JP4684601B2 - Manufacturing method of flexible laminated substrate - Google Patents
Manufacturing method of flexible laminated substrate Download PDFInfo
- Publication number
- JP4684601B2 JP4684601B2 JP2004246862A JP2004246862A JP4684601B2 JP 4684601 B2 JP4684601 B2 JP 4684601B2 JP 2004246862 A JP2004246862 A JP 2004246862A JP 2004246862 A JP2004246862 A JP 2004246862A JP 4684601 B2 JP4684601 B2 JP 4684601B2
- Authority
- JP
- Japan
- Prior art keywords
- polyimide
- minutes
- conductor
- resin layer
- polyimide precursor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Laminated Bodies (AREA)
Description
本発明は、フレキシブル積層基板の製造方法に係り、詳しくはポリイミド前駆体樹脂溶液を導体上に直接塗布してフレキシブル積層基板を製造する方法に関する。 The present invention relates to a method for producing a flexible laminated substrate, and more particularly to a method for producing a flexible laminated substrate by directly applying a polyimide precursor resin solution onto a conductor.
フレキシブル積層基板は、可とう性を有するフレキシブル回路基板に用いられるが、中でも、絶縁樹脂層にポリイミド樹脂層を有するフレキシブル積層基板は、優れた耐熱性を有することから広く使用されている。導体層にポリイミド樹脂を設ける手段としては、導体にポリイミド樹脂層を加熱圧着により積層する方法が知られているが、この方法では、特に耐熱性の高いポリイミド樹脂を使用しようとする場合には、エポキシ樹脂等の接着層の必要性が高く、その一方で接着層の存在は、ポリイミド樹脂を用いたフレキシブル積層基板の種々の特性を低下させる要因となっていた。例えば、従来のフレキシブル積層基板は、エポキシ樹脂やウレタン樹脂等の接着剤を用いてポリイミドフィルムを導体上に貼りあわせていたが、接着剤の耐熱性が劣り、ハンダで高温に加熱した際にふくれや剥がれを生じたり、あるいは、回路の難燃性を低下させるという問題があった。また、高温に加熱する際に寸法が変化したり、回路に加工する際に使用される種々の薬品により接着剤が侵されてその接着力が低下するというような問題もあった。 The flexible laminated substrate is used for a flexible circuit substrate having flexibility, and among them, a flexible laminated substrate having a polyimide resin layer as an insulating resin layer is widely used because it has excellent heat resistance. As a means for providing a polyimide resin on the conductor layer, a method of laminating a polyimide resin layer on the conductor by thermocompression bonding is known, but in this method, when trying to use a polyimide resin with particularly high heat resistance, There is a high need for an adhesive layer such as an epoxy resin, while the presence of the adhesive layer has been a factor of deteriorating various characteristics of a flexible laminated substrate using a polyimide resin. For example, a conventional flexible laminated substrate has a polyimide film bonded onto a conductor using an adhesive such as an epoxy resin or a urethane resin, but the heat resistance of the adhesive is inferior, and it is swollen when heated to high temperature with solder. There has been a problem that peeling occurs or the flame retardancy of the circuit is lowered. In addition, there is a problem that the dimensions change when heated to a high temperature, and the adhesive is affected by various chemicals used when processing into a circuit, resulting in a decrease in adhesive strength.
また、導体層にポリイミド樹脂を設ける他の手段としては、導体上に複数層のポリイミド前駆体樹脂を順次塗布して、前駆体樹脂層を熱処理により硬化してフレキシブル積層基板とする方法が特許文献1に示されている。この方法は、導体とポリイミド間の接着力の優れたものが得られるという特徴を有しているが、一方で、導体−ポリイミド樹脂層間の接着力を担保するために多層のポリイミド前駆体樹脂層を形成する必要があり、そのため導体層に隣接する樹脂層の特性の影響を受けたり、多層塗工によるため生産性が低くなるということが指摘されていた。 Further, as another means for providing a polyimide resin on the conductor layer, there is a method in which a plurality of polyimide precursor resins are sequentially applied on a conductor and the precursor resin layer is cured by heat treatment to form a flexible laminated substrate. 1. This method has a feature that an excellent adhesive force between the conductor and the polyimide can be obtained. On the other hand, in order to ensure the adhesive force between the conductor and the polyimide resin layer, a multilayer polyimide precursor resin layer is provided. Therefore, it has been pointed out that it is affected by the characteristics of the resin layer adjacent to the conductor layer and that the productivity is lowered due to the multilayer coating.
したがって、導体上のポリイミド層が単層で良好な特性を有するフレキシブル積層基板が提供できることが望ましい。特許文献2には、導体上にポリイミド前駆体であるポリアミック酸ワニスを塗布、乾燥し、硬化処理した例がいくつか示されているが、その目的は、フレキシブル積層基板の熱履歴によるカール、ねじれ、反りを抑制しようとするもので、形成されるポリイミドフィルムの線膨張係数も比較的大きいものであった。実際問題として、ポリイミドの耐熱性や導体−ポリイミド樹脂層間の接着力を保持したままフレキシブル積層基板を製造することは困難とされてきた。特に、近年においては、配線回路のファインパターン化が進む中、これに対応するために使用される銅箔も低粗度のものが選択され、単層のポリイミド樹脂層により上記諸特性に優れたフレキシブル積層基板を製造する方法の開発が望まれていた。 Accordingly, it is desirable to provide a flexible laminated substrate having a single layer of polyimide layer on the conductor and good characteristics. Patent Document 2 shows several examples in which a polyamic acid varnish, which is a polyimide precursor, is applied onto a conductor, dried, and cured. Its purpose is curling and twisting due to the thermal history of a flexible laminated substrate. In order to suppress warpage, the linear expansion coefficient of the formed polyimide film was relatively large. As a matter of fact, it has been difficult to produce a flexible laminated substrate while maintaining the heat resistance of polyimide and the adhesive strength between conductor-polyimide resin layers. In particular, in recent years, with the progress of fine patterning of wiring circuits, the copper foil used to cope with this has been selected to have a low roughness, and a single polyimide resin layer has excellent characteristics described above. Development of a method for manufacturing a flexible laminated substrate has been desired.
本発明は上記のような従来技術の問題点に鑑みて、高耐熱性を有し、かつ線膨張係数の低いポリイミド樹脂層を与えるポリイミド前駆体樹脂を直接導体上に塗布して、優れたポリイミド樹脂層の特性を保持し、また、導体−ポリイミド樹脂層の接着力も良好なフレキシブル積層基板を製造する方法を提供することを目的とする。 In view of the above-mentioned problems of the prior art, the present invention directly applies a polyimide precursor resin that provides a polyimide resin layer having high heat resistance and a low coefficient of linear expansion to an excellent polyimide. It is an object of the present invention to provide a method for producing a flexible laminated substrate that retains the properties of a resin layer and also has good adhesion between a conductor and a polyimide resin layer.
本発明者等は、上記課題について鋭意検討を重ねた結果、フレキシブル積層基板を製造するにあたり、導体上に塗布されるポリイミド前駆体樹脂溶液に、特定の特性を与えるポリイミド前駆体樹脂を使用し、更にその硬化条件等を制御することで本発明の目的を解決しうることを見出し、本発明を完成した。
すなわち、本発明は、ポリイミド前駆体樹脂溶液を導体上に直接塗布、乾燥した後、熱処理により硬化させて導体層とポリイミド樹脂層とからなるフレキシブル積層基板を製造する方法において、導体層のポリイミド前駆体樹脂溶液塗布面の表面粗さ(Rz)が0.6〜1.6μmであり、導体層に直接塗布するポリイミド前駆体樹脂に、硬化後のポリイミド樹脂層のガラス転移温度(Tg)が350℃以上でかつ線膨張係数が20×10-6/K以下となるポリイミド前駆体樹脂を使用し、ポリイミド前駆体樹脂を硬化する際の最高硬化温度(CT)を下記式(1)の範囲とするフレキシブル積層基板の製造方法である。
Tg < CT <Td2 (1)
ここで、Tgはポリイミド樹脂層のガラス転移温度であり、CTはポリイミド前駆体樹脂を硬化する際の最高硬化温度であり、Td2はポリイミド樹脂層の2%重量減少温度である。
As a result of intensive studies on the above problems, the present inventors have used a polyimide precursor resin that gives specific characteristics to the polyimide precursor resin solution applied onto the conductor in producing a flexible laminated substrate, Furthermore, the inventors have found that the object of the present invention can be solved by controlling the curing conditions and the like, thereby completing the present invention.
That is, the present invention is directly applied to the polyimide precursor resin solution on a conductor, dried, in the method for producing a flexible laminate substrate comprising a cured conductive layer and the polyimide resin layer by heat treatment, the polyimide precursor of the conductive layer The surface roughness (Rz) of the body resin solution application surface is 0.6 to 1.6 μm, and the polyimide precursor resin applied directly to the conductor layer has a glass transition temperature (Tg) of the cured polyimide resin layer of 350 ° C. or higher. A flexible laminate that uses a polyimide precursor resin with a linear expansion coefficient of 20 × 10 -6 / K or less, and the maximum curing temperature (CT) when curing the polyimide precursor resin is in the range of the following formula (1) A method for manufacturing a substrate.
Tg <CT <Td2 (1)
Here, Tg is a glass transition temperature of the polyimide resin layer, CT is a maximum curing temperature when the polyimide precursor resin is cured, and Td2 is a 2% weight reduction temperature of the polyimide resin layer.
以下、本発明を更に説明する。
本発明では、ポリイミド前駆体樹脂溶液(以下、前駆体樹脂溶液ともいう。)を導体上に直接塗布する。ポリイミド前駆体樹脂溶液が塗布される導体は、導電性を有する金属箔であることが望ましい。金属箔としては、銅箔、ステンレス箔、銅合金箔等がある。ここで、銅合金箔とは銅箔を必須として含有し、クロム、ニッケル、亜鉛、珪素等の元素を少なくとも1種以上含有し、銅含有率90%以上の金属箔を言う。金属箔を使用する場合、亜鉛メッキ、ニッケルメッキ、シランカップリング剤等による表面処理を施してもよい。
The present invention will be further described below.
In the present invention, a polyimide precursor resin solution (hereinafter also referred to as a precursor resin solution) is directly applied onto a conductor. The conductor to which the polyimide precursor resin solution is applied is desirably a conductive metal foil. Examples of the metal foil include copper foil, stainless steel foil, and copper alloy foil. Here, the copper alloy foil refers to a metal foil containing copper foil as an essential element, containing at least one element such as chromium, nickel, zinc, silicon, etc., and having a copper content of 90% or more. When using metal foil, surface treatment with zinc plating, nickel plating, silane coupling agent or the like may be performed.
近年、金属配線のファインピッチ化に伴い、薄い金属箔が好まれて使用されている。そのような観点から、好ましい金属箔の厚みは5〜35μm、更に好ましくは8〜18μmの範囲である。また、使用する金属箔は、ポリイミド樹脂と接する面の表面粗度(Rz)が1.0μm以下であることが好ましく、0.5〜1.0μmの範囲であることがより好ましい。表面粗度が0.5μm未満の場合、金属箔とポリイミド樹脂層との接着性が不足するおそれがあり、1.0μmを超える場合、近年のファインピッチ化に対応するに好ましくない傾向となり、また、回路加工時に発生するポリイミド樹脂層への金属成分の根残りも懸念される。 In recent years, with the fine pitch of metal wiring, thin metal foil has been favored and used. From such a viewpoint, the preferable thickness of the metal foil is in the range of 5 to 35 μm, more preferably 8 to 18 μm. Further, the metal foil to be used preferably has a surface roughness (Rz) of a surface in contact with the polyimide resin of 1.0 μm or less, and more preferably in the range of 0.5 to 1.0 μm. If the surface roughness is less than 0.5 μm, the adhesion between the metal foil and the polyimide resin layer may be insufficient, and if it exceeds 1.0 μm, it tends to be unfavorable to cope with the recent fine pitch, and the circuit There is also concern about the root of the metal component on the polyimide resin layer generated during processing.
導体に塗布されるポリイミド前駆体樹脂は、硬化後のポリイミド樹脂のガラス転移温度(Tg)が350℃以上のものを与えるもので、かつ、硬化後の線膨張係数が20×10-6/K以下のものであれば特に限定されるものではないが、好ましくはTgが350〜450℃のもので、線膨張係数が1×10-7/K〜20×10-6/Kの範囲にあるものがよい。ポリイミド樹脂の有利な線膨張係数の範囲は、1×10-7/K〜10×10-6/Kの範囲である。 The polyimide precursor resin applied to the conductor gives a cured polyimide resin having a glass transition temperature (Tg) of 350 ° C. or higher, and a linear expansion coefficient after curing of 20 × 10 −6 / K. It is not particularly limited as long as it is as follows, but preferably has a Tg of 350 to 450 ° C. and a linear expansion coefficient in the range of 1 × 10 −7 / K to 20 × 10 −6 / K. Things are good. An advantageous linear expansion coefficient range of the polyimide resin is in the range of 1 × 10 −7 / K to 10 × 10 −6 / K.
このような特性を有するポリイミド樹脂は、公知のジアミノ化合物とテトラカルボン酸又はその無水物を適宜選定し、これらを組み合わせて有機溶剤中で反応させて得ることができる。本発明でポリイミド樹脂という場合、分子中にイミド結合を有するポリイミド樹脂やポリアミドイミド樹脂を主成分とするものであり、上記特性を満足する限り、必ずしも単一なポリイミド樹脂である必要はなく、場合によっては他の樹脂との混合物であってもよい。他の樹脂との混合物である場合、その他の樹脂は30%以下、好ましくは20%以下とすることがよい。また、少量であれば無機充填材を配合してもよいが、これらの配合は本発明のフレキシブル積層板の有する耐折性や回路加工性を損なうおそれがあるため、微量に留めることが好ましく、実質的にポリイミド樹脂からなるものとすることが有利である。 A polyimide resin having such characteristics can be obtained by appropriately selecting a known diamino compound and tetracarboxylic acid or an anhydride thereof and combining them in an organic solvent. In the case of the polyimide resin in the present invention, the main component is a polyimide resin or polyamide-imide resin having an imide bond in the molecule, and it is not always necessary to be a single polyimide resin as long as the above characteristics are satisfied. Depending on the case, it may be a mixture with other resins. In the case of a mixture with other resins, the other resins should be 30% or less, preferably 20% or less. In addition, inorganic fillers may be blended in a small amount, but since these blends may impair the folding resistance and circuit processability of the flexible laminate of the present invention, it is preferable to keep a small amount, It is advantageous to consist essentially of polyimide resin.
本発明において、好ましいポリイミド樹脂層を与えるポリイミド前駆体樹脂としては、下記一般式(2)で示される構成単位を有するポリイミド前駆体樹脂が挙げられる。
ポリイミド前駆体樹脂は、通常適当な溶媒に溶解された前駆体樹脂溶液の状態で導体上に塗布される。このポリイミド前駆体樹脂溶液を直接導体上に塗布することで、導体−ポリイミド樹脂の安定した接着強度を得ることができる。塗布する手段は特に限定されるものではなく、例えば、バーコード方式、グラビアコート方式、ロールコート方式、ダイコート方式等が挙げられるが、樹脂溶液に泡が巻き込まれないことからダイコート方式が好ましい。 The polyimide precursor resin is usually applied onto the conductor in the form of a precursor resin solution dissolved in a suitable solvent. By applying this polyimide precursor resin solution directly on the conductor, a stable adhesive strength of the conductor-polyimide resin can be obtained. The means for applying is not particularly limited, and examples thereof include a bar code method, a gravure coating method, a roll coating method, a die coating method, and the like, but a die coating method is preferable because bubbles are not involved in the resin solution.
導体上に塗布されたポリイミド前駆体樹脂層は、溶媒をある程度除去するために溶媒の含有割合がある適当な範囲にまで乾燥される。この際の乾燥温度は、ポリイミド前駆体樹脂層のイミド化が進行しない程度の温度で行うことが好ましく、具体的には、150℃以下であることがよく、110〜140℃の範囲が好ましい。また、この乾燥工程でポリイミド前駆体樹脂層に含まれる溶媒量をポリイミド前駆体樹脂100重量部に対して、50重量部以下にしておくことが望ましい。 The polyimide precursor resin layer applied on the conductor is dried to an appropriate range having a solvent content in order to remove the solvent to some extent. In this case, the drying temperature is preferably such that the imidization of the polyimide precursor resin layer does not proceed. Specifically, the drying temperature is preferably 150 ° C. or less, and preferably in the range of 110 to 140 ° C. In addition, it is desirable that the amount of the solvent contained in the polyimide precursor resin layer in this drying step is 50 parts by weight or less with respect to 100 parts by weight of the polyimide precursor resin.
以上のように、導体上にポリイミド前駆体樹脂溶液を塗布、乾燥したら、導体上のポリイミド前駆体樹脂層は更に加熱処理され熱硬化される。ここでいう硬化とは、イミド化反応を強制的に進めて樹脂の硬化を促す工程をいう。このイミド化反応は、通常150℃を越える温度、特に160℃を越える温度で速やかに進行する。上記のように一定量以上の溶媒を蒸発させた後、150℃を越える温度で硬化を行うのであるが、この硬化工程において、温度を急激に上昇させると樹脂の発泡が起こるおそれがあるので、多段階熱処理若しくは連続昇温処理を行うのが好ましい。この場合、150℃付近から複数段、段階的に昇温させて、最終的には、ポリイミド樹脂層のガラス転移温度(Tg)よりも高い温度に加熱される。但し、イミド化のための加熱温度が高すぎるとポリイミド樹脂層の劣化を招くので、その加熱温度はポリイミド樹脂層の2重量%減少の熱分解温度(Td2)よりも低くする必要がある。したがって、本発明においてポリイミド前駆体樹脂を硬化する際の最高硬化温度(CT)は、上記式(1)の要件を満たす必要があることとなる。ガラス転移温度(Tg)よりも高い温度に加熱することにより硬化が迅速に進み、また、ポリイミドと導体間の接着強度を高くすることができ、2重量%減少の熱分解温度(Td2)よりも低くすることにより硬化時間が多少長くなるとしてもポリイミド樹脂の変質が許容範囲に抑えられる。 As described above, when the polyimide precursor resin solution is applied on the conductor and dried, the polyimide precursor resin layer on the conductor is further heat-treated and thermally cured. Curing as used herein refers to a step of forcibly promoting imidization reaction to promote resin curing. This imidization reaction usually proceeds rapidly at a temperature exceeding 150 ° C., particularly at a temperature exceeding 160 ° C. After evaporating a certain amount or more of the solvent as described above, curing is performed at a temperature exceeding 150 ° C. In this curing process, if the temperature is rapidly increased, foaming of the resin may occur. It is preferable to perform multistage heat treatment or continuous temperature increase treatment. In this case, the temperature is raised stepwise from around 150 ° C. in stages, and finally heated to a temperature higher than the glass transition temperature (Tg) of the polyimide resin layer. However, if the heating temperature for imidization is too high, the polyimide resin layer is deteriorated, so that the heating temperature needs to be lower than the thermal decomposition temperature (Td2) of 2% by weight reduction of the polyimide resin layer. Therefore, the maximum curing temperature (CT) for curing the polyimide precursor resin in the present invention needs to satisfy the requirement of the above formula (1). Curing proceeds rapidly by heating to a temperature higher than the glass transition temperature (Tg), and the adhesive strength between the polyimide and the conductor can be increased, and the thermal decomposition temperature (Td2) is reduced by 2% by weight. Even if the curing time becomes somewhat longer by lowering, the alteration of the polyimide resin can be suppressed within an allowable range.
このような乾燥工程、硬化工程は任意のプロセスを採用することができるが、塗布された導体が、装置に接触しないフローティング形式のものを使用することが好ましい。フローティング形式とは、導体を気流中に浮遊させた状態で乾燥及び硬化を行うものであり、導体を連続的に走行させつつ、導体面に対して上または下に配置したノズルから均一に気流を導体面に向けて吹き出し、走行する導体を浮遊させると共に、波を打つように湾曲しながら走行させるものである。加熱は熱風を気流として吹き出すことにより行うことが好ましいが、赤外線加熱、電磁誘導加熱等を使用又は併用してもよい。加熱雰囲気としては空気や、窒素、炭素ガス、アルゴン等の不活性ガス等のいずれも選択可能である。 Although any process can be adopted as such a drying step and a curing step, it is preferable to use a floating type in which the applied conductor does not contact the apparatus. In the floating type, the conductor is dried and cured in a state where it is suspended in the airflow, and the airflow is uniformly generated from nozzles arranged above or below the conductor surface while the conductor is continuously running. The conductor is blown out toward the conductor surface, and the running conductor is floated, and it is made to travel while curving so as to hit a wave. Heating is preferably performed by blowing hot air as an air stream, but infrared heating, electromagnetic induction heating, or the like may be used or used in combination. As the heating atmosphere, any of air, an inert gas such as nitrogen, carbon gas, and argon can be selected.
このようにして製造されたフレキシブル積層基板は、導体上に直接350℃以上のTgを有し、かつ線膨張係数が20×10-6/K以下のポリイミド樹脂層を有する。かかるフレキシブル積層基板の絶縁樹脂層は上記特性を有する単層のポリイミド樹脂層のみによって形成されていることが望ましいが、本発明の目的に反しない範囲で、ポリイミド樹脂層の上に他の層を設けてもよい。しかし、少なくとも導体層に接して直接塗布するポリイミド樹脂溶液から形成されるポリイミド樹脂層(第1層のポリイミド樹脂層ともいう)は、上記特性を満足する必要がある。他の層としては、上記以外のポリイミド樹脂層が好ましい。構成される層構造としては、M/PI-a、M/ PI-a /PI-b、M/PI-a/M、 M/ PI-a /PI-b/Mが例示される。ここで、Mは金属箔を、PI-aは第1層のポリイミド樹脂層であり、350℃以上のTgを有しかつ線膨張係数が20×10-6/K以下のポリイミド樹脂層を、PI-bはその他のポリイミド樹脂層を示す。イミド化が完了した樹脂層の上には、必要に応じて金属箔を積層してもよい。 The flexible laminated substrate manufactured in this way has a polyimide resin layer having a Tg of 350 ° C. or more directly on the conductor and a linear expansion coefficient of 20 × 10 −6 / K or less. It is desirable that the insulating resin layer of such a flexible laminated substrate is formed only by a single-layer polyimide resin layer having the above characteristics, but other layers may be formed on the polyimide resin layer within a range not departing from the object of the present invention. It may be provided. However, at least a polyimide resin layer (also referred to as a first polyimide resin layer) formed from a polyimide resin solution applied directly in contact with the conductor layer needs to satisfy the above characteristics. As the other layer, a polyimide resin layer other than the above is preferable. Examples of the layer structure configured include M / PI-a, M / PI-a / PI-b, M / PI-a / M, and M / PI-a / PI-b / M. Here, M is a metal foil, PI-a is a first polyimide resin layer, a polyimide resin layer having a Tg of 350 ° C. or more and a linear expansion coefficient of 20 × 10 −6 / K or less, PI-b represents another polyimide resin layer. A metal foil may be laminated on the resin layer that has been imidized, if necessary.
本発明によれば、ポリイミドの特徴である耐熱性と寸法安定性を生かしたままで、更に、導体−ポリイミド樹脂間の良好な接着力を有するフレキシブル積層基板を製造することができる。本発明の製造方法は、粗度の小さな金属箔を使用した場合にも適用できることから、近年の高耐熱、ファインパターン加工性の要求に応えたフレキシブル積層基板とすることができる。 ADVANTAGE OF THE INVENTION According to this invention, the flexible laminated substrate which has the favorable adhesive force between conductor-polyimide resin can be manufactured further, making use of the heat resistance and dimensional stability which are the characteristics of a polyimide. Since the manufacturing method of the present invention can be applied even when a metal foil having a low roughness is used, a flexible laminated substrate meeting the recent demands for high heat resistance and fine pattern workability can be obtained.
以下、実施例及び比較例に基づいて、本発明を具体的に説明するが、本発明はこれらの実施例に限定されないことは勿論である。なお、本発明の製造方法によって得られたフレキシブル積層基板の各特性の評価は下記の測定法によるものである。 EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example and a comparative example, of course, this invention is not limited to these Examples. In addition, evaluation of each characteristic of the flexible laminated substrate obtained by the manufacturing method of this invention is based on the following measuring method.
1)線膨張係数(CTE):3mm ×15mmのサイズのポリイミドフィルムを、熱機械分析(TMA)装置にて5.0gの荷重を加えながら一定の昇温速度で30℃から260℃の温度範囲で引張り試験を行った。温度に対するフィルムの伸び量から線膨張係数を測定した。
2)ガラス転移温度(Tg):10mm×22.6mmのサイズのポリイミドフィルムを、動的熱機械分析装置(DMA)にて20℃から500℃まで5℃/minで昇温させたときの動的粘弾性を測定し、ガラス転移温度(tanδ極大値)を求めた。
3)2%重量減少温度(Td2):10〜20mgの重さのポリイミドフィルムを、熱重量分析(TG)装置にて、一定の速度で30℃から500℃まで昇温させたときの重量変化を測定し、2%の重量減少が生じた温度をTd2%とした。
4)表面粗度(Rz):KLA テンコール(株式会社製P-15)にて、Force2mg、Speed20μm、Range800μmで測定した。測定は5回で行い、その平均値を求めた。
5)接着力:テンションテスターを用い、幅10mmの銅張品の樹脂側を両面テープによりアルミ板に固定し、銅を180°方向に50mm/minの速度で剥離して求めた。
1) Coefficient of linear expansion (CTE): Polyimide film of 3mm x 15mm size is applied in a temperature range from 30 ° C to 260 ° C at a constant temperature increase rate while applying a 5.0g load with a thermomechanical analysis (TMA) device A tensile test was performed. The linear expansion coefficient was measured from the amount of elongation of the film with respect to temperature.
2) Glass transition temperature (Tg): Dynamic when a polyimide film of size 10mm x 22.6mm is heated from 20 ° C to 500 ° C at 5 ° C / min with a dynamic thermomechanical analyzer (DMA) The viscoelasticity was measured and the glass transition temperature (tan δ maximum value) was determined.
3) 2% weight loss temperature (Td2): Change in weight when a polyimide film weighing 10-20 mg is heated from 30 ° C to 500 ° C at a constant rate using a thermogravimetric analysis (TG) device Was measured, and the temperature at which 2% weight loss occurred was defined as Td2%.
4) Surface roughness (Rz): Measured with KLA Tencor (P-15, Inc.) at Force2mg, Speed20μm, Range800μm. The measurement was performed 5 times, and the average value was obtained.
5) Adhesion force: Using a tension tester, the resin side of a copper-clad product with a width of 10 mm was fixed to an aluminum plate with double-sided tape, and copper was peeled in a 180 ° direction at a speed of 50 mm / min.
各例における略号は以下のとおりである。
PMDA:ピロメリット酸二無水物
BPDA: 3,3',4,4'-ビフェニルテトラカルボン酸二無水物
BAPP:2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン
m-TB:2,2'-ジメチル-4,4'-ジアミノビフェニル
TPE-R: 1,3-ビス-(4-アミノフェノキシ)ベンゼン
DAPE:4,4'-ジアミノジフェニルエーテル
MABA:2'-メチル-4,4'-ジアミノベンズアニリド
DMAc:ジメチルアセトアミド
Abbreviations in each example are as follows.
PMDA: pyromellitic dianhydride
BPDA: 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride
BAPP: 2,2-bis [4- (4-aminophenoxy) phenyl] propane
m-TB: 2,2'-dimethyl-4,4'-diaminobiphenyl
TPE-R: 1,3-bis- (4-aminophenoxy) benzene
DAPE: 4,4'-diaminodiphenyl ether
MABA: 2'-methyl-4,4'-diaminobenzanilide
DMAc: Dimethylacetamide
合成例1
MABA 20モルとDAPE 20モルをDMAc 124kgに溶解した後、10℃に冷却し、PMDA 40モルを徐々に加えて、反応させ、粘調なポリイミド前駆体樹脂溶液(ポリアミック酸A)を得た。得られた樹脂溶液を用い、フィルム状に塗布、乾燥、硬化させて所定のポリイミドフィルムとした。このTgは372℃、CTEは15ppm/K、Td2は435℃であった。
Synthesis example 1
After 20 mol of MABA and 20 mol of DAPE were dissolved in 124 kg of DMAc, the mixture was cooled to 10 ° C., and 40 mol of PMDA was gradually added to react to obtain a viscous polyimide precursor resin solution (polyamic acid A). Using the obtained resin solution, it was applied to a film, dried and cured to obtain a predetermined polyimide film. This Tg was 372 ° C., CTE was 15 ppm / K, and Td 2 was 435 ° C.
合成例2
m-TB 34モルとDAPE 6モルをDMAc124kgに溶解した後、10℃に冷却し、PMDA 36モルとBPDA 4モルを徐々に加えて、反応させ、粘調なポリイミド前駆体樹脂溶液(ポリアミック酸B)を得た。このポリイミドフィルムのTgは362℃、CTEは6ppm/K、Td2は500℃であった。
Synthesis example 2
After dissolving 34 mol of m-TB and 6 mol of DAPE in 124 kg of DMAc, the mixture was cooled to 10 ° C., gradually added with 36 mol of PMDA and 4 mol of BPDA, reacted, and a viscous polyimide precursor resin solution (polyamic acid B) ) The polyimide film had Tg of 362 ° C., CTE of 6 ppm / K, and Td 2 of 500 ° C.
電解銅箔(厚さ35μm、Rz=1.6)の粗面上にポリアミック酸Bを、最終の樹脂層の厚みが20μmとなるように、塗布し、循環式熱風オーブン中で130℃で14分間乾燥した。次いで、160℃で4分、200℃で2分、230℃で2分、280℃で2分、320℃で2分、及び380℃で2分順次熱処理して硬化させた。得られたフレキシブル積層基板の導体−ポリイミドの接着力は、1.31kN/mであった。また、各特性と接着力を表1に示す。 Polyamic acid B was coated on the rough surface of electrolytic copper foil (thickness 35μm, Rz = 1.6) so that the final resin layer thickness would be 20μm, and dried in a circulating hot air oven at 130 ° C for 14 minutes. did. Then, it was cured by sequential heat treatment at 160 ° C. for 4 minutes, 200 ° C. for 2 minutes, 230 ° C. for 2 minutes, 280 ° C. for 2 minutes, 320 ° C. for 2 minutes, and 380 ° C. for 2 minutes. The conductor-polyimide adhesive force of the obtained flexible laminated substrate was 1.31 kN / m. In addition, Table 1 shows each characteristic and adhesive strength.
圧延銅箔(厚さ12μm、Rz=1.3)の粗面上にポリアミック酸Bを、最終の樹脂層の厚みが20μmとなるように、塗布し、循環式熱風オーブン中で130℃で14分間乾燥した。次いで、160℃で4分、200℃で2分、230℃で2分、280℃で2分、320℃で2分、360℃で2分、400℃で2分、及び、420℃で2分順次熱処理して硬化させた。各特性と接着力を表1に示す。 Polyamic acid B is coated on the rough surface of rolled copper foil (thickness 12μm, Rz = 1.3) so that the final resin layer thickness is 20μm, and dried in a circulating hot air oven at 130 ° C for 14 minutes. did. Then 160 ° C for 4 minutes, 200 ° C for 2 minutes, 230 ° C for 2 minutes, 280 ° C for 2 minutes, 320 ° C for 2 minutes, 360 ° C for 2 minutes, 400 ° C for 2 minutes, and 420 ° C for 2 minutes. It was cured by heat treatment sequentially. Each characteristic and adhesive force are shown in Table 1.
実施例1で使用したと同じ電解銅箔の粗面上にポリアミック酸Aを、最終の樹脂層の厚みが20μmとなるように、塗布し、循環式熱風オーブン中で130℃で14分間乾燥した。ついで、160℃で4分、200℃で2分、230℃で2分、280℃で2分、320℃で2分、380℃で2分、及び400℃で2分順次熱処理して硬化させた。各特性と接着力を表1に示す。 Polyamic acid A was applied onto the same rough surface of the electrolytic copper foil as used in Example 1 so that the final resin layer had a thickness of 20 μm, and dried in a circulating hot air oven at 130 ° C. for 14 minutes. . Next, heat cure for 4 minutes at 160 ° C, 2 minutes at 200 ° C, 2 minutes at 230 ° C, 2 minutes at 280 ° C, 2 minutes at 320 ° C, 2 minutes at 380 ° C, and 2 minutes at 400 ° C. It was. Each characteristic and adhesive force are shown in Table 1.
圧延銅箔(厚さ35μm、Rz=0.6)の粗面上にポリアミック酸Bを、最終の樹脂層の厚みが20μmとなるように、塗布した。これを、実施例2と同様にして130℃で14分間乾燥し、160℃で4分、200℃で2分、230℃で2分、280℃で2分、320℃で2分、360℃で2分、400℃で2分、及び、420℃で2分順次熱処理して硬化させた。各特性と接着力を表1に示す。 Polyamic acid B was applied on the rough surface of the rolled copper foil (thickness 35 μm, Rz = 0.6) so that the final resin layer had a thickness of 20 μm. This was dried at 130 ° C. for 14 minutes in the same manner as in Example 2. 160 ° C. for 4 minutes, 200 ° C. for 2 minutes, 230 ° C. for 2 minutes, 280 ° C. for 2 minutes, 320 ° C. for 2 minutes, 360 ° C. For 2 minutes at 400 ° C., 2 minutes at 400 ° C., and 2 minutes at 420 ° C. for curing. Each characteristic and adhesive force are shown in Table 1.
比較例1
実施例1で使用したと同じ電解銅箔の粗面上にポリアミック酸Bを、最終の樹脂層の厚みが20μmとなるように、塗布し、循環式熱風オーブン中で130℃で14分間乾燥した。次いで、160℃で4分、200℃で2分、230℃で2分、280℃で2分、320℃で2分順次熱処理して硬化させた。各特性と接着力を表1に示す。
Comparative Example 1
On the rough surface of the same electrolytic copper foil used in Example 1, polyamic acid B was applied so that the final resin layer had a thickness of 20 μm, and dried in a circulating hot air oven at 130 ° C. for 14 minutes. . Then, it was cured by heat treatment successively at 160 ° C. for 4 minutes, 200 ° C. for 2 minutes, 230 ° C. for 2 minutes, 280 ° C. for 2 minutes, and 320 ° C. for 2 minutes. Each characteristic and adhesive force are shown in Table 1.
比較例2
実施例2で使用したと同じ圧延銅箔の粗面上にポリアミック酸Bを、最終の樹脂層の厚みが20μmとなるように、塗布し、循環式熱風オーブン中で130℃で14分間乾燥した。次いで、160℃で4分、200℃で2分、230℃で2分、280℃で2分、320℃で2分順次熱処理して硬化させた。各特性と接着力を表1に示す。
Comparative Example 2
Polyamic acid B was applied on the same rough surface of the rolled copper foil as used in Example 2 so that the final resin layer had a thickness of 20 μm, and dried in a circulating hot air oven at 130 ° C. for 14 minutes. . Then, it was cured by heat treatment successively at 160 ° C. for 4 minutes, 200 ° C. for 2 minutes, 230 ° C. for 2 minutes, 280 ° C. for 2 minutes, and 320 ° C. for 2 minutes. Each characteristic and adhesive force are shown in Table 1.
比較例3
実施例1で使用したと同じ電解銅箔の粗面上にポリアミック酸Aを、最終の樹脂層の厚みが20μmとなるように、塗布し、循環式熱風オーブン中で130℃で14分間乾燥した。次いで、160℃で4分、200℃で2分、230℃で2分、280℃で2分、320℃で2分順次熱処理して硬化させた。各特性と接着力を表1に示す。
Comparative Example 3
Polyamic acid A was applied onto the same rough surface of the electrolytic copper foil as used in Example 1 so that the final resin layer had a thickness of 20 μm, and dried in a circulating hot air oven at 130 ° C. for 14 minutes. . Then, it was cured by heat treatment successively at 160 ° C. for 4 minutes, 200 ° C. for 2 minutes, 230 ° C. for 2 minutes, 280 ° C. for 2 minutes, and 320 ° C. for 2 minutes. Each characteristic and adhesive force are shown in Table 1.
比較例4
実施例4で使用したと同じ圧延銅箔の粗面上にポリアミック酸Bを、最終の樹脂層の厚みが20μmとなるように、塗布し、循環式熱風オーブン中で130℃で14分間乾燥した。次いで、160℃で4分、200℃で2分、230℃で2分、280℃で2分、320℃で2分順次熱処理して硬化させた。各特性と接着力を表1に示す。
Comparative Example 4
Polyamic acid B was applied onto the rough surface of the same rolled copper foil as used in Example 4 so that the final resin layer had a thickness of 20 μm, and dried in a circulating hot air oven at 130 ° C. for 14 minutes. . Then, it was cured by heat treatment successively at 160 ° C. for 4 minutes, 200 ° C. for 2 minutes, 230 ° C. for 2 minutes, 280 ° C. for 2 minutes, and 320 ° C. for 2 minutes. Each characteristic and adhesive force are shown in Table 1.
Claims (3)
Tg < CT <Td2 (1)
Tg:ポリイミド樹脂層のガラス転移温度
CT:ポリイミド前駆体樹脂を硬化する際の最高硬化温度
Td2:ポリイミド樹脂層の2%重量減少温度
In a method for producing a flexible laminated substrate comprising a conductor layer and a polyimide resin layer by directly applying and drying a polyimide precursor resin solution on a conductor and then drying it by heat treatment, the polyimide precursor resin solution coated surface of the conductor layer The surface roughness (Rz) is 0.6 to 1.6 μm, the glass transition temperature (Tg) of the cured polyimide resin layer as a polyimide precursor resin applied on the conductor is 350 ° C. or higher, and the linear expansion coefficient is 20 ×. A flexible multilayer board characterized by using a polyimide precursor resin of 10 −6 / K or less and setting the maximum curing temperature (CT) when curing the polyimide precursor resin within the range of the following formula (1) Manufacturing method.
Tg <CT <Td2 (1)
Tg: Glass transition temperature of polyimide resin layer
CT: Maximum curing temperature when curing polyimide precursor resin
Td2: 2% weight loss temperature of polyimide resin layer
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004246862A JP4684601B2 (en) | 2004-08-26 | 2004-08-26 | Manufacturing method of flexible laminated substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004246862A JP4684601B2 (en) | 2004-08-26 | 2004-08-26 | Manufacturing method of flexible laminated substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006062187A JP2006062187A (en) | 2006-03-09 |
JP4684601B2 true JP4684601B2 (en) | 2011-05-18 |
Family
ID=36109075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004246862A Expired - Fee Related JP4684601B2 (en) | 2004-08-26 | 2004-08-26 | Manufacturing method of flexible laminated substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4684601B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4797816B2 (en) * | 2006-06-12 | 2011-10-19 | 三菱瓦斯化学株式会社 | Method for manufacturing printed wiring board |
JP4962056B2 (en) * | 2007-03-09 | 2012-06-27 | 東洋紡績株式会社 | Copper-clad laminated film and method for producing the same |
JP5524475B2 (en) * | 2008-11-28 | 2014-06-18 | 株式会社有沢製作所 | Two-layer double-sided flexible metal laminate and its manufacturing method |
US9321677B2 (en) | 2014-01-29 | 2016-04-26 | Corning Incorporated | Bendable glass stack assemblies, articles and methods of making the same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6384188A (en) * | 1986-09-29 | 1988-04-14 | 新日鐵化学株式会社 | Manufacture of flexible printed circuit substrate |
JPH02150453A (en) * | 1988-12-01 | 1990-06-08 | Sumitomo Bakelite Co Ltd | Polyimide film and its production |
JPH02180682A (en) * | 1988-12-29 | 1990-07-13 | Nippon Steel Chem Co Ltd | Preparation of board for flexible printed wiring |
WO2003097725A1 (en) * | 2002-05-21 | 2003-11-27 | Kaneka Corporation | Polyimide film and method for production thereof, and polyimide/metal laminate using polyimide |
JP2004142183A (en) * | 2002-10-23 | 2004-05-20 | Mitsui Chemicals Inc | Polyimide metallic foil laminate |
JP2005271374A (en) * | 2004-03-24 | 2005-10-06 | Nippon Steel Chem Co Ltd | Method for manufacturing substrate for flexible printed wiring board |
-
2004
- 2004-08-26 JP JP2004246862A patent/JP4684601B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6384188A (en) * | 1986-09-29 | 1988-04-14 | 新日鐵化学株式会社 | Manufacture of flexible printed circuit substrate |
JPH02150453A (en) * | 1988-12-01 | 1990-06-08 | Sumitomo Bakelite Co Ltd | Polyimide film and its production |
JPH02180682A (en) * | 1988-12-29 | 1990-07-13 | Nippon Steel Chem Co Ltd | Preparation of board for flexible printed wiring |
WO2003097725A1 (en) * | 2002-05-21 | 2003-11-27 | Kaneka Corporation | Polyimide film and method for production thereof, and polyimide/metal laminate using polyimide |
JP2004142183A (en) * | 2002-10-23 | 2004-05-20 | Mitsui Chemicals Inc | Polyimide metallic foil laminate |
JP2005271374A (en) * | 2004-03-24 | 2005-10-06 | Nippon Steel Chem Co Ltd | Method for manufacturing substrate for flexible printed wiring board |
Also Published As
Publication number | Publication date |
---|---|
JP2006062187A (en) | 2006-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4528093B2 (en) | Multilayer substrate having at least two dissimilar polyamide layers and a conductive layer and useful for electronics-type applications, and compositions related thereto | |
JP5180814B2 (en) | Laminated body for flexible wiring board | |
JP5031639B2 (en) | Flexible copper clad laminate | |
JP5168009B2 (en) | Polyimide and process for producing the same | |
JP6403460B2 (en) | Metal-clad laminate, circuit board and polyimide | |
JPH0522399B2 (en) | ||
WO2001028767A1 (en) | Laminate and process for producing the same | |
KR101514221B1 (en) | manufacturing method of multi layer polyimide flexible metal-clad laminate | |
WO2007013758A1 (en) | Metallic laminate and method of manufacturing the same | |
JP2017165909A (en) | Polyimide, resin film, and metal clad laminate | |
JP5064033B2 (en) | Adhesive sheet and copper-clad laminate | |
JP2006336011A (en) | Polyimide resin and method for producing the same | |
JP5480490B2 (en) | Adhesive film and flexible metal-clad laminate | |
JP5804830B2 (en) | Method for producing metal-clad laminate | |
JP4994992B2 (en) | Laminate for wiring board and flexible wiring board for COF | |
JP4901509B2 (en) | Multilayer film of polyimide precursor solution, multilayer polyimide film, single-sided metal-clad laminate, and method for producing multilayer polyimide film | |
JP2012148569A (en) | Method for manufacturing flexible metal laminate | |
JP5546304B2 (en) | Method for producing adhesive film and flexible metal-clad laminate | |
JP4684601B2 (en) | Manufacturing method of flexible laminated substrate | |
JP5240204B2 (en) | Metal laminate | |
JP4805173B2 (en) | Multilayer laminate and method for producing flexible copper clad laminate | |
JP6603032B2 (en) | Copper-clad laminate and circuit board | |
JP5139631B2 (en) | Polyimide film and metal-clad laminate | |
JP2007230019A (en) | Manufacturing method of metal clad laminated sheet | |
JP4577833B2 (en) | Method for manufacturing flexible laminated substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070802 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100323 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100524 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110208 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110209 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140218 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4684601 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140218 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140218 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |