KR101514221B1 - manufacturing method of multi layer polyimide flexible metal-clad laminate - Google Patents
manufacturing method of multi layer polyimide flexible metal-clad laminate Download PDFInfo
- Publication number
- KR101514221B1 KR101514221B1 KR1020110130001A KR20110130001A KR101514221B1 KR 101514221 B1 KR101514221 B1 KR 101514221B1 KR 1020110130001 A KR1020110130001 A KR 1020110130001A KR 20110130001 A KR20110130001 A KR 20110130001A KR 101514221 B1 KR101514221 B1 KR 101514221B1
- Authority
- KR
- South Korea
- Prior art keywords
- polyimide
- layer
- thermal expansion
- metal foil
- linear thermal
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0393—Flexible materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/14—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/16—Drying; Softening; Cleaning
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1042—Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1046—Polyimides containing oxygen in the form of ether bonds in the main chain
- C08G73/105—Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1067—Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1067—Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
- C08G73/1071—Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D179/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
- C09D179/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C09D179/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
- B32B2307/734—Dimensional stability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2311/00—Metals, their alloys or their compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2379/00—Other polymers having nitrogen, with or without oxygen or carbon only, in the main chain
- B32B2379/08—Polyimides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/08—PCBs, i.e. printed circuit boards
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/032—Organic insulating material consisting of one material
- H05K1/0346—Organic insulating material consisting of one material containing N
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/036—Multilayers with layers of different types
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0137—Materials
- H05K2201/0154—Polyimide
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0183—Dielectric layers
- H05K2201/0195—Dielectric or adhesive layers comprising a plurality of layers, e.g. in a multilayer structure
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/06—Thermal details
- H05K2201/068—Thermal details wherein the coefficient of thermal expansion is important
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/022—Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/2495—Thickness [relative or absolute]
- Y10T428/24967—Absolute thicknesses specified
- Y10T428/24975—No layer or component greater than 5 mils thick
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Laminated Bodies (AREA)
Abstract
본 발명은 다층 폴리이미드 구조의 연성금속적층판 제조방법에 관한 것으로, 금속박과 상기 금속박의 일면 또는 양면에 형성되는 다층 폴리이미드에 있어서, 선열팽창계수가 다른 다층 폴리이미드 및, 다층 폴리이미드의 각각의 폴리이미드층 사이에 선열팽계수의 차이에 따라 다층 폴리이미드 층사이에 구배가 형성된 구배층을 포함하는 것을 특징으로 하는 다층 폴리이미드 연성금속적층판 및 그의 제조방법에 관한 것이다. 본 발명에 따른 다층 폴리이미드 구조의 연성금속적층판은 폴리이미드층 간의 발포 문제를 해결하면서 금속박과의 접착력과 치수안정성이 우수한 인쇄회로기판용 연성금속적층제를 제공할 수 있다. The present invention relates to a method for producing a flexible metal laminate having a multilayer polyimide structure, which comprises a metal foil and a multilayer polyimide formed on one or both sides of the metal foil, wherein the multilayer polyimide having different coefficients of linear thermal expansion and the multilayer polyimide And a gradient layer in which a gradient is formed between the multi-layer polyimide layers according to a difference in linear thermal expansion coefficient between the polyimide layers, and a method for manufacturing the multi-layer polyimide flexible metal-clad laminate. The flexible metal laminate of the multilayer polyimide structure according to the present invention can provide a flexible metal laminate for a printed circuit board which is excellent in adhesion to metal foil and dimensional stability while solving the problem of foaming between polyimide layers.
Description
본 발명은 다층 폴리이미드 연성금속적층판 및 이의 제조방법에 관한 것으로서, 보다 구체적으로는 금속박과 이의 일면 또는 양면에 2층 이상 적층되는 폴리이미드를 제조하는 방법이며, 금속박과 폴리이미드층 간의 접착력이 우수하며, 서로 다른 선열팽창계수를 갖는 폴리이미드층 간의 계면에서 발생하는 발포 현상을 억제할 수 있는 다층 폴리이미드 연성금속적층판의 제조방법에 관한 것이다.The present invention relates to a multilayer polyimide flexible metal laminate and a method of manufacturing the same, and more particularly, to a method for producing a polyimide laminated on a metal foil and two or more surfaces of the metal foil and having excellent adhesion between the metal foil and the polyimide layer Layer polyimide flexible metal clad laminate capable of suppressing the foaming phenomenon occurring at an interface between polyimide layers having different coefficient of linear thermal expansion.
전자기기의 소형화, 다기능화, 경박화에 따라 전자기기에 사용되고 있는 회로기판에도 더욱 고밀화가 요구되고 있으며, 이러한 요구를 충족시키기 위하여 회로기판을 다층화하는 방법이 이용되고 있다. 또한, 회로기판이 좁은 공간에 설치할 수 있도록 유연성을 부여한 연성인쇄회로기판(Flexible Printed Circuit Board)을 사용하기도 하고, 동일한 공간에서 다량의 회로를 얻기 위하여 선폭이 좁은 회로를 사용하기도 한다.[0003] As miniaturization, multifunctionalization, and thinning of electronic devices have been made, circuit boards used in electronic devices are required to be further densified. In order to meet such demands, a method of multilayering circuit boards has been used. In addition, a flexible printed circuit board (flexible printed circuit board) having flexibility to allow a circuit board to be installed in a narrow space may be used, or a circuit having a narrow line width may be used to obtain a large number of circuits in the same space.
회로기판의 다층화를 위한 방법으로서 납땜은 환경문제를 일으키는 문제가 있었다. 따라서, 회로기판의 다층화를 위하여 고접착력, 고내열성 및 저흡습율의 접착제가 요구되고 있다. 그런데, 종래의 아크릴계 또는 에폭시계 접착제를 사용하여 폴리이미드 필름과 금속박을 접착시키는 금속적층판은 다층화, 유연성, 높은 접착력 및 고내열성이 요구되는 회로기판에는 불충분하였다. 따라서, 접착제를 사용하지 않고 폴리이미드층과 금속박을 직접 접착시키는 2CCL (2-Layer Copper Clad Laminate) 타입의 연성금속적층제가 개발되었다. 이러한 금속적층제는 기존의 접착제를 사용하여 금속층과 폴리이미드층을 접착한 3CCL (3-Layer Copper Clad Laminate)에 비하여 열안정성, 내구성, 전기적 특성 등이 매우 우수한 연성회로기판 소재이다.Soldering as a method for multilayering a circuit board has a problem of causing environmental problems. Accordingly, there is a demand for an adhesive having high adhesive strength, high heat resistance and low moisture absorption rate for multilayering of circuit boards. However, a metal laminate plate in which a conventional acrylic or epoxy adhesive is used to adhere a polyimide film to a metal foil is insufficient for a circuit board requiring multilayering, flexibility, high adhesive strength, and high heat resistance. Therefore, a 2-layer copper clad laminate (2CCL) type flexible metal laminate which directly bonds a polyimide layer and a metal foil without using an adhesive has been developed. Such a metal laminate is a flexible circuit board material having excellent thermal stability, durability and electrical characteristics as compared with 3CCL (3-Layer Copper Clad Laminate) in which a metal layer and a polyimide layer are bonded using a conventional adhesive.
2CCL (2-Layer Copper Clad Laminate) 타입의 연성금속적층제는 크게 금속박과 폴리이미드층으로 구성된 단면 금속적층제와 두 층의 금속박 사이에 폴리이미드층이 존재하는 양면 금속적층제로 나뉠 수 있다. 여기서 폴리이미드층은 금속과의 접착력 및 치수안정성 등과 같은 특성을 만족시키기 위해 일반적으로 단일층이 아닌 서로 다른 선열팽창계수를 갖는 폴리이미드로 구성된 2층 이상의 다층 폴리이미드로 구성되는 경우가 많다. 대한민국공개특허 10-2009-0066399 (특허문헌 1)에서는 서로 다른 열팽창 계수를 갖는 폴리이미드 금속박 적층체에 대하여 개시되어 있다. The 2-layer copper clad laminate (2CCL) type flexible metal laminate can be roughly divided into a cross-section metal laminate composed of a metal foil and a polyimide layer and a double-side metal laminate having a polyimide layer between two metal foils. The polyimide layer is generally composed of two or more layers of polyimide composed of polyimide having a different coefficient of linear thermal expansion, rather than a single layer, in order to satisfy characteristics such as adhesion with metals and dimensional stability. Korean Patent Laid-Open No. 10-2009-0066399 (Patent Document 1) discloses a polyimide metal foil laminate having different thermal expansion coefficients.
일반적으로 다층의 폴리이미드를 형성하기 위해서는 폴리이미드 전구체가 되는 폴리아믹산 바니쉬(Polyamic Acid Varnish)를 적층하고자 하는 층수만큼 금속박 위에 코팅, 건조하는 과정을 반복하게 된다. 특히 금속박과의 접착력을 높이기 위해서 금속박 위에 폴리이미드와 같이 선열팽창계수가 높은 폴리이미드의 전구체층을 먼저 코팅, 건조하고 그 위에 치수변화율을 줄이기 위한 목적으로 선열팽창계수가 낮은 폴리이미드 전구체층을 코팅, 건조하는 것이 일반적이다. 이 때, 먼저 건조된 폴리이미드 전구체층은 고화된 상태이므로 이후 코팅된 폴리이미드 전구체층이 코팅, 건조되는 과정에서 층간의 혼합이 거의 일어나지 않게 되어 두께 방향에 따른 선열팽창계수는 폴리이미드층 간의 경계면을 기준으로 급격하게 변하게 된다. 이후 이를 300℃ 이상의 고온에서 이미드화하는 과정(이하 '경화 과정'과 동일한 의미로 사용됨)을 거치게 되는데 이 때 서로 다른 선열팽창계수를 갖는 폴리이미드층의 계면에서 발생하는 계면 스트레스(Interfacial Stress)로 인해 발포, 더욱 심하게는 계면박리(Delamination)와 같은 불량현상이 나타날 수 있다. 이러한 발포 문제는 경화시 최고 온도까지의 승온 속도를 낮춘다거나 총 경화시간을 늘림으로써 억제할 수 있으나 롤투롤(Roll to Roll) 타입의 경화기를 사용하는 경우 배치(Batch) 방식의 경화기에 비해 경화시간이 짧고 경화기 내의 체류시간이 생산성과 직결되기 때문에 다른 해결책이 요구되고 있다. Generally, in order to form a multi-layered polyimide, the process of coating and drying the polyamic acid varnish, which is a polyimide precursor, on the metal foil as many times as the number of layers to be laminated is repeated. Particularly, in order to increase the adhesion to a metal foil, a polyimide precursor layer having a high coefficient of linear thermal expansion such as polyimide is first coated on a metal foil, dried, and a polyimide precursor layer having a low coefficient of linear thermal expansion is coated , And dried. In this case, since the polyimide precursor layer dried first is in a solidified state, the interlayer intermixing rarely takes place during coating and drying of the coated polyimide precursor layer, so that the coefficient of linear thermal expansion along the thickness direction becomes the interface between the polyimide layers As shown in FIG. (Hereinafter, referred to as "curing process"). At this time, the interfacial stress generated at the interface of the polyimide layer having different coefficients of linear thermal expansion Resulting in defects such as foaming and, more severely, delamination. This foaming problem can be suppressed by lowering the heating rate to the maximum temperature during curing or increasing the total curing time. However, when a roll-to-roll type curing machine is used, the curing time This short time and the residence time in the curing machine are directly related to the productivity, so another solution is required.
본 발명은 상기의 문제를 해결하는 과정에서 창안된 것으로, 금속박과 이의 일면 또는 양면에 2층 이상 적층되는 폴리이미드를 포함하는 연성금속적층제에 있어서, 금속박 위에 금속박과의 접착력 및 치수안정성이 우수한 폴리이미드를 적층하는 과정에서 경화시 발생하는 발포 현상을 억제할 수 있는 다층 폴리이미드 구조의 연성금속적층판 및 이의 제조방법을 제공하는 데 그 목적이 있다. Disclosed is a flexible metal laminate comprising a metal foil and a polyimide layer laminated on at least one surface of the metal foil, wherein the metal foil has excellent adhesion to the metal foil and dimensional stability A flexible metal clad laminate having a multilayer polyimide structure capable of suppressing a foaming phenomenon occurring during curing in the process of laminating polyimide, and a method for manufacturing the same.
금속박과 상기 금속박의 일면 또는 양면에 형성되는 다층 폴리이미드에 있어서, 선열팽창계수가 다른 다층 폴리이미드 및, 다층 폴리이미드의 각각의 폴리이미드층 사이에 선열팽계수의 차이에 따라 다층 폴리이미드 층사이에 구배가 형성된 구배층을 포함하는 것을 특징으로 하는 다층 폴리이미드 연성금속적층판을 제공한다.Layer polyimide having a different coefficient of linear thermal expansion between the metal foil and the metal foil and between the polyimide layers of the multi-layer polyimide having different coefficients of linear thermal expansion and between the multi-layer polyimide layers And a gradient layer in which a gradient is formed in the metal layer.
또한 본 발명은,Further, according to the present invention,
금속박과 상기 금속박의 알면 또는 양면에 경화 후 선열팽창계수가 서로 다른 폴리이미드 전구체층을 건조 없이 연속적으로 2층 이상 적층하고 건조 및 경화하여 선열팽창계수의 차이에 따라 다층 폴리이미드층 사이에 구배가 형성된 구배층을 포함하는 폴리이미드층을 형성하는 단계; 를 포함하는 다층 폴리이미드 연성금속적층판 제조방법을 제공한다.A polyimide precursor layer having different coefficient of linear thermal expansion different from that of the metal foil and the metal foil on both sides or both sides of the metal foil is successively laminated in two or more layers without drying and dried and cured to form a gradient between the multilayer polyimide layers Forming a polyimide layer comprising a formed gradient layer; The present invention also provides a method for manufacturing a multilayer polyimide flexible metal laminate.
본 발명에서는 금속박과 이의 일면 또는 양면에 2층 이상 적층되는 다층 폴리이미드를 제조하는 데 있어서 이 중 서로 다른 선열팽창계수를 갖는 2개 이상의 폴리이미드층에 대해 멀티(multi) 코팅 방식을 통해 폴리이미드 전구체층을 연속적으로 적층한 다음 건조하고 이미드화킴으로써 폴리이미드층 간의 발포 문제를 해결하면서 금속박과의 접착력과 치수안정성이 우수한 인쇄회로기판용 연성금속적층제를 제공할 수 있다. In the present invention, in the production of a metal foil and a multilayer polyimide laminated on two or more surfaces of the metal foil, two or more polyimide layers having different coefficients of linear thermal expansion are subjected to a multi- It is possible to provide a flexible metal laminate for a printed circuit board excellent in adhesion to a metal foil and dimensional stability while solving the problem of foaming between polyimide layers by successively laminating precursor layers, followed by drying and imidization.
3층의 폴리이미드 구조로 만들어진 연성금속적층제에 있어서,
도 1는 서로 다른 3개의 폴리이미드 전구체층을 연속적으로 멀티(multi) 코팅한 다음 건조하고 이미드화하여 만들어진 적층제의 단면도를 나타낸 것이다.
-도면의 주요 부분에 대한 설명-
10 : 고열팽창 특성을 갖는 제1 폴리이미드층
20 : 저열팽창 특성을 갖는 제2 폴리이미드층
30 : 고열팽창 특성을 갖는 제3 폴리이미드층
40 : 제1 폴리이미드층과 제2 폴리이미드층의 구배층(혼합층,Mixing Layer)
50 : 제2 폴리이미드층과 제3 폴리이미드층의 구배층(혼합층,Mixing Layer)
60 : 금속박
도 2는 구배층에서의 Mixing 효과로 인해 서로 다른 열팽창 특성을 갖는 폴리이미드층 사이에 선열팽창계수가 급격하게 변하지 않고 구배를 갖게 되는 구조를 도식화한 것이다. 여기서 'Mixing'이라 표시된 부분은 연속된 폴리이미드층의 혼합된 부분을 나타낸 것이다.A flexible metal laminate made of three layers of polyimide structure,
Figure 1 shows a cross-sectional view of a laminate made by successively multi-coating three different polyimide precursor layers, followed by drying and imidization.
DESCRIPTION OF THE DRAWINGS -
10: a first polyimide layer having a high thermal expansion characteristic
20: a second polyimide layer having low thermal expansion characteristics
30: a third polyimide layer having a high thermal expansion characteristic
40: a gradient layer (mixed layer) of the first polyimide layer and the second polyimide layer,
50: a gradient layer (mixed layer) of the second polyimide layer and the third polyimide layer,
60: Metal foil
FIG. 2 is a schematic view showing a structure in which the coefficient of linear thermal expansion between the polyimide layers having different thermal expansion characteristics is not changed abruptly due to the mixing effect in the gradient layer, and has a gradient. Here, 'Mixing' denotes the mixed portion of the continuous polyimide layer.
이하, 첨부한 도면들을 참조하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
본 발명은 금속박과 상기 금속박의 일면 또는 양면에 형성되는 다층 폴리이미드에 있어서, 선열팽창계수가 다른 다층 폴리이미드 및, 다층 폴리이미드의 각각의 폴리이미드층 사이에 선열팽계수의 차이에 따라 다층 폴리이미드층 사이에 구배가 형성된 구배층을 포함하는 것을 특징으로 하는 다층 폴리이미드 연성금속적층판을 제공한다.The present invention relates to a metal foil and a multilayer polyimide formed on one or both surfaces of the metal foil, wherein the multilayer polyimide having a different coefficient of linear thermal expansion and the polyimide layer of each of the multilayer polyimide have a multilayer poly And a gradient layer in which a gradient is formed between the intermediate layer and the intermediate layer.
보다 상세하게는, 상기 다층폴리이미드는 제 n(n≥1) 폴리이미드층, 제 n+1(n≥1) 폴리이미드층, 및 제 n(n≥1) 폴리이미드층과 제 n+1(n≥1) 폴리이미드층 사이에 선열팽계수의 차이에 따라 구배가 형성된 제 n 및 제 n+1 폴리이미드층의 구배층을 포함하는 것인 다층 폴리이미드 연성금속적층판을 제공한다.More specifically, the multi-layer polyimide has an n-th (n > = 1) polyimide layer, an n + 1 (n > = 1) polyimide layers, wherein the n < th > and (n + l) polyimide layers have a gradient according to a difference in linear thermal expansion coefficient.
이때, 다층 폴리이미드층은 각 층의 선열팽창계수가 10 ~ 100 ppm/K를 갖는다. At this time, the multilayer polyimide layer has a coefficient of linear thermal expansion of 10 to 100 ppm / K.
또한, 본 발명에 따른 다층 폴리이미드층은 각 층간 선열팽창계수의 차가 10 ~ 90 ppm/K인 것을 특징으로 한다.The multilayer polyimide layer according to the present invention is characterized in that the difference in coefficient of linear thermal expansion between layers is 10 to 90 ppm / K.
본 발명에 따른 다층 폴리이미드 연성금속적층판에서 폴리이미드층은 선열팽계수의 차이에 따라 다층 폴리이미드층 사이에 구배가 형성된 구배층을 포함하는 것을 특징으로 한다.In the multilayer polyimide flexible metal clad laminate according to the present invention, the polyimide layer includes a gradient layer formed between the multilayer polyimide layers according to the difference in linear thermal expansion coefficient.
즉, 본 발명에 따른 다층 폴리이미드 연성금속적층판은 서로 다른 폴리이미드 전구체층이 연속적으로 적층되므로 각 층이 고화되지 않은 상태에서 건조가 함께 이루어지게 된다. 이 경우 용매가 증발하면서 상대적으로 아래 층에 위치한 폴리이미드의 전구체는 용매와 함께 상승하여 윗층에 위치한 폴리이미드 전구체와 섞이게 되고 이로 인해 두 층의 경계면이 사라지면서 수 마이크론 두께의 혼합층(Mixing Layer)이 형성된다. 이 혼합층(Mixing Layer)의 형성으로 인해 두께방향의 선열팽창계수 변화는 층간의 경계면에서 완만하게 이루어지게 된다. 본 발명에서는 이를 구배라고 정의한다. 도 1에 이러한 구배층을 도식화 하였다. 여기서 제1 및 제2 폴리이미드층의 구배층(40) 은 제1 폴리이미드층이 상부층인 제2 폴리이미드층으로 침투하여 형성된 것이며, 제2 및 제3 폴리이미드층의 구배층(50) 은 제2폴리이미드층이 상부층인 제3 폴리이미드층으로 침투하여 형성된 것이다. That is, in the multilayer polyimide soft metal laminates according to the present invention, since the different polyimide precursor layers are successively laminated, the layers are dried together without being solidified. In this case, as the solvent evaporates, the polyimide precursor located on the lower layer rises with the solvent and is mixed with the polyimide precursor located on the upper layer. As a result, the interface between the two layers disappears and a mixed layer of several microns thick . Due to the formation of this mixed layer, the change in coefficient of linear thermal expansion in the thickness direction becomes gentle at the interface between the layers. In the present invention, this is defined as a gradient. Such a gradient layer is schematized in Fig. Wherein the
결과적으로 폴리이미드 전구체층들이 경화되는 과정에서 이 구배층(혼합층,Mixing Layer)들은 각 층의 열팽창 변화에 따른 계면 스트레스(Interfacial Stress) 발생을 경감시키는 역할을 하게 되고 이로 인해 발포 현상 또는 계면박리(Delamination) 현상은 현저히 감소하게 된다. 도 2에 선열팽계수의 차이에 따라 다층 폴리이미드 층사이에 구배가 형성된 구배층에 대하여 도식화하였다. As a result, in the course of curing of the polyimide precursor layers, the gradient layer (mixed layer) serves to reduce the occurrence of interfacial stress due to the thermal expansion change of each layer. As a result, foaming phenomenon or interfacial peeling Delamination phenomenon is significantly reduced. FIG. 2 schematically illustrates a gradient layer having a gradient between multilayer polyimide layers according to the difference in linear expansion coefficient.
본 발명에 따른 폴리이미드층은 각 층의 두께가 1~30μm 인 것을 특징으로 한다.The polyimide layer according to the present invention is characterized in that the thickness of each layer is 1 to 30 占 퐉.
본 발명에서 상기 금속박은 구리, 알루미늄, 철, 은, 팔라듐, 니켈, 크롬, 몰리브덴, 텅스텐 또는 이들의 합금에서 선택되는 것이 바람직하며 일반적으로 구리가 광범위하게 사용되나 반드시 이에 한정되지는 않는다.In the present invention, the metal foil is preferably selected from copper, aluminum, iron, silver, palladium, nickel, chromium, molybdenum, tungsten, or an alloy thereof. Generally, copper is widely used.
다음으로 본 발명의 구성요소인 폴리이미드 전구체층에 포함되는 폴리이미드 전구체 용액에 대해 구체적으로 상술한다.Next, the polyimide precursor solution contained in the polyimide precursor layer constituting the component of the present invention will be described in detail.
폴리이미드 전구체용액은 적층을 통해 폴리이미드 전구체층을 형성하고, 상기 폴리이미드 전구체층은 건조 및 경화를 거쳐 폴리이미드화가 되므로 폴리이미드층이 형성되는 것이다.The polyimide precursor solution forms a polyimide precursor layer through lamination, and the polyimide precursor layer is dried and cured to form a polyimide layer, thereby forming a polyimide layer.
본 발명에 폴리이미드 전구체 용액은 적당한 유기용매에 이무수물과 디아민을 1:0.9 내지 1:1.1의 몰비로 혼합한 바니쉬 형태로 제조될 수 있다. 이렇게 얻어진 바니쉬를 금속판에 1회 이상 코팅 및 건조시켜 폴리이미드 전구체층을 형성시킨다. 본 발명에서는 폴리이미드 전구체 용액을 제조시 이무수물과 디아민의 혼합비, 또는 이무수물 간 또는 디아민 간의 혼합비를 조절하거나, 선택되는 이무수물 및 디아민의 종류를 조정함으로써 원하는 열팽창계수의 폴리이미드계 수지를 얻을 수 있다.The polyimide precursor solution in the present invention can be prepared in the form of a varnish obtained by mixing dianhydride and diamine in a proper organic solvent at a molar ratio of 1: 0.9 to 1: 1.1. The varnish thus obtained is coated on a metal plate at least once and dried to form a polyimide precursor layer. In the present invention, when a polyimide precursor solution is prepared, a polyimide resin having a desired coefficient of thermal expansion is obtained by adjusting the mixing ratio of dianhydride and diamine, or mixing ratio of dianhydride or diamine, and adjusting the kind of dianhydride and diamine selected .
본 발명에 적합한 상기 이무수물로는 PMDA(피로멜리틱 디안하이드라이드),Examples of the dianhydride suitable for the present invention include PMDA (pyromellitic dianhydride)
BPDA(3,3',4,4'-바이페닐테트라카복실릭디안하이드라이드), BTDA(3,3',4,4'-벤조페논테트라카복실릭디안하이드라이드), ODPA(4,4'-옥시다이프탈릭안하이드라이드), ODA(4,4'-디아미노디페닐에테르), BPADA(4,4'-(4,4'-이소프로필바이페녹시)바이프탈릭안하이드라이드), 6FDA(2,2'-비스-(3,4-디카복실페닐) 헥사플루오로프로판 디안하이드라이드) 및 TMEG(에틸렌글리콜 비스(안하이드로-트리멜리테이트)로 이루어진 군에서 선택되는 1종 이상을 사용할 수 있다.BPDA (3,3 ', 4,4'-biphenyltetracarboxylic dianhydride), BTDA (3,3', 4,4'-benzophenone tetracarboxylic dianhydride), ODPA (4,4 ' -Oxydiphthalic anhydride), ODA (4,4'-diaminodiphenyl ether), BPADA (4,4 '- (4,4'-isopropylbiphenoxy) biphthalic anhydride) , 6FDA (2,2'-bis- (3,4-dicarboxyphenyl) hexafluoropropane dianhydride), and TMEG (ethylene glycol bis (anhydro-trimellitate) Can be used.
본 발명에 적합한 상기 디아민으로는 PDA(p-페닐렌디아민), m-PDA(m-페닐렌디아민), 4,4'-ODA(4,4'-옥시디아닐린), 3,4'-ODA(3,4'-옥시디아닐린), BAPP(2,2-비스(4-[4-아미노페녹시]-페닐)프로판), TPE-R(1,3-비스(4-아미노페녹시)벤젠), BAPB: 4,4'-비스(4-아미노페녹시)비페닐, m-BAPS(2,2-비스(4-[3-아미노페녹시]페닐)설폰), HAB(3,3'-디하이드록시-4,4'-디아미노바이페닐) 및 DABA(4,4'-디아미노벤즈아닐리드)으로 이루어진 군에서 선택되는 1종 이상을 사용할 수 있다. Examples of the diamine suitable for the present invention include PDA (p-phenylenediamine), m-PDA (m-phenylenediamine), 4,4'-ODA (4,4'-oxydianiline) ODA (3,4'-oxydianiline), BAPP (2,2-bis (4- [4- aminophenoxy] -phenyl) propane), TPE-R (1,3- ) Benzene), BAPB: 4,4'-bis (4-aminophenoxy) biphenyl, m-BAPS (2,2- 3'-dihydroxy-4,4'-diaminobiphenyl) and DABA (4,4'-diaminobenzanilide) can be used.
본 발명은 필요에 따라 상기의 화합물 이외의 다른 이무수물이나 디아민, 또는 다른 화합물을 소량 첨가하는 것도 가능하다.In the present invention, it is possible to add a small amount of dianhydride, diamine, or other compound other than the above-mentioned compounds, if necessary.
본 발명에 있어서 폴리이미드 전구체 용액을 제조하는데 적합한 유기 용매로는 N-메틸피롤리디논(NMP), N,N-디메틸아세트아미드(DMAc), 테트라히드로퓨란(THF), N,N-디메틸포름아미드(DMF), 디메틸설폭시드(DMSO), 시클로헥산, 아세토니트릴 및 이들의 혼합물로 이루어진 군으로부터 선택하여 사용할 수 있나, 이에 한정되는 것은 아니다.Suitable organic solvents for preparing the polyimide precursor solution in the present invention include N-methylpyrrolidinone (NMP), N, N-dimethylacetamide (DMAc), tetrahydrofuran (THF), N, But are not limited to, amides (DMF), dimethylsulfoxide (DMSO), cyclohexane, acetonitrile, and mixtures thereof.
폴리이미드 전구체는 전체 용액 중에 5 내지 30 중량%로 존재하는 것이 바람직한데, 5 중량% 미만에서는 불필요한 용매의 사용이 많아지고, 30 중량%를 초과하는 경우에는 용액의 점도가 지나치게 높아져서 균일한 도포를 할 수 없다.It is preferable that the polyimide precursor is present in an amount of 5 to 30% by weight in the total solution. When the amount is less than 5% by weight, unnecessary use of the solvent increases. When the amount exceeds 30% by weight, the viscosity of the solution becomes excessively high, Can not.
또한, 도포나 경화를 용이하게 하기 위하여 또는 기타 물성을 향상시키기 위하여 소포제, 겔 방지제, 경화 촉진제 등과 같은 첨가제를 더 추가할 수 있다.In order to facilitate application or curing or to improve other physical properties, additives such as antifoaming agents, gel inhibitors, curing accelerators and the like may be further added.
이하, 본 발명의 다층 폴리이미드 연성금속적층판의 제조방법에 대하여 상술한다.Hereinafter, a method for producing the multilayer polyimide flexible metal laminate plate of the present invention will be described in detail.
본 발명은 금속박과 상기 금속박의 알면 또는 양면에 경화 후 선열팽창계수가 서로 다른 폴리이미드 전구체층을 건조 없이 연속적으로 2층 이상 적층하고 건조 및 경화하여 선열팽창계수의 차이에 따라 다층 폴리이미드층 사이에 구배가 형성된 구배층을 포함하는 폴리이미드층을 형성하는 단계; 를 포함하는 다층 폴리이미드 연성금속적층판 제조방법을 제공한다.The present invention relates to a metal foil and a metal foil which are formed by laminating two or more layers of a polyimide precursor layer having different coefficients of linear thermal expansion different from each other on both sides or both sides of a metal foil after curing and drying and curing the same, Forming a polyimide layer including a gradient layer having a gradient formed therein; The present invention also provides a method for manufacturing a multilayer polyimide flexible metal laminate.
본 발명에 따른 연성금속적층판 제조방법에 있어서, 폴리이미드층은 각 층의 선열팽창계수가 10 ~ 100 ppm/K인 특징을 갖는다. 선열팽창계수가 10 ppm/K 미만이거나 또는 100 ppm/K 초과인 경우 금속박과의 선열팽창계수 차이로 인해 금속박과 폴리이미드 간의 접착력이 저하되거나 건조, 경화 공정시 금속박 계면에서 박리현상이 발생할 수 있다.In the method for producing a flexible metal laminate according to the present invention, the polyimide layer has a coefficient of linear thermal expansion of 10 to 100 ppm / K. If the coefficient of linear thermal expansion is less than 10 ppm / K or more than 100 ppm / K, the adhesion between the metal foil and the polyimide may decrease due to the difference in the coefficient of linear thermal expansion between the metal foil and the peeling phenomenon at the interface between the metal foil and the drying and curing process .
또한 본 발명에 따른 폴리이미드층은 각 층간 선열팽창계수의 차가 10 ~ 90 ppm/K인 것을 특징으로 한다..The polyimide layer according to the present invention is characterized in that the difference in coefficient of linear thermal expansion between layers is 10 to 90 ppm / K.
본 발명에 따른 폴리이미드층은 각 층의 두께가 1~30μm 인 것이 좋다. 1 μm 미만인 경우 일반적인 코팅방식을 통해 도포가 어려우며 30 μm 초과인 경우 건조, 경화 공정시 용매 증발로 인한 필름의 휨(Curl) 현상이 심해지는 문제점이 발생한다.The thickness of each layer of the polyimide layer according to the present invention is preferably 1 to 30 占 퐉. If it is less than 1 μm, it is difficult to apply by a general coating method, and if it is more than 30 μm, a curl phenomenon of the film due to evaporation of the solvent during drying and curing process becomes worse.
본 발명에 따른 금속박은 구리, 알루미늄, 철, 은, 팔라듐, 니켈, 크롬, 몰리브덴, 텅스텐 또는 이들의 합금에서 선택된다.The metal foil according to the present invention is selected from copper, aluminum, iron, silver, palladium, nickel, chromium, molybdenum, tungsten or alloys thereof.
상기 제조방법에서 적층은 멀티코팅방식을 적용하여 서로 다른 폴리이미드 전구체층이 연속적으로 적층된다. 연속적으로 적층된다 함은 층간 건조단계를 수반하지 않는 것을 의미한다. 적층은 나이프 코팅, 롤코팅, 슬롯다이코팅, 립 다이코팅, 슬라이드 코팅 및 커튼 코팅중에서 선택된다.In the above manufacturing method, different polyimide precursor layers are laminated successively by applying a multi-coating method. Continuous lamination means not involving an interlayer drying step. The lamination is selected from knife coating, roll coating, slot die coating, lip die coating, slide coating and curtain coating.
이하, 첨부한 도면을 참조하여 본 발명의 '적층'에 대해 상세히 설명한다. Hereinafter, the 'lamination' of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 3층의 폴리이미드 구조로 이루어진 연성금속적층제를 제조하는 방법에 있어서 서로 다른 3개의 폴리이미드 전구체층을 건조단계 없이 연속적으로 멀티(multi) 코팅한 다음 건조하고 이미드화함으로써 각각의 폴리이미드 층 사이에 구배층(혼합층, Mixing Layer)이 형성된 적층제의 단면도를 나타낸 것이다. FIG. 1 shows a method for producing a flexible metal laminate having a three-layered polyimide structure, in which three different polyimide precursor layers are successively multi-coated without a drying step, followed by drying and imidization, Sectional view of a layered product in which a gradient layer (a mixed layer) is formed between the intermediate layers.
본 발명에 적용 가능한 코팅 방법으로는 나이프 코팅(knife coating), 롤 코팅(roll coating), 슬롯 다이 코팅(slot die coating), 립 다이 코팅 (lip die coating), 슬라이드 코팅(slide coating) 및 커튼 코팅(curtain coating) 등에 대해서 동종 또는 이종의 코팅 방법을 2회 이상 순차적으로 적용하거나 멀티 다이 코팅(multi die coating) 등을 이용하여 연속적으로 적층하는 방법이 있으며, 크게 제한을 두지 않는다.Coating methods applicable to the present invention include knife coating, roll coating, slot die coating, lip die coating, slide coating and curtain coating a curtain coating method, or the like, or a method of sequentially laminating two or more coating methods successively using multi-die coating or the like, and there is no great limitation.
본 발명의 보다 구체적인 실시예와 비교예를 하기에 설명함으로써 본 발명을 더욱 상세하게 설명한다. 그러나 본 발명이 하기 실시예와 비교예에 한정되는 것은 아니며 첨부된 특허 청구 범위 내에서 다양한 형태의 실시예들이 구현될 수 있다. 단지 다음의 실시예는 본 발명의 개시가 완전하도록 함과 동시에 당업계에서 통상의 지식을 가진 자에게 발명의 실시를 용이하게 하고자 하는 것이다. The present invention will be described in more detail with reference to the following more specific examples and comparative examples of the present invention. However, the present invention is not limited to the following examples and comparative examples, and various embodiments can be implemented within the scope of the appended claims. Only the following embodiments are intended to facilitate the practice of the invention to those skilled in the art without departing from the spirit of the invention.
실시예 중 사용된 약어는 다음과 같다.Abbreviations used in the examples are as follows.
DMAc : N-N-디메틸아세트아미드 (N,N-dimethylacetamide)DMAc: N-dimethylacetamide (N, N-dimethylacetamide)
BPDA : 3,3',4,4'-비페닐테트라카르복실산 2무수물BPDA: 3,3 ', 4,4'-biphenyltetracarboxylic acid dianhydride
(3,3',4,4'-biphenyltetracarboxylic acid dianhydride)(3,3 ', 4,4'-biphenyltetracarboxylic acid dianhydride)
PDA : 파라-페닐렌디아민 (p-phenylenediamine)PDA: para-phenylenediamine (p-phenylenediamine)
ODA : 4,4'-디아미노디페닐에테르(4,4'-diaminodiphenylether)ODA: 4,4'-diaminodiphenylether (4,4'-diaminodiphenylether)
BAPB: 4,4'-비스(4-아미노페녹시)비페닐BAPB: 4,4'-bis (4-aminophenoxy) biphenyl
(4,4'-bis(4-aminophenoxy)biphenyl)(4,4'-bis (4-aminophenoxy) biphenyl)
본 발명에서 언급된 물성은 다음의 측정법을 따랐다.The physical properties mentioned in the present invention were measured according to the following method.
1. 선열팽창계수(CTE, Coefficient of Thermal Linear Expansion)1. Coefficient of Thermal Linear Expansion (CTE)
선열팽창계수는 TMA(Thermomechanical Analyzer)를 사용하여 분당 5℃의 속도로 400℃까지 승온하며 측정된 열팽창값 중 100℃에서 250℃ 사이의 값을 평균하여 구하였다. The coefficient of linear thermal expansion was obtained by averaging the values between 100 ° C and 250 ° C of the measured thermal expansion values by raising the temperature to 400 ° C at a rate of 5 ° C per minute using a TMA (Thermomechanical Analyzer).
2. 폴리이미드수지와 금속박 간의 접착력2. Adhesion between polyimide resin and metal foil
폴리이미드 수지와 금속층의 접착력(peel strength) 측정을 위하여 적층체의 금속층을 1mm 폭으로 패터닝(patterning) 후 만능시험기계(UTM, universal testing machine)를 사용하여 180˚ 껍질벗김강도를 측정하였다.In order to measure the peel strength between the polyimide resin and the metal layer, the metal layer of the laminate was patterned at a width of 1 mm, and then the peel strength of 180 ˚ was measured using a universal testing machine (UTM).
3. 에칭 후 치수변화율3. Dimensional change rate after etching
IPC-TM-650, 2.2.4의 'Method B'를 따랐다. MD 및 TD가 각각 275 X 255 mm 인 정방형 시편의 네 꼭지점에 위치 인식용 hole을 뚫고, 23℃, 50%RH의 항온항습기에 24시간 보관 후 각 hole간의 거리를 3회 반복 측정 후 평균하였다. 이 후 금속박을 에칭하고, 23℃, 50%RH의 항온항습기에 24시간 보관 후 hole간의 거리를 다시 측정하였다. 이렇게 측정한 값들의 MD 및 TD방향으로의 변화율을 계산하였다. Followed by 'Method B' of IPC-TM-650, 2.2.4. MD, and TD were 275 mm x 255 mm, and the distance between each hole was measured after repeating the measurement. The holes were drilled at four corners of a square specimen and stored in a constant temperature and humidity chamber at 23 ° C and 50% RH for 24 hours. After that, the metal foil was etched and the distance between the holes was measured again after being stored in a constant temperature and humidity chamber of 23 ° C and 50% RH for 24 hours. The change rates of the measured values in the MD and TD directions were calculated.
4. 발포 관찰4. Foam observation
50cm ⅹ50cm 내에 발생되는 발포개수의 5회 평균을 기록하였다. 발포가 없는 경우는 '없음', 전면에 발포가 발생한 경우는 '계면박리'로 기록하였다. Five averages of the number of foams generated within 50 cm x 50 cm were recorded. In the case of no foaming, it was recorded as 'none'. In the case of foaming on the whole surface, it was recorded as 'interfacial peeling'.
[합성예1] [Synthesis Example 1]
211,378g의 DMAc 용액에 PDA 12,312g 및 ODA 2,533g의 디아민을 질소 분위기하에서 교반하여 완전히 녹인 후, 디안하이드라이드로서 BPDA 38,000g을 수회에 나누어 첨가하였다. 이 후 약 24시간 교반을 계속하여 폴리아믹산 용액을 제조하였다. 이렇게 제조한 폴리아믹산 용액을 20㎛ 두께의 필름상으로 캐스팅 후 60분 동안 350℃까지 승온하여 30분 동안 유지하여 경화하였다. 측정된 선열팽창계수는 13.4ppm/K이었다. To 211,378 g of the DMAc solution, 12,312 g of PDA and 2,533 g of ODA were stirred in a nitrogen atmosphere to completely dissolve, and 38,000 g of BPDA as dianhydride was added in several portions. Thereafter, stirring was continued for about 24 hours to prepare a polyamic acid solution. The polyamic acid solution thus prepared was cast into a film having a thickness of 20 탆, heated to 350 캜 for 60 minutes, and held for 30 minutes to be cured. The measured coefficient of linear thermal expansion was 13.4 ppm / K.
[합성예2][Synthesis Example 2]
117,072g의 DMAc 용액에 PDA 3.278g 및 ODA 2.024g의 디아민을 질소 분위기하에서 교반하여 완전히 녹인 후, 디안하이드라이드로서 BPDA 12,000g을 수회에 나누어 첨가하였다. 이 후 약 24시간 교반을 계속하여 폴리아믹산 용액을 제조하였다. 이렇게 제조한 폴리아믹산 용액을 20㎛ 두께의 필름상으로 캐스팅 후 60분 동안 350℃까지 승온하여 30분 동안 유지하여 경화하였다. 측정된 선열팽창계수는 19.5ppm/K이었다. To 117,072 g of the DMAc solution, 3.278 g of PDA and 2.024 g of ODA were stirred in a nitrogen atmosphere to completely dissolve, and 12,000 g of BPDA as dianhydride was added in several portions. Thereafter, stirring was continued for about 24 hours to prepare a polyamic acid solution. The polyamic acid solution thus prepared was cast into a film having a thickness of 20 탆, heated to 350 캜 for 60 minutes, and held for 30 minutes to be cured. The measured coefficient of linear thermal expansion was 19.5 ppm / K.
[합성예3][Synthesis Example 3]
117,072g의 DMAc 용액에 PDA 2.186g 및 ODA 4.047g의 디아민을 질소 분위기하에서 교반하여 완전히 녹인 후, 디안하이드라이드로서 BPDA 12,000g을 수회에 나누어 첨가하였다. 이 후 약 24시간 교반을 계속하여 폴리아믹산 용액을 제조하였다. 이렇게 제조한 폴리아믹산 용액을 20㎛ 두께의 필름상으로 캐스팅 후 60분 동안 350℃까지 승온하여 30분 동안 유지하여 경화하였다. 측정된 선열팽창계수는 34.0ppm/K이었다. 2.187 g of PDA and 4.047 g of diamine were dissolved in 117.072 g of the DMAc solution by stirring in a nitrogen atmosphere and 12,000 g of BPDA as dianhydride was added in several portions. Thereafter, stirring was continued for about 24 hours to prepare a polyamic acid solution. The polyamic acid solution thus prepared was cast into a film having a thickness of 20 탆, heated to 350 캜 for 60 minutes, and held for 30 minutes to be cured. The measured coefficient of linear thermal expansion was 34.0 ppm / K.
[합성예4][Synthesis Example 4]
11,572g의 DMAc 용액에 BAPB 948g의 디아민을 질소 분위기하에서 교반하여 완전히 녹인 후, 디안하이드라이드로서 BPDA 757g을 첨가하였다. 이 후 약 24시간 교반을 계속하여 폴리아믹산 용액을 제조하였다. 이렇게 제조한 폴리아믹산 용액을 20㎛ 두께의 필름상으로 캐스팅 후 60분 동안 350℃까지 승온하여 30분 동안 유지하여 경화하였다. 측정된 선열팽창계수는 65.1ppm/K이었다. To 11,572 g of the DMAc solution, 948 g of diamine of BAPB was completely dissolved by stirring in a nitrogen atmosphere, and then 757 g of BPDA was added as dianhydride. Thereafter, stirring was continued for about 24 hours to prepare a polyamic acid solution. The polyamic acid solution thus prepared was cast into a film having a thickness of 20 탆, heated to 350 캜 for 60 minutes, and held for 30 minutes to be cured. The measured coefficient of linear thermal expansion was 65.1 ppm / K.
[실시예1][Example 1]
두께 12㎛인 압연동박 (Rz=1.0㎛) 위에 [합성예1]을 통해 제조한 폴리아믹산 용액을 경화 후의 두께가 3㎛가 되도록 립 다이(Lip die)를 이용하여 코팅한 후 그 위에 바로 [합성예4]를 통해 제조한 폴리아믹산 용액과 [합성예1]을 통해 제조한 폴리아믹산 용액을 경화 후의 두께가 각각 20㎛, 3㎛이 되도록 멀티 슬롯 다이(multi slot die)를 이용하여 연속 코팅하였다. 이를 건조기 내에서 130℃에서 15분 동안 체류시킨 다음 롤투롤(roll to roll) 경화기 내에서 150℃ 에서 390℃까지 10분 동안 승온하고 390℃에서 5분 동안 체류하도록 하는 경화과정을 거쳤다. 그 결과를 [표1]에 기재하였다.A polyamic acid solution prepared through [Synthesis Example 1] was coated on a rolled copper foil (Rz = 1.0 mu m) having a thickness of 12 mu m using a lip die so as to have a thickness of 3 mu m after curing, The polyamic acid solution prepared through Synthesis Example 4 and the polyamic acid solution prepared through Synthesis Example 1 were continuously coated with a multi slot die so that the thickness after curing was 20 占 퐉 and 3 占 퐉, Respectively. This was allowed to stand in a drier at 130 DEG C for 15 minutes and then cured in a roll to roll curing machine to raise the temperature from 150 DEG C to 390 DEG C for 10 minutes and stay at 390 DEG C for 5 minutes. The results are shown in Table 1.
[실시예2][Example 2]
두께 12㎛인 압연동박 (Rz=1.0㎛) 위에 [합성예1]을 통해 제조한 폴리아믹산 용액을 경화 후의 두께가 3㎛가 되도록 립 다이(Lip die)를 이용하여 코팅한 후 그 위에 바로 [합성예4]를 통해 제조한 폴리아믹산 용액과 [합성예1]을 통해 제조한 폴리아믹산 용액을 경화 후의 두께가 각각 20㎛, 3㎛이 되도록 멀티 슬롯 다이(multi slot die)를 이용하여 연속 코팅하였다. 이를 건조기 내에서 130℃에서 15분 동안 체류시킨 다음 롤투롤(roll to roll) 경화기 내에서 150℃ 에서 390℃까지 5분 동안 승온하고 390℃에서 5분 동안 체류하도록 하는 경화과정을 거치게 하였다. 그 결과를 [표1]에 기재하였다.A polyamic acid solution prepared through [Synthesis Example 1] was coated on a rolled copper foil (Rz = 1.0 mu m) having a thickness of 12 mu m using a lip die so as to have a thickness of 3 mu m after curing, The polyamic acid solution prepared through Synthesis Example 4 and the polyamic acid solution prepared through Synthesis Example 1 were continuously coated with a multi slot die so that the thickness after curing was 20 占 퐉 and 3 占 퐉, Respectively. This was allowed to stand in a drier at 130 DEG C for 15 minutes and then undergo a curing process in a roll to roll curing machine to raise the temperature from 150 DEG C to 390 DEG C for 5 minutes and stay at 390 DEG C for 5 minutes. The results are shown in Table 1.
[비교예1][Comparative Example 1]
두께 12㎛인 압연동박 (Rz=1.0㎛) 위에 [합성예1]을 통해 제조한 폴리아믹산 용액을 경화 후의 두께가 3㎛가 되도록 립 다이(Lip die)를 이용하여 코팅한 후 건조기 내에서 130℃에서 5분 동안 건조하여 제 1 폴리이미드 전구체층을 형성하였다. 그 위에 [합성예4]을 통해 제조한 폴리아믹산 용액을 경화 후의 두께가 20㎛가 되도록 동일한 조건에서 코팅, 건조하여 제 2 폴리이미드 전구체층을 형성하였다. 그 위에 다시 [합성예1]을 통해 제조한 폴리아믹산 용액을 경화 후의 두께가 3㎛가 되도록 동일한 조건에서 코팅, 건조하여 제 3 폴리이미드 전구체층을 형성한 다음 이들 폴리이미드의 전구체층을 롤투롤(roll to roll) 경화기 내에서 150℃ 에서 390℃까지 10분 동안 승온하고 390℃에서 5분 동안 체류하도록 하는 경화과정을 거쳤다. 그 결과를 [표1]에 기재하였다.The polyamic acid solution prepared through [Synthesis Example 1] was coated on a rolled copper foil (Rz = 1.0 占 퐉) having a thickness of 12 占 퐉 using a lip die so as to have a thickness of 3 占 퐉 after curing, Lt; 0 > C for 5 minutes to form a first polyimide precursor layer. The polyamic acid solution prepared through [Synthesis Example 4] was coated thereon and dried to form a second polyimide precursor layer under the same conditions so that the thickness after curing became 20 탆. The polyamic acid solution prepared through Synthesis Example 1 was further coated thereon and dried to form a third polyimide precursor layer under the same conditions so that the cured polyimide solution had a thickness of 3 占 퐉 to form a third polyimide precursor layer. (roll to roll) curing machine to raise the temperature from 150 ° C to 390 ° C for 10 minutes and to let the cured product stay at 390 ° C for 5 minutes. The results are shown in Table 1.
[비교예2][Comparative Example 2]
두께 12㎛인 압연동박 (Rz=1.0㎛) 위에 [합성예1]을 통해 제조한 폴리아믹산 용액을 경화 후의 두께가 3㎛가 되도록 립 다이(Lip die)를 이용하여 코팅한 후 130℃에서 5분 동안 건조하여 제 1 폴리이미드 전구체층을 형성하였다. 그 위에 [합성예4]을 통해 제조한 폴리아믹산 용액을 경화 후의 두께가 20㎛가 되도록 동일한 조건에서 코팅, 건조하여 제 2 폴리이미드 전구체층을 형성하였다. 그 위에 다시 [합성예1]을 통해 제조한 폴리아믹산 용액을 경화 후의 두께가 3㎛가 되도록 동일한 조건에서 코팅, 건조하여 제 3 폴리이미드 전구체층을 형성한 다음 이들 폴리이미드의 전구체층을 150℃ 에서 390℃까지 5분 동안 승온하고 390℃에서 5분 동안 체류하도록 하는 경화과정을 거쳤다. 그 결과를 [표1]에 기재하였다.The polyamic acid solution prepared through [Synthesis Example 1] was coated on a rolled copper foil (Rz = 1.0 占 퐉) having a thickness of 12 占 퐉 using a lip die so that the thickness after curing became 3 占 퐉, Min to form a first polyimide precursor layer. The polyamic acid solution prepared through [Synthesis Example 4] was coated thereon and dried to form a second polyimide precursor layer under the same conditions so that the thickness after curing became 20 탆. The polyamic acid solution prepared through Synthesis Example 1 was further coated thereon and dried to form a third polyimide precursor layer under the same conditions so that the cured polyimide solution had a thickness of 3 탆 so that the precursor layer of these polyimides was heated to 150 캜 To 390 < 0 > C for 5 minutes and to remain at 390 < 0 > C for 5 minutes. The results are shown in Table 1.
[비교예3][Comparative Example 3]
두께 12㎛인 압연동박 (Rz=1.0㎛) 위에 [합성예2]를 통해 제조한 폴리아믹산 용액을 경화 후의 두께가 3㎛가 되도록 립 다이(Lip die)를 이용하여 코팅한 후 130℃에서 5분 동안 건조하여 제 1 폴리이미드 전구체층을 형성하였다. 그 위에 [합성예4]을 통해 제조한 폴리아믹산 용액을 경화 후의 두께가 20㎛가 되도록 동일한 조건에서 코팅, 건조하여 제 2 폴리이미드 전구체층을 형성하였다. 그 위에 다시 [합성예2]을 통해 제조한 폴리아믹산 용액을 경화 후의 두께가 3㎛가 되도록 동일한 조건에서 코팅, 건조하여 제 3 폴리이미드 전구체층을 형성한 다음 이들 폴리이미드의 전구체층을 150℃ 에서 390℃까지 10분 동안 승온하고 390℃에서 5분 동안 체류하도록 하는 경화과정을 거쳤다. 그 결과를 [표1]에 기재하였다.The polyamic acid solution prepared through [Synthesis Example 2] was coated on a rolled copper foil (Rz = 1.0 mu m) having a thickness of 12 mu m using a lip die so that the thickness after curing was 3 mu m, Min to form a first polyimide precursor layer. The polyamic acid solution prepared through [Synthesis Example 4] was coated thereon and dried to form a second polyimide precursor layer under the same conditions so that the thickness after curing became 20 탆. The polyamic acid solution prepared through [Synthesis Example 2] was further coated thereon and dried to form a third polyimide precursor layer under the same conditions so that the cured polyimide solution had a thickness of 3 탆, and then the precursor layer of these polyimides was heated to 150 캜 To 390 < 0 > C for 10 minutes and allowed to stand at 390 < 0 > C for 5 minutes. The results are shown in Table 1.
[비교예4][Comparative Example 4]
두께 12㎛인 압연동박 (Rz=1.0㎛) 위에 [합성예3]를 통해 제조한 폴리아믹산 용액을 경화 후의 두께가 3㎛가 되도록 립 다이(Lip die)를 이용하여 코팅한 후 130℃에서 5분 동안 건조하여 제 1 폴리이미드 전구체층을 형성하였다. 그 위에 [합성예4]을 통해 제조한 폴리아믹산 용액을 경화 후의 두께가 20㎛가 되도록 동일한 조건에서 코팅, 건조하여 제 2 폴리이미드 전구체층을 형성하였다. 그 위에 다시 [합성예3]을 통해 제조한 폴리아믹산 용액을 경화 후의 두께가 3㎛가 되도록 동일한 조건에서 코팅, 건조하여 제 3 폴리이미드 전구체층을 형성한 다음 이들 폴리이미드의 전구체층을 150℃ 에서 390℃까지 10분 동안 승온하고 390℃에서 5분 동안 체류하도록 하는 경화과정을 거쳤다. 그 결과를 [표1]에 기재하였다.The polyamic acid solution prepared through [Synthesis Example 3] was coated on a rolled copper foil (Rz = 1.0 mu m) having a thickness of 12 mu m using a lip die so that the thickness after curing became 3 mu m, Min to form a first polyimide precursor layer. The polyamic acid solution prepared through [Synthesis Example 4] was coated thereon and dried to form a second polyimide precursor layer under the same conditions so that the thickness after curing became 20 탆. The polyamic acid solution prepared through [Synthesis Example 3] was further coated thereon and dried to form a third polyimide precursor layer under the same conditions so as to have a thickness of 3 탆 after curing, and then the precursor layer of these polyimides was heated to 150 ° C To 390 < 0 > C for 10 minutes and allowed to stand at 390 < 0 > C for 5 minutes. The results are shown in Table 1.
[ 표 1 ] [Table 1]
상기 표에서 보이는 바와 같이, 본 발명에 따른 다층 폴리이미드 연성금속적층판은 접착력이 우수하며, 치수변화율이 적고, 경화 후 외관이 양호한 것을 확인하였다.As shown in the table, the multilayer polyimide flexible metal clad laminate according to the present invention has excellent adhesion, has a small dimensional change rate, and has good appearance after curing.
Claims (12)
상기 경화는 하기 식 1을 만족하는 다층 폴리이미드 연성금속적층판 제조방법.
[식 1]
5 < Tmin ≤ 10
(상기 식 1에서, Tmin는 150 ~ 390℃ 온도까지 승온시간이다.)After curing on one side or both sides of the metal foil and the metal foil, a different polyimide precursor layer having a coefficient of linear thermal expansion of 10 to 100 ppm / K in each layer and a difference in the coefficient of linear thermal expansion between layers of 40 to 90 ppm / K is dried Forming a polyimide layer including a gradient layer having a gradient between the multilayer polyimide layers according to the difference in coefficient of linear thermal expansion; , The thickness of each polyimide layer is 1 to 30 占 퐉,
Wherein the curing satisfies the following formula (1): " (1) "
[Formula 1]
5 < Tmin &le; 10
(In the above formula 1, T min is the temperature rise time from 150 to 390 ° C.)
상기 금속박은 구리, 알루미늄, 철, 은, 팔라듐, 니켈, 크롬, 몰리브덴, 텅스텐 또는 이들의 합금에서 선택되는 어느 하나인 폴리이미드 연성금속적층판 제조방법.8. The method of claim 7,
Wherein the metal foil is any one selected from copper, aluminum, iron, silver, palladium, nickel, chromium, molybdenum, tungsten, and alloys thereof.
상기 적층은 나이프 코팅, 롤코팅, 슬롯다이코팅, 립 다이코팅, 슬라이드 코팅 및 커튼 코팅중에서 선택된 1 또는 2 이상인 다층 연성금속적층판 제조방법.8. The method of claim 7,
Wherein said lamination is one or two or more selected from knife coating, roll coating, slot die coating, lip die coating, slide coating and curtain coating.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110130001A KR101514221B1 (en) | 2011-12-07 | 2011-12-07 | manufacturing method of multi layer polyimide flexible metal-clad laminate |
TW101145818A TWI556970B (en) | 2011-12-07 | 2012-12-06 | Manufacturing method of multilayer polyimide flexible metal-clad laminate |
US13/706,479 US20130149515A1 (en) | 2011-12-07 | 2012-12-06 | Manufacturing method of multilayer polyimide flexible metal-clad laminate |
CN201210599009.XA CN103144404B (en) | 2011-12-07 | 2012-12-07 | The manufacture method of multilayer polyimide flexible metal-clad laminate |
JP2012267734A JP6106417B2 (en) | 2011-12-07 | 2012-12-07 | Method for producing a flexible metal laminate having a multilayer polyimide structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110130001A KR101514221B1 (en) | 2011-12-07 | 2011-12-07 | manufacturing method of multi layer polyimide flexible metal-clad laminate |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130063592A KR20130063592A (en) | 2013-06-17 |
KR101514221B1 true KR101514221B1 (en) | 2015-04-23 |
Family
ID=48542856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110130001A KR101514221B1 (en) | 2011-12-07 | 2011-12-07 | manufacturing method of multi layer polyimide flexible metal-clad laminate |
Country Status (5)
Country | Link |
---|---|
US (1) | US20130149515A1 (en) |
JP (1) | JP6106417B2 (en) |
KR (1) | KR101514221B1 (en) |
CN (1) | CN103144404B (en) |
TW (1) | TWI556970B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101449984B1 (en) * | 2013-05-02 | 2014-10-15 | 주식회사 티지오테크 | Method for Manufacturing Metal Encapsulation Member |
TWI503228B (en) * | 2013-12-05 | 2015-10-11 | Taimide Technology Inc | Multilayered polyimide film having a low dielectric constant, laminate structure including the same and manufacture thereof |
KR101932326B1 (en) * | 2016-12-20 | 2018-12-24 | 주식회사 두산 | Printed circuit board and method of producing the same |
KR102334130B1 (en) * | 2019-04-12 | 2021-12-03 | 피아이첨단소재 주식회사 | Multilayer polyimide film having improved adhesion and low dielectric loss, method for preparing the same |
WO2020209524A1 (en) * | 2019-04-12 | 2020-10-15 | 피아이첨단소재 주식회사 | Low-dielectric loss multi-layer polyimide film having excellent adhesive strength and manufacturing method therefor |
TWI728521B (en) * | 2019-10-22 | 2021-05-21 | 新揚科技股份有限公司 | Method of forming copper clad laminate |
JP7107451B2 (en) * | 2020-05-29 | 2022-07-27 | 東洋紡株式会社 | Polyimide film and its manufacturing method |
JP7103534B2 (en) * | 2020-05-29 | 2022-07-20 | 東洋紡株式会社 | Polyimide film and its manufacturing method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011099555A1 (en) * | 2010-02-10 | 2011-08-18 | 宇部興産株式会社 | Polyimide film, polyimide laminate comprising same, and polyimide/metal laminate comprising same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2738453B2 (en) * | 1989-10-03 | 1998-04-08 | 新日鐵化学株式会社 | Manufacturing method of copper clad laminate |
JPH11177195A (en) * | 1997-12-05 | 1999-07-02 | Ube Ind Ltd | Flexible printed circuit board and its manufacture |
JP4360025B2 (en) * | 1999-09-28 | 2009-11-11 | 宇部興産株式会社 | Polyimide piece area layer with reinforcing material and method for producing the same |
JP4619860B2 (en) * | 2004-07-13 | 2011-01-26 | 新日鐵化学株式会社 | Flexible laminate and method for manufacturing the same |
JP2008091463A (en) * | 2006-09-29 | 2008-04-17 | Nippon Steel Chem Co Ltd | Manufacturing method for both-side flexible-copper-laminated board and carrier-attached both-side flexible-copper-laminated board |
KR101467179B1 (en) * | 2007-12-20 | 2014-12-01 | 에스케이이노베이션 주식회사 | Metal-clad laminate |
US20100253245A1 (en) * | 2009-04-06 | 2010-10-07 | Lightech Electronic Industries Ltd. | Method, system and current limiting circuit for preventing excess current surges |
-
2011
- 2011-12-07 KR KR1020110130001A patent/KR101514221B1/en active IP Right Grant
-
2012
- 2012-12-06 US US13/706,479 patent/US20130149515A1/en not_active Abandoned
- 2012-12-06 TW TW101145818A patent/TWI556970B/en active
- 2012-12-07 CN CN201210599009.XA patent/CN103144404B/en active Active
- 2012-12-07 JP JP2012267734A patent/JP6106417B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011099555A1 (en) * | 2010-02-10 | 2011-08-18 | 宇部興産株式会社 | Polyimide film, polyimide laminate comprising same, and polyimide/metal laminate comprising same |
Also Published As
Publication number | Publication date |
---|---|
JP6106417B2 (en) | 2017-03-29 |
TW201323217A (en) | 2013-06-16 |
CN103144404B (en) | 2017-03-01 |
TWI556970B (en) | 2016-11-11 |
US20130149515A1 (en) | 2013-06-13 |
JP2013119258A (en) | 2013-06-17 |
KR20130063592A (en) | 2013-06-17 |
CN103144404A (en) | 2013-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101514221B1 (en) | manufacturing method of multi layer polyimide flexible metal-clad laminate | |
KR100668948B1 (en) | Metallic Laminate and Method for Preparing Thereof | |
WO2018061727A1 (en) | Polyimide film, copper-clad laminate, and circuit substrate | |
JP5180814B2 (en) | Laminated body for flexible wiring board | |
KR100761644B1 (en) | Metallic laminate and method for preparing the same | |
KR102234045B1 (en) | Copper-clad laminate, printed wiring board and method of using thereof | |
JP6403460B2 (en) | Metal-clad laminate, circuit board and polyimide | |
JP6258921B2 (en) | Flexible metal-clad laminate | |
KR20130076747A (en) | Flexible metal-clad laminate manufacturing method thereof | |
TWI771500B (en) | Polyimide film, metal-clad laminate and circuit substrate | |
JP6412012B2 (en) | Multilayer flexible metal-clad laminate and manufacturing method thereof | |
JP2008016603A (en) | Substrate for flexible printed circuit board, and its manufacturing method | |
JP2015193117A (en) | metal-clad laminate and circuit board | |
JP2001270036A (en) | Flexible metal foil laminate | |
JP2015127118A (en) | Metal-clad laminate and circuit board | |
KR101665060B1 (en) | Method for preparing a multilayered polyimide film | |
KR20070090425A (en) | Metallic laminate and method for preparing thereof | |
JP6758048B2 (en) | Low moisture absorption flexible metal-clad laminate | |
KR102160000B1 (en) | Thick polyimide metal-clad laminate and manufacturing method for thereof | |
KR102521460B1 (en) | Flexible metal clad laminate and printed circuit board containing the same and polyimide precursor composition | |
TW202344567A (en) | Polyamide acid, polyimide, non-thermoplastic polyimide film, multilayer polyimide film, and metal-clad laminate | |
KR20050089243A (en) | Flexible printed board and the manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20180403 Year of fee payment: 4 |