JP4768606B2 - Laminate for wiring board - Google Patents

Laminate for wiring board Download PDF

Info

Publication number
JP4768606B2
JP4768606B2 JP2006510413A JP2006510413A JP4768606B2 JP 4768606 B2 JP4768606 B2 JP 4768606B2 JP 2006510413 A JP2006510413 A JP 2006510413A JP 2006510413 A JP2006510413 A JP 2006510413A JP 4768606 B2 JP4768606 B2 JP 4768606B2
Authority
JP
Japan
Prior art keywords
polyimide resin
laminate
resin layer
wiring board
dianhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006510413A
Other languages
Japanese (ja)
Other versions
JPWO2005084088A1 (en
Inventor
宏遠 王
典子 力石
直子 大澤
浩信 川里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2006510413A priority Critical patent/JP4768606B2/en
Publication of JPWO2005084088A1 publication Critical patent/JPWO2005084088A1/en
Application granted granted Critical
Publication of JP4768606B2 publication Critical patent/JP4768606B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、フレキシブルプリント配線板やHDDサスペンション等に用いられる配線基板用積層体である。   The present invention is a laminate for a wiring board used for flexible printed wiring boards, HDD suspensions and the like.

近年、電子機器の高性能化、高機能化及び小型化が急速に進んでおり、これに伴い電子機器に用いられる電子部品やそれらを実装する基板に対しても、より高密度で高性能なものへの要求が高まっている。フレキシブルプリント配線板(以下、FPCという)に関しては、細線加工、多層形成等が行われるようになり、FPCを構成する材料についても、薄型化及び寸法安定性が厳しく要求されるようになってきた。   In recent years, high performance, high functionality, and miniaturization of electronic devices have been rapidly progressing, and accordingly, electronic components used in electronic devices and substrates on which they are mounted have higher density and higher performance. The demand for things is increasing. With regard to flexible printed wiring boards (hereinafter referred to as FPC), fine wire processing, multilayer formation, etc. have been carried out, and thinning and dimensional stability have also been strictly demanded for the materials constituting FPC. .

一般的にFPCの絶縁フィルムには、諸特性に優れるポリイミド樹脂からなるフィルムが広く用いられており、絶縁フィルムと金属間の絶縁接着層には、低温加工性に優れるエポキシ樹脂やアクリル樹脂が用いられている。しかし、これらの接着層は耐熱性や熱的寸法安定性の低下の原因となるという問題があった。   In general, films made of polyimide resin with excellent properties are widely used for FPC insulation film, and epoxy resin and acrylic resin with excellent low-temperature workability are used for the insulating adhesive layer between the insulation film and metal. It has been. However, these adhesive layers have a problem of causing a decrease in heat resistance and thermal dimensional stability.

このような問題を解決するため、最近では、接着層を形成しないで金属上に直接ポリイミド樹脂層を塗工形成する方法が採用されてきている。特公平6-93537号公報には、ポリイミド樹脂層を熱膨張係数の異なる複数のポリイミドで多層化することにより、接着力及び熱的寸法安定性に優れたFPCを提供する方法が開示されている。しかしながら、それらのポリイミドは吸湿性が大きいため、半田浴に浸漬する際の膨れや、細線加工時の吸湿後の寸法変化による接続不良などの問題が誘起され、また一般に導体に用いられる金属は湿度膨張係数が0又は0に近いので、吸湿後の寸法変化は積層体の反り、カール、ねじれ等の不具合の原因ともなっていた。   In order to solve such problems, recently, a method in which a polyimide resin layer is directly formed on a metal without forming an adhesive layer has been adopted. Japanese Examined Patent Publication No. 6-93537 discloses a method of providing an FPC having excellent adhesion and thermal dimensional stability by multilayering a polyimide resin layer with a plurality of polyimides having different thermal expansion coefficients. . However, these polyimides have a high hygroscopic property, so problems such as swelling when immersed in a solder bath and poor connection due to dimensional changes after moisture absorption during thin wire processing are induced. Since the expansion coefficient was 0 or close to 0, the dimensional change after moisture absorption was a cause of problems such as warpage, curl, and twist of the laminate.

本発明に関連する先行文献には次の文献がある。
特公平6-93537号公報 特開平2-225522号公報 特開2001-11177号公報 特開平5-271410号公報
Prior literature relating to the present invention includes the following literature.
Japanese Patent Publication No. 6-93537 JP-A-2-225522 JP 2001-11177 A JP-A-5-271410

このような背景から近年、優れた低吸湿性・吸湿後寸法安定性を有するポリイミド樹脂からなるFPCへの要求が高まっており、それに用いるポリイミドの改良検討が種々行われている。例えば、特開平2-225522号公報及び特開2001-11177号公報では、フッ素系樹脂を導入することにより、疎水性を向上し低吸湿性を発現するポリイミドが提案されているが、製造コストがかさんだり、金属材料との接着性が悪いという欠点がある。そのほかの低吸湿化の取り組みについても、特開平5-271410号公報などに示されるように、高耐熱性・低熱膨張係数などのポリイミドの持つ良好な特性を保持したまま低吸湿性を実現するものではなかった。   Against this background, in recent years, there has been an increasing demand for FPC made of a polyimide resin having excellent low hygroscopicity and dimensional stability after moisture absorption, and various studies for improving the polyimide used therefor have been made. For example, in Japanese Patent Application Laid-Open No. 2-225522 and Japanese Patent Application Laid-Open No. 2001-11177, a polyimide that improves hydrophobicity and exhibits low hygroscopicity by introducing a fluorine-based resin is proposed. There is a disadvantage that it is covered and has poor adhesion to metal materials. As for other efforts to reduce moisture absorption, as shown in Japanese Patent Application Laid-Open No. 5-271410, etc., it achieves low moisture absorption while maintaining good characteristics such as high heat resistance and low thermal expansion coefficient. It wasn't.

なお、ポリイミドはジカルボン酸成分とジアミン成分とが交互に結合した構造を有するが、ジアミンとしてジアミノビフェニルやこれにメトキシが置換したジアミノビフェニル類を使用したポリイミドは特開2001-11177号公報や特開平5-271410号公報に例示されてはいるが、その具体例は示されておらず、これらがいかなる特性を有するか予測することはできない。   Polyimide has a structure in which dicarboxylic acid components and diamine components are alternately bonded. Polyimide using diaminobiphenyl or diaminobiphenyl substituted with methoxy as the diamine is disclosed in JP-A-2001-11177 and Although exemplified in Japanese Patent Application Laid-Open No. 5-271410, specific examples thereof are not shown, and it is impossible to predict what characteristics they have.

そこで本発明は、上記の問題点を解決し、優れた耐熱性、熱的寸法安定性を有し、かつ低吸湿性を実現したポリイミド層を有する配線基板用積層体を提供することを目的とする。   Therefore, the present invention has been made to solve the above problems, and to provide a laminate for a wiring board having a polyimide layer that has excellent heat resistance, thermal dimensional stability, and realizes low moisture absorption. To do.

本発明は、ポリイミド樹脂層の片面又は両面に金属箔を有する積層体において、前記ポリイミド樹脂層がポリイミド樹脂のみからなり、その少なくとも一層が下記一般式(1)で表される構造単位を10モル%以上含有し、前記ポリイミド樹脂層の線膨張係数が30ppm/℃以下、湿度膨張係数が10ppm/%RH以下であることを特徴とするフレキシブル配線基板用積層体である。

Figure 0004768606
(式中、Ar1はピロメリット酸二無水物、ナフタレン−2,3,6,7−テトラカルボン酸二無水物又は3,3',4,4'−ビフェニルテトラカルボン酸二無水物から生じる4価の有機基であり、Rは炭素数3〜6の炭化水素基である。) The present invention provides a laminate having a metal foil on one or both sides of a polyimide resin layer, wherein the polyimide resin layer is composed of only a polyimide resin, and at least one layer contains 10 mol of a structural unit represented by the following general formula (1). %, And the polyimide resin layer has a linear expansion coefficient of 30 ppm / ° C. or less and a humidity expansion coefficient of 10 ppm /% RH or less.
Figure 0004768606
(Wherein Ar 1 is derived from pyromellitic dianhydride, naphthalene-2,3,6,7-tetracarboxylic dianhydride or 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride. (It is a tetravalent organic group, and R is a hydrocarbon group having 3 to 6 carbon atoms.)

本発明の配線基板用積層体は、一層又は多層のポリイミド樹脂層の片面又は両面に、金属箔が積層されている構造を有する。ポリイミド樹脂層の少なくとも一層は、上記一般式(1)で表される構造単位を10モル%以上含有するものである。   The laminate for a wiring board of the present invention has a structure in which a metal foil is laminated on one side or both sides of a single-layer or multilayer polyimide resin layer. At least one of the polyimide resin layers contains 10 mol% or more of the structural unit represented by the general formula (1).

一般式(1)で表される構造単位において、式中、Ar1は芳香環を1個以上有する4価の有機基であり、芳香族テトラカルボン酸又はその酸二無水物等から生じる芳香族テトラカルボン酸残基ということができる。したがって、使用する芳香族テトラカルボン酸を説明することによりAr1が理解される。通常、上記構造単位を有するポリイミドを合成する場合、芳香族テトラカルボン酸二無水物が使用されることが多いので、好ましいAr1を、芳香族テトラカルボン酸二無水物を用いて以下に説明する。In the structural unit represented by the general formula (1), Ar 1 is a tetravalent organic group having one or more aromatic rings, and is an aromatic produced from an aromatic tetracarboxylic acid or an acid dianhydride thereof. It can be called a tetracarboxylic acid residue. Therefore, Ar 1 is understood by describing the aromatic tetracarboxylic acid used. Usually, when synthesizing a polyimide having the above structural unit, an aromatic tetracarboxylic dianhydride is often used, so preferable Ar 1 is described below using an aromatic tetracarboxylic dianhydride. .

上記芳香族テトラカルボン酸二無水物としては、特に限定されるものではなく公知のものを使用することができる。具体例を挙げると、ピロメリット酸二無水物、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物、2,2',3,3'-ベンゾフェノンテトラカルボン酸二無水物、2,3,3',4'-ベンゾフェノンテトラカルボン酸二無水物、ナフタレン-2,3,6,7-テトラカルボン酸二無水物、ナフタレン-1 ,2,5,6-テトラカルボン酸二無水物、ナフタレン-1,2,4,5-テトラカルボン酸二無水物、ナフタレン-1,4,5,8-テトラカルボン酸二無水物、ナフタレン-1,2,6,7-テトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-1,2,5,6-テトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-2,3,6,7-テトラカルボン酸二無水物、2,6-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,7-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,3,6,7-テトラクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、1,4,5,8-テトラクロロナフタレン-2,3,6,7-テトラカルボン酸二無水物、3,3',4,4'-ビフェニルテトラカルボン酸二無水物、2,2',3,3'-ビフェニルテトラカルボン酸二無水物、2,3,3',4'-ビフェニルテトラカルボン酸二無水物、3,3'',4,4''-p-テルフェニルテトラカルボン酸二無水物、2,2'',3,3''-p-テルフェニルテトラカルボン酸二無水物、2,3,3'',4''-p-テルフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-プロパン二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3.4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ペリレン-2,3,8,9-テトラカルボン酸二無水物、ペリレン-3,4,9,10-テトラカルボン酸二無水物、ペリレン-4,5,10,11-テトラカルボン酸二無水物、ペリレン-5,6,11,12-テトラカルボン酸二無水物、フェナンスレン-1,2,7,8-テトラカルボン酸二無水物、フェナンスレン-1,2,6,7-テトラカルボン酸二無水物、フェナンスレン-1,2,9,10-テトラカルボン酸二無水物、シクロペンタン-1,2,3,4-テトラカルボン酸二無水物、ピラジン-2,3,5,6-テトラカルボン酸二無水物、ピロリジン-2,3,4,5-テトラカルボン酸二無水物、チオフェン-2,3,4,5-テトラカルボン酸二無水物、4,4'-オキシジフタル酸二無水物などが挙げられる。また、これらは単独で又は2種以上混合して用いることができる。   It does not specifically limit as said aromatic tetracarboxylic dianhydride, A well-known thing can be used. Specific examples include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3′-benzophenone tetracarboxylic dianhydride, 2 , 3,3 ', 4'-benzophenonetetracarboxylic dianhydride, naphthalene-2,3,6,7-tetracarboxylic dianhydride, naphthalene-1,2,5,6-tetracarboxylic dianhydride , Naphthalene-1,2,4,5-tetracarboxylic dianhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride, naphthalene-1,2,6,7-tetracarboxylic dianhydride 4,8-dimethyl-1,2,3,5,6,7-hexahydronaphthalene-1,2,5,6-tetracarboxylic dianhydride, 4,8-dimethyl-1,2,3 , 5,6,7-hexahydronaphthalene-2,3,6,7-tetracarboxylic dianhydride, 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2, 7-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,3,6,7-tetrachloronaphth Len-1,4,5,8-tetracarboxylic dianhydride, 1,4,5,8-tetrachloronaphthalene-2,3,6,7-tetracarboxylic dianhydride, 3,3 ', 4 , 4'-biphenyltetracarboxylic dianhydride, 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride, 2,3,3', 4'-biphenyltetracarboxylic dianhydride, 3, 3 '', 4,4 ''-p-terphenyltetracarboxylic dianhydride, 2,2``, 3,3 ''-p-terphenyltetracarboxylic dianhydride, 2,3,3 ' ', 4' '-p-terphenyltetracarboxylic dianhydride, 2,2-bis (2,3-dicarboxyphenyl) -propane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) ) -Propane dianhydride, bis (2,3-dicarboxyphenyl) ether dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3.4-dicarboxyphenyl) methane dianhydride, Bis (2,3-dicarboxyphenyl) sulfone dianhydride, bis (3,4-dicarboxyphenyl) Enyl) sulfone dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, perylene-2,3 , 8,9-tetracarboxylic dianhydride, perylene-3,4,9,10-tetracarboxylic dianhydride, perylene-4,5,10,11-tetracarboxylic dianhydride, perylene-5, 6,11,12-tetracarboxylic dianhydride, phenanthrene-1,2,7,8-tetracarboxylic dianhydride, phenanthrene-1,2,6,7-tetracarboxylic dianhydride, phenanthrene-1 , 2,9,10-Tetracarboxylic dianhydride, cyclopentane-1,2,3,4-tetracarboxylic dianhydride, pyrazine-2,3,5,6-tetracarboxylic dianhydride, pyrrolidine -2,3,4,5-tetracarboxylic dianhydride, thiophene-2,3,4,5-tetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride, and the like. Moreover, these can be used individually or in mixture of 2 or more types.

これらの中でも、ピロメリット酸二無水物(PMDA)、ナフタレン-2,3,6,7-テトラカルボン酸二無水物(NTCDA)及び3,3',4,4'-ビフェニルテトラカルボン酸二無水物(BPDA)から選ばれるものが好ましい。特に、低熱膨張係数を実現するためには、PMDA又はNTCDAを用いることが好ましい。これに適当な量のBPDAを混合して用いることにより、金属箔と同程度の熱膨張係数に調整することができ、実用的に要求される20ppm/℃以下の値に調整することが可能である。それにより積層体の反り、カールなどの発生を抑制することが可能である。これらの、芳香族テトラカルボン酸二無水物は、他の芳香族テトラカルボン酸二無水物と併用することも可能であるが、全体の50モル%以上、好ましくは70モル%以上使用することが良い。すなわち、テトラカルボン酸二無水物の選定にあたっては、具体的には重合加熱して得られるポリイミドの熱膨張係数と熱分解温度、ガラス転移温度など使用目的で必要とされる特性を発現するに適するものを選択することが好ましい。   Among these, pyromellitic dianhydride (PMDA), naphthalene-2,3,6,7-tetracarboxylic dianhydride (NTCDA) and 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride Preferred is one selected from products (BPDA). In particular, in order to realize a low thermal expansion coefficient, it is preferable to use PMDA or NTCDA. By mixing and using an appropriate amount of BPDA, the coefficient of thermal expansion can be adjusted to the same level as metal foil, and it can be adjusted to a practically required value of 20 ppm / ° C or less. is there. Thereby, it is possible to suppress the occurrence of warping, curling, and the like of the laminated body. These aromatic tetracarboxylic dianhydrides can be used in combination with other aromatic tetracarboxylic dianhydrides, but may be used in an amount of 50 mol% or more, preferably 70 mol% or more. good. That is, in selecting tetracarboxylic dianhydride, specifically, it is suitable for expressing the properties required for the purpose of use, such as the thermal expansion coefficient, thermal decomposition temperature, and glass transition temperature of polyimide obtained by polymerization and heating. It is preferable to select one.

本発明で用いられるポリイミド樹脂の合成で必須の成分として使用されるジアミンは、下記一般式(2)で表される芳香族ジアミンである。

Figure 0004768606
The diamine used as an essential component in the synthesis of the polyimide resin used in the present invention is an aromatic diamine represented by the following general formula (2).
Figure 0004768606

ここで、Rは一般式(1)のRと同様な意味を有し、炭素数1〜6の炭化水素基であるが、好ましくは1〜4のアルキル基又は6のアリール基である。より好ましくはエチル基及びn‐プロピル基又はフェニル基である。   Here, R has the same meaning as R in the general formula (1) and is a hydrocarbon group having 1 to 6 carbon atoms, preferably an alkyl group having 1 to 4 or an aryl group having 6 carbon atoms. More preferred are an ethyl group, an n-propyl group, and a phenyl group.

本発明で使用されるポリイミド樹脂は、有利には芳香族テトラカルボン酸二無水物と上記一般式(2)で表される芳香族ジアミンを10モル%以上含むジアミンとを反応させて得ることができる。   The polyimide resin used in the present invention is preferably obtained by reacting an aromatic tetracarboxylic dianhydride with a diamine containing 10 mol% or more of the aromatic diamine represented by the general formula (2). it can.

本発明においては、上記一般式(2)で表される芳香族ジアミンと共に、それ以外の他のジアミンを90モル%以下の割合で使用することができ、そのことによって、共重合型のポリイミドとすることができる。   In the present invention, in addition to the aromatic diamine represented by the general formula (2), other diamines other than the aromatic diamine can be used in a proportion of 90 mol% or less. can do.

一般式(1)で表される構造単位は、ポリイミド樹脂層の少なくとも一層に10〜100モル%、好ましくは50〜100モル%、より好ましくは70〜100モル%、更に好ましくは90〜100モル%含むことがよい。   The structural unit represented by the general formula (1) is 10 to 100 mol%, preferably 50 to 100 mol%, more preferably 70 to 100 mol%, still more preferably 90 to 100 mol% in at least one layer of the polyimide resin layer. % Should be included.

一般式(2)で表される芳香族ジアミン以外の他のジアミンとしては、特に限定されるものではないが、例を挙げると、4,6-ジメチル-m-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、2,4-ジアミノメシチレン、4,4'-メチレンジ-o-トルイジン、4,4'-メチレンジ-2,6-キシリジン、4,4'-メチレン-2,6-ジエチルアニリン、2,4-トルエンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、4,4'-ジアミノジフェニルプロパン、3,3'-ジアミノジフェニルプロパン、4,4'-ジアミノジフェニルエタン、3,3'-ジアミノジフェニルエタン、4,4'-ジアミノジフェニルメタン、3,3'-ジアミノジフェニルメタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン4,4'-ジアミノジフェニルスルフィド、3,3'-ジアミノジフェニルスルフィド、4,4'-ジアミノジフェニルスルホン、3,3'-ジアミノジフェニルスルホン、4,4'-ジアミノジフェニルエーテル、3,3-ジアミノジフェニルエーテル、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジジン、3,3'-ジアミノビフェニル、3,3'-ジメチル-4,4'-ジアミノビフェニル、3,3'-ジメトキシベンジジン、4,4'-ジアミノ-p-テルフェニル、3,3'-ジアミノ-p-テルフェニル、ビス(p-アミノシクロヘキシル)メタン、ビス(p-β-アミノ-t-ブチルフェニル)エーテル、ビス(p-β-メチル-δ-アミノペンチル)ベンゼン、p-ビス(2-メチル-4-アミノペンチル)ベンゼン、p-ビス(1,1-ジメチル-5-アミノペンチル)ベンゼン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,4-ビス(β-アミノ-t-ブチル)トルエン、2,4-ジアミノトルエン、m-キシレン-2,5-ジアミン、p-キシレン-2,5-ジアミン、m-キシリレンジアミン、p-キシリレンジアミン、2,6-ジアミノピリジン、2,5-ジアミノピリジン、2,5-ジアミノ-1,3,4-オキサジアゾール、ピペラジン、3,4,4’-トリアミノフェニルエーテル、2,2’-ジメチル-4,4’-ジアミノビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニルなどが挙げられる。   The diamine other than the aromatic diamine represented by the general formula (2) is not particularly limited, but examples include 4,6-dimethyl-m-phenylenediamine and 2,5-dimethyl. -p-phenylenediamine, 2,4-diaminomesitylene, 4,4'-methylenedi-o-toluidine, 4,4'-methylenedi-2,6-xylidine, 4,4'-methylene-2,6-diethylaniline 2,4-toluenediamine, m-phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenylpropane, 3,3'-diaminodiphenylpropane, 4,4'-diaminodiphenylethane, 3,3'- Diaminodiphenylethane, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane 4,4'-diaminodiphenyl sulfide, 3,3 ' -Diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfo 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ether, 3,3-diaminodiphenyl ether, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene 1,4-bis (4-aminophenoxy) benzene, benzidine, 3,3'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxybenzidine, 4,4 '-Diamino-p-terphenyl, 3,3'-diamino-p-terphenyl, bis (p-aminocyclohexyl) methane, bis (p-β-amino-t-butylphenyl) ether, bis (p-β -Methyl-δ-aminopentyl) benzene, p-bis (2-methyl-4-aminopentyl) benzene, p-bis (1,1-dimethyl-5-aminopentyl) benzene, 1,5-diaminonaphthalene, 2 , 6-Diaminonaphthalene, 2,4-bis (β-amino-t-butyl) toluene, 2,4-diaminotoluene, m-xy Len-2,5-diamine, p-xylene-2,5-diamine, m-xylylenediamine, p-xylylenediamine, 2,6-diaminopyridine, 2,5-diaminopyridine, 2,5-diamino- 1,3,4-oxadiazole, piperazine, 3,4,4'-triaminophenyl ether, 2,2'-dimethyl-4,4'-diaminobiphenyl, 4,4'-bis (4-aminophenoxy ) Biphenyl and the like.

これらの中でも、4,4'-ジアミノジフェニルエーテル(DAPE)、1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)、p-フェニルジアミン(p-PDA)、2,2’-ジメチル-4,4’-ジアミノビフェニル(m-TB)などが好ましく用いられる。また、これらのジアミンを用いる場合、その好ましい使用割合は、全ジアミンの0〜50モル%、より好ましくは0〜30モル%の範囲である。   Among these, 4,4'-diaminodiphenyl ether (DAPE), 1,3-bis (4-aminophenoxy) benzene (TPE-R), p-phenyldiamine (p-PDA), 2,2'-dimethyl- 4,4′-diaminobiphenyl (m-TB) and the like are preferably used. Moreover, when using these diamines, the preferable usage rate is the range of 0-50 mol% of all the diamine, More preferably, it is the range of 0-30 mol%.

ポリイミド樹脂の前駆体となるポリアミド酸は、上記に示した芳香族ジアミン成分と芳香族テトラカルボン酸二無水物成分とを0.9〜1.1のモル比で使用し、有機極性溶媒中で重合する公知の方法によって製造することができる。すなわち、窒素気流下N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンなどの有機溶媒に芳香族ジアミンを溶解させた後、芳香族テトラカルボン酸二無水物を加えて、室温で3〜4時間程度反応させることにより得られる。この際、分子末端は芳香族モノアミン又はジカルボン酸無水物で封止しても良い。   The polyamic acid used as the precursor of the polyimide resin is a known polymerized polymer in an organic polar solvent using the aromatic diamine component and the aromatic tetracarboxylic dianhydride component shown above in a molar ratio of 0.9 to 1.1. It can be manufactured by a method. That is, after dissolving an aromatic diamine in an organic solvent such as N, N-dimethylacetamide and N-methyl-2-pyrrolidone under a nitrogen stream, an aromatic tetracarboxylic dianhydride is added, and the mixture is added at room temperature for 3-4. It is obtained by reacting for about an hour. At this time, the molecular terminal may be sealed with an aromatic monoamine or dicarboxylic anhydride.

ナフタレン骨格を含有する芳香族テトラカルボン酸二無水物成分を用いる場合は、例えば、窒素気流下m-クレゾールに芳香族ジアミン成分を溶解させた後、触媒と芳香族テトラカルボン酸二無水物成分を加えて、190℃程度で10時間程度加熱し、その後、室温に戻してから更に8時間程度反応させることにより得られる。   When using an aromatic tetracarboxylic dianhydride component containing a naphthalene skeleton, for example, after dissolving the aromatic diamine component in m-cresol under a nitrogen stream, the catalyst and the aromatic tetracarboxylic dianhydride component are added. In addition, it can be obtained by heating at about 190 ° C. for about 10 hours and then reacting for about 8 hours after returning to room temperature.

上記反応により得られたポリアミド酸溶液を、支持体となる金属箔上あるいは金属箔上に形成された接着層上に、アプリケータを用いて塗布し、熱イミド化法又は化学イミド化法によりイミド化を行い、本発明の配線基板用積層体が得られる。熱イミド化は、150℃以下の温度で2〜60分予備乾燥した後、通常130〜360℃程度の温度で2〜30分程度熱処理することにより行われる。化学イミド化は、ポリアミド酸に脱水剤と触媒を加えることにより行われる。用いられる金属箔としては銅箔又はSUS箔が好ましく、その好ましい厚み範囲も50μm以下、有利には5〜40μmである。銅箔厚みは、薄い方がファインパターンの形成に適し、そのような観点からは8〜15μmの範囲が好ましい。   The polyamic acid solution obtained by the above reaction is applied onto a metal foil serving as a support or an adhesive layer formed on the metal foil using an applicator, and imide is obtained by a thermal imidization method or a chemical imidization method. The laminated body for a wiring board of the present invention is obtained. Thermal imidization is performed by pre-drying at a temperature of 150 ° C. or lower for 2 to 60 minutes and then heat-treating at a temperature of about 130 to 360 ° C. for about 2 to 30 minutes. Chemical imidization is performed by adding a dehydrating agent and a catalyst to polyamic acid. The metal foil used is preferably a copper foil or a SUS foil, and its preferred thickness range is also 50 μm or less, advantageously 5 to 40 μm. A thinner copper foil is suitable for forming a fine pattern. From such a viewpoint, a range of 8 to 15 μm is preferable.

ポリイミド樹脂層は単層であっても多層であってもよい。多層のポリイミド樹脂層の場合は、ポリアミド酸溶液を塗布して乾燥する操作を繰り返した後、熱処理して溶剤除去し、これを更に高温で熱処理してイミド化することにより、多層構造のポリイミド系樹脂層を形成できる。この時、形成されるポリイミド樹脂層の総厚みは、3〜75μmの範囲が好ましい。多層である場合は、その少なくとも1層が一般式(1)で表される構造単位を10モル%以上含有するポリイミド樹脂層(以下、本ポリイミド樹脂層ともいう)である必要があり、その厚みはポリイミド樹脂層全体の30%以上、好ましくは50%以上とすることがよい。   The polyimide resin layer may be a single layer or a multilayer. In the case of a multilayer polyimide resin layer, after repeating the operation of applying and drying a polyamic acid solution, the solvent is removed by heat treatment, and this is further heat treated at a high temperature to imidize to obtain a polyimide structure having a multilayer structure. A resin layer can be formed. At this time, the total thickness of the formed polyimide resin layer is preferably in the range of 3 to 75 μm. In the case of a multilayer, at least one of the layers must be a polyimide resin layer (hereinafter also referred to as the present polyimide resin layer) containing 10 mol% or more of the structural unit represented by the general formula (1), and its thickness Is 30% or more of the entire polyimide resin layer, preferably 50% or more.

また、両面に金属箔を有する配線基板用積層体を製造する場合は、上記方法により得られた片面配線基板用積層体のポリイミド樹脂層上に、直接あるいは接着層を形成した後、金属箔を加熱圧着することにより得られる。この加熱圧着時の熱プレス温度については、特に限定されるものではないが、使用されるポリイミド樹脂のガラス転移温度以上であることが望ましい。また、熱プレス圧力については、使用するプレス機器の種類にもよるが、1〜500kg/cm2の範囲であることが望ましい。更に、このとき用いられる好ましい金属箔は、上記した金属箔と同様のものを用いることができ、その好ましい厚みも50μm以下、より好ましくは5〜40μmの範囲である。Moreover, when manufacturing the laminated body for wiring boards which has metal foil on both surfaces, after forming a metal foil directly or after forming an adhesive layer on the polyimide resin layer of the laminated body for single-sided wiring boards obtained by the said method, It is obtained by thermocompression bonding. The hot pressing temperature at the time of the thermocompression bonding is not particularly limited, but it is desirable to be not lower than the glass transition temperature of the polyimide resin used. The hot press pressure is preferably in the range of 1 to 500 kg / cm 2 , although it depends on the type of press equipment used. Furthermore, the preferable metal foil used at this time can use the thing similar to the above-mentioned metal foil, The preferable thickness is also 50 micrometers or less, More preferably, it is the range of 5-40 micrometers.

本発明の配線基板用積層体を構成するポリイミド樹脂層は、一般式(2)で表される芳香族ジアミンと、これと併せて使用される他の芳香族ジアミンと芳香族テトラカルボン酸又はその酸二無水物との種々の組み合わせにより特性を制御することができる。好ましいポリイミド樹脂層は、線膨張係数が30ppm/℃以下、23℃における貯蔵弾性率が6GPa以下、かつ吸湿率が0.8wt%以下のものであるが、耐熱性の観点からは、ガラス転移温度は350℃以上、また、熱重量分析における5%重量減少温度(Td5%)は500〜600℃の範囲にあるものがよく、更には、湿度膨張係数がTD、MD方向でいずれも10ppm/%RH以下であるものがよい。なお、5%重量減少温度を、熱分解温度ともいう。   The polyimide resin layer constituting the laminate for a wiring board of the present invention comprises an aromatic diamine represented by the general formula (2) and other aromatic diamines and aromatic tetracarboxylic acids used in combination with the aromatic diamines. Properties can be controlled by various combinations with acid dianhydrides. A preferred polyimide resin layer has a linear expansion coefficient of 30 ppm / ° C. or less, a storage elastic modulus at 23 ° C. of 6 GPa or less, and a moisture absorption rate of 0.8 wt% or less. From the viewpoint of heat resistance, the glass transition temperature is 350 ° C or higher, and 5% weight loss temperature (Td5%) in thermogravimetric analysis should be in the range of 500-600 ° C. Furthermore, humidity expansion coefficient is 10ppm /% RH in both TD and MD directions. The following are good. The 5% weight loss temperature is also referred to as the thermal decomposition temperature.

以下、実施例に基づいて本発明の内容を具体的に説明するが、本発明はこれらの実施例の範囲に限定されるものではない。   EXAMPLES Hereinafter, although the content of this invention is demonstrated concretely based on an Example, this invention is not limited to the range of these Examples.

実施例等に用いた略号を下記に示す。
・PMDA:ピロメリット酸二無水物
・BPDA:3,3',4,4'-ビフェニルテトラカルボン酸二無水物
・m-MOB:2,2'-ジメトキシベンジジン
・m-EOB:2,2'-ジエトキシベンジジン
・m-POB:2,2'-ジ-n-プロピルオキシベンジジン
・m-PHOB:2,2’-ジフェニルオキシベンジジン
・DAPE:4,4'-ジアミノジフェニルエーテル
・m-TB:2,2’-ジメチルベンジジン
・TPE-R:1,3-ビス(4-アミノフェノキシ)ベンゼン
・BAPP:2,2-ビス(4-アミノフェノキシフェニル)プロパン
・DMAc:N,N-ジメチルアセトアミド
Abbreviations used in Examples and the like are shown below.
-PMDA: pyromellitic dianhydride-BPDA: 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride-m-MOB: 2,2'-dimethoxybenzidine-m-EOB: 2,2' -Diethoxybenzidine, m-POB: 2,2'-di-n-propyloxybenzidine, m-PHOB: 2,2'-diphenyloxybenzidine, DAPE: 4,4'-diaminodiphenyl ether, m-TB: 2 , 2'-dimethylbenzidine, TPE-R: 1,3-bis (4-aminophenoxy) benzene, BAPP: 2,2-bis (4-aminophenoxyphenyl) propane, DMAc: N, N-dimethylacetamide

また、実施例中の各種物性の測定方法と条件を以下に示す。
[ガラス転移温度(Tg)、貯蔵弾性率(E')]
各実施例で得たポリイミドフィルム(10mm×22.6mm)を動的熱機械分析(DMA)装置にて20℃から500℃まで5℃/分で昇温させたときの動的粘弾性を測定し、ガラス転移温度(tanδ極大値)及び23℃、100℃の貯蔵弾性率(E'23及びE'100)を求めた。
In addition, measurement methods and conditions for various physical properties in the examples are shown below.
[Glass transition temperature (Tg), storage elastic modulus (E ')]
The dynamic viscoelasticity was measured when the polyimide film (10mm × 22.6mm) obtained in each example was heated from 20 ° C to 500 ° C at 5 ° C / min with a dynamic thermomechanical analysis (DMA) device. The glass transition temperature (tan δ maximum value) and the storage elastic modulus (E ′ 23 and E ′ 100 ) at 23 ° C. and 100 ° C. were determined.

[線膨張係数(CTE)の測定]
3mm ×15mmのサイズのポリイミドフィルムを、熱機械分析(TMA)装置にて5.0gの荷重を加えながら一定の昇温速度で30℃から260℃の温度範囲で引張り試験を行った。温度に対するポリイミドフィルムの伸び量から線膨張係数を求めた。
[Measurement of linear expansion coefficient (CTE)]
A tensile test was performed on a polyimide film having a size of 3 mm × 15 mm in a temperature range from 30 ° C. to 260 ° C. at a constant temperature increase rate while applying a 5.0 g load with a thermomechanical analysis (TMA) apparatus. The linear expansion coefficient was determined from the amount of elongation of the polyimide film with respect to temperature.

[熱分解温度(Td5%)の測定]
10〜20mgのポリイミドフィルムを、熱重量分析(TG)装置にて一定の速度で30℃から550℃まで昇温させたときの重量変化を測定し、5%重量減少温度(Td5%)を求めた。
[Measurement of thermal decomposition temperature (Td5%)]
Measure the change in weight of a 10-20 mg polyimide film when heated from 30 ° C to 550 ° C at a constant rate using a thermogravimetric analysis (TG) device to obtain a 5% weight loss temperature (Td5%). It was.

[吸湿率(RMA)の測定]
4cm×20cmのポリイミドフィルム(各3枚)を、120℃で2時間乾燥した後、23℃/50%RHの恒温恒湿室で24時間以上静置し、その前後の重量変化から次式により求めた。
RMA(%)=[(吸湿後重量-乾燥後重量)/乾燥後重量]×100
[Measurement of moisture absorption rate (RMA)]
4cm x 20cm polyimide films (3 sheets each) are dried at 120 ° C for 2 hours, then left in a constant temperature and humidity chamber at 23 ° C / 50% RH for 24 hours or more. Asked.
RMA (%) = [(weight after moisture absorption-weight after drying) / weight after drying] × 100

[湿度膨張係数(CHE)の測定]
35cm×35cmのポリイミド/銅箔積層体の銅箔上にエッチングレジスト層を設け、これを一辺が30cmの正方形の四辺に10cm間隔で直径1mmの点が12箇所配置するパターンに形成した。エッチングレジスト開孔部の銅箔露出部分をエッチングし、12箇所の銅箔残存点を有するCHE測定用ポリイミドフィルムを得た。このフィルムを120℃で2時間乾燥した後、23℃/50%RHの恒温恒湿機で24時間以上静置し、二次元測長機により銅箔点間の寸法変化(0〜50%RH)を測定して、湿度膨張係数を求めた。
[Measurement of humidity expansion coefficient (CHE)]
An etching resist layer was provided on a copper foil of a polyimide / copper foil laminate of 35 cm × 35 cm, and this was formed into a pattern in which 12 points with a diameter of 1 mm were arranged at 10 cm intervals on four sides of a 30 cm square. The exposed portion of the copper foil in the opening portion of the etching resist was etched to obtain a polyimide film for CHE measurement having 12 copper foil remaining points. After drying this film at 120 ° C for 2 hours, leave it at 23 ° C / 50% RH constant temperature and humidity chamber for more than 24 hours, and measure the dimensional change (0-50% RH) between the copper foil points with a two-dimensional measuring machine. ) Was measured to determine the humidity expansion coefficient.

合成例1〜18
実施例及び比較例で使用するポリアミド酸を合成した。
窒素気流下で、表1に示したジアミンを100mlのセパラブルフラスコの中で攪拌しながら溶剤DMAc43gに溶解させた。次いで、表1に示したテトラカルボン酸二無水物を加えた。その後、溶液を室温で3〜4時間攪拌を続けて重合反応を行い、ポリイミド前駆体となる18種類のポリアミド酸(PA)A〜Rの黄〜茶褐色の粘稠な溶液を得た。それぞれのポリアミド酸溶液の還元粘度(ηsp/C)は3〜6の範囲内であった。また、重量平均分子量Mwを表1に示した。
Synthesis Examples 1-18
Polyamic acid used in Examples and Comparative Examples was synthesized.
Under a nitrogen stream, the diamine shown in Table 1 was dissolved in 43 g of solvent DMAc with stirring in a 100 ml separable flask. Subsequently, the tetracarboxylic dianhydride shown in Table 1 was added. Thereafter, the solution was stirred at room temperature for 3 to 4 hours to carry out a polymerization reaction to obtain a yellow-brown viscous solution of 18 kinds of polyamic acids (PA) A to R to be polyimide precursors. The reduced viscosity (η sp / C) of each polyamic acid solution was in the range of 3-6. The weight average molecular weight Mw is shown in Table 1.

Figure 0004768606
Figure 0004768606

実施例1
合成例1〜18で得たポリアミド酸(PA)A〜Rの溶液を、塗工する前に、DMAcを加えて粘度を約250poisに調整した。それから、それぞれ35μmの厚さの銅箔上にアプリケータを用いて乾燥後の膜厚が約15μmとなるように塗布し、50〜130℃で2〜60分間乾燥した後、更に130℃、160℃、200℃、230℃、280℃、320℃、360℃で各2〜30分段階的な熱処理を行い、銅箔上にポリイミド層を形成して、18種の積層体を得た。合成例1で得たポリアミド酸Aの溶液から得た積層体を積層体Aとし、以下同様とする。なお、合成例10で得たポリアミド酸Jの溶液を使用して得た積層体Jは比較例となる。また、合成例18で得たポリアミド酸Rの溶液を使用して得た積層体Rは、後記実施例の積層体M1〜M3のポリイミド層の1層の特性を評価するためのものである。
Example 1
Before applying the solutions of polyamic acids (PA) A to R obtained in Synthesis Examples 1 to 18, DMAc was added to adjust the viscosity to about 250 pois. Then, using an applicator on each 35 μm thick copper foil, the film thickness after drying is about 15 μm, dried at 50 to 130 ° C. for 2 to 60 minutes, then further 130 ° C., 160 Stepwise heat treatment was performed at 2 ° C. for 2 to 30 minutes at 200 ° C., 200 ° C., 230 ° C., 280 ° C., 320 ° C. and 360 ° C., and a polyimide layer was formed on the copper foil to obtain 18 kinds of laminates. The laminate obtained from the polyamic acid A solution obtained in Synthesis Example 1 is designated as laminate A, and so on. The laminate J obtained using the polyamic acid J solution obtained in Synthesis Example 10 is a comparative example. Further, the laminate R obtained by using the solution of the polyamic acid R obtained in Synthesis Example 18 is for evaluating the characteristics of one polyimide layer of the laminates M1 to M3 in Examples described later.

実施例1の積層体A〜Rについて、塩化第二鉄水溶液を用いて銅箔をエッチング除去して18種類のポリイミドフィルムを作成し、ガラス転移温度(Tg)、貯蔵弾性率(E')、熱膨張係数(CTE)、5%重量減少温度(Td5%)、吸湿率(RMA)及び湿度膨張係数(CHE)を測定した。
各測定結果を、表2に示す。
For the laminates A to R of Example 1, the copper foil was etched away using an aqueous ferric chloride solution to create 18 types of polyimide films, glass transition temperature (Tg), storage elastic modulus (E ′), The coefficient of thermal expansion (CTE), 5% weight loss temperature (Td5%), moisture absorption rate (RMA), and humidity expansion coefficient (CHE) were measured.
Table 2 shows the measurement results.

Figure 0004768606
Figure 0004768606

実施例2
18μmの厚さの銅箔上に合成例18で調製したポリアミド酸Rの溶液を25μmの厚みで均一に塗布したのち、130℃で加熱乾燥し溶剤を除去した。次に、その上に積層するように合成例5で調製したポリアミド酸Eの溶液を195μmの厚みで均一に塗布し、70℃〜130℃で加熱乾燥し溶剤を除去した。更に、ポリアミド酸E層上に合成例18で調製したポリアミド酸Rの溶液を37μmの厚みで均一に塗布し、135℃で加熱乾燥し溶剤を除去した。この後、室温から360℃まで約5hrかけて熱処理しイミド化させ、3層のポリイミド系樹脂層からなる合計厚み約25μmの絶縁樹脂層が銅箔上に形成された積層体M1を得た。銅箔上に塗布したポリアミド酸樹脂層の乾燥後の厚みは、R/E/Rの順に、約2.5μm/約19μm/約3.5μmである。
Example 2
The solution of polyamic acid R prepared in Synthesis Example 18 was uniformly applied to a thickness of 25 μm on a copper foil having a thickness of 18 μm, and then dried by heating at 130 ° C. to remove the solvent. Next, the polyamic acid E solution prepared in Synthesis Example 5 was uniformly applied to a thickness of 195 μm so as to be laminated thereon, and dried by heating at 70 ° C. to 130 ° C. to remove the solvent. Further, the polyamic acid R solution prepared in Synthesis Example 18 was uniformly applied on the polyamic acid E layer in a thickness of 37 μm, and dried by heating at 135 ° C. to remove the solvent. Thereafter, heat treatment was performed from room temperature to 360 ° C. for about 5 hours to imidize, and thus a laminate M1 in which an insulating resin layer composed of three polyimide resin layers and having a total thickness of about 25 μm was formed on a copper foil was obtained. The thickness of the polyamic acid resin layer applied on the copper foil after drying is about 2.5 μm / about 19 μm / about 3.5 μm in the order of R / E / R.

実施例3〜4
実施例2と同様にして、3層のポリイミド系樹脂層からなる層合計厚み約25μmの絶縁樹脂層が銅箔上に形成された積層体M2及びM3を得た。銅箔上に塗布したポリアミド酸溶液の種類と乾燥後厚みは、順に、M2はR約2.5μm/O約19μm/R約3.5μmであり、M3はR約2.5μm/Q約19μm/R約3.5μmである。
Examples 3-4
In the same manner as in Example 2, laminates M2 and M3 in which an insulating resin layer having a total thickness of about 25 μm composed of three polyimide resin layers was formed on a copper foil were obtained. The type of polyamic acid solution applied on the copper foil and the thickness after drying are, in order, M2 about R 2.5μm / O about 19μm / R about 3.5μm, M3 about R about 2.5μm / Q about 19μm / R about 3.5 μm.

実施例2〜4で得た積層体M1〜M3について、接着性強度を測定した。また、塩化第二鉄水溶液を用いて銅箔をエッチング除去してポリイミドフィルムを作成し、3層のポリイミド層での熱膨張係数(CTE)を測定した。
各測定結果を、表3に示す。
The adhesive strength of the laminates M1 to M3 obtained in Examples 2 to 4 was measured. Moreover, the copper foil was etched away using a ferric chloride aqueous solution to prepare a polyimide film, and the thermal expansion coefficient (CTE) of the three polyimide layers was measured.
Table 3 shows the measurement results.

Figure 0004768606
Figure 0004768606

本発明の配線基板用積層体は、絶縁層となるポリイミド樹脂層が耐熱性に優れ、低吸湿、かつ寸法安定性にも優れており、接着層由来の諸問題を伴わずに湿度による反りを抑制する効果をも有する。また、絶縁層のポリイミド樹脂層が、TD方向とMD方向での湿度膨張係数の差が小さいことから、面内に異方性がないという特徴を有し、電子材料分野の部品に広く適用することができる。特に、FPCやHDDサスペンション用基板等の用途に有用である。   In the laminate for a wiring board of the present invention, the polyimide resin layer serving as an insulating layer has excellent heat resistance, low moisture absorption, and excellent dimensional stability, and is free from warping due to humidity without causing problems due to the adhesive layer. It also has an inhibitory effect. In addition, the polyimide resin layer of the insulating layer has a feature that there is no in-plane anisotropy because the difference in humidity expansion coefficient between the TD direction and the MD direction is small, and it is widely applied to parts in the electronic material field be able to. It is particularly useful for applications such as FPC and HDD suspension substrates.

Claims (6)

ポリイミド樹脂層の片面又は両面に金属箔を有する積層体において、前記ポリイミド樹脂層がポリイミド樹脂のみからなり、その少なくとも一層が下記一般式(1)で表される構造単位を10モル%以上含有し、前記ポリイミド樹脂層の線膨張係数が30ppm/℃以下、湿度膨張係数が10ppm/%RH以下であることを特徴とするフレキシブル配線基板用積層体。
Figure 0004768606
式中、Ar1はピロメリット酸二無水物、ナフタレン−2,3,6,7−テトラカルボン酸二無水物又は3,3',4,4'−ビフェニルテトラカルボン酸二無水物から生じる4価の有機基であり、Rは炭素数3〜6の炭化水素基である。
In a laminate having a metal foil on one or both sides of a polyimide resin layer, the polyimide resin layer is composed of only a polyimide resin, and at least one layer contains 10 mol% or more of a structural unit represented by the following general formula (1). A laminate for a flexible wiring board, wherein the polyimide resin layer has a linear expansion coefficient of 30 ppm / ° C. or less and a humidity expansion coefficient of 10 ppm /% RH or less.
Figure 0004768606
Where Ar 1 is derived from pyromellitic dianhydride, naphthalene-2,3,6,7-tetracarboxylic dianhydride or 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride 4 R is a hydrocarbon group having 3 to 6 carbon atoms.
ポリイミド樹脂層が、23℃における貯蔵弾性率が6GPa以下、かつ吸湿率が0.8wt%以下である請求項1記載の配線基板用積層体。  The laminate for a wiring board according to claim 1, wherein the polyimide resin layer has a storage elastic modulus at 23 ° C of 6 GPa or less and a moisture absorption of 0.8 wt% or less. ポリイミド樹脂層が、熱重量分析における5%重量減少温度(Td5%)が500〜600℃の範囲にある請求項1又は2記載の配線基板用積層体。  The laminate for a wiring board according to claim 1, wherein the polyimide resin layer has a 5% weight reduction temperature (Td 5%) in a range of 500 to 600 ° C. in thermogravimetric analysis. ポリイミド樹脂層が、1層からなる請求項1〜3のいずれかに記載の配線基板用積層体。  The laminate for a wiring board according to any one of claims 1 to 3, wherein the polyimide resin layer comprises one layer. 一般式(1)において、Rはプロピル基又はフェニル基である請求項1〜3のいずれかに記載の配線基板用積層体。 In General formula (1), R is a propyl group or a phenyl group, The laminated body for wiring boards in any one of Claims 1-3. ポリイミド樹脂層の少なくとも一層が、一般式(1)で表される構造単位を50〜100モル%含有する請求項1記載の配線基板用積層体。  The laminate for a wiring board according to claim 1, wherein at least one of the polyimide resin layers contains 50 to 100 mol% of a structural unit represented by the general formula (1).
JP2006510413A 2004-02-26 2005-02-21 Laminate for wiring board Expired - Fee Related JP4768606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006510413A JP4768606B2 (en) 2004-02-26 2005-02-21 Laminate for wiring board

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004051167 2004-02-26
JP2004051167 2004-02-26
JP2006510413A JP4768606B2 (en) 2004-02-26 2005-02-21 Laminate for wiring board
PCT/JP2005/002729 WO2005084088A1 (en) 2004-02-26 2005-02-21 Laminate for wiring board

Publications (2)

Publication Number Publication Date
JPWO2005084088A1 JPWO2005084088A1 (en) 2008-01-17
JP4768606B2 true JP4768606B2 (en) 2011-09-07

Family

ID=34908624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006510413A Expired - Fee Related JP4768606B2 (en) 2004-02-26 2005-02-21 Laminate for wiring board

Country Status (5)

Country Link
JP (1) JP4768606B2 (en)
KR (1) KR101077405B1 (en)
CN (1) CN100566503C (en)
TW (1) TW200528490A (en)
WO (1) WO2005084088A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4907142B2 (en) * 2005-10-13 2012-03-28 新日鐵化学株式会社 Aromatic polyamic acid, polyimide and laminate for wiring board
JP4962056B2 (en) * 2007-03-09 2012-06-27 東洋紡績株式会社 Copper-clad laminated film and method for producing the same
JP5249203B2 (en) * 2007-03-30 2013-07-31 新日鉄住金化学株式会社 Polyimide film
JP6839594B2 (en) * 2016-04-27 2021-03-10 日鉄ケミカル&マテリアル株式会社 Polyimide film and copper-clad laminate
JP7248394B2 (en) * 2017-09-29 2023-03-29 日鉄ケミカル&マテリアル株式会社 Polyimide film and metal-clad laminate
CN110241389A (en) * 2018-03-08 2019-09-17 日铁化学材料株式会社 Deposition mask, deposition mask form the manufacturing method formed with polyamic acid, deposition mask with laminated body and deposition mask
CN109575831A (en) * 2018-11-20 2019-04-05 深圳市弘海电子材料技术有限公司 Low bounce-back power cover film and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60250031A (en) * 1984-05-28 1985-12-10 Hitachi Ltd Low-thermal expansion resin material
JPH06234916A (en) * 1993-02-09 1994-08-23 Central Glass Co Ltd Low-stress polyimide composition and precursor composition solution
WO1998008216A1 (en) * 1996-08-19 1998-02-26 Nippon Steel Chemical Co., Ltd. Laminate for hdd suspension and its manufacture
JPH1154862A (en) * 1997-08-05 1999-02-26 Kanegafuchi Chem Ind Co Ltd Polyimide film for hard disk suspension wiring base material
JPH11154314A (en) * 1997-11-21 1999-06-08 Ube Ind Ltd Magnetic head suspension and its production
JP2000198842A (en) * 1998-12-28 2000-07-18 Nippon Telegr & Teleph Corp <Ntt> Polyimide for optical substrate and polyimide substrate for optical use
JP2002338710A (en) * 2001-03-16 2002-11-27 Sumitomo Bakelite Co Ltd Plastic base plate for indication element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60250031A (en) * 1984-05-28 1985-12-10 Hitachi Ltd Low-thermal expansion resin material
JPH06234916A (en) * 1993-02-09 1994-08-23 Central Glass Co Ltd Low-stress polyimide composition and precursor composition solution
WO1998008216A1 (en) * 1996-08-19 1998-02-26 Nippon Steel Chemical Co., Ltd. Laminate for hdd suspension and its manufacture
JPH1154862A (en) * 1997-08-05 1999-02-26 Kanegafuchi Chem Ind Co Ltd Polyimide film for hard disk suspension wiring base material
JPH11154314A (en) * 1997-11-21 1999-06-08 Ube Ind Ltd Magnetic head suspension and its production
JP2000198842A (en) * 1998-12-28 2000-07-18 Nippon Telegr & Teleph Corp <Ntt> Polyimide for optical substrate and polyimide substrate for optical use
JP2002338710A (en) * 2001-03-16 2002-11-27 Sumitomo Bakelite Co Ltd Plastic base plate for indication element

Also Published As

Publication number Publication date
CN1943285A (en) 2007-04-04
TW200528490A (en) 2005-09-01
TWI372156B (en) 2012-09-11
CN100566503C (en) 2009-12-02
KR101077405B1 (en) 2011-10-26
JPWO2005084088A1 (en) 2008-01-17
WO2005084088A1 (en) 2005-09-09
KR20070007296A (en) 2007-01-15

Similar Documents

Publication Publication Date Title
JP4757575B2 (en) Laminate for wiring board
JP5166233B2 (en) Laminate for wiring board having transparent insulating resin layer
JP4768606B2 (en) Laminate for wiring board
JP4757864B2 (en) Laminated body for flexible printed wiring board
KR20210122142A (en) Resin film, metal-clad laminate and circuit board
JPWO2020022129A1 (en) Metal-clad laminate and circuit board
JPWO2020022129A5 (en)
JP2009028993A (en) Laminate for wiring substrate
JP4642664B2 (en) Laminate for wiring board
KR20210084275A (en) Metal-clad laminate and circuit board
JP7413489B2 (en) Method for manufacturing circuit board with adhesive layer and method for manufacturing multilayer circuit board
JP2023052289A (en) Metal-clad laminate and circuit board
TW202319444A (en) Polyamide acid, polyimide, polyimide film, metal-clad laminate and circuit
JP4994672B2 (en) Aromatic polyamic acid and aromatic polyimide
TW202237705A (en) Polyimide, metal-clad laminate plate and circuit board
JP7120870B2 (en) Method for producing polyimide film and method for producing metal-clad laminate
JP2021054062A (en) Polyimide film, metal-clad laminate and circuit board
CN112601656A (en) Method for manufacturing metal-clad laminate and method for manufacturing circuit board
JP2019119113A (en) Metal-clad laminate and circuit board
JP2008159896A (en) Laminate for wiring board
JP7465059B2 (en) Metal-clad laminates and circuit boards
JP7465060B2 (en) Metal-clad laminates and circuit boards
JP2008060128A (en) Laminate for wiring board
JP2007273767A (en) Laminate for wiring board
TW202405055A (en) Polyamic acid, polyimide, metal-clad laminate and circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110616

R150 Certificate of patent or registration of utility model

Ref document number: 4768606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees