JP7465060B2 - Metal-clad laminates and circuit boards - Google Patents

Metal-clad laminates and circuit boards Download PDF

Info

Publication number
JP7465060B2
JP7465060B2 JP2018161139A JP2018161139A JP7465060B2 JP 7465060 B2 JP7465060 B2 JP 7465060B2 JP 2018161139 A JP2018161139 A JP 2018161139A JP 2018161139 A JP2018161139 A JP 2018161139A JP 7465060 B2 JP7465060 B2 JP 7465060B2
Authority
JP
Japan
Prior art keywords
thermoplastic polyimide
diamine
metal
layer
clad laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018161139A
Other languages
Japanese (ja)
Other versions
JP2019104235A (en
Inventor
和明 金子
敏男 安藤
慎一郎 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Publication of JP2019104235A publication Critical patent/JP2019104235A/en
Priority to JP2023001881A priority Critical patent/JP7453434B2/en
Application granted granted Critical
Publication of JP7465060B2 publication Critical patent/JP7465060B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

本発明は、金属張積層板及び回路基板に関する。 The present invention relates to a metal-clad laminate and a circuit board.

近年、電子機器の小型化、軽量化、省スペース化の進展に伴い、薄く軽量で、可撓性を有し、屈曲を繰り返しても優れた耐久性を持つフレキシブルプリント配線板(FPC;Flexible Printed Circuits)の需要が増大している。FPCは、限られたスペースでも立体的かつ高密度の実装が可能であるため、例えば、HDD、DVD、携帯電話等の電子機器の可動部分の配線や、ケーブル、コネクター等の部品にその用途が拡大しつつある。 In recent years, with the progress of miniaturization, weight saving, and space saving of electronic devices, there is an increasing demand for flexible printed circuits (FPCs) that are thin, lightweight, flexible, and have excellent durability even when repeatedly bent. Because FPCs allow three-dimensional and high-density mounting even in a limited space, their applications are expanding to include wiring for moving parts of electronic devices such as HDDs, DVDs, and mobile phones, as well as components such as cables and connectors.

FPCは、銅張積層板(CCL)の銅層をエッチングして配線加工することによって製造される。携帯電話やスマートフォンにおいて、連続屈曲や180°折り曲げされるFPCには、銅層の材料として、圧延銅箔が多く用いられている。例えば、特許文献1では、圧延銅箔を用いて作製された銅張積層板の耐屈曲性を耐はぜ折り回数で規定する提案がなされている。また、特許文献2では、光沢度と折り曲げ回数で規定された圧延銅箔を用いた銅張積層板が提案されている。 FPCs are manufactured by etching the copper layer of a copper-clad laminate (CCL) and processing the wiring. For mobile phones and smartphones, rolled copper foil is often used as the material for the copper layer in FPCs that are continuously bent or bent 180 degrees. For example, Patent Document 1 proposes that the bending resistance of a copper-clad laminate made using rolled copper foil be determined by the number of times it can be folded. Patent Document 2 proposes a copper-clad laminate using rolled copper foil that is determined by the gloss level and number of times it can be folded.

銅張積層板に対するフォトリソグラフィ工程や、FPC実装の過程では、銅張積層板に設けられたアライメントマークを基準に接合、切断、露光、エッチング等のさまざまな加工が行われる。これらの工程での加工精度は、FPCを搭載した電子機器の信頼性を維持する上で重要となる。しかし、銅張積層板は、熱膨張係数が異なる銅層と樹脂層とを積層した構造を有するため、銅層と樹脂層との熱膨張係数の差によって、層間に応力が発生する。この応力は、その一部分又は全部が、銅層をエッチングして配線加工した場合に解放されることによって伸縮を生じさせ、配線パターンの寸法を変化させる要因となる。そのため、最終的にFPCの段階で寸法変化が生じてしまい、配線間もしくは配線と端子との接続不良を引き起こす原因となり、回路基板の信頼性や歩留まりを低下させる。従って、回路基板材料としての銅張積層板において、寸法安定性は非常に重要な特性である。しかし、上記特許文献1、2では、銅張積層板の寸法安定性については何ら考慮されていない。 In the photolithography process for copper-clad laminates and the process of mounting FPCs, various processes such as joining, cutting, exposure, and etching are performed based on the alignment marks provided on the copper-clad laminates. The processing accuracy in these processes is important for maintaining the reliability of electronic devices equipped with FPCs. However, since the copper-clad laminates have a structure in which copper layers and resin layers with different thermal expansion coefficients are laminated, stress occurs between the layers due to the difference in thermal expansion coefficients between the copper layer and the resin layer. When a part or all of this stress is released when the copper layer is etched and processed for wiring, it causes expansion and contraction, which causes changes in the dimensions of the wiring pattern. Therefore, dimensional changes ultimately occur at the FPC stage, which causes poor connections between the wiring or between the wiring and the terminals, reducing the reliability and yield of the circuit board. Therefore, dimensional stability is a very important characteristic of copper-clad laminates as circuit board materials. However, in the above-mentioned Patent Documents 1 and 2, no consideration is given to the dimensional stability of the copper-clad laminates.

また、特許文献3では、絶縁樹脂層の熱膨張係数を下げ、寸法安定性を高めるため、敢えて熱可塑性ポリイミド層を設けず、銅箔と非熱可塑性ポリイミド層からなるフレキシブル金属張積層板において、非熱可塑性ポリイミド層のジアミン成分として、p-フェニレンジアミン(p-PDA)又は2,2’-ジメチル-4,4’-ジアミノビフェニル(m-TB)からなるジアミン化合物と、1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)等のジアミン化合物とを用いることが提案されている。p-PDAは、熱膨張係数を下げ、寸法安定性に寄与するモノマーであるが、分子量が小さいため、イミド基濃度が増加してポリイミドの吸湿性が高くなってしまうという問題があった。ポリイミドの吸湿性が高くなると、回路加工時の加熱などの環境変化によって寸法変化や反りが発生しやすくなる、という問題がある。 In addition, in Patent Document 3, in order to reduce the thermal expansion coefficient of the insulating resin layer and increase dimensional stability, a thermoplastic polyimide layer is not provided, and instead a flexible metal-clad laminate consisting of copper foil and a non-thermoplastic polyimide layer is proposed to use a diamine compound consisting of p-phenylenediamine (p-PDA) or 2,2'-dimethyl-4,4'-diaminobiphenyl (m-TB) and a diamine compound such as 1,3-bis(4-aminophenoxy)benzene (TPE-R) as the diamine component of the non-thermoplastic polyimide layer. p-PDA is a monomer that reduces the thermal expansion coefficient and contributes to dimensional stability, but because of its small molecular weight, there is a problem that the imide group concentration increases and the hygroscopicity of the polyimide becomes high. If the hygroscopicity of the polyimide becomes high, there is a problem that dimensional changes and warping are likely to occur due to environmental changes such as heating during circuit processing.

一方、特許文献4では、回路加工時のクラックの発生が抑制された多層ポリイミドフィルムにおいて、非熱可塑性ポリイミドの原料のジアミン化合物として、m-TBとp-PDAを組み合わせて使用することが開示されている。しかしながら、特許文献4のモノマー組成では、ジアミン化合物中のp-PDAのモル比が大きすぎるため、上記と同様に、ポリイミドの吸湿性が高くなって、回路加工時の環境変化によって寸法変化や反りが発生しやすくなる、という問題がある。なお、特許文献4には、ジアミン化合物として、m-TBとp-PDAと2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を組み合わせて使用した場合、クラック耐性が悪化することが記載されている。この場合も、ジアミン化合物中のp-PDAのモル比が大きすぎるため、上記と同様に、ポリイミドの吸湿性が高くなるという問題があると考えられる。 On the other hand, Patent Document 4 discloses the use of a combination of m-TB and p-PDA as diamine compounds for the raw material of non-thermoplastic polyimide in a multilayer polyimide film in which the occurrence of cracks during circuit processing is suppressed. However, in the monomer composition of Patent Document 4, the molar ratio of p-PDA in the diamine compound is too large, so that, as above, the hygroscopicity of the polyimide is high, and dimensional changes and warping are likely to occur due to environmental changes during circuit processing. Patent Document 4 also discloses that when m-TB, p-PDA, and 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) are used in combination as diamine compounds, crack resistance is deteriorated. In this case, too, it is thought that the molar ratio of p-PDA in the diamine compound is too large, so that, as above, the hygroscopicity of the polyimide is high.

特開2014-15674公報(特許請求の範囲など)JP 2014-15674 A (Claims, etc.) 特開2014-11451号公報(特許請求の範囲など)JP 2014-11451 A (Claims, etc.) 特許第5162379号公報(特許請求の範囲など)Patent No. 5162379 (Claims, etc.) WO2016/159104号(合成例6、合成例9など)WO2016/159104 (Synthesis Example 6, Synthesis Example 9, etc.)

本発明は、回路加工工程、基板積層工程及び部品実装工程などの工程中の温度、湿度及び圧力の変化並びに工程間の温度・湿度環境変化に対する寸法変化を低減させることができる金属張積層板を提供することを目的とする。 The present invention aims to provide a metal-clad laminate that can reduce dimensional changes caused by changes in temperature, humidity, and pressure during processes such as circuit processing, board lamination, and component mounting, as well as changes in temperature and humidity environments between processes.

本発明者らは、鋭意検討した結果、絶縁樹脂層の面内複屈折率(Δn)及び厚さ方向の複屈折率を制御することによって上記課題を解決し得ることを見出し、本発明を完成するに至った。 As a result of intensive research, the inventors discovered that the above problems could be solved by controlling the in-plane birefringence (Δn) and birefringence in the thickness direction of the insulating resin layer, and thus completed the present invention.

すなわち、本発明の金属張積層板は、絶縁樹脂層と、この絶縁樹脂層の少なくとも片面に積層された金属層とを備えた金属張積層板であって、前記絶縁樹脂層が、非熱可塑性ポリイミドを含む非熱可塑性ポリイミド層の少なくとも一方の面に熱可塑性ポリイミドを含む熱可塑性ポリイミド層を有している。そして、本発明の金属張積層板は、前記絶縁樹脂層が下記の条件(i)~(iv)を満たすことを特徴とする。
(i)面内複屈折率(Δn)の値が2×10-3以下であること。
(ii)幅方向(TD方向)の面内複屈折率(Δn)のばらつき[Δ(Δn)]が4×10-4以下であること。
(iii) 前記非熱可塑性ポリイミド層の厚さ方向において、一方の面を基点とする中央部方向に1.5μmの点における複屈折率(Δna)と、他方の面を基点とする中央部方向に1.5μmの点における複屈折率(Δnb)との差(Δna-Δnb)が±0.01以下であること。
(iv) 前記Δna及び前記Δnb並びに厚さ方向の中央部における複屈折率(Δnc)の合計(Δna+Δnb+Δnc)の平均値(Δnv)との差が、前記Δna及びΔnbのいずれにおいても±0.01以下であること。
That is, the metal-clad laminate of the present invention is a metal-clad laminate comprising an insulating resin layer and a metal layer laminated on at least one side of the insulating resin layer, the insulating resin layer having a thermoplastic polyimide layer containing a thermoplastic polyimide on at least one side of the non-thermoplastic polyimide layer containing a non-thermoplastic polyimide. The metal-clad laminate of the present invention is characterized in that the insulating resin layer satisfies the following conditions (i) to (iv).
(i) The in-plane birefringence (Δn) is 2×10 −3 or less.
(ii) The variation [Δ(Δn)] of the in-plane birefringence (Δn) in the width direction (TD) is 4×10 −4 or less.
(iii) In the thickness direction of the non-thermoplastic polyimide layer, the difference (Δna-Δnb) between the birefringence (Δna) at a point 1.5 μm away from the center from one surface and the birefringence (Δnb) at a point 1.5 μm away from the center from the other surface is ±0.01 or less.
(iv) The difference between the sum (Δna+Δnb+Δnc) of the Δna and Δnb and the birefringence (Δnc) at the center in the thickness direction and the average value (Δnv) is ±0.01 or less for both Δna and Δnb.

本発明の金属張積層板において、前記非熱可塑性ポリイミドはテトラカルボン酸残基及びジアミン残基を含み、全ジアミン残基の100モル部に対して、下記一般式(1)で表されるジアミン化合物から誘導されるジアミン残基が20モル部以上であってもよい。 In the metal-clad laminate of the present invention, the non-thermoplastic polyimide contains tetracarboxylic acid residues and diamine residues, and the diamine residues derived from the diamine compound represented by the following general formula (1) may be 20 or more molar parts per 100 molar parts of the total diamine residues.

Figure 0007465060000001
Figure 0007465060000001

一般式(1)において、連結基Zは単結合若しくは-COO-を示し、Yは独立にハロゲン若しくはフェニル基で置換されてもよい炭素数1~3の1価の炭化水素又は炭素数1~3のアルコキシ基、又は炭素数1~3のパーフルオロアルキル基、又はアルケニル基を示し、nは0~2の整数を示し、p及びqは独立に0~4の整数を示す。 In general formula (1), the linking group Z represents a single bond or -COO-, Y represents a monovalent hydrocarbon having 1 to 3 carbon atoms, which may be substituted with a halogen or a phenyl group, an alkoxy group having 1 to 3 carbon atoms, a perfluoroalkyl group having 1 to 3 carbon atoms, or an alkenyl group, n represents an integer from 0 to 2, and p and q represent independently integers from 0 to 4.

本発明の金属張積層板は、前記非熱可塑性ポリイミドに含まれる全ジアミン残基の100モル部に対して、前記一般式(1)で表されるジアミン化合物から誘導されるジアミン残基が70モル部~95モル部の範囲内であってもよく、下記の一般式(2)及び(3)から選ばれるジアミン残基の合計量が5~30モル部の範囲内であってもよい。 In the metal-clad laminate of the present invention, the diamine residues derived from the diamine compound represented by the general formula (1) may be in the range of 70 to 95 molar parts relative to 100 molar parts of all diamine residues contained in the non-thermoplastic polyimide, and the total amount of diamine residues selected from the following general formulas (2) and (3) may be in the range of 5 to 30 molar parts.

Figure 0007465060000002
Figure 0007465060000002

一般式(2)及び一般式(3)において、R、R、R及びRはそれぞれ独立にハロゲン原子、又は炭素数1~4のハロゲン原子で置換されてもよいアルキル基もしくはアルコキシ基、又はアルケニル基を示し、Xは独立に-O-、-S-、-CH-、-CH(CH)-、-C(CH)-、-CO-、-COO-、-SO-、-NH-又は-NHCO-から選ばれる2価の基を示し、X及びXはそれぞれ独立に単結合、-O-、-S-、-CH-、-CH(CH)-、-C(CH)-、-CO-、-COO-、-SO-、-NH-又は-NHCO-から選ばれる2価の基を示すが、X及びXの両方が単結合である場合を除くものとし、m、n、o及びpは独立に0~4の整数を示す。 In general formula (2) and general formula (3), R 5 , R 6 , R 7 and R 8 each independently represent a halogen atom, or an alkyl group or alkoxy group having 1 to 4 carbon atoms which may be substituted with a halogen atom, or an alkenyl group; X each independently represents a divalent group selected from -O-, -S-, -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, -CO-, -COO-, -SO 2 -, -NH- or -NHCO-; X 1 and X 2 each independently represent a divalent group selected from a single bond, -O-, -S- , -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, -CO-, -COO-, -SO 2 -, -NH- or -NHCO-; Except for the case where both of m and n are single bonds, m, n, o and p each independently represent an integer of 0 to 4.

本発明の金属張積層板において、前記熱可塑性ポリイミドはテトラカルボン酸残基及びジアミン残基を含み、全ジアミン残基の100モル部に対して、上記の一般式(2)及び(3)から選ばれるジアミン残基の合計量が50モル部以上であってもよい。 In the metal-clad laminate of the present invention, the thermoplastic polyimide contains tetracarboxylic acid residues and diamine residues, and the total amount of diamine residues selected from the above general formulas (2) and (3) may be 50 molar parts or more per 100 molar parts of all diamine residues.

本発明の金属張積層板において、前記一般式(2)で表されるジアミン残基が、1,3-ビス(4‐アミノフェノキシ)ベンゼンから誘導されるジアミン残基であってもよく、
前記一般式(3)で表されるジアミン残基が、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンから誘導されるジアミン残基であってもよい。
In the metal-clad laminate of the present invention, the diamine residue represented by the general formula (2) may be a diamine residue derived from 1,3-bis(4-aminophenoxy)benzene,
The diamine residue represented by the general formula (3) may be a diamine residue derived from 2,2-bis[4-(4-aminophenoxy)phenyl]propane.

本発明の金属張積層板において、前記非熱可塑性ポリイミド層の厚み(A)と前記熱可塑性ポリイミド層の厚み(B)の厚み比(A)/(B)が1~20の範囲内であってもよい。 In the metal-clad laminate of the present invention, the thickness ratio (A)/(B) of the thickness (A) of the non-thermoplastic polyimide layer to the thickness (B) of the thermoplastic polyimide layer may be within a range of 1 to 20.

本発明の金属張積層板において、幅方向(TD方向)の長さが490mm以上であってもよい。 The metal-clad laminate of the present invention may have a length in the width direction (TD direction) of 490 mm or more.

本発明の回路基板は、上記いずれかに記載の金属張積層板の前記金属層を配線に加工してなるものである。 The circuit board of the present invention is formed by processing the metal layer of any of the metal-clad laminates described above into wiring.

本発明の金属張積層板は、条件(i)~(iv)を具備することによって、高温・高圧の環境下や湿度変化の環境下においても絶縁樹脂層の寸法安定性に優れているため、回路加工工程、基板積層工程、及び部品実装工程の際の環境変化(例えば、高温や高圧、湿度変化など)によって、反りなどの不具合が発生しにくい。特に、幅広の金属張積層板においても、絶縁樹脂層の全幅において寸法変化率が低く、寸法が安定しているので、該金属張積層板から得られるFPCを高密度実装が可能なものにすることができる。従って、本発明の金属張積層板をFPC材料として利用することによって、回路基板の信頼性と歩留まりの向上を図ることができる。 The metal-clad laminate of the present invention satisfies conditions (i) to (iv), and therefore has excellent dimensional stability of the insulating resin layer even under high temperature and high pressure environments and environments of changing humidity, so that defects such as warping are unlikely to occur due to environmental changes (e.g., high temperature, high pressure, humidity changes, etc.) during the circuit processing process, the board lamination process, and the component mounting process. In particular, even in a wide metal-clad laminate, the dimensional change rate is low and the dimensions are stable over the entire width of the insulating resin layer, so that the FPC obtained from the metal-clad laminate can be made to be capable of high-density mounting. Therefore, by using the metal-clad laminate of the present invention as an FPC material, it is possible to improve the reliability and yield of circuit boards.

次に、本発明の実施の形態について説明する。 Next, we will explain the embodiment of the present invention.

<金属張積層板>
本実施の形態の金属張積層板は、絶縁樹脂層と、この絶縁樹脂層の少なくとも片面に積層された金属層とを備えている。
<Metal-clad laminate>
The metal-clad laminate of the present embodiment includes an insulating resin layer and a metal layer laminated on at least one side of the insulating resin layer.

<絶縁樹脂層>
本実施の形態の金属張積層板において、絶縁樹脂層は、非熱可塑性ポリイミド層の少なくとも一方に熱可塑性ポリイミド層を有する。すなわち、熱可塑性ポリイミド層は非熱可塑性ポリイミド層の片面又は両面に設けられている。例えば本実施の形態の金属張積層板において、金属層は熱可塑性ポリイミド層の面に積層する。
ここで、非熱可塑性ポリイミドとは、一般に加熱しても軟化、接着性を示さないポリイミドのことであるが、本発明では、動的粘弾性測定装置(DMA)を用いて測定した、30℃における貯蔵弾性率が1.0×10Pa以上であり、360℃における貯蔵弾性率が1.0×10Pa以上であるポリイミドをいう。また、熱可塑性ポリイミドとは、一般にガラス転移温度(Tg)が明確に確認できるポリイミドのことであるが、本発明では、DMAを用いて測定した、30℃における貯蔵弾性率が1.0×10Pa以上であり、360℃における貯蔵弾性率が1.0×10Pa未満であるポリイミドをいう。
<Insulating resin layer>
In the metal-clad laminate of the present embodiment, the insulating resin layer has a thermoplastic polyimide layer on at least one side of the non-thermoplastic polyimide layer. That is, the thermoplastic polyimide layer is provided on one or both sides of the non-thermoplastic polyimide layer. For example, in the metal-clad laminate of the present embodiment, the metal layer is laminated on the surface of the thermoplastic polyimide layer.
Here, non-thermoplastic polyimide generally refers to polyimide that does not soften or exhibit adhesiveness even when heated, but in the present invention refers to polyimide having a storage modulus of 1.0×10 9 Pa or more at 30° C. and a storage modulus of 1.0×10 8 Pa or more at 360° C., as measured using a dynamic mechanical analyzer (DMA). Furthermore, thermoplastic polyimide generally refers to polyimide whose glass transition temperature (Tg) can be clearly confirmed, but in the present invention refers to polyimide having a storage modulus of 1.0×10 9 Pa or more at 30° C. and a storage modulus of less than 1.0×10 8 Pa at 360° C., as measured using a DMA.

本実施の形態の金属張積層板は、絶縁樹脂層が下記の条件(i)~(iv)を満たすものである。
(i)面内複屈折率(Δn)の値が2×10-3以下であること。
(ii)幅方向(TD方向)の面内複屈折率(Δn)のばらつき[Δ(Δn)]が4×10-4以下であること。
(iii) 前記非熱可塑性ポリイミド層の厚さ方向において、一方の面を基点とする中央部方向に1.5μmの点における複屈折率(Δna)と、他方の面を基点とする中央部方向に1.5μmの点における複屈折率(Δnb)との差(Δna-Δnb)が±0.01以下であること。
(iv) 前記Δna及び前記Δnb並びに厚さ方向の中央部における複屈折率(Δnc)の合計(Δna+Δnb+Δnc)の平均値(Δnv)との差が、前記Δna及びΔnbのいずれにおいても±0.01以下であること。
In the metal-clad laminate of the present embodiment, the insulating resin layer satisfies the following conditions (i) to (iv).
(i) The in-plane birefringence (Δn) is 2×10 −3 or less.
(ii) The variation [Δ(Δn)] of the in-plane birefringence (Δn) in the width direction (TD) is 4×10 −4 or less.
(iii) In the thickness direction of the non-thermoplastic polyimide layer, the difference (Δna-Δnb) between the birefringence (Δna) at a point 1.5 μm away from the center from one surface and the birefringence (Δnb) at a point 1.5 μm away from the center from the other surface is ±0.01 or less.
(iv) The difference between the sum (Δna+Δnb+Δnc) of the Δna and Δnb and the birefringence (Δnc) at the center in the thickness direction and the average value (Δnv) is ±0.01 or less for both Δna and Δnb.

上記の条件(i)~(iv)を満たすことによって、絶縁樹脂層を構成するポリイミドの配向性が高まり、寸法安定性が向上するとともに反りの発生が抑制される。 By satisfying the above conditions (i) to (iv), the orientation of the polyimide that constitutes the insulating resin layer is enhanced, improving dimensional stability and suppressing the occurrence of warping.

面内複屈折率(Δn)の値が2×10-3を超えると面内配向の異方性が大きくなり寸法安定性悪化の原因となる。Δnの値の下限値は特に限定されないが、面内配向が等方的で寸法安定性が向上する一方で熱膨張係数が過度に低下し、金属箔の熱膨張係数との不整合による反りを抑制する観点から、2×10-4以上とすることが好ましい。以上の観点から、絶縁樹脂層の面内複屈折率(Δn)の値は、好ましくは2×10-4以上8×10-4以下の範囲内、より好ましくは2×10-4以上6×10-4以下の範囲内である。 If the value of the in-plane birefringence (Δn) exceeds 2×10 −3 , the anisotropy of the in-plane orientation increases, causing deterioration of dimensional stability. The lower limit of the value of Δn is not particularly limited, but it is preferable to set it to 2×10 −4 or more from the viewpoint that the in-plane orientation is isotropic and the dimensional stability is improved, while the thermal expansion coefficient is excessively reduced, and warping due to mismatch with the thermal expansion coefficient of the metal foil is suppressed. From the above viewpoint, the value of the in-plane birefringence (Δn) of the insulating resin layer is preferably in the range of 2×10 −4 or more and 8×10 −4 or less, more preferably in the range of 2×10 −4 or more and 6×10 −4 or less.

また、TD方向のΔnのばらつき[Δ(Δn)]が4×10-4を超えると、面内配向のばらつきが大きくなり寸法変化率の面内ばらつきの原因となる。TD方向のΔnのばらつき[Δ(Δn)]は、好ましくは2×10-4以下、より好ましくは1.2×10-4以下である。このような範囲内であれば、例えばスケールアップした場合であっても、高い寸法精度を維持できる。 Furthermore, when the variation in Δn in the TD direction [Δ(Δn)] exceeds 4×10 −4 , the variation in the in-plane orientation increases, causing the in-plane variation in the dimensional change rate. The variation in Δn in the TD direction [Δ(Δn)] is preferably 2×10 −4 or less, more preferably 1.2×10 −4 or less. Within such a range, high dimensional accuracy can be maintained, for example, even when scaled up.

また、非熱可塑性ポリイミド層の厚さ方向における複屈折率の差(Δna-Δnb)が±0.01以下であり、かつ、前記Δna及びΔnbと平均値(Δnv)との差(Δnv-Δna)及び差(Δnv-Δnb)が、いずれも±0.01以下であることによって、厚さ方向におけるポリイミド配向の均質性が高まり、反りの発生を抑制できる。差(Δnv-Δna)及び差(Δnv-Δnb)は、±0.008以下が好ましく、±0.006以下がより好ましい。 In addition, by having the difference in birefringence (Δna-Δnb) in the thickness direction of the non-thermoplastic polyimide layer be ±0.01 or less, and the differences (Δnv-Δna) and (Δnv-Δnb) between the Δna and Δnb and the average value (Δnv) being both ±0.01 or less, the uniformity of the polyimide orientation in the thickness direction is increased and the occurrence of warping can be suppressed. The differences (Δnv-Δna) and (Δnv-Δnb) are preferably ±0.008 or less, and more preferably ±0.006 or less.

上記の条件(i)~(iv)を満たすことによって、回路加工工程、基板積層工程及び部品実装工程の際の環境変化(例えば高温・高圧環境、湿度変化など)による寸法変化や反りを効果的に抑制できる。上記の条件(i)~(iv)のいずれか1つでも具備しない場合には、回路加工工程、基板積層工程及び部品実装工程時の高温や高圧、湿度変化などによって、寸法変化量が大きくなって寸法精度が低下したり、反りが発生したりする。 By satisfying the above conditions (i) to (iv), dimensional changes and warping due to environmental changes (e.g., high temperature/high pressure environments, humidity changes, etc.) during the circuit processing, board lamination, and component mounting processes can be effectively suppressed. If any one of the above conditions (i) to (iv) is not met, the amount of dimensional change will increase due to high temperatures, high pressures, and humidity changes during the circuit processing, board lamination, and component mounting processes, resulting in reduced dimensional accuracy and warping.

本実施の形態の金属張積層板は、例えば回路基板材料として適用する場合において、反りの発生や寸法安定性の低下を防止するために、絶縁樹脂層の熱膨張係数(CTE)が10ppm/K以上30ppm/K以下の範囲内であることが重要であり、好ましくは10ppm/K以上25ppm/K以下の範囲内がよい。CTEが10ppm/K未満であるか、又は30ppm/Kを超えると、反りが発生したり、寸法安定性が低下したりする。また、本実施の形態の金属張積層板において、銅箔などからなる金属層のCTEに対して絶縁樹脂層のCTEが、±5ppm/K以下の範囲内がより好ましく、±2ppm/K以下の範囲内が最も好ましい。 When the metal-clad laminate of this embodiment is used as a circuit board material, for example, it is important that the coefficient of thermal expansion (CTE) of the insulating resin layer is in the range of 10 ppm/K to 30 ppm/K inclusive, and preferably in the range of 10 ppm/K to 25 ppm/K inclusive, in order to prevent warping and reduced dimensional stability. If the CTE is less than 10 ppm/K or more than 30 ppm/K, warping may occur or dimensional stability may decrease. In addition, in the metal-clad laminate of this embodiment, the CTE of the insulating resin layer is more preferably in the range of ±5 ppm/K or less, and most preferably in the range of ±2 ppm/K or less, relative to the CTE of the metal layer made of copper foil or the like.

絶縁樹脂層において、非熱可塑性ポリイミド層は低熱膨張性のポリイミド層を構成し、熱可塑性ポリイミド層は高熱膨張性のポリイミド層を構成する。ここで、低熱膨張性のポリイミド層は、熱膨張係数(CTE)が好ましくは1ppm/K以上25ppm/K以下の範囲内、より好ましくは3ppm/K以上25ppm/K以下の範囲内のポリイミド層をいう。また、高熱膨張性のポリイミド層は、CTEが好ましくは35ppm/K以上、より好ましくは35ppm/K以上80ppm/K以下の範囲内、更に好ましくは35ppm/K以上70ppm/K以下の範囲内のポリイミド層をいう。ポリイミド層は、使用する原料の組合せ、厚み、乾燥・硬化条件を適宜変更することで所望のCTEを有するポリイミド層とすることができる。 In the insulating resin layer, the non-thermoplastic polyimide layer constitutes a polyimide layer with low thermal expansion, and the thermoplastic polyimide layer constitutes a polyimide layer with high thermal expansion. Here, the low thermal expansion polyimide layer refers to a polyimide layer having a coefficient of thermal expansion (CTE) preferably in the range of 1 ppm/K to 25 ppm/K, more preferably in the range of 3 ppm/K to 25 ppm/K. Also, the high thermal expansion polyimide layer refers to a polyimide layer having a CTE preferably in the range of 35 ppm/K or more, more preferably in the range of 35 ppm/K to 80 ppm/K, and even more preferably in the range of 35 ppm/K to 70 ppm/K. The polyimide layer can be made to have a desired CTE by appropriately changing the combination of raw materials used, the thickness, and the drying and curing conditions.

絶縁樹脂層の厚みは、使用する目的に応じて、所定の範囲内の厚みに設定することができるが、例えば4~50μmの範囲内にあることが好ましく、11~26μmの範囲内にあることがより好ましい。絶縁樹脂層の厚みが上記下限値に満たないと、電気絶縁性が担保出来ないことや、ハンドリング性の低下により製造工程にて取扱いが困難になるなどの問題が生じることがある。一方、絶縁樹脂層の厚みが上記上限値を超えると、面内複屈折率(Δn)及び厚さ方向の複屈折率(Δn)を制御するために、製造条件を高精度に制御する必要があり、生産性低下などの不具合が生じる。 The thickness of the insulating resin layer can be set within a predetermined range depending on the purpose of use, but is preferably within the range of 4 to 50 μm, and more preferably within the range of 11 to 26 μm. If the thickness of the insulating resin layer is less than the above lower limit, problems such as the inability to ensure electrical insulation and difficulty in handling during the manufacturing process due to reduced handleability may occur. On the other hand, if the thickness of the insulating resin layer exceeds the above upper limit, the manufacturing conditions must be controlled with high precision in order to control the in-plane birefringence (Δn) and birefringence in the thickness direction (Δn), resulting in problems such as reduced productivity.

また、絶縁樹脂層において、非熱可塑性ポリイミド層の厚み(A)と熱可塑性ポリイミド層の厚み(B)との厚み比((A)/(B))が1~20の範囲内であることが好ましく、2~12の範囲内がより好ましい。なお、非熱可塑性ポリイミド層及び/又は熱可塑性ポリイミド層の層数が複数である場合は、厚み(A)や厚み(B)は、合計の厚みを意味する。この比の値が、1に満たないと絶縁樹脂層全体に対する非熱可塑性ポリイミド層が薄くなるため、面内複屈折率(Δn)のばらつきが大きくなりやすく、20を超えると熱可塑性ポリイミド層が薄くなるため、絶縁樹脂層と金属層との接着信頼性が低下しやすくなる。ここで、面内複屈折率(Δn)の制御は、絶縁樹脂層を構成する各ポリイミド層の樹脂構成とその厚みに相関がある。接着性すなわち高熱膨張性又は軟化を付与した樹脂構成である熱可塑性ポリイミド層は、その厚みが大きくなる程、絶縁樹脂層のΔnの値に大きく影響する。そこで、非熱可塑性ポリイミド層の厚みの比率を大きくし、熱可塑性ポリイミド層の厚みの比率を小さくして、絶縁樹脂層のΔnの値とそのばらつきを小さくすることが好ましい。後述するように、本実施の形態では、熱可塑性ポリイミド層の厚みの比率を小さくする場合でも、熱可塑性ポリイミド層が一般式(2)及び(3)から選ばれるジアミン残基を所定量含有するように設計することによって、金属層と絶縁樹脂層との接着性を確保できる。 In addition, in the insulating resin layer, the thickness ratio ((A)/(B)) of the thickness (A) of the non-thermoplastic polyimide layer to the thickness (B) of the thermoplastic polyimide layer is preferably in the range of 1 to 20, more preferably in the range of 2 to 12. In addition, when the number of layers of the non-thermoplastic polyimide layer and/or the thermoplastic polyimide layer is plural, the thickness (A) and the thickness (B) mean the total thickness. If the value of this ratio is less than 1, the non-thermoplastic polyimide layer becomes thin relative to the entire insulating resin layer, so the variation in the in-plane birefringence (Δn) tends to increase, and if it exceeds 20, the thermoplastic polyimide layer becomes thin, so the adhesive reliability between the insulating resin layer and the metal layer tends to decrease. Here, the control of the in-plane birefringence (Δn) is correlated with the resin composition and the thickness of each polyimide layer constituting the insulating resin layer. The thermoplastic polyimide layer, which is a resin composition that has adhesiveness, i.e., high thermal expansion or softening, has a greater effect on the value of Δn of the insulating resin layer as its thickness increases. Therefore, it is preferable to increase the thickness ratio of the non-thermoplastic polyimide layer and decrease the thickness ratio of the thermoplastic polyimide layer to reduce the value of Δn of the insulating resin layer and its variation. As described later, in this embodiment, even if the thickness ratio of the thermoplastic polyimide layer is decreased, the adhesion between the metal layer and the insulating resin layer can be ensured by designing the thermoplastic polyimide layer to contain a predetermined amount of diamine residues selected from general formulas (2) and (3).

絶縁樹脂層の寸法精度の改善効果をより大きく発現させる観点から、本実施の形態の金属張積層板は、幅方向(TD方向)の長さ(フィルム幅)が好ましくは490mm以上1200mm以下の範囲内、より好ましくは520mm以上1100mm以下の範囲内がよく、長尺状の長さが20m以上のものが好ましい。本実施の形態の金属張積層板が連続的に製造される場合、幅方向(TD方向)が広いほど発明の効果が特に顕著となる。なお、本実施の形態の金属張積層板が連続的に製造された後、長尺な金属張積層板の長手方向(MD方向)及びTD方向にある一定の値でスリットされた金属張積層板も含まれる。 From the viewpoint of achieving a greater effect of improving the dimensional accuracy of the insulating resin layer, the metal-clad laminate of this embodiment has a width direction (TD direction) length (film width) of preferably 490 mm to 1200 mm, more preferably 520 mm to 1100 mm, and preferably a long length of 20 m or more. When the metal-clad laminate of this embodiment is continuously manufactured, the effect of the invention becomes particularly prominent as the width direction (TD direction) becomes wider. Note that this also includes a metal-clad laminate that is continuously manufactured, and then slit at a certain value in the longitudinal direction (MD direction) and TD direction of the long metal-clad laminate.

また、絶縁樹脂層は、ポリイミドフィルムとしたときの引張弾性率が3.0~10.0GPaの範囲内であることが好ましく、4.5~8.0GPaの範囲内であるのがより好ましい。ポリイミドフィルムとしたときの引張弾性率が3.0GPaに満たないとポリイミド自体の強度が低下することによって、金属張積層板を回路基板へ加工する際に絶縁樹脂層の裂けなどのハンドリング上の問題が生じることがある。反対に、ポリイミドフィルムとしたときの引張弾性率が10.0GPaを超えると、金属張積層板の折り曲げに対する剛性が上昇する結果、金属張積層板を折り曲げた際に金属配線に加わる曲げ応力が上昇し、折り曲げ耐性が低下してしまう。ポリイミドフィルムとしたときの引張弾性率を上記範囲内とすることで、絶縁樹脂層の強度と柔軟性を担保することができる。 The insulating resin layer preferably has a tensile modulus of elasticity in the range of 3.0 to 10.0 GPa when made into a polyimide film, and more preferably in the range of 4.5 to 8.0 GPa. If the tensile modulus of elasticity in the polyimide film is less than 3.0 GPa, the strength of the polyimide itself will decrease, which may cause handling problems such as cracking of the insulating resin layer when the metal-clad laminate is processed into a circuit board. On the other hand, if the tensile modulus of elasticity in the polyimide film exceeds 10.0 GPa, the rigidity of the metal-clad laminate against bending will increase, and the bending stress applied to the metal wiring will increase when the metal-clad laminate is folded, resulting in a decrease in bending resistance. By making the tensile modulus of elasticity in the polyimide film within the above range, the strength and flexibility of the insulating resin layer can be ensured.

(非熱可塑性ポリイミド)
本実施の形態において、非熱可塑性ポリイミド層を構成する非熱可塑性ポリイミドは、テトラカルボン酸残基及びジアミン残基を含み、これらはいずれも芳香族基を含むことが好ましい。非熱可塑性ポリイミドに含まれるテトラカルボン酸残基及びジアミン残基が、いずれも芳香族基を含むことで、非熱可塑性ポリイミドの秩序構造を形成しやすくし、絶縁樹脂層の高温環境下での面内複屈折率(Δn)の変化量を小さくして面内複屈折率(Δn)のばらつきを抑制するとともに、厚さ方向の複屈折率変化を抑制することができる。
(Non-thermoplastic polyimide)
In the present embodiment, the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer contains a tetracarboxylic acid residue and a diamine residue, and both of these preferably contain an aromatic group. The tetracarboxylic acid residue and the diamine residue contained in the non-thermoplastic polyimide both contain an aromatic group, which makes it easier to form an ordered structure of the non-thermoplastic polyimide, reduces the amount of change in the in-plane birefringence (Δn) of the insulating resin layer under a high temperature environment, suppresses the variation in the in-plane birefringence (Δn), and suppresses the change in the birefringence in the thickness direction.

なお、本発明において、テトラカルボン酸残基とは、テトラカルボン酸二無水物から誘導された4価の基のことを表し、ジアミン残基とは、ジアミン化合物から誘導された2価の基のことを表す。また、「ジアミン化合物」は、末端の二つのアミノ基における水素原子が置換されていてもよく、例えば-NR(ここで、R,Rは、独立にアルキル基などの任意の置換基を意味する)であってもよい。 In the present invention, the tetracarboxylic acid residue refers to a tetravalent group derived from a tetracarboxylic dianhydride, and the diamine residue refers to a divalent group derived from a diamine compound. The "diamine compound" may have hydrogen atoms in the two terminal amino groups substituted, for example, -NR 3 R 4 (wherein R 3 and R 4 are independently any substituent such as an alkyl group).

非熱可塑性ポリイミドに含まれるテトラカルボン酸残基としては、特に制限はないが、例えば、ピロメリット酸二無水物(PMDA)から誘導されるテトラカルボン酸残基(以下、PMDA残基ともいう。)、3,3',4,4'-ビフェニルテトラカルボン酸二無水物(BPDA)から誘導されるテトラカルボン酸残基(以下、BPDA残基ともいう。)が好ましく挙げられる。これらのテトラカルボン酸残基は、秩序構造を形成しやすく、高温環境下での面内複屈折率(Δn)の変化量を小さくするとともに、厚さ方向の複屈折率変化を抑制することができる。また、PMDA残基は、熱膨張係数の制御とガラス転移温度の制御の役割を担う残基である。更に、BPDA残基は、テトラカルボン酸残基の中でも極性基がなく比較的分子量が大きいため、非熱可塑性ポリイミドのイミド基濃度を下げ、絶縁樹脂層の吸湿を抑制する効果も期待できる。このような観点から、PMDA残基及び/又はBPDA残基の合計量が、非熱可塑性ポリイミドに含まれる全テトラカルボン酸残基の100モル部に対して、好ましくは50モル部以上、より好ましくは50~100モル部の範囲内、最も好ましくは70~100モル部の範囲内であることがよい。 The tetracarboxylic acid residue contained in the non-thermoplastic polyimide is not particularly limited, but for example, a tetracarboxylic acid residue derived from pyromellitic dianhydride (PMDA) (hereinafter also referred to as PMDA residue) and a tetracarboxylic acid residue derived from 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA) (hereinafter also referred to as BPDA residue) are preferred. These tetracarboxylic acid residues are easy to form an ordered structure, and can reduce the amount of change in in-plane birefringence (Δn) in a high-temperature environment and suppress the change in birefringence in the thickness direction. In addition, the PMDA residue is a residue that plays a role in controlling the thermal expansion coefficient and the glass transition temperature. Furthermore, since the BPDA residue has no polar group and a relatively large molecular weight among tetracarboxylic acid residues, it is expected to have the effect of lowering the imide group concentration of the non-thermoplastic polyimide and suppressing the moisture absorption of the insulating resin layer. From this viewpoint, the total amount of PMDA residues and/or BPDA residues is preferably 50 molar parts or more, more preferably in the range of 50 to 100 molar parts, and most preferably in the range of 70 to 100 molar parts, relative to 100 molar parts of all tetracarboxylic acid residues contained in the non-thermoplastic polyimide.

非熱可塑性ポリイミドに含まれる他のテトラカルボン酸残基としては、例えば、2,3',3,4’-ビフェニルテトラカルボン酸二無水物、2,2',3,3'-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、4,4’-オキシジフタル酸無水物、2,2',3,3'-、2,3,3',4'-又は3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物、2,3',3,4'-ジフェニルエーテルテトラカルボン酸二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、3,3'',4,4''-、2,3,3'',4''-又は2,2'',3,3''-p-テルフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-又は3,4-ジカルボキシフェニル)-プロパン二無水物、ビス(2,3-又は3.4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-又は3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-又は3,4-ジカルボキシフェニル)エタン二無水物、1,2,7,8-、1,2,6,7-又は1,2,9,10-フェナンスレン-テトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)テトラフルオロプロパン二無水物、2,3,5,6-シクロヘキサン二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-1,2,5,6-テトラカルボン酸二無水物、2,6-又は2,7-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,3,6,7-(又は1,4,5,8-)テトラクロロナフタレン-1,4,5,8-(又は2,3,6,7-)テトラカルボン酸二無水物、2,3,8,9-、3,4,9,10-、4,5,10,11-又は5,6,11,12-ペリレン-テトラカルボン酸二無水物、シクロペンタン-1,2,3,4-テトラカルボン酸二無水物、ピラジン-2,3,5,6-テトラカルボン酸二無水物、ピロリジン-2,3,4,5-テトラカルボン酸二無水物、チオフェン-2,3,4,5-テトラカルボン酸二無水物、4,4’-ビス(2,3-ジカルボキシフェノキシ)ジフェニルメタン二無水物等の芳香族テトラカルボン酸二無水物から誘導されるテトラカルボン酸残基が挙げられる。 Other tetracarboxylic acid residues contained in the non-thermoplastic polyimide include, for example, 2,3',3,4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-diphenylsulfonetetracarboxylic dianhydride, 4,4'-oxydiphthalic anhydride, 2,2',3,3'-, 2,3,3',4'- or 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 2,3',3,4'-diphenylethertetracarboxylic dianhydride, bis(2,3-dicarboxyphenyl)ether dianhydride, 3,3'',4,4''-,2 ,3,3'',4''- or 2,2'',3,3''-p-terphenyltetracarboxylic dianhydride, 2,2-bis(2,3- or 3,4-dicarboxyphenyl)-propane dianhydride, bis(2,3- or 3,4-dicarboxyphenyl)methane dianhydride, bis(2,3- or 3,4-dicarboxyphenyl)sulfone dianhydride, 1,1-bis(2,3- or 3,4-dicarboxyphenyl)ethane dianhydride, 1,2,7,8-, 1,2,6,7- or 1,2,9,10-phenanthrene-tetracarboxylic dianhydride, 2,3,6,7-anthracenetetracarboxylic dianhydride, 2,2-bis( 3,4-dicarboxyphenyl)tetrafluoropropane dianhydride, 2,3,5,6-cyclohexane dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 4,8-dimethyl-1,2,3,5,6,7-hexahydronaphthalene-1,2,5,6-tetracarboxylic dianhydride, 2,6- or 2,7-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,3,6,7-(or 1,4,5,8-)tetrachloronaphthalene-1,4,5,8-(or tetracarboxylic acid residues derived from aromatic tetracarboxylic dianhydrides such as 2,3,6,7-tetracarboxylic dianhydride, 2,3,8,9-, 3,4,9,10-, 4,5,10,11- or 5,6,11,12-perylene-tetracarboxylic dianhydride, cyclopentane-1,2,3,4-tetracarboxylic dianhydride, pyrazine-2,3,5,6-tetracarboxylic dianhydride, pyrrolidine-2,3,4,5-tetracarboxylic dianhydride, thiophene-2,3,4,5-tetracarboxylic dianhydride, and 4,4'-bis(2,3-dicarboxyphenoxy)diphenylmethane dianhydride.

非熱可塑性ポリイミドに含まれるジアミン残基としては、一般式(1)で表されるジアミン化合物から誘導されるジアミン残基が好ましく挙げられる。 Preferably, the diamine residue contained in the non-thermoplastic polyimide is a diamine residue derived from a diamine compound represented by general formula (1).

Figure 0007465060000003
Figure 0007465060000003

一般式(1)において、連結基Zは単結合若しくは-COO-を示し、Yは独立にハロゲン若しくはフェニル基で置換されてもよい炭素数1~3の1価の炭化水素又は炭素数1~3のアルコキシ基、又は炭素数1~3のパーフルオロアルキル基、又はアルケニル基を示し、nは0~2の整数を示し、p及びqは独立に0~4の整数を示す。ここで、「独立に」とは、上記式(1)において、複数の置換基Y、整数p、qが同一でもよいし、異なっていてもよいことを意味する。 In general formula (1), the linking group Z represents a single bond or -COO-, Y represents a monovalent hydrocarbon having 1 to 3 carbon atoms, which may be independently substituted with a halogen or a phenyl group, an alkoxy group having 1 to 3 carbon atoms, a perfluoroalkyl group having 1 to 3 carbon atoms, or an alkenyl group, n represents an integer from 0 to 2, and p and q represent independently an integer from 0 to 4. Here, "independently" means that in the above formula (1), the multiple substituents Y and the integers p and q may be the same or different.

一般式(1)で表されるジアミン化合物から誘導されるジアミン残基(以下、「ジアミン残基(1)」と記すことがある)は、秩序構造を形成しやすく、寸法安定性を高め、特に高温環境下での面内複屈折率(Δn)の変化量とともに、厚さ方向の複屈折率変化を効果的に抑制するができる。このような観点から、ジアミン残基(1)は、非熱可塑性ポリイミドに含まれる全ジアミン残基の100モル部に対して、20モル部以上、好ましくは70~95モル部の範囲内、より好ましくは80~90モル部の範囲内で含有することがよい。 The diamine residue derived from the diamine compound represented by the general formula (1) (hereinafter, sometimes referred to as "diamine residue (1)") is likely to form an ordered structure, improves dimensional stability, and can effectively suppress the change in birefringence in the thickness direction as well as the change in in-plane birefringence (Δn) particularly under high temperature environments. From this perspective, it is preferable that the diamine residue (1) is contained in an amount of 20 molar parts or more, preferably in the range of 70 to 95 molar parts, and more preferably in the range of 80 to 90 molar parts, relative to 100 molar parts of all diamine residues contained in the non-thermoplastic polyimide.

ジアミン残基(1)の好ましい具体例としては、p-フェニレンジアミン(p-PDA)、2,2’-ジメチル-4,4’-ジアミノビフェニル(m-TB)、2,2’-ジエチル-4,4’-ジアミノビフェニル(m-EB)、2,2’-ジエトキシ-4,4’-ジアミノビフェニル(m-EOB)、2,2’-ジプロポキシ-4,4’-ジアミノビフェニル(m-POB)、2,2’-n-プロピル-4,4’-ジアミノビフェニル(m-NPB)、2,2’-ジビニル-4,4’-ジアミノビフェニル(VAB)、4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル(TFMB)等のジアミン化合物から誘導されるジアミン残基が挙げられる。これらの中でも特に、2,2’-ジメチル-4,4’-ジアミノビフェニル(m-TB)は、秩序構造を形成しやすく、高温環境下での面内複屈折率(Δn)の変化量を小さくするとともに、厚さ方向の複屈折率変化を抑制することができるので特に好ましい。 Preferred specific examples of the diamine residue (1) include diamine residues derived from diamine compounds such as p-phenylenediamine (p-PDA), 2,2'-dimethyl-4,4'-diaminobiphenyl (m-TB), 2,2'-diethyl-4,4'-diaminobiphenyl (m-EB), 2,2'-diethoxy-4,4'-diaminobiphenyl (m-EOB), 2,2'-dipropoxy-4,4'-diaminobiphenyl (m-POB), 2,2'-n-propyl-4,4'-diaminobiphenyl (m-NPB), 2,2'-divinyl-4,4'-diaminobiphenyl (VAB), 4,4'-diaminobiphenyl, and 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl (TFMB). Among these, 2,2'-dimethyl-4,4'-diaminobiphenyl (m-TB) is particularly preferred because it easily forms an ordered structure, reduces the amount of change in in-plane birefringence (Δn) in a high-temperature environment, and suppresses the change in birefringence in the thickness direction.

また、絶縁樹脂層の弾性率を下げ、伸度及び折り曲げ耐性等を向上させるため、非熱可塑性ポリイミドが、下記の一般式(2)及び(3)で表されるジアミン残基からなる群より選ばれる少なくとも1種のジアミン残基を含むことが好ましい。 In addition, in order to reduce the elastic modulus of the insulating resin layer and improve the elongation and bending resistance, etc., it is preferable that the non-thermoplastic polyimide contains at least one diamine residue selected from the group consisting of diamine residues represented by the following general formulas (2) and (3).

Figure 0007465060000004
Figure 0007465060000004

上記式(2)及び式(3)において、R、R、R及びRはそれぞれ独立にハロゲン原子、又は炭素数1~4の、ハロゲン原子で置換されてもよいアルキル基もしくはアルコキシ基、又はアルケニル基を示し、Xは独立に-O-、-S-、-CH-、-CH(CH)-、-C(CH)-、-CO-、-COO-、-SO-、-NH-又は-NHCO-から選ばれる2価の基を示し、X及びXはそれぞれ独立に単結合、-O-、-S-、-CH-、-CH(CH)-、-C(CH)-、-CO-、-COO-、-SO-、-NH-又は-NHCO-から選ばれる2価の基を示すが、X及びXの両方が単結合である場合を除くものとし、m、n、o及びpは独立に0~4の整数を示す。
なお、「独立に」とは、上記式(2)、(3)の内の一つにおいて、または両方において、複数の連結基X、連結基XとX、複数の置換基R、R、R、R、さらに、整数m、n、o、pが、同一でもよいし、異なっていてもよいことを意味する。
In the above formula (2) and formula (3), R 5 , R 6 , R 7 and R 8 each independently represent a halogen atom, or an alkyl group or alkoxy group having 1 to 4 carbon atoms which may be substituted with a halogen atom, or an alkenyl group; X independently represents a divalent group selected from -O-, -S-, -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, -CO-, -COO-, -SO 2 -, -NH- or -NHCO-; X 1 and X 2 each independently represent a divalent group selected from a single bond, -O-, -S-, -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, -CO-, -COO-, -SO 2 -, -NH- or -NHCO-; Except for the case where both of m and n are single bonds, m, n, o and p each independently represent an integer of 0 to 4.
In addition, "independently" means that in one or both of the above formulas (2) and (3), the multiple linking groups X, the linking groups X1 and X2 , the multiple substituents R5 , R6 , R7 , and R8 , and further the integers m, n, o, and p may be the same or different.

一般式(2)及び(3)で表されるジアミン残基は、屈曲性の部位を有するので、絶縁樹脂層に柔軟性を付与することができる。ここで、一般式(3)で表されるジアミン残基は、ベンゼン環が4個であるので、熱膨張係数(CTE)の増加を抑制するために、ベンゼン環に結合する末端基はパラ位とすることが好ましい。また、絶縁樹脂層に柔軟性を付与しながら熱膨張係数(CTE)の増加を抑制する観点から、一般式(2)及び(3)で表されるジアミン残基は、非熱可塑性ポリイミドに含まれる全ジアミン残基の100モル部に対して、好ましくは5~30モル部の範囲内、より好ましくは10~20モル部の範囲内で含有することがよい。一般式(2)及び(3)で表されるジアミン残基が5モル部未満であると、絶縁樹脂層の弾性率が増加して伸度が低下し、折り曲げ耐性等の低下が生じることがあり、30モル部を超えると、分子の配向性が低下し、低CTE化が困難となることがある。 The diamine residues represented by the general formulas (2) and (3) have a flexible portion, and therefore can impart flexibility to the insulating resin layer. Here, since the diamine residue represented by the general formula (3) has four benzene rings, it is preferable that the terminal group bonded to the benzene ring is in the para position in order to suppress an increase in the coefficient of thermal expansion (CTE). In addition, from the viewpoint of suppressing an increase in the coefficient of thermal expansion (CTE) while imparting flexibility to the insulating resin layer, the diamine residues represented by the general formulas (2) and (3) are preferably contained in a range of 5 to 30 mol parts, more preferably 10 to 20 mol parts, relative to 100 mol parts of the total diamine residues contained in the non-thermoplastic polyimide. If the diamine residues represented by the general formulas (2) and (3) are less than 5 mol parts, the elastic modulus of the insulating resin layer increases and the elongation decreases, which may cause a decrease in bending resistance, etc., and if they exceed 30 mol parts, the molecular orientation decreases and it may be difficult to achieve a low CTE.

一般式(2)で表されるジアミン残基は、m、n及びoの一つ以上が0であるものが好ましく、また、基R、R及びRの好ましい例としては、炭素数1~4のハロゲン原子で置換されてもよいアルキル基、あるいは炭素数1~3のアルコキシ基、又は炭素数2~3のアルケニル基を挙げることができる。また、一般式(2)において、連結基Xの好ましい例としては、-O-、-S-、-CH-、-CH(CH)-、-SO-又は-CO-を挙げることができる。一般式(2)で表されるジアミン残基の好ましい具体例としては、1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)、1,4-ビス(4-アミノフェノキシ)ベンゼン(TPE-Q)、ビス(4‐アミノフェノキシ)-2,5-ジ-tert-ブチルベンゼン(DTBAB)、4,4-ビス(4-アミノフェノキシ)ベンゾフェノン(BAPK)、1,3-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン、1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン等のジアミン化合物から誘導されるジアミン残基が挙げられる。 The diamine residue represented by formula (2) is preferably one in which at least one of m, n and o is 0, and preferred examples of groups R 5 , R 6 and R 7 include an alkyl group having 1 to 4 carbon atoms which may be substituted with a halogen atom, an alkoxy group having 1 to 3 carbon atoms, or an alkenyl group having 2 to 3 carbon atoms. In formula (2), preferred examples of the linking group X include -O-, -S-, -CH 2 -, -CH(CH 3 )-, -SO 2 - and -CO-. Preferred specific examples of the diamine residue represented by general formula (2) include diamine residues derived from diamine compounds such as 1,3-bis(4-aminophenoxy)benzene (TPE-R), 1,4-bis(4-aminophenoxy)benzene (TPE-Q), bis(4-aminophenoxy)-2,5-di-tert-butylbenzene (DTBAB), 4,4-bis(4-aminophenoxy)benzophenone (BAPK), 1,3-bis[2-(4-aminophenyl)-2-propyl]benzene, and 1,4-bis[2-(4-aminophenyl)-2-propyl]benzene.

一般式(3)で表されるジアミン残基は、m、n、o及びpの一つ以上が0であるものが好ましく、また、基R、R、R及びRの好ましい例としては、炭素数1~4のハロゲン原子で置換されてもよいアルキル基、あるいは炭素数1~3のアルコキシ基、又は炭素数2~3のアルケニル基を挙げることができる。また、一般式(3)において、連結基X及びXの好ましい例としては、単結合、-O-、-S-、-CH-、-CH(CH)-、-SO-又は-CO-を挙げることができる。但し、屈曲部位を付与する観点から、連結基X及びXの両方が単結合である場合を除くものとする。一般式(3)で表されるジアミン残基の好ましい具体例としては、4,4’-ビス(4-アミノフェノキシ)ビフェニル(BAPB)、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]エーテル(BAPE)、ビス[4-(4-アミノフェノキシ)フェニル]スルホン等のジアミン化合物から誘導されるジアミン残基が挙げられる。 The diamine residue represented by formula (3) is preferably one in which at least one of m, n, o and p is 0, and preferred examples of groups R 5 , R 6 , R 7 and R 8 include an alkyl group having 1 to 4 carbon atoms which may be substituted with a halogen atom, an alkoxy group having 1 to 3 carbon atoms, or an alkenyl group having 2 to 3 carbon atoms. In formula (3), preferred examples of linking groups X 1 and X 2 include a single bond, -O-, -S-, -CH 2 -, -CH(CH 3 )-, -SO 2 - or -CO-. However, from the viewpoint of imparting a bending portion, cases in which both linking groups X 1 and X 2 are single bonds are excluded. Preferred specific examples of the diamine residue represented by general formula (3) include diamine residues derived from diamine compounds such as 4,4'-bis(4-aminophenoxy)biphenyl (BAPB), 2,2'-bis[4-(4-aminophenoxy)phenyl]propane (BAPP), 2,2'-bis[4-(4-aminophenoxy)phenyl]ether (BAPE), and bis[4-(4-aminophenoxy)phenyl]sulfone.

一般式(2)で表されるジアミン残基の中でも、1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)から誘導されるジアミン残基(「TPE-R残基」と記すことがある)が特に好ましく、一般式(3)で表されるジアミン残基の中でも、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)から誘導されるジアミン残基(「BAPP残基」と記すことがある)が特に好ましい。TPE-R残基及びBAPP残基は、屈曲性の部位を有するので、絶縁樹脂層の弾性率を低下させ、柔軟性を付与することができる。また、BAPP残基は分子量が大きいため、非熱可塑性ポリイミドのイミド基濃度を下げ、絶縁樹脂層の吸湿を抑制する効果も期待できる。 Among the diamine residues represented by general formula (2), the diamine residue derived from 1,3-bis(4-aminophenoxy)benzene (TPE-R) (sometimes referred to as "TPE-R residue") is particularly preferred, and among the diamine residues represented by general formula (3), the diamine residue derived from 2,2'-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) (sometimes referred to as "BAPP residue") is particularly preferred. TPE-R residues and BAPP residues have flexible sites, so they can reduce the elastic modulus of the insulating resin layer and impart flexibility. In addition, since the BAPP residue has a large molecular weight, it is expected to have the effect of reducing the imide group concentration of the non-thermoplastic polyimide and suppressing the moisture absorption of the insulating resin layer.

非熱可塑性ポリイミドに含まれる他のジアミン残基としては、例えば、m‐フェニレンジアミン(m-PDA)、4,4'-ジアミノジフェニルエーテル(4,4'-DAPE)、3,3'-ジアミノジフェニルエーテル、3,4'-ジアミノジフェニルエーテル、4,4'-ジアミノジフェニルメタン、3,3'-ジアミノジフェニルメタン、3,4'-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルプロパン、3,3'-ジアミノジフェニルプロパン、3,4'-ジアミノジフェニルプロパン、4,4'-ジアミノジフェニルスルフィド、3,3'-ジアミノジフェニルスルフィド、3,4'-ジアミノジフェニルスルフィド、4,4'-ジアミノジフェニルスルホン、3,3'-ジアミノジフェニルスルホン、4,4'-ジアミノベンゾフェノン、3,4'-ジアミノベンゾフェノン、3,3'-ジアミノベンゾフェノン、2,2-ビス-[4-(3-アミノフェノキシ)フェニル]プロパン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)ビフェニル、ビス[1-(3-アミノフェノキシ)]ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]メタン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)]ベンゾフェノン、9,9-ビス[4-(3-アミノフェノキシ)フェニル]フルオレン、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス-[4-(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、3,3’-ジメチル-4,4’-ジアミノビフェニル、4,4’-メチレンジ-o-トルイジン、4,4’-メチレンジ-2,6-キシリジン、4,4’-メチレン-2,6-ジエチルアニリン、3,3’-ジアミノジフェニルエタン、3,3’-ジアミノビフェニル、3,3’-ジメトキシベンジジン、3,3''-ジアミノ-p-テルフェニル、4,4'-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4'-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、ビス(p-アミノシクロヘキシル)メタン、ビス(p-β-アミノ-t-ブチルフェニル)エーテル、ビス(p-β-メチル-δ-アミノペンチル)ベンゼン、p-ビス(2-メチル-4-アミノペンチル)ベンゼン、p-ビス(1,1-ジメチル-5-アミノペンチル)ベンゼン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,4-ビス(β-アミノ-t-ブチル)トルエン、2,4-ジアミノトルエン、m-キシレン-2,5-ジアミン、p-キシレン-2,5-ジアミン、m-キシリレンジアミン、p-キシリレンジアミン、2,6-ジアミノピリジン、2,5-ジアミノピリジン、2,5-ジアミノ-1,3,4-オキサジアゾール、ピペラジン等の芳香族ジアミン化合物から誘導されるジアミン残基が挙げられる。 Other diamine residues contained in non-thermoplastic polyimides include, for example, m-phenylenediamine (m-PDA), 4,4'-diaminodiphenyl ether (4,4'-DAPE), 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl methane, 3,3'-diaminodiphenyl methane, 3,4'-diaminodiphenyl methane, 4,4'-diaminodiphenyl propane, 3,3'-diaminodiphenyl propane, 3,4'-diaminodiphenyl propane, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl methane, 4,4'-diaminodiphenyl methane, 4,4'-diaminodiphenyl propane, 3,4'-diaminodiphenyl propane, 4,4'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl methane, 4 ... methane, 4,4'-diaminodiphenyl methane, 4,4'-diaminodiphenyl methane, 4,4'-diaminodiphenyl methane, 4,4'-diaminodiphenyl methane, 4, ,3'-diaminodiphenyl sulfone, 4,4'-diaminobenzophenone, 3,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 2,2-bis-[4-(3-aminophenoxy)phenyl]propane, bis[4-(3-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)biphenyl, bis[1-(3-aminophenoxy)]biphenyl, bis[4-(3-aminophenoxy)phenyl]methane, bis[4-(3-aminophenoxy)phenyl]ether, bis[4-(3-aminophenoxy)]benzophenone, 9,9-bis[4-(3-aminophenoxy)phenyl]fluorene, 2,2-bis-[4-(4-aminophenoxy)phenyl] nyl]hexafluoropropane, 2,2-bis-[4-(3-aminophenoxy)phenyl]hexafluoropropane, 3,3'-dimethyl-4,4'-diaminobiphenyl, 4,4'-methylenedi-o-toluidine, 4,4'-methylenedi-2,6-xylidine, 4,4'-methylene-2,6-diethylaniline, 3,3'-diaminodiphenylethane, 3,3'-diaminobiphenyl, 3,3'-dimethoxybenzidine, 3,3''-diamino-p-terphenyl, 4,4'-[1,4-phenylenebis(1-methylethylidene)]bisaniline, 4,4'-[1,3-phenylenebis(1-methylethylidene)]bisaniline, bis(p-aminocyclohexyl)methane, bis(p- Examples of diamine residues derived from aromatic diamine compounds such as β-amino-t-butylphenyl) ether, bis(p-β-methyl-δ-aminopentyl) benzene, p-bis(2-methyl-4-aminopentyl) benzene, p-bis(1,1-dimethyl-5-aminopentyl) benzene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,4-bis(β-amino-t-butyl) toluene, 2,4-diaminotoluene, m-xylene-2,5-diamine, p-xylene-2,5-diamine, m-xylylenediamine, p-xylylenediamine, 2,6-diaminopyridine, 2,5-diaminopyridine, 2,5-diamino-1,3,4-oxadiazole, and piperazine.

非熱可塑性ポリイミドにおいて、上記テトラカルボン酸残基及びジアミン残基の種類や、2種以上のテトラカルボン酸残基又はジアミン残基を適用する場合のそれぞれのモル比を選定することにより、熱膨張係数、貯蔵弾性率、引張弾性率等を制御することができる。また、非熱可塑性ポリイミドにおいて、ポリイミドの構造単位を複数有する場合は、ブロックとして存在しても、ランダムに存在していてもよいが、面内複屈折率(Δn)のばらつきを抑制する観点から、ランダムに存在することが好ましい。 In non-thermoplastic polyimides, the thermal expansion coefficient, storage modulus, tensile modulus, etc. can be controlled by selecting the types of the tetracarboxylic acid residues and diamine residues, or the molar ratios of two or more types of tetracarboxylic acid residues or diamine residues. In addition, in non-thermoplastic polyimides, when multiple polyimide structural units are used, they may exist as blocks or randomly, but from the viewpoint of suppressing the variation in the in-plane birefringence (Δn), it is preferable that they exist randomly.

非熱可塑性ポリイミドのイミド基濃度は、35重量%以下であることが好ましい。ここで、「イミド基濃度」は、ポリイミド中のイミド基部(-(CO)-N-)の分子量を、ポリイミドの構造全体の分子量で除した値を意味する。イミド基濃度が35重量%を超えると、樹脂自体の分子量が小さくなるとともに、極性基の増加によって低吸湿性も悪化する。上記酸無水物とジアミン化合物の組み合わせを選択することによって、非熱可塑性ポリイミド中の分子の配向性を制御することで、イミド基濃度低下に伴うCTEの増加を抑制し、低吸湿性を担保している。 The imide group concentration of the non-thermoplastic polyimide is preferably 35% by weight or less. Here, the "imide group concentration" means the value obtained by dividing the molecular weight of the imide group (-(CO) 2 -N-) in the polyimide by the molecular weight of the entire polyimide structure. If the imide group concentration exceeds 35% by weight, the molecular weight of the resin itself decreases, and the low moisture absorption property also deteriorates due to an increase in polar groups. By selecting the combination of the acid anhydride and the diamine compound, the molecular orientation in the non-thermoplastic polyimide is controlled, thereby suppressing the increase in CTE associated with a decrease in the imide group concentration and ensuring low moisture absorption.

非熱可塑性ポリイミドの重量平均分子量は、例えば10,000~400,000の範囲内が好ましく、50,000~350,000の範囲内がより好ましい。重量平均分子量が10,000未満であると、絶縁樹脂層の強度が低下して脆化しやすい傾向となる。一方、重量平均分子量が400,000を超えると、過度に粘度が増加して塗工作業の際に厚みムラ、スジ等の不良が発生しやすい傾向になる。 The weight-average molecular weight of the non-thermoplastic polyimide is preferably, for example, in the range of 10,000 to 400,000, and more preferably in the range of 50,000 to 350,000. If the weight-average molecular weight is less than 10,000, the strength of the insulating resin layer decreases and it tends to become brittle. On the other hand, if the weight-average molecular weight exceeds 400,000, the viscosity increases excessively, and defects such as uneven thickness and streaks tend to occur during the coating process.

(熱可塑性ポリイミド)
本実施の形態において、熱可塑性ポリイミド層を構成する熱可塑性ポリイミドは、テトラカルボン酸残基及びジアミン残基を含み、これらがいずれも芳香族基を含むことが好ましい。熱可塑性ポリイミドに含まれるテトラカルボン酸残基及びジアミン残基が、いずれも芳香族基を含むことによって、絶縁樹脂層の高温環境下での面内複屈折率(Δn)の変化量を抑制するとともに、厚さ方向の複屈折率変化を抑制することができる。
(Thermoplastic polyimide)
In the present embodiment, the thermoplastic polyimide constituting the thermoplastic polyimide layer contains a tetracarboxylic acid residue and a diamine residue, and it is preferable that both of them contain an aromatic group. By containing both of the tetracarboxylic acid residue and the diamine residue contained in the thermoplastic polyimide and the aromatic group, it is possible to suppress the change in the in-plane birefringence (Δn) of the insulating resin layer under a high temperature environment and to suppress the change in the birefringence in the thickness direction.

熱可塑性ポリイミドに含まれるテトラカルボン酸残基としては、特に制限はないが、例えば、ピロメリット酸二無水物(PMDA)から誘導されるテトラカルボン酸残基(以下、PMDA残基ともいう。)、3,3',4,4'-ビフェニルテトラカルボン酸二無水物(BPDA)から誘導されるテトラカルボン酸残基(以下、BPDA残基ともいう。)が好ましく挙げられる。これらのテトラカルボン酸残基は、秩序構造を形成しやすく、高温環境下での面内複屈折率(Δn)の変化量を小さくするとともに、厚さ方向の複屈折率変化を抑制することができる。また、PMDA残基は、熱膨張係数の制御とガラス転移温度の制御の役割を担う残基である。更に、BPDA残基は、テトラカルボン酸残基の中でも極性基がなく比較的分子量が大きいため、熱可塑性ポリイミドのイミド基濃度を下げ、絶縁樹脂層の吸湿を抑制する効果も期待できる。このような観点から、PMDA残基及び/又はBPDA残基の合計量が、熱可塑性ポリイミドに含まれる全テトラカルボン酸残基の100モル部に対して、好ましくは50モル部以上、より好ましくは50~100モル部の範囲内、最も好ましくは70~100モル部の範囲内であることがよい。 The tetracarboxylic acid residue contained in the thermoplastic polyimide is not particularly limited, but for example, a tetracarboxylic acid residue derived from pyromellitic dianhydride (PMDA) (hereinafter also referred to as PMDA residue) and a tetracarboxylic acid residue derived from 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA) (hereinafter also referred to as BPDA residue) are preferred. These tetracarboxylic acid residues are easy to form an ordered structure, and can reduce the amount of change in in-plane birefringence (Δn) in a high-temperature environment and suppress the change in birefringence in the thickness direction. In addition, the PMDA residue is a residue that plays a role in controlling the thermal expansion coefficient and the glass transition temperature. Furthermore, since the BPDA residue has no polar group and a relatively large molecular weight among tetracarboxylic acid residues, it is expected to have the effect of lowering the imide group concentration of the thermoplastic polyimide and suppressing the moisture absorption of the insulating resin layer. From this viewpoint, the total amount of PMDA residues and/or BPDA residues is preferably 50 molar parts or more, more preferably in the range of 50 to 100 molar parts, and most preferably in the range of 70 to 100 molar parts, relative to 100 molar parts of all tetracarboxylic acid residues contained in the thermoplastic polyimide.

熱可塑性ポリイミドに含まれる他のテトラカルボン酸残基としては、上記非熱可塑性ポリイミドで例示したものと同様の芳香族テトラカルボン酸二無水物から誘導されるテトラカルボン酸残基が挙げられる。 Other tetracarboxylic acid residues contained in the thermoplastic polyimide include tetracarboxylic acid residues derived from aromatic tetracarboxylic dianhydrides similar to those exemplified for the non-thermoplastic polyimides above.

本実施の形態において、熱可塑性ポリイミドに含まれるジアミン残基としては、上記一般式(2)及び(3)から選ばれる少なくとも一種のジアミン残基が好ましい。一般式(2)及び(3)から選ばれるジアミン残基は、全ジアミン残基の100モル部に対して、合計で50モル部以上であることが好ましく、50~100モル部であることがより好ましく、70~100モル部の範囲内が最も好ましい。一般式(2)及び(3)から選ばれるジアミン残基を、全ジアミン残基の100モル部に対して、合計で50モル部以上含むことによって、熱可塑性ポリイミド層に柔軟性と接着性を付与し、金属層に対する接着層として機能させることができる。また、一般式(2)で表されるジアミン残基の中でも、TPE-R残基が特に好ましく、一般式(3)で表されるジアミン残基の中でもBAPP残基が特に好ましい。TPE-R残基及びBAPP残基は、屈曲性の部位を有するので、絶縁樹脂層の弾性率を低下させ、柔軟性を付与することができる。また、BAPP残基は分子量が大きいため、熱可塑性ポリイミドのイミド基濃度を下げ、絶縁樹脂層の吸湿を抑制する効果も期待できる。 In the present embodiment, the diamine residue contained in the thermoplastic polyimide is preferably at least one diamine residue selected from the above general formulas (2) and (3). The diamine residues selected from the general formulas (2) and (3) are preferably 50 molar parts or more in total, more preferably 50 to 100 molar parts, and most preferably in the range of 70 to 100 molar parts, relative to 100 molar parts of the total diamine residues. By including 50 molar parts or more of the diamine residues selected from the general formulas (2) and (3) in total, relative to 100 molar parts of the total diamine residues, flexibility and adhesiveness can be imparted to the thermoplastic polyimide layer, and it can function as an adhesive layer for the metal layer. Furthermore, among the diamine residues represented by the general formula (2), TPE-R residues are particularly preferred, and among the diamine residues represented by the general formula (3), BAPP residues are particularly preferred. Since the TPE-R residues and the BAPP residues have a flexible site, they can reduce the elastic modulus of the insulating resin layer and impart flexibility. In addition, because the BAPP residue has a large molecular weight, it is expected to reduce the imide group concentration of the thermoplastic polyimide and suppress moisture absorption in the insulating resin layer.

また、上述のように、非熱可塑性ポリイミド層を構成する非熱可塑性ポリイミドが、一般式(2)及び(3)から選ばれるジアミン残基を含有する場合には、熱可塑性ポリイミド層を構成する熱可塑性ポリイミドも、ジアミン残基として、類似した構造、好ましくは一般式(2)及び(3)から選ばれる同種のジアミン残基を含有することがよい。この場合、熱可塑性ポリイミドと非熱可塑性ポリイミドでは、ジアミン残基の含有比率は異なるものとなるが、類似若しくは同種のジアミン残基を含有することで、特にキャスト法によってポリイミドフィルムを形成する際に、熱可塑性ポリイミド層と非熱可塑性ポリイミド層の配向制御が容易になり、寸法精度を管理しやすくなる。このような観点から、本実施の形態では、非熱可塑性ポリイミド層を構成する非熱可塑性ポリイミドと、熱可塑性ポリイミド層を構成する熱可塑性ポリイミドがいずれも上記一般式(2)及び(3)から選ばれる少なくとも一種のジアミン残基を含有することが好ましく、該ジアミン残基が、TPE-R残基及び/又はBAPP残基を含有することが最も好ましい。 As described above, when the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer contains a diamine residue selected from the general formulas (2) and (3), the thermoplastic polyimide constituting the thermoplastic polyimide layer also preferably contains a diamine residue of a similar structure, preferably the same type of diamine residue selected from the general formulas (2) and (3). In this case, the content ratio of diamine residues differs between the thermoplastic polyimide and the non-thermoplastic polyimide, but by containing similar or the same type of diamine residues, it becomes easier to control the orientation of the thermoplastic polyimide layer and the non-thermoplastic polyimide layer, particularly when forming a polyimide film by a casting method, and it becomes easier to manage the dimensional accuracy. From this viewpoint, in this embodiment, it is preferable that both the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer and the thermoplastic polyimide constituting the thermoplastic polyimide layer contain at least one diamine residue selected from the general formulas (2) and (3), and it is most preferable that the diamine residue contains a TPE-R residue and/or a BAPP residue.

本実施の形態において、熱可塑性ポリイミドに含まれる、上記一般式(2)及び(3)以外のジアミン残基としては、例えば、2,2’-ジメチル-4,4’-ジアミノビフェニル(m-TB)、2,2’-ジエチル-4,4’-ジアミノビフェニル(m-EB)、2,2’-ジエトキシ-4,4’-ジアミノビフェニル(m-EOB)、2,2’-ジプロポキシ-4,4’-ジアミノビフェニル(m-POB)、2,2’-n-プロピル-4,4’-ジアミノビフェニル(m-NPB)、2,2’-ジビニル-4,4’-ジアミノビフェニル(VAB)、4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル(TFMB)、p‐フェニレンジアミン(p-PDA)、m‐フェニレンジアミン(m-PDA)、3,3’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルプロパン、3,3’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,3-ジアミノジフェニルエーテル、3,4'-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルプロパン、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノベンゾフェノン、(3,3’-ビスアミノ)ジフェニルアミン、1,4-ビス(3-アミノフェノキシ)ベンゼン、3-[4-(4-アミノフェノキシ)フェノキシ]ベンゼンアミン、3-[3-(4-アミノフェノキシ)フェノキシ]ベンゼンアミン、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)、4,4'-[2-メチル-(1,3-フェニレン)ビスオキシ]ビスアニリン、4,4'-[4-メチル-(1,3-フェニレン)ビスオキシ]ビスアニリン、4,4'-[5-メチル-(1,3-フェニレン)ビスオキシ]ビスアニリン、ビス[4-(3-アミノフェノキシ)フェニル]メタン、ビス[4-(3-アミノフェノキシ)フェニル]プロパン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)]ベンゾフェノン、ビス[4,4'-(3-アミノフェノキシ)]ベンズアニリド、4-[3-[4-(4-アミノフェノキシ)フェノキシ]フェノキシ]アニリン、4,4’-[オキシビス(3,1-フェニレンオキシ)]ビスアニリン、ビス[4-(4-アミノフェノキシ)フェニル]エーテル(BAPE)、ビス[4-(4-アミノフェノキシ)フェニル]ケトン(BAPK)、ビス[4-(3-アミノフェノキシ)]ビフェニル、ビス[4-(4-アミノフェノキシ)]ビフェニル等のジアミン化合物から誘導されるジアミン残基を挙げることができる。 In the present embodiment, examples of diamine residues contained in the thermoplastic polyimide other than those of the general formulas (2) and (3) include 2,2'-dimethyl-4,4'-diaminobiphenyl (m-TB), 2,2'-diethyl-4,4'-diaminobiphenyl (m-EB), 2,2'-diethoxy-4,4'-diaminobiphenyl (m-EOB), 2,2'-dipropoxy-4,4'-diaminobiphenyl (m-POB), 2,2'-n-propyl-4,4'-diaminobiphenyl (m-NPB), 2,2'-divinyl-4,4'-diaminobiphenyl (VAB), 4,4'-diaminobiphenyl, 4,4'-diamino-2,2'-bis(trifluoromethyl)-2,2'-diaminobiphenyl, and 2,2'-diamino-4,4'-diaminobiphenyl. (3-aminomethyl)biphenyl (TFMB), p-phenylenediamine (p-PDA), m-phenylenediamine (m-PDA), 3,3'-diaminodiphenylmethane, 3,3'-diaminodiphenylpropane, 3,3'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfone, 3,3-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylpropane, 3,4'-diaminodiphenyl sulfide, 3,3'-diaminobenzophenone, (3,3'-bisamino)diphenylamine, 1,4-bis(3-aminophenoxy)benzene, 3 -[4-(4-aminophenoxy)phenoxy]benzenamine, 3-[3-(4-aminophenoxy)phenoxy]benzenamine, 1,3-bis(3-aminophenoxy)benzene (APB), 4,4'-[2-methyl-(1,3-phenylene)bisoxy]bisaniline, 4,4'-[4-methyl-(1,3-phenylene)bisoxy]bisaniline, 4,4'-[5-methyl-(1,3-phenylene)bisoxy]bisaniline, bis[4-(3-aminophenoxy)phenyl]methane, bis[4-(3-aminophenoxy)phenyl]propane, bis[4-(3-aminophenoxy)phenyl]ether, bis[4-(3-aminophenoxy)phenyl]ether, Examples of diamine residues include those derived from diamine compounds such as bis[4-(3-aminophenoxy)]sulfone, bis[4-(3-aminophenoxy)]benzophenone, bis[4,4'-(3-aminophenoxy)]benzanilide, 4-[3-[4-(4-aminophenoxy)phenoxy]phenoxy]aniline, 4,4'-[oxybis(3,1-phenyleneoxy)]bisaniline, bis[4-(4-aminophenoxy)phenyl]ether (BAPE), bis[4-(4-aminophenoxy)phenyl]ketone (BAPK), bis[4-(3-aminophenoxy)]biphenyl, and bis[4-(4-aminophenoxy)]biphenyl.

熱可塑性ポリイミドにおいて、上記テトラカルボン酸残基及びジアミン残基の種類や、2種以上のテトラカルボン酸残基又はジアミン残基を適用する場合のそれぞれのモル比を選定することにより、熱膨張係数、引張弾性率、ガラス転移温度等を制御することができる。また、熱可塑性ポリイミドにおいて、ポリイミドの構造単位を複数有する場合は、ブロックとして存在しても、ランダムに存在していてもよいが、ランダムに存在することが好ましい。 In thermoplastic polyimides, the thermal expansion coefficient, tensile modulus, glass transition temperature, etc. can be controlled by selecting the types of the tetracarboxylic acid residues and diamine residues, or by selecting the molar ratios of two or more types of tetracarboxylic acid residues or diamine residues. In addition, in thermoplastic polyimides, when multiple polyimide structural units are present, they may be present as blocks or randomly, but are preferably present randomly.

熱可塑性ポリイミド層を構成する熱可塑性ポリイミドは、金属層との密着性を向上させることができる。このような熱可塑性ポリイミドは、ガラス転移温度が200℃以上350℃以下の範囲内、好ましくは200℃以上320℃以下の範囲内である。 The thermoplastic polyimide constituting the thermoplastic polyimide layer can improve adhesion with the metal layer. Such thermoplastic polyimides have a glass transition temperature in the range of 200°C or more and 350°C or less, preferably in the range of 200°C or more and 320°C or less.

熱可塑性ポリイミドのイミド基濃度は、35重量%以下であることが好ましい。ここで、「イミド基濃度」は、ポリイミド中のイミド基部(-(CO)-N-)の分子量を、ポリイミドの構造全体の分子量で除した値を意味する。イミド基濃度が35重量%を超えると、樹脂自体の分子量が小さくなるとともに、極性基の増加によって低吸湿性も悪化する。上記酸無水物とジアミン化合物の組み合わせを選択することによって、熱可塑性ポリイミド中の分子の配向性を制御することで、イミド基濃度低下に伴うCTEの増加を抑制し、低吸湿性を担保している。 The imide group concentration of the thermoplastic polyimide is preferably 35% by weight or less. Here, "imide group concentration" means the value obtained by dividing the molecular weight of the imide group (-(CO) 2 -N-) in the polyimide by the molecular weight of the entire polyimide structure. If the imide group concentration exceeds 35% by weight, the molecular weight of the resin itself decreases, and the low moisture absorption property also deteriorates due to an increase in polar groups. By selecting the above combination of the acid anhydride and the diamine compound, the molecular orientation in the thermoplastic polyimide is controlled, thereby suppressing the increase in CTE associated with a decrease in the imide group concentration and ensuring low moisture absorption.

熱可塑性ポリイミドの重量平均分子量は、例えば10,000~400,000の範囲内が好ましく、50,000~350,000の範囲内がより好ましい。重量平均分子量が10,000未満であると、絶縁樹脂層の強度が低下して脆化しやすい傾向となる。一方、重量平均分子量が400,000を超えると、過度に粘度が増加して塗工作業の際に厚みムラ、スジ等の不良が発生しやすい傾向になる。 The weight-average molecular weight of the thermoplastic polyimide is preferably, for example, in the range of 10,000 to 400,000, and more preferably in the range of 50,000 to 350,000. If the weight-average molecular weight is less than 10,000, the strength of the insulating resin layer decreases and it tends to become brittle. On the other hand, if the weight-average molecular weight exceeds 400,000, the viscosity increases excessively, and defects such as uneven thickness and streaks tend to occur during the coating process.

(非熱可塑性ポリイミド及び熱可塑性ポリイミドの合成)
一般にポリイミドは、テトラカルボン酸二無水物と、ジアミン化合物を溶媒中で反応させ、ポリアミド酸を生成したのち加熱閉環させることにより製造できる。例えば、テトラカルボン酸二無水物とジアミン化合物をほぼ等モルで有機溶媒中に溶解させて、0~100℃の範囲内の温度で30分~24時間撹拌し重合反応させることでポリイミドの前駆体であるポリアミド酸が得られる。反応にあたっては、生成する前駆体が有機溶媒中に5~30重量%の範囲内、好ましくは10~20重量%の範囲内となるように反応成分を溶解する。重合反応に用いる有機溶媒としては、例えば、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン(NMP)、2-ブタノン、ジメチルスホキシド(DMSO)、ヘキサメチルホスホルアミド、N-メチルカプロラクタム、硫酸ジメチル、シクロヘキサノン、ジオキサン、テトラヒドロフラン、ジグライム、トリグライム、クレゾール等が挙げられる。これらの溶媒を2種以上併用して使用することもでき、更にはキシレン、トルエンのような芳香族炭化水素の併用も可能である。また、このような有機溶媒の使用量としては特に制限されるものではないが、重合反応によって得られるポリアミド酸溶液の濃度が5~30重量%程度になるような使用量に調整して用いることが好ましい。
(Synthesis of Non-Thermoplastic and Thermoplastic Polyimides)
Generally, polyimide can be produced by reacting tetracarboxylic dianhydride with a diamine compound in a solvent to generate polyamic acid, which is then subjected to ring closure by heating. For example, tetracarboxylic dianhydride and diamine compound are dissolved in an organic solvent in approximately equal molar amounts, and the mixture is stirred at a temperature in the range of 0 to 100°C for 30 minutes to 24 hours to polymerize, thereby obtaining polyamic acid, which is a precursor of polyimide. In the reaction, the reaction components are dissolved so that the precursor generated is in the range of 5 to 30% by weight, preferably in the range of 10 to 20% by weight, in the organic solvent. Examples of organic solvents used in the polymerization reaction include N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N,N-diethylacetamide, N-methyl-2-pyrrolidone (NMP), 2-butanone, dimethylsulfoxide (DMSO), hexamethylphosphoramide, N-methylcaprolactam, dimethyl sulfate, cyclohexanone, dioxane, tetrahydrofuran, diglyme, triglyme, cresol, and the like. Two or more of these solvents can be used in combination, and aromatic hydrocarbons such as xylene and toluene can also be used in combination. The amount of such an organic solvent to be used is not particularly limited, but it is preferable to adjust the amount to be used so that the concentration of the polyamic acid solution obtained by the polymerization reaction is about 5 to 30% by weight.

合成されたポリアミド酸は、通常、反応溶媒溶液として使用することが有利であるが、必要により濃縮、希釈又は他の有機溶媒に置換することができる。また、ポリアミド酸は一般に溶媒可溶性に優れるので、有利に使用される。ポリアミド酸の溶液の粘度は、500cps~100,000cpsの範囲内であることが好ましい。この範囲を外れると、コーター等による塗工作業の際にフィルムに厚みムラ、スジ等の不良が発生し易くなる。ポリアミド酸をイミド化させる方法は、特に制限されず、例えば前記溶媒中で、80~400℃の範囲内の温度条件で1~24時間かけて加熱するといった熱処理が好適に採用される。 The synthesized polyamic acid is usually advantageously used as a reaction solvent solution, but it can be concentrated, diluted, or replaced with another organic solvent if necessary. Polyamic acid is also advantageously used because it generally has excellent solvent solubility. The viscosity of the polyamic acid solution is preferably within the range of 500 cps to 100,000 cps. If it is outside this range, defects such as uneven thickness and streaks are likely to occur in the film during coating operations using a coater or the like. There are no particular restrictions on the method for imidizing polyamic acid, and a heat treatment such as heating in the above-mentioned solvent at a temperature condition within the range of 80 to 400°C for 1 to 24 hours is preferably used.

<金属層>
金属層を構成する金属としては、例えば、銅、アルミニウム、ステンレス、鉄、銀、パラジウム、ニッケル、クロム、モリブデン、タングステン、ジルコニウム、金、コバルト、チタン、タンタル、亜鉛、鉛、錫、シリコン、ビスマス、インジウム又はこれらの合金などから選択される金属を挙げることができる。金属層は、スパッタ、蒸着、めっき等の方法で形成することもできるが、接着性の観点から金属箔を用いることが好ましい。導電性の点で特に好ましいものは銅箔である。銅箔は、電解銅箔、圧延銅箔のいずれでもよい。なお、本実施の形態の金属張積層板を連続的に生産する場合には、金属箔として、所定の厚さのものがロール状に巻き取られた長尺状の金属箔が用いられる。
<Metal Layer>
Examples of the metal constituting the metal layer include metals selected from copper, aluminum, stainless steel, iron, silver, palladium, nickel, chromium, molybdenum, tungsten, zirconium, gold, cobalt, titanium, tantalum, zinc, lead, tin, silicon, bismuth, indium, and alloys thereof. The metal layer can be formed by methods such as sputtering, vapor deposition, and plating, but it is preferable to use a metal foil from the viewpoint of adhesion. Copper foil is particularly preferable from the viewpoint of conductivity. The copper foil may be either electrolytic copper foil or rolled copper foil. In addition, when the metal-clad laminate of this embodiment is continuously produced, a long metal foil having a predetermined thickness wound into a roll is used as the metal foil.

以下、金属張積層板の好ましい実施の形態として、銅層を有する銅張積層板を挙げて、説明する。 Below, we will explain a preferred embodiment of a metal-clad laminate, taking as an example a copper-clad laminate having a copper layer.

<銅張積層板>
本実施の形態の銅張積層板は、絶縁層と、該絶縁層の少なくとも一方の面に銅箔等の銅層を備えていればよい。また、絶縁層と銅層の接着性を高めるために、絶縁層における銅層に接する層が、熱可塑性ポリイミド層である。銅層は、絶縁層の片面又は両面に設けられている。つまり、本実施の形態の銅張積層板は、片面銅張積層板(片面CCL)でもよいし、両面銅張積層板(両面CCL)でもよい。片面CCLの場合、絶縁層の片面に積層された銅層を、本発明における「第1の銅層」とする。両面CCLの場合、絶縁層の片面に積層された銅層を、本発明における「第1の銅層」とし、絶縁層において、第1の銅層が積層された面とは反対側の面に積層された銅層を、本発明における「第2の銅層」とする。本実施の形態の銅張積層板は、銅層をエッチングするなどして配線回路加工して銅配線を形成し、FPCとして使用される。
<Copper-clad laminate>
The copper clad laminate of this embodiment may include an insulating layer and a copper layer such as copper foil on at least one side of the insulating layer. In addition, in order to increase the adhesion between the insulating layer and the copper layer, the layer in contact with the copper layer in the insulating layer is a thermoplastic polyimide layer. The copper layer is provided on one or both sides of the insulating layer. That is, the copper clad laminate of this embodiment may be a single-sided copper clad laminate (single-sided CCL) or a double-sided copper clad laminate (double-sided CCL). In the case of a single-sided CCL, the copper layer laminated on one side of the insulating layer is the "first copper layer" in the present invention. In the case of a double-sided CCL, the copper layer laminated on one side of the insulating layer is the "first copper layer" in the present invention, and the copper layer laminated on the side of the insulating layer opposite to the side on which the first copper layer is laminated is the "second copper layer" in the present invention. The copper clad laminate of this embodiment is used as an FPC by forming copper wiring by etching the copper layer or the like through wiring circuit processing.

銅張積層板は、例えば樹脂フィルムを用意し、これに金属をスパッタリングしてシード層を形成した後、例えば銅メッキによって銅層を形成することによって調製してもよい。 A copper-clad laminate may be prepared, for example, by preparing a resin film, sputtering a metal onto it to form a seed layer, and then forming a copper layer, for example, by copper plating.

また、銅張積層板は、樹脂フィルムを用意し、これに銅箔を熱圧着などの方法でラミネートすることによって調製してもよい。 Copper-clad laminates can also be prepared by preparing a resin film and laminating copper foil to it using a method such as thermocompression bonding.

さらに、銅張積層板は、銅箔の上にポリイミドの前駆体であるポリアミド酸を含有する塗布液をキャストし、乾燥して塗布膜とした後、熱処理してイミド化し、ポリイミド層を形成することによって調製してもよい。 Furthermore, a copper-clad laminate may be prepared by casting a coating solution containing polyamic acid, a precursor of polyimide, onto copper foil, drying to form a coating film, and then heat-treating it to imidize it and form a polyimide layer.

(第1の銅層)
本実施の形態の銅張積層板において、第1の銅層に使用される銅箔(以下、「第1の銅箔」と記すことがある)は、特に限定されるものではなく、例えば、圧延銅箔でも電解銅箔でもよい。
(First Copper Layer)
In the copper-clad laminate of this embodiment, the copper foil used for the first copper layer (hereinafter, sometimes referred to as the "first copper foil") is not particularly limited, and may be, for example, a rolled copper foil or an electrolytic copper foil.

第1の銅箔の厚みは、好ましくは13μm以下であり、より好ましくは6~12μmの範囲内がよい。第1の銅箔の厚みが13μmを超えると、銅張積層板(又はFPC)を折り曲げた際の銅層(又は銅配線)に加わる曲げ応力が大きくなることにより耐折り曲げ性が低下することとなる。また、生産安定性及びハンドリング性の観点から、第1の銅箔の厚みの下限値は6μmとすることが好ましい。 The thickness of the first copper foil is preferably 13 μm or less, and more preferably in the range of 6 to 12 μm. If the thickness of the first copper foil exceeds 13 μm, the bending stress applied to the copper layer (or copper wiring) when the copper-clad laminate (or FPC) is bent increases, resulting in a decrease in bending resistance. In addition, from the viewpoints of production stability and handling, it is preferable that the lower limit of the thickness of the first copper foil is 6 μm.

また、第1の銅箔の引張弾性率は、例えば、10~35GPaの範囲内であることが好ましく、15~25GPaの範囲内がより好ましい。本実施の形態で第1の銅箔として圧延銅箔を使用する場合は、熱処理によってアニールされると、柔軟性が高くなりやすい。従って、銅箔の引張弾性率が上記下限値に満たないと、長尺な第1の銅箔上に絶縁層を形成する工程において、加熱によって第1の銅箔自体の剛性が低下してしまう。一方、引張弾性率が上記上限値を超えるとFPCを折り曲げた際に銅配線により大きな曲げ応力が加わることとなり、その耐折り曲げ性が低下する。なお、圧延銅箔は、銅箔上に絶縁層を形成する際の熱処理条件や、絶縁層を形成した後の銅箔のアニール処理などにより、その引張弾性率が変化する傾向がある。従って、本実施の形態では、最終的に得られた銅張積層板において、第1の銅箔の引張弾性率が上記範囲内にあればよい。 The tensile modulus of the first copper foil is preferably, for example, within the range of 10 to 35 GPa, and more preferably within the range of 15 to 25 GPa. When a rolled copper foil is used as the first copper foil in this embodiment, the flexibility is easily increased when it is annealed by heat treatment. Therefore, if the tensile modulus of the copper foil is less than the above lower limit, the rigidity of the first copper foil itself is reduced by heating in the process of forming an insulating layer on the long first copper foil. On the other hand, if the tensile modulus of the copper foil exceeds the above upper limit, a large bending stress is applied to the copper wiring when the FPC is folded, and its bending resistance is reduced. The tensile modulus of the rolled copper foil tends to change depending on the heat treatment conditions when forming an insulating layer on the copper foil and the annealing treatment of the copper foil after forming the insulating layer. Therefore, in this embodiment, it is sufficient that the tensile modulus of the first copper foil is within the above range in the finally obtained copper-clad laminate.

第1の銅箔は、特に限定されるものではなく、市販されている圧延銅箔を用いることができる。 The first copper foil is not particularly limited, and commercially available rolled copper foil can be used.

(第2の銅層)
第2の銅層は、絶縁層における第1の銅層とは反対側の面に積層されている。第2の銅層に使用される銅箔(第2の銅箔)としては、特に限定されるものではなく、例えば、圧延銅箔でも電解銅箔でもよい。また、第2の銅箔として、市販されている銅箔を用いることもできる。なお、第2の銅箔として、第1の銅箔と同じものを使用してもよい。
(Second Copper Layer)
The second copper layer is laminated on the surface of the insulating layer opposite to the first copper layer. The copper foil (second copper foil) used for the second copper layer is not particularly limited, and may be, for example, a rolled copper foil or an electrolytic copper foil. In addition, a commercially available copper foil may be used as the second copper foil. The second copper foil may be the same as the first copper foil.

<回路基板>
本実施の形態の金属張積層板は、主にFPC等の回路基板の材料として有用である。例えば、上記に例示の銅張積層板の銅層を常法によってパターン状に加工して配線層を形成することによって、本発明の一実施の形態であるFPC等の回路基板を製造できる。
<Circuit board>
The metal-clad laminate of the present embodiment is useful mainly as a material for circuit boards such as FPCs, etc. For example, the copper layer of the copper-clad laminate exemplified above is processed into a pattern by a conventional method to form a wiring layer, thereby manufacturing a circuit board such as an FPC, which is one embodiment of the present invention.

以下に実施例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。なお、以下の実施例において、特にことわりのない限り各種測定、評価は下記によるものである。 The following examples are provided to more specifically explain the features of the present invention. However, the scope of the present invention is not limited to the examples. In the following examples, the various measurements and evaluations are as follows, unless otherwise noted.

[粘度の測定]
粘度の測定は、E型粘度計(ブルックフィールド社製、商品名;DV-II+Pro)を用いて、25℃における粘度を測定した。トルクが10%~90%になるよう回転数を設定し、測定を開始してから2分経過後、粘度が安定した時の値を読み取った。
[Viscosity measurement]
The viscosity was measured at 25° C. using an E-type viscometer (manufactured by Brookfield, product name: DV-II+Pro). The rotation speed was set so that the torque was 10% to 90%, and the value was read when the viscosity stabilized 2 minutes after the start of the measurement.

[ガラス転移温度(Tg)の測定]
ガラス転移温度は、5mm×20mmのサイズのポリイミドフィルムを、動的粘弾性測定装置(DMA:ユー・ビー・エム社製、商品名;E4000F)を用いて、30℃から400℃まで昇温速度4℃/分、周波数11Hzで測定を行い、弾性率変化(tanδ)が最大となる温度をガラス転移温度とした。なお、DMAを用いて測定された30℃における貯蔵弾性率が1.0×10Pa以上であり、360℃における貯蔵弾性率が1.0×10Pa未満を示すものを「熱可塑性」とし、30℃における貯蔵弾性率が1.0×10Pa以上であり、360℃における貯蔵弾性率が1.0×10Pa以上を示すものを「非熱可塑性」とした。
[Measurement of glass transition temperature (Tg)]
The glass transition temperature was measured by measuring a polyimide film having a size of 5 mm x 20 mm using a dynamic viscoelasticity measuring device (DMA: manufactured by U.B.M., product name: E4000F) from 30°C to 400°C at a heating rate of 4°C/min and a frequency of 11 Hz, and the temperature at which the change in elastic modulus (tan δ) was maximum was defined as the glass transition temperature. Note that, those showing a storage modulus of 1.0 x 10 9 Pa or more at 30°C and less than 1.0 x 10 8 Pa at 360°C measured using the DMA were defined as "thermoplastic", and those showing a storage modulus of 1.0 x 10 9 Pa or more at 30°C and a storage modulus of 1.0 x 10 8 Pa or more at 360°C were defined as "non-thermoplastic".

[熱膨張係数(CTE)の測定]
3mm×20mmのサイズのポリイミドフィルムを、サーモメカニカルアナライザー(Bruker社製、商品名;4000SA)を用い、5.0gの荷重を加えながら一定の昇温速度で30℃から265℃まで昇温させ、更にその温度で10分保持した後、5℃/分の速度で冷却し、250℃から100℃までの平均熱膨張係数(熱膨張係数)を求めた。
[Measurement of coefficient of thermal expansion (CTE)]
A polyimide film having a size of 3 mm x 20 mm was heated from 30°C to 265°C at a constant heating rate while applying a load of 5.0 g using a thermomechanical analyzer (manufactured by Bruker, product name: 4000SA), and then held at that temperature for 10 minutes. The film was then cooled at a rate of 5°C/min to determine the average thermal expansion coefficient (thermal expansion coefficient) from 250°C to 100°C.

[面内リタデーション(RO)の測定]
複屈折率計(フォトニックラティス社製、商品名;ワイドレンジ複屈折評価システムWPA-100、測定エリア;MD:140mm×TD:100mm)を用いて、所定のサンプルの面内方向のリタデーションを求めた。なお、入射角は、0°、測定波長は、543nmである。
[Measurement of in-plane retardation (RO)]
The retardation in the in-plane direction of a given sample was measured using a birefringence meter (manufactured by Photonic Lattice, product name: Wide Range Birefringence Evaluation System WPA-100, measurement area: MD: 140 mm × TD: 100 mm). The incident angle was 0°, and the measurement wavelength was 543 nm.

[面内リタデーション(RO)の評価用サンプルの調製]
長尺状の金属張積層板の金属層をエッチングして得られたポリイミドフィルムにおけるTD方向の左右2つの端部(Left及びRight)並びに中央部(Center)のそれぞれにおいて、A4サイズ(TD:210mm×MD:297mm)に切断し、サンプルL(Left)、サンプルR(Right)及びサンプルC(Center)を調製した。
[Preparation of samples for evaluation of in-plane retardation (RO)]
The metal layer of a long metal-clad laminate was etched to obtain a polyimide film, which was then cut into A4 size pieces (TD: 210 mm x MD: 297 mm) at each of the two left and right ends (Left and Right) and the center (Center) in the TD direction to prepare Sample L (Left), Sample R (Right), and Sample C (Center).

[面内複屈折率(Δn)の評価]
サンプルL、サンプルR及びサンプルCのそれぞれについて面内リタデーション(RO)をそれぞれ測定した。各サンプルの測定値の最大値を評価用サンプルの厚さで除した値を「面内複屈折率(Δn)」とし、面内リタデーション(RO)の測定値における最大値と最小値の差を「幅方向(TD方向)の面内リタデーション(RO)のばらつき(ΔRO)」とし、このΔROを評価用サンプルの厚さで除した値を「幅方向(TD方向)の面内複屈折率(Δn)のばらつき[Δ(Δn)]」とした。
[Evaluation of in-plane birefringence (Δn)]
The in-plane retardation (RO) was measured for each of Sample L, Sample R, and Sample C. The maximum value of the measured value of each sample was divided by the thickness of the evaluation sample to obtain the "in-plane birefringence (Δn)", the difference between the maximum and minimum values of the measured in-plane retardation (RO) was obtained as the "variation (ΔRO) of in-plane retardation (RO) in the width direction (TD direction)", and the value obtained by dividing this ΔRO by the thickness of the evaluation sample was obtained as the "variation [Δ(Δn)] of in-plane birefringence (Δn) in the width direction (TD direction)".

[厚さ方向のリタデーション及び複屈折率の測定]
絶縁樹脂層としてのポリイミド層について、ウルトラミクロトームによる厚さ0.5μmの薄膜切片作製を実施し、厚さ方向のリタデーション測定を実施した。この際、複屈折率計(フォトニックラティス社製、商品名;顕微鏡取付用複屈折分布観察カメラPI-micro)を用いた。なお、測定波長は520nm、入射角は 0 °である。
ROaとは、ポリイミド層(フィルム)における非熱可塑性ポリイミド層の一方の面を基点とする中央部方向に1.5μmの点におけるリタデーションの値である。
RObとは、ポリイミド層(フィルム)における非熱可塑性ポリイミド層の他方の面を基点とする中央部方向に1.5μmの点におけるリタデーションの値である。
ROvとは、ROa、ROb、及び、ポリイミド層(フィルム)における非熱可塑性ポリイミド層の厚さ方向の中央部におけるリタデーションの値(ROc)の合計(ROa+ROb+ROc)の平均値である。
また、ROaの値を薄膜切片の厚さ(0.5μm)で除した値を「非熱可塑性ポリイミド層の厚さ方向において、一方の面を基点とする中央部方向に1.5μmの点における複屈折率(Δna)」とし、RObの値を薄膜切片の厚さ(0.5μm)で除した値を「非熱可塑性ポリイミド層の厚さ方向において、他方の面を基点とする中央部方向に1.5μmの点における複屈折率(Δnb)」とし、ROcの値を薄膜切片の厚さ(0.5μm)で除した値を「非熱可塑性ポリイミド層の厚さ方向の中央部における複屈折率(Δnc)」とした。
Δnvは、Δna、Δnb及びΔncの合計(Δna+Δnb+Δnc)の平均値である。
[Measurement of retardation and birefringence in the thickness direction]
For the polyimide layer as the insulating resin layer, a thin film slice having a thickness of 0.5 μm was prepared by an ultramicrotome, and the retardation in the thickness direction was measured. At this time, a birefringence meter (manufactured by Photonic Lattice, Inc., product name: Birefringence distribution observation camera for mounting on a microscope PI-micro) was used. The measurement wavelength was 520 nm, and the incident angle was 0°.
ROa is the retardation value at a point 1.5 μm away from one surface of a non-thermoplastic polyimide layer in a polyimide layer (film) toward the center.
ROb is the retardation value at a point 1.5 μm away from the other surface of the non-thermoplastic polyimide layer in the polyimide layer (film) toward the center.
ROv is the average value of the sum (ROa+ROb+ROc) of ROa, ROb, and the retardation value (ROc) at the center in the thickness direction of the non-thermoplastic polyimide layer in the polyimide layer (film).
In addition, the value obtained by dividing the value of ROa by the thickness (0.5 μm) of the thin film slice was defined as "the birefringence (Δna) at a point 1.5 μm away from one surface toward the center in the thickness direction of the non-thermoplastic polyimide layer", the value obtained by dividing the value of ROb by the thickness (0.5 μm) of the thin film slice was defined as "the birefringence (Δnb) at a point 1.5 μm away from the other surface toward the center in the thickness direction of the non-thermoplastic polyimide layer", and the value obtained by dividing the value of ROc by the thickness (0.5 μm) of the thin film slice was defined as "the birefringence (Δnc) at the center in the thickness direction of the non-thermoplastic polyimide layer".
Δnv is the average value of the sum of Δna, Δnb, and Δnc (Δna+Δnb+Δnc).

[反りの測定]
50mm×50mmのサイズのポリイミドフィルムを、23℃、50%RH下で24時間調湿後、カールしている方向を上面とし、平滑な台上に設置した。その際のカール量についてノギスを用いて測定を行った。この際、フィルムが基材エッチング面側にカールした場合をプラス表記、反対面にカールした場合をマイナス表記とし、フィルムの4角の測定値の平均をカール量とした。
[Warpage measurement]
A polyimide film having a size of 50 mm x 50 mm was placed on a flat table with the curled side facing up after being conditioned at 23°C and 50% RH for 24 hours. The curl amount was measured using a caliper. When the film curled toward the etched surface of the substrate, it was indicated as a plus sign, and when the film curled toward the opposite side, it was indicated as a minus sign, and the average of the measured values at the four corners of the film was taken as the curl amount.

[ピール強度の測定]
片面銅張積層板(銅箔/樹脂層)の銅箔を幅1.0mmに回路加工した後、幅;8cm×長さ;4cmに切断し、測定サンプルを調製した。テンシロンテスター(東洋精機製作所製、商品名;ストログラフVE-1D)を用いて、測定サンプルの樹脂層側を両面テープによりアルミ板に固定し、銅箔を90°方向に50mm/分の速度で、銅箔を樹脂層から10mm剥離したときの中央強度を求めた。
[Peel strength measurement]
The copper foil of the single-sided copper-clad laminate (copper foil/resin layer) was processed into a circuit width of 1.0 mm, and then cut to a width of 8 cm and a length of 4 cm to prepare a measurement sample. Using a Tensilon tester (manufactured by Toyo Seiki Seisakusho, product name: Strograph VE-1D), the resin layer side of the measurement sample was fixed to an aluminum plate with double-sided tape, and the copper foil was peeled off 10 mm from the resin layer in a 90° direction at a rate of 50 mm/min to determine the central strength.

実施例及び比較例に用いた略号は、以下の化合物を示す。
PMDA:ピロメリット酸二無水物
BPDA:3,3',4,4'‐ビフェニルテトラカルボン酸二無水物
m‐TB:2,2'‐ジメチル‐4,4'‐ジアミノビフェニル
TPE-R:1,3-ビス(4‐アミノフェノキシ)ベンゼン
DAPE:4,4'-ジアミノジフェニルエーテル
BAPP:2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン
p‐PDA:p-フェニレンジアミン
DMAc:N,N‐ジメチルアセトアミド
The abbreviations used in the examples and comparative examples represent the following compounds.
PMDA: Pyromellitic dianhydride BPDA: 3,3',4,4'-biphenyltetracarboxylic dianhydride m-TB: 2,2'-dimethyl-4,4'-diaminobiphenyl TPE-R: 1,3-bis(4-aminophenoxy)benzene DAPE: 4,4'-diaminodiphenyl ether BAPP: 2,2-bis[4-(4-aminophenoxy)phenyl]propane p-PDA: p-phenylenediamine DMAc: N,N-dimethylacetamide

(合成例1)
窒素気流下で、反応槽に、23.0重量部のm-TB(0.108モル部)及び3.5重量部のTPE-R(0.012モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、26.0重量部のPMDA(0.119モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液aを得た。ポリアミド酸溶液aの溶液粘度は41,100cpsであった。このポリアミド酸溶液aから得られたポリイミドのガラス転移温度は421℃で、非熱可塑性、熱膨張係数は10(ppm/K)であった。
(Synthesis Example 1)
Under a nitrogen gas flow, 23.0 parts by weight of m-TB (0.108 mol parts), 3.5 parts by weight of TPE-R (0.012 mol parts), and DMAc in an amount such that the solid content concentration after polymerization is 15% by weight were charged into the reaction vessel, and the mixture was stirred at room temperature to dissolve. Next, 26.0 parts by weight of PMDA (0.119 mol parts) were added, and the mixture was stirred at room temperature for 3 hours to carry out a polymerization reaction, thereby obtaining a polyamic acid solution a. The solution viscosity of the polyamic acid solution a was 41,100 cps. The glass transition temperature of the polyimide obtained from this polyamic acid solution a was 421°C, non-thermoplastic, and had a thermal expansion coefficient of 10 (ppm/K).

(合成例2)
窒素気流下で、反応槽に、17.3重量部のm-TB(0.081モル部)及び10.2重量部のTPE-R(0.035モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、25.1重量部のPMDA(0.115モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液bを得た。ポリアミド酸溶液bの溶液粘度は38,200cpsであった。このポリアミド酸溶液bから得られたポリイミドのガラス転移温度は427℃で、非熱可塑性、熱膨張係数は22(ppm/K)であった。
(Synthesis Example 2)
Under a nitrogen stream, 17.3 parts by weight of m-TB (0.081 mol parts), 10.2 parts by weight of TPE-R (0.035 mol parts), and an amount of DMAc such that the solid content concentration after polymerization is 15% by weight were charged into the reaction vessel, and the mixture was stirred at room temperature to dissolve. Next, 25.1 parts by weight of PMDA (0.115 mol parts) were added, and the mixture was stirred at room temperature for 3 hours to carry out a polymerization reaction, thereby obtaining a polyamic acid solution b. The solution viscosity of the polyamic acid solution b was 38,200 cps. The glass transition temperature of the polyimide obtained from this polyamic acid solution b was 427°C, non-thermoplastic, and had a thermal expansion coefficient of 22 (ppm/K).

(合成例3)
窒素気流下で、反応槽に、16.4重量部のm-TB(0.077モル部)及び9.7重量部のTPE-R(0.033モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、16.7重量部のPMDA(0.077モル部)及び9.7重量部のBPDA(0.033モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液cを得た。ポリアミド酸溶液cの溶液粘度は46,700cpsであった。このポリアミド酸溶液cから得られたポリイミドのガラス転移温度は366℃で、非熱可塑性、熱膨張係数は23(ppm/K)であった。
(Synthesis Example 3)
Under a nitrogen stream, 16.4 parts by weight of m-TB (0.077 mol parts), 9.7 parts by weight of TPE-R (0.033 mol parts), and an amount of DMAc such that the solid content concentration after polymerization is 15% by weight were charged into the reaction vessel, and stirred at room temperature to dissolve. Next, 16.7 parts by weight of PMDA (0.077 mol parts) and 9.7 parts by weight of BPDA (0.033 mol parts) were added, and the polymerization reaction was continued by stirring at room temperature for 3 hours to obtain a polyamic acid solution c. The solution viscosity of the polyamic acid solution c was 46,700 cps. The glass transition temperature of the polyimide obtained from this polyamic acid solution c was 366°C, non-thermoplastic, and the thermal expansion coefficient was 23 (ppm/K).

(合成例4)
窒素気流下で、反応槽に、22.4重量部のm-TB(0.105モル部)及び4.8重量部のBAPP(0.012モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、25.3重量部のPMDA(0.116モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液dを得た。ポリアミド酸溶液dの溶液粘度は36,800cpsであった。このポリアミド酸溶液dから得られたポリイミドのガラス転移温度は408℃で、非熱可塑性、熱膨張係数は9(ppm/K)であった。
(Synthesis Example 4)
Under a nitrogen gas flow, 22.4 parts by weight of m-TB (0.105 mol parts), 4.8 parts by weight of BAPP (0.012 mol parts), and DMAc in an amount such that the solid content concentration after polymerization was 15% by weight were charged into the reaction vessel, and the mixture was stirred at room temperature to dissolve. Next, 25.3 parts by weight of PMDA (0.116 mol parts) were added, and the mixture was stirred at room temperature for 3 hours to carry out a polymerization reaction, thereby obtaining a polyamic acid solution d. The solution viscosity of the polyamic acid solution d was 36,800 cps. The glass transition temperature of the polyimide obtained from this polyamic acid solution d was 408°C, non-thermoplastic, and had a thermal expansion coefficient of 9 (ppm/K).

(合成例5)
窒素気流下で、反応槽に、12.3重量部のm-TB(0.058モル部)、10.1重量部のTPE-R(0.035モル部)及び2.5重量部のp-PDA(0.023モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、17.5重量部のPMDA(0.080モル部)及び10.1重量部のBPDA(0.034モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液eを得た。ポリアミド酸溶液eの溶液粘度は42,700cpsであった。このポリアミド酸溶液eから得られたポリイミドのガラス転移温度は360℃で、非熱可塑性、熱膨張係数は18(ppm/K)であった。
(Synthesis Example 5)
Under a nitrogen stream, 12.3 parts by weight of m-TB (0.058 mol), 10.1 parts by weight of TPE-R (0.035 mol), 2.5 parts by weight of p-PDA (0.023 mol), and an amount of DMAc such that the solid content concentration after polymerization becomes 15% by weight were charged into the reaction vessel, and the mixture was stirred at room temperature to dissolve. Next, 17.5 parts by weight of PMDA (0.080 mol) and 10.1 parts by weight of BPDA (0.034 mol) were added, and the mixture was stirred at room temperature for 3 hours to carry out a polymerization reaction, thereby obtaining a polyamic acid solution e. The solution viscosity of the polyamic acid solution e was 42,700 cps. The glass transition temperature of the polyimide obtained from this polyamic acid solution e was 360° C., non-thermoplastic, and had a thermal expansion coefficient of 18 (ppm/K).

(合成例6)
窒素気流下で、反応槽に、2.2重量部のm-TB(0.010モル部)及び27.6重量部のTPE-R(0.094モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、22.7重量部のPMDA(0.104モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液fを得た。ポリアミド酸溶液fの溶液粘度は33,900cpsであった。このポリアミド酸溶液fから得られたポリイミドのガラス転移温度は446℃で、熱可塑性、熱膨張係数は55(ppm/K)であった。
(Synthesis Example 6)
Under a nitrogen gas flow, 2.2 parts by weight of m-TB (0.010 mol parts), 27.6 parts by weight of TPE-R (0.094 mol parts), and DMAc in an amount such that the solid content concentration after polymerization is 15% by weight were charged into the reaction vessel, and the mixture was stirred at room temperature to dissolve. Next, 22.7 parts by weight of PMDA (0.104 mol parts) were added, and the mixture was stirred at room temperature for 3 hours to carry out a polymerization reaction, thereby obtaining a polyamic acid solution f. The solution viscosity of the polyamic acid solution f was 33,900 cps. The glass transition temperature of the polyimide obtained from this polyamic acid solution f was 446°C, and the thermoplasticity and thermal expansion coefficient were 55 (ppm/K).

(合成例7)
窒素気流下で、反応槽に、30.2重量部のBAPP(0.074モル部)及び重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、22.3重量部のBPDA(0.076モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液gを得た。ポリアミド酸溶液gの溶液粘度は9,800cpsであった。このポリアミド酸溶液gから得られたポリイミドのガラス転移温度は252℃で、熱可塑性、熱膨張係数は46(ppm/K)であった。
(Synthesis Example 7)
Under nitrogen flow, 30.2 parts by weight of BAPP (0.074 mol parts) and DMAc in an amount that would result in a solid content concentration of 15% by weight after polymerization were added to the reaction vessel, and the mixture was stirred at room temperature to dissolve. Next, 22.3 parts by weight of BPDA (0.076 mol parts) were added, and the mixture was stirred at room temperature for 3 hours to carry out a polymerization reaction, to obtain a polyamic acid solution g. The solution viscosity of the polyamic acid solution g was 9,800 cps. The glass transition temperature of the polyimide obtained from this polyamic acid solution g was 252°C, and the thermoplasticity and thermal expansion coefficient were 46 (ppm/K).

(合成例8)
窒素気流下で、反応槽に、25.8重量部のTPE-R(0.088モル部)及び重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、26.7重量部のBPDA(0.091モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液hを得た。ポリアミド酸溶液hの溶液粘度は8,800cpsであった。このポリアミド酸溶液hから得られたポリイミドのガラス転移温度は243℃で、熱可塑性、熱膨張係数は65(ppm/K)であった。
(Synthesis Example 8)
Under a nitrogen gas flow, 25.8 parts by weight of TPE-R (0.088 mol parts) and an amount of DMAc such that the solid content concentration after polymerization becomes 15% by weight were charged into the reaction vessel, and the mixture was stirred at room temperature to dissolve. Next, 26.7 parts by weight of BPDA (0.091 mol parts) were added, and the mixture was stirred at room temperature for 3 hours to carry out a polymerization reaction, thereby obtaining a polyamic acid solution h. The solution viscosity of the polyamic acid solution h was 8,800 cps. The glass transition temperature of the polyimide obtained from this polyamic acid solution h was 243°C, and the thermoplasticity and thermal expansion coefficient were 65 (ppm/K).

(合成例9)
窒素気流下で、反応槽に、17.6重量部のTPE-R(0.060モル部)及び1.6重量部のp-PDA(0.015モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、22.8重量部のBPDA(0.077モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液iを得た。ポリアミド酸溶液iの溶液粘度は7,800cpsであった。このポリアミド酸溶液iから得られたポリイミドのガラス転移温度は239℃で、熱可塑性、熱膨張係数は65(ppm/K)であった。
(Synthesis Example 9)
Under a nitrogen gas flow, 17.6 parts by weight of TPE-R (0.060 mol parts), 1.6 parts by weight of p-PDA (0.015 mol parts), and DMAc in an amount such that the solid content concentration after polymerization was 15% by weight were charged into the reaction vessel, and the mixture was stirred at room temperature to dissolve. Next, 22.8 parts by weight of BPDA (0.077 mol parts) were added, and the mixture was stirred at room temperature for 3 hours to carry out a polymerization reaction, thereby obtaining a polyamic acid solution i. The solution viscosity of the polyamic acid solution i was 7,800 cps. The glass transition temperature of the polyimide obtained from this polyamic acid solution i was 239°C, and the thermoplasticity and thermal expansion coefficient were 65 (ppm/K).

(合成例10)
窒素気流下で、反応槽に、11.7重量部のDAPE(0.058モル部)及び11.4重量部のTPE-R(0.039モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、29.5重量部のBPDA(0.100モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液jを得た。ポリアミド酸溶液jの溶液粘度は11,200cpsであった。このポリアミド酸溶液jから得られたポリイミドのガラス転移温度は265℃で、熱可塑性、熱膨張係数は58(ppm/K)であった。
(Synthesis Example 10)
Under a nitrogen gas flow, 11.7 parts by weight of DAPE (0.058 mol parts), 11.4 parts by weight of TPE-R (0.039 mol parts), and an amount of DMAc such that the solid content concentration after polymerization becomes 15% by weight were charged into the reaction vessel, and stirred at room temperature to dissolve. Next, 29.5 parts by weight of BPDA (0.100 mol parts) were added, and the mixture was stirred at room temperature for 3 hours to carry out a polymerization reaction, thereby obtaining a polyamic acid solution j. The solution viscosity of the polyamic acid solution j was 11,200 cps. The glass transition temperature of the polyimide obtained from this polyamic acid solution j was 265°C, and the thermoplasticity and thermal expansion coefficient were 58 (ppm/K).

[実施例1]
厚さ12μmで幅1,080mmの長尺状の電解銅箔の片面に合成例7で調製したポリアミド酸溶液gを硬化後の厚みが2.5μmとなるように均一に塗布した後(第1層目)、120℃で加熱乾燥し溶媒を除去した。その上に合成例1で調製したポリアミド酸溶液aを硬化後の厚みが20μmとなるように均一に塗布した後(第2層目)、120℃で加熱乾燥し溶媒を除去した。更に、その上に合成例7で調製したポリアミド酸溶液gを硬化後の厚みが2.5μmとなるように均一に塗布した後(第3層目)、120℃で加熱乾燥し溶媒を除去した。その後、130℃から360℃まで段階的な熱処理を行い、イミド化を完結して、片面銅張積層板を調製した。
[Example 1]
The polyamic acid solution g prepared in Synthesis Example 7 was uniformly applied to one side of a long electrolytic copper foil having a thickness of 12 μm and a width of 1,080 mm so that the thickness after curing was 2.5 μm (first layer), and then heated and dried at 120 ° C to remove the solvent. The polyamic acid solution a prepared in Synthesis Example 1 was uniformly applied thereon so that the thickness after curing was 20 μm (second layer), and then heated and dried at 120 ° C to remove the solvent. Furthermore, the polyamic acid solution g prepared in Synthesis Example 7 was uniformly applied thereon so that the thickness after curing was 2.5 μm (third layer), and then heated and dried at 120 ° C to remove the solvent. Then, a stepwise heat treatment was performed from 130 ° C to 360 ° C to complete the imidization, and a single-sided copper-clad laminate was prepared.

[実施例2~8および比較例1~3]
電解銅箔の片面にポリアミド酸の樹脂溶液を塗布後、加熱乾燥および段階的な熱処理を行い片面銅張積層板を調製するにあたり、第1層~第3層目に使用した樹脂ならびに厚みを、下記表1に記載した構成に変更したこと以外は、実施例1と同様にして片面銅張積層板を得た。
[Examples 2 to 8 and Comparative Examples 1 to 3]
A polyamic acid resin solution was applied to one side of an electrolytic copper foil, followed by heat drying and stepwise heat treatment to prepare a single-sided copper-clad laminate. A single-sided copper-clad laminate was obtained in the same manner as in Example 1, except that the resins and thicknesses used in the first to third layers were changed to those shown in Table 1 below.

表1に、実施例1~8及び比較例1~3で得た片面銅張積層板の絶縁樹脂層における非熱可塑性ポリイミド層(A)と熱可塑性ポリイミド層(B)との厚み比(非熱可塑性ポリイミド層(A)/熱可塑性ポリイミド層(B))、面内リタデーション(RO)、幅方向(TD方向)の面内リタデーション(RO)のばらつき(ΔRO)及び非熱可塑性ポリイミド層の厚さ方向におけるリタデーションの差(|ROa-ROb|,|ROv-ROa|,|ROv-ROb|)、反り量およびピール強度を示す。また、表2に、実施例1~8及び比較例1~3で得た片面銅張積層板の絶縁樹脂層における面内複屈折率(Δn)、幅方向(TD方向)の面内複屈折率(Δn)のばらつき[Δ(Δn)]及び非熱可塑性ポリイミド層の厚さ方向における複屈折率の差(|Δna-Δnb|,|Δnv-Δna|,|Δnv-Δnb|)を示す。 Table 1 shows the thickness ratio (non-thermoplastic polyimide layer (A)/thermoplastic polyimide layer (B)) of the non-thermoplastic polyimide layer (A) in the insulating resin layer of the single-sided copper-clad laminates obtained in Examples 1 to 8 and Comparative Examples 1 to 3, the in-plane retardation (RO), the variation (ΔRO) of the in-plane retardation (RO) in the width direction (TD direction), and the difference in retardation in the thickness direction of the non-thermoplastic polyimide layer (|ROa-ROb|, |ROv-ROa|, |ROv-ROb|), the amount of warping, and the peel strength. Table 2 also shows the in-plane birefringence (Δn) in the insulating resin layer of the single-sided copper-clad laminates obtained in Examples 1 to 8 and Comparative Examples 1 to 3, the variation in in-plane birefringence (Δn) in the width direction (TD direction) [Δ(Δn)], and the difference in birefringence in the thickness direction of the non-thermoplastic polyimide layer (|Δna-Δnb|, |Δnv-Δna|, |Δnv-Δnb|).

<ICチップ実装性>
実施例1~8および比較例1~3にて作製した片面銅張積層板の銅箔表面にドライフィルムをラミネートし、ドライフィルムレジストをパターニング後、そのパターンに沿って銅箔をエッチングして回路を形成し、回路基板を調製した。得られた回路基板の銅配線側に400℃、0.5秒間のボンディング処理にてICチップを実装したところ、実施例1~8については、銅配線とICチップとの位置ずれはなく、不具合は発生しなかった。一方で、比較例1については、銅配線とICチップとの位置ずれが発生し、比較例2および3については、銅配線とICチップの位置ずれと回路基板の反りが発生し、実装に不具合が生じた。
<IC chip mountability>
A dry film was laminated on the copper foil surface of the single-sided copper-clad laminate prepared in Examples 1 to 8 and Comparative Examples 1 to 3, and the dry film resist was patterned, and the copper foil was etched along the pattern to form a circuit, thereby preparing a circuit board. When an IC chip was mounted on the copper wiring side of the obtained circuit board by bonding treatment at 400°C for 0.5 seconds, there was no misalignment between the copper wiring and the IC chip in Examples 1 to 8, and no problems occurred. On the other hand, there was a misalignment between the copper wiring and the IC chip in Comparative Example 1, and there was a misalignment between the copper wiring and the IC chip and warping of the circuit board in Comparative Examples 2 and 3, resulting in problems with mounting.

Figure 0007465060000005
Figure 0007465060000005

Figure 0007465060000006
Figure 0007465060000006

以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはなく、種々の変形が可能である。

Although the embodiment of the present invention has been described in detail above for the purpose of illustration, the present invention is not limited to the above embodiment, and various modifications are possible.

Claims (8)

絶縁樹脂層と、この絶縁樹脂層の少なくとも片面に積層された金属層とを備えた金属張積層板であって、
前記絶縁樹脂層が、非熱可塑性ポリイミドを含む非熱可塑性ポリイミド層の少なくとも一方の面に熱可塑性ポリイミドを含む熱可塑性ポリイミド層を有し、
前記非熱可塑性ポリイミド及び前記熱可塑性ポリイミドは、テトラカルボン酸残基及びジアミン残基を含むとともに、これらの残基がいずれも芳香族基からなり、
前記絶縁樹脂層が下記の条件(i)~(iv);
(i)面内複屈折率(Δn)の値が2×10-3以下であること;
(ii)幅方向(TD方向)の面内複屈折率(Δn)のばらつき[Δ(Δn)]が4×10-4以下であること;
(iii) 前記非熱可塑性ポリイミド層の厚さ方向において、一方の面を基点とする中央部方向に1.5μmの点における複屈折率(Δna)と、他方の面を基点とする中央部方向に1.5μmの点における複屈折率(Δnb)との差(Δna-Δnb)が±0.01以下であること;
(iv)前記Δna及び前記Δnb並びに厚さ方向の中央部における複屈折率(Δnc)の合計(Δna+Δnb+Δnc)の平均値(Δnv)との差が、前記Δna及びΔnbのいずれにおいても±0.01以下であること;
を満たすことを特徴とする金属張積層板。
A metal-clad laminate comprising an insulating resin layer and a metal layer laminated on at least one surface of the insulating resin layer,
the insulating resin layer has a thermoplastic polyimide layer containing a thermoplastic polyimide on at least one surface of a non-thermoplastic polyimide layer containing a non-thermoplastic polyimide,
the non-thermoplastic polyimide and the thermoplastic polyimide contain a tetracarboxylic acid residue and a diamine residue, and both of these residues are composed of an aromatic group;
The insulating resin layer satisfies the following conditions (i) to (iv):
(i) the value of in-plane birefringence (Δn) is 2×10 −3 or less;
(ii) the variation [Δ(Δn)] of the in-plane birefringence (Δn) in the width direction (TD) is 4×10 −4 or less;
(iii) in the thickness direction of the non-thermoplastic polyimide layer, the difference (Δna-Δnb) between the birefringence (Δna) at a point 1.5 μm away from the center from one surface and the birefringence (Δnb) at a point 1.5 μm away from the center from the other surface is ±0.01 or less;
(iv) the difference between the sum (Δna+Δnb+Δnc) of the Δna and Δnb and the birefringence (Δnc) at the center in the thickness direction and the average value (Δnv) is ±0.01 or less for both Δna and Δnb;
A metal-clad laminate comprising:
前記非熱可塑性ポリイミドは、全ジアミン残基の100モル部に対して、下記一般式(1)で表されるジアミン化合物から誘導されるジアミン残基が20モル部以上であることを特徴とする請求項1に記載の金属張積層板。
Figure 0007465060000007
[一般式(1)において、連結基Zは単結合若しくは-COO-を示し、Yは独立にハロゲン若しくはフェニル基で置換されてもよい炭素数1~3の1価の炭化水素又は炭素数1~3のアルコキシ基、又は炭素数1~3のパーフルオロアルキル基、又はアルケニル基を示し、nは0~2の整数を示し、p及びqは独立に0~4の整数を示す。]
The metal-clad laminate according to claim 1, characterized in that the non-thermoplastic polyimide contains 20 or more molar parts of diamine residues derived from a diamine compound represented by the following general formula (1) per 100 molar parts of all diamine residues.
Figure 0007465060000007
[In general formula (1), the linking group Z represents a single bond or -COO-, Y represents a monovalent hydrocarbon having 1 to 3 carbon atoms, which may be substituted with a halogen or a phenyl group, an alkoxy group having 1 to 3 carbon atoms, a perfluoroalkyl group having 1 to 3 carbon atoms, or an alkenyl group, n represents an integer of 0 to 2, and p and q independently represent integers of 0 to 4.]
前記非熱可塑性ポリイミドに含まれる全ジアミン残基の100モル部に対して、前記一般式(1)で表されるジアミン化合物から誘導されるジアミン残基が70モル部~95モル部の範囲内であり、下記の一般式(2)及び(3)から選ばれるジアミン残基の合計量が5~30モル部の範囲内であることを特徴とする請求項2に記載の金属張積層板。
Figure 0007465060000008
[一般式(2)及び一般式(3)において、R、R、R及びRはそれぞれ独立にハロゲン原子、又は炭素数1~4のハロゲン原子で置換されてもよいアルキル基もしくはアルコキシ基、又はアルケニル基を示し、Xは独立に-O-、-S-、-CH-、-CH(CH)-、-C(CH)-、-CO-、-COO-、-SO-、-NH-又は-NHCO-から選ばれる2価の基を示し、X及びXはそれぞれ独立に単結合、-O-、-S-、-CH-、-CH(CH)-、-C(CH)-、-CO-、-COO-、-SO-、-NH-又は-NHCO-から選ばれる2価の基を示すが、X及びXの両方が単結合である場合を除くものとし、m、n、o及びpは独立に0~4の整数を示す。]
The metal-clad laminate according to claim 2, characterized in that, relative to 100 molar parts of all diamine residues contained in the non-thermoplastic polyimide, the diamine residues derived from the diamine compound represented by the general formula (1) are in the range of 70 molar parts to 95 molar parts, and the total amount of diamine residues selected from the diamine residues represented by the following general formulas (2) and (3) is in the range of 5 to 30 molar parts:
Figure 0007465060000008
[In general formula (2) and general formula (3), R 5 , R 6 , R 7 and R 8 each independently represent a halogen atom, or an alkyl group or alkoxy group having 1 to 4 carbon atoms which may be substituted with a halogen atom, or an alkenyl group; X independently represents a divalent group selected from -O-, -S-, -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, -CO-, -COO-, -SO 2 -, -NH- or -NHCO-; X 1 and X 2 each independently represent a divalent group selected from a single bond, -O-, -S-, -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, -CO-, -COO-, -SO 2 -, -NH- or -NHCO-; and m, n, o and p each independently represent an integer of 0 to 4, except for the case where both of m and n are single bonds.
前記熱可塑性ポリイミドは、全ジアミン残基の100モル部に対して、下記の一般式(2)及び(3)から選ばれるジアミン残基の合計量が50モル部以上であることを特徴とする請求項2又は3に記載の金属張積層板。
Figure 0007465060000009
[一般式(2)及び一般式(3)において、R、R、R及びRはそれぞれ独立にハロゲン原子、又は炭素数1~4のハロゲン原子で置換されてもよいアルキル基もしくはアルコキシ基、又はアルケニル基を示し、Xは独立に-O-、-S-、-CH-、-CH(CH)-、-C(CH)-、-CO-、-COO-、-SO-、-NH-又は-NHCO-から選ばれる2価の基を示し、X及びXはそれぞれ独立に単結合、-O-、-S-、-CH-、-CH(CH)-、-C(CH)-、-CO-、-COO-、-SO-、-NH-又は-NHCO-から選ばれる2価の基を示すが、X及びXの両方が単結合である場合を除くものとし、m、n、o及びpは独立に0~4の整数を示す。]
The metal-clad laminate according to claim 2 or 3, characterized in that the thermoplastic polyimide has a total amount of diamine residues selected from the following general formulas (2) and (3) of 50 parts by mole or more per 100 parts by mole of all diamine residues.
Figure 0007465060000009
[In general formula (2) and general formula (3), R 5 , R 6 , R 7 and R 8 each independently represent a halogen atom, or an alkyl group or alkoxy group having 1 to 4 carbon atoms which may be substituted with a halogen atom, or an alkenyl group; X independently represents a divalent group selected from -O-, -S-, -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, -CO-, -COO-, -SO 2 -, -NH- or -NHCO-; X 1 and X 2 each independently represent a divalent group selected from a single bond, -O-, -S-, -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, -CO-, -COO-, -SO 2 -, -NH- or -NHCO-; and m, n, o and p each independently represent an integer of 0 to 4, except for the case where both of m and n are single bonds.
前記一般式(2)で表されるジアミン残基が、1,3-ビス(4‐アミノフェノキシ)ベンゼンから誘導されるジアミン残基であり、
前記一般式(3)で表されるジアミン残基が、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンから誘導されるジアミン残基であることを特徴とする請求項3又は4に記載の金属張積層板。
the diamine residue represented by the general formula (2) is a diamine residue derived from 1,3-bis(4-aminophenoxy)benzene,
The metal-clad laminate according to claim 3 or 4, characterized in that the diamine residue represented by the general formula (3) is a diamine residue derived from 2,2-bis[4-(4-aminophenoxy)phenyl]propane.
前記非熱可塑性ポリイミド層の厚み(A)と前記熱可塑性ポリイミド層の厚み(B)の厚み比(A)/(B)が1~20の範囲内であることを特徴とする請求項1~5のいずれか1項に記載の金属張積層板。 The metal-clad laminate according to any one of claims 1 to 5, characterized in that the thickness ratio (A)/(B) of the thickness (A) of the non-thermoplastic polyimide layer to the thickness (B) of the thermoplastic polyimide layer is within the range of 1 to 20. 幅方向(TD方向)の長さが490mm以上であることを特徴とする請求項1~6のいずれか1項に記載の金属張積層板。 The metal-clad laminate according to any one of claims 1 to 6, characterized in that the length in the width direction (TD direction) is 490 mm or more. 請求項1~7のいずれか1項に記載の金属張積層板の前記金属層を配線に加工してなる回路基板。 A circuit board obtained by processing the metal layer of the metal-clad laminate described in any one of claims 1 to 7 into wiring.
JP2018161139A 2017-09-29 2018-08-30 Metal-clad laminates and circuit boards Active JP7465060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023001881A JP7453434B2 (en) 2017-09-29 2023-01-10 Metal-clad laminates and circuit boards

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017191989 2017-09-29
JP2017191989 2017-09-29
JP2017254775 2017-12-28
JP2017254775 2017-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023001881A Division JP7453434B2 (en) 2017-09-29 2023-01-10 Metal-clad laminates and circuit boards

Publications (2)

Publication Number Publication Date
JP2019104235A JP2019104235A (en) 2019-06-27
JP7465060B2 true JP7465060B2 (en) 2024-04-10

Family

ID=67060884

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018161139A Active JP7465060B2 (en) 2017-09-29 2018-08-30 Metal-clad laminates and circuit boards
JP2023001881A Active JP7453434B2 (en) 2017-09-29 2023-01-10 Metal-clad laminates and circuit boards

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023001881A Active JP7453434B2 (en) 2017-09-29 2023-01-10 Metal-clad laminates and circuit boards

Country Status (1)

Country Link
JP (2) JP7465060B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188298A (en) 2015-03-30 2016-11-04 新日鉄住金化学株式会社 Polyimide, resin film, metal-clad laminate, and circuit board

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188298A (en) 2015-03-30 2016-11-04 新日鉄住金化学株式会社 Polyimide, resin film, metal-clad laminate, and circuit board

Also Published As

Publication number Publication date
JP2019104235A (en) 2019-06-27
JP7453434B2 (en) 2024-03-19
JP2023052293A (en) 2023-04-11

Similar Documents

Publication Publication Date Title
JP7029006B2 (en) Polyimide film and copper-clad laminate
WO2018061727A1 (en) Polyimide film, copper-clad laminate, and circuit substrate
JP2024059887A (en) Manufacturing method of metal-clad laminate
JP7053208B2 (en) Polyimide film, metal-clad laminate and circuit board
CN109575283B (en) Polyimide film, metal-clad laminate, and circuit board
JP7453432B2 (en) Metal-clad laminates and circuit boards
JP7212518B2 (en) METAL-CLAD LAMINATE, METHOD FOR MANUFACTURING SAME AND CIRCUIT BOARD
JP7428646B2 (en) Metal-clad laminates and circuit boards
JP7248394B2 (en) Polyimide film and metal-clad laminate
JP7230148B2 (en) Metal-clad laminates and circuit boards
JP7405644B2 (en) Metal-clad laminates and circuit boards
JP7465060B2 (en) Metal-clad laminates and circuit boards
JP7465059B2 (en) Metal-clad laminates and circuit boards
JP2019119113A (en) Metal-clad laminate and circuit board
TWI762725B (en) Metal clad laminate and circuit substrate
TW202319444A (en) Polyamide acid, polyimide, polyimide film, metal-clad laminate and circuit
JP2020006562A (en) Production method of metal-clad laminate
JP2020006561A (en) Production method of patterned metal-clad laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221018

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240329

R150 Certificate of patent or registration of utility model

Ref document number: 7465060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150