains a tetracarboxylic acid residue (1a) and a diamine residue (2a), and contains a tetracarboxylic acid residue (1a) or a diamine residue.
  • One or both of (2a) include a residue having a ketone group.
  • tetracarboxylic acid residue refers to a tetravalent group derived from tetracarboxylic dianhydride
  • diamine residue refers to a divalent group derived from a diamine compound. It represents a valence group.
  • the hydrogen atoms in the two terminal amino groups may be substituted.
  • Examples of the residue having a ketone group contained in the tetracarboxylic acid residue (1a) include 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,3 ′, 3,4 ′ -Benzophenonetetracarboxylic dianhydride, 2,2 ', 3,3'-benzophenonetetracarboxylic dianhydride, 4,4'-(paraphenylenedicarbonyl) diphthalic anhydride, 4,4 '-(meta Residues derived from "tetracarboxylic dianhydride having a ketone group in the molecule" such as phenylenedicarbonyl) diphthalic anhydride can be mentioned.
  • tetracarboxylic acid residue (1a) other than the residue having a ketone group, for example, those derived from tetracarboxylic dianhydride generally used in the synthesis of polyimide, in addition to those shown in Examples described later. Residues may be mentioned.
  • Examples of the residue having a ketone group contained in the diamine residue (2a) include, for example, 3,3′-diaminobenzophenone, 3,4′-diaminobenzophenone, 4,4′-diaminobenzophenone, and 4,4′- Bis [4- (4-amino- ⁇ , ⁇ -dimethylbenzyl) phenoxy] benzophenone, 4,4′-bis (4-aminophenoxy) benzophenone 4,4′-bis (3-aminophenoxy) benzophenone (BABP), "Molecules such as 1,3-bis [4- (3-aminophenoxy) benzoyl] benzene (BABB), 1,4-bis (4-aminobenzoyl) benzene, and 1,3-bis (4-aminobenzoyl) benzene And a residue derived from a "diamine compound having a ketone group therein".
  • residues derived from a diamine compound generally used in the synthesis of polyimide there may be mentioned residues derived from a diamine compound generally used in the synthesis of polyimide. it can.
  • the first polyimide layer (A) may contain another polyimide other than the polyimide having a ketone group.
  • 10 mol% or more of the polyimide having a ketone group is based on the total amount of the polyimide constituting the first polyimide layer (A). It is more preferable that 30 mol% or more of the polyimide is a polyimide having a ketone group.
  • the amount of ketone groups (as -CO-) present in the polyimide constituting the first polyimide layer (A) is 100 mol parts in total of the tetracarboxylic acid residue (1a) and the diamine residue (2a).
  • the ketone group present in the polyimide constituting the first polyimide layer (A) is less than 5 mol parts, the functional group present in the resin layer containing the polyamic acid (b) laminated in the step II (for example, In some cases, the probability of interaction with the terminal amino group) is reduced, and sufficient adhesion between layers may not be obtained.
  • a method of forming the first polyimide layer (A) As a method of forming the first polyimide layer (A), a method of applying a resin solution containing a polyamic acid (a) having a ketone group on an arbitrary base material (cast method), a method of forming an arbitrary base material It can be formed by a method of laminating a gel film containing a polyamic acid (a) having a ketone group thereon.
  • the method of applying the resin solution containing the polyamic acid (a) is not particularly limited, and for example, the resin solution can be applied using a coater such as a comma, a die, a knife, and a lip.
  • the first polyimide layer (A) may be in a state of being laminated with another resin layer, or may be in a state of being laminated on an arbitrary base material.
  • the first polyimide layer (A) is formed by laminating a resin layer containing a polyamic acid (a) having a ketone group on a substrate and imidizing the polyamic acid (a) together with the substrate. It is preferred that As described above, even when the first polyimide layer (A) is formed on the base material by the casting method, the imidation is completed before the second polyimide layer (B) is formed. Since water is removed, problems such as foaming and delamination do not occur.
  • the first polyimide layer (A) can be formed in a shape such as a cut sheet shape, a roll shape, or an endless belt shape. It is efficient to use a form that enables continuous production. Further, the first polyimide layer (A) is preferably a long roll formed from the viewpoint of further improving the effect of improving the wiring pattern accuracy on the circuit board.
  • step II a resin layer containing a polyamic acid (b) having a functional group having a property of interacting with the ketone group is laminated on the first polyimide layer (A) obtained in step I.
  • the “functional group having the property of interacting with a ketone group” includes, for example, a functional group capable of generating a physical interaction due to an intermolecular force or a chemical interaction due to a covalent bond with the ketone group.
  • the group is not particularly limited as long as it is a group, but a typical example thereof is an amino group (—NH 2 ).
  • the polyamic acid (b) may be a polyamic acid having an amino group at a terminal, preferably a polyamic acid having most of terminal amino groups, more preferably Polyamic acids, all of whose ends are amino groups, can be used.
  • the polyamic acid (b) having abundant amino terminals can be formed by adjusting the molar ratio of the two components so that the diamine compound is in excess with respect to the tetracarboxylic dianhydride in the raw material. .
  • the charge ratio of the raw materials so that the amount of the tetracarboxylic dianhydride is less than 1 mol per 1 mol of the diamine compound, most of the synthesized polyamic acid is stochastically changed to the amino terminal ( —NH 2 ). If the charging ratio of the tetracarboxylic dianhydride exceeds 1 mole per 1 mole of the diamine compound, it is not preferable because almost no amino terminal (—NH 2 ) remains. On the other hand, if the charging ratio of the tetracarboxylic dianhydride to the diamine compound is too small, the increase in the molecular weight of the polyamic acid does not sufficiently proceed.
  • the charging ratio of tetracarboxylic dianhydride to 1 mol of the diamine compound is preferably, for example, in the range of 0.970 to 0.998 mol, and more preferably in the range of 0.980 to 0.995 mol. .
  • the polyamic acid (b) can be synthesized using a tetracarboxylic dianhydride and a diamine compound generally used for the synthesis of polyimide as raw materials.
  • the raw material may be a tetracarboxylic dianhydride having a ketone group in the molecule or a diamine compound having a ketone group in the molecule.
  • a polyamic acid (b) having abundant amino terminals is synthesized by using a compound (for example, a triamine compound) rich in an amino group in a molecule instead of part or all of the diamine compound as a raw material. It is also possible. Furthermore, the charge ratio of the tetracarboxylic dianhydride and the diamine compound in the raw materials is made equimolar, and by adding a small amount of a compound containing an amino group (for example, a triamine compound), a polyamic acid having a rich amino terminal ( It is also possible to form a resin layer containing b).
  • a compound for example, a triamine compound
  • the resin layer containing the polyamic acid (b) may be mixed with the polyamic acid (b).
  • the other polyimide acid a polyamic acid synthesized using tetracarboxylic dianhydride and a diamine compound, which are generally used for the synthesis of polyimide, as raw materials and in an equimolar ratio thereof can be used.
  • the resin layer containing the polyamic acid (b) has a polyamic acid content of 10 mol% or more based on the total amount of the constituent polyamic acid. (B), and more preferably 30% by mole or more of the polyamic acid is the polyamic acid (b).
  • the resin layer containing the polyamic acid (b) is formed by applying a resin solution containing the polyamic acid (b) on the first polyimide layer (A) (casting method). It can be formed by a method of laminating a gel film containing a polyamic acid (b) on the first layer. In order to increase the adhesion between the first polyimide layer (A) and the second polyimide layer (B), It is preferable to use a casting method. In addition, when forming the resin layer containing the polyamic acid (b), it is not necessary to previously perform a surface treatment such as a plasma treatment or a corona treatment on the surface of the first polyimide layer (A). It is also possible to do.
  • a surface treatment such as a plasma treatment or a corona treatment
  • the method of applying the resin solution containing the polyamic acid (b) is not particularly limited, and it is possible to apply the resin solution using a coater such as a comma, a die, a knife, and a lip.
  • the resin layer containing the polyamic acid (b) thus obtained contains the tetracarboxylic acid residue (1b) and the diamine residue (2b), and is contained in 1 mole of the diamine residue (2b). Containing a tetracarboxylic acid residue (1b) of less than 1 mol, preferably in the range of 0.970 to 0.998 mol, more preferably in the range of 0.980 to 0.995 mol, and the amino terminal (—NH It becomes a resin layer containing 2 ) abundantly.
  • Step III the resin layer containing the polyamic acid (b) is heat-treated together with the first polyimide layer (A), and the polyamic acid (b) is imidized to form a second polyimide layer (B).
  • the imidation method is not particularly limited, and a heat treatment such as heating at a temperature in the range of 80 to 400 ° C. for a time in the range of 1 to 60 minutes is preferably employed.
  • heat treatment in a low-oxygen atmosphere is preferable to suppress oxidation.
  • an inert gas atmosphere such as nitrogen or a rare gas
  • a reducing gas atmosphere such as hydrogen, or a vacuum It is preferably carried out in
  • a ketone group present in the polyimide chain of the first polyimide layer (A) and the functional group present in the resin layer containing the polyamic acid (b) for example, abundant terminal Interaction occurs between the first polyimide layer (A) and the second polyimide layer (B), and the adhesion between the first polyimide layer (A) and the second polyimide layer (B) is a property of the polyimide constituting both layers (for example, thermoplastic). Or non-thermoplastic, etc.).
  • the heat treatment at the time of imidizing the polyamic acid (b) causes It is presumed that an imine bond has occurred between the ketone group and the terminal amino group. That is, a heating causes a dehydration condensation reaction between the ketone group in the polyimide chain of the first polyimide layer (A) and the amino group at the terminal of the polyamic acid (b) to form an imine bond. Is chemically bonded to the second polyimide layer (B) after imidization, whereby the first polyimide layer (A) and the second polyimide layer (B) are chemically bonded to each other. It is presumed that the adhesive strength is increased.
  • the effect of improving the adhesion between the layers cannot be obtained. That is, first, a resin layer containing a polyamic acid (b) having a functional group having a property of interacting with a ketone group is imidized to form a first polyimide layer, and a polyamic acid having a ketone group is formed thereon.
  • a resin layer containing (a) is formed and then imidized by heat treatment to form a second polyimide layer, the adhesion between the first and second layers is determined by the properties of the polyimide constituting both layers (for example, , Thermoplastic or non-thermoplastic, etc.). It is considered that the reason for this is that in the cured polyimide, the movement of the terminal amino group as the functional group is restricted and the reactivity is reduced, so that the above-mentioned interaction hardly occurs.
  • the first polyimide layer (A) and the second polyimide layer (B) may contain an inorganic filler as needed.
  • an inorganic filler include silicon dioxide, aluminum oxide, magnesium oxide, beryllium oxide, boron nitride, aluminum nitride, silicon nitride, aluminum fluoride, calcium fluoride, and the like. These can be used alone or in combination of two or more.
  • a method for producing a metal-clad laminate comprising the following steps i to iv.
  • step i At least one or more polyamic acid resin layers having a polyamic acid (a) resin layer having a ketone group on the surface layer are formed on the metal layer.
  • a metal foil can be preferably used.
  • the material of the metal foil is not particularly limited.
  • copper or a copper alloy is particularly preferable.
  • a rolled copper foil or an electrolytic copper foil may be used, and a commercially available copper foil can be preferably used.
  • the thickness of the metal layer when used for manufacturing an FPC is preferably in the range of 3 to 50 ⁇ m, and more preferably in the range of 5 to 30 ⁇ m.
  • the surface of the metal foil used as the metal layer may be subjected to surface treatment such as rust prevention treatment, siding, aluminum alcoholate, aluminum chelate, and silane coupling agent.
  • the metal foil can be in a shape such as a cut sheet shape, a roll shape, or an endless belt shape. It is efficient to use a simple format. Further, from the viewpoint of further improving the effect of improving the accuracy of the wiring pattern on the circuit board, the metal foil is preferably a roll formed in a long shape.
  • the resin layer containing the polyamic acid (a) having a ketone group becomes a surface layer.
  • it can be formed by a method of applying a polyamic acid resin solution on the metal layer (casting method), a method of laminating a gel film containing the polyamic acid (a) on the metal layer, or the like.
  • an arbitrary resin layer including a resin layer of another polyamic acid may be provided between the metal layer and the resin layer containing the polyamic acid (a) having a ketone group.
  • a resin layer containing a polyamic acid (a) having a ketone group can form a resin layer containing a polyamic acid (a) having a ketone group on the arbitrary resin layer by the above method.
  • a resin layer of a polyamic acid (a) having a ketone group is directly formed on the metal layer, a cast method is used in order to increase the adhesion between the metal layer and the first polyimide layer (A). Is preferred.
  • the method of applying the resin solution containing the polyamic acid (a) is not particularly limited, and for example, the resin solution can be applied using a coater such as a comma, a die, a knife, and a lip.
  • step ii the polyamic acid resin layer having a resin layer containing a polyamic acid (a) having a ketone group in the surface layer is heat-treated together with the metal layer to imidize the polyamic acid.
  • an intermediate is formed in which the polyimide layer having the first polyimide layer (A) containing the polyimide having a ketone group as a surface layer is laminated on the metal layer.
  • the imidization of the polyamic acid can be performed by the method described in the step (III) of the third embodiment.
  • the second polyimide Since the imidization is completed before the formation of the layer (B), the solvent and the imidized water are removed, so that problems such as foaming and delamination do not occur.
  • Step iii a resin layer containing a polyamic acid (b) having a functional group having a property of interacting with the ketone group is laminated on the first polyimide layer (A).
  • This step iii can be performed in the same manner as in step II of the third embodiment.
  • Step iv The resin layer containing the polyamic acid (b) laminated on the intermediate in step iii is heat-treated together with the intermediate to imidize the polyamic acid (b) to form a second polyimide layer (B).
  • This step iv can be performed in the same manner as in step III of the third embodiment.
  • a metal-clad laminate excellent in adhesion between the first polyimide layer (A) and the second polyimide layer (B) can be obtained without causing a decrease in throughput due to an increase in the number of steps. Can be manufactured.
  • first polyimide layer (A) and the second polyimide layer (B) a preferred polyimide for forming the first polyimide layer (A) and the second polyimide layer (B) will be described.
  • first polyimide layer (A) the above-mentioned “tetracarboxylic dianhydride having a ketone group in the molecule” and / or “diamine compound having a ketone group in the molecule” and generally a polyimide It is preferable to use a combination of an acid anhydride component and a diamine component used as a raw material for synthesis.
  • an acid anhydride component and a diamine component generally used as a raw material for synthesizing polyimide can be used without any particular limitation.
  • the polyimide constituting the first polyimide layer (A) may be either a thermoplastic polyimide or a non-thermoplastic polyimide.
  • Thermoplastic polyimide is preferred because it is easy to secure adhesion.
  • the polyimide constituting the second polyimide layer (B) may be either a thermoplastic polyimide or a non-thermoplastic polyimide.
  • the non-thermoplastic polyimide when used, the effect of the invention is remarkably exhibited. That is, even when a resin layer of a polyamic acid, which is a precursor of a non-thermoplastic polyimide, is laminated on the first polyimide layer (A) which has been imidized by a method such as a casting method, imidization is usually performed. Has little adhesion between polyimide layers.
  • the polyimide constituting the second polyimide layer (B) is thermoplastic or non-thermoplastic due to the interaction between the ketone group and the functional group (for example, terminal amino group). Regardless of whether or not there is, excellent adhesion between the first polyimide layer (A) and the first polyimide layer (A) can be obtained. Further, by making the second polyimide layer (B) a non-thermoplastic polyimide, it can function as a main layer (base layer) for securing the mechanical strength of the polyimide layer in the polyimide film or the metal-clad laminate. it can.
  • thermoplastic polyimide layer is laminated as the first polyimide layer (A) and a non-thermoplastic polyimide layer is laminated as the second polyimide layer (B) in the polyimide film or the metal-clad laminate. This is the most preferred embodiment.
  • Thermoplastic polyimide is obtained by reacting an acid anhydride component with a diamine component.
  • a general acid anhydride used for the synthesis of polyimide can be used without any particular limitation, and in particular, both the adhesion to the metal layer and the low dielectric property are compatible.
  • Biphenyltetracarboxylic dianhydride has an effect of lowering the glass transition temperature so as not to affect the decrease in solder heat resistance of the polyimide, and can secure a sufficient adhesive force with a metal layer or the like.
  • biphenyltetracarboxylic dianhydride reduces the concentration of imide groups in the polyimide, facilitates the formation of an ordered structure of the polymer, and improves the dielectric properties by suppressing the movement of molecules.
  • biphenyltetracarboxylic dianhydride contributes to the reduction in the number of polar groups in the polyimide, so that the hygroscopic property is improved.
  • biphenyltetracarboxylic dianhydride can reduce the transmission loss of FPC.
  • the “imide group concentration” means a value obtained by dividing the molecular weight of the imide group (— (CO) 2 —N—) in the polyimide by the molecular weight of the entire structure of the polyimide.
  • biphenyltetracarboxylic dianhydride examples include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 2,3 ′, 3,4′-biphenyltetracarboxylic dianhydride, 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride and the like can be mentioned.
  • BPDA 4,4′-biphenyltetracarboxylic dianhydride
  • 2,3 ′, 3,4′-biphenyltetracarboxylic dianhydride 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride and the like can be mentioned.
  • BPDA 4,4′-biphenyltetracarboxylic dianhydride
  • acid anhydrides other than those described above can be used as the acid anhydride component.
  • Such acid anhydrides include, for example, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 4,4′-oxydiphthalic anhydride, 2,2 ′, 3,3′- 2,3,3 ′, 4′- or 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,3 ′, 3,4′-diphenylethertetracarboxylic dianhydride, bis ( 2,3-dicarboxyphenyl) ether dianhydride, 3,3 ", 4,4"-, 2,3,3 ", 4"-or 2,2 ", 3,3" -p-terphenyltetracarboxylic dianhydride, 2,2-bis (2,3- or 3,4-dicarboxyphenyl) -propane dianhydride, bis (2,3- or 3.4-dicarbox
  • a general diamine used in the synthesis of polyimide can be used without any particular limitation, and is selected from diamine compounds represented by the following general formulas (1) to (8). It is preferable to contain at least one of these.
  • R 1 independently represents a monovalent hydrocarbon group or an alkoxy group having 1 to 6 carbon atoms
  • the linking group A independently represents -O-, -S-, -CO —, —SO—, —SO 2 —, —COO—, —CH 2 —, —C (CH 3 ) 2 —, —NH— or —CONH— represents a divalent group
  • n 1 is independently Shows an integer of 0 to 4.
  • those overlapping with Expression (2) are excluded from Expression (3)
  • those overlapping with Expression (4) are excluded from Expression (5).
  • “independently” means that in one or two or more of the above formulas (1) to (7), a plurality of linking groups A, a plurality of R 1, or a plurality of n 1 are the same. Or may be different.
  • the connecting group X represents a single bond or —CONH—
  • Y represents a monovalent hydrocarbon group or an alkoxy group having 1 to 3 carbon atoms which may be independently substituted with a halogen atom.
  • n represents an integer of 0 to 2
  • p and q independently represent an integer of 0 to 4.
  • hydrogen atoms in the two terminal amino groups may be substituted, for example, -NR 2 R 3 (where R 2 and R 3 are independently Any substituent such as an alkyl group).
  • the diamine represented by the formula (1) (hereinafter sometimes referred to as “diamine (1)”) is an aromatic diamine having two benzene rings.
  • the diamine (1) has a high flexibility by increasing the degree of freedom of the polyimide molecular chain because the amino group directly bonded to at least one benzene ring and the divalent linking group A are at the meta position. This is considered to contribute to the improvement of the flexibility of the polyimide molecular chain. Accordingly, the use of the diamine (1) increases the thermoplasticity of the polyimide.
  • the linking group A —O—, —CH 2 —, —C (CH 3 ) 2 —, —CO—, —SO 2 —, and —S— are preferable.
  • diamine (1) examples include 3,3'-diaminodiphenylmethane, 3,3'-diaminodiphenylpropane, 3,3'-diaminodiphenylsulfide, 3,3'-diaminodiphenylsulfone, and 3,3-diaminodiphenylether , 3,4'-diaminodiphenylether, 3,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylpropane, 3,4'-diaminodiphenylsulfide, 3,3'-diaminobenzophenone, (3,3'-bisamino ) Diphenylamine and the like.
  • the diamine represented by the formula (2) (hereinafter sometimes referred to as “diamine (2)”) is an aromatic diamine having three benzene rings. Since the diamine (2) has at least one amino group directly bonded to the benzene ring and the divalent linking group A at the meta position, the degree of freedom of the polyimide molecular chain is increased, and the diamine (2) has high flexibility. This is considered to contribute to the improvement of the flexibility of the polyimide molecular chain. Accordingly, the use of the diamine (2) increases the thermoplasticity of the polyimide.
  • the connecting group A is preferably -O-.
  • diamine (2) examples include 1,4-bis (3-aminophenoxy) benzene, 3- [4- (4-aminophenoxy) phenoxy] benzeneamine, and 3- [3- (4-aminophenoxy) phenoxy] Benzenamine and the like can be mentioned.
  • the diamine represented by the formula (3) (hereinafter, sometimes referred to as “diamine (3)”) is an aromatic diamine having three benzene rings.
  • the diamine (3) has a high flexibility by increasing the degree of freedom of the polyimide molecular chain because the two divalent linking groups A directly bonded to one benzene ring are at the meta position with each other. It is considered that this contributes to the improvement of the flexibility of the polyimide molecular chain. Accordingly, the use of the diamine (3) increases the thermoplasticity of the polyimide.
  • the connecting group A is preferably -O-.
  • Examples of the diamine (3) include 1,3-bis (4-aminophenoxy) benzene (TPE-R), 1,3-bis (3-aminophenoxy) benzene (APB), and 4,4 ′-[2- Methyl- (1,3-phenylene) bisoxy] bisaniline, 4,4 ′-[4-methyl- (1,3-phenylene) bisoxy] bisaniline, 4,4 ′-[5-methyl- (1,3-phenylene) ) Bisoxy] bisaniline and the like.
  • TPE-R 1,3-bis (4-aminophenoxy) benzene
  • APIB 1,3-bis (3-aminophenoxy) benzene
  • 4 ′-[2- Methyl- (1,3-phenylene) bisoxy] bisaniline 4,4 ′-[4-methyl- (1,3-phenylene) bisoxy] bisaniline
  • TPE-R 1,3-bis (4-aminophenoxy) benzene
  • TPE-R 1,3-bis (4-aminophenoxy) benzene
  • the diamine represented by the formula (4) (hereinafter sometimes referred to as “diamine (4)”) is an aromatic diamine having four benzene rings.
  • the diamine (4) has high flexibility by having at least one amino group directly bonded to the benzene ring and the divalent linking group A at the meta position, and is useful for improving the flexibility of the polyimide molecular chain. It is thought to contribute. Accordingly, the use of the diamine (4) increases the thermoplasticity of the polyimide.
  • the linking group A —O—, —CH 2 —, —C (CH 3 ) 2 —, —SO 2 —, —CO—, and —CONH— are preferable.
  • Examples of the diamine (4) include bis [4- (3-aminophenoxy) phenyl] methane, bis [4- (3-aminophenoxy) phenyl] propane, bis [4- (3-aminophenoxy) phenyl] ether, [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy)] benzophenone, bis [4,4 ′-(3-aminophenoxy)] benzanilide and the like can be mentioned.
  • the diamine represented by the formula (5) (hereinafter, sometimes referred to as “diamine (5)”) is an aromatic diamine having four benzene rings.
  • the diamine (5) has a high flexibility by increasing the degree of freedom of the polyimide molecular chain because two divalent linking groups A directly bonded to at least one benzene ring are at meta positions with each other. This is considered to contribute to the improvement of the flexibility of the polyimide molecular chain. Accordingly, the use of the diamine (5) increases the thermoplasticity of the polyimide.
  • the connecting group A is preferably -O-.
  • diamine (5) examples include 4- [3- [4- (4-aminophenoxy) phenoxy] phenoxy] aniline and 4,4 ′-[oxybis (3,1-phenyleneoxy)] bisaniline. .
  • the diamine represented by the formula (6) (hereinafter sometimes referred to as “diamine (6)”) is an aromatic diamine having four benzene rings.
  • the diamine (6) has high flexibility by having at least two ether bonds, and is considered to contribute to improvement in flexibility of the polyimide molecular chain. Accordingly, the use of the diamine (6) increases the thermoplasticity of the polyimide.
  • the connecting group A is preferably —C (CH 3 ) 2 —, —O—, —SO 2 —, or —CO—.
  • diamine (6) examples include, for example, 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP), bis [4- (4-aminophenoxy) phenyl] ether (BAPE), bis [4 -(4-aminophenoxy) phenyl] sulfone (BAPS), bis [4- (4-aminophenoxy) phenyl] ketone (BAPK) and the like.
  • BAPP 2,2-bis [4- (4-aminophenoxy) phenyl] propane
  • BAPE bis [4-(4-aminophenoxy) phenyl] sulfone
  • BAPK bis [4- (4-aminophenoxy) phenyl] ketone
  • BAPP 2,2-bis [4- (4-aminophenoxy) phenyl] propane
  • BAPK bis [4- (4-aminophenoxy) phenyl] ketone
  • the diamine represented by the formula (7) (hereinafter sometimes referred to as “diamine (7)”) is an aromatic diamine having four benzene rings. Since the diamine (7) has the highly flexible divalent linking group A on both sides of the diphenyl skeleton, it is considered that the diamine (7) contributes to the improvement of the flexibility of the polyimide molecular chain. Accordingly, the use of the diamine (7) increases the thermoplasticity of the polyimide.
  • the connecting group A is preferably -O-.
  • diamine (7) examples include bis [4- (3-aminophenoxy)] biphenyl and bis [4- (4-aminophenoxy)] biphenyl.
  • the diamine represented by the general formula (8) (hereinafter sometimes referred to as “diamine (8)”) is an aromatic diamine having one to three benzene rings. Since the diamine (8) has a rigid structure, it has an action of giving an ordered structure to the entire polymer. Therefore, by using one or more of the diamines (1) to (7) and one or more of the diamines (8) in combination at a predetermined ratio, the dielectric loss tangent can be reduced and the thermoplastic resin can have a low dielectric loss tangent. However, a polyimide having low gas permeability and excellent long-term heat resistance can be obtained.
  • the connecting group X is preferably a single bond or —CONH—.
  • diamine (8) examples include, for example, paraphenylenediamine (PDA), 4,4′-diamino-2,2′-dimethylbiphenyl (m-TB), 4,4′-diamino-3,3′-dimethyldiphenyl 4,4′-diamino-2,2′-n-propylbiphenyl (m-NPB), 2′-methoxy-4,4′-diaminobenzanilide (MABA), 4,4′-diaminobenzanilide (DABA) ), 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl and the like.
  • PDA paraphenylenediamine
  • m-TB 4,4′-diamino-2,2′-dimethylbiphenyl
  • m-NPB 4,4′-diamino-3,3′-dimethyldiphenyl 4,4′-diamino-2,2′-n
  • 4,4′-diamino-2,2′-dimethylbiphenyl is particularly preferred as a monomer that greatly contributes to the improvement of the dielectric properties of the thermoplastic polyimide, and further to the low moisture absorption and high heat resistance. .
  • the flexibility of the polyimide molecular chain can be improved and thermoplasticity can be imparted.
  • diamine (8) an ordered structure is formed throughout the polymer due to the rigid structure derived from the monomer, so that a low dielectric loss tangent can be achieved, and gas permeability is obtained while being thermoplastic.
  • a polyimide which is low and has excellent long-term heat resistance can be obtained.
  • thermoplastic polyimide a diamine other than the above can be used as the diamine component.
  • Non-thermoplastic polyimide The non-thermoplastic polyimide is obtained by reacting an acid anhydride component and a diamine component.
  • the acid anhydride component serving as the raw material of the non-thermoplastic polyimide a general acid anhydride used for the synthesis of polyimide can be used without any particular limitation, but in order to impart low dielectric properties, the acid anhydride component of the raw material is used. It is preferable to use at least one selected from the group consisting of pyromellitic dianhydride (PMDA), biphenyltetracarboxylic dianhydride, and naphthalenetetracarboxylic dianhydride.
  • PMDA pyromellitic dianhydride
  • biphenyltetracarboxylic dianhydride biphenyltetracarboxylic dianhydride
  • naphthalenetetracarboxylic dianhydride naphthalenetetracarboxylic dianhydride.
  • biphenyltetracarboxylic dianhydride 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) is particularly preferable, and as the naphthalenetetracarboxylic dianhydride, 2,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is particularly preferable.
  • BPDA 4,4′-biphenyltetracarboxylic dianhydride
  • NTCDA 6,6,7-Naphthalenetetracarboxylic dianhydride
  • PMDA can reduce the coefficient of thermal expansion (CTE) of polyimide.
  • CTE coefficient of thermal expansion
  • BPDA has the effect of lowering the glass transition temperature to such an extent that it does not affect the solder heat resistance of polyimide.
  • BPDA reduces the imide group concentration of the polyimide, facilitates the formation of an ordered structure of the polymer, and improves the dielectric properties by suppressing the movement of molecules.
  • BPDA improves the moisture absorption properties since it contributes to the reduction of the polar groups of the polyimide. Therefore, the transmission loss of FPC can be reduced by using BPDA.
  • acid anhydrides other than those described above can be used as the acid anhydride component.
  • diamine component used as a raw material of the non-thermoplastic polyimide a general diamine used in the synthesis of polyimide can be used without any particular limitation, and the diamines (1) to (8) exemplified in the description of the thermoplastic polyimide can be used. Diamines selected from among them are preferred, and diamine (8) is more preferred.
  • Diamine (8) is an aromatic diamine, and contributes to lowering the CTE and improving the dielectric properties, as well as lowering the moisture absorption and increasing the heat resistance.
  • diamines (8) those in which Y is an alkyl group having 1 to 3 carbon atoms in the above general formula (8) are preferable, and 4,4′-diamino-2,2′-dimethyldiphenyl (m-TB) 4,4′-Diamino-3,3′-dimethyldiphenyl is more preferred. Of these, 4,4'-diamino-2,2'-dimethyldiphenyl (m-TB) is most preferred.
  • a diamine other than the above can be used as the diamine component as long as the effects of the present invention are not impaired.
  • the polyimide constituting the polyimide layer can be produced by reacting an acid anhydride and a diamine in a solvent to form a precursor resin, and then heating and closing the ring.
  • the acid anhydride component and the diamine component are dissolved in an organic solvent in approximately equimolar amounts (however, in the case of forming the second polyimide layer (B), the ratio of the diamine component is increased), and 0 to 100
  • the polyamic acid which is a precursor of polyimide, is obtained by performing a polymerization reaction by stirring at a temperature within the range of 30 ° C. for 30 minutes to 24 hours.
  • the reaction components are dissolved in an organic solvent so that the amount of the produced precursor is in the range of 5 to 30% by weight, preferably in the range of 10 to 20% by weight.
  • organic solvent used in the polymerization reaction include N, N-dimethylformamide, N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone, 2-butanone, dimethyl sulfoxide, dimethyl sulfate, cyclohexanone, and dioxane. , Tetrahydrofuran, diglyme, triglyme and the like. Two or more of these solvents can be used in combination, and further, an aromatic hydrocarbon such as xylene or toluene can be used in combination.
  • the amount of the organic solvent used is not particularly limited, but may be such that the concentration of the polyamic acid solution (polyimide precursor solution) obtained by the polymerization reaction is about 5 to 30% by weight. It is preferable to use it after adjusting.
  • each of the above-mentioned acid anhydrides and diamines may be used alone or in combination of two or more.
  • the types of the acid anhydride and the diamine and the respective molar ratios when using two or more acid anhydrides or diamines it is possible to control the thermal expansion property, the adhesive property, the glass transition temperature, and the like.
  • the synthesized precursor is usually advantageously used as a reaction solvent solution, but can be concentrated, diluted, or replaced with another organic solvent, if necessary. Further, the precursor is generally used because it is excellent in solvent solubility.
  • the method of imidizing the precursor is not particularly limited. For example, a heat treatment in which the precursor is heated in the solvent under a temperature condition of 80 to 400 ° C. for 1 to 24 hours is suitably employed.
  • the first polyimide layer (A) is laminated on at least one surface of the first polyimide layer (A).
  • the method for producing a polyimide film according to the third embodiment of the present invention includes the following steps I to III; I) a step of preparing a first polyimide layer (A) containing a polyimide having a ketone group; II) laminating a resin layer containing a polyamic acid (b) having a functional group having a property of interacting with the ketone group on the first polyimide layer (A); III) a step of heat-treating the resin layer containing the polyamic acid (b) together with the first polyimide layer (A) to imidize the polyamic acid (b) to form a second polyimide layer (B); Is included.
  • the polyimide constituting the first polyimide layer (A) includes a tetracarboxylic acid residue (1a) and a diamine residue (2a).
  • the ketone group may be 5 mol parts or more based on 100 mol parts in total of the tetracarboxylic acid residue (1a) and the diamine residue (2a).
  • the resin layer containing the polyamic acid (b) contains a tetracarboxylic acid residue (1b) and a diamine residue (2b).
  • the tetracarboxylic acid residue (1b) may be less than 1 mol per 1 mol of the diamine residue (2b).
  • the first polyimide layer (A) is formed by laminating a resin layer containing a polyamic acid (a) having a ketone group on a base material,
  • the substrate may be formed by imidizing the polyamic acid (a) together with the substrate.
  • the method for manufacturing a metal-clad laminate according to the fourth embodiment of the present invention includes the steps of: laminating a metal layer, a first polyimide layer (A), and one surface of the first polyimide layer (A). And a second polyimide layer (B).
  • the method for producing a metal-clad laminate according to the fourth embodiment of the present invention includes the following steps i to iv: i) a step of forming at least one or more polyamic acid resin layers having a resin layer containing a polyamic acid (a) having a ketone group on the surface layer on the metal layer; ii) heat treating the polyamic acid resin layer together with the metal layer to imidize the polyamic acid, thereby forming a first polyimide layer (A) containing a polyimide having a ketone group on the metal layer; Step of forming an intermediate in which a polyimide layer having a part is laminated, iii) laminating a resin layer containing a polyamic acid (b) having a functional group having a property of interacting with the ketone group on the first polyimide layer (A); iv) heat treating the resin layer of the polyamic acid (b) together with the intermediate, and imidizing the polyamic acid (b) to form
  • a method of manufacturing a circuit board according to an embodiment of the present invention includes a step of performing a wiring circuit processing on the metal layer of the metal-clad laminate manufactured by the method of the fourth embodiment.
  • the polyimide film obtained in the third embodiment of the present invention and the metal-clad laminate obtained in the fourth embodiment consist of the first polyimide layer (A) and the second polyimide layer (B ), And by using it as a circuit board material represented by FPC, the reliability of electronic equipment can be improved.
  • a circuit board includes an insulating resin layer including a plurality of polyimide layers, and a wiring layer laminated on at least one surface of the insulating resin layer.
  • This circuit board is manufactured by processing a metal layer of a metal-clad laminate obtained by the method of the first, second or fourth embodiment into a pattern by a conventional method to form a wiring layer. be able to.
  • the patterning of the metal layer can be performed by any method using, for example, photolithography technology and etching.
  • processes such as through-hole processing in a previous process, terminal plating, and outer shape processing in a subsequent process can be performed according to a conventional method.
  • Viscosity measurement The viscosity of the resin was measured at 25 ° C. using an E-type viscometer (trade name: DV-II + Pro, manufactured by Brookfield). The rotation speed was set so that the torque became 10% to 90%, and two minutes after the start of the measurement, the value when the viscosity was stabilized was read.
  • a metal-clad laminate having a size of 80 mm x 80 mm was prepared. After providing a dry film resist on the metal layer of this laminated board, it is exposed and developed to form, as shown in FIG. 2, 16 resist patterns having a diameter of 1 mm so that the whole forms a square. Then, position measurement targets capable of measuring five points at 50 mm intervals in the vertical direction (MD) and the horizontal direction (TD) were prepared.
  • the distance between the target in the vertical direction (MD) and the horizontal direction (TD) of the resist pattern on the target for position measurement was measured in an atmosphere at a temperature of 23 ⁇ 2 ° C. and a relative humidity of 50 ⁇ 5%.
  • the exposed portion of the metal layer at the opening of the resist pattern was removed by etching (etching solution temperature: 40 ° C. or less, etching time: within 10 minutes), and as shown in FIG.
  • An evaluation sample having a residual point was prepared. This evaluation sample was allowed to stand for 24 ⁇ 4 hours in an atmosphere having a temperature of 23 ⁇ 2 ° C.
  • the film curl is obtained by etching the copper foil of the metal-clad laminate over its entire surface, and setting the floating heights of the four corners when the first polyimide layer of the polyimide film having the dimensions of 100 mm ⁇ 100 mm after the copper foil is laid down. It was measured. The case where the average value of the floating heights at the four corners exceeded 10 mm was evaluated as "curl”.
  • Tg glass transition temperature
  • the storage elastic modulus was measured using a dynamic viscoelasticity measuring device (DMA).
  • DMA dynamic viscoelasticity measuring device
  • a polyimide having a storage elastic modulus at 30 ° C. of 1.0 ⁇ 10 9 Pa or more and a storage elastic modulus at 350 ° C. of 1.0 ⁇ 10 8 Pa or more is referred to as “non-thermoplastic polyimide”.
  • a polyimide having a modulus of 1.0 ⁇ 10 9 Pa or more and a storage elastic modulus at 350 ° C. of less than 1.0 ⁇ 10 8 Pa is referred to as “thermoplastic polyimide”.
  • CTE thermal expansion coefficient
  • the volatile component ratio in each example was determined by measuring the TG-DTA of the semi-cured first polyamide resin layer film in the range of 30 ° C. to 500 ° C. at a rate of 10 ° C./min. %, The rate of weight loss from 100 ° C. to 360 ° C. was taken as the volatile component rate.
  • the imidation ratio of the polyimide layer is determined by measuring the infrared absorption spectrum of the polyimide film in a single reflection ATR method using a Fourier transform infrared spectrophotometer (manufactured by JASCO Corporation, trade name: FT / IR). Calculated from the absorbance derived from the imide group at 1778 cm -1 based on the benzene ring carbon-hydrogen bond at 1009 cm -1 .
  • the first polyamide resin layer was subjected to a stepwise heat treatment from 120 ° C. to 360 ° C., and the imidation ratio of the polyimide film after the heat treatment at 360 ° C. was set to 100%.
  • the peel strength was determined by using a tensilon tester (trade name: Strograph VE-1D, manufactured by Toyo Seiki Seisaku-sho, Ltd.), fixing the second polyimide layer side of the sample having a width of 10 mm to an aluminum plate with a double-sided tape, and removing the first polyimide.
  • the metal-clad laminate on the layer side was pulled in the direction of 180 ° at a speed of 50 mm / min, and the force at the time of peeling between the first polyimide layer and the second polyimide layer was determined.
  • a polyamic acid solution AE to be a first polyimide layer is uniformly applied on a 12 ⁇ m-thick electrolytic copper foil so as to have a cured thickness of 2 ⁇ m, and then the temperature is raised stepwise from 120 ° C. to 360 ° C. The solvent was removed and imidation was performed. The obtained first polyimide layer was subjected to a corona treatment at 120 W ⁇ min / m 2 . Next, a polyamic acid solution AA to be a second polyimide layer was uniformly applied thereon so as to have a cured thickness of 25 ⁇ m, and then heated and dried at 120 ° C. for 3 minutes to remove the solvent. .
  • the temperature was increased stepwise from 130 ° C. to 360 ° C. to perform imidization, thereby preparing a metal-clad laminate A1.
  • the thickness (L1) of the first polyimide layer was 2 ⁇ m
  • the thickness (L) of the entire insulating resin layer was 27 ⁇ m
  • the ratio (L / L1) was 13.5.
  • An adhesive tape was applied to the resin surface of the prepared metal-clad laminate A1, and a peeling test was performed by instantaneous peeling in the vertical direction. However, peeling between the first polyimide layer and the second polyimide layer was observed. Did not.
  • Example A2 A metal-clad laminate A2 was prepared in the same manner as in Example A1, except that the polyamic acid solution AE was used instead of the polyamic acid solution AE. A peeling test was conducted on the prepared metal-clad laminate A2 in the same manner as in Example A1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example A3 A metal-clad laminate A3 was prepared in the same manner as in Example A1, except that the polyamic acid solution AE was used instead of the polyamic acid solution AE. A peeling test of the prepared metal-clad laminate A3 was performed in the same manner as in Example A1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example A4 A metal-clad laminate A4 was prepared in the same manner as in Example A1, except that the polyamic acid solution AC was used instead of the polyamic acid solution AE. A peeling test of the prepared metal-clad laminate A4 was performed in the same manner as in Example A1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example A5 A metal-clad laminate A5 was prepared in the same manner as in Example A1, except that the polyamic acid solution AB was used instead of the polyamic acid solution AA. A peeling test of the prepared metal-clad laminate A5 was performed in the same manner as in Example A1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
  • Example A6 A polyamic acid solution AB was used in place of the polyamic acid solution AA, and a polyamic acid solution AF was used in place of the polyamic acid solution AE in the same manner as in Example A1.
  • a metal-clad laminate A6 was prepared. A peeling test of the prepared metal-clad laminate A6 was performed in the same manner as in Example A1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example A7 In the same manner as in Example A1, except that the polyamic acid solution AB was used instead of the polyamic acid solution AA, and the polyamic acid solution AG was used instead of the polyamic acid solution AE, A metal-clad laminate A7 was prepared. A peeling test of the prepared metal-clad laminate A7 was performed in the same manner as in Example A1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example A8 In the same manner as in Example A1, except that the polyamic acid solution AB was used instead of the polyamic acid solution AA, and the polyamic acid solution AA was used instead of the polyamic acid solution AE, A metal-clad laminate A8 was prepared. A peeling test of the prepared metal-clad laminate A8 was performed in the same manner as in Example A1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
  • Example A9 A polyamic acid solution AB was used in place of the polyamic acid solution AA, and a polyamic acid solution AC was used in place of the polyamic acid solution AE in the same manner as in Example A1.
  • a metal-clad laminate A9 was prepared. A peeling test was conducted on the prepared metal-clad laminate A9 in the same manner as in Example A1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example A10 A metal-clad laminate A10 was prepared in the same manner as in Example A1, except that the polyamic acid solution AA was used instead of the polyamic acid solution AA. A peeling test of the prepared metal-clad laminate A10 was performed in the same manner as in Example A1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example A11 In the same manner as in Example A1, except that the polyamic acid solution AC was used instead of the polyamic acid solution AA, and the polyamic acid solution AF was used instead of the polyamic acid solution AE, A metal-clad laminate A11 was prepared. A peeling test was conducted on the prepared metal-clad laminate A11 in the same manner as in Example A1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example A12 In the same manner as in Example A1, except that the polyamic acid solution AC was used instead of the polyamic acid solution AA, and the polyamic acid solution AG was used instead of the polyamic acid solution AE, A metal-clad laminate A12 was prepared. A peeling test of the prepared metal-clad laminate A12 was performed in the same manner as in Example A1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example A13 In the same manner as in Example A1, except that the polyamic acid solution AC was used instead of the polyamic acid solution AA, and the polyamic acid solution AA was used instead of the polyamic acid solution AE, A metal-clad laminate A13 was prepared. A peeling test of the prepared metal-clad laminate A13 was performed in the same manner as in Example A1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example A14 A metal-clad laminate A14 was prepared in the same manner as in Example A1, except that the polyamic acid solution AA was used instead of the polyamic acid solution AA. A peeling test was conducted on the prepared metal-clad laminate A14 in the same manner as in Example A1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example A15 In the same manner as in Example A1, except that the polyamic acid solution AD was used instead of the polyamic acid solution AA, and the polyamic acid solution AF was used instead of the polyamic acid solution AE, A metal-clad laminate A15 was prepared. A peel test of the prepared metal-clad laminate A15 was performed in the same manner as in Example A1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
  • Example A16 In the same manner as in Example A1, except that the polyamic acid solution AD was used instead of the polyamic acid solution AA, and the polyamic acid solution AG was used instead of the polyamic acid solution AE, A metal-clad laminate A16 was prepared. A peeling test was conducted on the prepared metal-clad laminate A16 in the same manner as in Example A1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example A17 In the same manner as in Example A1, except that the polyamic acid solution AD was used instead of the polyamic acid solution AA, and the polyamic acid solution AA was used instead of the polyamic acid solution AE, A metal-clad laminate A17 was prepared. A peel test of the prepared metal-clad laminate A17 was performed in the same manner as in Example A1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
  • Example A18 In the same manner as in Example A1, except that the polyamic acid solution AD was used instead of the polyamic acid solution AA, and the polyamic acid solution AC was used instead of the polyamic acid solution AE, A metal-clad laminate A18 was prepared. A peeling test of the prepared metal-clad laminate A18 was performed in the same manner as in Example A1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Comparative example A1 A metal-clad laminate A19 was prepared in the same manner as in Example A1, except that the corona treatment was not performed. When a peel test was conducted on the prepared metal-clad laminate A19 in the same manner as in Example A1, delamination between the first polyimide layer and the second polyimide layer occurred.
  • Example A2 A metal-clad laminate A20 was prepared in the same manner as in Example A2, except that the corona treatment was not performed. When the prepared metal-clad laminate A20 was subjected to a peel test in the same manner as in Example A1, delamination between the first polyimide layer and the second polyimide layer occurred.
  • Example A3 A metal-clad laminate A21 was prepared in the same manner as in Example A14, except that the corona treatment was not performed. When a peel test was performed on the prepared metal-clad laminate A21 in the same manner as in Example A1, delamination between the first polyimide layer and the second polyimide layer occurred.
  • Comparative Example A4 A metal-clad laminate A22 was prepared in the same manner as in Example A15, except that the corona treatment was not performed. When a peel test was performed on the prepared metal-clad laminate A22 in the same manner as in Example A1, delamination between the first polyimide layer and the second polyimide layer occurred.
  • Example A19 After a polyamic acid solution AE to be a first polyimide layer is uniformly applied on a 12 ⁇ m-thick electrolytic copper foil so as to have a thickness of 2.5 ⁇ m after curing, the polyamic acid solution AE is gradually applied from 120 ° C. to 360 ° C. The temperature was raised to remove the solvent and perform imidization. The obtained first polyimide layer was subjected to a corona treatment at 120 W ⁇ min / m 2 . Next, a polyamic acid solution AA to be a second polyimide layer is uniformly applied thereon so as to have a cured thickness of 20 ⁇ m, and then a polyamic acid to be a third polyimide layer is formed thereon.
  • the solution AE was uniformly applied so that the thickness after curing became 2.5 ⁇ m, and was heated and dried at 120 ° C. for 3 minutes to remove the solvent. Thereafter, the temperature was increased stepwise from 130 ° C. to 360 ° C. to perform imidization, thereby preparing a metal-clad laminate A23.
  • the thickness (L1) of the first polyimide layer was 2.5 ⁇ m
  • the thickness (L) of the entire insulating resin layer was 25 ⁇ m
  • the ratio (L / L1) was 10.0. No foaming was observed, and no curling of the polyimide film was observed after copper foil etching.
  • the dimensional change rate was "good".
  • Example A20 instead of the polyamic acid solution AE to be the first polyimide layer and the third polyimide layer, a polyamic acid solution AF is uniformly applied so that the thickness after curing becomes 2.7 ⁇ m each, A metal-clad laminate A24 was prepared in the same manner as in Example A19, except that the polyamic acid solution AA to be a polyimide layer was uniformly applied so that the thickness after curing became 19.6 ⁇ m.
  • the thickness (L1) of the first polyimide layer was 2.7 ⁇ m
  • the thickness (L) of the entire insulating resin layer was 25 ⁇ m
  • the ratio (L / L1) was 9.3. No foaming was observed, and no curling of the polyimide film was observed after copper foil etching.
  • the dimensional change rate was "good".
  • Example A21 Instead of the polyamic acid solution AE to be the first polyimide layer and the third polyimide layer, a polyamic acid solution AG is uniformly applied so that the thickness after curing becomes 3.2 ⁇ m, respectively.
  • a metal-clad laminate A25 was prepared in the same manner as in Example A19, except that the polyamic acid solution AA to be a polyimide layer was uniformly applied so that the thickness after curing became 18.6 ⁇ m.
  • the thickness (L1) of the first polyimide layer was 3.2 ⁇ m
  • the thickness (L) of the entire insulating resin layer was 25 ⁇ m
  • the ratio (L / L1) was 7.8. No foaming was observed, and no curling of the polyimide film was observed after copper foil etching.
  • the dimensional change rate was “OK”.
  • Example A22 The polyamic acid solution AE to be the first polyimide layer and the third polyimide layer was uniformly applied so that the thickness after curing was 1.7 ⁇ m each, and the polyamic acid solution A to be the second polyimide layer was -A was uniformly applied so that the thickness after curing became 22 ⁇ m, and 130 ° C. to 360 ° C. after application of the polyamic acid solution AA and the polyamic acid solution AE to be the third polyimide layer A metal-clad laminate A26 was prepared in the same manner as in Example A19, except that the temperature rise time until was shortened to 1/3.
  • the thickness (L1) of the first polyimide layer was 1.7 ⁇ m
  • the thickness (L) of the entire insulating resin layer was 25.4 ⁇ m
  • the ratio (L / L1) was 14.9. No foaming was observed, and no curling of the polyimide film was observed after copper foil etching. The dimensional change rate was "good".
  • Example A23 The polyamic acid solution AE to be the first polyimide layer and the third polyimide layer was uniformly applied so that the thickness after curing was 1.8 ⁇ m each, and the polyamic acid solution A to be the second polyimide layer was -A was uniformly applied so that the thickness after curing became 22 ⁇ m, and 130 ° C. to 360 ° C. after application of the polyamic acid solution AA and the polyamic acid solution AE to be the third polyimide layer A metal-clad laminate A27 was prepared in the same manner as in Example A19, except that the temperature rise time until was shortened to 1/3.
  • the thickness (L1) of the first polyimide layer was 1.8 ⁇ m
  • the thickness (L) of the entire insulating resin layer was 25.6 ⁇ m
  • the ratio (L / L1) was 14.2. No foaming was observed, and no curling of the polyimide film was observed after copper foil etching. The dimensional change rate was "good".
  • Example A24 The polyamic acid solution AE to be the first polyimide layer and the third polyimide layer was uniformly applied so that the thickness after curing was 2.2 ⁇ m each, and the polyamic acid solution A to be the second polyimide layer was -A was uniformly applied so as to have a thickness of 20 ⁇ m after curing, and 130 ° C. to 360 ° C. after application of the polyamic acid solution AA and the polyamic acid solution AE to be the third polyimide layer.
  • a metal-clad laminate A28 was prepared in the same manner as in Example A19, except that the temperature rise time until was shortened to 1/3.
  • the thickness (L1) of the first polyimide layer was 2.2 ⁇ m, the thickness (L) of the entire insulating resin layer was 24.4 ⁇ m, and the ratio (L / L1) was 11.1. No foaming was observed, and no curling of the polyimide film was observed after copper foil etching. The dimensional change rate was "good".
  • Example A25 The polyamic acid solutions AE to be the first polyimide layer and the third polyimide layer are uniformly applied so that the thickness after curing is 2.4 ⁇ m, respectively, and the polyamic acid to be the second polyimide layer is A metal-clad laminate A29 was prepared in the same manner as in Example A19, except that the solution AD was uniformly applied so that the thickness after curing became 20.2 ⁇ m.
  • the thickness (L1) of the first polyimide layer was 2.4 ⁇ m
  • the thickness (L) of the entire insulating resin layer was 25 ⁇ m
  • the ratio (L / L1) was 10.4. No foaming was observed, and no curling of the polyimide film was observed after copper foil etching.
  • the dimensional change rate was "good".
  • Example A26 The polyamic acid solution AF to be the first polyimide layer and the third polyimide layer was uniformly applied so that the thickness after curing was 2.7 ⁇ m, respectively, and the polyamic acid to be the second polyimide layer was A metal-clad laminate A30 was prepared in the same manner as in Example A19, except that the solution AD was uniformly applied so that the thickness after curing became 20 ⁇ m.
  • the thickness (L1) of the first polyimide layer was 2.7 ⁇ m
  • the thickness (L) of the entire insulating resin layer was 25.4 ⁇ m
  • the ratio (L / L1) was 9.4. No foaming was observed, and no curling of the polyimide film was observed after copper foil etching.
  • the dimensional change rate was "good".
  • Example A27 The polyamic acid solution AG to be the first polyimide layer and the third polyimide layer is uniformly applied so that the thickness after curing becomes 3.2 ⁇ m, respectively, and the polyamic acid to be the second polyimide layer A metal-clad laminate A31 was prepared in the same manner as in Example A19, except that the solution AD was uniformly applied so that the thickness after curing became 19 ⁇ m.
  • the thickness (L1) of the first polyimide layer was 3.2 ⁇ m
  • the thickness (L) of the entire insulating resin layer was 25.4 ⁇ m
  • the ratio (L / L1) was 7.9. No foaming was observed, and no curling of the polyimide film was observed after copper foil etching.
  • the dimensional change rate was “OK”.
  • Example A28 The polyamic acid solution AE was uniformly applied on a 12 ⁇ m-thick electrolytic copper foil so that the cured thickness became 2.0 ⁇ m, and then the solvent was removed at 120 ° C.
  • the polyamic acid solution AA was uniformly applied thereon so as to have a cured thickness of 50 ⁇ m, and then the solvent was removed at 120 ° C. for 3 minutes.
  • the solvent was removed at 120 ° C., and the temperature was raised stepwise from 120 ° C. to 360 ° C.
  • the solvent was removed and imidation was performed to obtain a single-sided metal-clad laminate A28B on which a first polyimide layer was formed.
  • the polyimide layer of the obtained single-sided metal-clad laminate A28B was subjected to a corona treatment at 120 W ⁇ min / m 2 .
  • a polyamic acid solution AA to be a second polyimide layer is uniformly applied thereon so as to have a cured thickness of 50 ⁇ m, the solvent is removed, and then a third polyimide layer is provided thereon.
  • the polyamic acid solution AE was uniformly applied so that the thickness after curing became 2.0 ⁇ m, and was heated and dried at 120 ° C. for 3 minutes to remove the solvent.
  • the temperature was increased stepwise from 130 ° C. to 360 ° C. to perform imidization, thereby preparing a single-sided metal-clad laminate A28.
  • the thickness (L1) of the first polyimide layer was 54 ⁇ m
  • the thickness (L) of the entire insulating resin layer was 106 ⁇ m
  • the ratio (L / L1) was 1.96. No foaming was observed, and no curling of the polyimide film was observed after copper foil etching.
  • the dimensional change rate was "good".
  • Example A29 A polyamic acid solution AE for forming two layers of the first polyimide layer and a polyamic acid solution AE for forming the third polyimide layer are uniformly applied so that the thickness after curing becomes 10 ⁇ m.
  • a single-sided metal-clad laminate A29 was prepared in the same manner as in Example A28.
  • the thickness (L1) of the first polyimide layer was 70 ⁇ m
  • the thickness (L) of the entire insulating resin layer was 130 ⁇ m
  • the ratio (L / L1) was 1.86. No foaming was observed, and no curling of the polyimide film was observed after copper foil etching.
  • the dimensional change rate was "good".
  • Example A30 A polyamic acid solution AE for forming two layers of the first polyimide layer and a polyamic acid solution AE for forming the third polyimide layer are respectively referred to as polyamic acid solutions AF, and the thickness after curing is set as follows. The same procedure as in Example A28 was carried out except that the solution was uniformly applied so as to have a thickness of 2.0 ⁇ m, and that the polyamic acid solution AB serving as the second polyimide layer was uniformly applied so that the thickness after curing became 50 ⁇ m. Thus, a single-sided metal-clad laminate A30 was prepared.
  • the thickness (L1) of the first polyimide layer was 54 ⁇ m
  • the thickness (L) of the entire insulating resin layer was 106 ⁇ m
  • the ratio (L / L1) was 1.96. No foaming was observed, and no curling of the polyimide film was observed after copper foil etching. The dimensional change rate was "good".
  • Example A31 A polyamic acid solution AF for forming two layers of the first polyimide layer and a polyamic acid solution AF for forming the third polyimide layer are uniformly applied so that the thickness after curing becomes 10 ⁇ m, respectively.
  • a single-sided metal-clad laminate A31 was prepared in the same manner as in Example A30.
  • the thickness (L1) of the first polyimide layer was 70 ⁇ m
  • the thickness (L) of the entire insulating resin layer was 130 ⁇ m
  • the ratio (L / L1) was 1.86. No foaming was observed, and no curling of the polyimide film was observed after copper foil etching.
  • the dimensional change rate was "good".
  • Example B1 After a polyamic acid solution BE serving as a first polyimide layer is uniformly applied on a 12 ⁇ m-thick electrolytic copper foil so as to have a cured thickness of 2 ⁇ m, the temperature is increased stepwise from 120 ° C. to 240 ° C. Then, an appropriate solvent was removed and imidization was performed. At this time, the volatile component ratio and the imidation ratio of the semi-cured first polyimide layer were 3.0% and 80%. Next, a polyamic acid solution BA serving as a second polyimide layer was uniformly applied thereon so as to have a cured thickness of 25 ⁇ m, and then heated and dried at 120 ° C. for 3 minutes to remove the solvent. .
  • the temperature was increased stepwise from 130 ° C. to 360 ° C. to perform imidization, and a first polyimide layer and a second polyimide layer were formed, thereby preparing a metal-clad laminate B1.
  • An adhesive tape was applied to the resin surface of the prepared metal-clad laminate B1, and a peel test was performed by instantaneous peeling in the vertical direction. However, peeling between the first polyimide layer and the second polyimide layer was observed. Did not.
  • Example B2 A metal-clad laminate B2 was prepared in the same manner as in Example B1, except that a polyamic acid solution BF was used instead of the polyamic acid solution BE. At this time, the volatile component ratio and the imidation ratio of the semi-cured first polyimide layer were 5.6% and 55%. A peeling test of the prepared metal-clad laminate B2 was performed in the same manner as in Example B1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example B3 A metal-clad laminate B3 was prepared in the same manner as in Example B1, except that a polyamic acid solution BG was used instead of the polyamic acid solution BE. At this time, the volatile component ratio and the imidation ratio of the first polyimide layer in the semi-cured state were 6.7% and 28%. A peeling test of the prepared metal-clad laminate B3 was performed in the same manner as in Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
  • Example B4 A metal-clad laminate B4 was prepared in the same manner as in Example B1 except that the polyamic acid solution BC was used instead of the polyamic acid solution BE. At this time, the volatile component ratio and the imidation ratio of the first cured polyimide layer were 2.6% and 73%. A peeling test was conducted on the prepared metal-clad laminate B4 in the same manner as in Example B1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example B5 A metal-clad laminate B5 was prepared in the same manner as in Example B1, except that the polyamic acid solution BB was used instead of the polyamic acid solution BA. At this time, the volatile component ratio and the imidation ratio of the semi-cured first polyimide layer were 3.2% and 70%. A peeling test of the prepared metal-clad laminate B5 was performed in the same manner as in Example B1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example B6 A polyamic acid solution BB was used instead of the polyamic acid solution BA, and a polyamic acid solution BF was used instead of the polyamic acid solution BE in the same manner as in Example B1.
  • a metal-clad laminate B6 was prepared. At this time, the volatile component ratio and the imidation ratio of the semi-cured first polyimide layer were 4.0% and 65%.
  • a peeling test of the prepared metal-clad laminate B6 was performed in the same manner as in Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
  • Example B7 A polyamic acid solution BB was used instead of the polyamic acid solution BA, and a polyamic acid solution BG was used instead of the polyamic acid solution BE in the same manner as in Example B1.
  • a metal-clad laminate B7 was prepared. At this time, the volatile component ratio and the imidation ratio of the first polyimide layer in the semi-cured state were 5.5% and 53%.
  • a peeling test was conducted on the prepared metal-clad laminate B7 in the same manner as in Example B1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example B8 instead of the polyamic acid solution BA, a polyamic acid solution BB was used, and instead of the polyamic acid solution BE, a polyamic acid solution BA was used. A metal-clad laminate B8 was prepared. At this time, the volatile component ratio and the imidation ratio of the semi-cured first polyimide layer were 4.0% and 66%. A peeling test of the prepared metal-clad laminate B8 was performed in the same manner as in Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
  • Example B9 A polyamic acid solution BB was used instead of the polyamic acid solution BA, and a polyamic acid solution BC was used instead of the polyamic acid solution BE in the same manner as in Example B1.
  • a metal-clad laminate B9 was prepared. At this time, the volatile component ratio and the imidation ratio of the semi-cured first polyimide layer were 1.2% and 80%.
  • a peeling test was conducted on the prepared metal-clad laminate B9 in the same manner as in Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
  • Example B10 A metal-clad laminate B10 was prepared in the same manner as in Example B1, except that the polyamic acid solution BC was used instead of the polyamic acid solution BA. At this time, the volatile component ratio and the imidation ratio of the first cured polyimide layer were 2.6% and 83%. A peeling test of the prepared metal-clad laminate B10 was performed in the same manner as in Example B1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example B11 A polyamic acid solution BC was used in place of the polyamic acid solution BA, and a polyamic acid solution BF was used instead of the polyamic acid solution BE in the same manner as in Example B1.
  • a metal-clad laminate B11 was prepared. At this time, the volatile component ratio and the imidation ratio of the semi-cured first polyimide layer were 4.4% and 59%.
  • a peeling test of the prepared metal-clad laminate B11 was performed in the same manner as in Example B1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example B12 In the same manner as in Example B1, except that the polyamic acid solution BC was used instead of the polyamic acid solution BA, and the polyamic acid solution BG was used instead of the polyamic acid solution BE, A metal-clad laminate B12 was prepared. At this time, the volatile component ratio and the imidation ratio of the first cured polyimide layer were 10.1% and 23%. A peeling test of the prepared metal-clad laminate B12 was performed in the same manner as in Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
  • Example B13 In the same manner as in Example B1, except that the polyamic acid solution BC was used instead of the polyamic acid solution BA, and the polyamic acid solution BA was used instead of the polyamic acid solution BE, A metal-clad laminate B13 was prepared. At this time, the volatile component ratio and the imidation ratio of the semi-cured first polyimide layer were 10.0% and 22%. A peeling test of the prepared metal-clad laminate B13 was performed in the same manner as in Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
  • Example B14 A metal-clad laminate B14 was prepared in the same manner as in Example B1, except that the polyamic acid solution BD was used instead of the polyamic acid solution BA. At this time, the volatile component ratio and the imidation ratio of the first polyimide layer in a semi-cured state were 15.1% and 20%. A peeling test of the prepared metal-clad laminate B14 was performed in the same manner as in Example B1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example B15 A polyamic acid solution BD was used instead of the polyamic acid solution BA, and a polyamic acid solution BF was used instead of the polyamic acid solution BE in the same manner as in Example B1.
  • a metal-clad laminate B15 was prepared. At this time, the volatile component ratio and the imidation ratio of the first polyimide layer in the semi-cured state were 8.3% and 31%.
  • a peeling test of the prepared metal-clad laminate B15 was performed in the same manner as in Example B1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example B16 In the same manner as in Example B1, except that the polyamic acid solution BD was used instead of the polyamic acid solution BA, and the polyamic acid solution BG was used instead of the polyamic acid solution BE, A metal-clad laminate B16 was prepared. At this time, the volatile component ratio and the imidation ratio of the first polyimide layer in the semi-cured state were 12.0% and 22%. A peeling test of the prepared metal-clad laminate B16 was performed in the same manner as in Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
  • Example B17 In the same manner as in Example B1, except that the polyamic acid solution BD was used instead of the polyamic acid solution BA, and the polyamic acid solution BA was used instead of the polyamic acid solution BE, A metal-clad laminate B17 was prepared. At this time, the volatile component ratio and the imidation ratio of the semi-cured first polyimide layer were 7.0% and 25%. A peeling test of the prepared metal-clad laminate B17 was performed in the same manner as in Example B1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example B18 In the same manner as in Example B1, except that the polyamic acid solution BD was used instead of the polyamic acid solution BA, and the polyamic acid solution BC was used instead of the polyamic acid solution BE, A metal-clad laminate B18 was prepared. At this time, the volatile component ratio and the imidation ratio of the semi-cured first polyimide layer were 8.2% and 21%. A peeling test was conducted on the prepared metal-clad laminate B18 in the same manner as in Example B1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example B1 A metal-clad laminate B19 was prepared in the same manner as in Example B1, except that the temperature of the polyamic acid solution serving as the first polyimide layer was gradually increased from 120 ° C to 360 ° C. At this time, the volatile component ratio and the imidation ratio of the first polyimide layer were 0.0% and 100%. A peel test of the prepared metal-clad laminate B19 was performed in the same manner as in Example B1, and delamination between the first polyimide layer and the second polyimide layer occurred.
  • Comparative Example B2 A metal-clad laminate B20 was prepared in the same manner as in Example B2, except that the temperature of the polyamic acid solution serving as the first polyimide layer was gradually increased from 120 ° C to 360 ° C. At this time, the volatile component ratio and the imidation ratio of the first polyimide layer were 0.0% and 100%. When a peel test was conducted on the prepared metal-clad laminate B20 in the same manner as in Example B1, delamination between the first polyimide layer and the second polyimide layer occurred.
  • Example B3 A metal-clad laminate B21 was prepared in the same manner as in Example B14, except that the temperature of the polyamic acid solution serving as the first polyimide layer was gradually increased from 120 ° C. to 360 ° C. At this time, the volatile component ratio and the imidation ratio of the first polyimide layer were 0.0% and 100%. A peel test of the prepared metal-clad laminate B21 was performed in the same manner as in Example B1, and delamination between the first polyimide layer and the second polyimide layer occurred.
  • Comparative Example B4 A metal-clad laminate B22 was prepared in the same manner as in Example B15, except that the temperature of the polyamic acid solution serving as the first polyimide layer was gradually increased from 120 ° C to 360 ° C. At this time, the volatile component ratio and the imidation ratio of the first polyimide layer were 0.0% and 100%. When a peel test was performed on the prepared metal-clad laminate B22 in the same manner as in Example B1, delamination between the first polyimide layer and the second polyimide layer occurred.
  • Example B19 After a polyamic acid solution BE serving as a first polyimide layer is uniformly applied on a 12 ⁇ m-thick electrolytic copper foil so as to have a cured thickness of 2.5 ⁇ m, the polyamic acid solution BE is gradually applied from 120 ° C. to 240 ° C. The temperature was raised to remove an appropriate solvent and imidation. At this time, the volatile component ratio and the imidation ratio of the first polyimide layer in the semi-cured state were 5.5% and 53%. Next, after a polyamic acid solution BA serving as a second polyimide layer is uniformly applied thereon so as to have a cured thickness of 20 ⁇ m, a polyamic acid solution serving as a third polyimide layer is formed thereon.
  • the solution BE was uniformly applied so that the thickness after curing became 2.5 ⁇ m, and was heated and dried at 120 ° C. for 3 minutes to remove the solvent. Thereafter, the temperature was increased stepwise from 130 ° C. to 360 ° C. to perform imidization to prepare a metal-clad laminate B23. However, no foaming was observed, and no curling of the polyimide film was observed after copper foil etching. The dimensional change rate was "good".
  • Example B20 instead of the polyamic acid solution BE to be the first polyimide layer and the third polyimide layer, a polyamic acid solution BF is uniformly applied so that the thickness after curing becomes 2.7 ⁇ m, respectively,
  • a metal-clad laminate B24 was prepared in the same manner as in Example B19, except that the polyamic acid solution BA serving as a polyimide layer was uniformly applied so that the thickness after curing became 19.6 ⁇ m. No curl of the polyimide film was observed after etching of the copper foil. The dimensional change rate was "good". At this time, the volatile component ratio and the imidation ratio of the first cured polyimide layer were 2.6% and 83%.
  • Example B21 instead of the polyamic acid solution BE to be the first polyimide layer and the third polyimide layer, a polyamic acid solution BG is uniformly applied so that the thickness after curing becomes 3.2 ⁇ m, respectively.
  • a metal-clad laminate B25 was prepared in the same manner as in Example B19, except that the polyamic acid solution BA serving as a polyimide layer was uniformly applied so that the thickness after curing became 18.6 ⁇ m. No curl of the polyimide film was observed after etching of the copper foil. In addition, the dimensional change rate was “OK”. At this time, the volatile component ratio and the imidation ratio of the semi-cured first polyimide layer were 3.2% and 70%.
  • Example B22 The polyamic acid solution BE to be the first and third polyimide layers was uniformly applied so as to have a thickness of 1.7 ⁇ m after curing, and the polyamic acid solution BA to be the second polyimide layer was cured. After the application, the temperature was raised from 130 ° C. to 360 ° C. after the application of the polyamic acid solution BA and the polyamic acid solution BE to be the third polyimide layer.
  • a metal-clad laminate B26 was prepared in the same manner as in Example B19 except that the time was reduced to 1/3. As a result, no foaming was observed, and no curling of the polyimide film was observed after etching the copper foil. The dimensional change rate was "good". At this time, the volatile component ratio and the imidation ratio of the first cured polyimide layer were 10.1% and 23%.
  • Example B23 The polyamic acid solution BE to be the first and third polyimide layers was uniformly applied so as to have a thickness of 1.8 ⁇ m after curing, and the polyamic acid solution BA to be the second polyimide layer was cured. After the application, the temperature was raised from 130 ° C. to 360 ° C. after the application of the polyamic acid solution BA and the polyamic acid solution BE to be the third polyimide layer.
  • a metal-clad laminate B27 was prepared in the same manner as in Example B19, except that the time was reduced to 1/3. As a result, no foaming was observed, and no curling of the polyimide film was observed after copper foil etching. The dimensional change rate was "good". At this time, the volatile component ratio and the imidation ratio of the first polyimide layer in the semi-cured state were 6.7% and 28%.
  • Example B24 The polyamic acid solution BE to be the first and third polyimide layers was uniformly applied so as to have a thickness of 2.2 ⁇ m after curing, and the polyamic acid solution BA to be the second polyimide layer was cured. After the application, the temperature was increased from 130 ° C. to 360 ° C. after the application of the polyamic acid solution BA and the polyamic acid solution BE to be the third polyimide layer.
  • a metal-clad laminate B28 was prepared in the same manner as in Example B19, except that the time was reduced to 1/3. As a result, no foaming was observed, and no curling of the polyimide film was observed after etching the copper foil. The dimensional change rate was "good". At this time, the volatile component ratio and the imidation ratio of the first polyimide layer in a semi-cured state were 15.1% and 20%.
  • Example B25 The polyamic acid solution BE to be the first and third polyimide layers was uniformly applied so as to have a thickness of 2.4 ⁇ m after curing, and the polyamic acid solution BD to be the second polyimide layer.
  • the resin composition was uniformly coated so that the thickness after curing became 20 ⁇ m. No foaming was observed, and the curl of the polyimide film after copper foil etching was confirmed. Was also not confirmed.
  • the dimensional change rate was "good". At this time, the volatile component ratio and the imidation ratio of the first polyimide layer in a semi-cured state were 15.1% and 20%.
  • Example B26 The polyamic acid solution BF to be the first and third polyimide layers was uniformly applied so as to have a cured thickness of 2.7 ⁇ m, and the polyamic acid solution BD to be the second polyimide layer was prepared in the same manner as in Example B19, except that the resin was uniformly coated so that the thickness after curing became 20 ⁇ m.
  • a metal-clad laminate B30 was prepared, foaming was not confirmed. Was also not confirmed.
  • the dimensional change rate was "good". At this time, the volatile component ratio and the imidation ratio of the first polyimide layer in the semi-cured state were 8.3% and 31%.
  • Example B27 The polyamic acid solution BG to be the first and third polyimide layers was uniformly applied so as to have a cured thickness of 3.2 ⁇ m, and the polyamic acid solution BD to be the second polyimide layer.
  • the resin was uniformly coated so that the thickness after curing became 19 ⁇ m. No foaming was observed. Was also not confirmed.
  • the dimensional change rate was “OK”. At this time, the volatile component ratio and the imidation ratio of the first polyimide layer in the semi-cured state were 12.0% and 22%.
  • Comparative Example B5 A metal-clad laminate B32 was prepared in the same manner as in Example B19, except that the polyamic acid solution serving as the first polyimide layer was dried by heating at 120 ° C. for 3 minutes. confirmed. At this time, the volatile component ratio and the imidation ratio in a state where the layer to be the first polyimide layer was dried by heating were 35.0% and 0%.
  • Comparative Example B6 A metal-clad laminate B33 was prepared in the same manner as in Example B20, except that the polyamic acid solution serving as the first polyimide layer was dried by heating at 120 ° C. for 3 minutes. confirmed. At this time, the volatile component ratio and the imidation ratio in a state where the layer to be the first polyimide layer was dried by heating were 32.0% and 0%.
  • Comparative Example B7 A metal-clad laminate B34 was prepared in the same manner as in Example B21, except that the polyamic acid solution serving as the first polyimide layer was heated and dried at 120 ° C. for 3 minutes. confirmed. At this time, the volatile component ratio and the imidation ratio in a state where the layer to be the first polyimide layer was dried by heating were 30.0% and 0%.
  • Comparative Example B8 When a metal-clad laminate B35 was prepared in the same manner as in Example B22, except that the polyamic acid solution serving as the first polyimide layer was heated and dried at 120 ° C. for 3 minutes, foaming was confirmed. At this time, the volatile component ratio and the imidation ratio in a state where the layer to be the first polyimide layer was dried by heating were 34.0% and 0%.
  • Comparative Example B9 When a metal-clad laminate B36 was prepared in the same manner as in Example B23 except that the polyamic acid solution serving as the first polyimide layer was heated and dried at 120 ° C. for 3 minutes, foaming was confirmed. At this time, the volatile component ratio and the imidation ratio in a state where the layer to be the first polyimide layer was dried by heating were 30.0% and 0%.
  • Comparative Example B10 When a metal-clad laminate B37 was prepared in the same manner as in Example B24 except that the polyamic acid solution serving as the first polyimide layer was heated and dried at 120 ° C. for 3 minutes, foaming was confirmed. At this time, the volatile component ratio and the imidation ratio in a state where the layer to be the first polyimide layer was dried by heating were 31.0% and 0%.
  • Example C1 After a polyamic acid solution CB to be a first polyimide layer is uniformly applied on a 12 ⁇ m-thick electrolytic copper foil so as to have a cured thickness of 2 ⁇ m, the temperature is raised stepwise from 120 ° C. to 360 ° C. The solvent was removed and imidation was performed. Next, a polyamic acid solution CA to be a second polyimide layer was uniformly applied thereon so as to have a cured thickness of 25 ⁇ m, and then heated and dried at 120 ° C. for 3 minutes to remove the solvent. . Thereafter, the temperature was increased stepwise from 130 ° C. to 360 ° C. to perform imidization, thereby preparing a metal-clad laminate C1. An adhesive tape was applied to the resin surface of the prepared metal-clad laminate C1, and a peeling test was performed by instantaneous peeling in the vertical direction. However, peeling between the first polyimide layer and the second polyimide layer was observed. Did not.
  • Example C2 A metal-clad laminate C2 was prepared in the same manner as in Example C1, except that the polyamic acid solution CA was replaced by the polyamic acid solution CN. A peeling test of the prepared metal-clad laminate C2 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
  • Example C3 A metal-clad laminate C3 was prepared in the same manner as in Example C1, except that the polyamic acid solution CC was used instead of the polyamic acid solution CB. A peeling test of the prepared metal-clad laminate C3 was performed in the same manner as in Example C1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example C4 A polyamic acid solution CC was used in place of the polyamic acid solution CB, and a polyamic acid solution CN was used in place of the polyamic acid solution CA in the same manner as in Example C1.
  • a metal-clad laminate C4 was prepared. A peeling test of the prepared metal-clad laminate C4 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
  • Example C5 A metal-clad laminate C5 was prepared in the same manner as in Example C1, except that the polyamic acid solution CD was used instead of the polyamic acid solution CB. A peeling test of the prepared metal-clad laminate C5 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
  • Example C6 In the same manner as in Example C1, except that the polyamic acid solution CD was used instead of the polyamic acid solution CB, and the polyamic acid solution CN was used instead of the polyamic acid solution CA, A metal-clad laminate C6 was prepared. A peeling test of the prepared metal-clad laminate C6 was performed in the same manner as in Example C1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example C7 A metal-clad laminate C7 was prepared in the same manner as in Example C1 except that the polyamic acid solution CE was used instead of the polyamic acid solution CB. A peeling test of the prepared metal-clad laminate C7 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
  • Example C8 In the same manner as in Example C1, except that the polyamic acid solution CE was used instead of the polyamic acid solution CB, and the polyamic acid solution CN was used instead of the polyamic acid solution CA, A metal-clad laminate C8 was prepared. A peeling test of the prepared metal-clad laminate C8 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
  • Example C9 A metal-clad laminate C9 was prepared in the same manner as in Example C1, except that the polyamic acid solution CB was used instead of the polyamic acid solution CB. A peeling test of the prepared metal-clad laminate C9 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
  • Example C10 In the same manner as in Example C1, except that a polyamic acid solution CF was used instead of the polyamic acid solution CB, and a polyamic acid solution CN was used instead of the polyamic acid solution CA, A metal-clad laminate C10 was prepared. A peeling test was conducted on the prepared metal-clad laminate C10 in the same manner as in Example C1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example C11 A metal-clad laminate C11 was prepared in the same manner as in Example C1, except that the polyamic acid solution CB was used instead of the polyamic acid solution CB. A peeling test of the prepared metal-clad laminate C11 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
  • Example C12 A polyamic acid solution CG was used in place of the polyamic acid solution CB, and a polyamic acid solution CN was used in place of the polyamic acid solution CA in the same manner as in Example C1.
  • a metal-clad laminate C12 was prepared. A peeling test of the prepared metal-clad laminate C12 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
  • Example C13 A metal-clad laminate C13 was prepared in the same manner as in Example C1, except that the polyamic acid solution CB was used instead of the polyamic acid solution CB. A peeling test of the prepared metal-clad laminate C13 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
  • Example C14 instead of the polyamic acid solution CB, a polyamic acid solution CH was used, and instead of the polyamic acid solution CA, a polyamic acid solution CN was used, in the same manner as in Example C1, A metal-clad laminate C14 was prepared. A peeling test of the prepared metal-clad laminate C14 was performed in the same manner as in Example C1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example C15 A metal-clad laminate C15 was prepared in the same manner as in Example C1 except that the polyamic acid solution CI was used instead of the polyamic acid solution CB. A peel test of the prepared metal-clad laminate C15 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
  • Example C16 In the same manner as in Example C1, except that the polyamic acid solution CI was used instead of the polyamic acid solution CB, and the polyamic acid solution CN was used instead of the polyamic acid solution CA, A metal-clad laminate C16 was prepared. A peel test of the prepared metal-clad laminate C16 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
  • Example C17 A metal-clad laminate C17 was prepared in the same manner as in Example C1, except that the polyamic acid solution CB was used instead of the polyamic acid solution CB. A peeling test of the prepared metal-clad laminate C17 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
  • Example C18 A polyamic acid solution CJ was used in place of the polyamic acid solution CB, and a polyamic acid solution CN was used in place of the polyamic acid solution CA in the same manner as in Example C1.
  • a metal-clad laminate C18 was prepared. A peeling test of the prepared metal-clad laminate C18 was performed in the same manner as in Example C1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example C19 A metal-clad laminate C19 was prepared in the same manner as in Example C1, except that the polyamic acid solution CB was used instead of the polyamic acid solution CB. A peeling test of the prepared metal-clad laminate C19 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
  • Example C20 A polyamic acid solution CK was used instead of the polyamic acid solution CB, and a polyamic acid solution CN was used instead of the polyamic acid solution CA in the same manner as in Example C1.
  • a metal-clad laminate C20 was prepared. A peeling test was conducted on the prepared metal-clad laminate C20 in the same manner as in Example C1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example C21 A metal-clad laminate C21 was prepared in the same manner as in Example C1 except that the polyamic acid solution CL was used instead of the polyamic acid solution CB. A peeling test of the prepared metal-clad laminate C21 was performed in the same manner as in Example C1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example C22 In the same manner as in Example C1, except that the polyamic acid solution CL was used instead of the polyamic acid solution CB, and the polyamic acid solution CN was used instead of the polyamic acid solution CA, A metal-clad laminate C22 was prepared. A peeling test of the prepared metal-clad laminate C22 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
  • Example C23 A metal-clad laminate C23 was prepared in the same manner as in Example C1, except that the polyamic acid solution CB was used instead of the polyamic acid solution CB. A peeling test of the prepared metal-clad laminate C23 was performed in the same manner as in Example C1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example C24 In the same manner as in Example C1, except that the polyamic acid solution CO was used instead of the polyamic acid solution CB, and the polyamic acid solution CN was used instead of the polyamic acid solution CA, A metal-clad laminate C24 was prepared. A peeling test of the prepared metal-clad laminate C24 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
  • Example C25 A metal-clad laminate C25 was prepared in the same manner as in Example C1, except that the polyamic acid solution CB was used instead of the polyamic acid solution CB. A peeling test of the prepared metal-clad laminate C25 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
  • Example C26 In the same manner as in Example C1, except that the polyamic acid solution CT was used instead of the polyamic acid solution CB, and the polyamic acid solution CN was used instead of the polyamic acid solution CA, A metal-clad laminate C26 was prepared. A peeling test was conducted on the prepared metal-clad laminate C26 in the same manner as in Example C1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
  • Example C1 A metal-clad laminate C27 was prepared in the same manner as in Example C1, except that the polyamic acid solution CB was used instead of the polyamic acid solution CB. A peel test of the prepared metal-clad laminate C27 was performed in the same manner as in Example C1, and as a result, delamination of the first polyimide layer and the second polyimide layer occurred.
  • Comparative Example C2 A polyamic acid solution CM was used instead of the polyamic acid solution CB, and a polyamic acid solution CN was used instead of the polyamic acid solution CA in the same manner as in Example C1.
  • a metal-clad laminate C28 was prepared. A peel test of the prepared metal-clad laminate C28 was performed in the same manner as in Example C1, and as a result, delamination of the first polyimide layer and the second polyimide layer occurred.
  • Example C3 A metal-clad laminate C29 was prepared in the same manner as in Example C1, except that the polyamic acid solution CB was used instead of the polyamic acid solution CB. A peel test of the prepared metal-clad laminate C29 was performed in the same manner as in Example C1, and as a result, delamination of the first polyimide layer and the second polyimide layer occurred.
  • Example C4 A metal-clad laminate C30 was prepared in the same manner as in Example C1, except that the polyamic acid solution CP was used instead of the polyamic acid solution CA. A peel test of the prepared metal-clad laminate C30 was performed in the same manner as in Example C1, and as a result, delamination of the first polyimide layer and the second polyimide layer occurred.
  • Example C5 In the same manner as in Example C1, except that the polyamic acid solution CA was used instead of the polyamic acid solution CB, and the polyamic acid solution CB was used instead of the polyamic acid solution CA, A metal-clad laminate C31 was prepared. A peel test of the prepared metal-clad laminate C31 was performed in the same manner as in Example C1, and as a result, delamination of the first polyimide layer and the second polyimide layer occurred.
  • Example C27 A metal-clad laminate C32 was prepared in the same manner as in Example C1, except that the temperature-raising time from 130 ° C. to 360 ° C. after the application of the polyamic acid solution CA was shortened to 1/3. Not confirmed.
  • Example C28 Instead of using the polyamic acid solution CB instead of the polyamic acid solution CB, except that the heating time from 130 ° C. to 360 ° C. after the application of the polyamic acid solution CA was shortened to 1/3.
  • a metal-clad laminate C33 was prepared in the same manner as in Example C1, but no foaming was confirmed.
  • Comparative Example C6 Instead of using the polyamic acid solution CB instead of the polyamic acid solution CB, except that the heating time from 130 ° C. to 360 ° C. after the application of the polyamic acid solution CA was shortened to 1/3.
  • a metal-clad laminate C34 was prepared in the same manner as in Example C1, foaming occurred.
  • Comparative Example C7 Instead of using the polyamic acid solution CB instead of the polyamic acid solution CB, except that the heating time from 130 ° C. to 360 ° C. after the application of the polyamic acid solution CA was shortened to 3 When a metal-clad laminate C35 was prepared in the same manner as in Example C1, foaming occurred.
  • Example C29 A polyamic acid solution CO serving as a first polyimide layer was applied on a stainless steel base material, and then dried at 120 ° C. to prepare a polyamic acid gel film. After the prepared gel film was peeled from the stainless steel substrate, it was fixed to a tenter clip, and the temperature was increased stepwise from 130 ° C. to 360 ° C. to perform imidation to prepare a 12.5 ⁇ m-thick polyimide film C36. A polyamic acid solution CR to be a second polyimide layer was applied to the prepared polyimide film C36 so as to have a cured thickness of 3 ⁇ m, and dried at 120 ° C. Thereafter, the temperature was increased stepwise from 130 ° C.
  • the prepared laminated polyimide film C36 was cut with a cutter, and no delamination between the first polyimide layer and the second polyimide layer was observed by SEM observation.
  • Example C30 A laminated polyimide film C37 was prepared in the same manner as in Example C29 except that the polyamic acid solution CT was used instead of the polyamic acid solution CO. No delamination was observed by SEM observation of the prepared laminated polyimide film C37.
  • Example C31 Same as Example C29 except that the thickness of the first polyimide layer was 17 ⁇ m, and that the thickness after curing was 4 ⁇ m using a polyamic acid solution CV instead of the polyamic acid solution CR. Thus, a laminated polyimide film C38 was prepared. No delamination was observed by SEM observation of the prepared laminated polyimide film C38.
  • Example C32 instead of the polyamic acid solution CO, a polyamic acid solution CT was used, the thickness of the first polyimide layer was set to 17 ⁇ m, and a polyamic acid solution CV was used instead of the polyamic acid solution CR. And a laminated polyimide film C39 was prepared in the same manner as in Example C29, except that the thickness after curing was 4 ⁇ m. No delamination was observed by SEM observation of the prepared laminated polyimide film C39.
  • Comparative Example C8 A laminated polyimide film C40 was prepared in the same manner as in Example C29, except that the polyamic acid solution CR was replaced by the polyamic acid solution CQ. SEM observation of the prepared laminated polyimide film C40 confirmed delamination.
  • Comparative Example C9 A laminated polyimide film C41 was prepared in the same manner as in Example C29 except that the polyamic acid solution CP was used instead of the polyamic acid solution CO. SEM observation of the prepared laminated polyimide film C41 confirmed delamination.
  • Example C10 Same as Example C29, except that the thickness of the first polyimide layer was 17 ⁇ m, and that the thickness after curing was 4 ⁇ m using a polyamic acid solution CU instead of the polyamic acid solution CR, Thus, a laminated polyimide film C42 was prepared. SEM observation of the prepared laminated polyimide film C42 confirmed delamination.
  • Example C33 After a polyamic acid solution CT serving as a first polyimide layer is uniformly applied on a 12 ⁇ m-thick electrolytic copper foil so as to have a cured thickness of 25 ⁇ m, the temperature is raised stepwise from 120 ° C. to 360 ° C. The solvent was removed and imidation was performed. Next, a polyamic acid solution CS to be a second polyimide layer was uniformly applied thereon so as to have a cured thickness of 25 ⁇ m, and then heated and dried at 120 ° C. to remove the solvent. Thereafter, the temperature was increased stepwise from 130 ° C. to 360 ° C. to perform imidization, thereby preparing a metal-clad laminate C43. The peel strength of the first polyimide layer and the second polyimide layer in the prepared metal-clad laminate C43 was 1.5 kN / m or more.
  • Example C34 The polyamic acid solution CS was uniformly applied on a 12 ⁇ m-thick electrolytic copper foil so as to have a cured thickness of 23 ⁇ m, and dried by heating at 120 ° C. to remove the solvent.
  • the polyamic acid solution CB was evenly applied thereon so that the thickness after curing became 2 ⁇ m, and dried by heating at 120 ° C. to remove the solvent. Thereafter, the temperature was increased stepwise from 130 ° C. to 360 ° C. to perform imidization, thereby forming a first polyimide layer.
  • a polyamic acid solution CS to be a second polyimide layer was uniformly applied thereon so as to have a cured thickness of 25 ⁇ m, and then heated and dried at 120 ° C. to remove the solvent. Thereafter, the temperature was increased stepwise from 130 ° C. to 360 ° C. to perform imidization, thereby preparing a metal-clad laminate C44.
  • the peel strength of the first polyimide layer and the second polyimide layer in the prepared metal-clad laminate C44 was 1.5 kN / m or more.
  • Example C11 A metal-clad laminate C45 was prepared in the same manner as in Example C33 except that the polyamic acid solution CS was used instead of the polyamic acid solution CT.
  • the peel strength of the first polyimide layer and the second polyimide layer in the prepared metal-clad laminate C45 was 0.1 kN / m or less.
  • Comparative Example C12 A metal-clad laminate C46 was prepared in the same manner as in Example C34, except that the polyamic acid solution CM was used instead of the polyamic acid solution CB.
  • the peel strength of the first polyimide layer and the second polyimide layer in the prepared metal-clad laminate C46 was 0.1 kN / m or less.
  • Example C 0.45 g of phthalic anhydride (3.02 mmol) was added to 100 g of the polyamic acid solution CA, and the mixture was stirred for 4 hours to prepare a polyamic acid solution CA2.
  • a metal-clad laminate C47 was prepared in the same manner as in Example C1, except that the polyamic acid solution CA was replaced with the polyamic acid solution CA2, foaming occurred.
  • a peeling test of the prepared metal-clad laminate C47 was performed in the same manner as in Example C1, and as a result, delamination of the first polyimide layer and the second polyimide layer occurred. This is presumably because the amino group of the second polyimide layer reacted with phthalic anhydride, so that there was no functional group capable of reacting with the first polyimide layer, and no chemical adhesion between the resin layers occurred.
  • Reference Signs List 10 metal layer, 10A: metal foil, 20: first polyimide layer, 20A: first polyamide resin layer, 30: second polyimide layer, 30A: second polyamide resin layer, 40: insulating resin layer, 100 ... metal-clad laminate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

This production method for a metal clad laminate 100 comprises a step for forming a first polyamide resin layer 20A on a metal foil 10A, a step for imidizing a polyamide acid in the first polyamide resin layer 20A to form a first polyimide layer 20, a step for performing a surface treatment on the first polyimide layer 20, a step for forming a second polyamide resin layer 30A on the first polyimide layer 20, and a step for imidizing a polyamide acid in the second polyamide resin layer 30A to form a second polyimide layer 30, and thereby forming an insulating resin layer 40. The first polyimide layer 20 has a thickness (L1) in the range of 0.5-100 μm, the insulating resin layer 40 has an overall thickness (L) in the range of not less than 5 μm but less than 200 μm, and the ratio (L/L1) is in the range of more than 1 but less than 400.

Description

金属張積層板の製造方法及び回路基板の製造方法Method of manufacturing metal-clad laminate and method of manufacturing circuit board
 本発明は、回路基板などの材料として利用可能な金属張積層板の製造方法、及び、回路基板の製造方法に関する。 The present invention relates to a method for manufacturing a metal-clad laminate that can be used as a material for a circuit board and the like, and a method for manufacturing a circuit board.
 近年、電子機器の小型化、軽量化、省スペース化の進展に伴い、薄く軽量で、可撓性を有し、屈曲を繰り返しても優れた耐久性を持つフレキシブル回路基板(FPC;Flexible Printed Circuits)の需要が増大している。FPCは、限られたスペースでも立体的かつ高密度の実装が可能であるため、例えば、HDD、DVD、携帯電話、スマートフォン等の電子機器の配線や、ケーブル、コネクター等の部品にその用途が拡大しつつある。FPCに用いる絶縁樹脂として、耐熱性や接着性に優れたポリイミドが注目されている。 2. Description of the Related Art In recent years, with the progress of miniaturization, weight reduction, and space saving of electronic devices, a flexible printed circuit (FPC) that is thin and light, has flexibility, and has excellent durability even when repeatedly bent. ) Demand is increasing. Since FPCs can be mounted three-dimensionally and at high density even in limited space, their applications are expanding, for example, to wiring of electronic devices such as HDDs, DVDs, mobile phones, and smartphones, and to components such as cables and connectors. I am doing it. As an insulating resin used for the FPC, polyimide having excellent heat resistance and adhesiveness has attracted attention.
 FPC材料としての金属張積層板の製造方法として、金属箔上にポリアミド酸の樹脂液を塗布することによってポリイミド前駆体層を形成した後、イミド化してポリイミド層を形成するキャスト法が知られている。絶縁樹脂層として複数のポリイミド層を有する金属張積層板をキャスト法によって製造する場合、一般的には、銅箔等の基材上に、複数層のポリイミド前駆体層を順次形成した後、これらを一括してイミド化することが行われている。しかし、複数のポリイミド前駆体層を一括してイミド化すると、ポリイミド前駆体層中の溶剤やイミド化水が抜け切らず、残留溶剤やイミド化水によってポリイミド層間での発泡や剥離が生じ、歩留まりの低下を招くという問題があった。 As a method of manufacturing a metal-clad laminate as an FPC material, a casting method is known in which a polyimide precursor layer is formed by applying a polyamic acid resin solution on a metal foil, and then imidized to form a polyimide layer. I have. When manufacturing a metal-clad laminate having a plurality of polyimide layers as an insulating resin layer by a casting method, generally, on a substrate such as a copper foil, after sequentially forming a plurality of polyimide precursor layers, these Are collectively imidized. However, when a plurality of polyimide precursor layers are simultaneously imidized, the solvent and imidized water in the polyimide precursor layer are not completely removed, and foaming and peeling between the polyimide layers are caused by the residual solvent and the imidized water, thereby increasing the yield. There is a problem that it causes a decrease in
 上記発泡や剥離の問題は、ポリイミド前駆体層を一層毎にイミド化し、その上にポリアミド酸の樹脂液を塗布することを繰り返すことによって解決できる。しかし、一旦イミド化したポリイミド層上に、さらに、ポリアミド酸の樹脂液を塗布してイミド化させると、層間の密着性が十分に得られ難くなる。従来技術では、ポリアミド酸の樹脂液を塗布する前に、下地のポリイミドフィルムやポリイミド層の表面に、コロナ処理、プラズマ処理などの表面処理を施すことによって、層間の密着性を改善する提案がなされている(例えば、特許文献1、2)。 The problems of foaming and peeling can be solved by repeatedly imidizing the polyimide precursor layer one by one and applying a polyamic acid resin solution thereon. However, if a resin solution of polyamic acid is further applied on the polyimide layer once imidized and imidized, it is difficult to sufficiently obtain adhesion between the layers. In the prior art, a proposal has been made to improve the adhesion between layers by applying a surface treatment such as a corona treatment or a plasma treatment to the surface of an underlying polyimide film or polyimide layer before applying a resin solution of polyamic acid. (For example, Patent Documents 1 and 2).
特許第5615253号公報Japanese Patent No. 5615253 特許第5480490号公報Japanese Patent No. 5480490
 本発明の目的は、絶縁樹脂層として複数のポリイミド層を有する金属張積層板をキャスト法によって製造する場合に、発泡を抑制しながら、ポリイミド層間の密着性を改善することである。 目的 An object of the present invention is to improve adhesion between polyimide layers while suppressing foaming when a metal-clad laminate having a plurality of polyimide layers as insulating resin layers is manufactured by a casting method.
 本発明者らは、キャスト法によって形成する複数のポリイミド層の厚みをコントロールすることによって、発泡を抑制しつつ、ポリイミド層間の密着性を改善できることを見出し、本発明を完成するに至った。 (4) The present inventors have found that by controlling the thickness of a plurality of polyimide layers formed by a casting method, it is possible to suppress foaming and improve the adhesion between polyimide layers, and have completed the present invention.
 すなわち、本発明の金属張積層板の製造方法は、複数のポリイミド層を含む絶縁樹脂層と、前記絶縁樹脂層の少なくも片側の面に積層された金属層と、を備えた金属張積層板を製造する方法である。
 本発明の金属張積層板の製造方法は、以下の工程1~5;
工程1)前記金属層の上に、ポリアミド酸の溶液を塗布することによって、単層又は複数層の第1のポリアミド樹脂層を積層形成する工程、
工程2)前記第1のポリアミド樹脂層中のポリアミド酸をイミド化して単層又は複数層からなる第1のポリイミド層を形成する工程、
工程3)前記第1のポリイミド層の表面に対し、表面処理を行う工程、
工程4)前記第1のポリイミド層の上に、さらに、ポリアミド酸の溶液を塗布することによって、単層又は複数層の第2のポリアミド樹脂層を積層形成する工程、
工程5)前記第2のポリアミド樹脂層中のポリアミド酸をイミド化して単層又は複数層からなる第2のポリイミド層を形成するとともに、前記第1のポリイミド層と前記第2のポリイミド層とが積層されてなる前記絶縁樹脂層を形成する工程、
を含んでいる。
 そして、本発明の金属張積層板の製造方法は、前記第1のポリイミド層の厚み(L1)が0.5μm以上100μm以下の範囲内であり、かつ、前記絶縁樹脂層全体の厚み(L)が5μm以上200μm未満の範囲内であり、前記Lと前記L1との比(L/L1)が1を超え400未満の範囲内である。
That is, a method of manufacturing a metal-clad laminate of the present invention includes a metal-clad laminate including: an insulating resin layer including a plurality of polyimide layers; and a metal layer laminated on at least one surface of the insulating resin layer. It is a method of manufacturing.
The method for producing a metal-clad laminate of the present invention comprises the following steps 1 to 5:
Step 1) a step of forming a single layer or a plurality of first polyamide resin layers by applying a polyamic acid solution on the metal layer;
Step 2) a step of imidizing the polyamic acid in the first polyamide resin layer to form a single polyimide layer or a plurality of first polyimide layers;
Step 3) performing a surface treatment on the surface of the first polyimide layer;
Step 4) a step of forming a single-layer or multiple-layer second polyamide resin layer by applying a polyamic acid solution on the first polyimide layer,
Step 5) Polyamide acid in the second polyamide resin layer is imidized to form a second polyimide layer composed of a single layer or a plurality of layers, and the first polyimide layer and the second polyimide layer are Forming the laminated insulating resin layer,
Contains.
In the method for manufacturing a metal-clad laminate according to the present invention, the thickness (L1) of the first polyimide layer is in the range of 0.5 μm or more and 100 μm or less, and the thickness (L) of the entire insulating resin layer is Is in the range of 5 μm or more and less than 200 μm, and the ratio (L / L1) of L and L1 is more than 1 and less than 400.
 本発明の金属張積層板の製造方法は、前記第1のポリイミド層における前記金属層と接している層を構成するポリイミドが、熱可塑性ポリイミドであってもよい。 は In the method for manufacturing a metal-clad laminate of the present invention, a polyimide constituting a layer in contact with the metal layer in the first polyimide layer may be a thermoplastic polyimide.
 本発明の金属張積層板の製造方法は、前記金属層の透湿度が、厚み25μm、25℃のとき、100g/m/24hr以下であってもよい。 Method for producing a metal-clad laminate of the present invention, the moisture permeability of the metal layer, the thickness 25 [mu] m, when the 25 ° C., may be not more than 100g / m 2 / 24hr.
 本発明の回路基板の製造方法は、上記方法で製造された前記金属張積層板の前記金属層を配線回路加工する工程を含むものである。 回路 The method for manufacturing a circuit board according to the present invention includes a step of processing a wiring circuit on the metal layer of the metal-clad laminate manufactured by the above method.
 本発明方法によれば、キャスト法を利用し、発泡を抑制しながら、ポリイミド層間の密着性に優れた絶縁樹脂層を有する金属張積層板を製造できる。 According to the method of the present invention, a metal-clad laminate having an insulating resin layer having excellent adhesion between polyimide layers can be manufactured by using a casting method while suppressing foaming.
本発明の第1の実施の形態の金属張積層板の製造方法の手順を示す工程図である。It is a flowchart showing the procedure of the manufacturing method of the metal clad laminate of a 1st embodiment of the present invention. 本発明の第2の実施の形態の金属張積層板の製造方法の手順を示す工程図である。It is a flowchart showing the procedure of the manufacturing method of the metal clad laminate of a 2nd embodiment of the present invention. エッチング後寸法変化率の測定に使用した位置測定用ターゲットの説明図である。It is explanatory drawing of the target for position measurement used for measurement of the dimensional change rate after etching. エッチング後寸法変化率の測定に使用した評価サンプルの説明図である。It is explanatory drawing of the evaluation sample used for the measurement of the dimensional change rate after etching.
 以下、本発明の実施の形態について、適宜図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate.
[第1の実施の形態]
 本発明の第1の実施の形態の金属張積層板の製造方法は、複数のポリイミド層を含む絶縁樹脂層と、この絶縁樹脂層の少なくとも片側の面に積層された金属層と、を備えた金属張積層板を製造する方法である。
[First Embodiment]
A method for manufacturing a metal-clad laminate according to a first embodiment of the present invention includes an insulating resin layer including a plurality of polyimide layers, and a metal layer stacked on at least one surface of the insulating resin layer. This is a method for producing a metal-clad laminate.
 図1は、第1の実施の形態の金属張積層板の製造方法の主要な手順を示す工程図である。本実施の形態の方法は、以下の工程1~5を含んでいる。なお、図1において、矢印の横の数字は工程1~5を意味している。 FIG. 1 is a process chart showing main procedures of a method for manufacturing a metal-clad laminate according to the first embodiment. The method of the present embodiment includes the following steps 1 to 5. In FIG. 1, the numbers next to the arrows represent steps 1 to 5.
 工程1)
 工程1では、金属層10となる金属箔10Aの上に、ポリアミド酸の溶液を塗布することによって、単層又は複数層の第1のポリアミド樹脂層20Aを積層形成する。キャスト法によって、金属箔10A上にポリアミド酸の樹脂溶液を塗布する方法は特に制限されず、例えばコンマ、ダイ、ナイフ、リップ等のコーターにて塗布することが可能である。
 なお、第1のポリアミド樹脂層20Aを複数層とする場合、例えば、金属箔10Aに、ポリアミド酸の溶液を塗布・乾燥することを複数回繰り返し行う方法や、多層押出により、金属箔10A上に同時にポリアミド酸を多層に積層した状態で塗布・乾燥する方法などを採用できる。
Step 1)
In step 1, a polyamic acid solution is applied onto the metal foil 10A to be the metal layer 10 to form a single-layer or multiple-layer first polyamide resin layer 20A. The method of applying the polyamic acid resin solution onto the metal foil 10A by the casting method is not particularly limited, and for example, it can be applied by a coater such as a comma, a die, a knife, a lip, or the like.
In the case where the first polyamide resin layer 20A has a plurality of layers, for example, a method of repeatedly applying and drying a polyamic acid solution to the metal foil 10A or a multi-layer extrusion may be used on the metal foil 10A. At the same time, a method of applying and drying polyamic acid in a state of being laminated in multiple layers can be adopted.
 工程1では、後述するように、工程2で硬化した後の第1のポリイミド層20の厚み(L1)が0.5μm以上100μm以下の範囲内となるように、第1のポリアミド樹脂層20Aを形成することが好ましい。キャスト法では、ポリアミド酸の樹脂層が金属箔10Aに固定された状態でイミド化されるので、イミド化過程におけるポリイミド層の伸縮変化を抑制して、厚みや寸法精度を維持することができる。 In step 1, as described below, the first polyamide resin layer 20A is cured so that the thickness (L1) of the first polyimide layer 20 after curing in step 2 is in the range of 0.5 μm to 100 μm. Preferably, it is formed. In the casting method, since the polyamic acid resin layer is imidized while being fixed to the metal foil 10A, a change in expansion and contraction of the polyimide layer during the imidization process can be suppressed, and the thickness and dimensional accuracy can be maintained.
 金属箔10Aの材質としては、特に制限はないが、例えば、銅、ステンレス、鉄、ニッケル、ベリリウム、アルミニウム、亜鉛、インジウム、銀、金、スズ、ジルコニウム、タンタル、チタン、鉛、マグネシウム、マンガン及びこれらの合金等が挙げられる。この中でも、特に銅又は銅合金が好ましい。銅箔としては、圧延銅箔でも電解銅箔でもよく、市販されている銅箔を好ましく用いることができる。 The material of the metal foil 10A is not particularly limited, and examples thereof include copper, stainless steel, iron, nickel, beryllium, aluminum, zinc, indium, silver, gold, tin, zirconium, tantalum, titanium, lead, magnesium, manganese, and the like. These alloys etc. are mentioned. Among them, copper or a copper alloy is particularly preferable. As the copper foil, a rolled copper foil or an electrolytic copper foil may be used, and a commercially available copper foil can be preferably used.
 本実施の形態において、例えばFPCの製造に用いる場合の金属層10の好ましい厚みは3~80μmの範囲内であり、より好ましくは5~30μmの範囲内である。 に お い て In the present embodiment, for example, the thickness of the metal layer 10 when used for manufacturing an FPC is preferably in the range of 3 to 80 μm, more preferably in the range of 5 to 30 μm.
 金属層10として使用する金属箔10Aは、表面に、例えば防錆処理、サイディング、アルミニウムアルコラート、アルミニウムキレート、シランカップリング剤等の表面処理が施されていてもよい。また、金属箔10Aは、カットシート状、ロール状のもの、又はエンドレスベルト状などの形状とすることができるが、生産性を得るためには、ロール状又はエンドレスベルト状の形態とし、連続生産可能な形式とすることが効率的である。さらに、回路基板における配線パターン精度の改善効果をより大きく発現させる観点から、金属箔10Aは長尺に形成されたロール状のものが好ましい。 金属 The surface of the metal foil 10A used as the metal layer 10 may be subjected to surface treatment such as rust prevention treatment, siding, aluminum alcoholate, aluminum chelate, and silane coupling agent. Further, the metal foil 10A can be formed in a cut sheet shape, a roll shape, an endless belt shape, or the like. It is efficient to have a format that is possible. Further, from the viewpoint of further improving the effect of improving the wiring pattern accuracy in the circuit board, the metal foil 10A is preferably a long roll-shaped metal foil.
 また、金属層10の透湿度は、例えば厚み25μm、25℃で、100g/m/24hr以下であることが好ましい。金属層10の透湿度が低く、金属層10側から溶剤やイミド化水が抜けにくい場合に、本実施の形態の方法の効果が大きく発揮される。 Further, the moisture permeability of the metal layer 10, for example a thickness 25 [mu] m, at 25 ° C., preferably not more than 100g / m 2 / 24hr. When the moisture permeability of the metal layer 10 is low and the solvent or imidized water is hardly removed from the metal layer 10 side, the effect of the method of the present embodiment is greatly exerted.
 工程2)
 工程2では、工程1で形成した第1のポリアミド樹脂層20A中のポリアミド酸をイミド化して単層又は複数層からなる第1のポリイミド層20を形成する。第1のポリアミド樹脂層20A中に含まれるポリアミド酸をイミド化することによって、第1のポリアミド樹脂層20A中に含まれていた溶剤やイミド化水の大部分を除去できる。
Step 2)
In step 2, the polyamic acid in the first polyamide resin layer 20A formed in step 1 is imidized to form a single polyimide layer 20 or a plurality of first polyimide layers 20. By imidizing the polyamic acid contained in the first polyamide resin layer 20A, most of the solvent and imidized water contained in the first polyamide resin layer 20A can be removed.
 ポリアミド酸をイミド化させるための方法は、特に制限されず、例えば、80~400℃の範囲内の温度条件で1~60分間の範囲内の時間加熱する熱処理が好ましい。熱処理は、金属層10の酸化を抑制するため、低酸素雰囲気下で行うことが好ましく、具体的には、窒素又は希ガスなどの不活性ガス雰囲気下、水素などの還元ガス雰囲気下、あるいは真空中で行うことが好ましい。 方法 The method for imidizing the polyamic acid is not particularly limited, and for example, a heat treatment of heating at a temperature in the range of 80 to 400 ° C for a time in the range of 1 to 60 minutes is preferable. The heat treatment is preferably performed in a low oxygen atmosphere in order to suppress oxidation of the metal layer 10, specifically, in an inert gas atmosphere such as nitrogen or a rare gas, in a reducing gas atmosphere such as hydrogen, or in a vacuum. It is preferably carried out in
工程3)
 工程3では、第1のポリイミド層20の表面に対し、表面処理を行う。
 表面処理としては、第1のポリイミド層20と第2のポリイミド層30の層間密着性を向上させ得る処理であれば特に制限はなく、例えば、プラズマ処理、コロナ処理、火炎処理、紫外線処理、オゾン処理、電子線処理、放射線処理、サンドブラスト加工、ヘアライン加工、エンボス加工、化学薬品処理、蒸気処理、表面グラフト化処理、電気化学的処理、プライマー処理などを挙げることができる。特に、第1のポリイミド層20が熱可塑性ポリイミド層である場合は、プラズマ処理、コロナ処理、紫外線処理などの表面処理が好ましく、その条件としては、例えば300W/min/m以下とすることが好ましい。
Step 3)
In step 3, the surface of the first polyimide layer 20 is subjected to a surface treatment.
The surface treatment is not particularly limited as long as it can improve the interlayer adhesion between the first polyimide layer 20 and the second polyimide layer 30. For example, plasma treatment, corona treatment, flame treatment, ultraviolet treatment, ozone Examples include treatment, electron beam treatment, radiation treatment, sandblasting, hairline treatment, embossing, chemical treatment, steam treatment, surface grafting treatment, electrochemical treatment, and primer treatment. In particular, when the first polyimide layer 20 is a thermoplastic polyimide layer, a surface treatment such as a plasma treatment, a corona treatment, and an ultraviolet treatment is preferable, and the condition is, for example, 300 W / min / m 2 or less. preferable.
工程4)
 工程4では、工程3で表面処理を行った第1のポリイミド層20の上に、さらに、ポリアミド酸の溶液を塗布することによって、単層又は複数層の第2のポリアミド樹脂層30Aを積層形成する。キャスト法によって、第1のポリイミド層20の上にポリアミド酸の樹脂溶液を塗布する方法は特に制限されず、例えばコンマ、ダイ、ナイフ、リップ等のコーターにて塗布することが可能である。
 なお、第2のポリアミド樹脂層30Aを複数層とする場合、例えば、第1のポリイミド層20の上に、ポリアミド酸の溶液を塗布・乾燥することを複数回繰り返し行う方法や、多層押出により、第1のポリイミド層20の上に同時にポリアミド酸を多層に積層した状態で塗布・乾燥する方法などを採用できる。
Step 4)
In step 4, a single-layer or multiple-layer second polyamide resin layer 30A is formed by applying a polyamic acid solution on the first polyimide layer 20 that has been subjected to the surface treatment in step 3, I do. The method of applying the polyamic acid resin solution on the first polyimide layer 20 by the casting method is not particularly limited, and for example, it can be applied by a coater such as a comma, a die, a knife, and a lip.
When the second polyamide resin layer 30A has a plurality of layers, for example, a method of repeatedly applying and drying a solution of a polyamic acid on the first polyimide layer 20 a plurality of times, or by multilayer extrusion, A method of applying and drying the polyamic acid in a state of being simultaneously laminated in multiple layers on the first polyimide layer 20 can be adopted.
 工程4では、後述するように、次の工程5の後で絶縁樹脂層40全体の厚み(L)が5μm以上200μm未満の範囲内となるように、第2のポリアミド樹脂層30Aを形成することが好ましい。 In step 4, the second polyamide resin layer 30A is formed such that the thickness (L) of the entire insulating resin layer 40 is in the range of 5 μm or more and less than 200 μm after the next step 5, as described later. Is preferred.
工程5)
 工程5では、第2のポリアミド樹脂層30A中に含まれるポリアミド酸をイミド化して、第2のポリイミド層30に変化させ、第1のポリイミド層20と第2のポリイミド層30とを含む絶縁樹脂層40を形成する。
 工程5では、第2のポリアミド樹脂層30A中に含まれるポリアミド酸をイミド化し、ポリイミドを合成する。イミド化の方法は、特に制限されず、工程2と同様の条件で実施できる。
Step 5)
In step 5, the polyamide acid contained in the second polyamide resin layer 30A is imidized to be converted into the second polyimide layer 30, and the insulating resin containing the first polyimide layer 20 and the second polyimide layer 30 The layer 40 is formed.
In step 5, the polyamide acid contained in the second polyamide resin layer 30A is imidized to synthesize polyimide. The imidation method is not particularly limited, and can be carried out under the same conditions as in Step 2.
<任意工程>
 本実施の形態の方法は、上記以外の任意の工程を含むことができる。
<Optional process>
The method of the present embodiment can include any other steps than the above.
 以上の工程1~工程5によって、第1のポリイミド層20と第2のポリイミド層30との密着性に優れた絶縁樹脂層40を有する金属張積層板100を製造することができる。本実施の形態の方法では、第1のポリイミド層20を金属層10上にキャスト法で形成しても、第2のポリイミド層30を形成する前にイミド化を行うことによって、溶剤やイミド化水が除去されており、発泡や層間剥離などの問題が生じることがない。また、第2のポリアミド樹脂層30Aを形成する前に、第1のポリイミド層20に対して表面処理を行うことによって、第1のポリイミド層20と第2のポリイミド層30との密着性を確保できる。 に よ っ て Through the above steps 1 to 5, the metal-clad laminate 100 having the insulating resin layer 40 having excellent adhesion between the first polyimide layer 20 and the second polyimide layer 30 can be manufactured. In the method of the present embodiment, even if the first polyimide layer 20 is formed on the metal layer 10 by a casting method, the imidation is performed before the formation of the second polyimide layer 30 so that the solvent or the imidization is performed. Since water is removed, problems such as foaming and delamination do not occur. In addition, before forming the second polyamide resin layer 30A, the first polyimide layer 20 is subjected to a surface treatment to secure the adhesion between the first polyimide layer 20 and the second polyimide layer 30. it can.
 本実施の形態の方法により製造される金属張積層板100の絶縁樹脂層40において、第1のポリイミド層の厚み(L1)は0.5μm以上100μm以下の範囲内である。
 ここで、第1のポリイミド層20が単層である場合、その厚み(L1)は、0.5μm以上5μm以下の範囲内が好ましく、1μm以上3μm以下の範囲内がより好ましい。この場合、工程2では、イミド化後の厚み(L1)が5μm以下の薄い状態で硬化させることによって、溶剤やイミド化水をほとんど除去できる。また、第1のポリイミド層20が単層である場合、その厚み(L1)を5μm以下に制御することによって、金属層10とのピール強度を低下させる原因の一つである金属層10との界面におけるポリアミド酸の残存がなくなり、完全にイミド化させることが可能になるため、ピール強度を向上させることが可能になる。厚み(L1)が0.5μm未満であると金属層10との接着性が低下し、絶縁樹脂層40が剥離し易くなる。
 一方、第1のポリイミド層20が複数層からなる場合、その厚み(L1)は、5μm以上100μm以下の範囲内が好ましく、25μm以上100μm以下の範囲内がより好ましい。第1のポリイミド層20が複数層からなる場合、その厚み(L1)が100μmを超えると発泡が生じやすくなる。
In the insulating resin layer 40 of the metal-clad laminate 100 manufactured by the method of the present embodiment, the thickness (L1) of the first polyimide layer is in the range of 0.5 μm to 100 μm.
Here, when the first polyimide layer 20 is a single layer, its thickness (L1) is preferably in the range of 0.5 μm or more and 5 μm or less, more preferably in the range of 1 μm or more and 3 μm or less. In this case, in step 2, the solvent and imidized water can be almost removed by curing in a thin state in which the thickness (L1) after imidization is 5 μm or less. Further, when the first polyimide layer 20 is a single layer, by controlling the thickness (L1) to 5 μm or less, the first polyimide layer 20 may be in contact with the metal layer 10 which is one of the causes of lowering the peel strength with the metal layer 10. Since the polyamic acid remains at the interface and can be completely imidized, the peel strength can be improved. When the thickness (L1) is less than 0.5 μm, the adhesion to the metal layer 10 is reduced, and the insulating resin layer 40 is easily peeled.
On the other hand, when the first polyimide layer 20 is composed of a plurality of layers, the thickness (L1) is preferably in the range of 5 μm to 100 μm, and more preferably in the range of 25 μm to 100 μm. When the first polyimide layer 20 is composed of a plurality of layers, when the thickness (L1) exceeds 100 μm, foaming easily occurs.
 また、絶縁樹脂層40全体の厚み(L)は、5μm以上200μm未満の範囲内である。
 ここで、第1のポリイミド層20が単層である場合、絶縁樹脂層40全体の厚み(L)は、5μm以上30μm未満の範囲内が好ましく、10μm以上25μm以下の範囲内がより好ましい。第1のポリイミド層20が単層である場合、絶縁樹脂層40全体の厚み(L)が5μm未満であると、発明の効果である発泡抑制効果が発現しにくく、また、寸法安定性の向上効果も得られ難い。
 一方、第1のポリイミド層20が複数層からなる場合、絶縁樹脂層40全体の厚み(L)は、10μm以上200μm未満の範囲内が好ましく、50μm以上200μm未満の範囲内がより好ましい。第1のポリイミド層20が複数層からなる場合、絶縁樹脂層40全体の厚み(L)が200μm以上になると、発泡が生じやすくなる。
The thickness (L) of the entire insulating resin layer 40 is in the range of 5 μm or more and less than 200 μm.
Here, when the first polyimide layer 20 is a single layer, the thickness (L) of the entire insulating resin layer 40 is preferably in a range of 5 μm or more and less than 30 μm, and more preferably in a range of 10 μm or more and 25 μm or less. In the case where the first polyimide layer 20 is a single layer, if the thickness (L) of the entire insulating resin layer 40 is less than 5 μm, the foaming suppression effect, which is an effect of the present invention, is hardly exhibited and the dimensional stability is improved. The effect is difficult to obtain.
On the other hand, when the first polyimide layer 20 is composed of a plurality of layers, the thickness (L) of the entire insulating resin layer 40 is preferably in a range from 10 μm to less than 200 μm, and more preferably in a range from 50 μm to less than 200 μm. When the first polyimide layer 20 is composed of a plurality of layers, when the thickness (L) of the entire insulating resin layer 40 is 200 μm or more, foaming is likely to occur.
 以上のように、第1のポリイミド層20の厚み(L1)と絶縁樹脂層40全体の厚み(L)は、発泡抑制や寸法安定性の改善、金属層10との接着性に影響するため、厚み(L)と厚み(L1)との比(L/L1)は1を超え400未満の範囲内とする。
 比(L/L1)は、好ましくは1を超え60未満の範囲内がよく、より好ましくは4以上45以下、もっとも好ましくは5以上30以下である。
As described above, the thickness (L1) of the first polyimide layer 20 and the thickness (L) of the entire insulating resin layer 40 affect the suppression of foaming, the improvement in dimensional stability, and the adhesiveness to the metal layer 10. The ratio (L / L1) between the thickness (L) and the thickness (L1) is in the range of more than 1 and less than 400.
The ratio (L / L1) is preferably in the range of more than 1 and less than 60, more preferably 4 or more and 45 or less, and most preferably 5 or more and 30 or less.
 なお、絶縁樹脂層40は、第1のポリイミド層20及び第2のポリイミド層30以外のポリイミド層を含んでいてもよい。また、絶縁樹脂層40を構成するポリイミド層は、必要に応じて、無機フィラーを含有してもよい。具体的には、例えば二酸化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化ベリリウム、窒化ホウ素、窒化アルミニウム、窒化ケイ素、フッ化アルミニウム、フッ化カルシウム等が挙げられる。これらは1種又は2種以上を混合して用いることができる。 The insulating resin layer 40 may include a polyimide layer other than the first polyimide layer 20 and the second polyimide layer 30. In addition, the polyimide layer constituting the insulating resin layer 40 may contain an inorganic filler as necessary. Specific examples include silicon dioxide, aluminum oxide, magnesium oxide, beryllium oxide, boron nitride, aluminum nitride, silicon nitride, aluminum fluoride, calcium fluoride, and the like. These can be used alone or in combination of two or more.
<ポリイミド>
 次に、第1のポリイミド層20及び第2のポリイミド層30を形成するための好ましいポリイミドについて説明する。第1のポリイミド層20及び第2のポリイミド層30の形成には、一般的にポリイミドの合成原料として用いられる酸無水物成分及びジアミン成分を特に制限なく使用可能である。
<Polyimide>
Next, a preferred polyimide for forming the first polyimide layer 20 and the second polyimide layer 30 will be described. In forming the first polyimide layer 20 and the second polyimide layer 30, an acid anhydride component and a diamine component generally used as a raw material for synthesizing polyimide can be used without any particular limitation.
 金属張積層板100において、第1のポリイミド層20を構成するポリイミドは、熱可塑性ポリイミド、非熱可塑性ポリイミドのいずれでもよいが、下地となる金属層10との接着性の確保が容易であるという理由から、熱可塑性ポリイミドが好ましい。 In the metal-clad laminate 100, the polyimide constituting the first polyimide layer 20 may be either a thermoplastic polyimide or a non-thermoplastic polyimide, but it is easy to secure the adhesiveness with the metal layer 10 serving as a base. For that reason, thermoplastic polyimides are preferred.
 また、第2のポリイミド層30を構成するポリイミドは、熱可塑性ポリイミド、非熱可塑性ポリイミドのどちらでもよいが、非熱可塑性ポリイミドとする場合に発明の効果が顕著に発揮される。
 すなわち、イミド化が完了しているポリイミド層上に、非熱可塑性ポリイミドの前駆体であるポリアミド酸の樹脂層をキャスト法等の方法で積層してイミド化しても、通常は、ポリイミド層間の密着性がほとんど得られない。しかし、本実施の形態では、上述のように第1のポリイミド層20に表面処理を行ってから第2のポリアミド樹脂層30Aを積層することによって、第2のポリイミド層30を構成するポリイミドが熱可塑性であるか非熱可塑性であるかにかかわらず、第1のポリイミド層20との層間で優れた密着性が得られる。また、第2のポリイミド層30を非熱可塑性ポリイミドとすることによって、金属張積層板100におけるポリイミド層の機械的強度を担保する主たる層(ベース層)としての機能を奏することができる。
The polyimide constituting the second polyimide layer 30 may be either a thermoplastic polyimide or a non-thermoplastic polyimide, but when the non-thermoplastic polyimide is used, the effect of the invention is remarkably exhibited.
That is, even if imidization is performed by laminating a resin layer of a polyamic acid that is a precursor of a non-thermoplastic polyimide on a polyimide layer that has been imidized by a method such as a casting method, the adhesion between the polyimide layers is usually The property is hardly obtained. However, in the present embodiment, the surface of the first polyimide layer 20 is subjected to the surface treatment as described above, and then the second polyamide resin layer 30A is laminated, so that the polyimide constituting the second polyimide layer 30 is thermally heated. Regardless of whether it is plastic or non-thermoplastic, excellent adhesion between the first polyimide layer 20 and the first polyimide layer 20 can be obtained. In addition, when the second polyimide layer 30 is made of non-thermoplastic polyimide, it can function as a main layer (base layer) that secures the mechanical strength of the polyimide layer in the metal-clad laminate 100.
 以上から、金属張積層板100において、第1のポリイミド層20として熱可塑性ポリイミド層、第2のポリイミド層30として非熱可塑性ポリイミド層が積層された構造を形成することは、最も好ましい態様である。 From the above, in the metal-clad laminate 100, it is the most preferable embodiment to form a structure in which the thermoplastic polyimide layer is laminated as the first polyimide layer 20 and the non-thermoplastic polyimide layer is laminated as the second polyimide layer 30. .
 また、ポリイミドには、低熱膨張性ポリイミドと、高熱膨張性ポリイミドがあるが、通常は、熱可塑性ポリイミドは高熱膨張性であり、非熱可塑性ポリイミドは低熱膨張性である。例えば、第1のポリイミド層20を熱可塑性ポリイミド層とする場合、熱膨張係数は好ましくは30×10-6を超え80×10-6/K以下の範囲内とすることがよい。熱可塑性ポリイミド層の熱膨張係数を上記範囲内とすることによって、第1のポリイミド層20としての金属層10との接着性を確保することができる。また、第2のポリイミド層30を低膨張性のポリイミド層とすることによって、金属張積層板100におけるポリイミド層の寸法安定性を担保する主たる層(ベース層)としての機能を奏することができる。具体的には、低膨張性のポリイミド層の熱膨張係数が1×10-6 ~30×10-6(1/K)の範囲内、好ましくは1×10-6 ~25×10-6(1/K)の範囲内、より好ましくは10×10-6 ~25×10-6(1/K)の範囲内がよい。また、非熱可塑性ポリイミドは低熱膨張性であるから、非熱可塑性ポリイミド層の厚み割合を大きくすることにより、熱膨張係数を低く抑えることができる。なお、第1のポリイミド層20及び第2のポリイミド層30は、使用する原料の組合せ、厚み、乾燥・硬化条件を適宜変更することで所望の熱膨張係数を有するポリイミド層とすることができる。 Polyimides include low-thermal-expansion polyimide and high-thermal-expansion polyimide. Usually, thermoplastic polyimide has high-thermal expansion and non-thermoplastic polyimide has low-thermal expansion. For example, when the first polyimide layer 20 is a thermoplastic polyimide layer, the coefficient of thermal expansion is preferably in the range of more than 30 × 10 −6 and 80 × 10 −6 / K or less. By setting the coefficient of thermal expansion of the thermoplastic polyimide layer within the above range, the adhesiveness to the metal layer 10 as the first polyimide layer 20 can be ensured. In addition, when the second polyimide layer 30 is a low-expansion polyimide layer, it can function as a main layer (base layer) that secures the dimensional stability of the polyimide layer in the metal-clad laminate 100. Specifically, the thermal expansion coefficient of the low-expansion polyimide layer is in the range of 1 × 10 −6 to 30 × 10 −6 (1 / K), preferably 1 × 10 −6 to 25 × 10 −6 ( 1 / K), more preferably 10 × 10 −6 to 25 × 10 −6 (1 / K). Further, since the non-thermoplastic polyimide has a low thermal expansion property, the thermal expansion coefficient can be suppressed low by increasing the thickness ratio of the non-thermoplastic polyimide layer. The first polyimide layer 20 and the second polyimide layer 30 can be formed into polyimide layers having a desired coefficient of thermal expansion by appropriately changing the combination of the materials used, the thickness, and the drying and curing conditions.
 なお、「熱可塑性ポリイミド」とは、一般にガラス転移温度(Tg)が明確に確認できるポリイミドのことであるが、本発明では、動的粘弾性測定装置(DMA)を用いて測定した、30℃における貯蔵弾性率が1.0×10Pa以上であり、350℃における貯蔵弾性率が1.0×10Pa未満であるポリイミドをいう。また、「非熱可塑性ポリイミド」とは、一般に加熱しても軟化、接着性を示さないポリイミドのことであるが、本発明では、動的粘弾性測定装置(DMA)を用いて測定した、30℃における貯蔵弾性率が1.0×10Pa以上であり、350℃における貯蔵弾性率が1.0×10Pa以上であるポリイミドをいう。 In addition, “thermoplastic polyimide” generally refers to a polyimide whose glass transition temperature (Tg) can be clearly confirmed. In the present invention, 30 ° C. was measured using a dynamic viscoelasticity measuring device (DMA). Is a polyimide having a storage elastic modulus of 1.0 × 10 9 Pa or more and a storage elastic modulus at 350 ° C. of less than 1.0 × 10 8 Pa. In addition, “non-thermoplastic polyimide” generally refers to a polyimide that does not soften or exhibit adhesiveness even when heated, but in the present invention, it is measured using a dynamic viscoelasticity measuring device (DMA). It refers to a polyimide having a storage elastic modulus at 1.0 ° C. of 1.0 × 10 9 Pa or more and a storage elastic modulus at 350 ° C. of 1.0 × 10 8 Pa or more.
 ポリイミドの原料となるジアミン化合物としては、芳香族ジアミン化合物、脂肪族ジアミン化合物などを使用できるが、例えば、NH-Ar1-NHで表される芳香族ジアミン化合物が好ましい。ここで、Ar1は下記式で表される基から選択されるものが例示される。Ar1は置換基を有することもできるが、好ましくは有しないか、有する場合にはその置換基は炭素数1~6の低級アルキルまたは低級アルコキシ基がよい。これらの芳香族ジアミン化合物は1種のみを使用してもよく、また2種以上を併用してもよい。 As the diamine compound serving as a raw material of the polyimide, an aromatic diamine compound, an aliphatic diamine compound, or the like can be used. For example, an aromatic diamine compound represented by NH 2 —Ar 1 -NH 2 is preferable. Here, Ar1 is exemplified by one selected from the group represented by the following formula. Ar1 can have a substituent, but preferably does not, or if it does, the substituent is preferably a lower alkyl or lower alkoxy group having 1 to 6 carbon atoms. One of these aromatic diamine compounds may be used alone, or two or more thereof may be used in combination.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 ジアミン化合物と反応させる酸無水物としては、ポリアミド酸の合成の容易さの点で、芳香族テトラカルボン酸無水物が好ましい。芳香族テトラカルボン酸無水物としては、特に限定されるものでははいが、例えば、O(CO)Ar2(CO)Oで表される化合物が好ましい。ここで、Ar2は、下記式で表される4価の芳香族基が例示される。酸無水物基[(CO)O]の置換位置は任意であるが、対称の位置が好ましい。Ar2は、置換基を有することもできるが、好ましくは有しないか、有する場合にはその置換基は炭素数1~6の低級アルキル基であるのがよい。 As the acid anhydride to be reacted with the diamine compound, an aromatic tetracarboxylic anhydride is preferable from the viewpoint of easy synthesis of polyamic acid. The aromatic tetracarboxylic anhydride is not particularly limited, but for example, a compound represented by O (CO) 2 Ar 2 (CO) 2 O is preferable. Here, Ar2 is exemplified by a tetravalent aromatic group represented by the following formula. The substitution position of the acid anhydride group [(CO) 2 O] is arbitrary, but a symmetric position is preferable. Ar2 can have a substituent, but preferably does not, or if it does, the substituent is preferably a lower alkyl group having 1 to 6 carbon atoms.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(ポリイミドの合成)
 ポリイミド層を構成するポリイミドは、酸無水物及びジアミンを溶媒中で反応させ、前駆体樹脂を生成したのち加熱閉環させることにより製造できる。例えば、酸無水物成分とジアミン成分をほぼ等モルで有機溶媒中に溶解させて、0~100℃の範囲内の温度で30分~24時間撹拌し重合反応させることでポリイミドの前駆体であるポリアミド酸が得られる。反応にあたっては、生成する前駆体が有機溶媒中に5~30重量%の範囲内、好ましくは10~20重量%の範囲内となるように反応成分を溶解する。重合反応に用いる有機溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン、2-ブタノン、ジメチルスホキシド、硫酸ジメチル、シクロヘキサノン、ジオキサン、テトラヒドロフラン、ジグライム、トリグライム等が挙げられる。これらの溶媒を2種以上併用して使用することもでき、更にはキシレン、トルエンのような芳香族炭化水素の併用も可能である。また、このような有機溶剤の使用量としては特に制限されるものではないが、重合反応によって得られるポリアミド酸溶液(ポリイミド前駆体溶液)の濃度が5~30重量%程度になるような使用量に調整して用いることが好ましい。合成された前駆体は、通常、反応溶媒溶液として使用することが有利であるが、必要により濃縮、希釈又は他の有機溶媒に置換することができる。また、前駆体は一般に溶媒可溶性に優れるので、有利に使用される。
(Synthesis of polyimide)
The polyimide constituting the polyimide layer can be produced by reacting an acid anhydride and a diamine in a solvent to form a precursor resin, and then heating and closing the ring. For example, a polyimide precursor is obtained by dissolving an acid anhydride component and a diamine component in substantially equimolar amounts in an organic solvent, and stirring at a temperature within a range of 0 to 100 ° C. for 30 minutes to 24 hours to cause a polymerization reaction. A polyamic acid is obtained. In the reaction, the reaction components are dissolved in an organic solvent so that the amount of the produced precursor is in the range of 5 to 30% by weight, preferably in the range of 10 to 20% by weight. Examples of the organic solvent used in the polymerization reaction include N, N-dimethylformamide, N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone, 2-butanone, dimethyl sulfoxide, dimethyl sulfate, cyclohexanone, and dioxane. , Tetrahydrofuran, diglyme, triglyme and the like. Two or more of these solvents can be used in combination, and further, an aromatic hydrocarbon such as xylene or toluene can be used in combination. The amount of the organic solvent used is not particularly limited, but may be such that the concentration of the polyamic acid solution (polyimide precursor solution) obtained by the polymerization reaction is about 5 to 30% by weight. It is preferable to use it after adjusting. Usually, the synthesized precursor is advantageously used as a reaction solvent solution, but can be concentrated, diluted, or replaced with another organic solvent if necessary. Further, the precursor is generally used because it is excellent in solvent solubility.
 ポリイミドの合成において、上記酸無水物及びジアミンはそれぞれ、その1種のみを使用してもよく2種以上を併用して使用することもできる。酸無水物及びジアミンの種類や、2種以上の酸無水物又はジアミンを使用する場合のそれぞれのモル比を選定することにより、熱膨張性、接着性、貯蔵弾性率、ガラス転移温度等を制御することができる。なお、上記ポリイミドにおいて、ポリイミドの構造単位を複数有する場合は、ブロックとして存在しても、ランダムに存在していてもよいが、ランダムに存在することが好ましい。 に お い て In the synthesis of polyimide, each of the above-mentioned acid anhydrides and diamines may be used alone or in combination of two or more. Controlling thermal expansion, adhesion, storage modulus, glass transition temperature, etc. by selecting the type of acid anhydride and diamine, and the molar ratio when using two or more acid anhydrides or diamines can do. In the case where the polyimide has a plurality of polyimide structural units, it may be present as a block or may be present at random, but is preferably present at random.
 以上、本実施の形態で得られる金属張積層板は、第1のポリイミド層20と第2のポリイミド層30との密着性に優れており、FPCに代表される回路基板材料として使用することによって、電子機器の信頼性を向上させることができる。 As described above, the metal-clad laminate obtained in the present embodiment has excellent adhesion between the first polyimide layer 20 and the second polyimide layer 30, and can be used as a circuit board material represented by FPC. Thus, the reliability of the electronic device can be improved.
 上記第1の実施の形態では、層間の密着性を得るためにイミド化されたポリイミドに対して表面処理を行った。表面処理には、そのための設備が必要であるとともに、工程数が増加する場合がある。そこで、次に記載する本発明の第2の実施の形態では、キャスト法によって形成されたポリイミド前駆体層が半硬化の状態で次のポリイミド前駆体層を積層することによって、発泡を抑制しつつ、表面処理などの特別な工程を必要としなくても、ポリイミド層間の密着性を改善できるようにした。 In the first embodiment, surface treatment was performed on imidized polyimide in order to obtain adhesion between layers. The surface treatment requires equipment for the treatment and may increase the number of steps. Therefore, in the second embodiment of the present invention described below, the polyimide precursor layer formed by the casting method is laminated with the next polyimide precursor layer in a semi-cured state, thereby suppressing foaming. The adhesiveness between polyimide layers can be improved without requiring a special step such as surface treatment.
[第2の実施の形態]
 本発明の第2の実施の形態に係る金属張積層板の製造方法は、複数のポリイミド層を含む絶縁樹脂層と、前記絶縁樹脂層の少なくも片側の面に積層された金属層と、を備えた金属張積層板を製造する方法である。
[Second embodiment]
The method for manufacturing a metal-clad laminate according to the second embodiment of the present invention includes an insulating resin layer including a plurality of polyimide layers, and a metal layer stacked on at least one surface of the insulating resin layer. This is a method for manufacturing a metal-clad laminate provided with the above.
 図2は、第2の実施の形態の金属張積層板の製造方法の主要な手順を示す工程図である。本実施の形態の方法は、以下の工程(a)~(d)を含んでいる。図2において、矢印の横の英文字は工程(a)~(d)を意味している。
 なお、本実施の形態において、第1の実施の形態と同じ構成については、第1の実施の形態を参照することによって説明を省略することがある。
FIG. 2 is a process chart showing main procedures of a method for manufacturing a metal-clad laminate according to the second embodiment. The method of the present embodiment includes the following steps (a) to (d). In FIG. 2, the English characters next to the arrows represent steps (a) to (d).
In the present embodiment, the description of the same configuration as that of the first embodiment may be omitted by referring to the first embodiment.
 工程(a)
 工程(a)では、金属層10となる金属箔10Aの上に、ポリアミド酸の溶液を塗布することによって、単層又は複数層の第1のポリアミド樹脂層20Aを積層形成する。キャスト法によって、金属箔10A上にポリアミド酸の樹脂溶液を塗布する方法は特に制限されず、例えばコンマ、ダイ、ナイフ、リップ等のコーターにて塗布することが可能である。
 なお、第1のポリアミド樹脂層20Aを複数層とする場合、例えば、金属箔10Aに、ポリアミド酸の溶液を塗布・乾燥することを複数回繰り返し行う方法や、多層押出により、金属箔10A上に同時にポリアミド酸を多層に積層した状態で塗布・乾燥する方法などを採用できる。
Step (a)
In the step (a), a single-layer or multiple-layer first polyamide resin layer 20A is formed on the metal foil 10A to be the metal layer 10 by applying a polyamic acid solution. The method of applying the polyamic acid resin solution onto the metal foil 10A by the casting method is not particularly limited, and for example, it can be applied by a coater such as a comma, a die, a knife, a lip, or the like.
In the case where the first polyamide resin layer 20A has a plurality of layers, for example, a method of repeatedly applying and drying a polyamic acid solution to the metal foil 10A or a multi-layer extrusion may be used on the metal foil 10A. At the same time, a method of applying and drying polyamic acid in a state of being laminated in multiple layers can be adopted.
 工程(a)では、後述するように、工程(d)で硬化した後の第1のポリイミド層20の厚み(L1)が0.5μm以上10μm以下の範囲内となるように、第1のポリアミド樹脂層20Aを形成することが好ましい。キャスト法では、ポリアミド酸の樹脂層が金属箔10Aに固定された状態でイミド化されるので、イミド化過程におけるポリイミド層の伸縮変化を抑制して、厚みや寸法精度を維持することができる。 In the step (a), as described below, the first polyamide layer 20 is cured so that the thickness (L1) of the first polyimide layer 20 after curing in the step (d) is in the range of 0.5 μm to 10 μm. It is preferable to form the resin layer 20A. In the casting method, since the polyamic acid resin layer is imidized while being fixed to the metal foil 10A, a change in expansion and contraction of the polyimide layer during the imidization process can be suppressed, and the thickness and dimensional accuracy can be maintained.
 金属箔10Aの材質、厚み、表面処理、形状・形態、透湿度については、第1の実施の形態と同様である。 材質 The material, thickness, surface treatment, shape and form, and moisture permeability of the metal foil 10A are the same as in the first embodiment.
 工程(b)
 熱重量示差熱分析装置(TG-DTA)で測定される100℃から360℃までの温度範囲での重量減少率が0.1~20%の範囲内となるように、第1のポリアミド樹脂層20A中に含まれるポリアミド酸を部分的にイミド化して単層又は複数層の半硬化樹脂層20Bを形成する工程。
 工程(b)では、第1のポリアミド樹脂層20A中に含まれるポリアミド酸を半硬化させることによって、第1のポリアミド樹脂層20A中に含まれていた溶剤やイミド化水の大部分を除去できる。また、半硬化状態であれば、イミド化が完了した硬化状態とは異なり、以後の工程(c)、工程(d)によって形成される上層の第2のポリイミド層30との間で、十分な層間密着性が得られるようになる。
Step (b)
The first polyamide resin layer such that the weight loss rate in the temperature range from 100 ° C. to 360 ° C. measured by a thermogravimetric differential thermal analyzer (TG-DTA) is in the range of 0.1 to 20%. A step of partially imidizing the polyamic acid contained in 20A to form a single layer or a plurality of semi-cured resin layers 20B.
In the step (b), most of the solvent and imidized water contained in the first polyamide resin layer 20A can be removed by semi-curing the polyamic acid contained in the first polyamide resin layer 20A. . In the case of the semi-cured state, unlike the cured state in which imidization has been completed, there is sufficient space between the second polyimide layer 30 formed in the subsequent steps (c) and (d). Interlayer adhesion can be obtained.
 ここで、部分的にイミド化した半硬化状態とは、単なる乾燥状態あるいはイミド化が完了した硬化状態とは異なり、ポリアミド酸中でイミド化反応が生じているが完了はしていない状態である。イミド化の度合いは、例えば、熱重量示差熱分析装置(TG-DTA)で測定される100℃から360℃までの温度範囲での重量減少率によって評価することが可能である。この温度域での重量減少率が0.1~20%の範囲内であれば部分的にイミド化した半硬化の状態と考えることができる。重量減少率が0.1%未満では、イミド化が進み過ぎている可能性があり、十分な層間密着性が得られなくなる。一方、重量減少率が20%を超える場合には、イミド化反応が殆ど進行しておらず単なる乾燥と区別できないため、第1のポリアミド樹脂層20A中に含まれていた溶剤が残存している可能性が高く、また、イミド化が完了するまでに生成するイミド化水の量も多いため、発泡の原因となるおそれがある。工程(b)では、上記重量減少率が1~15%の範囲内となるようにイミド化の度合いを調節することが好ましい。 Here, the partially imidized semi-cured state is different from a mere dry state or a cured state in which imidization has been completed, and is a state in which an imidization reaction has occurred in the polyamic acid but has not been completed. . The degree of imidization can be evaluated, for example, by a weight reduction rate in a temperature range from 100 ° C. to 360 ° C. measured by a thermogravimetric differential thermal analyzer (TG-DTA). If the weight loss rate in this temperature range is within the range of 0.1 to 20%, it can be considered that the partially cured semi-cured state is imidized. If the weight reduction ratio is less than 0.1%, imidization may have progressed excessively, and sufficient interlayer adhesion may not be obtained. On the other hand, when the weight reduction rate exceeds 20%, the imidation reaction hardly progresses and cannot be distinguished from mere drying, so that the solvent contained in the first polyamide resin layer 20A remains. The possibility is high, and the amount of imidized water generated before the completion of imidization is large, which may cause foaming. In the step (b), it is preferable to adjust the degree of imidation so that the above-mentioned weight loss rate is in the range of 1 to 15%.
 また、イミド化の度合いは、イミド化率によって評価することも可能である。工程(b)では、半硬化樹脂層20Bのイミド化率が20~95%の範囲内となるように調節することが好ましく、22~90%の範囲内となるように調節することがより好ましい。イミド化率が20%未満では、イミド化反応が殆ど進行しておらず単なる乾燥と区別できないため、第1のポリアミド樹脂層20A中に含まれていた溶剤が残存している可能性が高く、また、イミド化が完了するまでに生成するイミド化水の量も多いため、発泡の原因となるおそれがある。一方、イミド化率が95%を超えると、イミド化が進み過ぎている可能性があり、十分な層間密着性が得られなくなる。
 なお、イミド化率は、フーリエ変換赤外分光光度計を用い、一回反射ATR法にて樹脂層の赤外線吸収スペクトルを測定することによって、1009cm-1のベンゼン環炭素水素結合を基準とし、1778cm-1のイミド基由来の吸光度から算出することができる。ここでは、第1のポリアミド樹脂層20Aに対し、120℃から360℃までの段階的な熱処理を行い、360℃熱処理後のイミド化率を100%とする。
Further, the degree of imidization can also be evaluated by the imidization rate. In the step (b), it is preferable to adjust the imidization ratio of the semi-cured resin layer 20B to be in the range of 20 to 95%, and more preferably to be in the range of 22 to 90%. . When the imidation ratio is less than 20%, the imidization reaction hardly progresses and cannot be distinguished from mere drying, so that there is a high possibility that the solvent contained in the first polyamide resin layer 20A remains, In addition, since the amount of imidized water generated before the completion of imidization is large, it may cause foaming. On the other hand, if the imidization ratio exceeds 95%, imidization may have progressed excessively, and sufficient interlayer adhesion may not be obtained.
The imidation ratio was determined by measuring the infrared absorption spectrum of the resin layer by a single reflection ATR method using a Fourier transform infrared spectrophotometer, and based on a benzene ring carbon-hydrogen bond at 1009 cm −1 , It can be calculated from the absorbance derived from the imide group of -1 . Here, the stepwise heat treatment from 120 ° C. to 360 ° C. is performed on the first polyamide resin layer 20A, and the imidation ratio after the heat treatment at 360 ° C. is set to 100%.
 工程(b)でポリアミド酸を半硬化させるための方法は、特に制限されず、例えば120~300℃の範囲内、好ましくは140~280℃の範囲内の温度条件で、上記重量減少率又はイミド化率になるように時間を調節して加熱する熱処理が好ましい。なお、熱処理は、金属層10の酸化を抑制するため、低酸素雰囲気下で行うことが好ましく、具体的には、窒素又は希ガスなどの不活性ガス雰囲気下、水素などの還元ガス雰囲気下、あるいは真空中で行うことが好ましい。 The method for semi-curing the polyamic acid in the step (b) is not particularly limited, and for example, the above-mentioned weight loss rate or imide under the temperature condition in the range of 120 to 300 ° C, preferably 140 to 280 ° C. Heat treatment in which the time is adjusted so as to obtain a conversion rate and heating is preferred. Note that the heat treatment is preferably performed in a low oxygen atmosphere in order to suppress oxidation of the metal layer 10, specifically, in an inert gas atmosphere such as nitrogen or a rare gas, or in a reducing gas atmosphere such as hydrogen. Alternatively, it is preferably performed in a vacuum.
工程(c)
 工程(c)では、工程(b)で形成した半硬化樹脂層20Bの上に、さらに、ポリアミド酸の溶液を塗布することによって、単層又は複数層の第2のポリアミド樹脂層30Aを積層形成する。キャスト法によって、半硬化樹脂層20Bの上にポリアミド酸の樹脂溶液を塗布する方法は特に制限されず、例えばコンマ、ダイ、ナイフ、リップ等のコーターにて塗布することが可能である。
 なお、第2のポリアミド樹脂層30Aを複数層とする場合、例えば、半硬化樹脂層20Bの上に、ポリアミド酸の溶液を塗布・乾燥することを複数回繰り返し行う方法や、多層押出により、半硬化樹脂層20Bの上に同時にポリアミド酸を多層に積層した状態で塗布・乾燥する方法などを採用できる。
Step (c)
In the step (c), a single-layer or multiple-layer second polyamide resin layer 30A is formed on the semi-cured resin layer 20B formed in the step (b) by further applying a polyamic acid solution. I do. The method of applying the polyamic acid resin solution on the semi-cured resin layer 20B by the casting method is not particularly limited, and the application can be performed by a coater such as a comma, a die, a knife, and a lip.
In the case where the second polyamide resin layer 30A has a plurality of layers, for example, a method of repeatedly applying and drying a polyamic acid solution on the semi-cured resin layer 20B a plurality of times or a multilayer extrusion method is used. A method of applying and drying the polyamic acid in a state of being simultaneously laminated in multiple layers on the cured resin layer 20B can be adopted.
 工程(c)では、後述するように、工程(d)の後に絶縁樹脂層40全体の厚み(L)が10μm以上200μm以下の範囲内となるように、第2のポリアミド樹脂層30Aを形成することが好ましい。 In the step (c), as described later, the second polyamide resin layer 30A is formed after the step (d) such that the thickness (L) of the entire insulating resin layer 40 is in the range of 10 μm to 200 μm. Is preferred.
工程(d)
 工程(d)では、半硬化樹脂層20B中に含まれるポリアミド酸及び第2のポリアミド樹脂層30A中に含まれるポリアミド酸をイミド化して、第1のポリイミド層20及び第2のポリイミド層30に変化させ、絶縁樹脂層40を形成する。
 工程(d)では、半硬化樹脂層20Bと第2のポリアミド樹脂層30A中に含まれるポリアミド酸を一括してイミド化し、ポリイミドを合成する。イミド化の方法は、特に制限されず、例えば、80~400℃の範囲内の温度条件で1~60分間の範囲内の時間加熱するといった熱処理が好適に採用される。熱処理は、金属層10の酸化を抑制するため、低酸素雰囲気下で行うことが好ましく、具体的には、窒素又は希ガスなどの不活性ガス雰囲気下、水素などの還元ガス雰囲気下、あるいは真空中で行うことが好ましい。なお、工程(d)におけるイミド化の終点は、例えば、熱重量示差熱分析装置(TG-DTA)で測定される100℃から360℃までの温度範囲での重量減少率が0.1未満であることや、イミド化率が95%を超えていることを指標とすることができる。
Step (d)
In the step (d), the polyamic acid contained in the semi-cured resin layer 20B and the polyamic acid contained in the second polyamide resin layer 30A are imidized to form the first polyimide layer 20 and the second polyimide layer 30. By changing, the insulating resin layer 40 is formed.
In the step (d), the polyamide acid contained in the semi-cured resin layer 20B and the second polyamide resin layer 30A is simultaneously imidized to synthesize polyimide. The imidation method is not particularly limited, and a heat treatment such as heating at a temperature in the range of 80 to 400 ° C. for a time in the range of 1 to 60 minutes is preferably employed. The heat treatment is preferably performed in a low oxygen atmosphere in order to suppress oxidation of the metal layer 10, specifically, in an inert gas atmosphere such as nitrogen or a rare gas, in a reducing gas atmosphere such as hydrogen, or in a vacuum. It is preferably carried out in Note that the end point of the imidization in the step (d) is, for example, that the weight loss rate in a temperature range from 100 ° C. to 360 ° C. measured by a thermogravimetric differential thermal analyzer (TG-DTA) is less than 0.1. It can be used as an index to indicate that there is, or that the imidation ratio exceeds 95%.
<任意工程>
 本実施の形態の方法は、上記以外の任意の工程を含むことができる。例えば、発明の効果を損なわない範囲で、工程(b)の後、工程(c)の前に、半硬化樹脂層20Bの表面に対し、表面処理を行う工程をさらに含んでいてもよい。表面処理としては、第1のポリイミド層20と第2のポリイミド層30の層間密着性を向上させ得る処理であれば特に制限はなく、第1の実施の形態と同様の処理を挙げることができる。
<Optional process>
The method of the present embodiment can include any other steps than the above. For example, a step of performing a surface treatment on the surface of the semi-cured resin layer 20B after the step (b) and before the step (c) may be further included as long as the effects of the invention are not impaired. The surface treatment is not particularly limited as long as it can improve the interlayer adhesion between the first polyimide layer 20 and the second polyimide layer 30, and the same treatment as in the first embodiment can be mentioned. .
 以上の工程(a)~工程(d)によって、工程数の増加によるスループット低下を生じさせることなく、第1のポリイミド層20と第2のポリイミド層30との密着性に優れた絶縁樹脂層40を有する金属張積層板100を製造することができる。本実施の形態の方法では、第1のポリイミド層20を金属層10上にキャスト法で形成しても、第2のポリイミド層30を形成する前に半硬化させることによって、溶剤やイミド化水が除去されており、発泡や層間剥離などの問題が生じることがない。 Through the above steps (a) to (d), the insulating resin layer 40 having excellent adhesion between the first polyimide layer 20 and the second polyimide layer 30 without causing a decrease in throughput due to an increase in the number of steps. Can be manufactured. In the method of the present embodiment, even if the first polyimide layer 20 is formed on the metal layer 10 by a casting method, the first polyimide layer 20 is semi-cured before the formation of the second polyimide layer 30 to provide a solvent or imidized water. Is removed, and problems such as foaming and delamination do not occur.
 本実施の形態の方法により製造される金属張積層板100の絶縁樹脂層40において、第1のポリイミド層20の厚み(L1)は、0.5μm以上10μm以下の範囲内であることが好ましく、1μm以上7μm以下の範囲内がより好ましい。工程(b)では、イミド化後の厚み(L1)が10μm以下の薄い状態で半硬化させることによって、溶剤やイミド化水の大部分を除去できる。イミド化後の厚み(L1)が10μmを超えると溶剤やイミド化水の除去が困難となり、寸法安定性も悪くなる。また、第1のポリイミド層20の厚み(L1)が0.5μm未満であると金属層10との接着性が低下し、絶縁樹脂層40が剥離し易くなる。 In the insulating resin layer 40 of the metal-clad laminate 100 manufactured by the method of the present embodiment, the thickness (L1) of the first polyimide layer 20 is preferably in a range from 0.5 μm to 10 μm, More preferably, it is in the range of 1 μm or more and 7 μm or less. In the step (b), most of the solvent and imidized water can be removed by semi-curing in a state where the thickness (L1) after imidization is 10 μm or less. If the thickness (L1) after imidization exceeds 10 μm, it becomes difficult to remove the solvent and the imidized water, and the dimensional stability also deteriorates. If the thickness (L1) of the first polyimide layer 20 is less than 0.5 μm, the adhesiveness with the metal layer 10 is reduced, and the insulating resin layer 40 is easily peeled.
 また、絶縁樹脂層40全体の厚み(L)は、10μm以上200μm以下の範囲内が好ましく、12μm以上150μm以下の範囲内がより好ましい。厚み(L)が10μm未満であると、発泡抑制効果が発現しにくく、また、寸法安定性の向上効果も得られ難い。一方で、厚み(L)が200μmを超えると、発泡が生じやすくなる。 厚 み Further, the thickness (L) of the entire insulating resin layer 40 is preferably in the range of 10 μm to 200 μm, and more preferably in the range of 12 μm to 150 μm. When the thickness (L) is less than 10 μm, it is difficult to exhibit the foam suppressing effect, and it is difficult to obtain the effect of improving the dimensional stability. On the other hand, when the thickness (L) exceeds 200 μm, foaming tends to occur.
 以上のように、第1のポリイミド層20の厚み(L1)と絶縁樹脂層40全体の厚み(L)は、発泡抑制や寸法安定性の改善に影響するため、厚み(L)と厚み(L1)との比(L/L1)が1を超え400未満の範囲内であることが好ましく、より好ましくは4以上200以下、さらに好ましくは5以上100以下である。 As described above, the thickness (L1) of the first polyimide layer 20 and the thickness (L) of the entire insulating resin layer 40 affect the suppression of foaming and the improvement of dimensional stability. Is preferably in the range of more than 1 and less than 400, more preferably 4 or more and 200 or less, further preferably 5 or more and 100 or less.
 なお、絶縁樹脂層40は、第1のポリイミド層20及び第2のポリイミド層30以外のポリイミド層を含んでいてもよい。また、絶縁樹脂層40を構成するポリイミド層は、必要に応じて、無機フィラーを含有してもよい。具体的には、例えば二酸化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化ベリリウム、窒化ホウ素、窒化アルミニウム、窒化ケイ素、フッ化アルミニウム、フッ化カルシウム等が挙げられる。これらは1種又は2種以上を混合して用いることができる。 The insulating resin layer 40 may include a polyimide layer other than the first polyimide layer 20 and the second polyimide layer 30. In addition, the polyimide layer constituting the insulating resin layer 40 may contain an inorganic filler as necessary. Specific examples include silicon dioxide, aluminum oxide, magnesium oxide, beryllium oxide, boron nitride, aluminum nitride, silicon nitride, aluminum fluoride, calcium fluoride, and the like. These can be used alone or in combination of two or more.
<ポリイミド>
 第2の実施の形態において、第1のポリイミド層20及び第2のポリイミド層30を形成するための好ましいポリイミドについて説明する。第1のポリイミド層20及び第2のポリイミド層30の形成には、一般的にポリイミドの合成原料として用いられる酸無水物成分及びジアミン成分を特に制限なく使用可能である。
<Polyimide>
In the second embodiment, a preferred polyimide for forming the first polyimide layer 20 and the second polyimide layer 30 will be described. In forming the first polyimide layer 20 and the second polyimide layer 30, an acid anhydride component and a diamine component generally used as a raw material for synthesizing polyimide can be used without any particular limitation.
 金属張積層板100において、第1のポリイミド層20を構成するポリイミドは、熱可塑性ポリイミド、非熱可塑性ポリイミドのいずれでもよいが、下地となる金属層10との接着性の確保が容易であるという理由から、熱可塑性ポリイミドが好ましい。 In the metal-clad laminate 100, the polyimide constituting the first polyimide layer 20 may be either a thermoplastic polyimide or a non-thermoplastic polyimide, but it is easy to secure the adhesiveness with the metal layer 10 serving as a base. For that reason, thermoplastic polyimides are preferred.
 また、第2のポリイミド層30を構成するポリイミドは、熱可塑性ポリイミド、非熱可塑性ポリイミドのどちらでもよいが、非熱可塑性ポリイミドとする場合に発明の効果が顕著に発揮される。
 すなわち、イミド化が完了しているポリイミド層上に、非熱可塑性ポリイミドの前駆体であるポリアミド酸の樹脂層をキャスト法等の方法で積層してイミド化しても、通常は、ポリイミド層間の密着性がほとんど得られない。しかし、本実施の形態では、上述のように第1のポリアミド樹脂層20Aを半硬化させた状態で第2のポリアミド樹脂層30Aを積層することによって、第2のポリイミド層30を構成するポリイミドが熱可塑性であるか非熱可塑性であるかにかかわらず、第1のポリイミド層20との層間で優れた密着性が得られる。また、第2のポリイミド層30を非熱可塑性ポリイミドとすることによって、金属張積層板100におけるポリイミド層の機械的強度を担保する主たる層(ベース層)としての機能を奏することができる。
The polyimide constituting the second polyimide layer 30 may be either a thermoplastic polyimide or a non-thermoplastic polyimide, but when the non-thermoplastic polyimide is used, the effect of the invention is remarkably exhibited.
That is, even if imidization is performed by laminating a resin layer of a polyamic acid that is a precursor of a non-thermoplastic polyimide on a polyimide layer that has been imidized by a method such as a casting method, the adhesion between the polyimide layers is usually The property is hardly obtained. However, in the present embodiment, the polyimide constituting the second polyimide layer 30 is formed by laminating the second polyamide resin layer 30A in a state where the first polyamide resin layer 20A is semi-cured as described above. Regardless of whether it is thermoplastic or non-thermoplastic, excellent adhesion between the first polyimide layer 20 and the first polyimide layer 20 can be obtained. In addition, when the second polyimide layer 30 is made of non-thermoplastic polyimide, it can function as a main layer (base layer) that secures the mechanical strength of the polyimide layer in the metal-clad laminate 100.
 以上から、金属張積層板100において、第1のポリイミド層20として熱可塑性ポリイミド層、第2のポリイミド層30として非熱可塑性ポリイミド層が積層された構造を形成することは、最も好ましい態様である。 From the above, in the metal-clad laminate 100, it is the most preferable embodiment to form a structure in which the thermoplastic polyimide layer is laminated as the first polyimide layer 20 and the non-thermoplastic polyimide layer is laminated as the second polyimide layer 30. .
 第2の実施の形態において、ポリイミドの原料となるジアミン化合物及び酸無水物、ポリイミドの合成等の内容については、第1の実施の形態と同様である。 In the second embodiment, the contents of the diamine compound and the acid anhydride as the raw materials of the polyimide, the synthesis of the polyimide, and the like are the same as those in the first embodiment.
 以上のように、本発明の第2の実施の形態の金属張積層板の製造方法は、以下の工程(a)~(d);
工程(a)前記金属層の上に、ポリアミド酸の溶液を塗布することによって、単層又は複数層の第1のポリアミド樹脂層を積層形成する工程、
工程(b)熱重量示差熱分析装置(TG-DTA)で測定される100℃から360℃までの温度範囲での重量減少率が0.1~20%の範囲内となるように、前記第1のポリアミド樹脂層中に含まれるポリアミド酸を部分的にイミド化して単層又は複数層の半硬化樹脂層を形成する工程、
工程(c)前記半硬化樹脂層の上に、さらに、ポリアミド酸の溶液を塗布することによって、単層又は複数層の第2のポリアミド樹脂層を積層形成する工程、
工程(d)前記半硬化樹脂層中に含まれるポリアミド酸及び前記第2のポリアミド樹脂層中に含まれるポリアミド酸をイミド化して、前記絶縁樹脂層を形成する工程、
を含むものである。
As described above, the method for manufacturing a metal-clad laminate according to the second embodiment of the present invention includes the following steps (a) to (d);
Step (a) a step of forming a single layer or a plurality of first polyamide resin layers by applying a polyamic acid solution on the metal layer;
Step (b) The first step is performed so that the weight loss rate in the temperature range from 100 ° C. to 360 ° C. measured by a thermogravimetric differential thermal analyzer (TG-DTA) is in the range of 0.1 to 20%. A step of partially imidizing the polyamic acid contained in the polyamide resin layer of 1 to form a single layer or a plurality of semi-cured resin layers,
Step (c) a step of forming a single-layer or plural-layer second polyamide resin layer by applying a polyamic acid solution on the semi-cured resin layer,
(D) imidizing the polyamic acid contained in the semi-cured resin layer and the polyamic acid contained in the second polyamide resin layer to form the insulating resin layer;
Is included.
 本発明の第2の実施の形態の金属張積層板の製造方法は、前記工程(b)におけるイミド化率が20~95%の範囲内であってもよい。 方法 In the method for manufacturing a metal-clad laminate according to the second embodiment of the present invention, the imidation ratio in the step (b) may be in the range of 20 to 95%.
 本発明の第2の実施の形態の金属張積層板の製造方法は、前記第1のポリアミド樹脂層によって形成される樹脂層の厚み(L1)が0.5μm以上10μm以下の範囲内であってもよく、かつ、前記絶縁樹脂層全体の厚み(L)が10μm以上200μm以下の範囲内であり、前記Lと前記L1との比(L/L1)が1を超え400未満の範囲内であってもよい。 In the method for manufacturing a metal-clad laminate according to the second embodiment of the present invention, the thickness (L1) of the resin layer formed by the first polyamide resin layer is in the range of 0.5 μm to 10 μm. And the thickness (L) of the entire insulating resin layer is in the range of 10 μm or more and 200 μm or less, and the ratio (L / L1) of L to L1 is more than 1 and less than 400. You may.
 本発明の第2の実施の形態の金属張積層板の製造方法は、前記第1のポリアミド樹脂層によって形成される樹脂層のうち、前記金属層と接している層を構成するポリイミドが、熱可塑性ポリイミドであってもよい。 In the method for manufacturing a metal-clad laminate according to the second embodiment of the present invention, the polyimide constituting a layer in contact with the metal layer among the resin layers formed by the first polyamide resin layer is heat-resistant. It may be a plastic polyimide.
 本発明の第2の実施の形態の金属張積層板の製造方法は、前記金属層の透湿度が、厚み25μm、25℃のとき、100g/m/24hr以下であってもよい。 Manufacturing method of the second embodiment of the metal-clad laminate of the present invention, the moisture permeability of the metal layer, the thickness 25 [mu] m, when the 25 ° C., may be not more than 100g / m 2 / 24hr.
 本発明の第2の実施の形態の金属張積層板の製造方法は、前記工程(b)の後、前記工程(c)の前に、前記半硬化樹脂層の表面に対し、表面処理を行う工程をさらに含んでいてもよい。 In the method for manufacturing a metal-clad laminate according to the second embodiment of the present invention, a surface treatment is performed on the surface of the semi-cured resin layer after the step (b) and before the step (c). The method may further include a step.
 本発明の第2の実施の形態の回路基板の製造方法は、上記いずれかの方法で製造された前記金属張積層板の前記金属層を配線回路加工する工程を含むものである。 回路 A method of manufacturing a circuit board according to the second embodiment of the present invention includes a step of processing a wiring circuit of the metal layer of the metal-clad laminate manufactured by any of the above methods.
 以上、本実施の形態で得られる金属張積層板は、第1のポリイミド層20と第2のポリイミド層30との密着性に優れており、FPCに代表される回路基板材料として使用することによって、電子機器の信頼性を向上させることができる。 As described above, the metal-clad laminate obtained in the present embodiment has excellent adhesion between the first polyimide layer 20 and the second polyimide layer 30, and can be used as a circuit board material represented by FPC. Thus, the reliability of the electronic device can be improved.
 上記第1の実施の形態では、層間の密着性を得るためにイミド化されたポリイミドに対して表面処理を行うが、表面処理には、そのための設備が必要であるとともに、工程数が増加する場合がある。そこで、次に記載する本発明の第3の実施の形態及び第4の実施の形態では、キャスト法によって形成されるポリイミド前駆体層の樹脂成分と、その下地となるポリイミド層の樹脂成分との相互作用を利用することによって、表面処理などの特別な工程を必要としなくても、ポリイミド層間の密着性を改善できるようにした。 In the first embodiment, the surface treatment is performed on the imidized polyimide in order to obtain the adhesion between the layers. However, the surface treatment requires facilities for the treatment and increases the number of steps. There are cases. Therefore, in a third embodiment and a fourth embodiment of the present invention described below, the resin component of the polyimide precursor layer formed by the casting method and the resin component of the polyimide layer serving as the base are formed. By utilizing the interaction, the adhesion between polyimide layers can be improved without requiring a special step such as surface treatment.
[第3の実施の形態:ポリイミドフィルムの製造方法]
 第3の実施の形態のポリイミドフィルムの製造方法は、第1のポリイミド層(A)と、第1のポリイミド層(A)の少なくとも片側の面に積層された第2のポリイミド層(B)と、を備えたポリイミドフィルムを製造する方法である。本実施の形態により得られるポリイミドフィルムは、第1のポリイミド層(A)及び第2のポリイミド層(B)以外のポリイミド層を有していてもよく、また、任意の基材に積層されていてもよい。
[Third Embodiment: Method for Producing Polyimide Film]
The method for manufacturing a polyimide film according to the third embodiment includes a first polyimide layer (A) and a second polyimide layer (B) laminated on at least one surface of the first polyimide layer (A). This is a method for producing a polyimide film comprising: The polyimide film obtained according to the present embodiment may have a polyimide layer other than the first polyimide layer (A) and the second polyimide layer (B), and may be laminated on any substrate. You may.
 本実施の形態のポリイミドフィルムの製造方法は、下記の工程I~IIIを含む。 ポ リ イ ミ ド The method for producing a polyimide film of the present embodiment includes the following steps I to III.
(工程I):
 工程Iでは、ケトン基を有するポリイミドを含む第1のポリイミド層(A)を準備する。ケトン基を有するポリイミドは、その分子内にケトン基(-CO-)を有する。ケトン基は、ポリイミドの原料である酸二無水物及び/又はジアミン化合物に由来するものである。すなわち、第1のポリイミド層(A)を構成するポリイミドは、テトラカルボン酸残基(1a)及びジアミン残基(2a)を含むものであって、テトラカルボン酸残基(1a)又はジアミン残基(2a)のいずれか片方又は両方に、ケトン基を有する残基が含まれている。
 なお、本発明において、「テトラカルボン酸残基」とは、テトラカルボン酸二無水物から誘導された4価の基のことを表し、「ジアミン残基」とは、ジアミン化合物から誘導された2価の基のことを表す。また、「ジアミン化合物」は、末端の二つのアミノ基における水素原子が置換されていてもよい。
(Step I):
In step I, a first polyimide layer (A) containing a polyimide having a ketone group is prepared. A polyimide having a ketone group has a ketone group (—CO—) in the molecule. The ketone group is derived from an acid dianhydride and / or a diamine compound which is a raw material for polyimide. That is, the polyimide constituting the first polyimide layer (A) contains a tetracarboxylic acid residue (1a) and a diamine residue (2a), and contains a tetracarboxylic acid residue (1a) or a diamine residue. One or both of (2a) include a residue having a ketone group.
In the present invention, “tetracarboxylic acid residue” refers to a tetravalent group derived from tetracarboxylic dianhydride, and “diamine residue” refers to a divalent group derived from a diamine compound. It represents a valence group. In the “diamine compound”, the hydrogen atoms in the two terminal amino groups may be substituted.
 テトラカルボン酸残基(1a)中に含まれるケトン基を有する残基としては、例えば、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,3’,3,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-(パラフェニレンジカルボニル)ジフタル酸無水物、4,4’-(メタフェニレンジカルボニル)ジフタル酸無水物等の「分子内にケトン基を有するテトラカルボン酸二無水物」から誘導される残基を挙げることができる。 Examples of the residue having a ketone group contained in the tetracarboxylic acid residue (1a) include 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,3 ′, 3,4 ′ -Benzophenonetetracarboxylic dianhydride, 2,2 ', 3,3'-benzophenonetetracarboxylic dianhydride, 4,4'-(paraphenylenedicarbonyl) diphthalic anhydride, 4,4 '-(meta Residues derived from "tetracarboxylic dianhydride having a ketone group in the molecule" such as phenylenedicarbonyl) diphthalic anhydride can be mentioned.
 テトラカルボン酸残基(1a)において、ケトン基を有する残基以外としては、例えば後記実施例に示すもののほか、一般的にポリイミドの合成に使用されているテトラカルボン酸二無水物から誘導される残基を挙げることができる。 In the tetracarboxylic acid residue (1a), other than the residue having a ketone group, for example, those derived from tetracarboxylic dianhydride generally used in the synthesis of polyimide, in addition to those shown in Examples described later. Residues may be mentioned.
 ジアミン残基(2a)中に含まれるケトン基を有する残基としては、例えば、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、4,4’-ビス[4-(4-アミノ‐α,α‐ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス(4-アミノフェノキシ)ベンゾフェノン4,4’―ビス(3-アミノフェノキシ)ベンゾフェノン(BABP)、1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン(BABB)、1,4-ビス(4-アミノベンゾイル)ベンゼン、1,3-ビス(4-アミノベンゾイル)ベンゼン等の「分子内にケトン基を有するジアミン化合物」から誘導される残基を挙げることができる。 Examples of the residue having a ketone group contained in the diamine residue (2a) include, for example, 3,3′-diaminobenzophenone, 3,4′-diaminobenzophenone, 4,4′-diaminobenzophenone, and 4,4′- Bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy] benzophenone, 4,4′-bis (4-aminophenoxy) benzophenone 4,4′-bis (3-aminophenoxy) benzophenone (BABP), "Molecules such as 1,3-bis [4- (3-aminophenoxy) benzoyl] benzene (BABB), 1,4-bis (4-aminobenzoyl) benzene, and 1,3-bis (4-aminobenzoyl) benzene And a residue derived from a "diamine compound having a ketone group therein".
 ジアミン残基(2a)において、ケトン基を有する残基以外としては、例えば後記実施例に示すもののほか、一般的にポリイミドの合成に使用されているジアミン化合物から誘導される残基を挙げることができる。 In the diamine residue (2a), other than the residue having a ketone group, for example, in addition to those shown in Examples described later, there may be mentioned residues derived from a diamine compound generally used in the synthesis of polyimide. it can.
 第1のポリイミド層(A)は、ケトン基を有するポリイミド以外の他のポリイミドを含んでいてもよい。ただし、第2のポリイミド層(B)との十分な密着性を確保するため、第1のポリイミド層(A)を構成するポリイミドの全量に対して、10モル%以上がケトン基を有するポリイミドであることが好ましく、30モル%以上のポリイミドが、ケトン基を有するポリイミドであることがより好ましい。
 また、第1のポリイミド層(A)を構成するポリイミド中に存在するケトン基の量(-CO-として)は、テトラカルボン酸残基(1a)及びジアミン残基(2a)の合計100モル部に対して、5~200モル部の範囲内であることが好ましく、15~100モル部の範囲内であることがより好ましい。第1のポリイミド層(A)を構成するポリイミド中に存在するケトン基が5モル部未満であると、工程IIで積層されるポリアミド酸(b)を含む樹脂層中に存在する官能基(例えば末端アミノ基)と相互作用を起こす確率が低くなって、層間の密着性が十分に得られないことがある。
The first polyimide layer (A) may contain another polyimide other than the polyimide having a ketone group. However, in order to ensure sufficient adhesion with the second polyimide layer (B), 10 mol% or more of the polyimide having a ketone group is based on the total amount of the polyimide constituting the first polyimide layer (A). It is more preferable that 30 mol% or more of the polyimide is a polyimide having a ketone group.
The amount of ketone groups (as -CO-) present in the polyimide constituting the first polyimide layer (A) is 100 mol parts in total of the tetracarboxylic acid residue (1a) and the diamine residue (2a). Is preferably in the range of 5 to 200 mol parts, more preferably in the range of 15 to 100 mol parts. When the ketone group present in the polyimide constituting the first polyimide layer (A) is less than 5 mol parts, the functional group present in the resin layer containing the polyamic acid (b) laminated in the step II (for example, In some cases, the probability of interaction with the terminal amino group) is reduced, and sufficient adhesion between layers may not be obtained.
 第1のポリイミド層(A)を形成する方法としては、任意の基材の上に、ケトン基を有するポリアミド酸(a)を含む樹脂溶液を塗布する方法(キャスト法)、任意の基材の上にケトン基を有するポリアミド酸(a)を含むゲルフィルムを積層する方法などによって形成することが可能である。 As a method of forming the first polyimide layer (A), a method of applying a resin solution containing a polyamic acid (a) having a ketone group on an arbitrary base material (cast method), a method of forming an arbitrary base material It can be formed by a method of laminating a gel film containing a polyamic acid (a) having a ketone group thereon.
 キャスト法において、ポリアミド酸(a)を含む樹脂溶液を塗布する方法は特に制限されず、例えばコンマ、ダイ、ナイフ、リップ等のコーターにて塗布することが可能である。 In the casting method, the method of applying the resin solution containing the polyamic acid (a) is not particularly limited, and for example, the resin solution can be applied using a coater such as a comma, a die, a knife, and a lip.
 なお、第1のポリイミド層(A)は、他の樹脂層と積層された状態でもよいし、任意の基材に積層された状態であってもよい。 The first polyimide layer (A) may be in a state of being laminated with another resin layer, or may be in a state of being laminated on an arbitrary base material.
 また、第1のポリイミド層(A)は、ケトン基を有するポリアミド酸(a)を含む樹脂層を基材上に積層して、基材ごとポリアミド酸(a)をイミド化して形成されたものであることが好ましい。このように、第1のポリイミド層(A)が基材上にキャスト法で形成された場合でも、第2のポリイミド層(B)を形成する前にイミド化を完了させるため、溶剤やイミド化水が除去されており、発泡や層間剥離などの問題が生じることがない。 Further, the first polyimide layer (A) is formed by laminating a resin layer containing a polyamic acid (a) having a ketone group on a substrate and imidizing the polyamic acid (a) together with the substrate. It is preferred that As described above, even when the first polyimide layer (A) is formed on the base material by the casting method, the imidation is completed before the second polyimide layer (B) is formed. Since water is removed, problems such as foaming and delamination do not occur.
 また、第1のポリイミド層(A)は、カットシート状、ロール状のもの、又はエンドレスベルト状などの形状とすることができるが、生産性を得るためには、ロール状又はエンドレスベルト状の形態とし、連続生産可能な形式とすることが効率的である。さらに、回路基板における配線パターン精度の改善効果をより大きく発現させる観点から、第1のポリイミド層(A)は長尺に形成されたロール状のものが好ましい。 Further, the first polyimide layer (A) can be formed in a shape such as a cut sheet shape, a roll shape, or an endless belt shape. It is efficient to use a form that enables continuous production. Further, the first polyimide layer (A) is preferably a long roll formed from the viewpoint of further improving the effect of improving the wiring pattern accuracy on the circuit board.
(工程II)
 工程IIでは、工程Iで得た第1のポリイミド層(A)の上に、前記ケトン基と相互作用する性質を有する官能基を持つポリアミド酸(b)を含む樹脂層を積層する。
 工程IIにおいて、「ケトン基と相互作用する性質を有する官能基」としては、ケトン基との間で、例えば分子間力による物理的相互作用や、共有結合による化学的相互作用などを生じ得る官能基であれば特に制限はないが、その代表例としてアミノ基(-NH)を挙げることができる。
 前記官能基がアミノ基である場合、ポリアミド酸(b)として、末端にアミノ基を有するポリアミド酸を用いることが可能であり、好ましくは末端の大部分がアミノ基であるポリアミド酸、さらに好ましくは末端の全てがアミノ基であるポリアミド酸を使用することができる。このように、アミノ末端を豊富に有するポリアミド酸(b)は、原料中のテトラカルボン酸二無水物に対してジアミン化合物が過剰となるように、両成分のモル比を調節することによって形成できる。例えば、ジアミン化合物1モルに対し、テトラカルボン酸二無水物が1モル未満となるように原料の仕込み比率を調節することで、確率的に、合成されるポリアミド酸の大部分を、アミノ末端(-NH)を有するポリアミド酸(b)にすることができる。ジアミン化合物1モルに対し、テトラカルボン酸二無水物の仕込み比率が1モルを超えると、アミノ末端(-NH)がほとんど残らなくなるため好ましくない。一方、ジアミン化合物に対するテトラカルボン酸二無水物の仕込み比率が小さすぎると、ポリアミド酸の高分子量化が十分に進行しない。そのため、ジアミン化合物1モルに対するテトラカルボン酸二無水物の仕込み比率は、例えば0.970~0.998モルの範囲内とすることが好ましく、0.980~0.995モルの範囲内がより好ましい。
(Step II)
In step II, a resin layer containing a polyamic acid (b) having a functional group having a property of interacting with the ketone group is laminated on the first polyimide layer (A) obtained in step I.
In step II, the “functional group having the property of interacting with a ketone group” includes, for example, a functional group capable of generating a physical interaction due to an intermolecular force or a chemical interaction due to a covalent bond with the ketone group. The group is not particularly limited as long as it is a group, but a typical example thereof is an amino group (—NH 2 ).
When the functional group is an amino group, the polyamic acid (b) may be a polyamic acid having an amino group at a terminal, preferably a polyamic acid having most of terminal amino groups, more preferably Polyamic acids, all of whose ends are amino groups, can be used. Thus, the polyamic acid (b) having abundant amino terminals can be formed by adjusting the molar ratio of the two components so that the diamine compound is in excess with respect to the tetracarboxylic dianhydride in the raw material. . For example, by adjusting the charge ratio of the raw materials so that the amount of the tetracarboxylic dianhydride is less than 1 mol per 1 mol of the diamine compound, most of the synthesized polyamic acid is stochastically changed to the amino terminal ( —NH 2 ). If the charging ratio of the tetracarboxylic dianhydride exceeds 1 mole per 1 mole of the diamine compound, it is not preferable because almost no amino terminal (—NH 2 ) remains. On the other hand, if the charging ratio of the tetracarboxylic dianhydride to the diamine compound is too small, the increase in the molecular weight of the polyamic acid does not sufficiently proceed. Therefore, the charging ratio of tetracarboxylic dianhydride to 1 mol of the diamine compound is preferably, for example, in the range of 0.970 to 0.998 mol, and more preferably in the range of 0.980 to 0.995 mol. .
 ポリアミド酸(b)は、一般的にポリイミドの合成に使用されているテトラカルボン酸二無水物及びジアミン化合物を原料として合成することができる。なお、分子内にケトン基を有するテトラカルボン酸二無水物や、分子内にケトン基を有するジアミン化合物を原料としてもよい。 The polyamic acid (b) can be synthesized using a tetracarboxylic dianhydride and a diamine compound generally used for the synthesis of polyimide as raw materials. The raw material may be a tetracarboxylic dianhydride having a ketone group in the molecule or a diamine compound having a ketone group in the molecule.
 また、原料のジアミン化合物の一部分もしくは全部に替えて、分子内にアミノ基を豊富に含む化合物(例えばトリアミン化合物など)を使用することによって、アミノ末端を豊富に有するポリアミド酸(b)を合成することも可能である。
 さらに、原料中のテトラカルボン酸二無水物とジアミン化合物の仕込み比率は等モルとし、アミノ基を含む化合物(例えば、トリアミン化合物など)を少量添加することによって、アミノ末端を豊富に有するポリアミド酸(b)を含む樹脂層を形成することも可能である。
In addition, a polyamic acid (b) having abundant amino terminals is synthesized by using a compound (for example, a triamine compound) rich in an amino group in a molecule instead of part or all of the diamine compound as a raw material. It is also possible.
Furthermore, the charge ratio of the tetracarboxylic dianhydride and the diamine compound in the raw materials is made equimolar, and by adding a small amount of a compound containing an amino group (for example, a triamine compound), a polyamic acid having a rich amino terminal ( It is also possible to form a resin layer containing b).
 ポリアミド酸(b)を含む樹脂層の形成には、ポリアミド酸(b)とともに、それ以外の他のポリアミド酸を混合して使用してもよい。当該他のポリイミド酸としては、一般的にポリイミドの合成に使用されているテトラカルボン酸二無水物及びジアミン化合物を原料として、それらのモル比が等モルで合成されたポリアミド酸を使用できる。ただし、第1のポリイミド層(A)との十分な密着性を確保する観点から、ポリアミド酸(b)を含む樹脂層は、構成するポリアミド酸の全量に対して、10モル%以上がポリアミド酸(b)であることが好ましく、30モル%以上のポリアミド酸がポリアミド酸(b)であることがより好ましい。 に は For forming the resin layer containing the polyamic acid (b), other polyamic acid may be mixed with the polyamic acid (b). As the other polyimide acid, a polyamic acid synthesized using tetracarboxylic dianhydride and a diamine compound, which are generally used for the synthesis of polyimide, as raw materials and in an equimolar ratio thereof can be used. However, from the viewpoint of ensuring sufficient adhesiveness with the first polyimide layer (A), the resin layer containing the polyamic acid (b) has a polyamic acid content of 10 mol% or more based on the total amount of the constituent polyamic acid. (B), and more preferably 30% by mole or more of the polyamic acid is the polyamic acid (b).
 ポリアミド酸(b)を含む樹脂層は、第1のポリイミド層(A)の上にポリアミド酸(b)を含む樹脂溶液を塗布する方法(キャスト法)、第1のポリイミド層(A)の上にポリアミド酸(b)を含むゲルフィルムを積層する方法などによって形成することが可能であるが、第1のポリイミド層(A)と第2のポリイミド層(B)との密着性を高めるために、キャスト法によることが好ましい。また、ポリアミド酸(b)を含む樹脂層の形成に際して、事前に第1のポリイミド層(A)の表面に、プラズマ処理、コロナ処理などの表面処理を行う必要はないが、これらの表面処理を行うことも可能である。 The resin layer containing the polyamic acid (b) is formed by applying a resin solution containing the polyamic acid (b) on the first polyimide layer (A) (casting method). It can be formed by a method of laminating a gel film containing a polyamic acid (b) on the first layer. In order to increase the adhesion between the first polyimide layer (A) and the second polyimide layer (B), It is preferable to use a casting method. In addition, when forming the resin layer containing the polyamic acid (b), it is not necessary to previously perform a surface treatment such as a plasma treatment or a corona treatment on the surface of the first polyimide layer (A). It is also possible to do.
 キャスト法において、ポリアミド酸(b)を含む樹脂溶液を塗布する方法は特に制限されず、例えばコンマ、ダイ、ナイフ、リップ等のコーターにて塗布することが可能である。 In the casting method, the method of applying the resin solution containing the polyamic acid (b) is not particularly limited, and it is possible to apply the resin solution using a coater such as a comma, a die, a knife, and a lip.
 このようにして得られるポリアミド酸(b)を含む樹脂層は、テトラカルボン酸残基(1b)及びジアミン残基(2b)を含むものであって、ジアミン残基(2b)1モルに対し、テトラカルボン酸残基(1b)を1モル未満、好ましくは0.970~0.998モルの範囲内、より好ましくは0.980~0.995モルの範囲内で含有し、アミノ末端(-NH)を豊富に含有する樹脂層となる。 The resin layer containing the polyamic acid (b) thus obtained contains the tetracarboxylic acid residue (1b) and the diamine residue (2b), and is contained in 1 mole of the diamine residue (2b). Containing a tetracarboxylic acid residue (1b) of less than 1 mol, preferably in the range of 0.970 to 0.998 mol, more preferably in the range of 0.980 to 0.995 mol, and the amino terminal (—NH It becomes a resin layer containing 2 ) abundantly.
(工程III)
 工程IIIでは、ポリアミド酸(b)を含む樹脂層を、第1のポリイミド層(A)ごと熱処理し、ポリアミド酸(b)をイミド化して第2のポリイミド層(B)を形成する。
 イミド化の方法は、特に制限されず、例えば、80~400℃の範囲内の温度条件で1~60分間の範囲内の時間加熱するといった熱処理が好適に採用される。金属層を含む場合は、酸化を抑制するため、低酸素雰囲気下での熱処理が好ましく、具体的には、窒素又は希ガスなどの不活性ガス雰囲気下、水素などの還元ガス雰囲気下、あるいは真空中で行うことが好ましい。
(Step III)
In Step III, the resin layer containing the polyamic acid (b) is heat-treated together with the first polyimide layer (A), and the polyamic acid (b) is imidized to form a second polyimide layer (B).
The imidation method is not particularly limited, and a heat treatment such as heating at a temperature in the range of 80 to 400 ° C. for a time in the range of 1 to 60 minutes is preferably employed. When a metal layer is included, heat treatment in a low-oxygen atmosphere is preferable to suppress oxidation.Specifically, under an inert gas atmosphere such as nitrogen or a rare gas, a reducing gas atmosphere such as hydrogen, or a vacuum It is preferably carried out in
 また、イミド化と並行して、第1のポリイミド層(A)のポリイミド鎖中に存在するケトン基と、ポリアミド酸(b)を含む樹脂層中に存在する前記官能基(例えば、豊富な末端アミノ基)との間で相互作用が生じ、第1のポリイミド層(A)と第2のポリイミド層(B)との密着性が、両層を構成するポリイミドの特性(例えば、熱可塑性であるか、非熱可塑性であるか、など)を超えて大きく向上するものと考えられる。かかる相互作用については、そのすべての機構を解明できていないが、前記官能基がアミノ基である場合には、一つの可能性として、ポリアミド酸(b)をイミド化する際の熱処理によって、上記ケトン基と末端のアミノ基との間でイミン結合が生じていることが推測される。つまり、第1のポリイミド層(A)のポリイミド鎖中のケトン基と、ポリアミド酸(b)の末端のアミノ基との間で、加熱によって脱水縮合反応が生じてイミン結合が形成され、第1のポリイミド層(A)中のポリイミド鎖と、イミド化後の第2のポリイミド層(B)とが化学的に接着することによって、第1のポリイミド層(A)と第2のポリイミド層(B)の接着力を強めている、と推定される。 In parallel with the imidation, a ketone group present in the polyimide chain of the first polyimide layer (A) and the functional group present in the resin layer containing the polyamic acid (b) (for example, abundant terminal Interaction occurs between the first polyimide layer (A) and the second polyimide layer (B), and the adhesion between the first polyimide layer (A) and the second polyimide layer (B) is a property of the polyimide constituting both layers (for example, thermoplastic). Or non-thermoplastic, etc.). Although all the mechanisms of such an interaction have not been elucidated, when the functional group is an amino group, one possibility is that the heat treatment at the time of imidizing the polyamic acid (b) causes It is presumed that an imine bond has occurred between the ketone group and the terminal amino group. That is, a heating causes a dehydration condensation reaction between the ketone group in the polyimide chain of the first polyimide layer (A) and the amino group at the terminal of the polyamic acid (b) to form an imine bond. Is chemically bonded to the second polyimide layer (B) after imidization, whereby the first polyimide layer (A) and the second polyimide layer (B) are chemically bonded to each other. It is presumed that the adhesive strength is increased.
 なお、第1のポリイミド層(A)と第2のポリイミド層(B)が上記と逆の関係になる場合には、層間の密着性の向上効果が得られない。すなわち、まず、ケトン基と相互作用する性質を有する官能基を持つポリアミド酸(b)を含む樹脂層をイミド化して1層目のポリイミド層を形成し、その上に、ケトン基を有するポリアミド酸(a)を含む樹脂層を形成してから熱処理によってイミド化し、2層目のポリイミド層を形成する場合は、1層目と2層目の密着性が両層を構成するポリイミドの特性(例えば、熱可塑性であるか、非熱可塑性であるか、など)を超えて改善することはない。その理由として、硬化したポリイミド中では、前記官能基としての末端のアミノ基の移動が制限されて反応性が低下することから、上記相互作用が生じにくくなるためと考えられる。 In the case where the first polyimide layer (A) and the second polyimide layer (B) have the opposite relationship, the effect of improving the adhesion between the layers cannot be obtained. That is, first, a resin layer containing a polyamic acid (b) having a functional group having a property of interacting with a ketone group is imidized to form a first polyimide layer, and a polyamic acid having a ketone group is formed thereon. When a resin layer containing (a) is formed and then imidized by heat treatment to form a second polyimide layer, the adhesion between the first and second layers is determined by the properties of the polyimide constituting both layers (for example, , Thermoplastic or non-thermoplastic, etc.). It is considered that the reason for this is that in the cured polyimide, the movement of the terminal amino group as the functional group is restricted and the reactivity is reduced, so that the above-mentioned interaction hardly occurs.
 第1のポリイミド層(A)及び第2のポリイミド層(B)は、必要に応じて、無機フィラーを含有してもよい。具体的には、例えば二酸化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化ベリリウム、窒化ホウ素、窒化アルミニウム、窒化ケイ素、フッ化アルミニウム、フッ化カルシウム等が挙げられる。これらは1種又は2種以上を混合して用いることができる。 The first polyimide layer (A) and the second polyimide layer (B) may contain an inorganic filler as needed. Specific examples include silicon dioxide, aluminum oxide, magnesium oxide, beryllium oxide, boron nitride, aluminum nitride, silicon nitride, aluminum fluoride, calcium fluoride, and the like. These can be used alone or in combination of two or more.
 以上の工程I~IIIによって、工程数の増加によるスループット低下を生じさせることなく、第1のポリイミド層(A)と第2のポリイミド層(B)との密着性に優れたポリイミドフィルムを製造することができる。 Through the above steps I to III, a polyimide film having excellent adhesion between the first polyimide layer (A) and the second polyimide layer (B) is produced without causing a decrease in throughput due to an increase in the number of steps. be able to.
[第4の実施の形態:金属張積層板の製造方法]
 本発明の第4の実施の形態は、金属層と、第1のポリイミド層(A)と、前記第1のポリイミド層(A)の片側の面に積層された第2のポリイミド層(B)と、を備えた金属張積層板の製造方法であって、下記の工程i~ivを含むものである。
[Fourth Embodiment: Method for Manufacturing Metal-Clad Laminate]
In a fourth embodiment of the present invention, a metal layer, a first polyimide layer (A), and a second polyimide layer (B) laminated on one surface of the first polyimide layer (A) And a method for producing a metal-clad laminate, comprising the following steps i to iv.
(工程i)
 工程iでは、金属層の上に、ケトン基を有するポリアミド酸(a)の樹脂層を表層部に有する、少なくとも1層以上のポリアミド酸の樹脂層を形成する。
(Step i)
In step i, at least one or more polyamic acid resin layers having a polyamic acid (a) resin layer having a ketone group on the surface layer are formed on the metal layer.
 金属層としては、金属箔を好ましく使用することができる。金属箔の材質としては、特に制限はないが、例えば、銅、ステンレス、鉄、ニッケル、ベリリウム、アルミニウム、亜鉛、インジウム、銀、金、スズ、ジルコニウム、タンタル、チタン、鉛、マグネシウム、マンガン及びこれらの合金等が挙げられる。この中でも、特に銅又は銅合金が好ましい。銅箔としては、圧延銅箔でも電解銅箔でもよく、市販されている銅箔を好ましく用いることができる。 金属 As the metal layer, a metal foil can be preferably used. The material of the metal foil is not particularly limited. For example, copper, stainless steel, iron, nickel, beryllium, aluminum, zinc, indium, silver, gold, tin, zirconium, tantalum, titanium, lead, magnesium, manganese and the like And the like. Among them, copper or a copper alloy is particularly preferable. As the copper foil, a rolled copper foil or an electrolytic copper foil may be used, and a commercially available copper foil can be preferably used.
 本実施の形態において、例えばFPCの製造に用いる場合の金属層の好ましい厚みは3~50μmの範囲内であり、より好ましくは5~30μmの範囲内である。 に お い て In the present embodiment, for example, the thickness of the metal layer when used for manufacturing an FPC is preferably in the range of 3 to 50 μm, and more preferably in the range of 5 to 30 μm.
 金属層として使用する金属箔は、表面に、例えば防錆処理、サイディング、アルミニウムアルコラート、アルミニウムキレート、シランカップリング剤等の表面処理が施されていてもよい。また、金属箔は、カットシート状、ロール状のもの、又はエンドレスベルト状などの形状とすることができるが、生産性を得るためには、ロール状又はエンドレスベルト状の形態とし、連続生産可能な形式とすることが効率的である。さらに、回路基板における配線パターン精度の改善効果をより大きく発現させる観点から、金属箔は長尺に形成されたロール状のものが好ましい。 金属 The surface of the metal foil used as the metal layer may be subjected to surface treatment such as rust prevention treatment, siding, aluminum alcoholate, aluminum chelate, and silane coupling agent. In addition, the metal foil can be in a shape such as a cut sheet shape, a roll shape, or an endless belt shape. It is efficient to use a simple format. Further, from the viewpoint of further improving the effect of improving the accuracy of the wiring pattern on the circuit board, the metal foil is preferably a roll formed in a long shape.
 第1のポリイミド層(A)の形成にあたっては、ケトン基を有するポリアミド酸(a)を含む樹脂層が表層部となるように、金属層の上に、少なくとも1層以上のポリアミド酸の樹脂層を形成する。この場合、金属層の上にポリアミド酸の樹脂溶液を塗布する方法(キャスト法)、金属層の上にポリアミド酸(a)を含むゲルフィルムを積層する方法などによって形成することが可能である。
 なお、金属層と、ケトン基を有するポリアミド酸(a)を含む樹脂層との間には、任意の樹脂層(他のポリアミド酸の樹脂層を含む)を有していてもよく、その場合は、該任意の樹脂層上に、上記方法によってケトン基を有するポリアミド酸(a)を含む樹脂層を形成できる。また、金属層の上に、直接、ケトン基を有するポリアミド酸(a)の樹脂層を形成する場合は、金属層と第1のポリイミド層(A)との接着性を高めるために、キャスト法によることが好ましい。
In forming the first polyimide layer (A), at least one or more resin layers of polyamic acid are formed on the metal layer so that the resin layer containing the polyamic acid (a) having a ketone group becomes a surface layer. To form In this case, it can be formed by a method of applying a polyamic acid resin solution on the metal layer (casting method), a method of laminating a gel film containing the polyamic acid (a) on the metal layer, or the like.
Note that an arbitrary resin layer (including a resin layer of another polyamic acid) may be provided between the metal layer and the resin layer containing the polyamic acid (a) having a ketone group. Can form a resin layer containing a polyamic acid (a) having a ketone group on the arbitrary resin layer by the above method. When a resin layer of a polyamic acid (a) having a ketone group is directly formed on the metal layer, a cast method is used in order to increase the adhesion between the metal layer and the first polyimide layer (A). Is preferred.
 キャスト法において、ポリアミド酸(a)を含む樹脂溶液を塗布する方法は特に制限されず、例えばコンマ、ダイ、ナイフ、リップ等のコーターにて塗布することが可能である。 In the casting method, the method of applying the resin solution containing the polyamic acid (a) is not particularly limited, and for example, the resin solution can be applied using a coater such as a comma, a die, a knife, and a lip.
(工程ii)
 工程iiでは、ケトン基を有するポリアミド酸(a)を含む樹脂層を表層部に有するポリアミド酸の樹脂層を前記金属層ごと熱処理し、前記ポリアミド酸をイミド化する。これによって、金属層の上に、ケトン基を有するポリイミドを含む第1のポリイミド層(A)を表層部として有するポリイミド層が積層された中間体を形成する。
(Step ii)
In step ii, the polyamic acid resin layer having a resin layer containing a polyamic acid (a) having a ketone group in the surface layer is heat-treated together with the metal layer to imidize the polyamic acid. As a result, an intermediate is formed in which the polyimide layer having the first polyimide layer (A) containing the polyimide having a ketone group as a surface layer is laminated on the metal layer.
 ポリアミド酸のイミド化については、上記第3の実施の形態の工程(III)に記載した方法で行うことができる。本実施の形態では、ケトン基を有するポリアミド酸(a)を含む樹脂層を表層部に有するポリアミド酸の樹脂層を、金属箔上にキャスト法によって形成する場合であっても、第2のポリイミド層(B)を形成する前にイミド化を完了させているため、溶剤やイミド化水が除去されており、発泡や層間剥離などの問題が生じることがない。 イ ミ ド The imidization of the polyamic acid can be performed by the method described in the step (III) of the third embodiment. In the present embodiment, even when a resin layer of a polyamic acid having a surface layer with a resin layer containing a polyamic acid (a) having a ketone group is formed on a metal foil by a casting method, the second polyimide Since the imidization is completed before the formation of the layer (B), the solvent and the imidized water are removed, so that problems such as foaming and delamination do not occur.
(工程iii)
 工程iiiでは、前記第1のポリイミド層(A)の上に、前記ケトン基と相互作用する性質を有する官能基を持つポリアミド酸(b)を含む樹脂層を積層する。
 本工程iiiは、上記第3の実施の形態の工程IIと同様に実施できる。
(Step iii)
In step iii, a resin layer containing a polyamic acid (b) having a functional group having a property of interacting with the ketone group is laminated on the first polyimide layer (A).
This step iii can be performed in the same manner as in step II of the third embodiment.
(工程iv)
 工程iiiで中間体上に積層したポリアミド酸(b)を含む樹脂層を、中間体ごと熱処理し、ポリアミド酸(b)をイミド化して第2のポリイミド層(B)を形成する。
 本工程ivは、上記第3の実施の形態の工程IIIと同様に実施できる。
(Step iv)
The resin layer containing the polyamic acid (b) laminated on the intermediate in step iii is heat-treated together with the intermediate to imidize the polyamic acid (b) to form a second polyimide layer (B).
This step iv can be performed in the same manner as in step III of the third embodiment.
 以上の工程i~ivによって、工程数の増加によるスループット低下を生じさせることなく、第1のポリイミド層(A)と第2のポリイミド層(B)との密着性に優れた金属張積層板を製造することができる。 By the above steps i to iv, a metal-clad laminate excellent in adhesion between the first polyimide layer (A) and the second polyimide layer (B) can be obtained without causing a decrease in throughput due to an increase in the number of steps. Can be manufactured.
 本実施の形態における他の構成及び効果は、第3の実施の形態と同様である。 他 Other configurations and effects of the present embodiment are the same as those of the third embodiment.
<ポリイミド>
 次に、第1のポリイミド層(A)及び第2のポリイミド層(B)を形成するための好ましいポリイミドについて説明する。第1のポリイミド層(A)の形成には、上記「分子内にケトン基を有するテトラカルボン酸二無水物」及び/又は「分子内にケトン基を有するジアミン化合物」と、一般的にポリイミドの合成原料として用いられる酸無水物成分及びジアミン成分とを組み合わせて使用することが好ましい。第2のポリイミド層(B)の形成には、一般的にポリイミドの合成原料として用いられる酸無水物成分及びジアミン成分を特に制限なく使用可能である。
<Polyimide>
Next, a preferred polyimide for forming the first polyimide layer (A) and the second polyimide layer (B) will be described. In forming the first polyimide layer (A), the above-mentioned “tetracarboxylic dianhydride having a ketone group in the molecule” and / or “diamine compound having a ketone group in the molecule” and generally a polyimide It is preferable to use a combination of an acid anhydride component and a diamine component used as a raw material for synthesis. In forming the second polyimide layer (B), an acid anhydride component and a diamine component generally used as a raw material for synthesizing polyimide can be used without any particular limitation.
 ポリイミドフィルム又は金属張積層板において、第1のポリイミド層(A)を構成するポリイミドは、熱可塑性ポリイミド、非熱可塑性ポリイミドのいずれでもよいが、下地となる基材や金属箔、樹脂層との接着性の確保が容易であるという理由から、熱可塑性ポリイミドが好ましい。 In the polyimide film or the metal-clad laminate, the polyimide constituting the first polyimide layer (A) may be either a thermoplastic polyimide or a non-thermoplastic polyimide. Thermoplastic polyimide is preferred because it is easy to secure adhesion.
 また、第2のポリイミド層(B)を構成するポリイミドは、熱可塑性ポリイミド、非熱可塑性ポリイミドのどちらでもよいが、非熱可塑性ポリイミドとする場合に発明の効果が顕著に発揮される。
 すなわち、イミド化が完了している第1のポリイミド層(A)上に、非熱可塑性ポリイミドの前駆体であるポリアミド酸の樹脂層をキャスト法等の方法で積層してイミド化しても、通常は、ポリイミド層間の密着性がほとんど得られない。しかし、本実施の形態では、上述のケトン基と前記官能基(例えば末端アミノ基)との相互作用によって、第2のポリイミド層(B)を構成するポリイミドが熱可塑性であるか非熱可塑性であるかにかかわらず、第1のポリイミド層(A)との層間で優れた密着性が得られる。また、第2のポリイミド層(B)を非熱可塑性ポリイミドとすることによって、ポリイミドフィルム又は金属張積層板におけるポリイミド層の機械的強度を担保する主たる層(ベース層)としての機能を奏することができる。
Further, the polyimide constituting the second polyimide layer (B) may be either a thermoplastic polyimide or a non-thermoplastic polyimide. However, when the non-thermoplastic polyimide is used, the effect of the invention is remarkably exhibited.
That is, even when a resin layer of a polyamic acid, which is a precursor of a non-thermoplastic polyimide, is laminated on the first polyimide layer (A) which has been imidized by a method such as a casting method, imidization is usually performed. Has little adhesion between polyimide layers. However, in the present embodiment, the polyimide constituting the second polyimide layer (B) is thermoplastic or non-thermoplastic due to the interaction between the ketone group and the functional group (for example, terminal amino group). Regardless of whether or not there is, excellent adhesion between the first polyimide layer (A) and the first polyimide layer (A) can be obtained. Further, by making the second polyimide layer (B) a non-thermoplastic polyimide, it can function as a main layer (base layer) for securing the mechanical strength of the polyimide layer in the polyimide film or the metal-clad laminate. it can.
 以上から、ポリイミドフィルム又は金属張積層板において、第1のポリイミド層(A)として熱可塑性ポリイミド層、第2のポリイミド層(B)として非熱可塑性ポリイミド層が積層された構造を形成することは、最も好ましい態様である。 From the above, it is not possible to form a structure in which a thermoplastic polyimide layer is laminated as the first polyimide layer (A) and a non-thermoplastic polyimide layer is laminated as the second polyimide layer (B) in the polyimide film or the metal-clad laminate. This is the most preferred embodiment.
(熱可塑性ポリイミド)
 熱可塑性ポリイミドは、酸無水物成分とジアミン成分とを反応させて得られる。熱可塑性ポリイミドの原料となる酸無水物成分としては、ポリイミドの合成に使用される一般的な酸無水物を特に制限なく利用できるが、特に、金属層との接着性と低誘電特性とを両立させる観点から、ビフェニルテトラカルボン酸二無水物とピロメリット酸二無水物(PMDA)とを組み合わせて使用することが好ましい。ビフェニルテトラカルボン酸二無水物は、ポリイミドの半田耐熱性低下に影響を与えない程度にガラス転移温度を下げる効果があり、金属層等との十分な接着力を確保することができる。また、ビフェニルテトラカルボン酸二無水物は、ポリイミドのイミド基濃度を低下させるとともに、ポリマーの秩序構造を形成しやすくして、分子の運動抑制により誘電特性を改善する。さらに、ビフェニルテトラカルボン酸二無水物は、ポリイミドの極性基の減少に寄与するので吸湿特性を改善する。このようなことから、ビフェニルテトラカルボン酸二無水物は、FPCの伝送損失を低くすることができる。なお、「イミド基濃度」は、ポリイミド中のイミド基部(-(CO)-N-)の分子量を、ポリイミドの構造全体の分子量で除した値を意味する。
(Thermoplastic polyimide)
Thermoplastic polyimide is obtained by reacting an acid anhydride component with a diamine component. As the acid anhydride component used as a raw material of the thermoplastic polyimide, a general acid anhydride used for the synthesis of polyimide can be used without any particular limitation, and in particular, both the adhesion to the metal layer and the low dielectric property are compatible. In view of this, it is preferable to use a combination of biphenyltetracarboxylic dianhydride and pyromellitic dianhydride (PMDA). Biphenyltetracarboxylic dianhydride has an effect of lowering the glass transition temperature so as not to affect the decrease in solder heat resistance of the polyimide, and can secure a sufficient adhesive force with a metal layer or the like. In addition, biphenyltetracarboxylic dianhydride reduces the concentration of imide groups in the polyimide, facilitates the formation of an ordered structure of the polymer, and improves the dielectric properties by suppressing the movement of molecules. Furthermore, biphenyltetracarboxylic dianhydride contributes to the reduction in the number of polar groups in the polyimide, so that the hygroscopic property is improved. For this reason, biphenyltetracarboxylic dianhydride can reduce the transmission loss of FPC. The “imide group concentration” means a value obtained by dividing the molecular weight of the imide group (— (CO) 2 —N—) in the polyimide by the molecular weight of the entire structure of the polyimide.
 ビフェニルテトラカルボン酸二無水物としては、例えば3,3',4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、2,3’,3,4’-ビフェニルテトラカルボン酸二無水物、2,2',3,3'-ビフェニルテトラカルボン酸二無水物などを挙げることができる。ビフェニルテトラカルボン酸二無水物を上記範囲内で使用することによって、剛直構造による秩序構造が形成されるので、低誘電正接化が可能になるとともに、熱可塑性でありながら、ガス透過性が低く、長期耐熱接着性に優れた熱可塑性ポリイミドが得られる。ピロメリット酸二無水物は、ガラス転移温度の制御の役割を担うモノマーであり、ポリイミドの半田耐熱性の向上に寄与する。 Examples of the biphenyltetracarboxylic dianhydride include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 2,3 ′, 3,4′-biphenyltetracarboxylic dianhydride, 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride and the like can be mentioned. By using biphenyltetracarboxylic dianhydride within the above range, an ordered structure with a rigid structure is formed, so that a low dielectric loss tangent is possible, and while being thermoplastic, gas permeability is low, A thermoplastic polyimide having excellent long-term heat resistance can be obtained. Pyromellitic dianhydride is a monomer that plays a role in controlling the glass transition temperature, and contributes to improving the solder heat resistance of polyimide.
 なお、熱可塑性ポリイミドは、酸無水物成分として、上記以外の酸無水物を使用可能である。そのような酸無水物としては、例えば、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、4,4’-オキシジフタル酸無水物、2,2',3,3'-、2,3,3',4'-又は3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物、2,3',3,4'-ジフェニルエーテルテトラカルボン酸二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、3,3'',4,4''-、2,3,3'',4''-又は2,2'',3,3''-p-テルフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-又は3,4-ジカルボキシフェニル)-プロパン二無水物、ビス(2,3-又は3.4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-又は3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-又は3,4-ジカルボキシフェニル)エタン二無水物、1,2,7,8-、1,2,6,7-又は1,2,9,10-フェナンスレン-テトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)テトラフルオロプロパン二無水物、2,3,5,6-シクロヘキサン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-1,2,5,6-テトラカルボン酸二無水物、2,6-又は2,7-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,3,6,7-(又は1,4,5,8-)テトラクロロナフタレン-1,4,5,8-(又は2,3,6,7-)テトラカルボン酸二無水物、2,3,8,9-、3,4,9,10-、4,5,10,11-又は5,6,11,12-ペリレン-テトラカルボン酸二無水物、シクロペンタン-1,2,3,4-テトラカルボン酸二無水物、ピラジン-2,3,5,6-テトラカルボン酸二無水物、ピロリジン-2,3,4,5-テトラカルボン酸二無水物、チオフェン-2,3,4,5-テトラカルボン酸二無水物、4,4’-ビス(2,3-ジカルボキシフェノキシ)ジフェニルメタン二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物等が挙げられる。 In the thermoplastic polyimide, acid anhydrides other than those described above can be used as the acid anhydride component. Such acid anhydrides include, for example, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 4,4′-oxydiphthalic anhydride, 2,2 ′, 3,3′- 2,3,3 ′, 4′- or 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,3 ′, 3,4′-diphenylethertetracarboxylic dianhydride, bis ( 2,3-dicarboxyphenyl) ether dianhydride, 3,3 ", 4,4"-, 2,3,3 ", 4"-or 2,2 ", 3,3" -p-terphenyltetracarboxylic dianhydride, 2,2-bis (2,3- or 3,4-dicarboxyphenyl) -propane dianhydride, bis (2,3- or 3.4-dicarboxy) Phenyl) methane dianhydride, bis (2,3- or 3,4-dicarboxyphenyl) sulfone dianhydride, 1,1-bis (2,3- or 3,4-dicarboxyphenyl) ethane dianhydride 1,2,7,8-, 1,2,6,7- or 1 2,2,9,10-phenanthrene-tetracarboxylic dianhydride, 2,3,6,7-anthracenetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) tetrafluoropropane dianhydride Anhydride, 2,3,5,6-cyclohexane dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1, 4,5,8-Naphthalenetetracarboxylic dianhydride, 4,8-dimethyl-1,2,3,5,6,7-hexahydronaphthalene-1,2,5,6-tetracarboxylic dianhydride 2,2,6- or 2,7-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,3,6,7- (or 1,4,5,8-) tetrachloronaphthalene -1,4,5,8- (or 2,3,6,7-) tetracarboxylic dianhydride, 2,3,8,9-, 3,4,9,10-, 4,5,10 , 11- or 5,6,1 , 12-Perylene-tetracarboxylic dianhydride, cyclopentane-1,2,3,4-tetracarboxylic dianhydride, pyrazine-2,3,5,6-tetracarboxylic dianhydride, pyrrolidine-2 , 3,4,5-tetracarboxylic dianhydride, thiophene-2,3,4,5-tetracarboxylic dianhydride, 4,4'-bis (2,3-dicarboxyphenoxy) diphenylmethane dianhydride And 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride.
 熱可塑性ポリイミドの原料となるジアミン成分としては、ポリイミドの合成に使用される一般的なジアミンを特に制限なく利用できるが、下記の一般式(1)~(8)で表されるジアミン化合物から選ばれる少なくとも1種を含有することが好ましい。 As the diamine component used as a raw material of the thermoplastic polyimide, a general diamine used in the synthesis of polyimide can be used without any particular limitation, and is selected from diamine compounds represented by the following general formulas (1) to (8). It is preferable to contain at least one of these.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式(1)~(7)において、Rは独立に炭素数1~6の1価の炭化水素基又はアルコキシ基を示し、連結基Aは独立に-O-、-S-、-CO-、-SO-、-SO-、-COO-、-CH-、-C(CH-、-NH-又は-CONH-から選ばれる2価の基を示し、nは独立に0~4の整数を示す。ただし、式(3)中から式(2)と重複するものは除き、式(5)中から式(4)と重複するものは除くものとする。ここで、「独立に」とは、上記式(1)~(7)の内の一つにおいて、または二つ以上において、複数の連結基A、複数のR若しくは複数のnが、同一でもよいし、異なっていてもよいことを意味する。 In the above formulas (1) to (7), R 1 independently represents a monovalent hydrocarbon group or an alkoxy group having 1 to 6 carbon atoms, and the linking group A independently represents -O-, -S-, -CO —, —SO—, —SO 2 —, —COO—, —CH 2 —, —C (CH 3 ) 2 —, —NH— or —CONH— represents a divalent group, and n 1 is independently Shows an integer of 0 to 4. However, those overlapping with Expression (2) are excluded from Expression (3), and those overlapping with Expression (4) are excluded from Expression (5). Here, “independently” means that in one or two or more of the above formulas (1) to (7), a plurality of linking groups A, a plurality of R 1, or a plurality of n 1 are the same. Or may be different.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記式(8)において、連結基Xは単結合、又は-CONH-を示し、Yは独立にハロゲン原子で置換されていてもよい炭素数1~3の1価の炭化水素基又はアルコキシ基を示し、nは0~2の整数を示し、p及びqは独立して0~4の整数を示す。 In the above formula (8), the connecting group X represents a single bond or —CONH—, and Y represents a monovalent hydrocarbon group or an alkoxy group having 1 to 3 carbon atoms which may be independently substituted with a halogen atom. And n represents an integer of 0 to 2, and p and q independently represent an integer of 0 to 4.
 なお、上記式(1)~(8)において、末端の二つのアミノ基における水素原子は置換されていてもよく、例えば-NR(ここで、R,Rは、独立してアルキル基などの任意の置換基を意味する)であってもよい。 In the above formulas (1) to (8), hydrogen atoms in the two terminal amino groups may be substituted, for example, -NR 2 R 3 (where R 2 and R 3 are independently Any substituent such as an alkyl group).
 式(1)で表されるジアミン(以下、「ジアミン(1)」と記すことがある)は、2つのベンゼン環を有する芳香族ジアミンである。このジアミン(1)は、少なくとも1つのベンゼン環に直結したアミノ基と2価の連結基Aとがメタ位にあることで、ポリイミド分子鎖が有する自由度が増加して高い屈曲性を有しており、ポリイミド分子鎖の柔軟性の向上に寄与すると考えられる。従って、ジアミン(1)を用いることで、ポリイミドの熱可塑性が高まる。ここで、連結基Aとしては、-O-、-CH-、-C(CH-、-CO-、-SO-、-S-が好ましい。 The diamine represented by the formula (1) (hereinafter sometimes referred to as “diamine (1)”) is an aromatic diamine having two benzene rings. The diamine (1) has a high flexibility by increasing the degree of freedom of the polyimide molecular chain because the amino group directly bonded to at least one benzene ring and the divalent linking group A are at the meta position. This is considered to contribute to the improvement of the flexibility of the polyimide molecular chain. Accordingly, the use of the diamine (1) increases the thermoplasticity of the polyimide. Here, as the linking group A, —O—, —CH 2 —, —C (CH 3 ) 2 —, —CO—, —SO 2 —, and —S— are preferable.
 ジアミン(1)としては、例えば、3,3’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルプロパン、3,3’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,3-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルプロパン、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノベンゾフェノン、(3,3’-ビスアミノ)ジフェニルアミン等を挙げることができる。 Examples of the diamine (1) include 3,3'-diaminodiphenylmethane, 3,3'-diaminodiphenylpropane, 3,3'-diaminodiphenylsulfide, 3,3'-diaminodiphenylsulfone, and 3,3-diaminodiphenylether , 3,4'-diaminodiphenylether, 3,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylpropane, 3,4'-diaminodiphenylsulfide, 3,3'-diaminobenzophenone, (3,3'-bisamino ) Diphenylamine and the like.
 式(2)で表されるジアミン(以下、「ジアミン(2)」と記すことがある)は、3つのベンゼン環を有する芳香族ジアミンである。このジアミン(2)は、少なくとも1つのベンゼン環に直結したアミノ基と2価の連結基Aとがメタ位にあることで、ポリイミド分子鎖が有する自由度が増加して高い屈曲性を有しており、ポリイミド分子鎖の柔軟性の向上に寄与すると考えられる。従って、ジアミン(2)を用いることで、ポリイミドの熱可塑性が高まる。ここで、連結基Aとしては、-O-が好ましい。 ジ ア ミ ン The diamine represented by the formula (2) (hereinafter sometimes referred to as “diamine (2)”) is an aromatic diamine having three benzene rings. Since the diamine (2) has at least one amino group directly bonded to the benzene ring and the divalent linking group A at the meta position, the degree of freedom of the polyimide molecular chain is increased, and the diamine (2) has high flexibility. This is considered to contribute to the improvement of the flexibility of the polyimide molecular chain. Accordingly, the use of the diamine (2) increases the thermoplasticity of the polyimide. Here, the connecting group A is preferably -O-.
 ジアミン(2)としては、例えば1,4-ビス(3-アミノフェノキシ)ベンゼン、3-[4-(4-アミノフェノキシ)フェノキシ]ベンゼンアミン、3-[3-(4-アミノフェノキシ)フェノキシ]ベンゼンアミン等を挙げることができる。 Examples of the diamine (2) include 1,4-bis (3-aminophenoxy) benzene, 3- [4- (4-aminophenoxy) phenoxy] benzeneamine, and 3- [3- (4-aminophenoxy) phenoxy] Benzenamine and the like can be mentioned.
 式(3)で表されるジアミン(以下、「ジアミン(3)」と記すことがある)は、3つのベンゼン環を有する芳香族ジアミンである。このジアミン(3)は、1つのベンゼン環に直結した、2つの2価の連結基Aが互いにメタ位にあることで、ポリイミド分子鎖が有する自由度が増加して高い屈曲性を有しており、ポリイミド分子鎖の柔軟性の向上に寄与すると考えられる。従って、ジアミン(3)を用いることで、ポリイミドの熱可塑性が高まる。ここで、連結基Aとしては、-O-が好ましい。 ジ ア ミ ン The diamine represented by the formula (3) (hereinafter, sometimes referred to as “diamine (3)”) is an aromatic diamine having three benzene rings. The diamine (3) has a high flexibility by increasing the degree of freedom of the polyimide molecular chain because the two divalent linking groups A directly bonded to one benzene ring are at the meta position with each other. It is considered that this contributes to the improvement of the flexibility of the polyimide molecular chain. Accordingly, the use of the diamine (3) increases the thermoplasticity of the polyimide. Here, the connecting group A is preferably -O-.
 ジアミン(3)としては、例えば1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)、4,4’-[2-メチル-(1,3-フェニレン)ビスオキシ]ビスアニリン、4,4’-[4-メチル-(1,3-フェニレン)ビスオキシ]ビスアニリン、4,4’-[5-メチル-(1,3-フェニレン)ビスオキシ]ビスアニリン等を挙げることができる。これらの中でも、熱可塑性ポリイミドの高CTE化に寄与するとともに、イミド基濃度を減少させ、誘電特性を改善するモノマーとして、特に1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)が好ましい。 Examples of the diamine (3) include 1,3-bis (4-aminophenoxy) benzene (TPE-R), 1,3-bis (3-aminophenoxy) benzene (APB), and 4,4 ′-[2- Methyl- (1,3-phenylene) bisoxy] bisaniline, 4,4 ′-[4-methyl- (1,3-phenylene) bisoxy] bisaniline, 4,4 ′-[5-methyl- (1,3-phenylene) ) Bisoxy] bisaniline and the like. Among these, 1,3-bis (4-aminophenoxy) benzene (TPE-R) is a monomer that contributes to a higher CTE of the thermoplastic polyimide, reduces the imide group concentration, and improves the dielectric properties. preferable.
 式(4)で表されるジアミン(以下、「ジアミン(4)」と記すことがある)は、4つのベンゼン環を有する芳香族ジアミンである。このジアミン(4)は、少なくとも1つのベンゼン環に直結したアミノ基と2価の連結基Aとがメタ位にあることで高い屈曲性を有しており、ポリイミド分子鎖の柔軟性の向上に寄与すると考えられる。従って、ジアミン(4)を用いることで、ポリイミドの熱可塑性が高まる。ここで、連結基Aとしては、-O-、-CH-、-C(CH-、-SO-、-CO-、-CONH-が好ましい。 The diamine represented by the formula (4) (hereinafter sometimes referred to as “diamine (4)”) is an aromatic diamine having four benzene rings. The diamine (4) has high flexibility by having at least one amino group directly bonded to the benzene ring and the divalent linking group A at the meta position, and is useful for improving the flexibility of the polyimide molecular chain. It is thought to contribute. Accordingly, the use of the diamine (4) increases the thermoplasticity of the polyimide. Here, as the linking group A, —O—, —CH 2 —, —C (CH 3 ) 2 —, —SO 2 —, —CO—, and —CONH— are preferable.
 ジアミン(4)としては、ビス[4-(3-アミノフェノキシ)フェニル]メタン、ビス[4-(3-アミノフェノキシ)フェニル]プロパン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)]ベンゾフェノン、ビス[4,4’-(3-アミノフェノキシ)]ベンズアニリド等を挙げることができる。 Examples of the diamine (4) include bis [4- (3-aminophenoxy) phenyl] methane, bis [4- (3-aminophenoxy) phenyl] propane, bis [4- (3-aminophenoxy) phenyl] ether, [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy)] benzophenone, bis [4,4 ′-(3-aminophenoxy)] benzanilide and the like can be mentioned.
 式(5)で表されるジアミン(以下、「ジアミン(5)」と記すことがある)は、4つのベンゼン環を有する芳香族ジアミンである。このジアミン(5)は、少なくとも1つのベンゼン環に直結した、2つの2価の連結基Aが互いにメタ位にあることで、ポリイミド分子鎖が有する自由度が増加して高い屈曲性を有しており、ポリイミド分子鎖の柔軟性の向上に寄与すると考えられる。従って、ジアミン(5)を用いることで、ポリイミドの熱可塑性が高まる。ここで、連結基Aとしては、-O-が好ましい。 ジ ア ミ ン The diamine represented by the formula (5) (hereinafter, sometimes referred to as “diamine (5)”) is an aromatic diamine having four benzene rings. The diamine (5) has a high flexibility by increasing the degree of freedom of the polyimide molecular chain because two divalent linking groups A directly bonded to at least one benzene ring are at meta positions with each other. This is considered to contribute to the improvement of the flexibility of the polyimide molecular chain. Accordingly, the use of the diamine (5) increases the thermoplasticity of the polyimide. Here, the connecting group A is preferably -O-.
 ジアミン(5)としては、4-[3-[4-(4-アミノフェノキシ)フェノキシ]フェノキシ]アニリン、4,4’-[オキシビス(3,1-フェニレンオキシ)]ビスアニリン等を挙げることができる。 Examples of the diamine (5) include 4- [3- [4- (4-aminophenoxy) phenoxy] phenoxy] aniline and 4,4 ′-[oxybis (3,1-phenyleneoxy)] bisaniline. .
 式(6)で表されるジアミン(以下、「ジアミン(6)」と記すことがある)は、4つのベンゼン環を有する芳香族ジアミンである。このジアミン(6)は、少なくとも2つのエーテル結合を有することで高い屈曲性を有しており、ポリイミド分子鎖の柔軟性の向上に寄与すると考えられる。従って、ジアミン(6)を用いることで、ポリイミドの熱可塑性が高まる。ここで、連結基Aとしては、-C(CH-、-O-、-SO-、-CO-が好ましい。 The diamine represented by the formula (6) (hereinafter sometimes referred to as “diamine (6)”) is an aromatic diamine having four benzene rings. The diamine (6) has high flexibility by having at least two ether bonds, and is considered to contribute to improvement in flexibility of the polyimide molecular chain. Accordingly, the use of the diamine (6) increases the thermoplasticity of the polyimide. Here, the connecting group A is preferably —C (CH 3 ) 2 —, —O—, —SO 2 —, or —CO—.
 ジアミン(6)としては、例えば、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)、ビス[4-(4-アミノフェノキシ)フェニル]エーテル(BAPE)、ビス[4-(4-アミノフェノキシ)フェニル]スルホン(BAPS)、ビス[4-(4-アミノフェノキシ)フェニル]ケトン(BAPK)等を挙げることができる。これらの中でも、金属層との接着性向上に大きく寄与するモノマーとして、2,2‐ビス[4‐(4‐アミノフェノキシ)フェニル]プロパン(BAPP)が特に好ましい。 Examples of the diamine (6) include, for example, 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP), bis [4- (4-aminophenoxy) phenyl] ether (BAPE), bis [4 -(4-aminophenoxy) phenyl] sulfone (BAPS), bis [4- (4-aminophenoxy) phenyl] ketone (BAPK) and the like. Among these, 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) is particularly preferred as a monomer that greatly contributes to the improvement in adhesion to the metal layer.
 式(7)で表されるジアミン(以下、「ジアミン(7)」と記すことがある)は、4つのベンゼン環を有する芳香族ジアミンである。このジアミン(7)は、ジフェニル骨格の両側に、それぞれ屈曲性の高い2価の連結基Aを有するため、ポリイミド分子鎖の柔軟性の向上に寄与すると考えられる。従って、ジアミン(7)を用いることで、ポリイミドの熱可塑性が高まる。ここで、連結基Aとしては、-O-が好ましい。 ジ ア ミ ン The diamine represented by the formula (7) (hereinafter sometimes referred to as “diamine (7)”) is an aromatic diamine having four benzene rings. Since the diamine (7) has the highly flexible divalent linking group A on both sides of the diphenyl skeleton, it is considered that the diamine (7) contributes to the improvement of the flexibility of the polyimide molecular chain. Accordingly, the use of the diamine (7) increases the thermoplasticity of the polyimide. Here, the connecting group A is preferably -O-.
 ジアミン(7)としては、例えば、ビス[4-(3-アミノフェノキシ)]ビフェニル、ビス[4-(4-アミノフェノキシ)]ビフェニル等を挙げることができる。 (4) Examples of the diamine (7) include bis [4- (3-aminophenoxy)] biphenyl and bis [4- (4-aminophenoxy)] biphenyl.
 一般式(8)で表されるジアミン(以下、「ジアミン(8)」と記すことがある)は、1ないし3つのベンゼン環を有する芳香族ジアミンである。ジアミン(8)は、剛直構造を有しているため、ポリマー全体に秩序構造を付与する作用を有している。そのため、ジアミン(1)~ジアミン(7)の1種以上と、ジアミン(8)の1種以上とを所定の比率で組み合わせて用いることによって、低誘電正接化が可能になるとともに、熱可塑性でありながら、ガス透過性が低く、長期耐熱接着性に優れたポリイミドが得られる。ここで、連結基Xとしては、単結合、-CONH-が好ましい。 ジ ア ミ ン The diamine represented by the general formula (8) (hereinafter sometimes referred to as “diamine (8)”) is an aromatic diamine having one to three benzene rings. Since the diamine (8) has a rigid structure, it has an action of giving an ordered structure to the entire polymer. Therefore, by using one or more of the diamines (1) to (7) and one or more of the diamines (8) in combination at a predetermined ratio, the dielectric loss tangent can be reduced and the thermoplastic resin can have a low dielectric loss tangent. However, a polyimide having low gas permeability and excellent long-term heat resistance can be obtained. Here, the connecting group X is preferably a single bond or —CONH—.
 ジアミン(8)としては、例えば、パラフェニレンジアミン(PDA)、4,4’-ジアミノ-2,2’-ジメチルビフェニル(m-TB)、4,4’-ジアミノ-3,3’-ジメチルジフェニル、4,4’-ジアミノ-2,2’-n-プロピルビフェニル(m-NPB)、2’-メトキシ-4,4’-ジアミノベンズアニリド(MABA)、4,4‘-ジアミノベンズアニリド(DABA)、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル等を挙げることができる。これらの中でも、熱可塑性ポリイミドの誘電特性の改善、更に低吸湿化や高耐熱化に大きく寄与するモノマーとして、特に4,4’-ジアミノ-2,2’-ジメチルビフェニル(m-TB)が好ましい。 Examples of the diamine (8) include, for example, paraphenylenediamine (PDA), 4,4′-diamino-2,2′-dimethylbiphenyl (m-TB), 4,4′-diamino-3,3′- dimethyldiphenyl 4,4′-diamino-2,2′-n-propylbiphenyl (m-NPB), 2′-methoxy-4,4′-diaminobenzanilide (MABA), 4,4′-diaminobenzanilide (DABA) ), 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl and the like. Among these, 4,4′-diamino-2,2′-dimethylbiphenyl (m-TB) is particularly preferred as a monomer that greatly contributes to the improvement of the dielectric properties of the thermoplastic polyimide, and further to the low moisture absorption and high heat resistance. .
 ジアミン(1)~(7)を使用することによって、ポリイミド分子鎖の柔軟性を向上させ、熱可塑性を付与することができる。 By using the diamines (1) to (7), the flexibility of the polyimide molecular chain can be improved and thermoplasticity can be imparted.
 また、ジアミン(8)を使用することによって、モノマー由来の剛直構造により、ポリマー全体に秩序構造が形成されるので、低誘電正接化が可能になるとともに、熱可塑性でありながら、ガス透過性が低く、長期耐熱接着性に優れたポリイミドが得られる。 In addition, by using the diamine (8), an ordered structure is formed throughout the polymer due to the rigid structure derived from the monomer, so that a low dielectric loss tangent can be achieved, and gas permeability is obtained while being thermoplastic. A polyimide which is low and has excellent long-term heat resistance can be obtained.
 なお、熱可塑性ポリイミドは、ジアミン成分として、上記以外のジアミンを使用可能である。 In the thermoplastic polyimide, a diamine other than the above can be used as the diamine component.
(非熱可塑性ポリイミド)
 非熱可塑性ポリイミドは、酸無水物成分とジアミン成分とを反応させて得られる。非熱可塑性ポリイミドの原料となる酸無水物成分としては、ポリイミドの合成に使用される一般的な酸無水物を特に制限なく利用できるが、低誘電特性を付与するため、原料の酸無水物成分として、少なくとも、ピロメリット酸二無水物(PMDA)、ビフェニルテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水物から選ばれる1種以上を使用することが好ましい。ここで、ビフェニルテトラカルボン酸二無水物としては、3,3',4,4' -ビフェニルテトラカルボン酸二無水物(BPDA)が特に好ましく、ナフタレンテトラカルボン酸二無水物としては、2,3,6,7-ナフタレンテトラカルボン酸二無水物(NTCDA)が特に好ましい。
(Non-thermoplastic polyimide)
The non-thermoplastic polyimide is obtained by reacting an acid anhydride component and a diamine component. As the acid anhydride component serving as the raw material of the non-thermoplastic polyimide, a general acid anhydride used for the synthesis of polyimide can be used without any particular limitation, but in order to impart low dielectric properties, the acid anhydride component of the raw material is used. It is preferable to use at least one selected from the group consisting of pyromellitic dianhydride (PMDA), biphenyltetracarboxylic dianhydride, and naphthalenetetracarboxylic dianhydride. Here, as the biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) is particularly preferable, and as the naphthalenetetracarboxylic dianhydride, 2,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is particularly preferable. 6,6,7-Naphthalenetetracarboxylic dianhydride (NTCDA) is particularly preferred.
 PMDAは、ポリイミドの熱膨張係数(CTE)を低下させることができる。BPDAは、ポリイミドの半田耐熱性低下に影響を与えない程度にガラス転移温度を下げる効果がある。また、BPDAは、ポリイミドのイミド基濃度を低下させるとともに、ポリマーの秩序構造を形成しやすくして、分子の運動抑制により誘電特性を改善する。さらに、BPDAは、ポリイミドの極性基の減少に寄与するので吸湿特性を改善する。従って、BPDAを使用することによって、FPCの伝送損失を低くすることができる。 PMDA can reduce the coefficient of thermal expansion (CTE) of polyimide. BPDA has the effect of lowering the glass transition temperature to such an extent that it does not affect the solder heat resistance of polyimide. In addition, BPDA reduces the imide group concentration of the polyimide, facilitates the formation of an ordered structure of the polymer, and improves the dielectric properties by suppressing the movement of molecules. In addition, BPDA improves the moisture absorption properties since it contributes to the reduction of the polar groups of the polyimide. Therefore, the transmission loss of FPC can be reduced by using BPDA.
 なお、非熱可塑性ポリイミドは、酸無水物成分として、上記以外の酸無水物を使用可能である。 非 As the non-thermoplastic polyimide, acid anhydrides other than those described above can be used as the acid anhydride component.
 非熱可塑性ポリイミドの原料となるジアミン成分としては、ポリイミドの合成に使用される一般的なジアミンを特に制限なく利用できるが、熱可塑性ポリイミドの説明で例示した上記ジアミン(1)~(8)の中から選ばれるジアミンが好ましく、ジアミン(8)がより好ましい。 As the diamine component used as a raw material of the non-thermoplastic polyimide, a general diamine used in the synthesis of polyimide can be used without any particular limitation, and the diamines (1) to (8) exemplified in the description of the thermoplastic polyimide can be used. Diamines selected from among them are preferred, and diamine (8) is more preferred.
 ジアミン(8)は、芳香族ジアミンであり、低CTE化や誘電特性の改善、更に低吸湿化や高耐熱化に寄与する。ジアミン(8)の中でも、上記一般式(8)において、Yが炭素数1~3のアルキル基であるものが好ましく、4,4’-ジアミノ-2,2’-ジメチルジフェニル(m-TB)、4,4’-ジアミノ-3,3’-ジメチルジフェニルがより好ましい。これらの中でも、4,4’-ジアミノ-2,2’-ジメチルジフェニル(m-TB)が最も好ましい。 (4) Diamine (8) is an aromatic diamine, and contributes to lowering the CTE and improving the dielectric properties, as well as lowering the moisture absorption and increasing the heat resistance. Among the diamines (8), those in which Y is an alkyl group having 1 to 3 carbon atoms in the above general formula (8) are preferable, and 4,4′-diamino-2,2′-dimethyldiphenyl (m-TB) 4,4′-Diamino-3,3′-dimethyldiphenyl is more preferred. Of these, 4,4'-diamino-2,2'-dimethyldiphenyl (m-TB) is most preferred.
 なお、非熱可塑性ポリイミドは、ジアミン成分として、発明の効果を妨げない範囲で上記以外のジアミンを使用可能である。 非 As the non-thermoplastic polyimide, a diamine other than the above can be used as the diamine component as long as the effects of the present invention are not impaired.
(ポリイミドの合成)
 ポリイミド層を構成するポリイミドは、酸無水物及びジアミンを溶媒中で反応させ、前駆体樹脂を生成したのち加熱閉環させることにより製造できる。例えば、酸無水物成分とジアミン成分をほぼ等モル[ただし、第2のポリイミド層(B)を形成する場合は、ジアミン成分の比率を多くする]で有機溶媒中に溶解させて、0~100℃の範囲内の温度で30分~24時間撹拌し重合反応させることでポリイミドの前駆体であるポリアミド酸が得られる。反応にあたっては、生成する前駆体が有機溶媒中に5~30重量%の範囲内、好ましくは10~20重量%の範囲内となるように反応成分を溶解する。重合反応に用いる有機溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン、2-ブタノン、ジメチルスホキシド、硫酸ジメチル、シクロヘキサノン、ジオキサン、テトラヒドロフラン、ジグライム、トリグライム等が挙げられる。これらの溶媒を2種以上併用して使用することもでき、更にはキシレン、トルエンのような芳香族炭化水素の併用も可能である。また、このような有機溶剤の使用量としては特に制限されるものではないが、重合反応によって得られるポリアミド酸溶液(ポリイミド前駆体溶液)の濃度が5~30重量%程度になるような使用量に調整して用いることが好ましい。
(Synthesis of polyimide)
The polyimide constituting the polyimide layer can be produced by reacting an acid anhydride and a diamine in a solvent to form a precursor resin, and then heating and closing the ring. For example, the acid anhydride component and the diamine component are dissolved in an organic solvent in approximately equimolar amounts (however, in the case of forming the second polyimide layer (B), the ratio of the diamine component is increased), and 0 to 100 The polyamic acid, which is a precursor of polyimide, is obtained by performing a polymerization reaction by stirring at a temperature within the range of 30 ° C. for 30 minutes to 24 hours. In the reaction, the reaction components are dissolved in an organic solvent so that the amount of the produced precursor is in the range of 5 to 30% by weight, preferably in the range of 10 to 20% by weight. Examples of the organic solvent used in the polymerization reaction include N, N-dimethylformamide, N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone, 2-butanone, dimethyl sulfoxide, dimethyl sulfate, cyclohexanone, and dioxane. , Tetrahydrofuran, diglyme, triglyme and the like. Two or more of these solvents can be used in combination, and further, an aromatic hydrocarbon such as xylene or toluene can be used in combination. The amount of the organic solvent used is not particularly limited, but may be such that the concentration of the polyamic acid solution (polyimide precursor solution) obtained by the polymerization reaction is about 5 to 30% by weight. It is preferable to use it after adjusting.
 ポリイミドの合成において、上記酸無水物及びジアミンはそれぞれ、その1種のみを使用してもよく2種以上を併用して使用することもできる。酸無水物及びジアミンの種類や、2種以上の酸無水物又はジアミンを使用する場合のそれぞれのモル比を選定することにより、熱膨張性、接着性、ガラス転移温度等を制御することができる。 に お い て In the synthesis of polyimide, each of the above-mentioned acid anhydrides and diamines may be used alone or in combination of two or more. By selecting the types of the acid anhydride and the diamine and the respective molar ratios when using two or more acid anhydrides or diamines, it is possible to control the thermal expansion property, the adhesive property, the glass transition temperature, and the like. .
 合成された前駆体は、通常、反応溶媒溶液として使用することが有利であるが、必要により濃縮、希釈又は他の有機溶媒に置換することができる。また、前駆体は一般に溶媒可溶性に優れるので、有利に使用される。前駆体をイミド化させる方法は、特に制限されず、例えば前記溶媒中で、80~400℃の範囲内の温度条件で1~24時間かけて加熱するといった熱処理が好適に採用される。 The synthesized precursor is usually advantageously used as a reaction solvent solution, but can be concentrated, diluted, or replaced with another organic solvent, if necessary. Further, the precursor is generally used because it is excellent in solvent solubility. The method of imidizing the precursor is not particularly limited. For example, a heat treatment in which the precursor is heated in the solvent under a temperature condition of 80 to 400 ° C. for 1 to 24 hours is suitably employed.
 以上のように、本発明の第3の実施の形態のポリイミドフィルムの製造方法は、第1のポリイミド層(A)と、前記第1のポリイミド層(A)の少なくとも片側の面に積層された第2のポリイミド層(B)と、を備えたポリイミドフィルムの製造方法である。
 本発明の第3の実施の形態のポリイミドフィルムの製造方法は、下記の工程I~III;
 I)ケトン基を有するポリイミドを含む第1のポリイミド層(A)を準備する工程、
 II)前記第1のポリイミド層(A)の上に、前記ケトン基と相互作用する性質を有する官能基を持つポリアミド酸(b)を含む樹脂層を積層する工程、
 III)前記ポリアミド酸(b)を含む樹脂層を前記第1のポリイミド層(A)ごと熱処理し、前記ポリアミド酸(b)をイミド化して第2のポリイミド層(B)を形成する工程、
を含むものである。
As described above, in the method for manufacturing a polyimide film according to the third embodiment of the present invention, the first polyimide layer (A) is laminated on at least one surface of the first polyimide layer (A). And a second polyimide layer (B).
The method for producing a polyimide film according to the third embodiment of the present invention includes the following steps I to III;
I) a step of preparing a first polyimide layer (A) containing a polyimide having a ketone group;
II) laminating a resin layer containing a polyamic acid (b) having a functional group having a property of interacting with the ketone group on the first polyimide layer (A);
III) a step of heat-treating the resin layer containing the polyamic acid (b) together with the first polyimide layer (A) to imidize the polyamic acid (b) to form a second polyimide layer (B);
Is included.
 本発明の第3の実施の形態のポリイミドフィルムの製造方法は、前記第1のポリイミド層(A)を構成するポリイミドが、テトラカルボン酸残基(1a)及びジアミン残基(2a)を含むものであって、前記テトラカルボン酸残基(1a)及び前記ジアミン残基(2a)の合計100モル部に対して、前記ケトン基が5モル部以上であってもよい。 In the method for producing a polyimide film according to the third embodiment of the present invention, the polyimide constituting the first polyimide layer (A) includes a tetracarboxylic acid residue (1a) and a diamine residue (2a). The ketone group may be 5 mol parts or more based on 100 mol parts in total of the tetracarboxylic acid residue (1a) and the diamine residue (2a).
 本発明の第3の実施の形態のポリイミドフィルムの製造方法は、前記ポリアミド酸(b)を含む樹脂層が、テトラカルボン酸残基(1b)及びジアミン残基(2b)を含むものであって、前記ジアミン残基(2b)1モルに対し、前記テトラカルボン酸残基(1b)が1モル未満であってもよい。 In the method for producing a polyimide film according to the third embodiment of the present invention, the resin layer containing the polyamic acid (b) contains a tetracarboxylic acid residue (1b) and a diamine residue (2b). The tetracarboxylic acid residue (1b) may be less than 1 mol per 1 mol of the diamine residue (2b).
 本発明の第3の実施の形態のポリイミドフィルムの製造方法は、前記第1のポリイミド層(A)が、ケトン基を有するポリアミド酸(a)を含む樹脂層を基材上に積層して、前記基材ごと前記ポリアミド酸(a)をイミド化して形成されたものであってもよい。 In the method for producing a polyimide film according to the third embodiment of the present invention, the first polyimide layer (A) is formed by laminating a resin layer containing a polyamic acid (a) having a ketone group on a base material, The substrate may be formed by imidizing the polyamic acid (a) together with the substrate.
 また、本発明の第4の実施の形態の金属張積層板の製造方法は、金属層と、第1のポリイミド層(A)と、前記第1のポリイミド層(A)の片側の面に積層された第2のポリイミド層(B)と、を備えた金属張積層板の製造方法である。
 本発明の第4の実施の形態の金属張積層板の製造方法は、下記の工程i~iv;
 i)金属層の上に、ケトン基を有するポリアミド酸(a)を含む樹脂層を表層部に有する、少なくとも1層以上のポリアミド酸の樹脂層を形成する工程、
 ii)前記ポリアミド酸の樹脂層を前記金属層ごと熱処理し、前記ポリアミド酸をイミド化することにより、前記金属層の上に、ケトン基を有するポリイミドを含む第1のポリイミド層(A)を表層部として有するポリイミド層が積層された中間体を形成する工程、
 iii)前記第1のポリイミド層(A)の上に、前記ケトン基と相互作用する性質を有する官能基を持つポリアミド酸(b)を含む樹脂層を積層する工程、
 iv)前記ポリアミド酸(b)の樹脂層を前記中間体ごと熱処理し、前記ポリアミド酸(b)をイミド化して第2のポリイミド層(B)を形成する工程、
を含むものである。
The method for manufacturing a metal-clad laminate according to the fourth embodiment of the present invention includes the steps of: laminating a metal layer, a first polyimide layer (A), and one surface of the first polyimide layer (A). And a second polyimide layer (B).
The method for producing a metal-clad laminate according to the fourth embodiment of the present invention includes the following steps i to iv:
i) a step of forming at least one or more polyamic acid resin layers having a resin layer containing a polyamic acid (a) having a ketone group on the surface layer on the metal layer;
ii) heat treating the polyamic acid resin layer together with the metal layer to imidize the polyamic acid, thereby forming a first polyimide layer (A) containing a polyimide having a ketone group on the metal layer; Step of forming an intermediate in which a polyimide layer having a part is laminated,
iii) laminating a resin layer containing a polyamic acid (b) having a functional group having a property of interacting with the ketone group on the first polyimide layer (A);
iv) heat treating the resin layer of the polyamic acid (b) together with the intermediate, and imidizing the polyamic acid (b) to form a second polyimide layer (B);
Is included.
 本発明の一実施の形態の回路基板の製造方法は、上記第4の実施の形態の方法で製造された前記金属張積層板の前記金属層を配線回路加工する工程を含むものである。 方法 A method of manufacturing a circuit board according to an embodiment of the present invention includes a step of performing a wiring circuit processing on the metal layer of the metal-clad laminate manufactured by the method of the fourth embodiment.
 以上、本発明の第3の実施の形態で得られるポリイミドフィルム、及び、第4の実施の形態で得られる金属張積層板は、第1のポリイミド層(A)と第2のポリイミド層(B)との密着性に優れており、FPCに代表される回路基板材料として使用することによって、電子機器の信頼性を向上させることができる。 As described above, the polyimide film obtained in the third embodiment of the present invention and the metal-clad laminate obtained in the fourth embodiment consist of the first polyimide layer (A) and the second polyimide layer (B ), And by using it as a circuit board material represented by FPC, the reliability of electronic equipment can be improved.
<回路基板>
 本発明の一実施の形態の回路基板は、複数のポリイミド層を含む絶縁樹脂層と、該絶縁樹脂層の少なくも片側の面に積層された配線層とを備えている。この回路基板は、上記第1、第2又は第4の実施の形態の方法によって得られた金属張積層板の金属層を常法によってパターン状に加工して配線層を形成することによって製造することができる。金属層のパターニングは、例えばフォトリソグラフィー技術とエッチングなどを利用する任意の方法で行うことができる。
<Circuit board>
A circuit board according to one embodiment of the present invention includes an insulating resin layer including a plurality of polyimide layers, and a wiring layer laminated on at least one surface of the insulating resin layer. This circuit board is manufactured by processing a metal layer of a metal-clad laminate obtained by the method of the first, second or fourth embodiment into a pattern by a conventional method to form a wiring layer. be able to. The patterning of the metal layer can be performed by any method using, for example, photolithography technology and etching.
 なお、回路基板を製造する際に、通常行われる工程として、例えば前工程でのスルーホール加工や、後工程の端子メッキ、外形加工などの工程は、常法に従い行うことができる。 In addition, when manufacturing a circuit board, for example, processes such as through-hole processing in a previous process, terminal plating, and outer shape processing in a subsequent process can be performed according to a conventional method.
 以下に実施例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。なお、以下の実施例、比較例及び参考例において、特にことわりのない限り各種測定、評価は下記によるものである。 実 施 Examples are shown below to describe the features of the present invention more specifically. However, the scope of the present invention is not limited to the examples. In the following Examples, Comparative Examples and Reference Examples, various measurements and evaluations are as follows unless otherwise specified.
[粘度測定]
樹脂の粘度はE型粘度計(ブルックフィールド社製、商品名;DV-II+Pro)を用いて、25℃における粘度を測定した。トルクが10%~90%になるよう回転数を設定し、測定を開始してから2分経過後、粘度が安定した時の値を読み取った。
[Viscosity measurement]
The viscosity of the resin was measured at 25 ° C. using an E-type viscometer (trade name: DV-II + Pro, manufactured by Brookfield). The rotation speed was set so that the torque became 10% to 90%, and two minutes after the start of the measurement, the value when the viscosity was stabilized was read.
[発泡の評価]
 第1のポリイミド層及び第2のポリイミド層の層間で剥離が確認されるか、又はポリイミド層に亀裂が発生している場合を「発泡あり」とし、剥離や亀裂がない場合を「発泡なし」とした。
[Evaluation of foaming]
When peeling is confirmed between the first polyimide layer and the second polyimide layer, or when the polyimide layer is cracked, it is regarded as “foamed”, and when there is no peeling or cracking, “no foaming”. And
 [エッチング後寸法変化率の測定]
 80mm×80mmのサイズの金属張積層板を準備した。この積層板の金属層の上に、ドライフィルムレジストを設けた後、露光、現像して、図2に示すように、16個の直径1mmのレジストパターンを、全体が正四角形をなすように形成し、縦方向(MD)及び横方向(TD)のそれぞれ50mm間隔で5箇所を測定可能とする位置測定用ターゲットを調製した。
[Measurement of dimensional change after etching]
A metal-clad laminate having a size of 80 mm x 80 mm was prepared. After providing a dry film resist on the metal layer of this laminated board, it is exposed and developed to form, as shown in FIG. 2, 16 resist patterns having a diameter of 1 mm so that the whole forms a square. Then, position measurement targets capable of measuring five points at 50 mm intervals in the vertical direction (MD) and the horizontal direction (TD) were prepared.
 調製したサンプルについて、温度;23±2℃、相対湿度;50±5%の雰囲気中にて、位置測定用ターゲットにおけるレジストパターンの縦方向(MD)及び横方向(TD)におけるターゲット間の距離を測定した後、レジストパターン開孔部の金属層の露出部分をエッチング(エッチング液の温度;40℃以下、エッチング時間;10分以内)により除去し、図3に示すように、16個の金属層残存点を有する評価サンプルを調製した。この評価サンプルを温度;23±2℃、相対湿度;50±5%の雰囲気中にて24±4時間静置後、縦方向(MD)及び横方向(TD)における金属層残存点間の距離を測定した。縦方向及び横方向の各5箇所の常態に対する寸法変化率を算出し、各々の平均値をもってエッチング後寸法変化率とする。
 各寸法変化率は下記数式により出した。
 エッチング後寸法変化率(%)=(B-A)/A × 100
   A ; レジスト現像後のターゲット間の距離
   B ; 金属層エッチング後の金属層残存点間の距離
エッチング後寸法変化率の絶対値が、0.2%以下である場合を「良」、0.2%を超え0.4%以下である場合を「可」、0.4%を超える場合を「否」とする。
Regarding the prepared sample, the distance between the target in the vertical direction (MD) and the horizontal direction (TD) of the resist pattern on the target for position measurement was measured in an atmosphere at a temperature of 23 ± 2 ° C. and a relative humidity of 50 ± 5%. After the measurement, the exposed portion of the metal layer at the opening of the resist pattern was removed by etching (etching solution temperature: 40 ° C. or less, etching time: within 10 minutes), and as shown in FIG. An evaluation sample having a residual point was prepared. This evaluation sample was allowed to stand for 24 ± 4 hours in an atmosphere having a temperature of 23 ± 2 ° C. and a relative humidity of 50 ± 5%, and then the distance between the metal layer residual points in the machine direction (MD) and the transverse direction (TD). Was measured. The dimensional change rates with respect to the normal state at each of the five positions in the vertical direction and the horizontal direction are calculated, and the average value of each is defined as the dimensional change rate after etching.
Each dimensional change rate was calculated by the following equation.
Dimensional change rate after etching (%) = (BA) / A × 100
A: distance between targets after resist development B: distance between metal layer residual points after metal layer etching “good” when the absolute value of the dimensional change rate after etching is 0.2% or less, 0.2 % And 0.4% or less are regarded as “OK”, and if it exceeds 0.4% as “NO”.
[カールの評価]
 フィルムカールは、金属張積層板の銅箔を全面エッチングし、銅箔除去後の100mm×100mmの寸法のポリイミドフィルムの第1のポリイミド層を下にして置いたときの4隅の浮き高さを測定した。4隅の浮き高さの平均値が10mmを超える場合を「カールあり」と評価した。
[Evaluation of curl]
The film curl is obtained by etching the copper foil of the metal-clad laminate over its entire surface, and setting the floating heights of the four corners when the first polyimide layer of the polyimide film having the dimensions of 100 mm × 100 mm after the copper foil is laid down. It was measured. The case where the average value of the floating heights at the four corners exceeded 10 mm was evaluated as "curl".
[透湿度の評価]
 JIS Z0208に準拠して、透湿カップに吸湿剤/塩化カルシウム(無水)を封入し、24時間後のカップの質量増加を水蒸気の透過量として評価した。
[Evaluation of moisture permeability]
In accordance with JIS Z0208, a moisture absorbent / calcium chloride (anhydrous) was sealed in a moisture-permeable cup, and the increase in the mass of the cup after 24 hours was evaluated as a water vapor transmission rate.
[吸湿率の測定]
 ポリイミドフィルムの試験片(幅4cm×長さ25cm)を2枚用意し、80℃で1時間乾燥した。乾燥後直ちに23℃/50%RHの恒温恒湿室に入れ、24時間以上静置し、その前後の重量変化から次式により求めた。
  吸湿率(重量%)=[(吸湿後重量-乾燥後重量)/乾燥後重量]×100
[Measurement of moisture absorption rate]
Two test pieces (width 4 cm × length 25 cm) of a polyimide film were prepared and dried at 80 ° C. for 1 hour. Immediately after drying, it was placed in a constant temperature / humidity room at 23 ° C./50% RH, allowed to stand still for 24 hours or more, and determined from the weight change before and after that according to the following equation.
Moisture absorption (% by weight) = [(weight after moisture absorption−weight after drying) / weight after drying] × 100
[ガラス転移温度(Tg)の測定]
 ポリイミドフィルム(10mm×40mm)を動的熱機械分析装置(DMA:ティーエイ・インスツルメント ジャパン社製、商品名:RSA-G2)にて20℃から500℃まで5℃/分で昇温させたときの動的粘弾性を測定し、ガラス転移温度(Tanδ極大値:℃)を求めた。
[Measurement of glass transition temperature (Tg)]
The polyimide film (10 mm × 40 mm) was heated from 20 ° C. to 500 ° C. at a rate of 5 ° C./min from a dynamic thermomechanical analyzer (DMA: manufactured by TA Instruments Japan, trade name: RSA-G2). The dynamic viscoelasticity at that time was measured, and the glass transition temperature (Tanδ maximum value: ° C) was determined.
[貯蔵弾性率の測定]
 貯蔵弾性率は、動的粘弾性測定装置(DMA)を用いて測定した。30℃における貯蔵弾性率が1.0×10Pa以上であり、350℃における貯蔵弾性率が1.0×10Pa以上であるポリイミドを「非熱可塑性ポリイミド」とし、30℃における貯蔵弾性率が1.0×10Pa以上であり、350℃における貯蔵弾性率が1.0×10Pa未満であるポリイミドを「熱可塑性ポリイミド」とする。
[Measurement of storage modulus]
The storage elastic modulus was measured using a dynamic viscoelasticity measuring device (DMA). A polyimide having a storage elastic modulus at 30 ° C. of 1.0 × 10 9 Pa or more and a storage elastic modulus at 350 ° C. of 1.0 × 10 8 Pa or more is referred to as “non-thermoplastic polyimide”. A polyimide having a modulus of 1.0 × 10 9 Pa or more and a storage elastic modulus at 350 ° C. of less than 1.0 × 10 8 Pa is referred to as “thermoplastic polyimide”.
[熱膨張係数(CTE)の測定]
 厚み25μm、3mm×20mmのサイズのポリイミドフィルムを、サーモメカニカルアナライザー(Bruker社製、商品名;4000SA)を用い、5.0gの荷重を加えながら一定の昇温速度で30℃から300℃まで昇温させ、更にその温度で10分保持した後、5℃/分の速度で冷却し、250℃から100℃までの平均熱膨張係数(熱膨張係数)を求めた。
[Measurement of thermal expansion coefficient (CTE)]
A polyimide film having a thickness of 25 μm and a size of 3 mm × 20 mm was heated from 30 ° C. to 300 ° C. at a constant heating rate while applying a load of 5.0 g using a thermomechanical analyzer (manufactured by Bruker, trade name: 4000SA). After being kept at that temperature for 10 minutes, it was cooled at a rate of 5 ° C./min, and an average thermal expansion coefficient (thermal expansion coefficient) from 250 ° C. to 100 ° C. was determined.
[揮発成分率の測定]
 各例における揮発成分率は、半硬化した第1のポリアミド樹脂層フィルムのTG-DTAを30℃~500℃の範囲、10℃/分の昇温速度で測定し、100℃のフィルム重量を100%としたのに対し、100℃~360℃までの重量減少率を揮発成分率とした。
[Measurement of volatile component ratio]
The volatile component ratio in each example was determined by measuring the TG-DTA of the semi-cured first polyamide resin layer film in the range of 30 ° C. to 500 ° C. at a rate of 10 ° C./min. %, The rate of weight loss from 100 ° C. to 360 ° C. was taken as the volatile component rate.
[イミド化率の評価]
 ポリイミド層のイミド化率は、フーリエ変換赤外分光光度計(日本分光社製、商品名FT/IR)を用い、一回反射ATR法にてポリイミドフィルムの状態での赤外線吸収スペクトルを測定することによって、1009cm-1のベンゼン環炭素水素結合を基準とし、1778cm-1のイミド基由来の吸光度から算出した。なお、第1のポリアミド樹脂層を120℃から360℃までの段階的な熱処理を行い、360℃熱処理後のポリイミドフィルムのイミド化率を100%とした。
[Evaluation of imidation rate]
The imidation ratio of the polyimide layer is determined by measuring the infrared absorption spectrum of the polyimide film in a single reflection ATR method using a Fourier transform infrared spectrophotometer (manufactured by JASCO Corporation, trade name: FT / IR). Calculated from the absorbance derived from the imide group at 1778 cm -1 based on the benzene ring carbon-hydrogen bond at 1009 cm -1 . The first polyamide resin layer was subjected to a stepwise heat treatment from 120 ° C. to 360 ° C., and the imidation ratio of the polyimide film after the heat treatment at 360 ° C. was set to 100%.
[ピール強度の測定]
 ピール強度は、テンシロンテスター(東洋精機製作所製、商品名;ストログラフVE-1D)を用いて、幅10mmのサンプルの第2のポリイミド層側を両面テープによりアルミ板に固定し、第1のポリイミド層側の金属張積層板を180°方向に50mm/分の速度で引っ張り、第1のポリイミド層と第2のポリイミド層の層間で剥離する時の力を求めた。
[Measurement of peel strength]
The peel strength was determined by using a tensilon tester (trade name: Strograph VE-1D, manufactured by Toyo Seiki Seisaku-sho, Ltd.), fixing the second polyimide layer side of the sample having a width of 10 mm to an aluminum plate with a double-sided tape, and removing the first polyimide. The metal-clad laminate on the layer side was pulled in the direction of 180 ° at a speed of 50 mm / min, and the force at the time of peeling between the first polyimide layer and the second polyimide layer was determined.
 合成例に用いた略号は、以下の化合物を示す。
m-TB:2,2’-ジメチル-4,4’-ジアミノビフェニル
TPE-R:1,3-ビス(4-アミノフェノキシ)ベンゼン
BAPP:2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン
TFMB:2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル
BAFL:9,9-ビス(4-アミノフェニル)フルオレン
APB:1,3-ビス(3-アミノフェノキシ)ベンゼン
TPE-Q:1,4-ビス(4-アミノフェノキシ)ベンゼン
4,4’-DAPE:4,4’-ジアミノジフェニルエーテル
3,4’-DAPE:3,4’-ジアミノジフェニルエーテル
PDA:p-フェニレンジアミン
PMDA:ピロメリット酸二無水物
BPDA:3,3’、4,4’-ビフェニルテトラカルボン酸二無水物
BTDA:3,3’、4,4’-ベンゾフェノンテトラカルボン酸二無水物
ODPA:4,4’-オキシジフタル酸二無水物
DMAc:N,N-ジメチルアセトアミド
The abbreviations used in the synthesis examples indicate the following compounds.
m-TB: 2,2'-dimethyl-4,4'-diaminobiphenyl TPE-R: 1,3-bis (4-aminophenoxy) benzene BAPP: 2,2-bis [4- (4-aminophenoxy) Phenyl] propane TFMB: 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl BAFL: 9,9-bis (4-aminophenyl) fluorene APB: 1,3-bis (3-aminophenoxy ) Benzene TPE-Q: 1,4-bis (4-aminophenoxy) benzene 4,4'-DAPE: 4,4'-diaminodiphenyl ether 3,4'-DAPE: 3,4'-diaminodiphenyl ether PDA: p- Phenylenediamine PMDA: pyromellitic dianhydride BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride BTDA: 3,3 ′, , 4'-benzophenonetetracarboxylic dianhydride ODPA: 4,4'-oxydiphthalic dianhydride DMAc: N, N-dimethylacetamide
(合成例A1)
 1000mlのセパラブルフラスコに、75.149gのm-TB(353.42mmol)、850gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、74.851gのPMDA(342.82mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液A-Aを得た。得られたポリアミド酸溶液A-Aの粘度は22,700cPであった。得られたポリアミド酸のイミド化後のポリイミドは非熱可塑性であった。また、得られたポリイミドフィルム(厚み;25μm)のCTEは6.4ppm/Kであった。
(Synthesis example A1)
75.149 g of m-TB (353.42 mmol) and 850 g of DMAc were charged into a 1000 ml separable flask, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 74.851 g of PMDA (342.82 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamic acid solution AA. The viscosity of the obtained polyamic acid solution AA was 22,700 cP. The polyimide after imidization of the obtained polyamic acid was non-thermoplastic. Further, the CTE of the obtained polyimide film (thickness: 25 μm) was 6.4 ppm / K.
(合成例A2)
 1000mlのセパラブルフラスコに、65.054gのm-TB(310.65mmol)、10.090gのTPE-R(34.52mmol)、850gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、73.856gのPMDA(338.26mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液A-Bを得た。得られたポリアミド酸溶液A-Bの粘度は26,500cPであった。得られたポリアミド酸のイミド化後のポリイミドは非熱可塑性であり、ガラス転移温度(Tg)は303℃であった。また、得られたポリイミドフィルム(厚み;25μm)のCTEは16.2ppm/Kであり、吸湿率は0.61重量%、透湿度は64g/m/24hrであった。
(Synthesis example A2)
To a 1000 ml separable flask were charged 65.054 g of m-TB (310.65 mmol), 10.090 g of TPE-R (34.52 mmol) and 850 g of DMAc, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 73.856 g of PMDA (338.26 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamic acid solution AB. The viscosity of the obtained polyamic acid solution AB was 26,500 cP. The imidized polyimide of the obtained polyamic acid was non-thermoplastic, and had a glass transition temperature (Tg) of 303 ° C. The obtained polyimide film (thickness; 25 [mu] m) CTE of is 16.2ppm / K, moisture absorption is 0.61% by weight, the moisture permeability was 64g / m 2 / 24hr.
(合成例A3)
 1000mlのセパラブルフラスコに、89.621gのTFMB(279.33mmol)、850gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、60.379gのPMDA(276.54mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液A-Cを得た。得られたポリアミド酸溶液A-Cの粘度は21,200cPであった。得られたポリアミド酸のイミド化後のポリイミドは非熱可塑性であった。また、得られたポリイミドフィルム(厚み;25μm)のCTEは0.5ppm/Kであった。
(Synthesis example A3)
89.621 g of TFMB (279.33 mmol) and 850 g of DMAc were charged into a 1000 ml separable flask, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 60.379 g of PMDA (276.54 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamic acid solution AC. The viscosity of the obtained polyamic acid solution AC was 21,200 cP. The polyimide after imidization of the obtained polyamic acid was non-thermoplastic. The CTE of the obtained polyimide film (thickness: 25 μm) was 0.5 ppm / K.
(合成例A4)
 1000mlのセパラブルフラスコに、49.928gのTFMB(155.70mmol)、33.102gのm-TB(155.70mmol)、850gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、66.970gのPMDA(307.03mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液A-Dを得た。得られたポリアミド酸溶液A-Dの粘度は21,500cPであった。得られたポリアミド酸のイミド化後のポリイミドは非熱可塑性であった。また、得られたポリイミドフィルム(厚み;25μm)のCTEは6.0ppm/Kであった。
(Synthesis example A4)
To a 1000 ml separable flask were charged 49.928 g of TFMB (155.70 mmol), 33.102 g of m-TB (155.70 mmol), and 850 g of DMAc, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 66.970 g of PMDA (307.03 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamic acid solution AD. The viscosity of the obtained polyamic acid solution AD was 21,500 cP. The polyimide after imidization of the obtained polyamic acid was non-thermoplastic. The CTE of the obtained polyimide film (thickness: 25 μm) was 6.0 ppm / K.
(合成例A5)
 300mlのセパラブルフラスコに、29.492gのBAPP(71.81mmol)、255gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、15.508gのPMDA(71.10mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液A-Eを得た。得られたポリアミド酸溶液A-Eの粘度は10,700cPであった。得られたポリアミド酸のイミド化後のポリイミドは熱可塑性であり、ガラス転移温度(Tg)は312℃であった。また、得られたポリイミドフィルム(厚み;25μm)のCTEは63.1ppm/Kであり、吸湿率は0.54重量%、透湿度は64g/m/24hrであった。
(Synthesis example A5)
A 300 ml separable flask was charged with 29.492 g of BAPP (71.81 mmol) and 255 g of DMAc, and stirred at room temperature under a nitrogen stream. After complete dissolution, 15.508 g of PMDA (71.10 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamic acid solution AE. The viscosity of the obtained polyamic acid solution AE was 10,700 cP. The polyimide after imidization of the obtained polyamic acid was thermoplastic and had a glass transition temperature (Tg) of 312 ° C. The obtained polyimide film (thickness; 25 [mu] m) CTE of is 63.1ppm / K, moisture absorption is 0.54% by weight, the moisture permeability was 64g / m 2 / 24hr.
(合成例A6)
 300mlのセパラブルフラスコに、25.889gのTPE-R(88.50mmol)、255gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、19.111gのPMDA(87.62mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液A-Fを得た。得られたポリアミド酸溶液A-Fの粘度は13,200cPであった。得られたポリアミド酸のイミド化後のポリイミドは非熱可塑性であった。また、得られたポリイミドフィルム(厚み;25μm)のCTEは57.7ppm/Kであった。
(Synthesis example A6)
25.889 g of TPE-R (88.50 mmol) and 255 g of DMAc were charged into a 300 ml separable flask, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 19.111 g of PMDA (87.62 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamic acid solution AF. The viscosity of the obtained polyamic acid solution AF was 13,200 cP. The polyimide after imidization of the obtained polyamic acid was non-thermoplastic. Further, the CTE of the obtained polyimide film (thickness: 25 μm) was 57.7 ppm / K.
(合成例A7)
 300mlのセパラブルフラスコに、27.782gのBAFL(79.73mmol)、255gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、17.218gのPMDA(78.94mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液A-Gを得た。得られたポリアミド酸溶液A-Gの粘度は10,400cPであった。得られたポリアミド酸のイミド化後のポリイミドは非熱可塑性であった。また、得られたポリイミドフィルム(厚み;25μm)のCTEは52.0ppm/Kであった。
(Synthesis example A7)
27.782 g of BAFL (79.73 mmol) and 255 g of DMAc were charged into a 300 ml separable flask, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 17.218 g of PMDA (78.94 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamic acid solution AG. The viscosity of the obtained polyamic acid solution AG was 10,400 cP. The polyimide after imidization of the obtained polyamic acid was non-thermoplastic. The CTE of the obtained polyimide film (thickness: 25 μm) was 52.0 ppm / K.
[実施例A1]
 厚み12μmの電解銅箔上に、第1のポリイミド層となるポリアミド酸溶液A-Eを硬化後の厚みが2μmとなるように均一に塗布した後、120℃から360℃まで段階的に昇温させて溶媒の除去及びイミド化を行った。得られた第1のポリイミド層に120W・min/mでコロナ処理を行った。次に、その上に、第2のポリイミド層となるポリアミド酸溶液A-Aを硬化後の厚みが25μmとなるように均一に塗布した後、120℃で3分間加熱乾燥して溶媒を除去した。その後、130℃から360℃まで段階的に昇温させてイミド化を行い、金属張積層板A1を調製した。第1のポリイミド層の厚み(L1)は2μmであり、絶縁樹脂層全体の厚み(L)は27μmであり、比(L/L1)は、13.5であった。調製した金属張積層板A1の樹脂面に粘着テープを貼り、垂直方向に瞬間的に引き剥がしによる剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example A1]
A polyamic acid solution AE to be a first polyimide layer is uniformly applied on a 12 μm-thick electrolytic copper foil so as to have a cured thickness of 2 μm, and then the temperature is raised stepwise from 120 ° C. to 360 ° C. The solvent was removed and imidation was performed. The obtained first polyimide layer was subjected to a corona treatment at 120 W · min / m 2 . Next, a polyamic acid solution AA to be a second polyimide layer was uniformly applied thereon so as to have a cured thickness of 25 μm, and then heated and dried at 120 ° C. for 3 minutes to remove the solvent. . Thereafter, the temperature was increased stepwise from 130 ° C. to 360 ° C. to perform imidization, thereby preparing a metal-clad laminate A1. The thickness (L1) of the first polyimide layer was 2 μm, the thickness (L) of the entire insulating resin layer was 27 μm, and the ratio (L / L1) was 13.5. An adhesive tape was applied to the resin surface of the prepared metal-clad laminate A1, and a peeling test was performed by instantaneous peeling in the vertical direction. However, peeling between the first polyimide layer and the second polyimide layer was observed. Did not.
[実施例A2]
 ポリアミド酸溶液A-Eの代わりに、ポリアミド酸溶液A-Fを使用したこと以外、実施例A1と同様にして、金属張積層板A2を調製した。実施例A1と同様に、調製した金属張積層板A2の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example A2]
A metal-clad laminate A2 was prepared in the same manner as in Example A1, except that the polyamic acid solution AE was used instead of the polyamic acid solution AE. A peeling test was conducted on the prepared metal-clad laminate A2 in the same manner as in Example A1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例A3]
 ポリアミド酸溶液A-Eの代わりに、ポリアミド酸溶液A-Gを使用したこと以外、実施例A1と同様にして、金属張積層板A3を調製した。実施例A1と同様に、調製した金属張積層板A3の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example A3]
A metal-clad laminate A3 was prepared in the same manner as in Example A1, except that the polyamic acid solution AE was used instead of the polyamic acid solution AE. A peeling test of the prepared metal-clad laminate A3 was performed in the same manner as in Example A1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例A4]
 ポリアミド酸溶液A-Eの代わりに、ポリアミド酸溶液A-Cを使用したこと以外、実施例A1と同様にして、金属張積層板A4を調製した。実施例A1と同様に、調製した金属張積層板A4の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example A4]
A metal-clad laminate A4 was prepared in the same manner as in Example A1, except that the polyamic acid solution AC was used instead of the polyamic acid solution AE. A peeling test of the prepared metal-clad laminate A4 was performed in the same manner as in Example A1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例A5]
 ポリアミド酸溶液A-Aの代わりに、ポリアミド酸溶液A-Bを使用したこと以外、実施例A1と同様にして、金属張積層板A5を調製した。実施例A1と同様に、調製した金属張積層板A5の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example A5]
A metal-clad laminate A5 was prepared in the same manner as in Example A1, except that the polyamic acid solution AB was used instead of the polyamic acid solution AA. A peeling test of the prepared metal-clad laminate A5 was performed in the same manner as in Example A1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[実施例A6]
 ポリアミド酸溶液A-Aの代わりに、ポリアミド酸溶液A-Bを使用し、ポリアミド酸溶液A-Eの代わりに、ポリアミド酸溶液A-Fを使用したこと以外、実施例A1と同様にして、金属張積層板A6を調製した。実施例A1と同様に、調製した金属張積層板A6の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example A6]
A polyamic acid solution AB was used in place of the polyamic acid solution AA, and a polyamic acid solution AF was used in place of the polyamic acid solution AE in the same manner as in Example A1. A metal-clad laminate A6 was prepared. A peeling test of the prepared metal-clad laminate A6 was performed in the same manner as in Example A1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例A7]
 ポリアミド酸溶液A-Aの代わりに、ポリアミド酸溶液A-Bを使用し、ポリアミド酸溶液A-Eの代わりに、ポリアミド酸溶液A-Gを使用したこと以外、実施例A1と同様にして、金属張積層板A7を調製した。実施例A1と同様に、調製した金属張積層板A7の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example A7]
In the same manner as in Example A1, except that the polyamic acid solution AB was used instead of the polyamic acid solution AA, and the polyamic acid solution AG was used instead of the polyamic acid solution AE, A metal-clad laminate A7 was prepared. A peeling test of the prepared metal-clad laminate A7 was performed in the same manner as in Example A1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例A8]
 ポリアミド酸溶液A-Aの代わりに、ポリアミド酸溶液A-Bを使用し、ポリアミド酸溶液A-Eの代わりに、ポリアミド酸溶液A-Aを使用したこと以外、実施例A1と同様にして、金属張積層板A8を調製した。実施例A1と同様に、調製した金属張積層板A8の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example A8]
In the same manner as in Example A1, except that the polyamic acid solution AB was used instead of the polyamic acid solution AA, and the polyamic acid solution AA was used instead of the polyamic acid solution AE, A metal-clad laminate A8 was prepared. A peeling test of the prepared metal-clad laminate A8 was performed in the same manner as in Example A1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[実施例A9]
 ポリアミド酸溶液A-Aの代わりに、ポリアミド酸溶液A-Bを使用し、ポリアミド酸溶液A-Eの代わりに、ポリアミド酸溶液A-Cを使用したこと以外、実施例A1と同様にして、金属張積層板A9を調製した。実施例A1と同様に、調製した金属張積層板A9の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example A9]
A polyamic acid solution AB was used in place of the polyamic acid solution AA, and a polyamic acid solution AC was used in place of the polyamic acid solution AE in the same manner as in Example A1. A metal-clad laminate A9 was prepared. A peeling test was conducted on the prepared metal-clad laminate A9 in the same manner as in Example A1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例A10]
 ポリアミド酸溶液A-Aの代わりに、ポリアミド酸溶液A-Cを使用したこと以外、実施例A1と同様にして、金属張積層板A10を調製した。実施例A1と同様に、調製した金属張積層板A10の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example A10]
A metal-clad laminate A10 was prepared in the same manner as in Example A1, except that the polyamic acid solution AA was used instead of the polyamic acid solution AA. A peeling test of the prepared metal-clad laminate A10 was performed in the same manner as in Example A1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例A11]
 ポリアミド酸溶液A-Aの代わりに、ポリアミド酸溶液A-Cを使用し、ポリアミド酸溶液A-Eの代わりに、ポリアミド酸溶液A-Fを使用したこと以外、実施例A1と同様にして、金属張積層板A11を調製した。実施例A1と同様に、調製した金属張積層板A11の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example A11]
In the same manner as in Example A1, except that the polyamic acid solution AC was used instead of the polyamic acid solution AA, and the polyamic acid solution AF was used instead of the polyamic acid solution AE, A metal-clad laminate A11 was prepared. A peeling test was conducted on the prepared metal-clad laminate A11 in the same manner as in Example A1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例A12]
 ポリアミド酸溶液A-Aの代わりに、ポリアミド酸溶液A-Cを使用し、ポリアミド酸溶液A-Eの代わりに、ポリアミド酸溶液A-Gを使用したこと以外、実施例A1と同様にして、金属張積層板A12を調製した。実施例A1と同様に、調製した金属張積層板A12の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example A12]
In the same manner as in Example A1, except that the polyamic acid solution AC was used instead of the polyamic acid solution AA, and the polyamic acid solution AG was used instead of the polyamic acid solution AE, A metal-clad laminate A12 was prepared. A peeling test of the prepared metal-clad laminate A12 was performed in the same manner as in Example A1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例A13]
 ポリアミド酸溶液A-Aの代わりに、ポリアミド酸溶液A-Cを使用し、ポリアミド酸溶液A-Eの代わりに、ポリアミド酸溶液A-Aを使用したこと以外、実施例A1と同様にして、金属張積層板A13を調製した。実施例A1と同様に、調製した金属張積層板A13の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example A13]
In the same manner as in Example A1, except that the polyamic acid solution AC was used instead of the polyamic acid solution AA, and the polyamic acid solution AA was used instead of the polyamic acid solution AE, A metal-clad laminate A13 was prepared. A peeling test of the prepared metal-clad laminate A13 was performed in the same manner as in Example A1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例A14]
 ポリアミド酸溶液A-Aの代わりに、ポリアミド酸溶液A-Dを使用したこと以外、実施例A1と同様にして、金属張積層板A14を調製した。実施例A1と同様に、調製した金属張積層板A14の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example A14]
A metal-clad laminate A14 was prepared in the same manner as in Example A1, except that the polyamic acid solution AA was used instead of the polyamic acid solution AA. A peeling test was conducted on the prepared metal-clad laminate A14 in the same manner as in Example A1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例A15]
 ポリアミド酸溶液A-Aの代わりに、ポリアミド酸溶液A-Dを使用し、ポリアミド酸溶液A-Eの代わりに、ポリアミド酸溶液A-Fを使用したこと以外、実施例A1と同様にして、金属張積層板A15を調製した。実施例A1と同様に、調製した金属張積層板A15の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example A15]
In the same manner as in Example A1, except that the polyamic acid solution AD was used instead of the polyamic acid solution AA, and the polyamic acid solution AF was used instead of the polyamic acid solution AE, A metal-clad laminate A15 was prepared. A peel test of the prepared metal-clad laminate A15 was performed in the same manner as in Example A1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[実施例A16]
 ポリアミド酸溶液A-Aの代わりに、ポリアミド酸溶液A-Dを使用し、ポリアミド酸溶液A-Eの代わりに、ポリアミド酸溶液A-Gを使用したこと以外、実施例A1と同様にして、金属張積層板A16を調製した。実施例A1と同様に、調製した金属張積層板A16の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example A16]
In the same manner as in Example A1, except that the polyamic acid solution AD was used instead of the polyamic acid solution AA, and the polyamic acid solution AG was used instead of the polyamic acid solution AE, A metal-clad laminate A16 was prepared. A peeling test was conducted on the prepared metal-clad laminate A16 in the same manner as in Example A1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例A17]
 ポリアミド酸溶液A-Aの代わりに、ポリアミド酸溶液A-Dを使用し、ポリアミド酸溶液A-Eの代わりに、ポリアミド酸溶液A-Aを使用したこと以外、実施例A1と同様にして、金属張積層板A17を調製した。実施例A1と同様に、調製した金属張積層板A17の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example A17]
In the same manner as in Example A1, except that the polyamic acid solution AD was used instead of the polyamic acid solution AA, and the polyamic acid solution AA was used instead of the polyamic acid solution AE, A metal-clad laminate A17 was prepared. A peel test of the prepared metal-clad laminate A17 was performed in the same manner as in Example A1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[実施例A18]
 ポリアミド酸溶液A-Aの代わりに、ポリアミド酸溶液A-Dを使用し、ポリアミド酸溶液A-Eの代わりに、ポリアミド酸溶液A-Cを使用したこと以外、実施例A1と同様にして、金属張積層板A18を調製した。実施例A1と同様に、調製した金属張積層板A18の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example A18]
In the same manner as in Example A1, except that the polyamic acid solution AD was used instead of the polyamic acid solution AA, and the polyamic acid solution AC was used instead of the polyamic acid solution AE, A metal-clad laminate A18 was prepared. A peeling test of the prepared metal-clad laminate A18 was performed in the same manner as in Example A1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
比較例A1
 コロナ処理を行わなかったこと以外、実施例A1と同様にして、金属張積層板A19を調製した。実施例A1と同様に、調製した金属張積層板A19の剥離試験を行ったところ、第1のポリイミド層及び第2のポリイミド層の層間剥離が生じた。
Comparative example A1
A metal-clad laminate A19 was prepared in the same manner as in Example A1, except that the corona treatment was not performed. When a peel test was conducted on the prepared metal-clad laminate A19 in the same manner as in Example A1, delamination between the first polyimide layer and the second polyimide layer occurred.
比較例A2
 コロナ処理を行わなかったこと以外、実施例A2と同様にして、金属張積層板A20を調製した。実施例A1と同様に、調製した金属張積層板A20の剥離試験を行ったところ、第1のポリイミド層及び第2のポリイミド層の層間剥離が生じた。
Comparative Example A2
A metal-clad laminate A20 was prepared in the same manner as in Example A2, except that the corona treatment was not performed. When the prepared metal-clad laminate A20 was subjected to a peel test in the same manner as in Example A1, delamination between the first polyimide layer and the second polyimide layer occurred.
比較例A3
 コロナ処理を行わなかったこと以外、実施例A14と同様にして、金属張積層板A21を調製した。実施例A1と同様に、調製した金属張積層板A21の剥離試験を行ったところ、第1のポリイミド層及び第2のポリイミド層の層間剥離が生じた。
Comparative Example A3
A metal-clad laminate A21 was prepared in the same manner as in Example A14, except that the corona treatment was not performed. When a peel test was performed on the prepared metal-clad laminate A21 in the same manner as in Example A1, delamination between the first polyimide layer and the second polyimide layer occurred.
比較例A4
 コロナ処理を行わなかったこと以外、実施例A15と同様にして、金属張積層板A22を調製した。実施例A1と同様に、調製した金属張積層板A22の剥離試験を行ったところ、第1のポリイミド層及び第2のポリイミド層の層間剥離が生じた。
Comparative Example A4
A metal-clad laminate A22 was prepared in the same manner as in Example A15, except that the corona treatment was not performed. When a peel test was performed on the prepared metal-clad laminate A22 in the same manner as in Example A1, delamination between the first polyimide layer and the second polyimide layer occurred.
[実施例A19]
 厚み12μmの電解銅箔上に、第1のポリイミド層となるポリアミド酸溶液A-Eを硬化後の厚みが2.5μmとなるように均一に塗布した後、120℃から360℃まで段階的に昇温させて溶媒の除去及びイミド化を行った。得られた第1のポリイミド層に120W・min/mでコロナ処理を行った。次に、その上に、第2のポリイミド層となるポリアミド酸溶液A-Aを硬化後の厚みが20μmとなるように均一に塗布した後、その上に、第3のポリイミド層となるポリアミド酸溶液A-Eを硬化後の厚みが2.5μmとなるように均一に塗布し、120℃で3分間加熱乾燥して溶媒を除去した。その後、130℃から360℃まで段階的に昇温させてイミド化を行い、金属張積層板A23を調製した。第1のポリイミド層の厚み(L1)は2.5μmであり、絶縁樹脂層全体の厚み(L)は25μmであり、比(L/L1)は、10.0であった。発泡は確認されず、銅箔エッチング後にポリイミドフィルムのカールも確認されなかった。また、寸法変化率は「良」だった。
[Example A19]
After a polyamic acid solution AE to be a first polyimide layer is uniformly applied on a 12 μm-thick electrolytic copper foil so as to have a thickness of 2.5 μm after curing, the polyamic acid solution AE is gradually applied from 120 ° C. to 360 ° C. The temperature was raised to remove the solvent and perform imidization. The obtained first polyimide layer was subjected to a corona treatment at 120 W · min / m 2 . Next, a polyamic acid solution AA to be a second polyimide layer is uniformly applied thereon so as to have a cured thickness of 20 μm, and then a polyamic acid to be a third polyimide layer is formed thereon. The solution AE was uniformly applied so that the thickness after curing became 2.5 μm, and was heated and dried at 120 ° C. for 3 minutes to remove the solvent. Thereafter, the temperature was increased stepwise from 130 ° C. to 360 ° C. to perform imidization, thereby preparing a metal-clad laminate A23. The thickness (L1) of the first polyimide layer was 2.5 μm, the thickness (L) of the entire insulating resin layer was 25 μm, and the ratio (L / L1) was 10.0. No foaming was observed, and no curling of the polyimide film was observed after copper foil etching. The dimensional change rate was "good".
[実施例A20]
 第1のポリイミド層及び第3のポリイミド層となるポリアミド酸溶液A-Eの代わりに、ポリアミド酸溶液A-Fを硬化後の厚みがそれぞれ2.7μmとなるように均一に塗布し、第2のポリイミド層となるポリアミド酸溶液A-Aを硬化後の厚みが19.6μmとなるように均一に塗布したこと以外、実施例A19と同様にして、金属張積層板A24を調製した。第1のポリイミド層の厚み(L1)は2.7μmであり、絶縁樹脂層全体の厚み(L)は25μmであり、比(L/L1)は、9.3であった。発泡は確認されず、銅箔エッチング後にポリイミドフィルムのカールも確認されなかった。また、寸法変化率は「良」だった。
[Example A20]
Instead of the polyamic acid solution AE to be the first polyimide layer and the third polyimide layer, a polyamic acid solution AF is uniformly applied so that the thickness after curing becomes 2.7 μm each, A metal-clad laminate A24 was prepared in the same manner as in Example A19, except that the polyamic acid solution AA to be a polyimide layer was uniformly applied so that the thickness after curing became 19.6 μm. The thickness (L1) of the first polyimide layer was 2.7 μm, the thickness (L) of the entire insulating resin layer was 25 μm, and the ratio (L / L1) was 9.3. No foaming was observed, and no curling of the polyimide film was observed after copper foil etching. The dimensional change rate was "good".
[実施例A21]
 第1のポリイミド層及び第3のポリイミド層となるポリアミド酸溶液A-Eの代わりに、ポリアミド酸溶液A-Gを硬化後の厚みがそれぞれ3.2μmとなるように均一に塗布し、第2のポリイミド層となるポリアミド酸溶液A-Aを硬化後の厚みが18.6μmとなるように均一に塗布したこと以外、実施例A19と同様にして、金属張積層板A25を調製した。第1のポリイミド層の厚み(L1)は3.2μmであり、絶縁樹脂層全体の厚み(L)は25μmであり、比(L/L1)は、7.8であった。発泡は確認されず、銅箔エッチング後にポリイミドフィルムのカールも確認されなかった。また、寸法変化率は「可」だった。
[Example A21]
Instead of the polyamic acid solution AE to be the first polyimide layer and the third polyimide layer, a polyamic acid solution AG is uniformly applied so that the thickness after curing becomes 3.2 μm, respectively. A metal-clad laminate A25 was prepared in the same manner as in Example A19, except that the polyamic acid solution AA to be a polyimide layer was uniformly applied so that the thickness after curing became 18.6 μm. The thickness (L1) of the first polyimide layer was 3.2 μm, the thickness (L) of the entire insulating resin layer was 25 μm, and the ratio (L / L1) was 7.8. No foaming was observed, and no curling of the polyimide film was observed after copper foil etching. In addition, the dimensional change rate was “OK”.
[実施例A22]
 第1のポリイミド層及び第3のポリイミド層となるポリアミド酸溶液A-Eを硬化後の厚みがそれぞれ1.7μmとなるように均一に塗布したこと、第2のポリイミド層となるポリアミド酸溶液A-Aを硬化後の厚みが22μmとなるように均一に塗布したこと、並びに、ポリアミド酸溶液A-A及び第3のポリイミド層となるポリアミド酸溶液A-Eを塗布後の130℃から360℃までの昇温時間を1/3に短縮したこと以外、実施例A19と同様にして、金属張積層板A26を調製した。第1のポリイミド層の厚み(L1)は1.7μmであり、絶縁樹脂層全体の厚み(L)は25.4μmであり、比(L/L1)は、14.9であった。発泡は確認されず、銅箔エッチング後にポリイミドフィルムのカールも確認されなかった。また、寸法変化率は「良」だった。
[Example A22]
The polyamic acid solution AE to be the first polyimide layer and the third polyimide layer was uniformly applied so that the thickness after curing was 1.7 μm each, and the polyamic acid solution A to be the second polyimide layer was -A was uniformly applied so that the thickness after curing became 22 μm, and 130 ° C. to 360 ° C. after application of the polyamic acid solution AA and the polyamic acid solution AE to be the third polyimide layer A metal-clad laminate A26 was prepared in the same manner as in Example A19, except that the temperature rise time until was shortened to 1/3. The thickness (L1) of the first polyimide layer was 1.7 μm, the thickness (L) of the entire insulating resin layer was 25.4 μm, and the ratio (L / L1) was 14.9. No foaming was observed, and no curling of the polyimide film was observed after copper foil etching. The dimensional change rate was "good".
[実施例A23]
 第1のポリイミド層及び第3のポリイミド層となるポリアミド酸溶液A-Eを硬化後の厚みがそれぞれ1.8μmとなるように均一に塗布したこと、第2のポリイミド層となるポリアミド酸溶液A-Aを硬化後の厚みが22μmとなるように均一に塗布したこと、並びに、ポリアミド酸溶液A-A及び第3のポリイミド層となるポリアミド酸溶液A-Eを塗布後の130℃から360℃までの昇温時間を1/3に短縮したこと以外、実施例A19と同様にして、金属張積層板A27を調製した。第1のポリイミド層の厚み(L1)は1.8μmであり、絶縁樹脂層全体の厚み(L)は25.6μmであり、比(L/L1)は、14.2であった。発泡は確認されず、銅箔エッチング後にポリイミドフィルムのカールも確認されなかった。また、寸法変化率は「良」だった。
[Example A23]
The polyamic acid solution AE to be the first polyimide layer and the third polyimide layer was uniformly applied so that the thickness after curing was 1.8 μm each, and the polyamic acid solution A to be the second polyimide layer was -A was uniformly applied so that the thickness after curing became 22 μm, and 130 ° C. to 360 ° C. after application of the polyamic acid solution AA and the polyamic acid solution AE to be the third polyimide layer A metal-clad laminate A27 was prepared in the same manner as in Example A19, except that the temperature rise time until was shortened to 1/3. The thickness (L1) of the first polyimide layer was 1.8 μm, the thickness (L) of the entire insulating resin layer was 25.6 μm, and the ratio (L / L1) was 14.2. No foaming was observed, and no curling of the polyimide film was observed after copper foil etching. The dimensional change rate was "good".
[実施例A24]
 第1のポリイミド層及び第3のポリイミド層となるポリアミド酸溶液A-Eを硬化後の厚みがそれぞれ2.2μmとなるように均一に塗布したこと、第2のポリイミド層となるポリアミド酸溶液A-Aを硬化後の厚みが20μmとなるように均一に塗布したこと、並びに、ポリアミド酸溶液A-A及び第3のポリイミド層となるポリアミド酸溶液A-Eを塗布後の130℃から360℃までの昇温時間を1/3に短縮したこと以外、実施例A19と同様にして、金属張積層板A28を調製した。第1のポリイミド層の厚み(L1)は2.2μmであり、絶縁樹脂層全体の厚み(L)は24.4μmであり、比(L/L1)は、11.1であった。発泡は確認されず、銅箔エッチング後にポリイミドフィルムのカールも確認されなかった。また、寸法変化率は「良」だった。
[Example A24]
The polyamic acid solution AE to be the first polyimide layer and the third polyimide layer was uniformly applied so that the thickness after curing was 2.2 μm each, and the polyamic acid solution A to be the second polyimide layer was -A was uniformly applied so as to have a thickness of 20 μm after curing, and 130 ° C. to 360 ° C. after application of the polyamic acid solution AA and the polyamic acid solution AE to be the third polyimide layer. A metal-clad laminate A28 was prepared in the same manner as in Example A19, except that the temperature rise time until was shortened to 1/3. The thickness (L1) of the first polyimide layer was 2.2 μm, the thickness (L) of the entire insulating resin layer was 24.4 μm, and the ratio (L / L1) was 11.1. No foaming was observed, and no curling of the polyimide film was observed after copper foil etching. The dimensional change rate was "good".
[実施例A25]
 第1のポリイミド層及び第3のポリイミド層となるポリアミド酸溶液A-Eを硬化後の厚みがそれぞれ2.4μmとなるように均一に塗布したこと、並びに、第2のポリイミド層となるポリアミド酸溶液A-Dを硬化後の厚みが20.2μmとなるように均一に塗布したこと以外、実施例A19と同様にして、金属張積層板A29を調製した。第1のポリイミド層の厚み(L1)は2.4μmであり、絶縁樹脂層全体の厚み(L)は25μmであり、比(L/L1)は、10.4であった。発泡は確認されず、銅箔エッチング後にポリイミドフィルムのカールも確認されなかった。また、寸法変化率は「良」だった。
[Example A25]
The polyamic acid solutions AE to be the first polyimide layer and the third polyimide layer are uniformly applied so that the thickness after curing is 2.4 μm, respectively, and the polyamic acid to be the second polyimide layer is A metal-clad laminate A29 was prepared in the same manner as in Example A19, except that the solution AD was uniformly applied so that the thickness after curing became 20.2 μm. The thickness (L1) of the first polyimide layer was 2.4 μm, the thickness (L) of the entire insulating resin layer was 25 μm, and the ratio (L / L1) was 10.4. No foaming was observed, and no curling of the polyimide film was observed after copper foil etching. The dimensional change rate was "good".
[実施例A26]
 第1のポリイミド層及び第3のポリイミド層となるポリアミド酸溶液A-Fを硬化後の厚みがそれぞれ2.7μmとなるように均一に塗布したこと、並びに、第2のポリイミド層となるポリアミド酸溶液A-Dを硬化後の厚みが20μmとなるように均一に塗布したこと以外、実施例A19と同様にして、金属張積層板A30を調製した。第1のポリイミド層の厚み(L1)は2.7μmであり、絶縁樹脂層全体の厚み(L)は25.4μmであり、比(L/L1)は、9.4であった。発泡は確認されず、銅箔エッチング後にポリイミドフィルムのカールも確認されなかった。また、寸法変化率は「良」だった。
[Example A26]
The polyamic acid solution AF to be the first polyimide layer and the third polyimide layer was uniformly applied so that the thickness after curing was 2.7 μm, respectively, and the polyamic acid to be the second polyimide layer was A metal-clad laminate A30 was prepared in the same manner as in Example A19, except that the solution AD was uniformly applied so that the thickness after curing became 20 μm. The thickness (L1) of the first polyimide layer was 2.7 μm, the thickness (L) of the entire insulating resin layer was 25.4 μm, and the ratio (L / L1) was 9.4. No foaming was observed, and no curling of the polyimide film was observed after copper foil etching. The dimensional change rate was "good".
[実施例A27]
 第1のポリイミド層及び第3のポリイミド層となるポリアミド酸溶液A-Gを硬化後の厚みがそれぞれ3.2μmとなるように均一に塗布したこと、並びに、第2のポリイミド層となるポリアミド酸溶液A-Dを硬化後の厚みが19μmとなるように均一に塗布したこと以外、実施例A19と同様にして、金属張積層板A31を調製した。第1のポリイミド層の厚み(L1)は3.2μmであり、絶縁樹脂層全体の厚み(L)は25.4μmであり、比(L/L1)は、7.9であった。発泡は確認されず、銅箔エッチング後にポリイミドフィルムのカールも確認されなかった。また、寸法変化率は「可」だった。
[Example A27]
The polyamic acid solution AG to be the first polyimide layer and the third polyimide layer is uniformly applied so that the thickness after curing becomes 3.2 μm, respectively, and the polyamic acid to be the second polyimide layer A metal-clad laminate A31 was prepared in the same manner as in Example A19, except that the solution AD was uniformly applied so that the thickness after curing became 19 μm. The thickness (L1) of the first polyimide layer was 3.2 μm, the thickness (L) of the entire insulating resin layer was 25.4 μm, and the ratio (L / L1) was 7.9. No foaming was observed, and no curling of the polyimide film was observed after copper foil etching. In addition, the dimensional change rate was “OK”.
[実施例A28]
 厚み12μmの電解銅箔上に、ポリアミド酸溶液A-Eを硬化後の厚みが2.0μmとなるように均一に塗布した後、120℃で溶媒の除去を行った。その上にポリアミド酸溶液A-Aを硬化後の厚みが50μmとなるように均一に塗布した後、120℃、3分で溶媒の除去を行った。更にその上にポリアミド酸溶液A-Eを硬化後の厚みが2.0μmとなるように均一に塗布した後、120℃で溶媒の除去を行い、120℃から360℃まで段階的に昇温させて溶媒の除去及びイミド化を行い、第1のポリイミド層を形成した片面金属張積層板A28Bを得た。得られた片面金属張積層板A28Bのポリイミド層に120W・min/mでコロナ処理を行った。次に、その上に、第2のポリイミド層となるポリアミド酸溶液A-Aを硬化後の厚みが50μmとなるように均一に塗布、溶媒の除去した後、その上に、第3のポリイミド層となるポリアミド酸溶液A-Eを硬化後の厚みが2.0μmとなるように均一に塗布し、120℃で3分間加熱乾燥して溶媒を除去した。その後、130℃から360℃まで段階的に昇温させてイミド化を行い、片面金属張積層板A28を調製した。第1のポリイミド層の厚み(L1)は54μmであり、絶縁樹脂層全体の厚み(L)は106μmであり、比(L/L1)は、1.96であった。発泡は確認されず、銅箔エッチング後にポリイミドフィルムのカールも確認されなかった。また、寸法変化率は「良」だった。
[Example A28]
The polyamic acid solution AE was uniformly applied on a 12 μm-thick electrolytic copper foil so that the cured thickness became 2.0 μm, and then the solvent was removed at 120 ° C. The polyamic acid solution AA was uniformly applied thereon so as to have a cured thickness of 50 μm, and then the solvent was removed at 120 ° C. for 3 minutes. Furthermore, after a polyamic acid solution AE was uniformly applied thereon so that the thickness after curing became 2.0 μm, the solvent was removed at 120 ° C., and the temperature was raised stepwise from 120 ° C. to 360 ° C. The solvent was removed and imidation was performed to obtain a single-sided metal-clad laminate A28B on which a first polyimide layer was formed. The polyimide layer of the obtained single-sided metal-clad laminate A28B was subjected to a corona treatment at 120 W · min / m 2 . Next, a polyamic acid solution AA to be a second polyimide layer is uniformly applied thereon so as to have a cured thickness of 50 μm, the solvent is removed, and then a third polyimide layer is provided thereon. The polyamic acid solution AE was uniformly applied so that the thickness after curing became 2.0 μm, and was heated and dried at 120 ° C. for 3 minutes to remove the solvent. Thereafter, the temperature was increased stepwise from 130 ° C. to 360 ° C. to perform imidization, thereby preparing a single-sided metal-clad laminate A28. The thickness (L1) of the first polyimide layer was 54 μm, the thickness (L) of the entire insulating resin layer was 106 μm, and the ratio (L / L1) was 1.96. No foaming was observed, and no curling of the polyimide film was observed after copper foil etching. The dimensional change rate was "good".
[実施例A29]
 第1のポリイミド層のうち2層を構成するためのポリアミド酸溶液A-E及び第3のポリイミド層となるポリアミド酸溶液A-Eを、それぞれ硬化後の厚みが10μmとなるように均一に塗布したこと以外、実施例A28と同様にして、片面金属張積層板A29を調製した。第1のポリイミド層の厚み(L1)は70μmであり、絶縁樹脂層全体の厚み(L)は130μmであり、比(L/L1)は、1.86であった。発泡は確認されず、銅箔エッチング後にポリイミドフィルムのカールも確認されなかった。また、寸法変化率は「良」だった。
[Example A29]
A polyamic acid solution AE for forming two layers of the first polyimide layer and a polyamic acid solution AE for forming the third polyimide layer are uniformly applied so that the thickness after curing becomes 10 μm. Aside from the above, a single-sided metal-clad laminate A29 was prepared in the same manner as in Example A28. The thickness (L1) of the first polyimide layer was 70 μm, the thickness (L) of the entire insulating resin layer was 130 μm, and the ratio (L / L1) was 1.86. No foaming was observed, and no curling of the polyimide film was observed after copper foil etching. The dimensional change rate was "good".
[実施例A30]
 第1のポリイミド層のうち2層を構成するためのポリアミド酸溶液A-E及び第3のポリイミド層となるポリアミド酸溶液A-Eを、それぞれポリアミド酸溶液A-Fとし、硬化後の厚みが2.0μmとなるように均一に塗布したこと、第2のポリイミド層となるポリアミド酸溶液A-Bを硬化後の厚みが50μmとなるように均一に塗布したこと以外、実施例A28と同様にして、片面金属張積層板A30を調製した。第1のポリイミド層の厚み(L1)は54μmであり、絶縁樹脂層全体の厚み(L)は106μmであり、比(L/L1)は、1.96であった。発泡は確認されず、銅箔エッチング後にポリイミドフィルムのカールも確認されなかった。また、寸法変化率は「良」だった。
[Example A30]
A polyamic acid solution AE for forming two layers of the first polyimide layer and a polyamic acid solution AE for forming the third polyimide layer are respectively referred to as polyamic acid solutions AF, and the thickness after curing is set as follows. The same procedure as in Example A28 was carried out except that the solution was uniformly applied so as to have a thickness of 2.0 μm, and that the polyamic acid solution AB serving as the second polyimide layer was uniformly applied so that the thickness after curing became 50 μm. Thus, a single-sided metal-clad laminate A30 was prepared. The thickness (L1) of the first polyimide layer was 54 μm, the thickness (L) of the entire insulating resin layer was 106 μm, and the ratio (L / L1) was 1.96. No foaming was observed, and no curling of the polyimide film was observed after copper foil etching. The dimensional change rate was "good".
[実施例A31]
 第1のポリイミド層のうち2層を構成するためのポリアミド酸溶液A-F及び第3のポリイミド層となるポリアミド酸溶液A-Fを、それぞれ硬化後の厚みが10μmとなるように均一に塗布したこと以外、実施例A30と同様にして、片面金属張積層板A31を調製した。第1のポリイミド層の厚み(L1)は70μmであり、絶縁樹脂層全体の厚み(L)は130μmであり、比(L/L1)は、1.86であった。発泡は確認されず、銅箔エッチング後にポリイミドフィルムのカールも確認されなかった。また、寸法変化率は「良」だった。
[Example A31]
A polyamic acid solution AF for forming two layers of the first polyimide layer and a polyamic acid solution AF for forming the third polyimide layer are uniformly applied so that the thickness after curing becomes 10 μm, respectively. Aside from the above, a single-sided metal-clad laminate A31 was prepared in the same manner as in Example A30. The thickness (L1) of the first polyimide layer was 70 μm, the thickness (L) of the entire insulating resin layer was 130 μm, and the ratio (L / L1) was 1.86. No foaming was observed, and no curling of the polyimide film was observed after copper foil etching. The dimensional change rate was "good".
比較例A5
 コロナ処理を行わなかったこと以外、実施例A19と同様にして、金属張積層板A32を調製したところ、銅箔エッチング後にポリイミドフィルムのカールが確認された。
Comparative Example A5
When a metal-clad laminate A32 was prepared in the same manner as in Example A19 except that the corona treatment was not performed, curling of the polyimide film was confirmed after etching of the copper foil.
比較例A6
 コロナ処理を行わなかったこと以外、実施例A20と同様にして、金属張積層板A33を調製したところ、銅箔エッチング後にポリイミドフィルムのカールが確認された。
Comparative Example A6
When a metal-clad laminate A33 was prepared in the same manner as in Example A20, except that the corona treatment was not performed, curling of the polyimide film was confirmed after copper foil etching.
比較例A7
 コロナ処理を行わなかったこと以外、実施例A21と同様にして、金属張積層板A34を調製したところ、銅箔エッチング後にポリイミドフィルムのカールが確認された。
Comparative Example A7
When a metal-clad laminate A34 was prepared in the same manner as in Example A21 except that the corona treatment was not performed, curling of the polyimide film was confirmed after copper foil etching.
比較例A8
 コロナ処理を行わなかったこと以外、実施例A22と同様にして、金属張積層板A35を調製したところ、発泡が確認された。
Comparative Example A8
When a metal-clad laminate A35 was prepared in the same manner as in Example A22 except that the corona treatment was not performed, foaming was confirmed.
比較例A9
 コロナ処理を行わなかったこと以外、実施例A23と同様にして、金属張積層板A36を調製したところ、発泡が確認された。
Comparative Example A9
When a metal-clad laminate A36 was prepared in the same manner as in Example A23 except that the corona treatment was not performed, foaming was confirmed.
比較例A10
 コロナ処理を行わなかったこと以外、実施例A24と同様にして、金属張積層板A37を調製したところ、発泡が確認された。
Comparative Example A10
When a metal-clad laminate A37 was prepared in the same manner as in Example A24 except that the corona treatment was not performed, foaming was confirmed.
(合成例B1)
 1000mlのセパラブルフラスコに、75.149gのm-TB(353.42mmol)、850gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、74.851gのPMDA(342.82mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液B-Aを得た。得られたポリアミド酸溶液B-Aの粘度は22,700cPであった。
(Synthesis example B1)
75.149 g of m-TB (353.42 mmol) and 850 g of DMAc were charged into a 1000 ml separable flask, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 74.851 g of PMDA (342.82 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamic acid solution BA. The viscosity of the obtained polyamic acid solution BA was 22,700 cP.
(合成例B2)
 1000mlのセパラブルフラスコに、65.054gのm-TB(310.65mmol)、10.090gのTPE-R(34.52mmol)、850gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、73.856gのPMDA(338.26mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液B-Bを得た。得られたポリアミド酸溶液B-Bの粘度は26,500cPであった。
(Synthesis example B2)
To a 1000 ml separable flask were charged 65.054 g of m-TB (310.65 mmol), 10.090 g of TPE-R (34.52 mmol) and 850 g of DMAc, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 73.856 g of PMDA (338.26 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamic acid solution BB. The viscosity of the obtained polyamic acid solution BB was 26,500 cP.
(合成例B3)
 1000mlのセパラブルフラスコに、89.621gのTFMB(279.33mmol)、850gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、60.379gのPMDA(276.54mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液B-Cを得た。得られたポリアミド酸溶液B-Cの粘度は21,200cPであった。
(Synthesis example B3)
89.621 g of TFMB (279.33 mmol) and 850 g of DMAc were charged into a 1000 ml separable flask, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 60.379 g of PMDA (276.54 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamic acid solution BC. The viscosity of the obtained polyamic acid solution BC was 21,200 cP.
(合成例B4)
 1000mlのセパラブルフラスコに、49.928gのTFMB(155.70mmol)、33.102gのm-TB(155.70mmol)、850gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、66.970gのPMDA(307.03mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液B-Dを得た。得られたポリアミド酸溶液B-Dの粘度は21,500cPであった。
(Synthesis example B4)
To a 1000 ml separable flask were charged 49.928 g of TFMB (155.70 mmol), 33.102 g of m-TB (155.70 mmol), and 850 g of DMAc, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 66.970 g of PMDA (307.03 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamic acid solution BD. The viscosity of the obtained polyamic acid solution BD was 21,500 cP.
(合成例B5)
 300mlのセパラブルフラスコに、29.492gのBAPP(71.81mmol)、255gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、15.508gのPMDA(71.10mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液B-Eを得た。得られたポリアミド酸溶液B-Eの粘度は10,700cPであった。 
(Synthesis example B5)
A 300 ml separable flask was charged with 29.492 g of BAPP (71.81 mmol) and 255 g of DMAc, and stirred at room temperature under a nitrogen stream. After complete dissolution, 15.508 g of PMDA (71.10 mmol) was added, and the mixture was stirred at room temperature for 4 hours to obtain a polyamic acid solution BE. The viscosity of the obtained polyamic acid solution BE was 10,700 cP.
(合成例B6)
 300mlのセパラブルフラスコに、25.889gのTPE-R(88.50mmol)、255gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、19.111gのPMDA(87.62mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液B-Fを得た。得られたポリアミド酸溶液B-Fの粘度は13,200cPであった。
(Synthesis example B6)
25.889 g of TPE-R (88.50 mmol) and 255 g of DMAc were charged into a 300 ml separable flask, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 19.111 g of PMDA (87.62 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamic acid solution BF. The viscosity of the obtained polyamic acid solution BF was 13,200 cP.
(合成例B7)
 300mlのセパラブルフラスコに、27.782gのBAFL(79.73mmol)、255gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、17.218gのPMDA(78.94mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液B-Gを得た。得られたポリアミド酸溶液B-Gの粘度は10,400cPであった。
(Synthesis example B7)
27.782 g of BAFL (79.73 mmol) and 255 g of DMAc were charged into a 300 ml separable flask, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 17.218 g of PMDA (78.94 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamic acid solution BG. The viscosity of the obtained polyamic acid solution BG was 10,400 cP.
[実施例B1]
 厚み12μmの電解銅箔上に、第1のポリイミド層となるポリアミド酸溶液B-Eを硬化後の厚みが2μmとなるように均一に塗布した後、120℃から240℃まで段階的に昇温させて適当な溶媒の除去及びイミド化を行った。このときの半硬化状態の第1のポリイミド層の揮発成分率とイミド化率は3.0%、80%だった。次に、その上に、第2のポリイミド層となるポリアミド酸溶液B-Aを硬化後の厚みが25μmとなるように均一に塗布した後、120℃で3分間加熱乾燥して溶媒を除去した。その後、130℃から360℃まで段階的に昇温させてイミド化を行い、第1のポリイミド層と第2のポリイミド層を形成することによって、金属張積層板B1を調製した。調製した金属張積層板B1の樹脂面に粘着テープを貼り、垂直方向に瞬間的に引き剥がしによる剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example B1]
After a polyamic acid solution BE serving as a first polyimide layer is uniformly applied on a 12 μm-thick electrolytic copper foil so as to have a cured thickness of 2 μm, the temperature is increased stepwise from 120 ° C. to 240 ° C. Then, an appropriate solvent was removed and imidization was performed. At this time, the volatile component ratio and the imidation ratio of the semi-cured first polyimide layer were 3.0% and 80%. Next, a polyamic acid solution BA serving as a second polyimide layer was uniformly applied thereon so as to have a cured thickness of 25 μm, and then heated and dried at 120 ° C. for 3 minutes to remove the solvent. . Thereafter, the temperature was increased stepwise from 130 ° C. to 360 ° C. to perform imidization, and a first polyimide layer and a second polyimide layer were formed, thereby preparing a metal-clad laminate B1. An adhesive tape was applied to the resin surface of the prepared metal-clad laminate B1, and a peel test was performed by instantaneous peeling in the vertical direction. However, peeling between the first polyimide layer and the second polyimide layer was observed. Did not.
[実施例B2]
 ポリアミド酸溶液B-Eの代わりに、ポリアミド酸溶液B-Fを使用したこと以外、実施例B1と同様にして、金属張積層板B2を調製した。このときの半硬化状態の第1のポリイミド層の揮発成分率とイミド化率は5.6%、55%だった。実施例B1と同様に、調製した金属張積層板B2の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example B2]
A metal-clad laminate B2 was prepared in the same manner as in Example B1, except that a polyamic acid solution BF was used instead of the polyamic acid solution BE. At this time, the volatile component ratio and the imidation ratio of the semi-cured first polyimide layer were 5.6% and 55%. A peeling test of the prepared metal-clad laminate B2 was performed in the same manner as in Example B1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例B3]
 ポリアミド酸溶液B-Eの代わりに、ポリアミド酸溶液B-Gを使用したこと以外、実施例B1と同様にして、金属張積層板B3を調製した。このときの半硬化状態の第1のポリイミド層の揮発成分率とイミド化率は6.7%、28%だった。実施例B1と同様に、調製した金属張積層板B3の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example B3]
A metal-clad laminate B3 was prepared in the same manner as in Example B1, except that a polyamic acid solution BG was used instead of the polyamic acid solution BE. At this time, the volatile component ratio and the imidation ratio of the first polyimide layer in the semi-cured state were 6.7% and 28%. A peeling test of the prepared metal-clad laminate B3 was performed in the same manner as in Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[実施例B4]
 ポリアミド酸溶液B-Eの代わりに、ポリアミド酸溶液B-Cを使用したこと以外、実施例B1と同様にして、金属張積層板B4を調製した。このときの半硬化状態の第1のポリイミド層の揮発成分率とイミド化率は2.6%、73%だった。実施例B1と同様に、調製した金属張積層板B4の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example B4]
A metal-clad laminate B4 was prepared in the same manner as in Example B1 except that the polyamic acid solution BC was used instead of the polyamic acid solution BE. At this time, the volatile component ratio and the imidation ratio of the first cured polyimide layer were 2.6% and 73%. A peeling test was conducted on the prepared metal-clad laminate B4 in the same manner as in Example B1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例B5]
 ポリアミド酸溶液B-Aの代わりに、ポリアミド酸溶液B-Bを使用したこと以外、実施例B1と同様にして、金属張積層板B5を調製した。このときの半硬化状態の第1のポリイミド層の揮発成分率とイミド化率は3.2%、70%だった。実施例B1と同様に、調製した金属張積層板B5の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example B5]
A metal-clad laminate B5 was prepared in the same manner as in Example B1, except that the polyamic acid solution BB was used instead of the polyamic acid solution BA. At this time, the volatile component ratio and the imidation ratio of the semi-cured first polyimide layer were 3.2% and 70%. A peeling test of the prepared metal-clad laminate B5 was performed in the same manner as in Example B1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例B6]
 ポリアミド酸溶液B-Aの代わりに、ポリアミド酸溶液B-Bを使用し、ポリアミド酸溶液B-Eの代わりに、ポリアミド酸溶液B-Fを使用したこと以外、実施例B1と同様にして、金属張積層板B6を調製した。このときの半硬化状態の第1のポリイミド層の揮発成分率とイミド化率は4.0%、65%だった。実施例B1と同様に、調製した金属張積層板B6の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example B6]
A polyamic acid solution BB was used instead of the polyamic acid solution BA, and a polyamic acid solution BF was used instead of the polyamic acid solution BE in the same manner as in Example B1. A metal-clad laminate B6 was prepared. At this time, the volatile component ratio and the imidation ratio of the semi-cured first polyimide layer were 4.0% and 65%. A peeling test of the prepared metal-clad laminate B6 was performed in the same manner as in Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[実施例B7]
 ポリアミド酸溶液B-Aの代わりに、ポリアミド酸溶液B-Bを使用し、ポリアミド酸溶液B-Eの代わりに、ポリアミド酸溶液B-Gを使用したこと以外、実施例B1と同様にして、金属張積層板B7を調製した。このときの半硬化状態の第1のポリイミド層の揮発成分率とイミド化率は5.5%、53%だった。実施例B1と同様に、調製した金属張積層板B7の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example B7]
A polyamic acid solution BB was used instead of the polyamic acid solution BA, and a polyamic acid solution BG was used instead of the polyamic acid solution BE in the same manner as in Example B1. A metal-clad laminate B7 was prepared. At this time, the volatile component ratio and the imidation ratio of the first polyimide layer in the semi-cured state were 5.5% and 53%. A peeling test was conducted on the prepared metal-clad laminate B7 in the same manner as in Example B1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例B8]
 ポリアミド酸溶液B-Aの代わりに、ポリアミド酸溶液B-Bを使用し、ポリアミド酸溶液B-Eの代わりに、ポリアミド酸溶液B-Aを使用したこと以外、実施例B1と同様にして、金属張積層板B8を調製した。このときの半硬化状態の第1のポリイミド層の揮発成分率とイミド化率は4.0%、66%だった。実施例B1と同様に、調製した金属張積層板B8の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example B8]
Instead of the polyamic acid solution BA, a polyamic acid solution BB was used, and instead of the polyamic acid solution BE, a polyamic acid solution BA was used. A metal-clad laminate B8 was prepared. At this time, the volatile component ratio and the imidation ratio of the semi-cured first polyimide layer were 4.0% and 66%. A peeling test of the prepared metal-clad laminate B8 was performed in the same manner as in Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[実施例B9]
 ポリアミド酸溶液B-Aの代わりに、ポリアミド酸溶液B-Bを使用し、ポリアミド酸溶液B-Eの代わりに、ポリアミド酸溶液B-Cを使用したこと以外、実施例B1と同様にして、金属張積層板B9を調製した。このときの半硬化状態の第1のポリイミド層の揮発成分率とイミド化率は1.2%、80%だった。実施例B1と同様に、調製した金属張積層板B9の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example B9]
A polyamic acid solution BB was used instead of the polyamic acid solution BA, and a polyamic acid solution BC was used instead of the polyamic acid solution BE in the same manner as in Example B1. A metal-clad laminate B9 was prepared. At this time, the volatile component ratio and the imidation ratio of the semi-cured first polyimide layer were 1.2% and 80%. A peeling test was conducted on the prepared metal-clad laminate B9 in the same manner as in Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[実施例B10]
 ポリアミド酸溶液B-Aの代わりに、ポリアミド酸溶液B-Cを使用したこと以外、実施例B1と同様にして、金属張積層板B10を調製した。このときの半硬化状態の第1のポリイミド層の揮発成分率とイミド化率は2.6%、83%だった。実施例B1と同様に、調製した金属張積層板B10の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example B10]
A metal-clad laminate B10 was prepared in the same manner as in Example B1, except that the polyamic acid solution BC was used instead of the polyamic acid solution BA. At this time, the volatile component ratio and the imidation ratio of the first cured polyimide layer were 2.6% and 83%. A peeling test of the prepared metal-clad laminate B10 was performed in the same manner as in Example B1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例B11]
 ポリアミド酸溶液B-Aの代わりに、ポリアミド酸溶液B-Cを使用し、ポリアミド酸溶液B-Eの代わりに、ポリアミド酸溶液B-Fを使用したこと以外、実施例B1と同様にして、金属張積層板B11を調製した。このときの半硬化状態の第1のポリイミド層の揮発成分率とイミド化率は4.4%、59%だった。実施例B1と同様に、調製した金属張積層板B11の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example B11]
A polyamic acid solution BC was used in place of the polyamic acid solution BA, and a polyamic acid solution BF was used instead of the polyamic acid solution BE in the same manner as in Example B1. A metal-clad laminate B11 was prepared. At this time, the volatile component ratio and the imidation ratio of the semi-cured first polyimide layer were 4.4% and 59%. A peeling test of the prepared metal-clad laminate B11 was performed in the same manner as in Example B1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例B12]
 ポリアミド酸溶液B-Aの代わりに、ポリアミド酸溶液B-Cを使用し、ポリアミド酸溶液B-Eの代わりに、ポリアミド酸溶液B-Gを使用したこと以外、実施例B1と同様にして、金属張積層板B12を調製した。このときの半硬化状態の第1のポリイミド層の揮発成分率とイミド化率は10.1%、23%だった。実施例B1と同様に、調製した金属張積層板B12の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example B12]
In the same manner as in Example B1, except that the polyamic acid solution BC was used instead of the polyamic acid solution BA, and the polyamic acid solution BG was used instead of the polyamic acid solution BE, A metal-clad laminate B12 was prepared. At this time, the volatile component ratio and the imidation ratio of the first cured polyimide layer were 10.1% and 23%. A peeling test of the prepared metal-clad laminate B12 was performed in the same manner as in Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[実施例B13]
 ポリアミド酸溶液B-Aの代わりに、ポリアミド酸溶液B-Cを使用し、ポリアミド酸溶液B-Eの代わりに、ポリアミド酸溶液B-Aを使用したこと以外、実施例B1と同様にして、金属張積層板B13を調製した。このときの半硬化状態の第1のポリイミド層の揮発成分率とイミド化率は10.0%、22%だった。実施例B1と同様に、調製した金属張積層板B13の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example B13]
In the same manner as in Example B1, except that the polyamic acid solution BC was used instead of the polyamic acid solution BA, and the polyamic acid solution BA was used instead of the polyamic acid solution BE, A metal-clad laminate B13 was prepared. At this time, the volatile component ratio and the imidation ratio of the semi-cured first polyimide layer were 10.0% and 22%. A peeling test of the prepared metal-clad laminate B13 was performed in the same manner as in Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[実施例B14]
 ポリアミド酸溶液B-Aの代わりに、ポリアミド酸溶液B-Dを使用したこと以外、実施例B1と同様にして、金属張積層板B14を調製した。このときの半硬化状態の第1のポリイミド層の揮発成分率とイミド化率は15.1%、20%だった。実施例B1と同様に、調製した金属張積層板B14の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example B14]
A metal-clad laminate B14 was prepared in the same manner as in Example B1, except that the polyamic acid solution BD was used instead of the polyamic acid solution BA. At this time, the volatile component ratio and the imidation ratio of the first polyimide layer in a semi-cured state were 15.1% and 20%. A peeling test of the prepared metal-clad laminate B14 was performed in the same manner as in Example B1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例B15]
 ポリアミド酸溶液B-Aの代わりに、ポリアミド酸溶液B-Dを使用し、ポリアミド酸溶液B-Eの代わりに、ポリアミド酸溶液B-Fを使用したこと以外、実施例B1と同様にして、金属張積層板B15を調製した。このときの半硬化状態の第1のポリイミド層の揮発成分率とイミド化率は8.3%、31%だった。実施例B1と同様に、調製した金属張積層板B15の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example B15]
A polyamic acid solution BD was used instead of the polyamic acid solution BA, and a polyamic acid solution BF was used instead of the polyamic acid solution BE in the same manner as in Example B1. A metal-clad laminate B15 was prepared. At this time, the volatile component ratio and the imidation ratio of the first polyimide layer in the semi-cured state were 8.3% and 31%. A peeling test of the prepared metal-clad laminate B15 was performed in the same manner as in Example B1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例B16]
 ポリアミド酸溶液B-Aの代わりに、ポリアミド酸溶液B-Dを使用し、ポリアミド酸溶液B-Eの代わりに、ポリアミド酸溶液B-Gを使用したこと以外、実施例B1と同様にして、金属張積層板B16を調製した。このときの半硬化状態の第1のポリイミド層の揮発成分率とイミド化率は12.0%、22%だった。実施例B1と同様に、調製した金属張積層板B16の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example B16]
In the same manner as in Example B1, except that the polyamic acid solution BD was used instead of the polyamic acid solution BA, and the polyamic acid solution BG was used instead of the polyamic acid solution BE, A metal-clad laminate B16 was prepared. At this time, the volatile component ratio and the imidation ratio of the first polyimide layer in the semi-cured state were 12.0% and 22%. A peeling test of the prepared metal-clad laminate B16 was performed in the same manner as in Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[実施例B17]
 ポリアミド酸溶液B-Aの代わりに、ポリアミド酸溶液B-Dを使用し、ポリアミド酸溶液B-Eの代わりに、ポリアミド酸溶液B-Aを使用したこと以外、実施例B1と同様にして、金属張積層板B17を調製した。このときの半硬化状態の第1のポリイミド層の揮発成分率とイミド化率は7.0%、25%だった。実施例B1と同様に、調製した金属張積層板B17の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example B17]
In the same manner as in Example B1, except that the polyamic acid solution BD was used instead of the polyamic acid solution BA, and the polyamic acid solution BA was used instead of the polyamic acid solution BE, A metal-clad laminate B17 was prepared. At this time, the volatile component ratio and the imidation ratio of the semi-cured first polyimide layer were 7.0% and 25%. A peeling test of the prepared metal-clad laminate B17 was performed in the same manner as in Example B1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例B18]
 ポリアミド酸溶液B-Aの代わりに、ポリアミド酸溶液B-Dを使用し、ポリアミド酸溶液B-Eの代わりに、ポリアミド酸溶液B-Cを使用したこと以外、実施例B1と同様にして、金属張積層板B18を調製した。このときの半硬化状態の第1のポリイミド層の揮発成分率とイミド化率は8.2%、21%だった。実施例B1と同様に、調製した金属張積層板B18の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example B18]
In the same manner as in Example B1, except that the polyamic acid solution BD was used instead of the polyamic acid solution BA, and the polyamic acid solution BC was used instead of the polyamic acid solution BE, A metal-clad laminate B18 was prepared. At this time, the volatile component ratio and the imidation ratio of the semi-cured first polyimide layer were 8.2% and 21%. A peeling test was conducted on the prepared metal-clad laminate B18 in the same manner as in Example B1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
比較例B1
 第1のポリイミド層となるポリアミド酸溶液を120℃から360℃まで段階的に昇温させたこと以外、実施例B1と同様にして、金属張積層板B19を調製した。このときの第1のポリイミド層の揮発成分率とイミド化率は0.0%、100%だった。実施例B1と同様に、調製した金属張積層板B19の剥離試験を行ったところ、第1のポリイミド層及び第2のポリイミド層の層間剥離が生じた。
Comparative Example B1
A metal-clad laminate B19 was prepared in the same manner as in Example B1, except that the temperature of the polyamic acid solution serving as the first polyimide layer was gradually increased from 120 ° C to 360 ° C. At this time, the volatile component ratio and the imidation ratio of the first polyimide layer were 0.0% and 100%. A peel test of the prepared metal-clad laminate B19 was performed in the same manner as in Example B1, and delamination between the first polyimide layer and the second polyimide layer occurred.
比較例B2
 第1のポリイミド層となるポリアミド酸溶液を120℃から360℃まで段階的に昇温させたこと以外、実施例B2と同様にして、金属張積層板B20を調製した。このときの第1のポリイミド層の揮発成分率とイミド化率は0.0%、100%だった。実施例B1と同様に、調製した金属張積層板B20の剥離試験を行ったところ、第1のポリイミド層及び第2のポリイミド層の層間剥離が生じた。
Comparative Example B2
A metal-clad laminate B20 was prepared in the same manner as in Example B2, except that the temperature of the polyamic acid solution serving as the first polyimide layer was gradually increased from 120 ° C to 360 ° C. At this time, the volatile component ratio and the imidation ratio of the first polyimide layer were 0.0% and 100%. When a peel test was conducted on the prepared metal-clad laminate B20 in the same manner as in Example B1, delamination between the first polyimide layer and the second polyimide layer occurred.
比較例B3
 第1のポリイミド層となるポリアミド酸溶液を120℃から360℃まで段階的に昇温させたこと以外、実施例B14と同様にして、金属張積層板B21を調製した。このときの第1のポリイミド層の揮発成分率とイミド化率は0.0%、100%だった。実施例B1と同様に、調製した金属張積層板B21の剥離試験を行ったところ、第1のポリイミド層及び第2のポリイミド層の層間剥離が生じた。
Comparative Example B3
A metal-clad laminate B21 was prepared in the same manner as in Example B14, except that the temperature of the polyamic acid solution serving as the first polyimide layer was gradually increased from 120 ° C. to 360 ° C. At this time, the volatile component ratio and the imidation ratio of the first polyimide layer were 0.0% and 100%. A peel test of the prepared metal-clad laminate B21 was performed in the same manner as in Example B1, and delamination between the first polyimide layer and the second polyimide layer occurred.
比較例B4
 第1のポリイミド層となるポリアミド酸溶液を120℃から360℃まで段階的に昇温させたこと以外、実施例B15と同様にして、金属張積層板B22を調製した。このときの第1のポリイミド層の揮発成分率とイミド化率は0.0%、100%だった。実施例B1と同様に、調製した金属張積層板B22の剥離試験を行ったところ、第1のポリイミド層及び第2のポリイミド層の層間剥離が生じた。
Comparative Example B4
A metal-clad laminate B22 was prepared in the same manner as in Example B15, except that the temperature of the polyamic acid solution serving as the first polyimide layer was gradually increased from 120 ° C to 360 ° C. At this time, the volatile component ratio and the imidation ratio of the first polyimide layer were 0.0% and 100%. When a peel test was performed on the prepared metal-clad laminate B22 in the same manner as in Example B1, delamination between the first polyimide layer and the second polyimide layer occurred.
[実施例B19]
 厚み12μmの電解銅箔上に、第1のポリイミド層となるポリアミド酸溶液B-Eを硬化後の厚みが2.5μmとなるように均一に塗布した後、120℃から240℃まで段階的に昇温させて適当な溶媒の除去及びイミド化を行った。このときの半硬化状態の第1のポリイミド層の揮発成分率とイミド化率は5.5%、53%だった。次に、その上に、第2のポリイミド層となるポリアミド酸溶液B-Aを硬化後の厚みが20μmとなるように均一に塗布した後、その上に、第3のポリイミド層となるポリアミド酸溶液B-Eを硬化後の厚みが2.5μmとなるように均一に塗布し、120℃で3分間加熱乾燥して溶媒を除去した。その後、130℃から360℃まで段階的に昇温させてイミド化を行い、金属張積層板B23を調製したが、発泡は確認されず、銅箔エッチング後にポリイミドフィルムのカールも確認されなかった。また、寸法変化率は「良」だった。
[Example B19]
After a polyamic acid solution BE serving as a first polyimide layer is uniformly applied on a 12 μm-thick electrolytic copper foil so as to have a cured thickness of 2.5 μm, the polyamic acid solution BE is gradually applied from 120 ° C. to 240 ° C. The temperature was raised to remove an appropriate solvent and imidation. At this time, the volatile component ratio and the imidation ratio of the first polyimide layer in the semi-cured state were 5.5% and 53%. Next, after a polyamic acid solution BA serving as a second polyimide layer is uniformly applied thereon so as to have a cured thickness of 20 μm, a polyamic acid solution serving as a third polyimide layer is formed thereon. The solution BE was uniformly applied so that the thickness after curing became 2.5 μm, and was heated and dried at 120 ° C. for 3 minutes to remove the solvent. Thereafter, the temperature was increased stepwise from 130 ° C. to 360 ° C. to perform imidization to prepare a metal-clad laminate B23. However, no foaming was observed, and no curling of the polyimide film was observed after copper foil etching. The dimensional change rate was "good".
[実施例B20]
 第1のポリイミド層及び第3のポリイミド層となるポリアミド酸溶液B-Eの代わりに、ポリアミド酸溶液B-Fを硬化後の厚みがそれぞれ2.7μmとなるように均一に塗布し、第2のポリイミド層となるポリアミド酸溶液B-Aを硬化後の厚みが19.6μmとなるように均一に塗布したこと以外、実施例B19と同様にして、金属張積層板B24を調製したが、発泡は確認されず、銅箔エッチング後にポリイミドフィルムのカールも確認されなかった。また、寸法変化率は「良」だった。このときの半硬化状態の第1のポリイミド層の揮発成分率とイミド化率は2.6%、83%だった。
[Example B20]
Instead of the polyamic acid solution BE to be the first polyimide layer and the third polyimide layer, a polyamic acid solution BF is uniformly applied so that the thickness after curing becomes 2.7 μm, respectively, A metal-clad laminate B24 was prepared in the same manner as in Example B19, except that the polyamic acid solution BA serving as a polyimide layer was uniformly applied so that the thickness after curing became 19.6 μm. No curl of the polyimide film was observed after etching of the copper foil. The dimensional change rate was "good". At this time, the volatile component ratio and the imidation ratio of the first cured polyimide layer were 2.6% and 83%.
[実施例B21]
 第1のポリイミド層及び第3のポリイミド層となるポリアミド酸溶液B-Eの代わりに、ポリアミド酸溶液B-Gを硬化後の厚みがそれぞれ3.2μmとなるように均一に塗布し、第2のポリイミド層となるポリアミド酸溶液B-Aを硬化後の厚みが18.6μmとなるように均一に塗布したこと以外、実施例B19と同様にして、金属張積層板B25を調製したが、発泡は確認されず、銅箔エッチング後にポリイミドフィルムのカールも確認されなかった。また、寸法変化率は「可」だった。このときの半硬化状態の第1のポリイミド層の揮発成分率とイミド化率は3.2%、70%だった。
[Example B21]
Instead of the polyamic acid solution BE to be the first polyimide layer and the third polyimide layer, a polyamic acid solution BG is uniformly applied so that the thickness after curing becomes 3.2 μm, respectively. A metal-clad laminate B25 was prepared in the same manner as in Example B19, except that the polyamic acid solution BA serving as a polyimide layer was uniformly applied so that the thickness after curing became 18.6 μm. No curl of the polyimide film was observed after etching of the copper foil. In addition, the dimensional change rate was “OK”. At this time, the volatile component ratio and the imidation ratio of the semi-cured first polyimide layer were 3.2% and 70%.
[実施例B22]
 第1と第3のポリイミド層となるポリアミド酸溶液B-Eを硬化後の厚みが1.7μmとなるように均一に塗布したこと、第2のポリイミド層となるポリアミド酸溶液B-Aを硬化後の厚みが22μmとなるように均一に塗布したこと、並びに、ポリアミド酸溶液B-A及び第3のポリイミド層となるポリアミド酸溶液B-Eを塗布後の130℃から360℃までの昇温時間を1/3に短縮したこと以外、実施例B19と同様にして、金属張積層板B26を調製したところ、発泡は確認されず、銅箔エッチング後にポリイミドフィルムのカールも確認されなかった。また、寸法変化率は「良」だった。このときの半硬化状態の第1のポリイミド層の揮発成分率とイミド化率は10.1%、23%だった。
[Example B22]
The polyamic acid solution BE to be the first and third polyimide layers was uniformly applied so as to have a thickness of 1.7 μm after curing, and the polyamic acid solution BA to be the second polyimide layer was cured. After the application, the temperature was raised from 130 ° C. to 360 ° C. after the application of the polyamic acid solution BA and the polyamic acid solution BE to be the third polyimide layer. A metal-clad laminate B26 was prepared in the same manner as in Example B19 except that the time was reduced to 1/3. As a result, no foaming was observed, and no curling of the polyimide film was observed after etching the copper foil. The dimensional change rate was "good". At this time, the volatile component ratio and the imidation ratio of the first cured polyimide layer were 10.1% and 23%.
[実施例B23]
 第1と第3のポリイミド層となるポリアミド酸溶液B-Eを硬化後の厚みが1.8μmとなるように均一に塗布したこと、第2のポリイミド層となるポリアミド酸溶液B-Aを硬化後の厚みが22μmとなるように均一に塗布したこと、並びに、ポリアミド酸溶液B-A及び第3のポリイミド層となるポリアミド酸溶液B-Eを塗布後の130℃から360℃までの昇温時間を1/3に短縮したこと以外、実施例B19と同様にして、金属張積層板B27を調製したところ、発泡は確認されず、銅箔エッチング後にポリイミドフィルムのカールも確認されなかった。また、寸法変化率は「良」だった。このときの半硬化状態の第1のポリイミド層の揮発成分率とイミド化率は6.7%、28%だった。
[Example B23]
The polyamic acid solution BE to be the first and third polyimide layers was uniformly applied so as to have a thickness of 1.8 μm after curing, and the polyamic acid solution BA to be the second polyimide layer was cured. After the application, the temperature was raised from 130 ° C. to 360 ° C. after the application of the polyamic acid solution BA and the polyamic acid solution BE to be the third polyimide layer. A metal-clad laminate B27 was prepared in the same manner as in Example B19, except that the time was reduced to 1/3. As a result, no foaming was observed, and no curling of the polyimide film was observed after copper foil etching. The dimensional change rate was "good". At this time, the volatile component ratio and the imidation ratio of the first polyimide layer in the semi-cured state were 6.7% and 28%.
[実施例B24]
 第1と第3のポリイミド層となるポリアミド酸溶液B-Eを硬化後の厚みが2.2μmとなるように均一に塗布したこと、第2のポリイミド層となるポリアミド酸溶液B-Aを硬化後の厚みが20μmとなるように均一に塗布したこと、並びに、ポリアミド酸溶液B-A及び第3のポリイミド層となるポリアミド酸溶液B-Eを塗布後の130℃から360℃までの昇温時間を1/3に短縮したこと以外、実施例B19と同様にして、金属張積層板B28を調製したところ、発泡は確認されず、銅箔エッチング後にポリイミドフィルムのカールも確認されなかった。また、寸法変化率は「良」だった。このときの半硬化状態の第1のポリイミド層の揮発成分率とイミド化率は15.1%、20%だった。
[Example B24]
The polyamic acid solution BE to be the first and third polyimide layers was uniformly applied so as to have a thickness of 2.2 μm after curing, and the polyamic acid solution BA to be the second polyimide layer was cured. After the application, the temperature was increased from 130 ° C. to 360 ° C. after the application of the polyamic acid solution BA and the polyamic acid solution BE to be the third polyimide layer. A metal-clad laminate B28 was prepared in the same manner as in Example B19, except that the time was reduced to 1/3. As a result, no foaming was observed, and no curling of the polyimide film was observed after etching the copper foil. The dimensional change rate was "good". At this time, the volatile component ratio and the imidation ratio of the first polyimide layer in a semi-cured state were 15.1% and 20%.
[実施例B25]
 第1と第3のポリイミド層となるポリアミド酸溶液B-Eを硬化後の厚みが2.4μmとなるように均一に塗布したこと、並びに、第2のポリイミド層となるポリアミド酸溶液B-Dを硬化後の厚みが20μmとなるように均一に塗布したこと以外、実施例B19と同様にして、金属張積層板B29を調製したところ、発泡は確認されず、銅箔エッチング後にポリイミドフィルムのカールも確認されなかった。また、寸法変化率は「良」だった。このときの半硬化状態の第1のポリイミド層の揮発成分率とイミド化率は15.1%、20%だった。
[Example B25]
The polyamic acid solution BE to be the first and third polyimide layers was uniformly applied so as to have a thickness of 2.4 μm after curing, and the polyamic acid solution BD to be the second polyimide layer. Was prepared in the same manner as in Example B19, except that the resin composition was uniformly coated so that the thickness after curing became 20 μm. No foaming was observed, and the curl of the polyimide film after copper foil etching was confirmed. Was also not confirmed. The dimensional change rate was "good". At this time, the volatile component ratio and the imidation ratio of the first polyimide layer in a semi-cured state were 15.1% and 20%.
[実施例B26]
 第1と第3のポリイミド層となるポリアミド酸溶液B-Fを硬化後の厚みが2.7μmとなるように均一に塗布したこと、並びに、第2のポリイミド層となるポリアミド酸溶液B-Dを硬化後の厚みが20μmとなるように均一に塗布したこと以外、実施例B19と同様にして、金属張積層板B30を調製したところ、発泡は確認されず、銅箔エッチング後にポリイミドフィルムのカールも確認されなかった。また、寸法変化率は「良」だった。このときの半硬化状態の第1のポリイミド層の揮発成分率とイミド化率は8.3%、31%だった。
[Example B26]
The polyamic acid solution BF to be the first and third polyimide layers was uniformly applied so as to have a cured thickness of 2.7 μm, and the polyamic acid solution BD to be the second polyimide layer Was prepared in the same manner as in Example B19, except that the resin was uniformly coated so that the thickness after curing became 20 μm. When a metal-clad laminate B30 was prepared, foaming was not confirmed. Was also not confirmed. The dimensional change rate was "good". At this time, the volatile component ratio and the imidation ratio of the first polyimide layer in the semi-cured state were 8.3% and 31%.
[実施例B27]
 第1と第3のポリイミド層となるポリアミド酸溶液B-Gを硬化後の厚みが3.2μmとなるように均一に塗布したこと、並びに、第2のポリイミド層となるポリアミド酸溶液B-Dを硬化後の厚みが19μmとなるように均一に塗布したこと以外、実施例B19と同様にして、金属張積層板B31を調製したところ、発泡は確認されず、銅箔エッチング後にポリイミドフィルムのカールも確認されなかった。また、寸法変化率は「可」だった。このときの半硬化状態の第1のポリイミド層の揮発成分率とイミド化率は12.0%、22%だった。
[Example B27]
The polyamic acid solution BG to be the first and third polyimide layers was uniformly applied so as to have a cured thickness of 3.2 μm, and the polyamic acid solution BD to be the second polyimide layer. Was prepared in the same manner as in Example B19, except that the resin was uniformly coated so that the thickness after curing became 19 μm. No foaming was observed. Was also not confirmed. In addition, the dimensional change rate was “OK”. At this time, the volatile component ratio and the imidation ratio of the first polyimide layer in the semi-cured state were 12.0% and 22%.
比較例B5
 第1のポリイミド層となるポリアミド酸溶液を120℃で3分間加熱乾燥させたこと以外、実施例B19と同様にして、金属張積層板B32を調製したところ、銅箔エッチング後にポリイミドフィルムのカールが確認された。このとき、第1のポリイミド層となる層を加熱乾燥させた状態の揮発成分率とイミド化率は35.0%、0%だった。
Comparative Example B5
A metal-clad laminate B32 was prepared in the same manner as in Example B19, except that the polyamic acid solution serving as the first polyimide layer was dried by heating at 120 ° C. for 3 minutes. confirmed. At this time, the volatile component ratio and the imidation ratio in a state where the layer to be the first polyimide layer was dried by heating were 35.0% and 0%.
比較例B6
 第1のポリイミド層となるポリアミド酸溶液を120℃で3分間加熱乾燥させたこと以外、実施例B20と同様にして、金属張積層板B33を調製したところ、銅箔エッチング後にポリイミドフィルムのカールが確認された。このとき、第1のポリイミド層となる層を加熱乾燥させた状態の揮発成分率とイミド化率は32.0%、0%だった。
Comparative Example B6
A metal-clad laminate B33 was prepared in the same manner as in Example B20, except that the polyamic acid solution serving as the first polyimide layer was dried by heating at 120 ° C. for 3 minutes. confirmed. At this time, the volatile component ratio and the imidation ratio in a state where the layer to be the first polyimide layer was dried by heating were 32.0% and 0%.
比較例B7
 第1のポリイミド層となるポリアミド酸溶液を120℃で3分間加熱乾燥させたこと以外、実施例B21と同様にして、金属張積層板B34を調製したところ、銅箔エッチング後にポリイミドフィルムのカールが確認された。このとき、第1のポリイミド層となる層を加熱乾燥させた状態の揮発成分率とイミド化率は30.0%、0%だった。
Comparative Example B7
A metal-clad laminate B34 was prepared in the same manner as in Example B21, except that the polyamic acid solution serving as the first polyimide layer was heated and dried at 120 ° C. for 3 minutes. confirmed. At this time, the volatile component ratio and the imidation ratio in a state where the layer to be the first polyimide layer was dried by heating were 30.0% and 0%.
比較例B8
 第1のポリイミド層となるポリアミド酸溶液を120℃で3分間加熱乾燥させたこと以外、実施例B22と同様にして、金属張積層板B35を調製したところ、発泡が確認された。このとき、第1のポリイミド層となる層を加熱乾燥させた状態の揮発成分率とイミド化率は34.0%、0%だった。
Comparative Example B8
When a metal-clad laminate B35 was prepared in the same manner as in Example B22, except that the polyamic acid solution serving as the first polyimide layer was heated and dried at 120 ° C. for 3 minutes, foaming was confirmed. At this time, the volatile component ratio and the imidation ratio in a state where the layer to be the first polyimide layer was dried by heating were 34.0% and 0%.
比較例B9
 第1のポリイミド層となるポリアミド酸溶液を120℃で3分間加熱乾燥させたこと以外、実施例B23と同様にして、金属張積層板B36を調製したところ、発泡が確認された。このとき、第1のポリイミド層となる層を加熱乾燥させた状態の揮発成分率とイミド化率は30.0%、0%だった。
Comparative Example B9
When a metal-clad laminate B36 was prepared in the same manner as in Example B23 except that the polyamic acid solution serving as the first polyimide layer was heated and dried at 120 ° C. for 3 minutes, foaming was confirmed. At this time, the volatile component ratio and the imidation ratio in a state where the layer to be the first polyimide layer was dried by heating were 30.0% and 0%.
比較例B10
 第1のポリイミド層となるポリアミド酸溶液を120℃で3分間加熱乾燥させたこと以外、実施例B24と同様にして、金属張積層板B37を調製したところ、発泡が確認された。このとき、第1のポリイミド層となる層を加熱乾燥させた状態の揮発成分率とイミド化率は31.0%、0%だった。
Comparative Example B10
When a metal-clad laminate B37 was prepared in the same manner as in Example B24 except that the polyamic acid solution serving as the first polyimide layer was heated and dried at 120 ° C. for 3 minutes, foaming was confirmed. At this time, the volatile component ratio and the imidation ratio in a state where the layer to be the first polyimide layer was dried by heating were 31.0% and 0%.
(合成例C1)
 1000mlのセパラブルフラスコに、45.989gのm-TB(216.63mmol)、15.832gのTPE-R(54.16mmol)、680gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、58.179gのPMDA(266.73mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液C-Aを得た。得られたポリアミド酸溶液C-Aの粘度は22,000cPであった。
(Synthesis example C1)
45.989 g of m-TB (216.63 mmol), 15.832 g of TPE-R (54.16 mmol) and 680 g of DMAc were charged into a 1000 ml separable flask, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 58.179 g of PMDA (266.73 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamic acid solution CA. The viscosity of the obtained polyamic acid solution CA was 22,000 cP.
(合成例C2)
 300mlのセパラブルフラスコに、9.244gの4,4’-DAPE(46.16mmol)、176gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、14.756gのBTDA(45.79mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液C-Bを得た。得られたポリアミド酸溶液C-Bの粘度は1,200cPであった。
(Synthesis example C2)
9.244 g of 4,4′-DAPE (46.16 mmol) and 176 g of DMAc were charged into a 300 ml separable flask, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 14.756 g of BTDA (45.79 mmol) was added, and the mixture was stirred at room temperature for 4 hours to obtain a polyamic acid solution CB. The viscosity of the obtained polyamic acid solution CB was 1,200 cP.
(合成例C3)
 300mlのセパラブルフラスコに、11.464gのTPE-Q(39.22mmol)、176gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、12.536gのBTDA(38.90mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液C-Cを得た。得られたポリアミド酸溶液C-Cの粘度は2,200cPであった。
(Synthesis example C3)
11.464 g of TPE-Q (39.22 mmol) and 176 g of DMAc were charged into a 300 ml separable flask, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 12.536 g of BTDA (38.90 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamic acid solution CC. The viscosity of the obtained polyamic acid solution CC was 2,200 cP.
(合成例C4)
 300mlのセパラブルフラスコに、11.464gのTPE-R(39.22mmol)、176gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、12.536gのBTDA(38.90mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液C-Dを得た。得られたポリアミド酸溶液C-Dの粘度は1,100cPであった。
(Synthesis example C4)
11.64 g of TPE-R (39.22 mmol) and 176 g of DMAc were charged into a 300 ml separable flask, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 12.536 g of BTDA (38.90 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamic acid solution CD. The viscosity of the obtained polyamic acid solution CD was 1,100 cP.
(合成例C5)
 300mlのセパラブルフラスコに、11.386gのAPB(38.95mmol)、176gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、12.614gのBTDA(39.14mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液C-Eを得た。得られたポリアミド酸溶液C-Eの粘度は200cPであった。
(Synthesis example C5)
11.386 g of APB (38.95 mmol) and 176 g of DMAc were charged into a 300 ml separable flask and stirred at room temperature under a nitrogen stream. After complete dissolution, 12.614 g of BTDA (39.14 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamic acid solution CE. The viscosity of the obtained polyamic acid solution CE was 200 cP.
(合成例C6)
 300mlのセパラブルフラスコに、13.493gのBAPP(32.87mmol)、176gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、10.507gのBTDA(32.61mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液C-Fを得た。得られたポリアミド酸溶液C-Fの粘度は1,400cPであった。
(Synthesis example C6)
13.493 g of BAPP (32.87 mmol) and 176 g of DMAc were charged into a 300 ml separable flask, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 10.507 g of BTDA (32.61 mmol) was added, and the mixture was stirred at room temperature for 4 hours to obtain a polyamic acid solution CF. The viscosity of the obtained polyamic acid solution CF was 1,400 cP.
(合成例C7)
 300mlのセパラブルフラスコに、9.227gの3,4’-DAPE(46.08mmol)、176gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、14.773gのBTDA(45.85mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液C-Gを得た。得られたポリアミド酸溶液C-Gの粘度は500cPであった。
(Synthesis example C7)
9.227 g of 3,4′-DAPE (46.08 mmol) and 176 g of DMAc were charged into a 300 ml separable flask, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 14.773 g of BTDA (45.85 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamic acid solution CG. The viscosity of the obtained polyamic acid solution CG was 500 cP.
(合成例C8)
 300mlのセパラブルフラスコに、4.660gのPDA(43.09mmol)、2.157gの4,4’-DAPE(10.77mmol)、176gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、17.183gのBTDA(53.33mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液C-Hを得た。得られたポリアミド酸溶液C-Hの粘度は1,500cPであった。
(Synthesis example C8)
4.660 g of PDA (43.09 mmol), 2.157 g of 4,4'-DAPE (10.77 mmol) and 176 g of DMAc were added to a 300 ml separable flask, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 17.183 g of BTDA (53.33 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamic acid solution CH. The viscosity of the obtained polyamic acid solution CH was 1,500 cP.
(合成例C9)
 300mlのセパラブルフラスコに、12.053gのTFMB(37.64mmol)、176gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、11.947gのBTDA(37.07mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液C-Iを得た。得られたポリアミド酸溶液C-Iの粘度は1,200cPであった。
(Synthesis example C9)
In a 300 ml separable flask, 12.053 g of TFMB (37.64 mmol) and 176 g of DMAc were charged, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 11.947 g of BTDA (37.07 mmol) was added, and the mixture was stirred at room temperature for 4 hours to obtain a polyamic acid solution CI. The viscosity of the obtained polyamic acid solution CI was 1,200 cP.
(合成例C10)
 300mlのセパラブルフラスコに、9.498gの4,4’-DAPE(47.43mmol)、176gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、7.581gのBTDA(23.53mmol)及び6.922gのBPDA(23.53mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液C-Jを得た。得られたポリアミド酸溶液C-Jの粘度は2,500cPであった。
(Synthesis example C10)
9.498 g of 4,4′-DAPE (47.43 mmol) and 176 g of DMAc were charged into a 300 ml separable flask, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 7.581 g of BTDA (23.53 mmol) and 6.922 g of BPDA (23.53 mmol) were added, and the mixture was stirred at room temperature for 4 hours to obtain a polyamic acid solution CJ. The viscosity of the obtained polyamic acid solution CJ was 2,500 cP.
(合成例C11)
 300mlのセパラブルフラスコに、9.727gの4,4’-DAPE(48.58mmol)、176gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、11.646gのBTDA(36.14mmol)及び2.628gのPMDA(12.05mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液C-Kを得た。得られたポリアミド酸溶液C-Kの粘度は1,100cPであった。
(Synthesis example C11)
9.727 g of 4,4′-DAPE (48.58 mmol) and 176 g of DMAc were charged into a 300 ml separable flask, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 11.646 g of BTDA (36.14 mmol) and 2.628 g of PMDA (12.05 mmol) were added, and the mixture was stirred at room temperature for 4 hours to obtain a polyamic acid solution CK. The viscosity of the obtained polyamic acid solution CK was 1,100 cP.
(合成例C12)
 300mlのセパラブルフラスコに、4.575gの4,4’-DAPE(22.85mmol)、4.850gのm-TB(22.85mmol)、176gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、14.576gのBTDA(45.23mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液C-Lを得た。得られたポリアミド酸溶液C-Lの粘度は1,100cPであった。
(Synthesis example C12)
4.575 g of 4,4′-DAPE (22.85 mmol), 4.850 g of m-TB (22.85 mmol), and 176 g of DMAc were charged into a 300 ml separable flask, and stirred at room temperature under a nitrogen stream. did. After complete dissolution, 14.576 g of BTDA (45.23 mmol) was added, and the mixture was stirred at room temperature for 4 hours to obtain a polyamic acid solution CL. The viscosity of the obtained polyamic acid solution CL was 1,100 cP.
(合成例C13)
 300mlのセパラブルフラスコに、9.807gの4,4’-DAPE(48.97mmol)、176gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、14.193gのBPDA(48.24mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液C-Mを得た。得られたポリアミド酸溶液C-Mの粘度は1,000cPであった。
(Synthesis example C13)
9.807 g of 4,4′-DAPE (48.97 mmol) and 176 g of DMAc were charged into a 300 ml separable flask, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 14.193 g of BPDA (48.24 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamic acid solution CM. The viscosity of the resulting polyamic acid solution CM was 1,000 cP.
(合成例C14)
 1000mlのセパラブルフラスコに、62.734gのBAPP(152.82mmol)、704gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、33.266gのPMDA(152.51mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液C-Nを得た。得られたポリアミド酸溶液C-Nの粘度は4,800cPであった。
(Synthesis example C14)
To a 1000 ml separable flask were charged 62.734 g of BAPP (152.82 mmol) and 704 g of DMAc, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 33.266 g of PMDA (152.51 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamic acid solution CN. The viscosity of the obtained polyamic acid solution CN was 4,800 cP.
(合成例C15)
 1000mlのセパラブルフラスコに、38.27gのm-TB(180.27mmol)、704gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、57.102gのBTDA(177.21mmol)及び0.629gのPMDA(2.88mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液C-Oを得た。得られたポリアミド酸溶液C-Oの粘度は43,000cPであった。
(Synthesis example C15)
38.27 g of m-TB (180.27 mmol) and 704 g of DMAc were charged into a 1000 ml separable flask, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 57.102 g of BTDA (177.21 mmol) and 0.629 g of PMDA (2.88 mmol) were added and stirred at room temperature for 4 hours to obtain a polyamic acid solution CO. The viscosity of the obtained polyamic acid solution CO was 43,000 cP.
(合成例C16)
 1000mlのセパラブルフラスコに、19.536gのPDA(180.66mmol)、13.087gのBAPP(31.88mmol)、704gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、56.73gのBPDA(192.82mmol)及び6.646gのODPA(21.42mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液C-Pを得た。得られたポリアミド酸溶液C-Pの粘度は51,000cPであった。
(Synthesis example C16)
Into a 1000 ml separable flask, 19.536 g of PDA (180.66 mmol), 13.087 g of BAPP (31.88 mmol) and 704 g of DMAc were charged, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 56.73 g of BPDA (192.82 mmol) and 6.646 g of ODPA (21.42 mmol) were added and stirred at room temperature for 4 hours to obtain a polyamic acid solution CP. The viscosity of the obtained polyamic acid solution CP was 51,000 cP.
(合成例C17)
 1000mlのセパラブルフラスコに、76.91gのBAPP(187.35mmol)、680gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、34.805gのPMDA(159.57mmol)及び8.285gのBPDA(28.16mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液C-Qを得た。得られたポリアミド酸溶液C-Qの粘度は9,500cPであった。
(Synthesis example C17)
76.91 g of BAPP (187.35 mmol) and 680 g of DMAc were charged into a 1000 ml separable flask, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 34.805 g of PMDA (159.57 mmol) and 8.285 g of BPDA (28.16 mmol) were added and stirred at room temperature for 4 hours to obtain a polyamic acid solution CQ. The viscosity of the resulting polyamic acid solution CQ was 9,500 cP.
(合成例C18)
 1000mlのセパラブルフラスコに、77.298gのBAPP(188.30mmol)、680gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、34.492gのPMDA(158.13mmol)及び8.210gのBPDA(27.91mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液C-Rを得た。得られたポリアミド酸溶液C-Rの粘度は2,200cPであった。
(Synthesis example C18)
77.298 g of BAPP (188.30 mmol) and 680 g of DMAc were charged into a 1000 ml separable flask, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 34.492 g of PMDA (158.13 mmol) and 8.210 g of BPDA (27.91 mmol) were added and stirred at room temperature for 4 hours to obtain a polyamic acid solution CR. The viscosity of the obtained polyamic acid solution CR was 2,200 cP.
(合成例C19)
 1000mlのセパラブルフラスコに、50.803gのm-TB(239.31mmol)、7.773gのTPE-R(26.59mmol)、680gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、45.934gのPMDA(210.59mmol)及び15.490gのBPDA(52.65mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液C-Sを得た。得られたポリアミド酸溶液C-Sの粘度は23,000cPであった。
(Synthesis example C19)
50.803 g of m-TB (239.31 mmol), 7.773 g of TPE-R (26.59 mmol) and 680 g of DMAc were charged into a 1000 ml separable flask, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 45.934 g of PMDA (210.59 mmol) and 15.490 g of BPDA (52.65 mmol) were added and stirred at room temperature for 4 hours to obtain a polyamic acid solution CS. The viscosity of the obtained polyamic acid solution CS was 23,000 cP.
(合成例C20)
 1000mlのセパラブルフラスコに、44.203gのm-TB(208.22mmol)、6.763gのTPE-R(23.14mmol)、680gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、59.043gのBTDA(183.23mmol)及び9.992gのPMDA(45.81mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液C-Tを得た。得られたポリアミド酸溶液C-Tの粘度は12,000cPであった。
(Synthesis example C20)
44.203 g of m-TB (208.22 mmol), 6.763 g of TPE-R (23.14 mmol) and 680 g of DMAc were charged into a 1000 ml separable flask, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 59.043 g of BTDA (183.23 mmol) and 9.992 g of PMDA (45.81 mmol) were added, and the mixture was stirred at room temperature for 4 hours to obtain a polyamic acid solution CT. The viscosity of the obtained polyamic acid solution CT was 12,000 cP.
(合成例C21)
 1000mlのセパラブルフラスコに、33.475gのTPE-R(114.51mmol)、14.346gのTPE-Q(49.08mmol)、704gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、48.179gのBPDA(163.75mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液C-Uを得た。得られたポリアミド酸溶液C-Uの粘度は15,000cPであった。
(Synthesis example C21)
33.475 g of TPE-R (114.51 mmol), 14.346 g of TPE-Q (49.08 mmol) and 704 g of DMAc were charged into a 1000 ml separable flask, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 48.179 g of BPDA (163.75 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamic acid solution CU. The viscosity of the obtained polyamic acid solution CU was 15,000 cP.
(合成例C22)
 1000mlのセパラブルフラスコに、33.542gのTPE-R(114.74mmol)、14.375gのTPE-Q(49.17mmol)、704gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、48.083gのBPDA(163.42mmol)を添加し、室温で4時間撹拌してポリアミド酸溶液C-Vを得た。得られたポリアミド酸溶液C-Vの粘度は10,000cPであった。
(Synthesis example C22)
33.542 g of TPE-R (114.74 mmol), 14.375 g of TPE-Q (49.17 mmol) and 704 g of DMAc were put into a 1000 ml separable flask, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 48.083 g of BPDA (163.42 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamic acid solution CV. The viscosity of the obtained polyamic acid solution CV was 10,000 cP.
[実施例C1]
 厚み12μmの電解銅箔上に、第1のポリイミド層となるポリアミド酸溶液C-Bを硬化後の厚みが2μmとなるように均一に塗布した後、120℃から360℃まで段階的に昇温させて溶媒の除去及びイミド化を行った。次に、その上に、第2のポリイミド層となるポリアミド酸溶液C-Aを硬化後の厚みが25μmとなるように均一に塗布した後、120℃で3分間加熱乾燥して溶媒を除去した。その後、130℃から360℃まで段階的に昇温させてイミド化を行い、金属張積層板C1を調製した。調製した金属張積層板C1の樹脂面に粘着テープを貼り、垂直方向に瞬間的に引き剥がしによる剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example C1]
After a polyamic acid solution CB to be a first polyimide layer is uniformly applied on a 12 μm-thick electrolytic copper foil so as to have a cured thickness of 2 μm, the temperature is raised stepwise from 120 ° C. to 360 ° C. The solvent was removed and imidation was performed. Next, a polyamic acid solution CA to be a second polyimide layer was uniformly applied thereon so as to have a cured thickness of 25 μm, and then heated and dried at 120 ° C. for 3 minutes to remove the solvent. . Thereafter, the temperature was increased stepwise from 130 ° C. to 360 ° C. to perform imidization, thereby preparing a metal-clad laminate C1. An adhesive tape was applied to the resin surface of the prepared metal-clad laminate C1, and a peeling test was performed by instantaneous peeling in the vertical direction. However, peeling between the first polyimide layer and the second polyimide layer was observed. Did not.
[実施例C2]
 ポリアミド酸溶液C-Aの代わりに、ポリアミド酸溶液C-Nを使用したこと以外、実施例C1と同様にして、金属張積層板C2を調製した。実施例C1と同様に、調製した金属張積層板C2の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example C2]
A metal-clad laminate C2 was prepared in the same manner as in Example C1, except that the polyamic acid solution CA was replaced by the polyamic acid solution CN. A peeling test of the prepared metal-clad laminate C2 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[実施例C3]
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Cを使用したこと以外、実施例C1と同様にして、金属張積層板C3を調製した。実施例C1と同様に、調製した金属張積層板C3の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example C3]
A metal-clad laminate C3 was prepared in the same manner as in Example C1, except that the polyamic acid solution CC was used instead of the polyamic acid solution CB. A peeling test of the prepared metal-clad laminate C3 was performed in the same manner as in Example C1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例C4]
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Cを使用し、ポリアミド酸溶液C-Aの代わりに、ポリアミド酸溶液C-Nを使用したこと以外、実施例C1と同様にして、金属張積層板C4を調製した。実施例C1と同様に、調製した金属張積層板C4の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example C4]
A polyamic acid solution CC was used in place of the polyamic acid solution CB, and a polyamic acid solution CN was used in place of the polyamic acid solution CA in the same manner as in Example C1. A metal-clad laminate C4 was prepared. A peeling test of the prepared metal-clad laminate C4 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[実施例C5]
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Dを使用したこと以外、実施例C1と同様にして、金属張積層板C5を調製した。実施例C1と同様に、調製した金属張積層板C5の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example C5]
A metal-clad laminate C5 was prepared in the same manner as in Example C1, except that the polyamic acid solution CD was used instead of the polyamic acid solution CB. A peeling test of the prepared metal-clad laminate C5 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[実施例C6]
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Dを使用し、ポリアミド酸溶液C-Aの代わりに、ポリアミド酸溶液C-Nを使用したこと以外、実施例C1と同様にして、金属張積層板C6を調製した。実施例C1と同様に、調製した金属張積層板C6の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example C6]
In the same manner as in Example C1, except that the polyamic acid solution CD was used instead of the polyamic acid solution CB, and the polyamic acid solution CN was used instead of the polyamic acid solution CA, A metal-clad laminate C6 was prepared. A peeling test of the prepared metal-clad laminate C6 was performed in the same manner as in Example C1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例C7]
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Eを使用したこと以外、実施例C1と同様にして、金属張積層板C7を調製した。実施例C1と同様に、調製した金属張積層板C7の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example C7]
A metal-clad laminate C7 was prepared in the same manner as in Example C1 except that the polyamic acid solution CE was used instead of the polyamic acid solution CB. A peeling test of the prepared metal-clad laminate C7 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[実施例C8]
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Eを使用し、ポリアミド酸溶液C-Aの代わりに、ポリアミド酸溶液C-Nを使用したこと以外、実施例C1と同様にして、金属張積層板C8を調製した。実施例C1と同様に、調製した金属張積層板C8の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example C8]
In the same manner as in Example C1, except that the polyamic acid solution CE was used instead of the polyamic acid solution CB, and the polyamic acid solution CN was used instead of the polyamic acid solution CA, A metal-clad laminate C8 was prepared. A peeling test of the prepared metal-clad laminate C8 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[実施例C9]
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Fを使用したこと以外、実施例C1と同様にして、金属張積層板C9を調製した。実施例C1と同様に、調製した金属張積層板C9の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example C9]
A metal-clad laminate C9 was prepared in the same manner as in Example C1, except that the polyamic acid solution CB was used instead of the polyamic acid solution CB. A peeling test of the prepared metal-clad laminate C9 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[実施例C10]
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Fを使用し、ポリアミド酸溶液C-Aの代わりに、ポリアミド酸溶液C-Nを使用したこと以外、実施例C1と同様にして、金属張積層板C10を調製した。実施例C1と同様に、調製した金属張積層板C10の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example C10]
In the same manner as in Example C1, except that a polyamic acid solution CF was used instead of the polyamic acid solution CB, and a polyamic acid solution CN was used instead of the polyamic acid solution CA, A metal-clad laminate C10 was prepared. A peeling test was conducted on the prepared metal-clad laminate C10 in the same manner as in Example C1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例C11]
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Gを使用したこと以外、実施例C1と同様にして、金属張積層板C11を調製した。実施例C1と同様に、調製した金属張積層板C11の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example C11]
A metal-clad laminate C11 was prepared in the same manner as in Example C1, except that the polyamic acid solution CB was used instead of the polyamic acid solution CB. A peeling test of the prepared metal-clad laminate C11 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[実施例C12]
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Gを使用し、ポリアミド酸溶液C-Aの代わりに、ポリアミド酸溶液C-Nを使用したこと以外、実施例C1と同様にして、金属張積層板C12を調製した。実施例C1と同様に、調製した金属張積層板C12の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example C12]
A polyamic acid solution CG was used in place of the polyamic acid solution CB, and a polyamic acid solution CN was used in place of the polyamic acid solution CA in the same manner as in Example C1. A metal-clad laminate C12 was prepared. A peeling test of the prepared metal-clad laminate C12 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[実施例C13]
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Hを使用したこと以外、実施例C1と同様にして、金属張積層板C13を調製した。実施例C1と同様に、調製した金属張積層板C13の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example C13]
A metal-clad laminate C13 was prepared in the same manner as in Example C1, except that the polyamic acid solution CB was used instead of the polyamic acid solution CB. A peeling test of the prepared metal-clad laminate C13 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[実施例C14]
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Hを使用し、ポリアミド酸溶液C-Aの代わりに、ポリアミド酸溶液C-Nを使用したこと以外、実施例C1と同様にして、金属張積層板C14を調製した。実施例C1と同様に、調製した金属張積層板C14の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example C14]
Instead of the polyamic acid solution CB, a polyamic acid solution CH was used, and instead of the polyamic acid solution CA, a polyamic acid solution CN was used, in the same manner as in Example C1, A metal-clad laminate C14 was prepared. A peeling test of the prepared metal-clad laminate C14 was performed in the same manner as in Example C1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例C15]
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Iを使用したこと以外、実施例C1と同様にして、金属張積層板C15を調製した。実施例C1と同様に、調製した金属張積層板C15の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example C15]
A metal-clad laminate C15 was prepared in the same manner as in Example C1 except that the polyamic acid solution CI was used instead of the polyamic acid solution CB. A peel test of the prepared metal-clad laminate C15 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[実施例C16]
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Iを使用し、ポリアミド酸溶液C-Aの代わりに、ポリアミド酸溶液C-Nを使用したこと以外、実施例C1と同様にして、金属張積層板C16を調製した。実施例C1と同様に、調製した金属張積層板C16の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example C16]
In the same manner as in Example C1, except that the polyamic acid solution CI was used instead of the polyamic acid solution CB, and the polyamic acid solution CN was used instead of the polyamic acid solution CA, A metal-clad laminate C16 was prepared. A peel test of the prepared metal-clad laminate C16 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[実施例C17]
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Jを使用したこと以外、実施例C1と同様にして、金属張積層板C17を調製した。実施例C1と同様に、調製した金属張積層板C17の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example C17]
A metal-clad laminate C17 was prepared in the same manner as in Example C1, except that the polyamic acid solution CB was used instead of the polyamic acid solution CB. A peeling test of the prepared metal-clad laminate C17 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[実施例C18]
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Jを使用し、ポリアミド酸溶液C-Aの代わりに、ポリアミド酸溶液C-Nを使用したこと以外、実施例C1と同様にして、金属張積層板C18を調製した。実施例C1と同様に、調製した金属張積層板C18の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example C18]
A polyamic acid solution CJ was used in place of the polyamic acid solution CB, and a polyamic acid solution CN was used in place of the polyamic acid solution CA in the same manner as in Example C1. A metal-clad laminate C18 was prepared. A peeling test of the prepared metal-clad laminate C18 was performed in the same manner as in Example C1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例C19]
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Kを使用したこと以外、実施例C1と同様にして、金属張積層板C19を調製した。実施例C1と同様に、調製した金属張積層板C19の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example C19]
A metal-clad laminate C19 was prepared in the same manner as in Example C1, except that the polyamic acid solution CB was used instead of the polyamic acid solution CB. A peeling test of the prepared metal-clad laminate C19 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[実施例C20]
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Kを使用し、ポリアミド酸溶液C-Aの代わりに、ポリアミド酸溶液C-Nを使用したこと以外、実施例C1と同様にして、金属張積層板C20を調製した。実施例C1と同様に、調製した金属張積層板C20の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example C20]
A polyamic acid solution CK was used instead of the polyamic acid solution CB, and a polyamic acid solution CN was used instead of the polyamic acid solution CA in the same manner as in Example C1. A metal-clad laminate C20 was prepared. A peeling test was conducted on the prepared metal-clad laminate C20 in the same manner as in Example C1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例C21]
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Lを使用したこと以外、実施例C1と同様にして、金属張積層板C21を調製した。実施例C1と同様に、調製した金属張積層板C21の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example C21]
A metal-clad laminate C21 was prepared in the same manner as in Example C1 except that the polyamic acid solution CL was used instead of the polyamic acid solution CB. A peeling test of the prepared metal-clad laminate C21 was performed in the same manner as in Example C1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例C22]
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Lを使用し、ポリアミド酸溶液C-Aの代わりに、ポリアミド酸溶液C-Nを使用したこと以外、実施例C1と同様にして、金属張積層板C22を調製した。実施例C1と同様に、調製した金属張積層板C22の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example C22]
In the same manner as in Example C1, except that the polyamic acid solution CL was used instead of the polyamic acid solution CB, and the polyamic acid solution CN was used instead of the polyamic acid solution CA, A metal-clad laminate C22 was prepared. A peeling test of the prepared metal-clad laminate C22 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[実施例C23]
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Oを使用したこと以外、実施例C1と同様にして、金属張積層板C23を調製した。実施例C1と同様に、調製した金属張積層板C23の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example C23]
A metal-clad laminate C23 was prepared in the same manner as in Example C1, except that the polyamic acid solution CB was used instead of the polyamic acid solution CB. A peeling test of the prepared metal-clad laminate C23 was performed in the same manner as in Example C1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
[実施例C24]
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Oを使用し、ポリアミド酸溶液C-Aの代わりに、ポリアミド酸溶液C-Nを使用したこと以外、実施例C1と同様にして、金属張積層板C24を調製した。実施例C1と同様に、調製した金属張積層板C24の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example C24]
In the same manner as in Example C1, except that the polyamic acid solution CO was used instead of the polyamic acid solution CB, and the polyamic acid solution CN was used instead of the polyamic acid solution CA, A metal-clad laminate C24 was prepared. A peeling test of the prepared metal-clad laminate C24 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[実施例C25]
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Tを使用したこと以外、実施例C1と同様にして、金属張積層板C25を調製した。実施例C1と同様に、調製した金属張積層板C25の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example C25]
A metal-clad laminate C25 was prepared in the same manner as in Example C1, except that the polyamic acid solution CB was used instead of the polyamic acid solution CB. A peeling test of the prepared metal-clad laminate C25 was performed in the same manner as in Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[実施例C26]
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Tを使用し、ポリアミド酸溶液C-Aの代わりに、ポリアミド酸溶液C-Nを使用したこと以外、実施例C1と同様にして、金属張積層板C26を調製した。実施例C1と同様に、調製した金属張積層板C26の剥離試験を行ったが、第1のポリイミド層及び第2のポリイミド層の層間の剥離は見られなかった。
[Example C26]
In the same manner as in Example C1, except that the polyamic acid solution CT was used instead of the polyamic acid solution CB, and the polyamic acid solution CN was used instead of the polyamic acid solution CA, A metal-clad laminate C26 was prepared. A peeling test was conducted on the prepared metal-clad laminate C26 in the same manner as in Example C1, but no peeling was observed between the first polyimide layer and the second polyimide layer.
比較例C1
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Mを使用したこと以外、実施例C1と同様にして、金属張積層板C27を調製した。実施例C1と同様に、調製した金属張積層板C27の剥離試験を行ったところ、第1のポリイミド層及び第2のポリイミド層の層間剥離が生じた。
Comparative Example C1
A metal-clad laminate C27 was prepared in the same manner as in Example C1, except that the polyamic acid solution CB was used instead of the polyamic acid solution CB. A peel test of the prepared metal-clad laminate C27 was performed in the same manner as in Example C1, and as a result, delamination of the first polyimide layer and the second polyimide layer occurred.
比較例C2
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Mを使用し、ポリアミド酸溶液C-Aの代わりに、ポリアミド酸溶液C-Nを使用したこと以外、実施例C1と同様にして、金属張積層板C28を調製した。実施例C1と同様に、調製した金属張積層板C28の剥離試験を行ったところ、第1のポリイミド層及び第2のポリイミド層の層間剥離が生じた。
Comparative Example C2
A polyamic acid solution CM was used instead of the polyamic acid solution CB, and a polyamic acid solution CN was used instead of the polyamic acid solution CA in the same manner as in Example C1. A metal-clad laminate C28 was prepared. A peel test of the prepared metal-clad laminate C28 was performed in the same manner as in Example C1, and as a result, delamination of the first polyimide layer and the second polyimide layer occurred.
比較例C3
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Nを使用したこと以外、実施例C1と同様にして、金属張積層板C29を調製した。実施例C1と同様に、調製した金属張積層板C29の剥離試験を行ったところ、第1のポリイミド層及び第2のポリイミド層の層間剥離が生じた。
Comparative Example C3
A metal-clad laminate C29 was prepared in the same manner as in Example C1, except that the polyamic acid solution CB was used instead of the polyamic acid solution CB. A peel test of the prepared metal-clad laminate C29 was performed in the same manner as in Example C1, and as a result, delamination of the first polyimide layer and the second polyimide layer occurred.
比較例C4
 ポリアミド酸溶液C-Aの代わりに、ポリアミド酸溶液C-Pを使用したこと以外、実施例C1と同様にして、金属張積層板C30を調製した。実施例C1と同様に、調製した金属張積層板C30の剥離試験を行ったところ、第1のポリイミド層及び第2のポリイミド層の層間剥離が生じた。
Comparative Example C4
A metal-clad laminate C30 was prepared in the same manner as in Example C1, except that the polyamic acid solution CP was used instead of the polyamic acid solution CA. A peel test of the prepared metal-clad laminate C30 was performed in the same manner as in Example C1, and as a result, delamination of the first polyimide layer and the second polyimide layer occurred.
比較例C5
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Aを使用し、ポリアミド酸溶液C-Aの代わりに、ポリアミド酸溶液C-Bを使用したこと以外、実施例C1と同様にして、金属張積層板C31を調製した。実施例C1と同様に、調製した金属張積層板C31の剥離試験を行ったところ、第1のポリイミド層及び第2のポリイミド層の層間剥離が生じた。
Comparative Example C5
In the same manner as in Example C1, except that the polyamic acid solution CA was used instead of the polyamic acid solution CB, and the polyamic acid solution CB was used instead of the polyamic acid solution CA, A metal-clad laminate C31 was prepared. A peel test of the prepared metal-clad laminate C31 was performed in the same manner as in Example C1, and as a result, delamination of the first polyimide layer and the second polyimide layer occurred.
[実施例C27]
 ポリアミド酸溶液C-Aの塗布後の130℃から360℃までの昇温時間を1/3に短縮したこと以外、実施例C1と同様にして、金属張積層板C32を調製したが、発泡は確認されなかった。
[Example C27]
A metal-clad laminate C32 was prepared in the same manner as in Example C1, except that the temperature-raising time from 130 ° C. to 360 ° C. after the application of the polyamic acid solution CA was shortened to 1/3. Not confirmed.
[実施例C28]
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Aを使用し、ポリアミド酸溶液C-Aの塗布後の130℃から360℃までの昇温時間を1/3に短縮したこと以外、実施例C1と同様にして、金属張積層板C33を調製したが、発泡は確認されなかった。
[Example C28]
Instead of using the polyamic acid solution CB instead of the polyamic acid solution CB, except that the heating time from 130 ° C. to 360 ° C. after the application of the polyamic acid solution CA was shortened to 1/3. A metal-clad laminate C33 was prepared in the same manner as in Example C1, but no foaming was confirmed.
比較例C6
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Mを使用し、ポリアミド酸溶液C-Aの塗布後の130℃から360℃までの昇温時間を1/3に短縮したこと以外、実施例C1と同様にして、金属張積層板C34を調製したところ、発泡が生じた。
Comparative Example C6
Instead of using the polyamic acid solution CB instead of the polyamic acid solution CB, except that the heating time from 130 ° C. to 360 ° C. after the application of the polyamic acid solution CA was shortened to 1/3. When a metal-clad laminate C34 was prepared in the same manner as in Example C1, foaming occurred.
比較例C7
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Nを使用し、ポリアミド酸溶液C-Aの塗布後の130℃から360℃までの昇温時間を1/3に短縮したこと以外、実施例C1と同様にして、金属張積層板C35を調製したところ、発泡が生じた。
Comparative Example C7
Instead of using the polyamic acid solution CB instead of the polyamic acid solution CB, except that the heating time from 130 ° C. to 360 ° C. after the application of the polyamic acid solution CA was shortened to 3 When a metal-clad laminate C35 was prepared in the same manner as in Example C1, foaming occurred.
[実施例C29]
 ステンレス基材上に、第1のポリイミド層となるポリアミド酸溶液C-Oを塗布した後、120℃で乾燥して、ポリアミド酸のゲルフィルムを調製した。調製したゲルフィルムをステンレス基材から剥離後、テンタークリップに固定し、130℃から360℃まで段階的に昇温させてイミド化を行い、厚み12.5μmのポリイミドフィルムC36を調製した。調製したポリイミドフィルムC36に、第2のポリイミド層となるポリアミド酸溶液C-Rを硬化後の厚みが3μmとなるように塗布し、120℃で乾燥を行った。その後、130℃から360℃まで段階的に昇温させてイミド化を行い、積層ポリイミドフィルムC36を調製した。調製した積層ポリイミドフィルムC36をカッターで裁断し、SEM観察による第1のポリイミド層及び第2のポリイミド層間の層間剥離は確認されなかった。
[Example C29]
A polyamic acid solution CO serving as a first polyimide layer was applied on a stainless steel base material, and then dried at 120 ° C. to prepare a polyamic acid gel film. After the prepared gel film was peeled from the stainless steel substrate, it was fixed to a tenter clip, and the temperature was increased stepwise from 130 ° C. to 360 ° C. to perform imidation to prepare a 12.5 μm-thick polyimide film C36. A polyamic acid solution CR to be a second polyimide layer was applied to the prepared polyimide film C36 so as to have a cured thickness of 3 μm, and dried at 120 ° C. Thereafter, the temperature was increased stepwise from 130 ° C. to 360 ° C. to perform imidization, thereby preparing a laminated polyimide film C36. The prepared laminated polyimide film C36 was cut with a cutter, and no delamination between the first polyimide layer and the second polyimide layer was observed by SEM observation.
[実施例C30]
 ポリアミド酸溶液C-Oの代わりに、ポリアミド酸溶液C-Tを使用したこと以外、実施例C29と同様にして、積層ポリイミドフィルムC37を調製した。調製した積層ポリイミドフィルムC37のSEM観察による層間剥離は確認されなかった。
[Example C30]
A laminated polyimide film C37 was prepared in the same manner as in Example C29 except that the polyamic acid solution CT was used instead of the polyamic acid solution CO. No delamination was observed by SEM observation of the prepared laminated polyimide film C37.
[実施例C31]
 第1のポリイミド層の厚みを17μmにしたこと、及びポリアミド酸溶液C-Rの代わりに、ポリアミド酸溶液C-Vを使用し、硬化後の厚みを4μmとしたこと以外、実施例C29と同様にして、積層ポリイミドフィルムC38を調製した。調製した積層ポリイミドフィルムC38のSEM観察による層間剥離は確認されなかった。
[Example C31]
Same as Example C29 except that the thickness of the first polyimide layer was 17 μm, and that the thickness after curing was 4 μm using a polyamic acid solution CV instead of the polyamic acid solution CR. Thus, a laminated polyimide film C38 was prepared. No delamination was observed by SEM observation of the prepared laminated polyimide film C38.
[実施例C32]
 ポリアミド酸溶液C-Oの代わりに、ポリアミド酸溶液C-Tを使用し、第1のポリイミド層の厚みを17μmにしたこと、及びポリアミド酸溶液C-Rの代わりに、ポリアミド酸溶液C-Vを使用し、硬化後の厚みを4μmとしたこと以外、実施例C29と同様にして、積層ポリイミドフィルムC39を調製した。調製した積層ポリイミドフィルムC39のSEM観察による層間剥離は確認されなかった。
[Example C32]
Instead of the polyamic acid solution CO, a polyamic acid solution CT was used, the thickness of the first polyimide layer was set to 17 μm, and a polyamic acid solution CV was used instead of the polyamic acid solution CR. And a laminated polyimide film C39 was prepared in the same manner as in Example C29, except that the thickness after curing was 4 μm. No delamination was observed by SEM observation of the prepared laminated polyimide film C39.
比較例C8
 ポリアミド酸溶液C-Rの代わりに、ポリアミド酸溶液C-Qを使用したこと以外、実施例C29と同様にして、積層ポリイミドフィルムC40を調製した。調製した積層ポリイミドフィルムC40のSEM観察によって、層間剥離が確認された。
Comparative Example C8
A laminated polyimide film C40 was prepared in the same manner as in Example C29, except that the polyamic acid solution CR was replaced by the polyamic acid solution CQ. SEM observation of the prepared laminated polyimide film C40 confirmed delamination.
比較例C9
 ポリアミド酸溶液C-Oの代わりに、ポリアミド酸溶液C-Pを使用したこと以外、実施例C29と同様にして、積層ポリイミドフィルムC41を調製した。調製した積層ポリイミドフィルムC41のSEM観察によって、層間剥離が確認された。
Comparative Example C9
A laminated polyimide film C41 was prepared in the same manner as in Example C29 except that the polyamic acid solution CP was used instead of the polyamic acid solution CO. SEM observation of the prepared laminated polyimide film C41 confirmed delamination.
比較例C10
 第1のポリイミド層の厚みを17μmにしたこと、及びポリアミド酸溶液C-Rの代わりに、ポリアミド酸溶液C-Uを使用し、硬化後の厚みを4μmとしたこと以外、実施例C29と同様にして、積層ポリイミドフィルムC42を調製した。調製した積層ポリイミドフィルムC42のSEM観察によって、層間剥離が確認された。
Comparative Example C10
Same as Example C29, except that the thickness of the first polyimide layer was 17 μm, and that the thickness after curing was 4 μm using a polyamic acid solution CU instead of the polyamic acid solution CR, Thus, a laminated polyimide film C42 was prepared. SEM observation of the prepared laminated polyimide film C42 confirmed delamination.
[実施例C33]
 厚み12μmの電解銅箔上に、第1のポリイミド層となるポリアミド酸溶液C-Tを硬化後の厚みが25μmとなるように均一に塗布した後、120℃から360℃まで段階的に昇温させて溶媒の除去及びイミド化を行った。次に、その上に、第2のポリイミド層となるポリアミド酸溶液C-Sを硬化後の厚みが25μmとなるように均一に塗布した後、120℃で加熱乾燥して溶媒を除去した。その後、130℃から360℃まで段階的に昇温させてイミド化を行い、金属張積層板C43を調製した。調製した金属張積層板C43における第1のポリイミド層と第2のポリイミド層のピール強度は1.5kN/m以上であった。
[Example C33]
After a polyamic acid solution CT serving as a first polyimide layer is uniformly applied on a 12 μm-thick electrolytic copper foil so as to have a cured thickness of 25 μm, the temperature is raised stepwise from 120 ° C. to 360 ° C. The solvent was removed and imidation was performed. Next, a polyamic acid solution CS to be a second polyimide layer was uniformly applied thereon so as to have a cured thickness of 25 μm, and then heated and dried at 120 ° C. to remove the solvent. Thereafter, the temperature was increased stepwise from 130 ° C. to 360 ° C. to perform imidization, thereby preparing a metal-clad laminate C43. The peel strength of the first polyimide layer and the second polyimide layer in the prepared metal-clad laminate C43 was 1.5 kN / m or more.
[実施例C34]
 厚み12μmの電解銅箔上に、ポリアミド酸溶液C-Sを硬化後の厚みが23μmとなるように均一に塗布し、120℃で加熱乾燥して溶媒を除去した。その上に、ポリアミド酸溶液C-Bを硬化後の厚みが2μmとなるように均一に塗布し、120℃で加熱乾燥して溶媒を除去した。その後、130℃から360℃まで段階的に昇温させてイミド化を行い、第1のポリイミド層を形成した。次に、その上に、第2のポリイミド層となるポリアミド酸溶液C-Sを硬化後の厚みが25μmとなるように均一に塗布した後、120℃で加熱乾燥して溶媒を除去した。その後、130℃から360℃まで段階的に昇温させてイミド化を行い、金属張積層板C44を調製した。調製した金属張積層板C44における第1のポリイミド層と第2のポリイミド層のピール強度は1.5kN/m以上であった。
[Example C34]
The polyamic acid solution CS was uniformly applied on a 12 μm-thick electrolytic copper foil so as to have a cured thickness of 23 μm, and dried by heating at 120 ° C. to remove the solvent. The polyamic acid solution CB was evenly applied thereon so that the thickness after curing became 2 μm, and dried by heating at 120 ° C. to remove the solvent. Thereafter, the temperature was increased stepwise from 130 ° C. to 360 ° C. to perform imidization, thereby forming a first polyimide layer. Next, a polyamic acid solution CS to be a second polyimide layer was uniformly applied thereon so as to have a cured thickness of 25 μm, and then heated and dried at 120 ° C. to remove the solvent. Thereafter, the temperature was increased stepwise from 130 ° C. to 360 ° C. to perform imidization, thereby preparing a metal-clad laminate C44. The peel strength of the first polyimide layer and the second polyimide layer in the prepared metal-clad laminate C44 was 1.5 kN / m or more.
比較例C11
 ポリアミド酸溶液C-Tの代わりに、ポリアミド酸溶液C-Sを使用したこと以外、実施例C33と同様にして、金属張積層板C45を調製した。調製した金属張積層板C45における第1のポリイミド層と第2のポリイミド層のピール強度は0.1kN/m以下であった。
Comparative Example C11
A metal-clad laminate C45 was prepared in the same manner as in Example C33 except that the polyamic acid solution CS was used instead of the polyamic acid solution CT. The peel strength of the first polyimide layer and the second polyimide layer in the prepared metal-clad laminate C45 was 0.1 kN / m or less.
比較例C12
 ポリアミド酸溶液C-Bの代わりに、ポリアミド酸溶液C-Mを使用したこと以外、実施例C34と同様にして、金属張積層板C46を調製した。調製した金属張積層板C46における第1のポリイミド層と第2のポリイミド層のピール強度は0.1kN/m以下であった。
Comparative Example C12
A metal-clad laminate C46 was prepared in the same manner as in Example C34, except that the polyamic acid solution CM was used instead of the polyamic acid solution CB. The peel strength of the first polyimide layer and the second polyimide layer in the prepared metal-clad laminate C46 was 0.1 kN / m or less.
参考例C
 100gのポリアミド酸溶液C-Aに0.45gの無水フタル酸(3.02mmol)を加え4時間撹拌を行い、ポリアミド酸溶液C-A2を調製した。ポリアミド酸溶液C-Aの代わりにポリアミド酸溶液C-A2を用いた以外、実施例C1と同様にして、金属張積層板C47を調製したところ、発泡が生じた。また、実施例C1と同様に、調製した金属張積層板C47の剥離試験を行ったところ、第1のポリイミド層及び第2のポリイミド層の層間剥離が生じた。
 これは第2のポリイミド層のアミノ基が無水フタル酸と反応することで、第1のポリイミド層と反応できる官能基が無くなり、樹脂層間の化学的接着が生じなかった為と考えられる。
Reference Example C
0.45 g of phthalic anhydride (3.02 mmol) was added to 100 g of the polyamic acid solution CA, and the mixture was stirred for 4 hours to prepare a polyamic acid solution CA2. When a metal-clad laminate C47 was prepared in the same manner as in Example C1, except that the polyamic acid solution CA was replaced with the polyamic acid solution CA2, foaming occurred. Further, a peeling test of the prepared metal-clad laminate C47 was performed in the same manner as in Example C1, and as a result, delamination of the first polyimide layer and the second polyimide layer occurred.
This is presumably because the amino group of the second polyimide layer reacted with phthalic anhydride, so that there was no functional group capable of reacting with the first polyimide layer, and no chemical adhesion between the resin layers occurred.
 以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはない。 Although the embodiments of the present invention have been described in detail for the purpose of illustration, the present invention is not limited to the above embodiments.
 本国際出願は、日本国特許出願2018-185874号(出願日:2018年9月28日)、日本国特許出願2018-185875号(出願日:2018年9月28日)及び日本国特許出願2018-185876号(出願日:2018年9月28日)に基づく優先権を主張するものであり、当該出願の全内容をここに援用する。 This international application is described in Japanese Patent Application No. 2018-185874 (filing date: September 28, 2018), Japanese Patent Application No. 2018-185875 (filing date: September 28, 2018), and Japanese Patent Application 2018. No. 185876 (filing date: September 28, 2018), the entire content of which is incorporated herein by reference.
 10…金属層、10A…金属箔、20…第1のポリイミド層、20A…第1のポリアミド樹脂層、30…第2のポリイミド層、30A…第2のポリアミド樹脂層、40…絶縁樹脂層、100…金属張積層板 Reference Signs List 10: metal layer, 10A: metal foil, 20: first polyimide layer, 20A: first polyamide resin layer, 30: second polyimide layer, 30A: second polyamide resin layer, 40: insulating resin layer, 100 ... metal-clad laminate

Claims (4)

  1.  複数のポリイミド層を含む絶縁樹脂層と、前記絶縁樹脂層の少なくも片側の面に積層された金属層と、を備えた金属張積層板を製造する方法であって、
     以下の工程1~5;
    工程1)前記金属層の上に、ポリアミド酸の溶液を塗布することによって、単層又は複数層の第1のポリアミド樹脂層を積層形成する工程、
    工程2)前記第1のポリアミド樹脂層中のポリアミド酸をイミド化して単層又は複数層からなる第1のポリイミド層を形成する工程、
    工程3)前記第1のポリイミド層の表面に対し、表面処理を行う工程、
    工程4)前記第1のポリイミド層の上に、さらに、ポリアミド酸の溶液を塗布することによって、単層又は複数層の第2のポリアミド樹脂層を積層形成する工程、
    工程5)前記第2のポリアミド樹脂層中のポリアミド酸をイミド化して単層又は複数層からなる第2のポリイミド層を形成するとともに、前記第1のポリイミド層と前記第2のポリイミド層とが積層されてなる前記絶縁樹脂層を形成する工程、
    を含み、
     前記第1のポリイミド層の厚み(L1)が0.5μm以上100μm以下の範囲内であり、かつ、前記絶縁樹脂層全体の厚み(L)が5μm以上200μm未満の範囲内であり、前記Lと前記L1との比(L/L1)が1を超え400未満の範囲内であることを特徴とする金属張積層板の製造方法。
    An insulating resin layer including a plurality of polyimide layers, and a metal layer laminated on at least one surface of the insulating resin layer, a method of manufacturing a metal-clad laminate including:
    The following steps 1 to 5;
    Step 1) a step of forming a single layer or a plurality of first polyamide resin layers by applying a polyamic acid solution on the metal layer;
    Step 2) a step of imidizing the polyamic acid in the first polyamide resin layer to form a single polyimide layer or a plurality of first polyimide layers;
    Step 3) performing a surface treatment on the surface of the first polyimide layer;
    Step 4) a step of forming a single-layer or multiple-layer second polyamide resin layer by applying a polyamic acid solution on the first polyimide layer,
    Step 5) Polyamide acid in the second polyamide resin layer is imidized to form a second polyimide layer composed of a single layer or a plurality of layers, and the first polyimide layer and the second polyimide layer are Forming the laminated insulating resin layer,
    Including
    The thickness (L1) of the first polyimide layer is in a range of 0.5 μm or more and 100 μm or less, and the thickness (L) of the entire insulating resin layer is in a range of 5 μm or more and less than 200 μm. A method for producing a metal-clad laminate, wherein a ratio (L / L1) to the L1 is in a range of more than 1 and less than 400.
  2.  前記第1のポリイミド層における前記金属層と接している層を構成するポリイミドが、熱可塑性ポリイミドである請求項1に記載の金属張積層板の製造方法。 The method for producing a metal-clad laminate according to claim 1, wherein the polyimide constituting the layer in contact with the metal layer in the first polyimide layer is a thermoplastic polyimide.
  3.  前記金属層の透湿度が、厚み25μm、25℃のとき、100g/m/24hr以下である請求項1又は2に記載の金属張積層板の製造方法。 Moisture permeability of the metal layer, the thickness 25 [mu] m, when 25 ℃, 100g / m 2 / 24hr or less method for producing a metal-clad laminate according to claim 1 or 2.
  4.  請求項1から3のいずれか1項に記載された方法で製造された前記金属張積層板の前記金属層を配線回路加工する工程を含む回路基板の製造方法。

     
    A method of manufacturing a circuit board, comprising a step of processing a wiring circuit of the metal layer of the metal-clad laminate manufactured by the method according to claim 1.

PCT/JP2019/035510 2018-09-28 2019-09-10 Production method for metal clad laminate and production method for circuit board WO2020066595A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202211730860.1A CN115971017B (en) 2018-09-28 2019-09-10 Method for producing polyimide film, method for producing metal-clad laminate, and method for producing circuit board
KR1020217008713A KR20210068022A (en) 2018-09-28 2019-09-10 Manufacturing method of metal clad laminate and manufacturing method of circuit board
CN201980055481.7A CN112601656A (en) 2018-09-28 2019-09-10 Method for manufacturing metal-clad laminate and method for manufacturing circuit board

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018185875 2018-09-28
JP2018-185875 2018-09-28
JP2018185876A JP2020055148A (en) 2018-09-28 2018-09-28 Production method of metal-clad laminate and production method of circuit board
JP2018185874A JP7120870B2 (en) 2018-09-28 2018-09-28 Method for producing polyimide film and method for producing metal-clad laminate
JP2018-185876 2018-09-28
JP2018-185874 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020066595A1 true WO2020066595A1 (en) 2020-04-02

Family

ID=69952109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035510 WO2020066595A1 (en) 2018-09-28 2019-09-10 Production method for metal clad laminate and production method for circuit board

Country Status (3)

Country Link
KR (1) KR20210068022A (en)
CN (2) CN115971017B (en)
WO (1) WO2020066595A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008279698A (en) * 2007-05-11 2008-11-20 Asahi Kasei Corp Laminate and its manufacturing method
JP2012134478A (en) * 2010-12-20 2012-07-12 Sk Innovation Co Ltd Method for manufacturing thick polyimide flexible metal-clad laminate
JP2014138020A (en) * 2013-01-15 2014-07-28 Nippon Kayaku Co Ltd Printed wiring substrate for high-frequency circuit
JP2014195947A (en) * 2013-03-29 2014-10-16 新日鉄住金化学株式会社 Method of producing double-surface flexible metal-clad laminate sheet
WO2016013627A1 (en) * 2014-07-24 2016-01-28 宇部興産株式会社 Multilayer polyimide film, method for producing multilayer polyimide film, polyimide laminate produced using said multilayer polyimide film, and co-polyimide which can be used in said products

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534670A (en) 1976-06-30 1978-01-17 Hoshizaki Electric Co Ltd Automatic control device of coffee liquid extracting machine
DE69218050T2 (en) * 1991-06-10 1997-10-09 Mitsui Toatsu Chemicals Polyimide and manufacturing process
CN1106788C (en) * 1996-02-13 2003-04-23 日东电工株式会社 Cirucit substrate, circuit-formed suspension substrate, and prodn. method thereof
JP4508441B2 (en) * 2001-02-16 2010-07-21 新日鐵化学株式会社 Laminated body and method for producing the same
JP4765284B2 (en) * 2004-09-01 2011-09-07 東レ株式会社 Multilayer polyimide film and laminated film with metal layer using the same
JP5069847B2 (en) * 2005-04-27 2012-11-07 株式会社カネカ Novel polyimide film, adhesive film obtained using the same, and flexible metal-clad laminate
JP5069846B2 (en) * 2005-04-27 2012-11-07 株式会社カネカ Novel polyimide film, adhesive film obtained using the same, and flexible metal-clad laminate
KR100955552B1 (en) * 2005-06-03 2010-04-30 미쓰이 가가쿠 가부시키가이샤 Polyimide film, polyimide metal laminate and process for producing the same
JP5215182B2 (en) * 2006-07-04 2013-06-19 新日鉄住金化学株式会社 Method for modifying surface of polyimide resin layer and method for producing metal-clad laminate
JP2008188954A (en) * 2007-02-07 2008-08-21 Kaneka Corp Base material for single-sided metal-clad laminated sheet and manufacturing method of single-sided metal-clad laminated sheet
EP2319960A4 (en) * 2008-07-22 2013-01-02 Furukawa Electric Co Ltd Flexible copper-clad laminate
JP5480490B2 (en) 2008-11-11 2014-04-23 株式会社カネカ Adhesive film and flexible metal-clad laminate
JP5180814B2 (en) * 2008-12-26 2013-04-10 新日鉄住金化学株式会社 Laminated body for flexible wiring board
JP5100894B2 (en) * 2009-12-22 2012-12-19 新日鉄住金化学株式会社 Polyimide resin, production method thereof, adhesive resin composition, coverlay film, and circuit board
CN102712755A (en) * 2010-01-25 2012-10-03 三井化学株式会社 Polyimide resin composition, adhesive agent and laminate each comprising same, and device
JPWO2013042751A1 (en) * 2011-09-22 2015-03-26 日立化成株式会社 LAMINATE, LAMINATE, MULTILAYER LAMINATE, PRINTED WIRING BOARD AND METHOD FOR PRODUCING LAMINATE
JP5886027B2 (en) * 2011-12-21 2016-03-16 新日鉄住金化学株式会社 Double-sided metal-clad laminate and method for producing the same
CN104066574B (en) * 2011-12-28 2016-08-24 Sk新技术株式会社 Flexible metal foil duplexer and manufacture method thereof
JP2014070085A (en) * 2012-09-27 2014-04-21 Nippon Steel & Sumikin Chemical Co Ltd Thermoplastic polyimide, meatal-clad laminate, circuit board, method of using the same, meatal-clad laminate manufacturing method and circuit board manufacturing method
TWI466924B (en) * 2013-01-23 2015-01-01 Mortech Corp Polyimide film and polyimide laminate thereof
WO2014192560A1 (en) * 2013-05-28 2014-12-04 旭硝子株式会社 Resin-layer-equipped support substrate and method for producing same, glass laminate and method for producing same, and method for producing electronic device
KR102169537B1 (en) * 2013-06-28 2020-10-23 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Polyimide, resin film, and metal-clad laminate
JP6808401B2 (en) * 2015-08-31 2021-01-06 日鉄ケミカル&マテリアル株式会社 Manufacturing method of polyimide substrate film with functional layer
JP6908590B2 (en) * 2016-03-17 2021-07-28 日鉄ケミカル&マテリアル株式会社 Polyamic acid, thermoplastic polyimide, resin film, metal-clad laminate and circuit board
CN107556501A (en) * 2017-08-23 2018-01-09 中国科学院理化技术研究所 A kind of polyimide film and its preparation method and application

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008279698A (en) * 2007-05-11 2008-11-20 Asahi Kasei Corp Laminate and its manufacturing method
JP2012134478A (en) * 2010-12-20 2012-07-12 Sk Innovation Co Ltd Method for manufacturing thick polyimide flexible metal-clad laminate
JP2014138020A (en) * 2013-01-15 2014-07-28 Nippon Kayaku Co Ltd Printed wiring substrate for high-frequency circuit
JP2014195947A (en) * 2013-03-29 2014-10-16 新日鉄住金化学株式会社 Method of producing double-surface flexible metal-clad laminate sheet
WO2016013627A1 (en) * 2014-07-24 2016-01-28 宇部興産株式会社 Multilayer polyimide film, method for producing multilayer polyimide film, polyimide laminate produced using said multilayer polyimide film, and co-polyimide which can be used in said products

Also Published As

Publication number Publication date
CN112601656A (en) 2021-04-02
KR20210068022A (en) 2021-06-08
TW202026151A (en) 2020-07-16
CN115971017B (en) 2024-01-16
CN115971017A (en) 2023-04-18

Similar Documents

Publication Publication Date Title
JP7469383B2 (en) Metal-clad laminates and circuit boards
JP6908590B2 (en) Polyamic acid, thermoplastic polyimide, resin film, metal-clad laminate and circuit board
JP7446741B2 (en) Metal-clad laminates and circuit boards
JP2024040228A (en) Manufacturing method for metal clad laminates
TW202140622A (en) Resin film, metal-clad laminate and circuit board wherein the resin film includes a liquid crystal polymer layer, a first adhesive layer, and a second adhesive layer
KR101077405B1 (en) Laminate for wiring board
CN112469560B (en) Metal-clad laminate and circuit board
CN110871606B (en) Metal-clad laminate, adhesive sheet, adhesive polyimide resin composition, and circuit board
JP2021070727A (en) Resin composition, resin film and metal-clad laminate
JPWO2020022129A5 (en)
JP7120870B2 (en) Method for producing polyimide film and method for producing metal-clad laminate
WO2020066595A1 (en) Production method for metal clad laminate and production method for circuit board
TW202319444A (en) Polyamide acid, polyimide, polyimide film, metal-clad laminate and circuit
TW202112912A (en) Polyimide film, metal-clad laminate and circuit board featuring low dielectric loss tangent and excellent long-term heat-resistant adhesiveness
JP7093282B2 (en) Metal-clad laminate and circuit board
JP7465058B2 (en) Metal-clad laminates and circuit boards
TWI837183B (en) Method for manufacturing metal-clad laminate and method for manufacturing circuit substrate
CN114391186A (en) Metal-clad laminate for flexible electronic component and flexible electronic component using same
JP2020055148A (en) Production method of metal-clad laminate and production method of circuit board
JP2008201861A (en) Highly heat-resistant polyimide resin composition
JP2024049518A (en) Metal-clad laminates and circuit boards
JP2024000978A (en) Metal-clad laminate plate, circuit board, electronic device and electronic apparatus
JP2021053567A (en) Method for producing polyimide film and production method for metal-clad laminate
JP2024050431A (en) Metal-clad laminates, circuit boards, electronic devices and electronic equipment
JP2020075483A (en) Manufacturing method of metal-clad laminate, and manufacturing method of circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866497

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866497

Country of ref document: EP

Kind code of ref document: A1