JP4994672B2 - Aromatic polyamic acid and aromatic polyimide - Google Patents

Aromatic polyamic acid and aromatic polyimide Download PDF

Info

Publication number
JP4994672B2
JP4994672B2 JP2006018523A JP2006018523A JP4994672B2 JP 4994672 B2 JP4994672 B2 JP 4994672B2 JP 2006018523 A JP2006018523 A JP 2006018523A JP 2006018523 A JP2006018523 A JP 2006018523A JP 4994672 B2 JP4994672 B2 JP 4994672B2
Authority
JP
Japan
Prior art keywords
dianhydride
aromatic
polyimide
polyamic acid
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006018523A
Other languages
Japanese (ja)
Other versions
JP2007197583A (en
Inventor
典子 力石
宏遠 王
浩信 川里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2006018523A priority Critical patent/JP4994672B2/en
Priority to PCT/JP2007/051352 priority patent/WO2007086550A1/en
Publication of JP2007197583A publication Critical patent/JP2007197583A/en
Application granted granted Critical
Publication of JP4994672B2 publication Critical patent/JP4994672B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

本発明は、新規芳香族ポリアミド酸及びそれを脱水閉環してなる新規芳香族ポリイミドに関する。詳しくは、ジアミン成分として3,8−ジアミノジベンゾピラノンを分子中に導入することによって得られる新規芳香族ポリアミド酸及びそれを脱水閉環してなる新規芳香族ポリイミドに関する。   The present invention relates to a novel aromatic polyamic acid and a novel aromatic polyimide obtained by dehydrating and ring-closing the same. Specifically, the present invention relates to a novel aromatic polyamic acid obtained by introducing 3,8-diaminodibenzopyranone as a diamine component into a molecule and a novel aromatic polyimide obtained by dehydrating and ring-closing it.

一般に、ポリイミド樹脂は非常に優れた耐熱性・耐薬品性・電気特性・機械特性を有していることから、電気・電子機器の材料として、特に耐熱性を要する電気絶縁材料などの用途に広く利用されている。特に近年、電子機器の高機能化、高性能化、小型化が進んでおり、それに伴う電子部品の小型化・軽量化に対応可能なポリイミド樹脂が強く望まれている。   In general, polyimide resin has excellent heat resistance, chemical resistance, electrical properties, and mechanical properties. Therefore, it is widely used as an electrical and electronic equipment material, especially for electrical insulation materials that require heat resistance. It's being used. Particularly, in recent years, electronic devices have been improved in function, performance, and size, and a polyimide resin that can cope with the reduction in size and weight of electronic components is strongly desired.

従来のポリイミドは、他の有機ポリマーに比べ耐熱性や電気絶縁性は優れているものの、吸湿率が著しく大きいということが知られている。そのため、フレキシブルプリント配線板を半田浴に浸漬する際に生じる膨れや、空気中の水分を吸湿することによる電気特性の低下、ポリイミドの吸湿後寸法変化による電子機器の接続不良など諸問題の原因ともなっていた。そこで、低吸湿、低湿度膨張などの特性が望まれている。また加工過程において、応力を受ける工程、温度変化を受ける工程を数多く含むため、応力や温度変化による寸法変化が小さいことが望まれる。応力による寸法変化を小さくするには、フィルムが高弾性を示すことが有効であり、また温度変化による寸法変化を小さくするには、フィルムの熱膨張係数を小さくすることが有効である。   Conventional polyimides are known to have significantly higher moisture absorption, although they have better heat resistance and electrical insulation than other organic polymers. For this reason, it causes various problems such as swelling caused when the flexible printed wiring board is immersed in the solder bath, deterioration of electrical characteristics due to moisture absorption in the air, and poor connection of electronic equipment due to dimensional changes after moisture absorption of polyimide. It was. Therefore, characteristics such as low moisture absorption and low humidity expansion are desired. In addition, since the machining process includes many processes that receive stress and processes that undergo temperature changes, it is desirable that the dimensional change due to stress and temperature changes be small. In order to reduce the dimensional change due to stress, it is effective that the film exhibits high elasticity, and in order to reduce the dimensional change due to temperature change, it is effective to reduce the thermal expansion coefficient of the film.

従来より、高弾性ポリイミドフィルムを得るためには、直線性の高いモノマーを用いることが有効であることが知られている。例えば、ピロメリット酸無水物とパラフェニレンジアミンといった剛直鎖のみを用いれば、高弾性ポリイミドを合成することができる。しかし、このような構造では、非常に脆く、また吸湿率が増大するために、吸湿膨張係数も大きくなってしまう。   Conventionally, in order to obtain a highly elastic polyimide film, it is known that it is effective to use a monomer having high linearity. For example, if only a rigid straight chain such as pyromellitic anhydride and paraphenylenediamine is used, a highly elastic polyimide can be synthesized. However, such a structure is very fragile and the moisture absorption rate increases, so that the hygroscopic expansion coefficient also increases.

特開平02−225522号公報Japanese Patent Laid-Open No. 02-225522 特開2001−11177号公報JP 2001-11177 A 特開平08−217877号公報JP 08-217877 A 特開2000−63543号公報JP 2000-63543 A 特開平01-261421号公報JP-A-01-261421 WO01/28767A1WO01 / 28767A1 日本化学会誌, 1977,(5), 701−705The Chemical Society of Japan, 1977, (5), 701-705 Journal of Polymer Science Part B, 33, 1907-1915 (1995)Journal of Polymer Science Part B, 33, 1907-1915 (1995)

このような背景から近年、優れた低吸湿性・吸湿後寸法安定性を有するポリイミド樹脂への要求が高まっており、それに対する検討が種々行われている。例えば、特許文献1及び特許文献2では、フッ素系樹脂を導入することにより、疎水性を向上し低吸湿性を発現するポリイミドが提案されているが、製造コストがかさんだり、金属材料との接着性が悪いという欠点がある。そのほかの低吸湿化の取り組みについても、特許文献3及び特許文献4などに示されるように、低吸湿性、低熱膨張係数などの良好な特性を示したものの、高耐熱性を保持することはできていない。   Against this background, in recent years, there has been an increasing demand for polyimide resins having excellent low moisture absorption and dimensional stability after moisture absorption. For example, Patent Document 1 and Patent Document 2 propose a polyimide that improves hydrophobicity and expresses low hygroscopicity by introducing a fluorine-based resin. There is a drawback of poor adhesion. As for other efforts to reduce moisture absorption, as shown in Patent Document 3 and Patent Document 4 and the like, while exhibiting good characteristics such as low moisture absorption and low thermal expansion coefficient, it is possible to maintain high heat resistance. Not.

特許文献5及び特許文献6には、高耐熱性・高弾性・低吸湿性のモノマーが提案されている。しかし、ここに記載されているポリイミド樹脂は剛直であるため、弾性率が非常に高いものであった。近年、ポリイミドを絶縁層とするフレキシブルプリント配線板に使用される積層体は、携帯電話などの折り曲げ用途へ多く使用されている。そのような用途に適用する場合、他の諸物性とのバランスをとりつつ、剛直すぎない適当な弾性率のポリイミド材料が要求されていた。   Patent Documents 5 and 6 propose monomers having high heat resistance, high elasticity, and low hygroscopicity. However, since the polyimide resin described here is rigid, its elastic modulus is very high. In recent years, laminates used for flexible printed wiring boards having polyimide as an insulating layer are often used for bending applications such as cellular phones. When applied to such applications, there has been a demand for a polyimide material having an appropriate elastic modulus that is not too rigid while balancing with other physical properties.

また、非特許文献1及び非特許文献2においては、本発明に類似のフルオレン骨格を有するジアミンを用いたポリイミドについての報告がなされている。しかし、これらに記載のポリイミドは、精密な電気・電子機器の材料に用いるための性能を満足するものではなかった。   In Non-Patent Document 1 and Non-Patent Document 2, there are reports on polyimide using a diamine having a fluorene skeleton similar to the present invention. However, the polyimide described in these documents does not satisfy the performance for use as a material for precision electrical / electronic equipment.

そこで本発明は、上記従来の問題点を解決し、優れた耐熱性と適度な弾性率を有し、かつ低吸湿性・低熱膨張性を実現した芳香族ポリイミド及びその前駆体である芳香族ポリアミド酸を提供することを目的とする。   Therefore, the present invention solves the above-mentioned conventional problems, has an excellent heat resistance, an appropriate elastic modulus, and realizes low hygroscopicity and low thermal expansion, and an aromatic polyamide as a precursor thereof. The object is to provide acid.

すなわち、本発明は、下記一般式(1)で表される構造単位を10モル%以上有することを特徴とする芳香族ポリアミド酸である。

Figure 0004994672
(式中、Ar1は芳香環を1個以上有する4価の有機基である。) That is, this invention is an aromatic polyamic acid characterized by having 10 mol% or more of a structural unit represented by the following general formula (1).
Figure 0004994672
(In the formula, Ar 1 is a tetravalent organic group having one or more aromatic rings.)

更に、本発明は、下記一般式(2)で表される構造単位を10モル%以上有することを特徴とする芳香族ポリイミドである。

Figure 0004994672
(式中、Ar1は芳香環を1個以上有する4価の有機基である。) Furthermore, this invention is an aromatic polyimide characterized by having 10 mol% or more of structural units represented by the following general formula (2).
Figure 0004994672
(In the formula, Ar 1 is a tetravalent organic group having one or more aromatic rings.)

以下に、本発明について更に詳細に説明する。   Hereinafter, the present invention will be described in more detail.

一般式(1)で表される構造単位を有するポリアミド酸(以下、本ポリアミド酸ともいう)は、これを硬化してイミド化することにより一般式(2)で表される構造単位を有するポリイミド(以下、本ポリイミドともいう)とすることができるので、本ポリイミドの前駆体ということができる。   A polyamic acid having a structural unit represented by the general formula (1) (hereinafter also referred to as the present polyamic acid) is a polyimide having a structural unit represented by the general formula (2) by curing and imidizing the polyamic acid. (Hereinafter also referred to as the present polyimide), it can be referred to as a precursor of the present polyimide.

一般式(1)及び(2)で表される構造単位において、式中、Ar1は芳香環を1個以上有する4価の有機基であり、芳香族テトラカルボン酸又はその酸二無水物等から生じる芳香族テトラカルボン酸残基ということができる。したがって、使用する芳香族テトラカルボン酸を説明することによりAr1が理解される。通常、上記構造単位を有する本ポリイミド又は本ポリアミド酸を合成する場合、芳香族テトラカルボン酸二無水物が使用されることが多いので、好ましいAr1を芳香族テトラカルボン酸二無水物を用いて以下に説明する。 In the structural units represented by the general formulas (1) and (2), Ar 1 is a tetravalent organic group having one or more aromatic rings, such as an aromatic tetracarboxylic acid or an acid dianhydride thereof. An aromatic tetracarboxylic acid residue generated from Therefore, Ar 1 is understood by describing the aromatic tetracarboxylic acid used. Usually, when synthesizing this polyimide or the polyamic acid having the structural unit, so that the aromatic tetracarboxylic acid dianhydride is used frequently, the preferred Ar 1 using an aromatic tetracarboxylic dianhydride This will be described below.

上記芳香族テトラカルボン酸二無水物としては、特に限定されるものではなく公知のものを使用することができる。具体例を挙げると、ピロメリット酸二無水物、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物、2,2',3,3'-ベンゾフェノンテトラカルボン酸二無水物、2,3,3',4'-ベンゾフェノンテトラカルボン酸二無水物、ナフタレン-2,3,6,7-テトラカルボン酸二無水物、ナフタレン-1,2,5,6-テトラカルボン酸二無水物、ナフタレン-1,2,4,5-テトラカルボン酸二無水物、ナフタレン-1,4,5,8-テトラカルボン酸二無水物、ナフタレン-1,2,6,7-テトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-1,2,5,6-テトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-2,3,6,7-テトラカルボン酸二無水物、2,6-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,7-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,3,6,7-テトラクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、1,4,5,8-テトラクロロナフタレン-2,3,6,7-テトラカルボン酸二無水物、3,3',4,4'-ビフェニルテトラカルボン酸二無水物、2,2',3,3'-ビフェニルテトラカルボン酸二無水物、2,3,3',4'-ビフェニルテトラカルボン酸二無水物、3,3'',4,4''-p-テルフェニルテトラカルボン酸二無水物、2,2'',3,3''-p-テルフェニルテトラカルボン酸二無水物、2,3,3'',4''-p-テルフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-プロパン二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3.4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ペリレン-2,3,8,9-テトラカルボン酸二無水物、ペリレン-3,4,9,10-テトラカルボン酸二無水物、ペリレン-4,5,10,11-テトラカルボン酸二無水物、ペリレン-5,6,11,12-テトラカルボン酸二無水物、フェナンスレン-1,2,7,8-テトラカルボン酸二無水物、フェナンスレン-1,2,6,7-テトラカルボン酸二無水物、フェナンスレン-1,2,9,10-テトラカルボン酸二無水物、シクロペンタン-1,2,3,4-テトラカルボン酸二無水物、ピラジン-2,3,5,6-テトラカルボン酸二無水物、ピロリジン-2,3,4,5-テトラカルボン酸二無水物、チオフェン-2,3,4,5-テトラカルボン酸二無水物、4,4'-オキシジフタル酸二無水物などが挙げられる。また、これらは単独で又は2種以上混合して用いることができる。   It does not specifically limit as said aromatic tetracarboxylic dianhydride, A well-known thing can be used. Specific examples include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3′-benzophenone tetracarboxylic dianhydride, 2 , 3,3 ', 4'-Benzophenonetetracarboxylic dianhydride, naphthalene-2,3,6,7-tetracarboxylic dianhydride, naphthalene-1,2,5,6-tetracarboxylic dianhydride , Naphthalene-1,2,4,5-tetracarboxylic dianhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride, naphthalene-1,2,6,7-tetracarboxylic dianhydride 4,8-dimethyl-1,2,3,5,6,7-hexahydronaphthalene-1,2,5,6-tetracarboxylic dianhydride, 4,8-dimethyl-1,2,3 , 5,6,7-hexahydronaphthalene-2,3,6,7-tetracarboxylic dianhydride, 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2, 7-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,3,6,7-tetrachloronaphth Len-1,4,5,8-tetracarboxylic dianhydride, 1,4,5,8-tetrachloronaphthalene-2,3,6,7-tetracarboxylic dianhydride, 3,3 ', 4 , 4'-biphenyltetracarboxylic dianhydride, 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride, 2,3,3', 4'-biphenyltetracarboxylic dianhydride, 3, 3 '', 4,4 ''-p-terphenyltetracarboxylic dianhydride, 2,2``, 3,3 ''-p-terphenyltetracarboxylic dianhydride, 2,3,3 ' ', 4' '-p-terphenyltetracarboxylic dianhydride, 2,2-bis (2,3-dicarboxyphenyl) -propane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) ) -Propane dianhydride, bis (2,3-dicarboxyphenyl) ether dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3.4-dicarboxyphenyl) methane dianhydride, Bis (2,3-dicarboxyphenyl) sulfone dianhydride, bis (3,4-dicarboxyphenyl) Nyl) sulfone dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, perylene-2,3 , 8,9-tetracarboxylic dianhydride, perylene-3,4,9,10-tetracarboxylic dianhydride, perylene-4,5,10,11-tetracarboxylic dianhydride, perylene-5, 6,11,12-tetracarboxylic dianhydride, phenanthrene-1,2,7,8-tetracarboxylic dianhydride, phenanthrene-1,2,6,7-tetracarboxylic dianhydride, phenanthrene-1 , 2,9,10-Tetracarboxylic dianhydride, cyclopentane-1,2,3,4-tetracarboxylic dianhydride, pyrazine-2,3,5,6-tetracarboxylic dianhydride, pyrrolidine -2,3,4,5-tetracarboxylic dianhydride, thiophene-2,3,4,5-tetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride, and the like. Moreover, these can be used individually or in mixture of 2 or more types.

これらの中でも、ピロメリット酸二無水物、3,3',4,4'-ビフェニルテトラカルボン酸二無水物、ナフタレン-2,3,6,7-テトラカルボン酸二無水物、ナフタレン-1,4,5,8-テトラカルボン酸二無水物、3,3",4,4"-p-テルフェニルテトラカルボン酸二無水物、4,4'-オキシジフタル酸二無水物、3,3'4,4'-ベンゾフェノンテトラカルボン酸二無水物及びビス(2,3-ジカルボキシフェニル)スルホン二無水物から選ばれる少なくとも1種の芳香族テトラカルボン酸が好ましい。その中でも特に、ピロメリット酸二無水物(PMDA)、ナフタレン-2,3,6,7-テトラカルボン酸二無水物(NTCDA)及び3,3',4,4'-ビフェニルテトラカルボン酸二無水物(BPDA)から選ばれるものが好ましい。テトラカルボン酸二無水物の選定にあたっては、具体的には重合加熱して得られるポリイミドの熱膨張係数と熱分解温度、ガラス転移温度、湿度膨張係数などを測定して好適なものを選択することが好ましい。   Among these, pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, naphthalene-2,3,6,7-tetracarboxylic dianhydride, naphthalene-1, 4,5,8-tetracarboxylic dianhydride, 3,3 ", 4,4" -p-terphenyltetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride, 3,3'4 At least one aromatic tetracarboxylic acid selected from 4,4′-benzophenonetetracarboxylic dianhydride and bis (2,3-dicarboxyphenyl) sulfone dianhydride is preferred. Among them, pyromellitic dianhydride (PMDA), naphthalene-2,3,6,7-tetracarboxylic dianhydride (NTCDA) and 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride Preferred is one selected from products (BPDA). When selecting tetracarboxylic dianhydride, specifically, select a suitable one by measuring the thermal expansion coefficient, thermal decomposition temperature, glass transition temperature, humidity expansion coefficient, etc. of polyimide obtained by polymerization and heating. Is preferred.

一般式(1)又は(2)で表される構造単位を有する本ポリアミド酸又は本ポリイミドの合成に用いられるジアミンは、下記式(3)で表される3,8-ジアミノジベンゾピラノン(以下、本芳香族ジアミンともいう)である。

Figure 0004994672
The diamine used in the synthesis of the present polyamic acid or the present polyimide having the structural unit represented by the general formula (1) or (2) is 3,8-diaminodibenzopyranone represented by the following formula (3) , Also referred to as the present aromatic diamine).
Figure 0004994672

本ポリアミド酸又は本ポリイミドは、有利には芳香族テトラカルボン酸二無水物と本芳香族ジアミンを10モル%以上含むジアミンとを反応させて得ることができる。   The present polyamic acid or the present polyimide can be advantageously obtained by reacting an aromatic tetracarboxylic dianhydride with a diamine containing 10 mol% or more of the present aromatic diamine.

式(3)で表される本芳香族ジアミンは、次の工程を経て合成することができる。すなわち、1,5-ジニトロフルオレノンのケトン部分を過酸によりエステル基に酸化して3,8-ジニトロジベンゾピラノンを合成する工程(工程-Iという)及び、二つのニトロ基を還元してジアミンとして目的とする3,8-ジアミノジベンゾピラノンを得る工程(工程-IIという)から得ることができる。   The aromatic diamine represented by the formula (3) can be synthesized through the following steps. That is, a step of synthesizing 3,8-dinitrodibenzopyranone by oxidizing the ketone portion of 1,5-dinitrofluorenone to an ester group with peracid (referred to as step-I), and reducing two nitro groups to diamine As the desired 3,8-diaminodibenzopyranone (referred to as Step-II).

工程-Iの反応は、Baeyer-Villiger反応の一種であり、当該反応は多数の合成文献において公知な人名反応であるが、原料として1,5-ジニトロフルオレノンを使用した場合での反応は、Baeyer-Villiger反応の一般的な条件を用いても全く反応が進行しなかった。そこで、原料が唯一溶解した濃硫酸を試薬兼反応溶媒として用い、過酸は市販の30%過酸化水素水を用いることにより、目的の反応を進行させることに成功した。工程-IIの反応は、Przemysl Chemiczny, 71, 10, 389-391 (1992)に記載されている公知の反応を利用することによって、ラクトン部分の還元を見ることなく、二つのニトロ基を両方還元した目的の本芳香族ジアミンを得ることができる。   The reaction of Step-I is a kind of Baeyer-Villiger reaction, and this reaction is a well-known personal name reaction in many synthetic literatures, but the reaction when 1,5-dinitrofluorenone is used as a raw material is -The reaction did not proceed at all using the general conditions of the Villiger reaction. Therefore, concentrated sulfuric acid, the only raw material dissolved, was used as a reagent and reaction solvent, and peracid was succeeded in advancing the desired reaction by using a commercially available 30% hydrogen peroxide solution. The reaction of Step-II is to reduce both nitro groups without seeing reduction of the lactone moiety by utilizing the known reaction described in Przemysl Chemiczny, 71, 10, 389-391 (1992). The intended aromatic diamine can be obtained.

こうして得られる、3,8-ジアミノジベンゾピラノンは、工程-IIの反応溶液を熱時濾過した後、冷却した際に析出する固体を回収することによって、高純度で得ることが可能である。   The 3,8-diaminodibenzopyranone thus obtained can be obtained in high purity by collecting the solid that precipitates when the reaction solution of Step-II is filtered while hot and then cooled.

本発明においては、本芳香族ジアミンと共に、それ以外の他のジアミンを90モル%以下使用することができる。そして、そのことによって、共重合型のポリアミド酸又はポリイミドとすることができる。
一般式(1)又は(2)で表される構造単位は、本ポリアミド酸又は本ポリイミド中に10〜100モル%、好ましくは50〜100モル%、より好ましくは70〜100モル%含むことがよい。
In this invention, 90 mol% or less of other diamine other than that can be used with this aromatic diamine. And it can be set as copolymerization type polyamic acid or a polyimide by it.
The structural unit represented by the general formula (1) or (2) is contained in the polyamic acid or the polyimide in an amount of 10 to 100 mol%, preferably 50 to 100 mol%, more preferably 70 to 100 mol%. Good.

一般式(1)又は(2)で表される構造単位を与える芳香族ジアミン以外に、共重合に使用され得るジアミンとしては、特に限定されるものではないが、例を挙げると、4,6-ジメチル-m-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、2,4-ジアミノメシチレン、3,3'-ジメチル-4,4'-ジアミノジフェニルメタン、3,5,3',5'-テトラメチル-4,4'-ジアミノジフェニルメタン、2,4-トルエンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、4,4'-ジアミノジフェニルプロパン、3,3'-ジアミノジフェニルプロパン、4,4'-ジアミノジフェニルエタン、3,3'-ジアミノジフェニルエタン、4,4'-ジアミノジフェニルメタン、3,3'-ジアミノジフェニルメタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4'-ジアミノジフェニルスルフィド、3,3'-ジアミノジフェニルスルフィド、4,4'-ジアミノジフェニルスルホン、3,3'-ジアミノジフェニルスルホン、4,4'-ジアミノジフェニルエーテル、3,3'-ジアミノジフェニルエーテル、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジジン、3,3'-ジアミノビフェニル、3,3'-ジメチル-4,4'-ジアミノビフェニル、3,3'-ジメトキシベンジジン、4,4"-ジアミノ-p-ターフェニル、3,3"-ジアミノ-p-ターフェニル、ビス(p-アミノシクロヘキシル)メタン、ビス(p-β-アミノ-t-ブチルフェニル)エーテル、ビス(p-β-メチル-δ-アミノペンチル)ベンゼン、p-ビス(2-メチル-4-アミノペンチル)ベンゼン、p-ビス(1,1-ジメチル-5-アミノペンチル)ベンゼン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,4-ビス(β-アミノ-t-ブチル)トルエン、2,4-ジアミノトルエン、m-キシレン-2,5-ジアミン、p-キシレン-2,5-ジアミン、m-キシリレンジアミン、p-キシリレンジアミン、2,6-ジアミノピリジン、2,5-ジアミノピリジン、2,5-ジアミノ-1,3,4-オキサジアゾール、ピペラジンなどが挙げられる。   In addition to the aromatic diamine that gives the structural unit represented by the general formula (1) or (2), the diamine that can be used for the copolymerization is not particularly limited. -Dimethyl-m-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, 2,4-diaminomesitylene, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,5,3 ', 5' -Tetramethyl-4,4'-diaminodiphenylmethane, 2,4-toluenediamine, m-phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenylpropane, 3,3'-diaminodiphenylpropane, 4,4 '-Diaminodiphenylethane, 3,3'-diaminodiphenylethane, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 4 , 4'-diaminodiphenyl sulfide, 3,3'-diaminodi Phenyl sulfide, 4,4′-diaminodiphenyl sulfone, 3,3′-diaminodiphenyl sulfone, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, benzidine, 3,3'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl 3,3'-dimethoxybenzidine, 4,4 "-diamino-p-terphenyl, 3,3" -diamino-p-terphenyl, bis (p-aminocyclohexyl) methane, bis (p-β-amino- t-butylphenyl) ether, bis (p-β-methyl-δ-aminopentyl) benzene, p-bis (2-methyl-4-aminopentyl) benzene, p-bis (1,1-dimethyl-5-amino) Pentyl) benzene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,4-bis (β-acrylate) Tert-butyl) toluene, 2,4-diaminotoluene, m-xylene-2,5-diamine, p-xylene-2,5-diamine, m-xylylenediamine, p-xylylenediamine, 2,6 -Diaminopyridine, 2,5-diaminopyridine, 2,5-diamino-1,3,4-oxadiazole, piperazine and the like.

これらの中でも、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)、1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)、1,4-ビス(4-アミノフェノキシ)ベンゼン(TPE-Q)などが好ましく用いられる。また、これらのジアミンを用いる場合、その好ましい使用割合は、全ジアミンの0〜50モル%、より好ましくは0〜30モル%の範囲である。   Among these, 1,3-bis (3-aminophenoxy) benzene (APB), 1,3-bis (4-aminophenoxy) benzene (TPE-R), 1,4-bis (4-aminophenoxy) benzene (TPE-Q) and the like are preferably used. Moreover, when using these diamines, the preferable usage rate is the range of 0-50 mol% of all the diamine, More preferably, it is the range of 0-30 mol%.

本芳香族ポリアミド酸は、上記に示した芳香族ジアミン成分と芳香族テトラカルボン酸二無水物成分とを実質的に等モル使用し、有機極性溶媒中で重合する公知の方法によって製造することができる。すなわち、窒素気流下N,N-ジメチルアセトアミドなどの有機極性溶媒に芳香族ジアミンを溶解させた後、芳香族テトラカルボン酸二無水物を加えて、室温で三時間程度反応させることにより得られる。   The aromatic polyamic acid can be produced by a known method in which the aromatic diamine component and the aromatic tetracarboxylic dianhydride component shown above are used in substantially equimolar amounts and polymerized in an organic polar solvent. it can. That is, it is obtained by dissolving an aromatic diamine in an organic polar solvent such as N, N-dimethylacetamide under a nitrogen stream, adding aromatic tetracarboxylic dianhydride, and reacting at room temperature for about 3 hours.

そして、本ポリイミドは、上記のようにして得られた本ポリアミド酸を加熱してイミド化して得られる。イミド化は、本ポリアミド酸を銅箔などの任意の基材上にアプリケータを用いて塗布し、150℃以下の温度で2〜20分予備乾燥した後、溶剤除去、イミド化のために通常130〜360℃程度の温度で2〜30分程度熱処理することにより行われる。   And this polyimide is obtained by heating and imidating this polyamic acid obtained by making it above. For imidation, this polyamic acid is usually applied on an arbitrary substrate such as copper foil using an applicator, pre-dried at a temperature of 150 ° C or lower for 2 to 20 minutes, and then usually for solvent removal and imidization. The heat treatment is performed at a temperature of about 130 to 360 ° C. for about 2 to 30 minutes.

本ポリアミド酸及び本ポリイミドの重合度は、ポリアミド酸溶液の重量平均分子量(Mw)として50,000〜800,000であり、好ましくは60,000〜250,000の範囲にあることがよい。重量平均分子量は、GPCにより測定することができる。   The degree of polymerization of the present polyamic acid and the present polyimide is 50,000 to 800,000, preferably 60,000 to 250,000, as the weight average molecular weight (Mw) of the polyamic acid solution. The weight average molecular weight can be measured by GPC.

本発明のポリアミド酸は、脱水、閉環させて、優れた耐熱性を有し、かつ低熱膨張性・低吸湿・低吸湿膨張性のポリイミドとすることができる。すなわち、本発明のポリイミドは、20ppm/K以下の熱膨張係数、500℃以上の耐熱性(熱分解温度Td2%)、23℃で4〜10GPaの弾性率を示し、かつ吸湿率が0.7wt%以下、湿度膨張係数が9ppm/%RH以下を示すことが可能であるから、耐熱性、寸法安定性、弾性率に優れ、かつ低吸湿性等の優れた性状を有し得るものである。本発明のポリイミドは、これらの特性を生かして、電気・電子分野を始めとする種々の分野に使用することができ、特に、配線基板の絶縁材料用途として有用である。   The polyamic acid of the present invention can be dehydrated and closed to give a polyimide having excellent heat resistance and low thermal expansion, low moisture absorption, and low moisture absorption. That is, the polyimide of the present invention has a thermal expansion coefficient of 20 ppm / K or less, a heat resistance of 500 ° C. or more (thermal decomposition temperature Td 2%), an elastic modulus of 4 to 10 GPa at 23 ° C., and a moisture absorption rate of 0.7 wt. % And a humidity expansion coefficient of 9 ppm /% RH or less can be exhibited, so that it can have excellent properties such as heat resistance, dimensional stability, elastic modulus and low hygroscopicity. The polyimide of the present invention can be used in various fields including the electric / electronic field by taking advantage of these characteristics, and is particularly useful as an insulating material for a wiring board.

以下、実施例に基づいて、本発明の内容を具体的に説明するが、本発明はこれらの実施例の範囲に限定されるものではない。   Hereinafter, the content of the present invention will be specifically described based on examples, but the present invention is not limited to the scope of these examples.

実施例等に用いた略号を下記に示す。
・DADBP:3,8-ジアミノジベンゾピラノン
・DAF:2,7-ジアミノフルオレン
・PMDA:ピロメリット酸二無水物
・BPDA:3,3',4,4'-ビフェニルテトラカルボン酸二無水物
・TPE-Q:1,4-ビス(4-アミノフェノキシ)ベンゼン
・TPE-R:1,3-ビス(4-アミノフェノキシ)ベンゼン
・APB:1,3-ビス(3-アミノフェノキシ)ベンゼン
・DMAc:N,N-ジメチルアセトアミド
Abbreviations used in Examples and the like are shown below.
・ DADBP: 3,8-diaminodibenzopyranone ・ DAF: 2,7-diaminofluorene ・ PMDA: pyromellitic dianhydride ・ BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride ・TPE-Q: 1,4-bis (4-aminophenoxy) benzene, TPE-R: 1,3-bis (4-aminophenoxy) benzene, APB: 1,3-bis (3-aminophenoxy) benzene, DMAc : N, N-dimethylacetamide

実施例中の各種物性の測定方法と条件を以下に示す。
[線膨張係数(CTE)の測定]
3mm ×15mmのサイズのポリイミドフィルムを、熱機械分析(TMA)装置にて5.0gの荷重を加えながら一定の昇温速度で30℃から260℃の温度範囲で引張り試験を行い、温度に対するポリイミドフィルムの伸び量から線膨張係数(ppm/K)を測定した。
Measuring methods and conditions for various physical properties in the examples are shown below.
[Measurement of linear expansion coefficient (CTE)]
A polyimide film with a size of 3 mm x 15 mm is subjected to a tensile test in the temperature range of 30 ° C to 260 ° C at a constant temperature increase rate while applying a 5.0 g load with a thermomechanical analysis (TMA) device, and the polyimide film against the temperature The linear expansion coefficient (ppm / K) was measured from the amount of elongation.

[ガラス転移温度(Tg)の測定]
各実施例で得たポリイミドフィルム(10mm×22.6mm)を動的熱器械分析装置にて20℃から500℃まで5℃/分で昇温させたときの動的粘弾性を測定し、ガラス転移温度(tanδ極大値:℃)を求めた。
[Measurement of glass transition temperature (Tg)]
The dynamic viscoelasticity of the polyimide film (10mm x 22.6mm) obtained in each example was measured at a rate of 5 ° C / min from 20 ° C to 500 ° C using a dynamic thermal analyzer, and the glass transition The temperature (tan δ maximum value: ° C.) was determined.

[引張り弾性率の測定]
各実施例で得たポリイミドフィルム(12.7mm×160mm)を、50kgのロードセルを設置したテンションテスターにて50mm/minの速さで引張り試験を行い、引張り弾性率(GPa)を求めた。
[Measurement of tensile modulus]
The polyimide film (12.7 mm × 160 mm) obtained in each example was subjected to a tensile test at a speed of 50 mm / min using a tension tester equipped with a 50 kg load cell, and the tensile elastic modulus (GPa) was obtained.

[熱分解温度(Td2%)の測定]
10〜20mgの重さのポリイミドフィルムを、熱重量分析(TG)装置にて一定の速度で30℃から550℃まで昇温させたときの重量変化を測定し、2%重量減少温度(Td2%:℃)を求めた。
[Measurement of thermal decomposition temperature (Td2%)]
The weight change when a polyimide film weighing 10 to 20 mg was heated from 30 ° C to 550 ° C at a constant rate with a thermogravimetric analysis (TG) device was measured, and 2% weight loss temperature (Td2% : ° C.).

[吸湿率の測定]
4cm×20cmのポリイミドフィルム(各3枚)を、120℃で2時間乾燥した後、23℃/50%RHの恒温恒湿室で24時間以上静置し、その前後の重量変化から次式により求めた。
吸湿率(wt%)=[(吸湿後重量−乾燥後重量)/乾燥後重量]×100
[Measurement of moisture absorption rate]
4cm x 20cm polyimide films (3 sheets each) are dried at 120 ° C for 2 hours, then left in a constant temperature and humidity chamber at 23 ° C / 50% RH for 24 hours or more. Asked.
Moisture absorption rate (wt%) = [(weight after moisture absorption−weight after drying) / weight after drying] × 100

[湿度膨張係数(CHE)の測定]
35cm×35cmのポリイミド/銅箔積層体の銅箔上に、エッチングレジスト層を設け、これを一辺が30cmの正方形の四辺に10cm間隔で直径1mmの点が16箇所配置するようにマスクを介して露光、現像を行い、上記16箇所の銅箔残存点を有するCHE測定用ポリイミドフィルムを得た。このフィルムを120℃で2時間乾燥した後、23℃/30%RH・50%RHの恒温恒湿機で各湿度において24時間以上静置し、二次元測長機により測定した各湿度での銅箔点間の寸法変化から湿度膨張係数(ppm/%RH)を求めた。
[Measurement of humidity expansion coefficient (CHE)]
An etching resist layer is provided on a copper foil of a 35 cm x 35 cm polyimide / copper foil laminate, and this is arranged through a mask so that 16 points of 1 mm in diameter are arranged at 10 cm intervals on four sides of a 30 cm square. Exposure and development were performed to obtain a polyimide film for CHE measurement having the above 16 copper foil remaining points. This film was dried at 120 ° C for 2 hours, then left at 23 ° C / 30% RH / 50% RH constant temperature and humidity chamber for at least 24 hours at each humidity, and measured at each humidity measured by a two-dimensional measuring machine. The humidity expansion coefficient (ppm /% RH) was obtained from the dimensional change between the copper foil points.

実施例1〜6
ポリアミド酸A〜Fを合成するため、窒素気流下で、表1に示したジアミンを200mlのセパラブルフラスコの中で攪拌しながら溶剤DMAcに溶解させた。次いで、表1に示したテトラカルボン酸二無水物を加えた。その後、溶液を室温で3時間攪拌を続けて重合反応を行い、ポリイミド前駆体となるポリアミド酸A〜Fの黄〜茶褐色の粘稠な溶液を得た。それぞれのポリアミド酸溶液の重量平均分子量(Mw)は約10万〜25万の範囲内であり、高重合度のポリアミド酸が生成されていることが確認された。ポリアミド酸の固形分と溶液粘度を表1に示した。ここで、固形分はポリアミド酸と溶剤の合計量に対するポリアミド酸の重量比率である。溶液粘度はE型粘度計を用い測定した。
Examples 1-6
In order to synthesize the polyamic acids A to F, the diamine shown in Table 1 was dissolved in the solvent DMAc with stirring in a 200 ml separable flask under a nitrogen stream. Subsequently, the tetracarboxylic dianhydride shown in Table 1 was added. Thereafter, the solution was stirred at room temperature for 3 hours to carry out a polymerization reaction, thereby obtaining a yellow-brown viscous solution of polyamic acids A to F to be a polyimide precursor. The weight average molecular weight (Mw) of each polyamic acid solution was in the range of about 100,000 to 250,000, and it was confirmed that a polyamic acid with a high degree of polymerization was produced. The solid content and solution viscosity of the polyamic acid are shown in Table 1. Here, the solid content is a weight ratio of the polyamic acid to the total amount of the polyamic acid and the solvent. The solution viscosity was measured using an E-type viscometer.

比較例1
原料の配合組成を表1に示すように変えた他は、実施例1〜6と同様な方法で、ポリアミド酸Gを合成し、同様な測定を行った。結果をまとめて表1に示す。
Comparative Example 1
Polyamic acid G was synthesized in the same manner as in Examples 1 to 6 except that the composition of the raw materials was changed as shown in Table 1, and the same measurement was performed. The results are summarized in Table 1.

Figure 0004994672
Figure 0004994672

実施例7〜12
A〜Fのポリアミド溶液を、それぞれ銅箔上にアプリケータを用いて乾燥後の膜厚が約15μmとなるように塗布し、130℃で2.4分間乾燥した後、更に130℃、160℃、200℃、230℃、280℃、320℃、360℃で各2〜12分段階的な熱処理を行って、銅箔上にポリイミド層を形成した。
それぞれのポリイミドフィルムについて、IRにより構造解析を行った結果を、図1〜6に示す。また、塩化第二鉄水溶液を用いて銅箔をエッチング除去してA〜Fのポリイミドフィルムを作成し、熱膨張係数(CTE)、ガラス転移温度(Tg)、引張り弾性率、2%重量減少温度(Td2%)、吸湿率及び湿度膨張係数(CHE)を求めた。なお、A〜Fのポリイミドフィルムは、各々A〜Fのポリアミド酸から得られたことを意味する。
Examples 7-12
The polyamide solution of A to F was applied on each copper foil using an applicator so that the film thickness after drying was about 15 μm, dried at 130 ° C. for 2.4 minutes, and then further 130 ° C., 160 ° C., 200 Stepwise heat treatment was performed at 2 ° C., 12 ° C., 230 ° C., 280 ° C., 320 ° C., and 360 ° C. for 2 to 12 minutes to form a polyimide layer on the copper foil.
The results of structural analysis by IR for each polyimide film are shown in FIGS. Also, the copper foil is etched away using ferric chloride aqueous solution to create A to F polyimide film, thermal expansion coefficient (CTE), glass transition temperature (Tg), tensile modulus, 2% weight loss temperature (Td2%), moisture absorption and humidity expansion coefficient (CHE) were determined. In addition, it means that the polyimide films of A to F were obtained from the polyamic acids of A to F, respectively.

比較例2
Gのポリアミド酸溶液を、実施例7〜12と同様にしてイミド化して、Gのポリイミドフィルムを作製し、評価を行った。
実施例及び比較例の各測定結果を、表2に示す。

Figure 0004994672
Comparative Example 2
The G polyamic acid solution was imidized in the same manner as in Examples 7 to 12 to produce a G polyimide film and evaluated.
Table 2 shows the measurement results of Examples and Comparative Examples.
Figure 0004994672

実施例7〜12のポリイミドは、フレキシブルプリント積層板などの絶縁樹脂用途で必要とされる低熱膨張係数を示し、優れた耐熱性、すなわち、500℃以上の2%重量減少温度を保持しながら、低い吸湿率、と湿度膨張係数を示した。一方、比較例2のポリイミドは、吸湿率や湿度膨張係数が高いものであった。   The polyimides of Examples 7 to 12 exhibit a low coefficient of thermal expansion required for insulating resin applications such as flexible printed laminates, while maintaining excellent heat resistance, that is, 2% weight loss temperature of 500 ° C. or higher. It showed a low moisture absorption rate and a humidity expansion coefficient. On the other hand, the polyimide of Comparative Example 2 had a high moisture absorption rate and humidity expansion coefficient.

ポリイミドフィルムAのIRスペクトルIR spectrum of polyimide film A ポリイミドフィルムBのIRスペクトルIR spectrum of polyimide film B ポリイミドフィルムCのIRスペクトルIR spectrum of polyimide film C ポリイミドフィルムDのIRスペクトルIR spectrum of polyimide film D ポリイミドフィルムEのIRスペクトルIR spectrum of polyimide film E ポリイミドフィルムFのIRスペクトルIR spectrum of polyimide film F

Claims (5)

下記一般式(1)で表される構造単位を10モル%以上有することを特徴とする芳香族ポリアミド酸。
Figure 0004994672

(式中、Ar1は芳香環を1個以上有する4価の有機基である。)
An aromatic polyamic acid comprising 10 mol% or more of a structural unit represented by the following general formula (1).
Figure 0004994672

(In the formula, Ar 1 is a tetravalent organic group having one or more aromatic rings.)
下記一般式(2)で表される構造単位を10モル%以上有することを特徴とする芳香族ポリイミド。
Figure 0004994672
(式中、Ar1は芳香環を1個以上有する4価の有機基である。)
An aromatic polyimide comprising 10 mol% or more of a structural unit represented by the following general formula (2).
Figure 0004994672
(In the formula, Ar 1 is a tetravalent organic group having one or more aromatic rings.)
一般式(2)において、Ar1の少なくとも一部が、ピロメリット酸二無水物、3,3',4,4'-ビフェニルテトラカルボン酸二無水物、ナフタレン-2,3,6,7-テトラカルボン酸二無水物、ナフタレン-1,4,5,8-テトラカルボン酸二無水物、3,3",4,4"-p-テルフェニルテトラカルボン酸二無水物、4,4'-オキシジフタル酸二無水物、3,3'4,4'-ベンゾフェノンテトラカルボン酸二無水物及びビス(2,3-ジカルボキシフェニル)スルホン二無水物から選ばれる少なくとも1種の芳香族テトラカルボン酸の残基である請求項2に記載の芳香族ポリイミド。 In the general formula (2), at least a part of Ar 1 is pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, naphthalene-2,3,6,7- Tetracarboxylic dianhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride, 3,3 ", 4,4" -p-terphenyltetracarboxylic dianhydride, 4,4'- Of at least one aromatic tetracarboxylic acid selected from oxydiphthalic dianhydride, 3,3'4,4'-benzophenonetetracarboxylic dianhydride and bis (2,3-dicarboxyphenyl) sulfone dianhydride The aromatic polyimide according to claim 2, which is a residue. 23℃における弾性率が4〜10GPa、吸湿率が0.7wt%以下、かつ30〜50%RHの湿度膨張係数が9ppm/%RH以下であり、熱膨張係数が20ppm/K以下である請求項2に記載の芳香族ポリイミド。   3. An elastic modulus at 23 ° C. of 4 to 10 GPa, a moisture absorption rate of 0.7 wt% or less, a humidity expansion coefficient of 30 to 50% RH of 9 ppm /% RH or less, and a thermal expansion coefficient of 20 ppm / K or less. Aromatic polyimide described in 1. 請求項1記載の芳香族ポリアミド酸をイミド化することを特徴とする請求項2記載の芳香族ポリイミドの製造方法。   3. The method for producing an aromatic polyimide according to claim 2, wherein the aromatic polyamic acid according to claim 1 is imidized.
JP2006018523A 2006-01-27 2006-01-27 Aromatic polyamic acid and aromatic polyimide Expired - Fee Related JP4994672B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006018523A JP4994672B2 (en) 2006-01-27 2006-01-27 Aromatic polyamic acid and aromatic polyimide
PCT/JP2007/051352 WO2007086550A1 (en) 2006-01-27 2007-01-29 Laminate for wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006018523A JP4994672B2 (en) 2006-01-27 2006-01-27 Aromatic polyamic acid and aromatic polyimide

Publications (2)

Publication Number Publication Date
JP2007197583A JP2007197583A (en) 2007-08-09
JP4994672B2 true JP4994672B2 (en) 2012-08-08

Family

ID=38452500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006018523A Expired - Fee Related JP4994672B2 (en) 2006-01-27 2006-01-27 Aromatic polyamic acid and aromatic polyimide

Country Status (1)

Country Link
JP (1) JP4994672B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015199141A1 (en) * 2014-06-26 2017-04-20 国立大学法人群馬大学 Coumarin-type condensed ring compound exhibiting luminescent property and semiconductor performance and method for producing the same
KR102262746B1 (en) * 2015-01-30 2021-06-10 에스케이이노베이션 주식회사 Polyamic acid composition and polyimide substrate
CN111423583B (en) * 2020-03-17 2022-06-07 浙江大学宁波理工学院 Polyimide resin with furan structure and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259258A (en) * 1985-05-13 1986-11-17 Konishiroku Photo Ind Co Ltd Photosensitive body
JPH02253267A (en) * 1989-03-28 1990-10-12 Canon Inc Electrophotographic sensitive body
JP2746555B2 (en) * 1995-11-13 1998-05-06 新日鐵化学株式会社 Flexible printed circuit board
JP4456836B2 (en) * 2002-09-13 2010-04-28 株式会社カネカ Polyimide film, method for producing the same, and use thereof
JP2007131575A (en) * 2005-11-10 2007-05-31 Nippon Steel Chem Co Ltd Method of manufacturing 3,8-diaminodibenzopyranone

Also Published As

Publication number Publication date
JP2007197583A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
KR101152574B1 (en) Aromatic polyamic acid and polyimide
JP4757575B2 (en) Laminate for wiring board
JPWO2020189354A1 (en) Polyamic acid resin, polyimide resin and resin composition containing these
JP4768606B2 (en) Laminate for wiring board
JP4757864B2 (en) Laminated body for flexible printed wiring board
JP4642664B2 (en) Laminate for wiring board
JP2009028993A (en) Laminate for wiring substrate
JP4994672B2 (en) Aromatic polyamic acid and aromatic polyimide
JP4907142B2 (en) Aromatic polyamic acid, polyimide and laminate for wiring board
CN113043690A (en) Metal-clad laminate and circuit board
JPS61143433A (en) Moisture-resistant polyimide
JP2005314630A (en) Aromatic polyamic acid and polyimide
JP7120870B2 (en) Method for producing polyimide film and method for producing metal-clad laminate
JP2022154637A (en) Polyimide, metal clad laminate sheet and circuit board
JP2008159896A (en) Laminate for wiring board
JPS61241325A (en) Polyimide having low thermal expansion
JP4982344B2 (en) Aromatic polyamic acid and aromatic polyimide
JP3299777B2 (en) Polyimide film and method for producing the same
JP2006213799A (en) Aromatic polyimide resin and method for producing the same
JP2008060128A (en) Laminate for wiring board
WO2007086550A1 (en) Laminate for wiring board
JP2007273767A (en) Laminate for wiring board
JP5464636B2 (en) Method for producing polyimide film and obtained polyimide film
CN118063769A (en) Polyimide resin
JP2023079202A (en) Polyimide-based resin precursor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees