JP2021070727A - Resin composition, resin film and metal-clad laminate - Google Patents

Resin composition, resin film and metal-clad laminate Download PDF

Info

Publication number
JP2021070727A
JP2021070727A JP2019196673A JP2019196673A JP2021070727A JP 2021070727 A JP2021070727 A JP 2021070727A JP 2019196673 A JP2019196673 A JP 2019196673A JP 2019196673 A JP2019196673 A JP 2019196673A JP 2021070727 A JP2021070727 A JP 2021070727A
Authority
JP
Japan
Prior art keywords
spherical silica
resin film
layer
resin
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019196673A
Other languages
Japanese (ja)
Other versions
JP7405560B2 (en
Inventor
裕明 山田
Hiroaki Yamada
裕明 山田
麻織人 藤
Maoto Fuji
麻織人 藤
王 宏遠
Hongyuan Wang
宏遠 王
博之 出合
Hiroyuki Deai
博之 出合
睦人 田中
Mutsuto Tanaka
睦人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Priority to JP2019196673A priority Critical patent/JP7405560B2/en
Priority to KR1020200138927A priority patent/KR20210052283A/en
Priority to CN202011170486.5A priority patent/CN112745676A/en
Priority to TW109137568A priority patent/TW202124555A/en
Publication of JP2021070727A publication Critical patent/JP2021070727A/en
Application granted granted Critical
Publication of JP7405560B2 publication Critical patent/JP7405560B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic

Abstract

To provide a resin composition and a resin film which improve dielectric characteristics without impairing mechanical characteristics such as bending properties by addition of an inorganic filler.SOLUTION: A resin composition contains a polyamide acid or polyimide, and spherical silica particles. A frequency distribution curve of spherical silica particles obtained by particle size distribution measurement based on volume by a laser diffraction scattering method satisfies a) an average particle diameter D50 where the cumulative value is 50% of 9.0-12.0 μm, b) a particle diameter D90 where the cumulative value is 90% of 15-20 μm, and c) a particle diameter D100 where the cumulative value is 100% of 25 μm or less, and a content of the spherical silica particles is within a range of 20-65 vol.% with respect to the polyamide acid or the polyimide.SELECTED DRAWING: None

Description

本発明は、無機フィラーである球状シリカ粒子を含有する樹脂組成物、それを用いる樹脂フィルム及び金属張積層板に関する。 The present invention relates to a resin composition containing spherical silica particles which are inorganic fillers, a resin film using the same, and a metal-clad laminate.

近年、携帯電話、LED照明器具、自動車エンジン周り関連部品に代表されるように電子機器の小型化、軽量化に対する要求が高まってきている。それに伴い、機器の小型化、軽量化に有利なフレキシブル回路基板が電子技術分野において広く使用されるようになってきている。そして、その中でもポリイミドを絶縁層とするフレキシブル回路基板は、その耐熱性、耐薬品性などが良好なことから、広く用いられている。 In recent years, there has been an increasing demand for miniaturization and weight reduction of electronic devices as represented by mobile phones, LED lighting fixtures, and related parts around automobile engines. Along with this, flexible circuit boards, which are advantageous for miniaturization and weight reduction of equipment, have come to be widely used in the field of electronic technology. Among them, a flexible circuit board having polyimide as an insulating layer is widely used because of its good heat resistance and chemical resistance.

一方、電気・電子機器の高性能化や高機能化に伴い、情報の高速伝送化が進展している。そのため、電気・電子機器に使用される部品や部材にも高速伝送への対応が求められている。そのような用途に使用される樹脂材料について、高速伝送化に対応した電気特性を有するように、低誘電率化、低誘電正接化を図る試みがなされている。その一例として、エポキシ樹脂、ポリイミド樹脂及び芳香族ポリアミド樹脂を含む樹脂混合物とイミダゾール系硬化触媒と無機フィラーを含む樹脂層を有し、高周波伝送に対応した誘電特性を有する樹脂付き銅箔が提案されている(例えば、特許文献1)。 On the other hand, high-speed transmission of information is progressing along with higher performance and higher functionality of electric and electronic devices. Therefore, parts and components used in electrical and electronic devices are also required to support high-speed transmission. Attempts have been made to reduce the dielectric constant and the low dielectric loss tangent so that the resin material used for such applications has electrical characteristics corresponding to high-speed transmission. As an example, a resin-attached copper foil having a resin mixture containing an epoxy resin, a polyimide resin and an aromatic polyamide resin, a resin layer containing an imidazole-based curing catalyst and an inorganic filler, and having dielectric properties corresponding to high-frequency transmission has been proposed. (For example, Patent Document 1).

国際公開WO2017/014079International release WO2017 / 014079

特許文献1では、シリカなどの無機フィラーの添加によって樹脂層の誘電正接を低減できることが記載されているものの、その目的に適した無機フィラーの具体的な構成について詳細な検討はなされていない。また、無機フィラーの添加は、樹脂フィルムの折り曲げ性を低下させるなどの影響を及ぼすという問題があった。 Although Patent Document 1 describes that the dielectric loss tangent of the resin layer can be reduced by adding an inorganic filler such as silica, no detailed study has been made on the specific configuration of the inorganic filler suitable for the purpose. Further, the addition of the inorganic filler has a problem that the bending property of the resin film is lowered and the like has an effect.

本発明の目的は、無機フィラーの添加によって折り曲げ性などの機械的特性を損なうことなく、誘電特性の改善が図られている樹脂組成物及び樹脂フィルムを提供することにある。 An object of the present invention is to provide a resin composition and a resin film whose dielectric properties are improved without impairing mechanical properties such as bendability by adding an inorganic filler.

本発明の樹脂組成物は、ポリアミド酸又はポリイミドと、球状シリカ粒子と、を含有する樹脂組成物である。本発明の樹脂組成物は、レーザ回折散乱法による体積基準の粒度分布測定によって得られる前記球状シリカ粒子の頻度分布曲線が、下記の条件a〜cを満たし、前記球状シリカ粒子の含有量が、前記ポリアミド酸又は前記ポリイミドに対し、20〜65体積%の範囲内である。
a)累積値が50%となる平均粒子径D50が9.0〜12.0μmの範囲内であること。
b)累積値が90%となる粒子径D90が15〜20μmの範囲内であること。
c)累積値が100%となる粒子径D100が25μm以下であること。
The resin composition of the present invention is a resin composition containing polyamic acid or polyimide and spherical silica particles. In the resin composition of the present invention, the frequency distribution curve of the spherical silica particles obtained by volume-based particle size distribution measurement by the laser diffraction / scattering method satisfies the following conditions a to c, and the content of the spherical silica particles is high. It is in the range of 20 to 65% by volume with respect to the polyamic acid or the polyimide.
a) The average particle size D 50 at which the cumulative value is 50% is within the range of 9.0 to 12.0 μm.
b) The particle size D 90 at which the cumulative value is 90% is within the range of 15 to 20 μm.
c) The particle size D 100 at which the cumulative value is 100% is 25 μm or less.

本発明の樹脂組成物は、前記球状シリカ粒子が、更に、下記の条件dを満たすものであってもよい。
d)頻度極大値F1及び頻度極大値F2を有し、前記F1が9.0〜14.0μmの領域内、前記F2が0.5〜3.0μmの領域内にあること。
In the resin composition of the present invention, the spherical silica particles may further satisfy the following condition d.
d) It has a frequency maximum value F1 and a frequency maximum value F2, and the F1 is in the region of 9.0 to 14.0 μm and the F2 is in the region of 0.5 to 3.0 μm.

本発明の樹脂組成物は、前記球状シリカ粒子が、更に、下記の条件eを満たすものであってもよい。
e)頻度極大値F1及び頻度極大値F2を有し、前記F1及びF2の比(F1/F2)が3〜28の範囲内であること。
In the resin composition of the present invention, the spherical silica particles may further satisfy the following condition e.
e) It has a maximum frequency value F1 and a maximum frequency value F2, and the ratio of F1 and F2 (F1 / F2) is in the range of 3 to 28.

本発明の樹脂フィルムは、単層又は複数層のポリイミド層を有する樹脂フィルムであって、前記ポリイミド層の少なくとも1層が、上記の樹脂組成物の硬化物からなる球状シリカ含有ポリイミド層であり、該球状シリカ含有ポリイミド層の厚みが5〜150μmの範囲内である。 The resin film of the present invention is a resin film having a single layer or a plurality of polyimide layers, and at least one of the polyimide layers is a spherical silica-containing polyimide layer made of a cured product of the above resin composition. The thickness of the spherical silica-containing polyimide layer is in the range of 5 to 150 μm.

本発明の樹脂フィルムは、前記球状シリカ粒子の粒子径D100が前記球状シリカ含有ポリイミド層の厚みに対して0.05〜0.7の範囲内であってもよい。 In the resin film of the present invention, the particle diameter D 100 of the spherical silica particles may be in the range of 0.05 to 0.7 with respect to the thickness of the spherical silica-containing polyimide layer.

本発明の樹脂フィルムは、厚みが5〜150μmの範囲内であり、前記球状シリカ含有ポリイミド層の厚みの割合が50%以上であってもよい。 The resin film of the present invention has a thickness in the range of 5 to 150 μm, and the ratio of the thickness of the spherical silica-containing polyimide layer may be 50% or more.

本発明の金属張積層板は、絶縁樹脂層と、前記絶縁樹脂層の少なくとも一方の面に積層された金属層と、を備えた金属張積層板であって、前記絶縁樹脂層が上記樹脂フィルムからなるものである。 The metal-clad laminate of the present invention is a metal-clad laminate comprising an insulating resin layer and a metal layer laminated on at least one surface of the insulating resin layer, and the insulating resin layer is the resin film. It consists of.

本発明の樹脂組成物は、条件a〜cで表される特定の粒度分布を有する球状シリカ粒子を含有することによって、折り曲げ性などの機械的特性を低下させずに誘電特性を改善することが可能となる。そのため、本発明の樹脂組成物を使用した電気・電子機器や電子部品において、高速伝送化への対応が可能になるとともに信頼性を確保できる。 By containing spherical silica particles having a specific particle size distribution represented by the conditions a to c, the resin composition of the present invention can improve the dielectric properties without deteriorating the mechanical properties such as bendability. It will be possible. Therefore, in electric / electronic devices and electronic parts using the resin composition of the present invention, it is possible to support high-speed transmission and ensure reliability.

以下、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described.

[樹脂組成物]
本発明の一実施の形態に係る樹脂組成物は、ポリアミド酸又はポリイミドと、無機フィラーである球状シリカ粒子と、を含有する樹脂組成物である。樹脂組成物は、ポリアミド酸を含有するワニス(樹脂溶液)であってもよく、溶剤可溶性のポリイミドを含有するポリイミド溶液であってもよい。
[Resin composition]
The resin composition according to the embodiment of the present invention is a resin composition containing polyamic acid or polyimide and spherical silica particles which are inorganic fillers. The resin composition may be a varnish (resin solution) containing a polyamic acid, or a polyimide solution containing a solvent-soluble polyimide.

<ポリアミド酸又はポリイミド>
ポリイミドは、一般的に下記一般式(1)で表される。このようなポリイミドは、ジアミン成分と酸二無水物成分とを実質的に等モル使用し、有機極性溶媒中で重合させる公知の方法によって製造することができる。この場合、粘度を所望の範囲とするために、ジアミン成分に対する酸二無水物成分のモル比を調整してもよく、その範囲は、例えば0.980〜1.03のモル比の範囲内とすることが好ましい。
<Polyamic acid or polyimide>
Polyimide is generally represented by the following general formula (1). Such a polyimide can be produced by a known method in which a diamine component and an acid dianhydride component are substantially equimolarized and polymerized in an organic polar solvent. In this case, the molar ratio of the acid dianhydride component to the diamine component may be adjusted in order to keep the viscosity in a desired range, and the range is, for example, within the range of the molar ratio of 0.980 to 1.03. It is preferable to do so.

Figure 2021070727
Figure 2021070727

ここで、Arは芳香族環を1個以上有する4価の有機基であり、Arは芳香族環を1個以上有する2価の有機基である。そして、Arは酸二無水物の残基ということができ、Arはジアミンの残基ということができる。また、nは、一般式(1)の構成単位の繰返し数を表し、200以上、好ましくは300〜1000の数である。 Here, Ar 1 is a tetravalent organic group having one or more aromatic rings, and Ar 2 is a divalent organic group having one or more aromatic rings. And Ar 1 can be said to be a residue of acid dianhydride, and Ar 2 can be said to be a residue of diamine. Further, n represents the number of repetitions of the structural unit of the general formula (1), and is a number of 200 or more, preferably 300 to 1000.

酸二無水物としては、例えば、O(OC)−Ar−(CO)Oによって表される芳香族テトラカルボン酸二無水物が好ましく、下記芳香族酸無水物残基をArとして与えるものが例示される。 As the acid dianhydride, for example, an aromatic tetracarboxylic dianhydride represented by O (OC) 2- Ar 1- (CO) 2 O is preferable, and the following aromatic acid anhydride residue is designated as Ar 1. What is given is exemplified.

Figure 2021070727
Figure 2021070727

酸二無水物は、単独で又は2種以上混合して用いることができる。これらの中でも、ピロメリット酸二無水物(PMDA)、3,3',4,4'-ビフェニルテトラカルボン酸二無水物(BPDA)、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、及び4,4'-オキシジフタル酸二無水物(ODPA)から選ばれるものを使用することが好ましい。 The acid dianhydride can be used alone or in combination of two or more. Among these, pyromellitic dianhydride (PMDA), 3,3', 4,4'-biphenyltetracarboxylic dianhydride (BPDA), 3,3', 4,4'-benzophenonetetracarboxylic dianhydride Use one selected from anhydrides (BTDA), 3,3', 4,4'-diphenylsulfonetetracarboxylic dianhydrides (DSDA), and 4,4'-oxydiphthalic acid dianhydrides (ODPA). Is preferable.

ジアミンとしては、例えば、HN−Ar−NHによって表される芳香族ジアミンが好ましく、下記芳香族ジアミン残基をArとして与える芳香族ジアミンが例示される。 As the diamine, for example, an aromatic diamine represented by H 2 N-Ar 2- NH 2 is preferable, and an aromatic diamine that gives the following aromatic diamine residue as Ar 2 is exemplified.

Figure 2021070727
Figure 2021070727

これらのジアミンの中でも、ジアミノジフェニルエーテル(DAPE)、2,2'−ジメチル−4,4'−ジアミノビフェニル(m-TB)、パラフェニレンジアミン(p−PDA)、1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)、1,4-ビス(4-アミノフェノキシ)ベンゼン(TPE-Q)、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)、及び2,2−ビス(トリフルオロメチル)ベンジジン(TFMB)が好適なものとして例示される。 Among these diamines, diaminodiphenyl ether (DAPE), 2,2'-dimethyl-4,4'-diaminobiphenyl (m-TB), para-phenylenediamine (p-PDA), 1,3-bis (4-amino) Phenoxy) Benzene (TPE-R), 1,3-bis (3-aminophenoxy) benzene (APB), 1,4-bis (4-aminophenoxy) benzene (TPE-Q), 2,2-bis [4 -(4-Aminophenoxy) phenyl] propane (BAPP) and 2,2-bis (trifluoromethyl) benzidine (TFMB) are exemplified as suitable.

ポリイミドは、酸二無水物とジアミン化合物を溶媒中で反応させ、前駆体であるポリアミド酸を生成したのち加熱閉環(イミド化)させることにより製造できる。例えば、酸二無水物とジアミン化合物をほぼ等モルで有機溶媒中に溶解させて、0〜100℃の範囲内の温度で30分〜24時間撹拌し重合反応させることでポリアミド酸が得られる。反応にあたっては、生成する前駆体が有機溶媒中に5〜30重量%の範囲内、好ましくは10〜20重量%の範囲内となるように反応成分を溶解する。重合反応に用いる有機溶媒としては、例えば、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、N,N−ジエチルアセトアミド、N−メチル−2−ピロリドン(NMP)、2−ブタノン、ジメチルスルホキシド(DMSO)、ヘキサメチルホスホルアミド、N−メチルカプロラクタム、硫酸ジメチル、シクロヘキサノン、ジオキサン、テトラヒドロフラン、ジグライム、トリグライム、クレゾール等が挙げられる。これらの溶媒を2種以上併用することもでき、更にはキシレン、トルエンのような芳香族炭化水素の併用も可能である。また、このような有機溶媒の使用量としては特に制限されるものではないが、重合反応によって得られるポリアミド酸溶液の濃度が5〜30重量%程度になるような使用量に調整して用いることが好ましい。 Polyimide can be produced by reacting an acid dianhydride with a diamine compound in a solvent to produce a polyamic acid as a precursor, and then heating and ring-closing (imidizing). For example, a polyamic acid can be obtained by dissolving an acid dianhydride and a diamine compound in substantially equimolar amounts in an organic solvent, stirring at a temperature in the range of 0 to 100 ° C. for 30 minutes to 24 hours, and carrying out a polymerization reaction. In the reaction, the reaction components are dissolved in an organic solvent so that the precursor produced is in the range of 5 to 30% by weight, preferably in the range of 10 to 20% by weight. Examples of the organic solvent used in the polymerization reaction include N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N, N-diethylacetamide, N-methyl-2-pyrrolidone (NMP), 2 -Butanone, dimethyl sulfoxide (DMSO), hexamethylphosphoramide, N-methylcaprolactam, dimethylsulfate, cyclohexanone, dioxane, tetrahydrofuran, diglime, triglime, cresol and the like can be mentioned. Two or more of these solvents can be used in combination, and aromatic hydrocarbons such as xylene and toluene can be used in combination. The amount of such an organic solvent used is not particularly limited, but it should be adjusted so that the concentration of the polyamic acid solution obtained by the polymerization reaction is about 5 to 30% by weight. Is preferable.

合成されたポリアミド酸は、通常、反応溶媒溶液として使用することが有利であるが、必要により濃縮、希釈又は他の有機溶媒に置換して樹脂組成物を形成することができる。ポリアミド酸をイミド化させる方法は、特に制限されず、例えば前記溶媒中で、80〜400℃の範囲内の温度条件で1〜24時間かけて加熱するといった熱処理が好適に採用される。 The synthesized polyamic acid is usually advantageous to be used as a reaction solvent solution, but if necessary, it can be concentrated, diluted or replaced with another organic solvent to form a resin composition. The method for imidizing the polyamic acid is not particularly limited, and for example, a heat treatment such as heating in the solvent under a temperature condition in the range of 80 to 400 ° C. for 1 to 24 hours is preferably adopted.

<球状シリカ粒子>
球状シリカ粒子は、形状が真球状に近いシリカ粒子で、平均長径と平均短径の比が1又は1に近いものをいう。球状シリカ粒子は、レーザ回折散乱法による体積基準の粒度分布測定によって得られる頻度分布曲線が下記の条件a〜cを満たす。
a)累積値が50%となる平均粒子径D50が9.0〜12.0μmの範囲内であること。
b)累積値が90%となる粒子径D90が15〜20μmの範囲内であること。
c)累積値が100%となる粒子径D100が25μm以下であること。
<Spherical silica particles>
Spherical silica particles are silica particles having a shape close to a true sphere, and the ratio of the average major axis to the average minor axis is close to 1 or 1. The frequency distribution curve of the spherical silica particles obtained by volume-based particle size distribution measurement by the laser diffraction / scattering method satisfies the following conditions a to c.
a) The average particle size D 50 at which the cumulative value is 50% is within the range of 9.0 to 12.0 μm.
b) The particle size D 90 at which the cumulative value is 90% is within the range of 15 to 20 μm.
c) The particle size D 100 at which the cumulative value is 100% is 25 μm or less.

条件aについては、球状シリカ粒子の平均粒子径D50が9.0に満たないと、誘電特性の向上効果が小さくなる。その一方で、平均粒子径D50が12.0μmを超えると、充填しづらくなったり、樹脂フィルムを形成したときに折り曲げ性が低下するなど機械的特性の維持が困難になる。
条件b、cについては、粒子径が15〜25μmである球状シリカ粒子の存在比率を抑えるとともに、最大粒子径が25μm以下であることによって粗大粒子が排除されるため、樹脂フィルムを形成したときの折り曲げ性を良好なものとすることができる。
Regarding the condition a, if the average particle size D 50 of the spherical silica particles is less than 9.0, the effect of improving the dielectric properties becomes small. On the other hand, if the average particle size D 50 exceeds 12.0 μm, it becomes difficult to fill the particles, and it becomes difficult to maintain mechanical properties such as a decrease in bendability when a resin film is formed.
Regarding conditions b and c, the abundance ratio of spherical silica particles having a particle size of 15 to 25 μm is suppressed, and coarse particles are eliminated by having a maximum particle size of 25 μm or less. The foldability can be made good.

また、球状シリカ粒子は、更に、下記の条件d及び条件eを満たすことが好ましい。
d)頻度極大値F1及び頻度極大値F2を有し、F1が9.0〜14.0μmの領域内、F2が0.5〜3.0μmの領域内にあること。
e)頻度極大値F1及び頻度極大値F2を有し、F1及びF2の比(F1/F2)が3〜28の範囲内であること。
条件d及び条件eについては、球状シリカ粒子中に粒子径が0.5〜3.0μmの範囲内の小さな球状シリカを一定量含有することによって、フィルム化したときの折り曲げ性の低下を抑制しつつ、誘電特性を更に向上させることができる。
Further, it is preferable that the spherical silica particles further satisfy the following conditions d and e.
d) It has a maximum frequency value F1 and a maximum frequency value F2, F1 is in the region of 9.0 to 14.0 μm, and F2 is in the region of 0.5 to 3.0 μm.
e) It has a maximum frequency value F1 and a maximum frequency value F2, and the ratio of F1 and F2 (F1 / F2) is in the range of 3 to 28.
Regarding condition d and condition e, by containing a certain amount of small spherical silica having a particle size in the range of 0.5 to 3.0 μm in the spherical silica particles, deterioration of bendability at the time of film formation is suppressed. At the same time, the dielectric properties can be further improved.

なお、球状シリカ粒子は、市販品を適宜選定して用いることができる。例えば、球状クリストバライトシリカ粉末(日鉄ケミカル&マテリアル社製、商品名;CR10−20)、球状非晶質シリカ粉末(日鉄ケミカル&マテリアル社製、商品名;SC70−2)などを好ましく使用できる。これらは2種以上を併用できる。 As the spherical silica particles, a commercially available product can be appropriately selected and used. For example, spherical cristobalite silica powder (manufactured by Nittetsu Chemical & Materials Co., Ltd., trade name; CR10-20), spherical amorphous silica powder (manufactured by Nittetsu Chemical & Materials Co., Ltd., trade name; SC70-2) and the like can be preferably used. .. These can be used in combination of two or more.

<配合組成>
樹脂組成物における球状シリカ粒子の含有量は、ポリアミド酸又はポリイミドに対し20〜65体積%の範囲内であり、好ましくは30〜60体積%の範囲内である。球状シリカ粒子の含有割合が20体積%に満たないと、誘電正接を低下させる効果が十分に得られなくなる。また、球状シリカ粒子の含有割合が65体積%を超えると、樹脂フィルムを形成したときに脆くなり、折り曲げ性が低下するとともに、樹脂フィルムを形成しようとする場合、樹脂組成物の粘度が高くなり、作業性も低下する。
<Mixed composition>
The content of the spherical silica particles in the resin composition is in the range of 20 to 65% by volume, preferably in the range of 30 to 60% by volume, based on the polyamic acid or polyimide. If the content ratio of the spherical silica particles is less than 20% by volume, the effect of lowering the dielectric loss tangent cannot be sufficiently obtained. Further, when the content ratio of the spherical silica particles exceeds 65% by volume, the resin film becomes brittle when formed, the bendability decreases, and the viscosity of the resin composition increases when the resin film is to be formed. , Workability is also reduced.

本実施の形態の樹脂組成物は、有機溶媒を含有することができる。有機溶媒としては、例えば、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、N,N−ジエチルアセトアミド、N−メチル−2−ピロリドン(NMP)、2−ブタノン、ジメチルスルホキシド(DMSO)、ヘキサメチルホスホルアミド、N−メチルカプロラクタム、硫酸ジメチル、シクロヘキサノン、ジオキサン、テトラヒドロフラン、ジグライム、トリグライム、クレゾール等が挙げられる。これらの溶媒を2種以上併用することもでき、更にはキシレン、トルエンのような芳香族炭化水素の併用も可能である。有機溶媒の含有量としては特に制限されるものではないが、ポリアミド酸又はポリイミドの濃度が5〜30重量%程度になるような使用量に調整して用いることが好ましい。 The resin composition of the present embodiment can contain an organic solvent. Examples of the organic solvent include N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N, N-diethylacetamide, N-methyl-2-pyrrolidone (NMP), 2-butanone, and dimethyl. Examples thereof include sulfoxide (DMSO), hexamethylphosphoramide, N-methylcaprolactam, dimethylformamide, cyclohexanone, dioxane, tetrahydrofuran, diglime, triglime, cresol and the like. Two or more of these solvents can be used in combination, and aromatic hydrocarbons such as xylene and toluene can be used in combination. The content of the organic solvent is not particularly limited, but it is preferable to adjust the content so that the concentration of polyamic acid or polyimide is about 5 to 30% by weight.

さらに、本実施の形態の樹脂組成物は、必要に応じて、発明の効果を損なわない範囲で、上記条件a〜cを具備する球状シリカ粒子以外の無機フィラーや、有機フィラーを含有してもよい。具体的には、例えば、上記条件a〜cを具備しないシリカ粒子や、酸化アルミニウム、酸化マグネシウム、酸化ベリリウム、窒化ホウ素、窒化アルミニウム、窒化ケイ素、フッ化アルミニウム、フッ化カルシウム等の無機フィラー、フッ素系ポリマー粒子や液晶ポリマー粒子等の有機フィラーが挙げられる。これらは1種又は2種以上を混合して用いることができる。さらに必要に応じて、他の任意成分として可塑剤、硬化促進剤、カップリング剤、充填剤、顔料、難燃剤などを適宜配合することができる。 Further, if necessary, the resin composition of the present embodiment may contain an inorganic filler other than the spherical silica particles satisfying the above conditions a to c and an organic filler as long as the effects of the invention are not impaired. Good. Specifically, for example, silica particles that do not satisfy the above conditions a to c, inorganic fillers such as aluminum oxide, magnesium oxide, beryllium oxide, boron nitride, aluminum nitride, silicon nitride, aluminum fluoride, and calcium fluoride, and fluorine. Examples thereof include organic fillers such as based polymer particles and liquid crystal polymer particles. These can be used alone or in admixture of two or more. Further, if necessary, a plasticizer, a curing accelerator, a coupling agent, a filler, a pigment, a flame retardant and the like can be appropriately blended as other optional components.

<粘度>
樹脂組成物の粘度は、樹脂組成粒を塗工する際のハンドリング性を高め、均一な厚みの塗膜を形成しやすい粘度範囲として、例えば5000cps〜100000cpsの範囲内とすることが好ましく、10000cps〜50000cpsの範囲内とすることがより好ましい。上記の粘度範囲を外れると、コーター等による塗工作業の際にフィルムに厚みムラ、スジ等の不良が発生し易くなる。
<Viscosity>
The viscosity of the resin composition is preferably in the range of, for example, 5000 cps to 100,000 cps, and is preferably in the range of 10000 cps to 10000 cps, for example, as the viscosity range in which the handleability when coating the resin composition grains is enhanced and a coating film having a uniform thickness is easily formed. It is more preferably within the range of 50,000 cps. If it is out of the above viscosity range, defects such as thickness unevenness and streaks are likely to occur in the film during coating work by a coater or the like.

<樹脂組成物の調製>
樹脂組成物の調製に際しては、例えばポリアミド酸の樹脂溶液に球状シリカ粒子を直接配合してもよい。あるいは、フィラーの分散性を考慮し、ポリアミド酸の原料である酸二無水物成分及びジアミン成分のいずれか片方を投入した反応溶媒に予め球状シリカ粒子を配合した後、攪拌下にもう片方の原料を投入して重合を進行させてもよい。いずれの方法においても、一回で球状シリカ粒子を全量投入してもよいし、数回分けて少しずつ添加してもよい。また、原料も一括で入れてもよいし、数回に分けて少しずつ混合してもよい。
<Preparation of resin composition>
When preparing the resin composition, for example, spherical silica particles may be directly blended with a resin solution of polyamic acid. Alternatively, in consideration of the dispersibility of the filler, spherical silica particles are previously mixed in a reaction solvent containing either one of the acid dianhydride component and the diamine component, which are the raw materials of the polyamic acid, and then the other raw material is stirred. May be charged to allow the polymerization to proceed. In either method, the entire amount of spherical silica particles may be added at one time, or may be added little by little in several portions. In addition, the raw materials may be added all at once, or may be divided into several times and mixed little by little.

[樹脂フィルム]
本実施の形態の樹脂フィルムは、単層又は複数層のポリイミド層を有する樹脂フィルムであって、ポリイミド層の少なくとも1層が、上記樹脂組成物の硬化物からなる球状シリカ含有ポリイミド層であればよい。
[Resin film]
The resin film of the present embodiment is a resin film having a single layer or a plurality of polyimide layers, and if at least one of the polyimide layers is a spherical silica-containing polyimide layer made of a cured product of the above resin composition. Good.

樹脂フィルム中で、樹脂組成物によって形成される球状シリカ含有ポリイミド層の厚みは、例えば5〜150μmの範囲内であることが好ましく、45〜100μmの範囲内であることがより好ましい。また、球状シリカ粒子の粒子径D100が球状シリカ含有ポリイミド層の厚みに対して0.05〜0.7の範囲内であることが好ましい。球状シリカ粒子の粒子径D100が球状シリカ含有ポリイミド層の厚みに対して0.05を下回る場合は、誘電特性の改善効果が不十分となることがあり、0.7を超える場合は、球状シリカ含有ポリイミド層の表面の平滑性が損なわれ、樹脂フィルムを形成したときに折り曲げ性が低下することがある。 In the resin film, the thickness of the spherical silica-containing polyimide layer formed by the resin composition is preferably in the range of, for example, 5 to 150 μm, and more preferably in the range of 45 to 100 μm. Further, it is preferable that the particle size D 100 of the spherical silica particles is in the range of 0.05 to 0.7 with respect to the thickness of the spherical silica-containing polyimide layer. If the particle size D 100 of the spherical silica particles is less than 0.05 with respect to the thickness of the spherical silica-containing polyimide layer, the effect of improving the dielectric properties may be insufficient, and if it exceeds 0.7, the spherical silica particles are spherical. The smoothness of the surface of the silica-containing polyimide layer may be impaired, and the bendability may decrease when a resin film is formed.

樹脂フィルム全体の厚さは、例えば5〜150μmの範囲内であることが好ましく、45〜80μmの範囲内がより好ましい。樹脂フィルムの厚みが5μmに満たないと、金属張積層板の製造時の搬送工程で金属箔にシワが入るなどの不具合が生じやすくなる。反対に、樹脂フィルムの厚みが100μmを超えると樹脂フィルムの折り曲げ性が低下するなどの点で不利になる傾向となる。 The thickness of the entire resin film is preferably in the range of, for example, 5 to 150 μm, and more preferably in the range of 45 to 80 μm. If the thickness of the resin film is less than 5 μm, problems such as wrinkles in the metal foil are likely to occur in the transport process during the production of the metal-clad laminate. On the contrary, if the thickness of the resin film exceeds 100 μm, the bendability of the resin film is lowered, which tends to be disadvantageous.

また、樹脂フィルムの全体の厚みに対する球状シリカ含有ポリイミド層の厚みの割合は、50%以上であることが好ましい。樹脂フィルムの全体の厚みに対する球状シリカ含有ポリイミド層の厚みの割合が50%未満では、誘電特性の改善効果が十分に得られない。 The ratio of the thickness of the spherical silica-containing polyimide layer to the total thickness of the resin film is preferably 50% or more. If the ratio of the thickness of the spherical silica-containing polyimide layer to the total thickness of the resin film is less than 50%, the effect of improving the dielectric properties cannot be sufficiently obtained.

球状シリカ含有ポリイミド層を形成する方法は、特に限定されるものではなく公知の手法を採用することができる。ここでは、その最も代表的な例を示す。
まず、樹脂組成物を任意の支持基材上に直接流延塗布して塗布膜を形成する。次に、塗布膜を150℃以下の温度である程度溶媒を乾燥除去する。樹脂組成物がポリアミド酸を含有する場合は、その後、塗布膜に対し、更にイミド化のために100〜400℃、好ましくは130〜360℃の温度範囲で5〜30分間程度の熱処理を行う。このようにして支持基材上に球状シリカ含有ポリイミド層を形成することができる。2層以上のポリイミド層とする場合、第一のポリアミド酸の樹脂溶液を塗布、乾燥したのち、第二のポリアミド酸の樹脂溶液を塗布、乾燥する。それ以降は、同様にして第三のポリアミド酸の樹脂溶液、次に、第4のポリアミド酸の樹脂溶液、・・・というように、ポリアミド酸の樹脂溶液を、必要な回数だけ、順次塗布し、乾燥する。その後、まとめて100〜400℃の温度範囲で5〜30分間程度の熱処理を行って、イミド化を行うことがよい。熱処理の温度が100℃より低いとポリイミドの脱水閉環反応が十分に進行せず、反対に400℃を超えると、ポリイミド層が劣化するおそれがある。
The method for forming the spherical silica-containing polyimide layer is not particularly limited, and a known method can be adopted. Here, the most typical example is shown.
First, the resin composition is cast and applied directly onto an arbitrary supporting base material to form a coating film. Next, the solvent is dried and removed from the coating film at a temperature of 150 ° C. or lower to some extent. When the resin composition contains a polyamic acid, the coating film is then further heat-treated for imidization in a temperature range of 100 to 400 ° C., preferably 130 to 360 ° C. for about 5 to 30 minutes. In this way, the spherical silica-containing polyimide layer can be formed on the supporting base material. When forming two or more polyimide layers, a resin solution of the first polyamic acid is applied and dried, and then a resin solution of the second polyamic acid is applied and dried. After that, in the same manner, the resin solution of the third polyamic acid, then the resin solution of the fourth polyamic acid, and so on, the resin solution of the polyamic acid is sequentially applied as many times as necessary. ,dry. After that, it is preferable to carry out heat treatment for about 5 to 30 minutes in a temperature range of 100 to 400 ° C. for imidization. If the heat treatment temperature is lower than 100 ° C., the dehydration ring closure reaction of the polyimide does not proceed sufficiently, and conversely, if it exceeds 400 ° C., the polyimide layer may be deteriorated.

また、球状シリカ含有ポリイミド層を形成する別の例を挙げる。
まず、任意の支持基材上に、樹脂組成物を流延塗布してフィルム状成型する。このフィルム状成型物を、支持基材上で加熱乾燥することにより自己支持性を有するゲルフィルムとする。ゲルフィルムを支持基材より剥離した後、樹脂組成物がポリアミド酸を含有する場合は、更に高温で熱処理し、イミド化させてポリイミドの樹脂フィルムとする。
Another example of forming a spherical silica-containing polyimide layer will be given.
First, the resin composition is cast-coated on an arbitrary supporting base material and molded into a film. This film-like molded product is heat-dried on a supporting base material to obtain a gel film having self-supporting properties. After the gel film is peeled off from the supporting base material, if the resin composition contains a polyamic acid, it is further heat-treated at a high temperature and imidized to obtain a polyimide resin film.

球状シリカ含有ポリイミド層の形成に用いる支持基材は、特に限定されるものではなく、任意の材質の基材を用いることができる。また、樹脂フィルムの形成にあたっては、支持基材上で完全にイミド化を完了させた樹脂フィルムを形成する必要はない。例えば、半硬化状態のポリイミド前駆体状態での樹脂フィルムを支持基材から剥離等の手段で分離し、分離後イミド化を完了させて樹脂フィルムとすることもできる。 The supporting base material used for forming the spherical silica-containing polyimide layer is not particularly limited, and a base material of any material can be used. Further, in forming the resin film, it is not necessary to form the resin film that has been completely imidized on the supporting base material. For example, the resin film in the semi-cured polyimide precursor state can be separated from the supporting base material by means such as peeling, and imidization is completed after the separation to obtain a resin film.

樹脂フィルムは、球状シリカ粒子などの無機フィラーを含有するポリイミド層(上記球状シリカ含有ポリイミド層を含む)のみからなっていてもよく、無機フィラーを含有しないポリイミド層を有してもよい。樹脂フィルムを複数層の積層構造とする場合、誘電特性の改善を考慮するとすべての層に無機フィラーを含有させることが好ましい。ただし、無機フィラーを含有するポリイミド層の隣接層を、無機フィラーを含有しない層とするか、あるいはその含有量が低い層とすることにより、加工時等の無機フィラーの滑落が防止できるという有利な効果をもたせることができる。無機フィラーを含有しないポリイミド層を有する場合、その厚みは、例えば、無機フィラーを含有するポリイミド層の1/100〜1/2の範囲内、好ましくは1/20〜1/3の範囲内とすることがよい。無機フィラーを含有しないポリイミド層を有する場合、そのポリイミド層が金属層に接するようにすれば、金属層と絶縁樹脂層の接着性が向上する。 The resin film may consist only of a polyimide layer containing an inorganic filler such as spherical silica particles (including the above-mentioned spherical silica-containing polyimide layer), or may have a polyimide layer not containing an inorganic filler. When the resin film has a laminated structure of a plurality of layers, it is preferable that all the layers contain an inorganic filler in consideration of improvement in dielectric properties. However, by setting the adjacent layer of the polyimide layer containing the inorganic filler to a layer not containing the inorganic filler or a layer having a low content thereof, it is advantageous that the inorganic filler can be prevented from slipping off during processing or the like. It can be effective. When the polyimide layer containing no inorganic filler is provided, the thickness thereof is, for example, within the range of 1/100 to 1/2, preferably 1/20 to 1/3 of the polyimide layer containing the inorganic filler. That is good. When the polyimide layer containing no inorganic filler is provided, if the polyimide layer is brought into contact with the metal layer, the adhesiveness between the metal layer and the insulating resin layer is improved.

樹脂フィルムの熱膨張係数(CTE)は、特に限定されないが、例えば5×10−6〜40×10−6/K(5〜40ppm/K)の範囲内にあることが好ましく、10×10−6〜35×10−6/K(10〜35ppm/K)の範囲内がより好ましい。樹脂フィルムの熱膨張係数が5×10−6/Kより小さいと、金属張積層板とした後でカールが生じやすくハンドリング性に劣る。一方、樹脂フィルムの熱膨張係数が40×10−6/Kを超えると、フレキシブル基板など電子材料としての寸法安定性に劣り、また耐熱性も低下する傾向にある。 The coefficient of thermal expansion (CTE) of the resin film is not particularly limited , but is preferably in the range of, for example, 5 × 10 -6 to 40 × 10 -6 / K (5 to 40 ppm / K), and is preferably 10 × 10 −. More preferably, it is in the range of 6 to 35 × 10-6 / K (10 to 35 ppm / K). If the coefficient of thermal expansion of the resin film is smaller than 5 × 10 -6 / K, curling is likely to occur after the metal-clad laminate is formed, and the handleability is poor. On the other hand, when the coefficient of thermal expansion of the resin film exceeds 40 × 10 -6 / K, the dimensional stability as an electronic material such as a flexible substrate is inferior, and the heat resistance tends to be lowered.

<誘電正接>
樹脂フィルムは、例えば、回路基板の絶縁樹脂層として適用する場合において、高周波信号の伝送時における誘電損失を低減するために、フィルム全体として、スプリットポスト誘電体共振器(SPDR)により測定したときの10GHzにおける誘電正接(Tanδ)が、0.005以下であることが好ましく、0.004以下であることがより好ましい。回路基板の伝送損失を改善するためには、特に絶縁樹脂層の誘電正接を制御することが重要であり、誘電正接を上記範囲内とすることで、伝送損失を下げる効果が増大する。従って、樹脂フィルムを、例えば高周波回路基板の絶縁樹脂層として適用する場合、伝送損失を効率よく低減できる。10GHzにおける誘電正接が0.005を超えると、樹脂フィルムを回路基板の絶縁樹脂層として適用した際に、高周波信号の伝送経路上で電気信号のロスが大きくなるなどの不都合が生じやすくなる。10GHzにおける誘電正接の下限値は特に制限されないが、樹脂フィルムを回路基板の絶縁樹脂層として適用する場合の物性制御を考慮する必要がある。
<Dissipation factor>
When the resin film is applied as an insulating resin layer of a circuit board, for example, when the film as a whole is measured by a split post dielectric resonator (SPDR) in order to reduce the dielectric loss during transmission of a high frequency signal. The dielectric loss tangent (Tanδ) at 10 GHz is preferably 0.005 or less, and more preferably 0.004 or less. In order to improve the transmission loss of the circuit board, it is particularly important to control the dielectric loss tangent of the insulating resin layer, and by setting the dielectric loss tangent within the above range, the effect of reducing the transmission loss is increased. Therefore, when the resin film is applied as, for example, an insulating resin layer of a high-frequency circuit board, the transmission loss can be efficiently reduced. If the dielectric loss tangent at 10 GHz exceeds 0.005, when the resin film is applied as the insulating resin layer of the circuit board, inconveniences such as a large loss of electric signals on the transmission path of high frequency signals are likely to occur. The lower limit of the dielectric loss tangent at 10 GHz is not particularly limited, but it is necessary to consider the physical property control when the resin film is applied as the insulating resin layer of the circuit board.

<比誘電率>
樹脂フィルムは、例えば回路基板の絶縁樹脂層として適用する場合において、インピーダンス整合性を確保するために、フィルム全体として、3〜20GHzにおける比誘電率が4.0以下であることが好ましい。3〜20GHzにおける比誘電率が4.0を超えると、樹脂フィルムを回路基板の絶縁樹脂層として適用した際に、誘電損失の悪化に繋がり、高周波信号の伝送経路上で電気信号のロスが大きくなるなどの不都合が生じやすくなる。
<Relative permittivity>
When the resin film is applied as an insulating resin layer of a circuit board, for example, the relative permittivity of the film as a whole at 3 to 20 GHz is preferably 4.0 or less in order to ensure impedance matching. If the relative permittivity at 3 to 20 GHz exceeds 4.0, when the resin film is applied as the insulating resin layer of the circuit board, the dielectric loss is deteriorated, and the loss of the electric signal is large on the transmission path of the high frequency signal. Inconveniences such as

<金属張積層板>
本実施の形態の金属張積層板は、絶縁樹脂層と、この絶縁樹脂層の少なくとも一方の面に積層された金属層と、を備えた金属張積層板であり、絶縁樹脂層の少なくとも1層が上記樹脂フィルムからなる。金属張積層板は、絶縁樹脂層の片面側のみに金属層を有する片面金属張積層板であってもよいし、絶縁樹脂層の両面に金属層を有する両面金属張積層板であってもよい。
<Metal-clad laminate>
The metal-clad laminate of the present embodiment is a metal-clad laminate comprising an insulating resin layer and a metal layer laminated on at least one surface of the insulating resin layer, and is at least one layer of the insulating resin layer. Is made of the above resin film. The metal-clad laminate may be a single-sided metal-clad laminate having a metal layer only on one side of the insulating resin layer, or a double-sided metal-clad laminate having metal layers on both sides of the insulating resin layer. ..

本実施の形態の金属張積層板は、無機フィラーを含有するポリイミド層と金属箔とを接着するための接着剤を用いることを除外するものではない。ただし、絶縁樹脂層の両面に金属層を有する両面金属張積層板において接着層を介在させる場合には、接着層の厚みは、誘電特性を損なわないように、全絶縁樹脂層の厚みの30%未満とすることが好ましく、20%未満とすることがより好ましい。また、絶縁樹脂層の片面のみに金属層を有する片面金属張積層板において接着層を介在させる場合には、接着層の厚みは、誘電特性を損なわないように、全絶縁樹脂層の厚みの15%未満とすることが好ましく、10%未満とすることがより好ましい。また、接着層は絶縁樹脂層の一部を構成するので、ポリイミド層であることが好ましい。絶縁樹脂層の主たる材質であるポリイミドのガラス転移温度は、耐熱性を付与する観点から300℃以上とすることが好ましい。ガラス転移温度を300℃以上とするには、ポリイミドを構成する上記の酸二無水物やジアミン成分を適宜選択することで可能となる。 The metal-clad laminate of the present embodiment does not exclude the use of an adhesive for adhering the polyimide layer containing the inorganic filler and the metal foil. However, when the adhesive layer is interposed in the double-sided metal-clad laminate having metal layers on both sides of the insulating resin layer, the thickness of the adhesive layer is 30% of the thickness of the total insulating resin layer so as not to impair the dielectric properties. It is preferably less than, more preferably less than 20%. Further, when the adhesive layer is interposed in the single-sided metal-clad laminate having the metal layer on only one side of the insulating resin layer, the thickness of the adhesive layer is 15 of the thickness of the total insulating resin layer so as not to impair the dielectric properties. It is preferably less than%, and more preferably less than 10%. Further, since the adhesive layer constitutes a part of the insulating resin layer, it is preferably a polyimide layer. The glass transition temperature of polyimide, which is the main material of the insulating resin layer, is preferably 300 ° C. or higher from the viewpoint of imparting heat resistance. The glass transition temperature can be set to 300 ° C. or higher by appropriately selecting the above-mentioned acid dianhydride and diamine components constituting the polyimide.

樹脂フィルムを絶縁樹脂層とする金属張積層板を製造する方法としては、例えば、樹脂フィルムに直接、又は任意の接着剤を介して金属箔を加熱圧着する方法や、金属蒸着等の手法によって樹脂フィルムに金属層を形成する方法などを挙げることができる。なお、両面金属張積層板は、例えば、片面金属張積層板を形成した後、互いにポリイミド層を向き合わせて熱プレスによって圧着し形成する方法や、片面金属張積層板のポリイミド層に金属箔を圧着し形成する方法等により得ることができる。 As a method for producing a metal-clad laminate having a resin film as an insulating resin layer, for example, a method of heat-bonding a metal foil directly to a resin film or via an arbitrary adhesive, a method of heat-pressing a metal foil, or a method such as metal deposition of a resin is used. Examples thereof include a method of forming a metal layer on a film. The double-sided metal-clad laminate can be formed, for example, by forming a single-sided metal-clad laminate and then pressing the polyimide layers facing each other by heat pressing, or by applying a metal foil to the polyimide layer of the single-sided metal-clad laminate. It can be obtained by a method of crimping and forming.

<金属層>
金属層の材質としては、特に制限はないが、例えば、銅、ステンレス、鉄、ニッケル、ベリリウム、アルミニウム、亜鉛、インジウム、銀、金、スズ、ジルコニウム、タンタル、チタン、鉛、マグネシウム、マンガン及びこれらの合金等が挙げられる。この中でも、特に銅又は銅合金が好ましい。金属層は、金属箔からなるものであってもよいし、フィルムに金属蒸着したものであってもよい。また、樹脂組成物を直接塗布可能な点から、金属箔でも金属板でも使用可能であり、銅箔若しくは銅板が好ましい。
<Metal layer>
The material of the metal layer is not particularly limited, but for example, copper, stainless steel, iron, nickel, beryllium, aluminum, zinc, indium, silver, gold, tin, zirconium, tantalum, titanium, lead, magnesium, manganese and these. Alloys and the like. Of these, copper or copper alloys are particularly preferable. The metal layer may be made of metal foil or may be metal-deposited on a film. Further, since the resin composition can be directly applied, either a metal foil or a metal plate can be used, and a copper foil or a copper plate is preferable.

金属層の厚みは、金属張積層板の使用目的に応じて適宜設定されるため特に限定されないが、例えば5μm〜3mmの範囲内が好ましく、12μm〜1mmの範囲内がより好ましい。金属層の厚みが5μmに満たないと、金属張積層板の製造等における搬送時にシワが入るなどの不具合が生じるおそれがある。反対に金属層の厚みが3mmを超えると硬くて加工性が悪くなる。金属層の厚みについては、一般的に、車載用回路基板などの用途では厚いものが適し、LED用回路基板などの用途などでは薄い金属層が適する。 The thickness of the metal layer is not particularly limited because it is appropriately set according to the purpose of use of the metal-clad laminate, but is preferably in the range of, for example, 5 μm to 3 mm, and more preferably in the range of 12 μm to 1 mm. If the thickness of the metal layer is less than 5 μm, problems such as wrinkles may occur during transportation in the manufacture of metal-clad laminates. On the contrary, if the thickness of the metal layer exceeds 3 mm, it is hard and the workability is deteriorated. As for the thickness of the metal layer, a thick one is generally suitable for applications such as an in-vehicle circuit board, and a thin metal layer is suitable for an application such as an LED circuit board.

以下に実施例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。なお、以下の実施例において、特にことわりのない限り各種測定、評価は下記によるものである。 Examples will be shown below, and the features of the present invention will be described in more detail. However, the scope of the present invention is not limited to the examples. In the following examples, various measurements and evaluations are as follows unless otherwise specified.

[粘度の測定]
樹脂溶液の粘度はE型粘度計(ブルックフィールド社製、商品名;DV−II+Pro)を用いて、25℃における粘度を測定した。トルクが10%〜90%になるよう回転数を設定し、測定を開始してから1分経過後、粘度が安定した時の値を読み取った。
[Measurement of viscosity]
The viscosity of the resin solution was measured at 25 ° C. using an E-type viscometer (manufactured by Brookfield, trade name; DV-II + Pro). The rotation speed was set so that the torque was 10% to 90%, and one minute after the start of the measurement, the value when the viscosity became stable was read.

[比誘電率及び誘電正接の測定]
<シリカ粒子>
空洞共振器摂動法による関東電子応用開発社製の誘電率測定装置を用い、誘電率測定モード;TM101に設定し、周波数10GHzにおけるシリカ粒子の比誘電率(ε1)及び誘電正接(Tanδ1)を測定した。なお、試料管チューブの内径は1.68mm、外径は2.8mm、高さは8cmである。
<樹脂フィルム>
比誘電率及び誘電正接は、ベクトルネットワークアナライザ(Agilent社製、商品名;ベクトルネットワークアナライザE8363C)およびSPDR共振器を用いて、周波数10GHzにおける樹脂フィルム(硬化後の樹脂フィルム)の比誘電率(ε1)および誘電正接(Tanδ1)を測定した。なお、測定に使用した樹脂フィルムは、温度;24〜26℃、湿度;45〜55%の条件下で、24時間放置したものである。
[Measurement of relative permittivity and dielectric loss tangent]
<Silica particles>
Using a permittivity measuring device manufactured by Kanto Denshi Applied Development Co., Ltd. by the cavity resonator permittivity method, set the permittivity measurement mode to TM101 and measure the relative permittivity (ε1) and dielectric loss tangent (Tanδ1) of silica particles at a frequency of 10 GHz. did. The inner diameter of the sample tube is 1.68 mm, the outer diameter is 2.8 mm, and the height is 8 cm.
<Resin film>
The relative permittivity and dielectric loss tangent are determined by using a vector network analyzer (manufactured by Agilent, trade name; vector network analyzer E8633C) and an SPDR resonator, and the relative permittivity (ε1) of the resin film (resin film after curing) at a frequency of 10 GHz. ) And the dielectric loss tangent (Tanδ1) were measured. The resin film used for the measurement was left to stand for 24 hours under the conditions of temperature: 24-26 ° C. and humidity: 45-55%.

[線熱膨張係数(CTE)の測定方法]
3mm×20mmのサイズの樹脂フィルムを、サーモメカニカルアナライザー(Bruker社製、商品名;4000SA)を用い、5.0gの荷重を加えながら一定の昇温速度で30℃から265℃まで昇温させ、更にその温度で10分保持した後、5℃/分の速度で冷却し、200℃から100℃までの平均熱膨張係数(熱膨張係数)を求めた。
[Measurement method of coefficient of linear thermal expansion (CTE)]
A resin film having a size of 3 mm × 20 mm was heated from 30 ° C. to 265 ° C. at a constant heating rate while applying a load of 5.0 g using a thermomechanical analyzer (manufactured by Bruker, trade name; 4000SA). Further, after holding at that temperature for 10 minutes, the film was cooled at a rate of 5 ° C./min to obtain an average coefficient of thermal expansion (coefficient of thermal expansion) from 200 ° C. to 100 ° C.

[粒径の測定方法]
レーザ回折式粒度分布測定装置(マルバーン社製、商品名;Master Sizer 3000)を用いて、レーザ回折・散乱式測定方式による粒子径の測定を行った。
[Measurement method of particle size]
The particle size was measured by a laser diffraction / scattering type measurement method using a laser diffraction type particle size distribution measuring device (manufactured by Malvern Co., Ltd., trade name; Master Sizer 3000).

[真比重の測定方法]
連続自動粉体真密度測定装置(セイシン企業社製、商品名;AUTO TRUE DENSERMAT‐7000)を用い、ピクノメーター法(液相置換法)にて測定した。
[Measurement method of true specific gravity]
It was measured by a pycnometer method (liquid phase replacement method) using a continuous automatic powder truth density measuring device (manufactured by Seishin Enterprise Co., Ltd., trade name; AUTO TRUE DENSERMAT-7000).

[折り曲げ性の評価]
JISK5600−1に準拠し、5cm×10cmサイズの樹脂フィルムの長辺の中心を、5mmφの金属棒に巻きつけるように1〜2秒かけて均一に曲げ、樹脂フィルムが180℃折り曲がっても破断又はクラックが入らないものを「良」、破断又はクラックが発生するものを「不可」とした。
[Evaluation of bendability]
In accordance with JIS K5600-1, the center of the long side of a 5 cm x 10 cm size resin film is bent uniformly over 1 to 2 seconds so as to be wrapped around a 5 mmφ metal rod, and even if the resin film is bent at 180 ° C, it breaks. Alternatively, those without cracks were rated as "good", and those with breaks or cracks were rated as "impossible".

合成例及び比較例、実施例に用いた略号は、以下の化合物を示す。
PMDA:ピロメリット酸二無水物
BPDA:3,3’,4,4’‐ビフェニルテトラカルボン酸二無水物
BAPP:2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン
m‐TB:2,2’‐ジメチル‐4,4’‐ジアミノビフェニル
DMAc:N,N‐ジメチルアセトアミド
フィラー1:日鉄ケミカル&マテリアル社製、商品名;CR10−20(球状クリストバライトシリカ粉末、真球状、シリカ含有率;99.4重量%、クリストバライト相;98重量%、真比重;2.33、比表面積;0.63m/g、D50;10.8μm、D90;16.4μm、D100;24.1μm、頻度極大値F1の粒子径;11.2μm、頻度極大値F1;10.6%、頻度極大値F2の粒子径;1.0μm、頻度極大値F2;1.4%、F1/F2;11.2、10GHzにおける比誘電率;3.16、10GHzにおける誘電正接;0.0008)
フィラー2:日鉄ケミカル&マテリアル社製、商品名;SC70−2(球状非晶質シリカ粉末、真球状、シリカ含有率;99.9重量%、真比重;2.33、比表面積;1.1m/g、D50;11.7μm、D90;16.4μm、D100;24.1μm、頻度極大値F1の粒子径;11.2μm、頻度極大値F1;10.8%、頻度極大値F2の粒子径;1.5μm、頻度極大値F2;1.2%、F1/F2;7.5、10GHzにおける比誘電率;3.08、10GHzにおける誘電正接;0.0015)
フィラー3:日鉄ケミカル&マテリアル社製、商品名;SP40−10(球状非晶質シリカ粉末、真球状、シリカ含有率;99.9重量%、真比重;2.21、比表面積;8.6m/g、D50;2.5μm、D90;3.6μm、D100;7.0μm、頻度極大値F1の粒子径;2.2μm、頻度極大値F1;9.0%、頻度極大値F2の粒子径;0.9μm、頻度極大値F2;4.3%、F1/F2;2.4、10GHzにおける比誘電率;2.78、10GHzにおける誘電正接;0.0030)
The abbreviations used in Synthesis Examples, Comparative Examples, and Examples indicate the following compounds.
PMDA: pyromellitic dianhydride BPDA: 3,3', 4,4'-biphenyltetracarboxylic dianhydride BAPP: 2,2-bis [4- (4-aminophenoxy) phenyl] propane m-TB: 2,2'-dimethyl-4,4'-diaminobiphenylDMAc: N, N-dimethylacetamide
Filler 1: Nittetsu Chemical & Materials Co., Ltd., trade name; CR10-20 (spherical cristobalite silica powder, spherical, silica content; 99.4% by weight, cristobalite phase; 98% by weight, true specific surface area; 2.33 Specific surface area; 0.63 m 2 / g, D 50 ; 10.8 μm, D 90 ; 16.4 μm, D 100 ; 24.1 μm, particle size of maximum frequency F1; 11.2 μm, maximum frequency F1; 10. 6%, particle size of maximum frequency F2; 1.0 μm, maximum frequency F2; 1.4%, F1 / F2; 11.2, relative permittivity at 10 GHz; 3.16, dielectric loss tangent at 10 GHz; 0. 0008)
Filler 2: Manufactured by Nittetsu Chemical & Materials Co., Ltd., trade name; SC70-2 (spherical amorphous silica powder, true sphere, silica content; 99.9% by weight, true specific gravity; 2.33, specific surface area; 1. 1 m 2 / g, D 50 ; 11.7 μm, D 90 ; 16.4 μm, D 100 ; 24.1 μm, particle size of maximum frequency F1; 11.2 μm, maximum frequency F1; 10.8%, maximum frequency Particle size of value F2; 1.5 μm, maximum frequency F2; 1.2%, F1 / F2; 7.5, relative permittivity at 10 GHz; 3.08, dielectric loss tangent at 10 GHz; 0.0015)
Filler 3: Manufactured by Nittetsu Chemical & Materials Co., Ltd., trade name; SP40-10 (spherical amorphous silica powder, true sphere, silica content; 99.9% by weight, true specific gravity; 2.21, specific surface area; 8. 6m 2 / g, D 50 ; 2.5 μm, D 90 ; 3.6 μm, D 100 ; 7.0 μm, particle size of maximum frequency F1; 2.2 μm, maximum frequency F1; 9.0%, maximum frequency Particle size of value F2; 0.9 μm, maximum frequency F2; 4.3%, F1 / F2; 2.4, relative permittivity at 10 GHz; 2.78, dielectric loss tangent at 10 GHz; 0.0030)

(合成例1)
300mlのセパラブルフラスコに、21.65gのm−TB(101.66mmol)、255gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、17.46gのPMDA(80.03mmol)及び5.90gのBPDA(20.01mmol)を添加し、室温で18時間撹拌してポリアミド酸溶液A(固形分濃度;15%)を得た。得られたポリアミド酸溶液Aの粘度は22,400cpsであった。
(Synthesis Example 1)
21.65 g of m-TB (101.66 mmol) and 255 g of DMAc were placed in a 300 ml separable flask, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 17.46 g of PMDA (80.03 mmol) and 5.90 g of BPDA (20.01 mmol) were added and stirred at room temperature for 18 hours to polyamic acid solution A (solid content concentration; 15%). Got The viscosity of the obtained polyamic acid solution A was 22,400 cps.

(合成例2)
300mlのセパラブルフラスコに、29.21gのBAPP(71.15mmol)、255gのDMAcを投入し、室温、窒素気流下で撹拌した。完全に溶解した後、14.74gのPMDA(67.60mmol)、1.05gのBPDA(3.56mmol)を添加し、室温で18時間撹拌してポリアミド酸溶液Bを得た。得られたポリアミド酸溶液B(固形分濃度;15%)の粘度は21,074cpsであった。
(Synthesis Example 2)
29.21 g of BAPP (71.15 mmol) and 255 g of DMAc were placed in a 300 ml separable flask, and the mixture was stirred at room temperature under a nitrogen stream. After complete dissolution, 14.74 g of PMDA (67.60 mmol) and 1.05 g of BPDA (3.56 mmol) were added, and the mixture was stirred at room temperature for 18 hours to obtain a polyamic acid solution B. The viscosity of the obtained polyamic acid solution B (solid content concentration; 15%) was 21,074 cps.

[実施例1]
70.0gのポリアミド酸溶液A及び7.8gのフィラー1を混合し、目視にて一様な溶液となるまで攪拌し、ポリアミド酸溶液1(粘度;24,800cps、ポリアミド酸に対するフィラーの含有率;32.6体積%)を調製した。
銅箔1(電解銅箔、厚み;12μm)の上にポリアミド酸溶液1を塗布し、130℃で3分間乾燥させた。その後、155℃から360℃まで段階的な熱処理を行ってイミド化し、金属張積層板1を調製した。
金属張積層板1の銅箔をエッチング除去し、樹脂フィルム1を調製した。樹脂フィルム1(厚み;46.1μm)の比誘電率は2.78、誘電正接は0.0037、CTEは34ppm/Kであり、折り曲げ性は良であった。樹脂フィルム1の評価結果を表1に示す。
[Example 1]
70.0 g of polyamic acid solution A and 7.8 g of filler 1 are mixed, and the mixture is visually stirred until a uniform solution is obtained. Polyamic acid solution 1 (viscosity; 24,800 cps, filler content with respect to polyamic acid) 32.6% by volume) was prepared.
The polyamic acid solution 1 was applied onto the copper foil 1 (electrolytic copper foil, thickness; 12 μm) and dried at 130 ° C. for 3 minutes. Then, a stepwise heat treatment was performed from 155 ° C. to 360 ° C. to imidize the metal-clad laminate 1.
The copper foil of the metal-clad laminate 1 was removed by etching to prepare a resin film 1. The resin film 1 (thickness; 46.1 μm) had a relative permittivity of 2.78, a dielectric loss tangent of 0.0037, and a CTE of 34 ppm / K, and had good bendability. The evaluation results of the resin film 1 are shown in Table 1.

[実施例2]
60.0gのポリアミド酸溶液A及び20.0gのフィラー1を混合し、目視にて一様な溶液となるまで攪拌し、ポリアミド酸溶液2(粘度;28,400cps、ポリアミド酸に対するフィラーの含有率;59.2体積%)を調製した。
実施例1と同様にして、金属張積層板2及び樹脂フィルム2を調製した。樹脂フィルム2(厚み;78.1μm)の比誘電率は2.71、誘電正接は0.0028、CTEは34ppm/Kであり、折り曲げ性は良であった。樹脂フィルム2の評価結果を表1に示す。
[Example 2]
60.0 g of polyamic acid solution A and 20.0 g of filler 1 are mixed, and the mixture is visually stirred until a uniform solution is obtained. Polyamic acid solution 2 (viscosity; 28,400 cps, filler content with respect to polyamic acid) 59.2% by volume) was prepared.
The metal-clad laminate 2 and the resin film 2 were prepared in the same manner as in Example 1. The resin film 2 (thickness; 78.1 μm) had a relative permittivity of 2.71, a dielectric loss tangent of 0.0028, and a CTE of 34 ppm / K, and had good bendability. The evaluation results of the resin film 2 are shown in Table 1.

[実施例3]
58.7gのポリアミド酸溶液B及び6.1gのフィラー1を混合し、目視にて一様な溶液となるまで攪拌し、ポリアミド酸溶液3(粘度;23,000cps、ポリアミド酸に対するフィラーの含有率;30.0体積%)を調製した。
実施例1と同様にして、金属張積層板3及び樹脂フィルム3を調製した。樹脂フィルム3(厚み;51.6μm)の誘電率は3.04、誘電正接は0.0044であり、折り曲げ性は良であった。樹脂フィルム3の評価結果を表1に示す。
[Example 3]
58.7 g of polyamic acid solution B and 6.1 g of filler 1 are mixed, and the mixture is visually stirred until a uniform solution is obtained. Polyamic acid solution 3 (viscosity; 23,000 cps, filler content with respect to polyamic acid) 30.0% by volume) was prepared.
The metal-clad laminate 3 and the resin film 3 were prepared in the same manner as in Example 1. The resin film 3 (thickness; 51.6 μm) had a dielectric constant of 3.04 and a dielectric loss tangent of 0.0044, and had good bendability. The evaluation results of the resin film 3 are shown in Table 1.

[実施例4]
70.0gのポリアミド酸溶液A及び7.8gのフィラー2を混合し、目視にて一様な溶液となるまで攪拌し、ポリアミド酸溶液4(粘度;23,600cps、ポリアミド酸に対するフィラーの含有率;33.8体積%)を調製した。
実施例1と同様にして、金属張積層板4及び樹脂フィルム4を調製した。樹脂フィルム4(厚み;50.4μm)の比誘電率は2.84、誘電正接は0.0038、CTEは28.2ppm/Kであり、折り曲げ性は良であった。樹脂フィルム4の評価結果を表1に示す。
[Example 4]
70.0 g of polyamic acid solution A and 7.8 g of filler 2 are mixed, and the mixture is visually stirred until a uniform solution is obtained. Polyamic acid solution 4 (viscosity; 23,600 cps, filler content with respect to polyamic acid) 33.8% by volume) was prepared.
A metal-clad laminate 4 and a resin film 4 were prepared in the same manner as in Example 1. The resin film 4 (thickness; 50.4 μm) had a relative permittivity of 2.84, a dielectric loss tangent of 0.0038, and a CTE of 28.2 ppm / K, and had good bendability. The evaluation results of the resin film 4 are shown in Table 1.

[実施例5]
60.0gのポリアミド酸溶液A及び20.0gのフィラー2を混合し、目視にて一様な溶液となるまで攪拌し、ポリアミド酸溶液5(粘度;30,100cps、ポリアミド酸に対するフィラーの含有率;60.5体積%)を調製した。
実施例1と同様にして、金属張積層板5及び樹脂フィルム5を調製した。樹脂フィルム5(厚み;79.3μm)の比誘電率は2.75、誘電正接は0.0028、CTEは20.4ppm/Kであり、折り曲げ性は良であった。樹脂フィルム5の評価結果を表1に示す。
[Example 5]
60.0 g of polyamic acid solution A and 20.0 g of filler 2 are mixed, and the mixture is visually stirred until a uniform solution is obtained. Polyamic acid solution 5 (viscosity; 30,100 cps, filler content with respect to polyamic acid) 60.5% by volume) was prepared.
A metal-clad laminate 5 and a resin film 5 were prepared in the same manner as in Example 1. The resin film 5 (thickness; 79.3 μm) had a relative permittivity of 2.75, a dielectric loss tangent of 0.0028, and a CTE of 20.4 ppm / K, and had good bendability. The evaluation results of the resin film 5 are shown in Table 1.

[実施例6]
56.2gのポリアミド酸溶液B及び5.5gのフィラー2を混合し、目視にて一様な溶液となるまで攪拌し、ポリアミド酸溶液6(粘度;23,600cps、ポリアミド酸に対するフィラーの含有率;30.0体積%)を調製した。
実施例1と同様にして、金属張積層板6及び樹脂フィルム6を調製した。樹脂フィルム6(厚み;50.7μm)の比誘電率は3.04、誘電正接は0.0047であり、折り曲げ性は良であった。樹脂フィルム6の評価結果を表1に示す。
[Example 6]
56.2 g of polyamic acid solution B and 5.5 g of filler 2 were mixed, and the mixture was visually stirred until a uniform solution was obtained. Polyamic acid solution 6 (viscosity; 23,600 cps, filler content with respect to polyamic acid). 30.0% by volume) was prepared.
A metal-clad laminate 6 and a resin film 6 were prepared in the same manner as in Example 1. The resin film 6 (thickness; 50.7 μm) had a relative permittivity of 3.04 and a dielectric loss tangent of 0.0047, and had good bendability. The evaluation results of the resin film 6 are shown in Table 1.

(比較例1)
銅箔1の上に70.0gのポリアミド酸溶液Aを塗布し、130℃で3分間乾燥させた。その後155℃から360℃まで段階的な熱処理を行ってイミド化し、金属張積層板7を調製した。
実施例1と同様にして、金属張積層板7の銅箔をエッチング除去し、樹脂フィルム7を調製した。樹脂フィルム7(厚み;26.7μm)の誘電率は3.13、誘電正接は0.0056、CTEは21.3ppm/Kであり、折り曲げ性は良であった。樹脂フィルム7の評価結果を表2に示す。
(Comparative Example 1)
70.0 g of polyamic acid solution A was applied onto the copper foil 1 and dried at 130 ° C. for 3 minutes. Then, a stepwise heat treatment was performed from 155 ° C. to 360 ° C. to imidize the metal-clad laminate 7.
In the same manner as in Example 1, the copper foil of the metal-clad laminate 7 was removed by etching to prepare a resin film 7. The resin film 7 (thickness; 26.7 μm) had a dielectric constant of 3.13, a dielectric loss tangent of 0.0056, and a CTE of 21.3 ppm / K, and had good bendability. The evaluation results of the resin film 7 are shown in Table 2.

(比較例2)
銅箔1の上に60.0gのポリアミド酸溶液Bを塗布し、90℃で1分間、130℃で5分間乾燥させた。その後155℃から360℃まで段階的な熱処理を行ってイミド化し、金属張積層板8を調製した。
実施例1と同様にして、金属張積層板8の銅箔をエッチング除去し、樹脂フィルム8を調製した。樹脂フィルム8(厚み;41.4μm)の誘電率は3.16、誘電正接は0.0062、CTEは51.3ppm/Kであり、折り曲げ性は良であった。樹脂フィルム8の評価結果を表2に示す。
(Comparative Example 2)
60.0 g of the polyamic acid solution B was applied onto the copper foil 1 and dried at 90 ° C. for 1 minute and at 130 ° C. for 5 minutes. Then, a stepwise heat treatment was performed from 155 ° C. to 360 ° C. to imidize the metal-clad laminate 8.
In the same manner as in Example 1, the copper foil of the metal-clad laminate 8 was removed by etching to prepare a resin film 8. The resin film 8 (thickness; 41.4 μm) had a dielectric constant of 3.16, a dielectric loss tangent of 0.0062, and a CTE of 51.3 ppm / K, and had good bendability. The evaluation results of the resin film 8 are shown in Table 2.

(参考例1)
55.0gのポリアミド酸溶液A及び36.3gのフィラー1を混合したこと以外、実施例1と同様にして、ポリアミド酸溶液9を調製した。
銅箔1の上にポリアミド酸溶液9を塗布し、実施例1と同様にして、金属張積層板9を調製後、樹脂フィルム9を調製した。樹脂フィルム9(厚み;117.8μm)の比誘電率は2.56、誘電正接は0.0015、CTEは31ppm/Kであり、折り曲げ性は不可であった。樹脂フィルム9の評価結果を表3に示す。
(Reference example 1)
A polyamic acid solution 9 was prepared in the same manner as in Example 1 except that 55.0 g of the polyamic acid solution A and 36.3 g of the filler 1 were mixed.
A polyamic acid solution 9 was applied onto the copper foil 1, a metal-clad laminate 9 was prepared in the same manner as in Example 1, and then a resin film 9 was prepared. The resin film 9 (thickness; 117.8 μm) had a relative permittivity of 2.56, a dielectric loss tangent of 0.0015, and a CTE of 31 ppm / K, and was not bendable. The evaluation results of the resin film 9 are shown in Table 3.

(参考例2)
55.6gのポリアミド酸溶液A及び36.3gのフィラー2を混合したこと以外、実施例1と同様にして、ポリアミド酸溶液10を調製した。
銅箔1の上にポリアミド酸溶液10を塗布し、実施例1と同様にして、金属張積層板10を調製後、樹脂フィルム10を調製した。樹脂フィルム10(厚み;116.7μm)の比誘電率は2.75、誘電正接は0.0018、CTEは13ppm/Kであり、折り曲げ性は不可であった。樹脂フィルム10の評価結果を表3に示す。
(Reference example 2)
A polyamic acid solution 10 was prepared in the same manner as in Example 1 except that 55.6 g of the polyamic acid solution A and 36.3 g of the filler 2 were mixed.
The polyamic acid solution 10 was applied onto the copper foil 1, and the metal-clad laminate 10 was prepared in the same manner as in Example 1, and then the resin film 10 was prepared. The resin film 10 (thickness; 116.7 μm) had a relative permittivity of 2.75, a dielectric loss tangent of 0.0018, and a CTE of 13 ppm / K, and was not bendable. The evaluation results of the resin film 10 are shown in Table 3.

(参考例3)
56.2gのポリアミド酸溶液B及び5.5gのフィラー3を混合したこと以外、実施例1と同様にして、ポリアミド酸溶液11を調製した。
銅箔1の上にポリアミド酸溶液11を塗布し、実施例1と同様にして、金属張積層板11を調製後、樹脂フィルム11を調製した。樹脂フィルム11(厚み;45.6μm)の比誘電率は3.25、誘電正接は0.0052、CTEは40.9であり、折り曲げ性は良であった。樹脂フィルム11の評価結果を表3に示す。
(Reference example 3)
A polyamic acid solution 11 was prepared in the same manner as in Example 1 except that 56.2 g of the polyamic acid solution B and 5.5 g of the filler 3 were mixed.
The polyamic acid solution 11 was applied onto the copper foil 1, and the metal-clad laminate 11 was prepared in the same manner as in Example 1, and then the resin film 11 was prepared. The resin film 11 (thickness; 45.6 μm) had a relative permittivity of 3.25, a dielectric loss tangent of 0.0052, and a CTE of 40.9, and had good bendability. The evaluation results of the resin film 11 are shown in Table 3.

Figure 2021070727
Figure 2021070727

Figure 2021070727
Figure 2021070727

Figure 2021070727
Figure 2021070727

実施例1〜6の平均粒子径D50が10μm以上の球状シリカ粒子を含有するポリイミドフィルムは、比較例1及び2のシリカを含まないポリイミドフィルムと比較して、誘電率及び誘電正接が低下している。
また、球状シリカ粒子を70vol%以上含有する参考例1及び2のポリイミドフィルムは、実施例と比較して折り曲げ性が悪化した。
さらに、平均粒子径D50が2.5μmと小さな球状シリカ粒子を配合した参考例3のポリイミドフィルムは、実施例に比べ誘電率及び誘電正接が高く、誘電特性の改善効果が小さかった。
The polyimide film containing spherical silica particles having an average particle diameter D 50 of 10 μm or more in Examples 1 to 6 has lower dielectric constants and dielectric loss tangents than the silica-free polyimide films of Comparative Examples 1 and 2. ing.
Further, the polyimide films of Reference Examples 1 and 2 containing 70 vol% or more of spherical silica particles had deteriorated bendability as compared with Examples.
Further, the polyimide film of Reference Example 3 in which spherical silica particles having an average particle diameter D 50 as small as 2.5 μm were blended had a higher dielectric constant and dielectric loss tangent than the examples, and the effect of improving the dielectric properties was small.

以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはなく、種々の変形が可能である。

Although the embodiments of the present invention have been described in detail for the purpose of exemplification, the present invention is not limited to the above embodiments and can be modified in various ways.

Claims (7)

ポリアミド酸又はポリイミドと、球状シリカ粒子と、を含有する樹脂組成物であって、
レーザ回折散乱法による体積基準の粒度分布測定によって得られる前記球状シリカ粒子の頻度分布曲線が、下記の条件a〜c;
a)累積値が50%となる平均粒子径D50が9.0〜12.0μmの範囲内であること;
b)累積値が90%となる粒子径D90が15〜20μmの範囲内であること;
c)累積値が100%となる粒子径D100が25μm以下であること;
を満たし、前記球状シリカ粒子の含有量が、前記ポリアミド酸又は前記ポリイミドに対し、20〜65体積%の範囲内であることを特徴とする樹脂組成物。
A resin composition containing polyamic acid or polyimide and spherical silica particles.
The frequency distribution curve of the spherical silica particles obtained by volume-based particle size distribution measurement by the laser diffraction / scattering method has the following conditions a to c;
a) The average particle size D 50 at which the cumulative value is 50% is within the range of 9.0 to 12.0 μm;
b) The particle size D 90 at which the cumulative value is 90% is within the range of 15 to 20 μm;
c) The particle size D 100 at which the cumulative value is 100% is 25 μm or less;
The resin composition is characterized in that the content of the spherical silica particles is in the range of 20 to 65% by volume with respect to the polyamic acid or the polyimide.
前記球状シリカ粒子が、更に、下記の条件d;
d)頻度極大値F1及び頻度極大値F2を有し、前記F1が9.0〜14.0μmの領域内、前記F2が0.5〜3.0μmの領域内にあること;
を満たすことを特徴とする請求項1に記載の樹脂組成物。
The spherical silica particles are further subjected to the following condition d;
d) It has a frequency maximum value F1 and a frequency maximum value F2, and the F1 is in the region of 9.0 to 14.0 μm and the F2 is in the region of 0.5 to 3.0 μm;
The resin composition according to claim 1, wherein the resin composition satisfies the above.
前記球状シリカ粒子が、更に、下記の条件e;
e)頻度極大値F1及び頻度極大値F2を有し、前記F1及びF2の比(F1/F2)が3〜28の範囲内であること;
を満たすことを特徴とする請求項1又は2に記載の樹脂組成物。
The spherical silica particles are further subjected to the following condition e;
e) It has a maximum frequency value F1 and a maximum frequency value F2, and the ratio of F1 and F2 (F1 / F2) is in the range of 3 to 28;
The resin composition according to claim 1 or 2, wherein the resin composition satisfies the above.
単層又は複数層のポリイミド層を有する樹脂フィルムであって、
前記ポリイミド層の少なくとも1層が、請求項1〜3のいずれか1項に記載の樹脂組成物の硬化物からなる球状シリカ含有ポリイミド層であり、該球状シリカ含有ポリイミド層の厚みが5〜150μmの範囲内であることを特徴とする樹脂フィルム。
A resin film having a single layer or a plurality of polyimide layers.
At least one layer of the polyimide layer is a spherical silica-containing polyimide layer made of a cured product of the resin composition according to any one of claims 1 to 3, and the thickness of the spherical silica-containing polyimide layer is 5 to 150 μm. A resin film characterized by being within the range of.
前記球状シリカ粒子の粒子径D100が前記球状シリカ含有ポリイミド層の厚みに対して0.05〜0.7の範囲内であることを特徴とする請求項4に記載の樹脂フィルム。 The resin film according to claim 4, wherein the particle diameter D 100 of the spherical silica particles is in the range of 0.05 to 0.7 with respect to the thickness of the spherical silica-containing polyimide layer. 厚みが5〜150μmの範囲内であり、前記球状シリカ含有ポリイミド層の厚みの割合が50%以上であることを特徴とする請求項4又は5に記載の樹脂フィルム。 The resin film according to claim 4 or 5, wherein the thickness is in the range of 5 to 150 μm, and the ratio of the thickness of the spherical silica-containing polyimide layer is 50% or more. 絶縁樹脂層と、前記絶縁樹脂層の少なくとも一方の面に積層された金属層と、を備えた金属張積層板であって、
前記絶縁樹脂層が請求項4〜6のいずれか1項に記載の樹脂フィルムからなることを特徴とする金属張積層板。

A metal-clad laminate comprising an insulating resin layer and a metal layer laminated on at least one surface of the insulating resin layer.
A metal-clad laminate characterized in that the insulating resin layer is made of the resin film according to any one of claims 4 to 6.

JP2019196673A 2019-10-29 2019-10-29 Resin compositions, resin films, and metal-clad laminates Active JP7405560B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019196673A JP7405560B2 (en) 2019-10-29 2019-10-29 Resin compositions, resin films, and metal-clad laminates
KR1020200138927A KR20210052283A (en) 2019-10-29 2020-10-26 Resin composition, resin film and metal clad laminate
CN202011170486.5A CN112745676A (en) 2019-10-29 2020-10-28 Resin composition, resin film, and metal-clad laminate
TW109137568A TW202124555A (en) 2019-10-29 2020-10-29 Resin composition, resin film and metal-clad laminate capable of improving dielectric properties without impairing mechanical properties such as bendability due to addition of inorganic fillers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019196673A JP7405560B2 (en) 2019-10-29 2019-10-29 Resin compositions, resin films, and metal-clad laminates

Publications (2)

Publication Number Publication Date
JP2021070727A true JP2021070727A (en) 2021-05-06
JP7405560B2 JP7405560B2 (en) 2023-12-26

Family

ID=75648779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019196673A Active JP7405560B2 (en) 2019-10-29 2019-10-29 Resin compositions, resin films, and metal-clad laminates

Country Status (4)

Country Link
JP (1) JP7405560B2 (en)
KR (1) KR20210052283A (en)
CN (1) CN112745676A (en)
TW (1) TW202124555A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239657A1 (en) * 2021-05-12 2022-11-17 株式会社カネカ Resin film and method for manufacturing same, metallized resin film, and printed wiring board

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI792818B (en) * 2021-12-29 2023-02-11 達邁科技股份有限公司 Alkali-resistant black matte polyimide film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4968044B2 (en) 2007-12-19 2012-07-04 日立化成工業株式会社 Method for producing polyimide compound, thermosetting resin composition, and prepreg and laminate using the same
CN107848260B (en) 2015-07-23 2020-10-30 三井金属矿业株式会社 Copper foil with resin, copper-clad laminate, and printed wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239657A1 (en) * 2021-05-12 2022-11-17 株式会社カネカ Resin film and method for manufacturing same, metallized resin film, and printed wiring board

Also Published As

Publication number Publication date
JP7405560B2 (en) 2023-12-26
CN112745676A (en) 2021-05-04
KR20210052283A (en) 2021-05-10
TW202124555A (en) 2021-07-01

Similar Documents

Publication Publication Date Title
EP2325000B1 (en) Highly heat conductive polyimide film, highly heat conductive metal-clad laminate and method for producing same
JP5665846B2 (en) Thermally conductive polyimide film and thermal conductive laminate using the same
TWI682019B (en) Multilayer adhesive film and flexible metal-clad laminate
JP6767759B2 (en) Polyimide, resin film and metal-clad laminate
CN114651035B (en) Polyimide film with high heat resistance and low dielectric property and preparation method thereof
TW202138435A (en) Resin composition, manufacturing method thereof, resin film, and metal-clad laminate wherein the resin composition includes a polyimide and a filler containing a liquid crystal polymer
JP7122162B2 (en) Thermoplastic Polyimide Films, Multilayer Polyimide Films, and Flexible Metal-Clad Laminates
JP7405560B2 (en) Resin compositions, resin films, and metal-clad laminates
JP7446814B2 (en) Resin compositions, resin films, and metal-clad laminates
TW202225270A (en) Non-thermoplastic polyimide film, multilayer polyimide film, and metal-clad laminated plate
JP7428646B2 (en) Metal-clad laminates and circuit boards
KR20230117670A (en) Metal clad laminate and circuit board
JP2021070592A (en) Silica particle, resin composition, resin film, and metal-clad laminate
JP7441029B2 (en) Resin film and metal clad laminate
JP2021105149A (en) Method for manufacturing resin film, and method for manufacturing metal-clad laminated plate
JP6767751B2 (en) Polyamic acid, polyimide, resin film and metal-clad laminate
JP2007253384A (en) Multilayered polyimide film
JP2022101201A (en) Polyamide acid composition, polyimide composition, metal-clad laminate sheet, and circuit board
US20220135836A1 (en) Polyimide film for flexible metal clad laminate and flexible metal clad laminate comprising same
JP2022155638A (en) Resin composition, resin film, adhesive sheet, metal-clad laminate and circuit board
JP2023552081A (en) Polyimide film with high dimensional stability and method for producing the same
JP2023042337A (en) Silica filler containing polyimide film, multilayer polyimide film, flexible metal-clad laminate, and flexible printed circuit board
JP2023182523A (en) polyimide laminated film
JP2022068708A (en) Multi-layered adhesive film
JP2023006387A (en) Polyamide acid, polyimide, polyimide film, metal-clad laminate and circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231214

R150 Certificate of patent or registration of utility model

Ref document number: 7405560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150