JP6534471B2 - Flexible circuit board - Google Patents

Flexible circuit board Download PDF

Info

Publication number
JP6534471B2
JP6534471B2 JP2018071458A JP2018071458A JP6534471B2 JP 6534471 B2 JP6534471 B2 JP 6534471B2 JP 2018071458 A JP2018071458 A JP 2018071458A JP 2018071458 A JP2018071458 A JP 2018071458A JP 6534471 B2 JP6534471 B2 JP 6534471B2
Authority
JP
Japan
Prior art keywords
polyimide layer
copper foil
copper
thickness
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018071458A
Other languages
Japanese (ja)
Other versions
JP2018139295A (en
Inventor
利之 中林
利之 中林
桜子 重松
桜子 重松
伸悦 藤元
伸悦 藤元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Publication of JP2018139295A publication Critical patent/JP2018139295A/en
Application granted granted Critical
Publication of JP6534471B2 publication Critical patent/JP6534471B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Structure Of Printed Boards (AREA)

Description

本発明は、電子機器の筐体内に折り畳んで収納され、使用されるフレキシブル回路基板(FPC)に関する。   The present invention relates to a flexible circuit board (FPC) used by being folded and stored in a housing of an electronic device.

近年、電子機器の小型化や高機能化に伴い、これらを構成する電子部品の1つであるFPCにおいても、電気特性、機械特性、耐熱性等、より高性能なものが求められている。FPCの多くは、金属層である銅箔に絶縁層であるポリイミドを積層したフレキシブル銅張積層板の銅箔に回路を形成することで製造される。このようなポリイミドを絶縁層とした銅張積層板は、ポリイミドと銅箔の間にエポキシ樹脂等の熱硬化性接着剤層を介してポリイミドと銅箔を積層した銅張積層板(「三層CCL」とも呼ばれる)と、熱硬化性接着剤層を介さずにポリイミドと銅箔を直接積層した銅張積層板(「二層CCL」とも呼ばれる)とに大別される。   In recent years, along with the miniaturization and high functionalization of electronic devices, even in the FPC which is one of the electronic components constituting them, higher performance products such as electrical characteristics, mechanical characteristics, heat resistance, etc. are required. Most of FPCs are manufactured by forming a circuit on the copper foil of a flexible copper-clad laminate in which polyimide, which is an insulating layer, is laminated on copper foil, which is a metal layer. A copper-clad laminate in which such a polyimide is used as an insulating layer is a copper-clad laminate in which polyimide and copper foil are laminated between polyimide and copper foil via a thermosetting adhesive layer such as an epoxy resin ("three-layer And CCL, and copper-clad laminates (also called “two-layer CCL”) in which polyimide and copper foil are directly laminated without intervention of a thermosetting adhesive layer.

上記三層CCLは、接着剤層にエポキシ樹脂等を用いているため、耐熱性に問題がある。具体的には、半田やヒートツールを用い、FPCの配線上の電極と、モニターパネル基板、リジッド基板、半導体チップ等とを接合する工程のように、高温加工を要する工程で問題が生じやすい。また、三層CCLは、二層CCLに対して接着剤層の厚みが加算される点、異種材料間の熱膨張係数差による寸法制御が難しい点、さらに、誘電特性の観点から、ハイエンド電子機器への搭載には問題がある。そこで、特に耐熱性や信頼性の要求が高い用途においては、エポキシ樹脂等の熱硬化性接着剤等を使用しない二層CCLが上市されている。   The three-layer CCL has a problem in heat resistance because an epoxy resin or the like is used for the adhesive layer. Specifically, a problem is likely to occur in a process requiring high temperature processing, such as a process of bonding electrodes on a wiring of an FPC to a monitor panel substrate, a rigid substrate, a semiconductor chip or the like using solder or a heat tool. In the three-layer CCL, the thickness of the adhesive layer is added to the two-layer CCL, the dimensional control by the difference in thermal expansion coefficient between different materials is difficult, and from the viewpoint of dielectric characteristics, high-end electronic device There is a problem with loading on the. Therefore, in applications where heat resistance and reliability are particularly required, a two-layer CCL that does not use a thermosetting adhesive or the like such as an epoxy resin has been marketed.

ところで、最近の携帯端末機器のモデルの多様化により、そこに使用されるFPCの使用形態も変化してきている。従来の携帯電話にみられるヒンジ屈曲部やスライド屈曲部のような屈曲半径が一定量確保される使用形態とは異なり、薄い筐体へ収納する為に折り目をつけて折り曲げられるような、より厳しい耐折り曲げ性が要求されるようになってきている。以下、本明細書では、FPCの上面側が略180度反転して下面側になるように折り曲げることを「はぜ折り」と呼ぶことがある。   By the way, with the recent diversification of models of portable terminal devices, the usage pattern of the FPC used therein is also changing. Unlike usage where a certain amount of bending radius is secured such as a hinge bending portion or a slide bending portion found in a conventional mobile phone, it is more severe that a crease is made to be folded to be stored in a thin case. Bending resistance is becoming required. Hereinafter, in the present specification, folding the upper surface side of the FPC so that the upper surface side thereof is inverted by approximately 180 degrees so as to be the lower surface side may be referred to as “zero folding”.

このような用途への適用を意図したものとして、特許文献1では、高い屈曲性を示し、寸法安定性にすぐれた高屈曲性フレキシブル回路基板が提案されている。しかし、特許文献1の発明は、ポリイミドベースフィルム上に接着剤層を介して金属配線パターンが形成されたものであり、比較的低い弾性率範囲のポリイミドをベース基材とするものである。また、接着剤層を必要とするものであることから、ポリイミドだけによる二層CCLの耐熱性などの特性を十分に生かすことができないものであった。   As intended for application to such applications, Patent Document 1 proposes a highly flexible flexible circuit board which exhibits high flexibility and is excellent in dimensional stability. However, in the invention of Patent Document 1, a metal wiring pattern is formed on a polyimide base film through an adhesive layer, and polyimide having a relatively low elastic modulus range is used as a base material. In addition, since the adhesive layer is required, it is impossible to fully utilize the characteristics such as the heat resistance of the two-layer CCL only with the polyimide.

また、特許文献2では、電子機器内に折り曲げた状態で使用される回路基板に適したポリイミド金属積層体が提案されている。しかし、ここに開示されたポリイミド金属積層体は、ポリイミド層を構成する非熱可塑性ポリイミドフィルムの弾性率に着目するものの、共に使用される銅箔側の弾性率については着目しておらず、はぜ折り耐性も1回程度しか示していないため、実用的にも不十分なものであった。   Moreover, in patent document 2, the polyimide metal laminated body suitable for the circuit board used in the state bend | folded in an electronic device is proposed. However, although the polyimide metal laminate disclosed herein focuses on the modulus of elasticity of the non-thermoplastic polyimide film constituting the polyimide layer, it does not focus on the modulus of elasticity on the copper foil side used together, Since the folding resistance was also shown only once, it was practically insufficient.

また、FPCの設計において、接合先基板とのインピーダンス整合の観点から、フレキシブル銅張積層板の絶縁層であるポリイミド層の厚みが厚ければ配線を太くできる。つまり、配線加工は容易であるが、その反面、薄い或いは狭い筐体へ収納しようとする場合、基板の反発力が影響して折り畳みが難しく、FPCのハンドリング上の問題がある。一方、ポリイミド層の厚みが薄ければ、同じくインピーダンス整合の観点から配線を細くする必要がある。つまり、配線加工性の難易度が上がる反面、低反発であることから、薄い或いは狭い筐体への収納が比較的容易であり、FPCのハンドリング性がよい。   Further, in the design of the FPC, the wiring can be thickened if the thickness of the polyimide layer which is the insulating layer of the flexible copper-clad laminate is large from the viewpoint of impedance matching with the bonding destination substrate. That is, although wiring processing is easy, on the other hand, when it is going to store in a thin or narrow case, the repulsive force of a substrate influences and it becomes difficult to fold, and there is a problem in handling of FPC. On the other hand, if the thickness of the polyimide layer is thin, it is also necessary to make the wiring thinner from the viewpoint of impedance matching. That is, while the degree of difficulty in wiring processability increases, the low repulsion makes it relatively easy to store in a thin or narrow case, and the handling of the FPC is good.

特開2007−208087号公報Japanese Patent Application Publication No. 2007-208807 特開2012−6200号公報JP, 2012-6200, A

本発明は、薄い或いは狭い電子機器の筐体内に使用した場合でも、配線回路の断線や割れを防止し得る、優れた耐折り曲げ性を有するFPCを与えるフレキシブル銅張積層板を提供することを目的とする。   An object of the present invention is to provide a flexible copper-clad laminate which gives an FPC having excellent bending resistance, which can prevent disconnection or breakage of a wiring circuit even when used in a thin or narrow housing of an electronic device. I assume.

本発明者等は鋭意検討した結果、銅箔及びポリイミドフィルムの特性を最適化すると共に、フレキシブル銅張積層板を配線回路加工した配線回路基板の特性に着目することで、上記課題を解決し得るフレキシブル銅張積層板を提供し得ることを見出し、本発明を完成するに至った。   As a result of intensive investigations, the present inventors can solve the above problems by optimizing the characteristics of copper foil and polyimide film and focusing on the characteristics of a printed circuit board obtained by processing a flexible copper-clad laminate into a printed circuit. It has been found that a flexible copper-clad laminate can be provided, and the present invention has been completed.

すなわち、本発明のフレキシブル銅張積層板は、電子機器の筐体内に折り畳んで収納されるフレキシブル回路基板に用いられるフレキシブル銅張積層板であって、
厚み5〜30μmの範囲内、引張弾性率4〜10GPaの範囲内のポリイミド層(A)と、
前記ポリイミド層(A)の少なくとも一方の面に積層された厚み6〜20μmの範囲内、引張弾性率25〜35GPaの範囲内の銅箔(B)と、を有しており、
前記ポリイミド層(A)と接する側の面の銅箔(B)の十点平均粗さ(Rz)が0.7〜2.2μmの範囲内であり、かつ、前記銅箔(B)を配線回路加工して銅配線を形成した任意のフレキシブル回路基板のギャップ0.3mmでの折り曲げ試験での、下記式(1)によって計算される折れ癖係数[PF]が0.96±0.025の範囲内にあることを特徴とする。
That is, the flexible copper-clad laminate of the present invention is a flexible copper-clad laminate used for a flexible circuit board which is folded and stored in a housing of an electronic device,
A polyimide layer (A) in the range of 5 to 30 μm in thickness and in the range of tensile modulus of 4 to 10 GPa,
The copper foil (B) has a thickness in the range of 6 to 20 μm and a tensile modulus of elasticity in the range of 25 to 35 GPa laminated on at least one surface of the polyimide layer (A),
The ten-point average roughness (Rz) of the copper foil (B) on the side in contact with the polyimide layer (A) is in the range of 0.7 to 2.2 μm, and the copper foil (B) is wired The bending coefficient [PF] calculated by the following equation (1) is 0.96 ± 0.025 in a bending test at a gap of 0.3 mm of an arbitrary flexible circuit board on which circuit processing is performed to form a copper wiring It is characterized by being in the range.

Figure 0006534471
[式(1)において、|ε|は銅配線の屈曲平均ひずみ値の絶対値であり、εcは銅配線の引張弾性限界ひずみである。]
Figure 0006534471
[In formula (1), | ε | is an absolute value of the bending average strain value of the copper wiring, and εc is a tensile elastic limit strain of the copper wiring. ]

本発明のフレキシブル銅張積層板は、ポリイミド層(A)が、熱膨張係数30×10−6/K未満の低熱膨張性のポリイミド層(i)と熱膨張係数30×10−6/K以上の高熱膨張性のポリイミド層(ii)とを含み、高熱膨張性のポリイミド層(ii)が直接銅箔(B)と接していることが好ましい。 In the flexible copper-clad laminate of the present invention, the polyimide layer (A) has a low thermal expansion polyimide layer (i) having a thermal expansion coefficient of less than 30 × 10 −6 / K and a thermal expansion coefficient of 30 × 10 −6 / K or more It is preferable that the high thermal expansion polyimide layer (ii) includes the high thermal expansion polyimide layer (ii), and the high thermal expansion polyimide layer (ii) is in direct contact with the copper foil (B).

また、本発明のフレキシブル銅張積層板は、上記ポリイミド層(A)の厚みが8〜15μmの範囲内であり、引張弾性率が6〜10GPaの範囲内であることが好ましい。   In the flexible copper-clad laminate of the present invention, the thickness of the polyimide layer (A) is preferably in the range of 8 to 15 μm, and the tensile elastic modulus is preferably in the range of 6 to 10 GPa.

また、本発明のフレキシブル銅張積層板は、ポリイミド層(A)と銅箔(B)との厚み比[ポリイミド層(A)/銅箔(B)]が0.9〜1.1の範囲内にあることが好ましい。   In the flexible copper-clad laminate of the present invention, the thickness ratio of the polyimide layer (A) to the copper foil (B) [polyimide layer (A) / copper foil (B)] is in the range of 0.9 to 1.1. Preferably within.

また、本発明のフレキシブル銅張積層板は、前記銅箔(B)が電解銅箔であることが好ましい。   In the flexible copper-clad laminate of the present invention, the copper foil (B) is preferably an electrodeposited copper foil.

本発明のフレキシブル銅張積層板は、配線基板に要求される高い耐折り曲げ性を発現し得ることから、電子機器内に折り曲げた状態での接続信頼性に優れたフレキシブル回路基板用材料を提供することができる。従って、本発明のフレキシブル銅張積層板は、特に、スマートフォン等の小型液晶周りの折り曲げ部分等の耐折り曲げ性が要求される電子部品に好適に用いられる。   The flexible copper-clad laminate of the present invention can exhibit high bending resistance required for a wiring substrate, and thus provides a flexible circuit substrate material having excellent connection reliability in a bent state in an electronic device. be able to. Therefore, the flexible copper-clad laminate of the present invention is suitably used particularly for electronic parts that are required to have bending resistance such as bending parts around small liquid crystals such as smartphones.

図1は、本発明のフレキシブル銅張積層板の銅箔を配線回路加工して得たフレキシブル回路基板の要部を示す斜視説明図である。FIG. 1 is a perspective view showing a main part of a flexible circuit board obtained by processing a copper foil of a flexible copper-clad laminate of the present invention in a printed circuit. 実施例で用いた試験回路基板片の銅配線の様子を示す平面説明図である。It is plane explanatory drawing which shows the appearance of the copper wiring of the test circuit board piece used in the Example. 折り曲げ試験での試料ステージと試験回路基板片との様子を示す側面説明図である(試料ステージ上に試験回路基板片を固定した状態図)。It is side explanatory drawing which shows the mode of the sample stage in a bending test, and a test circuit board piece (The state figure which fixed the test circuit board piece on the sample stage). 折り曲げ試験での試料ステージと試験回路基板片との様子を示す側面説明図である(試験回路基板片の折り曲げ箇所をローラーで押さえる手前の状態図)。It is side explanatory drawing which shows the mode of the sample stage in a bending test, and a test circuit board piece (The state figure of the front side which presses down the bending location of a test circuit board piece with a roller). 折り曲げ試験での試料ステージと試験回路基板片との様子を示す側面説明図である(試験回路基板片の折り曲げ箇所をローラーで押さえた状態図)。It is side explanatory drawing which shows the mode of the sample stage in a bending test, and a test circuit board piece (The state figure which pressed down the bending location of a test circuit board piece with a roller). 折り曲げ試験での試料ステージと試験回路基板片との様子を示す側面説明図である(折り曲げ箇所を開いて試験片を平らな状態に戻した状態図)。It is side explanatory drawing which shows the mode of the sample stage in a bending test, and a test circuit board piece (The state figure which open | released the bending location and returned the test piece to the flat state). 折り曲げ試験での試料ステージと試験回路基板片との様子を示す側面説明図である(折り曲げ箇所の折り目部分をローラーで押さえて均す状態図)。It is side explanatory drawing which shows the mode of the sample stage in a bending test, and a test circuit board piece (The state figure which hold | suppresses the crease | fold part of a bending location with a roller, and is equalized). フレキシブル回路基板の断面説明図(一部)である。It is a section explanatory drawing (a part) of a flexible circuit board.

以下、本発明の実施の形態について説明する。本実施の形態のフレキシブル銅張積層板は、ポリイミド層(A)と銅箔(B)とから構成される。銅箔(B)はポリイミド層(A)の片面又は両面に設けられており、電解銅箔が好ましい。このフレキシブル銅張積層板は、銅箔をエッチングするなどして配線回路加工して銅配線を形成し、電子機器の筐体内に折り畳んで収納されるFPCに使用される。   Hereinafter, embodiments of the present invention will be described. The flexible copper-clad laminate of this embodiment comprises a polyimide layer (A) and a copper foil (B). The copper foil (B) is provided on one side or both sides of the polyimide layer (A), and an electrolytic copper foil is preferable. This flexible copper-clad laminate is used for an FPC that is folded and housed in a housing of an electronic device by forming a copper wiring by processing a wiring circuit by etching a copper foil or the like.

<ポリイミド層>
本実施の形態のフレキシブル銅張積層板においては、ポリイミド層(A)の厚みは5〜30μmの範囲内であり、8〜15μmの範囲内にあることが好ましく、9〜12μmの範囲内にあることが特に好ましい。ポリイミド層(A)の厚みが30μmを超えると、FPCを折り曲げた際に、銅配線により大きな曲げ応力が加わることとなり、その耐折り曲げ性を著しく低下させてしまう。
<Polyimide layer>
In the flexible copper-clad laminate of this embodiment, the thickness of the polyimide layer (A) is in the range of 5 to 30 μm, preferably in the range of 8 to 15 μm, and in the range of 9 to 12 μm. Is particularly preferred. When the thickness of the polyimide layer (A) exceeds 30 μm, a large bending stress is applied to the copper wiring when the FPC is bent, and the bending resistance thereof is significantly reduced.

また、ポリイミド層(A)の引張弾性率は4〜10GPaの範囲内であり、好ましくは6〜10GPaの範囲内であるのがよい。ポリイミド層(A)の引張弾性率が4GPaに満たないと、ポリイミド自体の強度が低下することによって、フレキシブル銅張積層板を回路基板へ加工する際にフィルムの裂けなどのハンドリング上の問題が生じることがある。反対に、ポリイミド層(A)の引張弾性率が10GPaを超えると、フレキシブル銅張積層板の折り曲げに対する剛性が上昇する結果、FPCを折り曲げた際に銅配線に加わる曲げ応力が上昇し、耐折り曲げ性が低下してしまう。   The tensile modulus of the polyimide layer (A) is in the range of 4 to 10 GPa, preferably in the range of 6 to 10 GPa. When the tensile modulus of the polyimide layer (A) is less than 4 GPa, the strength of the polyimide itself is reduced, which causes handling problems such as tearing of the film when processing the flexible copper clad laminate into a circuit board Sometimes. On the other hand, when the tensile modulus of the polyimide layer (A) exceeds 10 GPa, the rigidity against bending of the flexible copper-clad laminate increases, so that the bending stress applied to the copper wiring when bending the FPC increases and the bending resistance The sex is reduced.

ポリイミド層(A)は、市販のポリイミドフィルムをそのまま使用することも可能であるが、絶縁層の厚さや物性のコントロールのしやすさから、ポリアミド酸溶液を銅箔上に直接塗布した後、熱処理により乾燥、硬化する所謂キャスト(塗布)法によるものが好ましい。また、ポリイミド層(A)は、単層のみから形成されるものでもよいが、ポリイミド層(A)と銅箔(B)との接着性等を考慮すると複数層からなるものが好ましい。ポリイミド層(A)を複数層とする場合、異なる構成成分からなるポリアミド酸溶液の上に他のポリアミド酸溶液を順次塗布して形成することができる。ポリイミド層(A)が複数層からなる場合、同一の構成のポリイミド前駆体樹脂を2回以上使用してもよい。   Although it is possible to use a commercially available polyimide film as it is for the polyimide layer (A), a polyamide acid solution is directly coated on a copper foil and then heat treated because of easy control of the thickness and physical properties of the insulating layer. It is preferable to use a so-called cast (coating) method of drying and curing according to. The polyimide layer (A) may be formed of only a single layer, but in consideration of the adhesion between the polyimide layer (A) and the copper foil (B), a plurality of layers is preferable. When making a polyimide layer (A) into multiple layers, another polyamic-acid solution can be sequentially apply | coated and formed on the polyamic-acid solution which consists of a different structural component. When a polyimide layer (A) consists of multiple layers, you may use the polyimide precursor resin of the same structure twice or more.

ポリイミド層(A)について、より詳しく説明する。上述の通り、ポリイミド層(A)は複数層とすることが好ましいが、その具体例としては、ポリイミド層(A)を、熱膨張係数30×10−6/K未満の低熱膨張性のポリイミド層(i)と、熱膨張係数30×10−6/K以上の高熱膨張性のポリイミド層(ii)と、を含む積層構造とすることが好ましい。より好ましくは、ポリイミド層(A)は、低熱膨張性のポリイミド層(i)の少なくとも一方、好ましくはその両側に、高熱膨張性のポリイミド層(ii)を有する積層構造とし、高熱膨張性のポリイミド層(ii)が直接銅箔(B)と接するようにすることがよい。ここで、「低熱膨張性のポリイミド層(i)」とは、熱膨張係数30×10−6/K未満、好ましくは1×10−6〜25×10−6/Kの範囲内、特に好ましくは3×10−6〜20×10−6/Kの範囲内のポリイミド層をいう。また、「高熱膨張性のポリイミド層(ii)」とは、熱膨張係数30×10−6/K以上のポリイミド層を言い、好ましくは30×10−6〜80×10−6/Kの範囲内、特に好ましくは30×10−6〜70×10−6/Kの範囲内のポリイミド層をいう。このようなポリイミド層は、使用する原料の組合せ、厚み、乾燥・硬化条件を適宜変更することで所望の熱膨張係数を有するポリイミド層とすることができる。 The polyimide layer (A) will be described in more detail. As described above, the polyimide layer (A) is preferably a plurality of layers. As a specific example thereof, a low thermal expansion polyimide layer having a thermal expansion coefficient of less than 30 × 10 −6 / K is used. It is preferable to set it as the laminated structure containing (i) and the highly thermally expandable polyimide layer (ii) whose thermal expansion coefficient is 30 * 10 < -6 > / K or more. More preferably, the polyimide layer (A) is a laminated structure having a high thermal expansion polyimide layer (ii) on at least one side, preferably both sides of the low thermal expansion polyimide layer (i), which is a high thermal expansion polyimide It is preferred that the layer (ii) be in direct contact with the copper foil (B). Here, the “low thermal expansion polyimide layer (i)” means a thermal expansion coefficient of less than 30 × 10 −6 / K, preferably in the range of 1 × 10 −6 to 25 × 10 −6 / K, particularly preferably Refers to a polyimide layer in the range of 3 × 10 −6 to 20 × 10 −6 / K. The term "high thermal expansion polyimide layer (ii)" refers to a polyimide layer having a thermal expansion coefficient of 30 x 10 -6 / K or more, preferably in the range of 30 x 10 -6 to 80 x 10 -6 / K. The polyimide layer is particularly preferably in the range of 30 × 10 −6 to 70 × 10 −6 / K. Such a polyimide layer can be made into a polyimide layer which has a desired thermal expansion coefficient by changing suitably the combination of the raw material to be used, thickness, and a drying and curing conditions.

上記ポリイミド層(A)を与えるポリアミド酸溶液は、公知のジアミンと酸無水物とを溶媒の存在下で重合して製造することができる。この際、重合される樹脂粘度は、例えば、500cps以上35,000cps以下の範囲内とすることが好ましい。   The polyamic acid solution giving the polyimide layer (A) can be produced by polymerizing a known diamine and an acid anhydride in the presence of a solvent. At this time, the viscosity of the resin to be polymerized is preferably, for example, in the range of 500 cps to 35,000 cps.

ポリイミドの原料として用いられるジアミンとしては、例えば、4,6-ジメチル-m-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、2,4-ジアミノメシチレン、4,4'-メチレンジ-o-トルイジン、4,4'-メチレンジ-2,6-キシリジン、4,4'-メチレン-2,6-ジエチルアニリン、2,4-トルエンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、4,4'-ジアミノジフェニルプロパン、3,3'-ジアミノジフェニルプロパン、4,4'-ジアミノジフェニルエタン、3,3'-ジアミノジフェニルエタン、4,4'-ジアミノジフェニルメタン、3,3'-ジアミノジフェニルメタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4'-ジアミノジフェニルスルフィド、3,3'-ジアミノジフェニルスルフィド、4,4'-ジアミノジフェニルスルホン、3,3'-ジアミノジフェニルスルホン、4,4'-ジアミノジフェニルエーテル、3,3-ジアミノジフェニルエーテル、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジジン、3,3'-ジアミノビフェニル、3,3'-ジメチル-4,4'-ジアミノビフェニル、3,3'-ジメトキシベンジジン、4,4'-ジアミノ-p-テルフェニル、3,3'-ジアミノ-p-テルフェニル、ビス(p-アミノシクロヘキシル)メタン、ビス(p-β-アミノ-t-ブチルフェニル)エーテル、ビス(p-β-メチル-δ-アミノペンチル)ベンゼン、p-ビス(2-メチル-4-アミノペンチル)ベンゼン、p-ビス(1,1-ジメチル-5-アミノペンチル)ベンゼン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,4-ビス(β-アミノ-t-ブチル)トルエン、2,4-ジアミノトルエン、m-キシレン-2,5-ジアミン、p-キシレン-2,5-ジアミン、m-キシリレンジアミン、p-キシリレンジアミン、2,6-ジアミノピリジン、2,5-ジアミノピリジン、2,5-ジアミノ-1,3,4-オキサジアゾール、ピペラジン、2,2'-ジメチル-4,4'-ジアミノビフェニル、3,7-ジアミノジベンゾフラン、1,5-ジアミノフルオレン、ジベンゾ-p-ジオキシン-2,7-ジアミン、4,4'-ジアミノベンジルなどが挙げられる。   Examples of diamine used as a raw material of polyimide include 4,6-dimethyl-m-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, 2,4-diaminomesitylene, 4,4'-methylenedi-o- Toluidine, 4,4'-methylenedi-2,6-xylidine, 4,4'-methylene-2,6-diethylaniline, 2,4-toluenediamine, m-phenylenediamine, p-phenylenediamine, 4,4 ' -Diaminodiphenylpropane, 3,3'-diaminodiphenylpropane, 4,4'-diaminodiphenylethane, 3,3'-diaminodiphenylethane, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 2-Bis [4- (4-aminophenoxy) phenyl] propane, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl Sulfone, 4,4'-diami Diphenyl ether, 3,3-diaminodiphenyl ether, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, benzidine, 3,3'-Diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxybenzidine, 4,4'-diamino-p-terphenyl, 3,3'-diamino- p-terphenyl, bis (p-aminocyclohexyl) methane, bis (p-β-amino-t-butylphenyl) ether, bis (p-β-methyl-δ-aminopentyl) benzene, p-bis (2-) Methyl-4-aminopentyl) benzene, p-bis (1,1-dimethyl-5-aminopentyl) benzene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,4-bis (β-amino- t-Butyl) toluene, 2,4-diaminotoluene, m-xylene-2,5-diamine, p-xylene-2,5-diamine, m- Silylenediamine, p-xylylenediamine, 2,6-diaminopyridine, 2,5-diaminopyridine, 2,5-diamino-1,3,4-oxadiazole, piperazine, 2,2'-dimethyl-4, 4'-diaminobiphenyl, 3,7-diaminodibenzofuran, 1,5-diaminofluorene, dibenzo-p-dioxin-2,7-diamine, 4,4'-diaminobenzyl and the like.

また、ポリイミドの原料として用いられる酸無水物としては、例えば、ピロメリット酸二無水物、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物、2,2',3,3'-ベンゾフェノンテトラカルボン酸二無水物、2,3,3',4'-ベンゾフェノンテトラカルボン酸二無水物、ナフタレン-1,2,5,6-テトラカルボン酸二無水物、ナフタレン-1,2,4,5-テトラカルボン酸二無水物、ナフタレン-1,4,5,8-テトラカルボン酸二無水物、ナフタレン-1,2,6,7-テトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-1,2,5,6-テトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-2,3,6,7-テトラカルボン酸二無水物、2,6-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,7-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,3,6,7-テトラクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、1,4,5,8-テトラクロロナフタレン-2,3,6,7-テトラカルボン酸二無水物、3,3',4,4'-ビフェニルテトラカルボン酸二無水物、2,2',3,3'-ビフェニルテトラカルボン酸二無水物、2,3,3',4'-ビフェニルテトラカルボン酸二無水物、3,3'',4,4''-p-テルフェニルテトラカルボン酸二無水物、2,2'',3,3''-p-テルフェニルテトラカルボン酸二無水物、2,3,3'',4''-p-テルフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-プロパン二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3.4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ペリレン-2,3,8,9-テトラカルボン酸二無水物、ペリレン-3,4,9,10-テトラカルボン酸二無水物、ペリレン-4,5,10,11-テトラカルボン酸二無水物、ペリレン-5,6,11,12-テトラカルボン酸二無水物、フェナンスレン-1,2,7,8-テトラカルボン酸二無水物、フェナンスレン-1,2,6,7-テトラカルボン酸二無水物、フェナンスレン-1,2,9,10-テトラカルボン酸二無水物、シクロペンタン-1,2,3,4-テトラカルボン酸二無水物、ピラジン-2,3,5,6-テトラカルボン酸二無水物、ピロリジン-2,3,4,5-テトラカルボン酸二無水物、チオフェン-,3,4,5-テトラカルボン酸二無水物、4,4'-オキシジフタル酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物などが挙げられる。   Moreover, as an acid anhydride used as a raw material of a polyimide, for example, pyromellitic dianhydride, 3,3 ', 4,4'-benzophenonetetracarboxylic acid dianhydride, 2,2', 3,3 ' -Benzophenonetetracarboxylic acid dianhydride, 2,3,3 ', 4'-benzophenonetetracarboxylic acid dianhydride, naphthalene-1,2,5,6-tetracarboxylic acid dianhydride, naphthalene-1,2,5 4,5-tetracarboxylic dianhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride, naphthalene-1,2,6,7-tetracarboxylic dianhydride, 4,8-dimethyl -1,2,3,5,6,7-hexahydronaphthalene-1,2,5,6-tetracarboxylic acid dianhydride, 4,8-dimethyl-1,2,3,5,6,7- Hexahydronaphthalene-2,3,6,7-tetracarboxylic acid dianhydride, 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic acid dianhydride, 2,7-dichloronaphthalene-1, 4,5,8-Tetracarboxylic acid dianhydride, 2,3,6,7-tetrachloro Phthalene-1,4,5,8-tetracarboxylic dianhydride, 1,4,5,8-tetrachloronaphthalene-2,3,6,7-tetracarboxylic dianhydride, 3,3 ', 4 2,4'-biphenyltetracarboxylic dianhydride, 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride, 2,3,3', 4'-biphenyltetracarboxylic dianhydride, 3, 3 '', 4,4 ''-p-terphenyltetracarboxylic dianhydride, 2,2 '', 3,3 ''-p-terphenyltetracarboxylic dianhydride, 2,3,3 ' ', 4' '-p-terphenyltetracarboxylic acid dianhydride, 2, 2-bis (2,3-dicarboxyphenyl) -propane dianhydride, 2, 2- bis (3,4- dicarboxyphenyl) ) -Propane dianhydride, bis (2,3-dicarboxyphenyl) ether dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3.4-dicarboxyphenyl) methane dianhydride, Bis (2,3-dicarboxyphenyl) sulfone dianhydride, bis (3,4-dicarboxylate) Phenyl) sulfone dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, perylene-2,3 , 8,9-tetracarboxylic acid dianhydride, perylene-3,4,9,10-tetracarboxylic acid dianhydride, perylene-4,5,10,11-tetracarboxylic acid dianhydride, perylene-5, 6,11,12-tetracarboxylic acid dianhydride, phenanthrene-1,2,7,8-tetracarboxylic acid dianhydride, phenanthrene-1,2,6,7-tetracarboxylic acid dianhydride, phenanthrene-1 2,9,10-tetracarboxylic acid dianhydride, cyclopentane-1,2,3,4-tetracarboxylic acid dianhydride, pyrazine-2,3,5,6-tetracarboxylic acid dianhydride, pyrrolidine -2,3,4,5-tetracarboxylic acid dianhydride, thiophene-, 3,4,5-tetracarboxylic acid dianhydride, 4,4'-oxydiphthalic acid dianhydride, 2,3,6,7 -Naphthalenetetracarboxylic acid dianhydride etc And the like.

上記ジアミン及び酸無水物は、それぞれ1種のみを使用してもよく2種以上を併用することもできる。また、重合に使用される溶媒は、ジメチルアセトアミド、N-メチルピロリジノン、2-ブタノン、ジグライム、キシレン等が挙げられ、1種又は2種以上併用して使用することもできる。   The diamine and the acid anhydride may be used alone or in combination of two or more. Further, examples of the solvent used for the polymerization include dimethylacetamide, N-methyl pyrrolidinone, 2-butanone, diglyme, xylene and the like, and one or more kinds can be used in combination.

本実施の形態において、熱膨張係数30×10−6/K未満の低熱膨張性のポリイミド層(i)とするには、原料の酸無水物成分としてピロメリット酸二無水物、3,3',4,4'-ビフェニルテトラカルボン酸二無水物を、ジアミン成分としては、2,2'-ジメチル-4,4'-ジアミノビフェニル、2-メトキシ-4,4’-ジアミノベンズアニリドを用いることがよく、特に好ましくは、ピロメリット酸二無水物及び2,2'-ジメチル-4,4'-ジアミノビフェニルを原料各成分の主成分とするものがよい。 In the present embodiment, in order to obtain a low thermal expansion polyimide layer (i) having a thermal expansion coefficient of less than 30 × 10 −6 / K, pyromellitic dianhydride as a raw acid anhydride component, 3,3 ′. Use 4,2,4'-biphenyltetracarboxylic acid dianhydride, and use 2,2'-dimethyl-4,4'-diaminobiphenyl and 2-methoxy-4,4'-diaminobenzanilide as the diamine component It is particularly preferable to use pyromellitic dianhydride and 2,2'-dimethyl-4,4'-diaminobiphenyl as the main components of the starting materials.

また、熱膨張係数30×10−6/K以上の高熱膨張性のポリイミド層(ii)とするには、原料の酸無水物成分としてピロメリット酸二無水物、3,3',4,4’-ビフェニルテトラカルボン酸二無水物、3,3',4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3',4,4’-ジフェニルスルホンテトラカルボン酸二無水物を、ジアミン成分としては、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4'-ジアミノジフェニルエーテル、1,3-ビス(4-アミノフェノキシ)ベンゼンを用いることがよく、特に好ましくはピロメリット酸二無水物及び2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパンを原料各成分の主成分とするものがよい。なお、このようにして得られる高熱膨張性のポリイミド層(ii)の好ましいガラス転移温度は、300〜400℃の範囲内である。 Moreover, in order to obtain a highly thermally expandable polyimide layer (ii) having a thermal expansion coefficient of 30 × 10 −6 / K or more, pyromellitic dianhydride as an acid anhydride component of the raw material, 3,3 ′, 4,4 '-Biphenyltetracarboxylic acid dianhydride, 3,3', 4,4'-benzophenonetetracarboxylic acid dianhydride, 3,3 ', 4,4'-diphenyl sulfone tetracarboxylic acid dianhydride, diamine component Preferably, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, 4,4′-diaminodiphenyl ether, 1,3-bis (4-aminophenoxy) benzene is used, particularly preferably It is preferable that pyromellitic dianhydride and 2,2'-bis [4- (4-aminophenoxy) phenyl] propane be the main component of each raw material. In addition, the preferable glass transition temperature of the highly thermally expandable polyimide layer (ii) obtained in this way exists in the range of 300-400 degreeC.

また、ポリイミド層(A)を低熱膨張性のポリイミド層(i)と高熱膨張性のポリイミド層(ii)との積層構造とした場合、好ましくは、低熱膨張性のポリイミド層(i)と高熱膨張性のポリイミド層(ii)との厚み比(低熱膨張性のポリイミド層(i)/高熱膨張性のポリイミド層(ii))が2〜15の範囲内であるのがよい。この比の値が、2に満たないとポリイミド層全体に対する低熱膨張性ポリイミド層が薄くなるため、ポリイミドフィルムの寸法特性の制御が困難となり、銅箔をエッチングした際の寸法変化率が大きくなり、15を超えると高熱膨張性ポリイミド層が薄くなるため、ポリイミドフィルムと銅箔との接着信頼性が低下する。なお、ポリイミド層(A)が複数層からなる場合であっても、上記折れ癖係数[PF]の算出にあたっては、ポリイミド層(A)全体の厚み、弾性率を用いることができる。   When the polyimide layer (A) has a laminated structure of a low thermal expansion polyimide layer (i) and a high thermal expansion polyimide layer (ii), preferably, the low thermal expansion polyimide layer (i) and high thermal expansion The thickness ratio to the polyimide layer (ii) (low thermal expansion polyimide layer (i) / high thermal expansion polyimide layer (ii)) is preferably in the range of 2 to 15. If the value of this ratio is less than 2, the low thermal expansion polyimide layer with respect to the entire polyimide layer becomes thin, so it becomes difficult to control the dimensional characteristics of the polyimide film, and the dimensional change rate when etching the copper foil becomes large. If it exceeds 15, the high thermal expansion polyimide layer becomes thin, and the adhesion reliability between the polyimide film and the copper foil is lowered. Even when the polyimide layer (A) is composed of a plurality of layers, the thickness and elastic modulus of the entire polyimide layer (A) can be used to calculate the above-mentioned fracture coefficient [PF].

<銅箔>
本実施の形態のフレキシブル銅張積層板において、銅箔(B)の厚みは6〜20μmの範囲内であり、8〜15μmの範囲内が好ましい。銅箔(B)の厚みが6μmに満たないと、フレキシブル銅張積層板の製造時、例えば、銅箔上にポリイミド層を形成する工程において銅箔自体の剛性が低下し、その結果、フレキシブル銅張積層板上にシワ等が発生する問題が生じる。また、銅箔(B)の厚みが20μmを超えると、FPCを折り曲げた際の銅配線に加わる曲げ応力が大きくなることにより、耐折り曲げ性が低下することとなる。
<Copper foil>
In the flexible copper clad laminate of the present embodiment, the thickness of the copper foil (B) is in the range of 6 to 20 μm, and preferably in the range of 8 to 15 μm. If the thickness of the copper foil (B) is less than 6 μm, the rigidity of the copper foil itself is lowered in the process of forming a polyimide layer on the copper foil, for example, in the production of the flexible copper clad laminate. There is a problem that wrinkles and the like occur on the tension laminated plate. Moreover, when the thickness of copper foil (B) exceeds 20 micrometers, bending resistance added to the copper wiring at the time of bending | flexing FPC will become large, and bending resistance will fall.

更に、本実施の形態ではポリイミド層(A)と銅箔(B)の厚み比[ポリイミド層(A)/銅箔(B)]が0.9〜1.1の範囲内にあることが好ましい。この厚み比が0.9未満、あるいは1.1より大きくなると、折り曲げ時に塑性変形した部分が伸ばされる際の最大引張りひずみが大きくなることにより、耐折り曲げ性が低下することとなる。   Furthermore, in the present embodiment, the thickness ratio of the polyimide layer (A) to the copper foil (B) [polyimide layer (A) / copper foil (B)] is preferably in the range of 0.9 to 1.1. . When the thickness ratio is less than 0.9 or greater than 1.1, the maximum tensile strain at the time when the portion plastically deformed during bending is elongated becomes large, and the bending resistance is lowered.

また、銅箔(B)の引張弾性率については、25〜35GPaの範囲内である。銅箔(B)の引張弾性率が25GPaに満たないと、フレキシブル銅張積層板の製造時、例えば、銅箔上にポリイミド層を形成する工程において銅箔自体の加熱条件等が影響し、剛性が低下してしまう。その結果、フレキシブル銅張積層板上にシワ等が発生するという問題が生じる。一方、引張弾性率が35GPaを超えると、FPCを折り曲げた際に銅配線により大きな曲げ応力が加わることとなり、その耐折り曲げ性が著しく低下する。   Moreover, about the tensile elasticity modulus of copper foil (B), it exists in the range of 25-35 GPa. If the tensile modulus of the copper foil (B) does not reach 25 GPa, for example, the heating conditions of the copper foil itself may affect the process of forming the polyimide layer on the copper foil during the production of the flexible copper clad laminate, Will decrease. As a result, the problem that a wrinkle etc. generate | occur | produce on a flexible copper clad laminated board arises. On the other hand, when the tensile elastic modulus exceeds 35 GPa, a large bending stress is applied to the copper wiring when the FPC is bent, and the bending resistance thereof is significantly reduced.

銅箔(B)の表面は、粗化処理されていてもよく、ポリイミド層(A)と接する銅箔表面の表面粗さ(十点平均粗さ;Rz)は0.7〜2.2μmの範囲内であり、0.8〜1.6μmの範囲内が好ましい。銅箔(B)の表面粗さ(Rz)の値が0.7μmに満たないとポリイミドフィルムとの接着信頼性の担保が困難となり、2.2μmを超えるとFPCを繰り返し折り曲げた際に、その粗化粒子の凹凸がクラック発生の起点となりやすい。その結果、FPCの耐折り曲げ性を低下させることとなる。なお、表面粗さRzは、JIS B0601の規定に準じて測定される値である。   The surface of the copper foil (B) may be roughened, and the surface roughness (ten-point average roughness; Rz) of the copper foil surface in contact with the polyimide layer (A) is 0.7 to 2.2 μm. It is in a range, and a range of 0.8 to 1.6 μm is preferable. If the surface roughness (Rz) value of the copper foil (B) is less than 0.7 μm, it will be difficult to secure the adhesion reliability with the polyimide film, and if it exceeds 2.2 μm, the FPC will be bent repeatedly. The unevenness of the roughening particles is likely to be the starting point of the crack generation. As a result, the bending resistance of the FPC is reduced. In addition, surface roughness Rz is a value measured according to the prescription | regulation of JISB0601.

本実施の形態のフレキシブル銅張積層板に使用する銅箔は、上記特性を充足するものであれば特に限定されるものではなく、電解銅箔でも圧延銅箔でもよいが、薄い銅箔を使用する場合での製造のしやすさや価格の観点から、電解銅箔を用いることが好ましい。電解銅箔としては、市販品を使用可能であり、その具体例としては、古河電気工業株式会社製WS箔、日本電解株式会社製HL箔、三井金属鉱業株式会社製HTE箔などが挙げられる。また、これらの市販品を含めて、それ以外のものを使用した場合であっても、前述した銅箔上へのポリイミド層(A)を形成する際の熱処理条件などにより、銅箔(B)の引張弾性率は変化し得るので、本実施の形態では結果として得られたフレキシブル銅張積層板がこれら所定の範囲になればよい。   The copper foil used for the flexible copper-clad laminate of this embodiment is not particularly limited as long as it satisfies the above characteristics, and may be an electrolytic copper foil or a rolled copper foil, but a thin copper foil is used. It is preferable to use an electrolytic copper foil from the viewpoint of the easiness of manufacture in the case of, and the price. Commercially available products can be used as the electrolytic copper foil, and specific examples thereof include WS foil manufactured by Furukawa Electric Co., Ltd., HL foil manufactured by Nippon Electrolytic Co., Ltd., HTE foil manufactured by Mitsui Mining & Smelting Co., Ltd., and the like. In addition, even if other products including these commercial products are used, the copper foil (B) can be used under the heat treatment conditions for forming the polyimide layer (A) on the copper foil described above. In the present embodiment, the resulting flexible copper-clad laminate should fall within these predetermined ranges.

本実施の形態のフレキシブル銅張積層板は、例えば、銅箔表面にポリイミド前駆体樹脂溶液(ポリアミド酸溶液ともいう。)を塗工し、次いで、乾燥、硬化させる熱処理工程を経て製造することができる。熱処理工程における熱処理条件は、塗工されたポリアミド酸溶液を160℃未満の温度でポリアミド酸溶液中の溶媒を乾燥除去した後、更に、130℃から400℃の温度範囲内で段階的に昇温し、硬化させることにより行なわれる。このようにして得られた片面フレキシブル銅張積層板を両面銅張積層板とするには、前記片面フレキシブル銅張積層板と、これとは別に準備した銅箔とを300〜400℃の範囲内の温度にて熱圧着する方法が挙げられる。   The flexible copper-clad laminate of this embodiment can be produced, for example, by applying a polyimide precursor resin solution (also referred to as a polyamic acid solution) on the surface of a copper foil, and then drying and curing it. it can. The heat treatment conditions in the heat treatment step are such that after the solvent in the polyamic acid solution is dried and removed at a temperature of less than 160 ° C., the temperature of the coated polyamic acid solution is raised stepwise in a temperature range of 130 ° C. to 400 ° C. And curing. In order to make the single-sided flexible copper-clad laminate thus obtained into a double-sided copper-clad laminate, the single-sided flexible copper-clad laminate and the copper foil prepared separately from this are within the range of 300 to 400 ° C. A method of thermocompression bonding at a temperature of

<FPC>
本実施の形態のフレキシブル銅張積層板は、主にFPC材料として有用である。すなわち、本実施の形態のフレキシブル銅張積層板の銅箔を常法によってパターン状に加工して配線層を形成することによって、本発明の一実施の形態であるFPCを製造できる。
<FPC>
The flexible copper-clad laminate of this embodiment is mainly useful as an FPC material. That is, the FPC according to an embodiment of the present invention can be manufactured by processing the copper foil of the flexible copper-clad laminate of the present embodiment into a pattern by an ordinary method to form a wiring layer.

本発明のフレキシブル銅張積層板は、上記ポリイミド層(A)と上記銅箔(B)により構成されるが、このフレキシブル銅張積層板の銅箔(B)を配線回路加工して銅配線を形成した任意のフレキシブル回路基板の折り曲げ試験(ギャップ0.3mm)での、下記(1)によって計算される折れ癖係数[PF]が0.96±0.025の範囲にあることが必要であり、0.96±0.02の範囲にあることが好ましく、0.96±0.015の範囲にあることがより好ましい。この折れ癖係数[PF]は、使用される銅箔の一軸引張試験より得られる応力−ひずみ曲線によって決まる値である。この折れ癖係数[PF]が上記範囲から外れると、応力が局部的(1点又は2点)に集中することによって、耐折り曲げ性が低下する。逆に、折れ癖係数[PF]が上記範囲にあれば、応力が適度に分散することによってハゼ折りなどの耐折り曲げ性が向上する。例えば、本発明において電解銅箔を用いた場合、本発明で規定する折れ癖係数[PF]を上記範囲とするには、用いられる電解銅箔の一軸引張試験より得られる応力−ひずみ曲線において、初期の直線部分の傾き即ち弾性率が29GPa以下、且つ曲率が最大になる箇所の応力値が130MPa以下、且つひずみが5%で応力が175MPa以下となる銅箔を用いる態様が例示される。   The flexible copper-clad laminate of the present invention is composed of the polyimide layer (A) and the copper foil (B). The copper foil (B) of this flexible copper-clad laminate is subjected to wiring circuit processing for copper wiring In a bending test (a gap of 0.3 mm) of any formed flexible circuit board, it is necessary that the tortuosity factor [PF] calculated by the following (1) is in the range of 0.96 ± 0.025. It is preferably in the range of 0.96 ± 0.02, and more preferably in the range of 0.96 ± 0.015. The fracture modulus [PF] is a value determined by the stress-strain curve obtained from the uniaxial tension test of the copper foil used. When the tortuosity factor [PF] is out of the above range, the stress is locally concentrated (one point or two points), whereby the bending resistance is lowered. On the other hand, if the toe coefficient [PF] is in the above range, the stress is appropriately dispersed to improve the bending resistance such as goby folding. For example, when the electrolytic copper foil is used in the present invention, the stress-strain curve obtained from the uniaxial tensile test of the electrolytic copper foil used is to set the fracture modulus [PF] defined in the present invention to the above range. An embodiment using a copper foil in which the initial inclination of the linear portion, that is, the elastic modulus is 29 GPa or less, the stress value of the portion where the curvature is maximum is 130 MPa or less, and the strain is 5% and the stress is 175 MPa or less is exemplified.

Figure 0006534471
式(1)において、|ε|は銅配線の屈曲平均ひずみ値の絶対値であり、εcは銅配線の引張弾性限界ひずみである。
Figure 0006534471
In equation (1), | ε | is the absolute value of the bending average strain value of the copper wiring, and εc is the tensile elasticity limit strain of the copper wiring.

上記のように、折れ癖係数[PF]は、銅配線の屈曲平均ひずみ値εの絶対値|ε|と銅配線の引張弾性限界ひずみεcとによって表され、屈曲平均ひずみ値εは、下記式(2)によって算出される。以下、折れ癖係数[PF]について、図8に示した1層のポリイミドからなるポリイミド層11の片面側に1層の銅箔を配線回路加工した銅配線12が設けられた回路基板をモデルにし、第一層であるポリイミド層11の下面である基準面SPが下側に凸形状(屈曲部の外面)になるように回路基板を屈曲させる場合について説明する。なお、図8に示した回路基板は、回路基板の長手方向に対して垂直に切った断面(すなわち横断面)のうち、銅配線が存在する部分を示すものである。
ε=−(yc−[NP]Line)/R …(2)
As described above, the bending coefficient [PF] is represented by the absolute value | ε | of the bending average strain value ε of the copper wiring and the tensile elastic limit strain εc of the copper wiring, and the bending average strain value ε is Calculated by (2). Hereinafter, with respect to the bending coefficient [PF], a circuit board provided with a copper wiring 12 obtained by processing one layer of copper foil on one side of the polyimide layer 11 made of one layer of polyimide shown in FIG. The case where the circuit board is bent so that the reference surface SP which is the lower surface of the polyimide layer 11 which is the first layer is convex downward (the outer surface of the bent portion) will be described. The circuit board shown in FIG. 8 shows a portion where copper wiring exists in a cross section (that is, a cross section) cut perpendicularly to the longitudinal direction of the circuit board.
ε = − (yc− [NP] Line ) / R (2)

ここで、式(2)について、屈曲平均ひずみεは、回路基板の長手方向を2つ折りした際の純曲げによって銅配線に生じる長手方向の屈曲平均ひずみであり、式中のycは、ポリイミド層12の下面である基準面SPから銅配線12の中央面までの距離である。また、符号NPは回路基板の中立面を表している。ここで、中立面NPと基準面SPとの距離を中立面位置[NP]とし、この中立面位置[NP]については、銅箔の配線回路加工によって形成された銅配線と銅配線間に形成されるスペース部とで別々に計算する。中立面位置[NP]は、次の式(3)によって算出される。   Here, in the equation (2), the bending average strain ε is the bending average strain in the longitudinal direction generated in the copper wiring by pure bending when the longitudinal direction of the circuit board is folded in two, and yc in the equation is a polyimide layer It is the distance from the reference plane SP which is the lower surface of 12 to the center plane of the copper wiring 12. Further, the code NP represents the neutral plane of the circuit board. Here, the distance between the neutral plane NP and the reference plane SP is taken as a neutral plane position [NP], and for this neutral plane position [NP], copper wiring and copper wiring formed by wiring circuit processing of copper foil Calculate separately with the space part formed between. The neutral plane position [NP] is calculated by the following equation (3).

Figure 0006534471
Figure 0006534471

ここで、Eは、回路基板における第i層(図8に示した例では、第1層がポリイミド層11であり、第2層が銅配線12である)を構成する材料の引張弾性率である。この弾性率Eは、本実施の形態における「各層における応力とひずみの関係」に対応する。Bは、第i層の幅であり、図8に示した幅B(第1層の下面に平行で、回路基板の長手方向に垂直な方向の寸法)に相当する。 Here, E i is (in the example shown in FIG. 8, the first layer is a polyimide layer 11, second layer copper wiring is 12) the i-th layer in the circuit board tensile modulus of the material constituting the It is. The modulus of elasticity E i corresponds to the "relationship stress and strain in the layers" in the present embodiment. B i is the width of the ith layer, which corresponds to the width B shown in FIG. 8 (the dimension parallel to the lower surface of the first layer and perpendicular to the longitudinal direction of the circuit board).

銅配線の中立面位置[NP]を求める場合には、Bとして銅配線の線幅LWの値を用い、スペース部の中立面位置[NP]を求める場合には、Bとして銅配線の線間幅SWの値を用いる。hは、第i層の中央面と基準面SPとの距離である。なお、第i層の中央面とは、第i層の厚み方向の中央に位置する仮想の面である。tは、第i層の厚みである。また、記号“Σi=1 ”は、iが1からnまでの総和を表す。また、銅配線における中立面位置については[NP]Lineと記す。 In case of obtaining the neutral plane position of the copper wiring [NP], when a B i using the values of the line width LW of the copper wiring, obtaining the neutral plane position of the space portion [NP], the copper as B i Use the value of the line width SW of the wiring. h i is the distance between the central plane of the ith layer and the reference plane SP. The center plane of the ith layer is an imaginary plane located at the center in the thickness direction of the ith layer. t i is the thickness of the i-th layer. Also, the symbol “Σ i = 1 n ” represents the total sum of i from 1 to n. In addition, the neutral plane position in copper wiring is described as [NP] Line .

また、式(2)中のRは有効曲率半径を表し、有効曲率半径Rは、折り曲げ試験において回路基板を折り曲げた際の、屈曲部における屈曲中心から銅配線の中立面NPまでの距離である。すなわち、有効曲率半径Rは、ギャップ間隔Gと銅配線の中立面位置[NP]Lineとから、次の式(4)によって算出される。
R=G/2−[NP]Line …(4)
Further, R in the equation (2) represents an effective radius of curvature, and the effective radius of curvature R is a distance from a bending center at a bending portion to the neutral plane NP of the copper wiring when the circuit board is bent in a bending test. is there. That is, the effective curvature radius R is calculated by the following equation (4) from the gap interval G and the neutral plane position [NP] Line of the copper wiring.
R = G / 2- [NP] Line (4)

上記のように、中立面位置、有効曲率半径、屈曲平均ひずみを求めることで、回路基板全体の折れ癖の程度を表す折れ癖係数[PF]が算出される。また、この折れ癖係数[PF]は、上記の説明のとおり、回路基板を構成する各層の厚みと、回路基板を構成する各層の弾性率と、折り曲げ試験におけるギャップ間隔Gと、銅配線12における線幅LW等の各情報を用いて算出することができる。   As described above, by obtaining the position of the neutral surface, the effective radius of curvature, and the bending average strain, a bending coefficient [PF] representing the degree of bending of the entire circuit board is calculated. Further, as described above, the fracture coefficient [PF] is determined by the thickness of each layer constituting the circuit board, the elastic modulus of each layer constituting the circuit board, the gap interval G in the bending test, and the copper wiring 12 It can be calculated using each information such as the line width LW.

なお、上記(図8)では、便宜上、回路基板が2層であるモデルを示し説明したが、上記説明は、回路基板が2層以上から形成される場合にも当てはまる。すなわち、回路基板1の層の数をnとした場合、nは2以上の整数であり、この回路基板を構成する各層のうち基準面SPから数えてi番目(i=1,2,…,n)の層を第i層と呼ぶ。   In the above (FIG. 8), for convenience, the model in which the circuit board has two layers is described and described, but the above description also applies to the case where the circuit board is formed of two or more layers. That is, assuming that the number of layers of circuit board 1 is n, n is an integer of 2 or more, and it is i-th (i = 1, 2,. The layer n) is called the i-th layer.

また、回路基板は、図1に示したように銅箔が配線回路加工によりパターニングされており、銅配線12が存在する部分と、銅配線12が存在しない部分とがある。ここで、銅配線12が存在する部分を配線部と呼び、銅配線12が存在しない部分をスペース部と呼べば、配線部とスペース部とでは、構成が異なる。例えば、図1に示した回路基板1の場合、ポリイミド層11上の配線部は10列(図1では、4列のみ図示)の銅配線12で構成され、スペース部は配線部以外で、主に銅配線12間の隙間で構成される。以上より、折り癖係数[PF]の算出は、配線部とスペース部とを分けて行うことができる。   Further, as shown in FIG. 1, in the circuit board, copper foil is patterned by wiring circuit processing, and there are a portion where the copper wiring 12 exists and a portion where the copper wiring 12 does not exist. Here, when a portion where the copper wiring 12 exists is called a wiring portion and a portion where the copper wiring 12 does not exist is called a space portion, the configuration differs between the wiring portion and the space portion. For example, in the case of the circuit board 1 shown in FIG. 1, the wiring portion on the polyimide layer 11 is composed of ten rows (only four rows are shown in FIG. 1) of copper wiring 12 and the space portion is other than the wiring portion. And the gaps between the copper wires 12. From the above, the calculation of the fold coefficient [PF] can be performed by dividing the wiring portion and the space portion.

以下、実施例に基づき本発明をより詳細に説明する。なお、下記の実施例における各特性評価は、以下の方法により行った。   Hereinafter, the present invention will be described in more detail based on examples. In addition, each characteristic evaluation in the following Example was performed by the following method.

[引張弾性率の測定]
株式会社東洋精機製作所製ストログラフR−1を用いて、温度23℃、相対湿度50%の環境下で引張弾性率の値を測定した。
[Measurement of tensile modulus]
The value of the tensile modulus of elasticity was measured under an environment of a temperature of 23 ° C. and a relative humidity of 50% using a Strograph R-1 manufactured by Toyo Seiki Seisaku-sho, Ltd.

[熱膨張係数(CTE)の測定]
セイコーインスツルメンツ製のサーモメカニカルアナライザーを使用し、250℃まで昇温し、更にその温度で10分保持した後、5℃/分の速度で冷却し、240℃から100℃までの平均熱膨張係数(線熱膨張係数)を求めた。
[Measurement of coefficient of thermal expansion (CTE)]
Using a thermomechanical analyzer manufactured by Seiko Instruments Inc., raise the temperature to 250 ° C., hold at that temperature for 10 minutes, cool at a rate of 5 ° C./min, and average thermal expansion coefficient from 240 ° C. to 100 ° C. The linear thermal expansion coefficient was determined.

[表面粗さ(Rz)の測定]
接触式表面粗さ測定機(株式会社小坂研究所製SE1700)を用いて、銅箔のポリイミド層との接触面側の表面粗さを測定した。
[Measurement of surface roughness (Rz)]
The surface roughness of the copper foil in contact with the polyimide layer was measured using a contact-type surface roughness measuring machine (SE1700 manufactured by Kosaka Laboratory Ltd.).

[はぜ折りの測定(折り曲げ試験)]
フレキシブル銅張積層板の銅箔をエッチング加工し、その長手方向に沿ってライン幅100μm、スペース幅100μmにて長さが40mmの10列の銅配線を形成した試験片(試験回路基板片)を作製した(図2)。試験片における銅配線のみを表した図2に示したように、その試験片40における10列の銅配線51は、U字部52を介して全て連続して繋がっており、その両端には抵抗値測定用の電極部分(図示外)を設けている。その試験片40を、二つ折りが可能な試料ステージ20及び21上に固定し、抵抗値測定用の配線を接続して、抵抗値のモニタリングを開始した(図3)。折り曲げ試験は、10列の銅配線51に対して長手方向のちょうど中央部分にて、ウレタン製のローラー22を用いて、折り曲げ箇所40CのギャップGが0.3mmとなるように制御しながら折り曲げた線と並行にローラーを移動させ10列の銅配線51を全て折り曲げた後(図4及び図5)、折り曲げ部分を開いて試験片を平らな状態に戻し(図6)、折り目がついている部分を再度ローラーにて抑えたまま移動させ(図7)、この一連の工程をもってはぜ折り回数1回とカウントするようにした。その常時配線の抵抗値をモニタリングしながら、折り曲げ試験を繰り返し、所定の抵抗値(3000Ω)になった時点を配線の破断と判断し、その時までに繰り返した折り曲げ回数をはぜ折り測定値とした。このはぜ折り測定値が50回以上である場合を「良好」、50回未満である場合を「不良」と評価した。
[Haze-fold measurement (bending test)]
A test piece (test circuit board piece) was obtained by etching a copper foil of a flexible copper clad laminate and forming 10 rows of copper wiring with a line width of 100 μm and a space width of 100 μm and a length of 40 mm along its longitudinal direction. It produced (FIG. 2). As shown in FIG. 2 representing only the copper wiring in the test piece, the ten rows of copper wiring 51 in the test piece 40 are all continuously connected via the U-shaped portion 52, and resistance is applied to both ends thereof An electrode portion (not shown) for value measurement is provided. The test piece 40 was fixed on the sample stage 20 and 21 which can be folded in half, and a wire for resistance measurement was connected to start monitoring of the resistance (FIG. 3). In the bending test, the roller G made of urethane was used while controlling the gap G at the bending portion 40C to be 0.3 mm at a center portion in the longitudinal direction with respect to 10 rows of copper wires 51. After moving the roller parallel to the line and bending all 10 rows of copper wiring 51 (Figs. 4 and 5), open the bent part and return the test piece to a flat state (Fig. 6), the creased part Was again moved while being held down by a roller (FIG. 7), and this series of steps was performed to count it once with the number of folds. The bending test is repeated while monitoring the resistance value of the wiring at all times, and it is determined that the wiring is broken when the predetermined resistance value (3000 Ω) is reached, and the number of times of bending repeated until that time is taken as the mean bending value . This case was evaluated as “good” when the measurement value was 50 times or more and “poor” when the measurement value was less than 50 times.

実施例、比較例に記載のフレキシブル銅張積層板の製造方法について次に示す。   The manufacturing method of the flexible copper clad laminated board as described in an Example and a comparative example is shown next.

[ポリアミック酸溶液の合成]
(合成例1)
ボトム樹脂の合成:
熱電対及び攪拌機を備えると共に窒素導入が可能な反応容器に、N,N−ジメチルアセトアミドを入れ、さらに、この反応容器に2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を投入して容器中で撹拌しながら溶解させた。次に、ピロメリット酸二無水物(PMDA)をモノマーの投入総量が12質量%となるように投入した。その後、3時間撹拌を続けて重合反応を行い、ポリアミド酸aの樹脂溶液を得た。ポリアミド酸aから形成された厚み25μmのポリイミドフィルムの熱膨張係数(CTE)は、55×10−6/Kであった。
[Synthesis of polyamic acid solution]
Synthesis Example 1
Bottom resin synthesis:
N, N-dimethylacetamide is placed in a reaction vessel equipped with a thermocouple and a stirrer and capable of introducing nitrogen, and further, 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) is placed in the reaction vessel. ) Was added and dissolved in the vessel with stirring. Next, pyromellitic dianhydride (PMDA) was charged such that the total amount of charged monomers was 12% by mass. Then, stirring was continued for 3 hours to carry out a polymerization reaction to obtain a resin solution of polyamic acid a. The thermal expansion coefficient (CTE) of a 25 μm-thick polyimide film formed of polyamic acid a was 55 × 10 −6 / K.

(合成例2)
熱電対及び攪拌機を備えると共に窒素導入が可能な反応容器に、N,N−ジメチルアセトアミドを入れ、さらに、この反応容器に2,2'−ジメチル−4,4'−ジアミノビフェニル(m-TB)および4,4’−ジアミノジフェニルエーテル(DAPE)を各ジアミンのモル比率(m-TB:DAPE)が60:40となるように投入して容器中で攪拌しながら溶解させた。次に、ピロメリット酸二無水物(PMDA)をモノマーの投入総量が16質量%となるように投入した。その後、3時間撹拌を続けて重合反応を行い、ポリアミド酸bの樹脂溶液を得た。ポリアミド酸bから形成された厚み25μmのポリイミドフィルムの熱膨張係数(CTE)は、22×10−6/Kであった。
(Composition example 2)
N, N-dimethylacetamide is placed in a reaction vessel equipped with a thermocouple and a stirrer and capable of introducing nitrogen, and further, 2,2'-dimethyl-4,4'-diaminobiphenyl (m-TB) is placed in the reaction vessel. And 4,4'-diaminodiphenyl ether (DAPE) were added at a molar ratio of each diamine (m-TB: DAPE) of 60:40 and dissolved in a container with stirring. Next, pyromellitic dianhydride (PMDA) was charged such that the total amount of charged monomers was 16% by mass. Then, stirring was continued for 3 hours to carry out a polymerization reaction to obtain a resin solution of polyamic acid b. The thermal expansion coefficient (CTE) of a 25 μm-thick polyimide film formed of polyamic acid b was 22 × 10 −6 / K.

(合成例3)
熱電対及び攪拌機を備えると共に窒素導入が可能な反応容器に、N,N−ジメチルアセトアミドを入れ、さらに、この反応容器に2,2'−ジメチル−4,4'−ジアミノビフェニル(m-TB)を投入して容器中で攪拌しながら溶解させた。次に、3,3',4,4'−ビフェニルテトラカルボン酸二無水物(BPDA)およびピロメリット酸二無水物(PMDA)をモノマーの投入総量が15質量%、各酸無水物のモル比率(BPDA:PMDA)が20:80となるように投入した。その後、3時間撹拌を続けて重合反応を行い、ポリアミド酸cの樹脂溶液を得た。ポリアミド酸cから形成された厚み25μmのポリイミドフィルムの熱膨張係数(CTE)は、22×10−6/Kであった。
(Composition example 3)
N, N-dimethylacetamide is placed in a reaction vessel equipped with a thermocouple and a stirrer and capable of introducing nitrogen, and further, 2,2'-dimethyl-4,4'-diaminobiphenyl (m-TB) is placed in the reaction vessel. Was dissolved in the vessel with stirring. Next, 15% by mass of the total amount of monomers charged with 3,3 ', 4,4'-biphenyltetracarboxylic acid dianhydride (BPDA) and pyromellitic dianhydride (PMDA), the molar ratio of each acid anhydride (BPDA: PMDA) was introduced so as to be 20:80. Then, stirring was continued for 3 hours to carry out a polymerization reaction to obtain a resin solution of polyamic acid c. The thermal expansion coefficient (CTE) of a 25 μm thick polyimide film formed of polyamic acid c was 22 × 10 −6 / K.

(実施例1)
厚さ12μmで長尺状の市販の電解銅箔の片面(表面粗さRz=1.2μm)に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが2.5μmとなるように均一に塗布した後、130℃で加熱乾燥し溶媒を除去した。次に、この塗布面側に合成例2で調製したポリアミド酸bの樹脂溶液を硬化後の厚みが20.0μmとなるように均一に塗布し、120℃で加熱乾燥し溶媒を除去した。更に、この塗布面側に第1層目で塗布したものと同じポリアミド酸aの樹脂溶液を硬化後の厚みが2.5μmとなるように均一に塗布し、130℃で加熱乾燥し溶媒を除去した。この長尺状の積層体を130℃から開始して300℃まで段階的に温度が上がるように設定した連続硬化炉にて、合計6分程度の時間をかけて熱処理し、ポリイミド層の厚みが25μmの片面フレキシブル銅張積層板を得た。得られたフレキシブル銅張積層板を構成するポリイミド層及び銅箔の引張弾性率等の物性値、厚み、ポリイミド層と銅箔の厚み比、折れ癖係数、並びに、フレキシブル銅張積層板の耐折り曲げ性(はぜ折り回数)の評価結果を表1に示す(実施例2以下も同様)。なお、ポリイミド層の評価は製造されたフレキシブル銅張積層板から銅箔をエッチング除去したものを用いた。
Example 1
The thickness after curing of the resin solution of polyamic acid a prepared in Synthesis Example 1 on one side (surface roughness Rz = 1.2 μm) of a long, commercially available electrolytic copper foil having a thickness of 12 μm is 2.5 μm. The solution was uniformly coated and dried by heating at 130.degree. C. to remove the solvent. Next, the resin solution of polyamic acid b prepared in Synthesis Example 2 was uniformly coated on the coated surface side to a cured thickness of 20.0 μm, and dried by heating at 120 ° C. to remove the solvent. Furthermore, a resin solution of the same polyamic acid a as that applied in the first layer is uniformly applied on the coated surface side to a cured thickness of 2.5 μm and dried by heating at 130 ° C. to remove the solvent. did. This long laminate is heat-treated for a total of about 6 minutes in a continuous curing furnace set so that the temperature rises stepwise from 130 ° C. to 300 ° C., and the thickness of the polyimide layer is A 25 μm single-sided flexible copper-clad laminate was obtained. Physical properties such as tensile elastic modulus of polyimide layer and copper foil constituting the obtained flexible copper-clad laminate, thickness, thickness ratio of polyimide layer to copper foil, bending modulus, and bending resistance of flexible copper-clad laminate Table 1 shows the evaluation results of the properties (the number of times of warping) (the same applies to Example 2 and thereafter). In addition, evaluation of the polyimide layer used what etched-removed the copper foil from the manufactured flexible copper clad laminated board.

ここで、実施例で製造したフレキシブル銅張積層板の折れ癖係数[PF]の算出について、実施例1を例に具体的な計算手順を説明する。
銅配線12が存在する配線部について図8に示すような2層構成を考え、第1層および第2層を構成する材料をそれぞれポリイミドおよび銅とする。表1(実施例1)に示した通り、各層の弾性率はE1=4GPa、E2=29GPa、厚みはt=25μm、t=12μmである。また、各層における厚さ方向での中央面と基準面SPとの距離はそれぞれh=12.5μm、h=31μmである。更に、幅Bについては、銅配線12の幅Bとスペース部の幅B2‘はともに100μmであり、また、銅配線12が存在する直下のポリイミドの幅Bも100μmとした(スペース部の直下のポリイミドの幅B1’も100μmとした)。
Here, a specific calculation procedure will be described by taking Example 1 as an example for calculation of the bending coefficient [PF] of the flexible copper clad laminate manufactured in the example.
Considering a two-layer structure as shown in FIG. 8 for the wiring portion in which the copper wiring 12 exists, the materials constituting the first layer and the second layer are respectively polyimide and copper. As shown in Table 1 (Example 1), the elastic modulus of each layer is E 1 = 4 GPa, E 2 = 29 GPa, and the thickness is t 1 = 25 μm, t 2 = 12 μm. The distance between the central plane and the reference plane SP in the thickness direction in each layer is h 1 = 12.5 μm and h 2 = 31 μm respectively. Furthermore, the width B, and the width B 2 'are both 100 [mu] m width B 2 and the space portion of the copper wiring 12, and the width B 1 of the polyimide just under the copper wiring 12 is also present was 100 [mu] m (the space portion The width B 1 ′ of the polyimide immediately below is also 100 μm).

これらの値を式(3)に代入すると、先ず、銅配線12が存在する配線部での中立面位置は[NP]Line=26.9μmと計算される。次に、この中立面位置[NP]Lineとギャップ間隔G=0.3mmを式(4)に代入して、有効屈曲半径R=0.123mmと計算される。さらに、基準面SPと銅配線12の中央面までの距離ycはyc=h2=31μmであるから、屈曲平均ひずみεはこのycと先に求めた[NP]Line、Rの値を式(2)に代入してε=−0.0333と計算される。ここでマイナスの符号は圧縮ひずみであることを表している。実施例1での銅配線となっている銅箔の引張試験より得た応力−ひずみ曲線より銅配線の引張弾性限界ひずみεcはεc=0.00058と決定した。これと先に求めた屈曲平均ひずみεの値を式(1)に代入すると折れ癖係数[PF]は[PF]=0.983と計算される。なお、本実施例においては、スペース部はポリイミド層のみから構成されていることから[NP]を求める操作は必要とせず、表1中の他の実施例、比較例の折れ癖係数[PF]も以上の手順で計算された値である。 Substituting these values into the equation (3), first, the neutral plane position in the wiring portion where the copper wiring 12 exists is calculated as [NP] Line = 26.9 μm. Next, this neutral plane position [NP] Line and the gap interval G = 0.3 mm are substituted in the equation (4) to calculate the effective bending radius R = 0.123 mm. Furthermore, since the distance yc from the reference plane SP to the central plane of the copper wiring 12 is yc = h 2 = 31 μm, the bending average strain ε is the value of this yc and the previously obtained [NP] Line and R It substitutes to 2) and it calculates with (epsilon) =-0.0333. Here, a minus sign indicates that it is a compression distortion. From the stress-strain curve obtained from the tensile test of the copper foil in Example 1, the tensile elastic limit strain εc of the copper wiring was determined to be εc = 0.00058. Substituting this and the value of the bending average strain ε previously obtained into the equation (1), the bending coefficient [PF] is calculated as [PF] = 0.983. In the present embodiment, since the space portion is formed only of the polyimide layer, the operation for obtaining [NP] is not necessary, and the fracture coefficients [PF] of other embodiments and comparative examples in Table 1 are obtained. Is the value calculated by the above procedure.

(実施例2)
厚さ12μmで長尺状の市販の電解銅箔の片面(表面粗さRz=1.2μm)に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが2.0μmとなるように均一に塗布した後、130℃で加熱乾燥し溶媒を除去した。次に、この塗布面側に合成例3で調製したポリアミド酸cの樹脂溶液を硬化後の厚みが16μmとなるように均一に塗布し、130℃で加熱乾燥し溶媒を除去した。更に、この塗布面側に第1層目で塗布したものと同じポリアミド酸aの樹脂溶液を硬化後の厚みが2.0μmとなるように均一に塗布し、130℃で加熱乾燥し溶媒を除去した。この長尺状の積層体を130℃から開始して300℃まで段階的に温度が上がるように設定した連続硬化炉にて、合計6分程度の時間をかけて熱処理し、ポリイミド層の厚みが20μmの片面フレキシブル銅張積層板を得た。得られた片面フレキシブル銅張積層板についての耐折り曲げ性の評価結果を表1に示す。
(Example 2)
A thickness of 2.0 μm after curing of the resin solution of polyamic acid a prepared in Synthesis Example 1 on one side (surface roughness Rz = 1.2 μm) of a long, commercially available electrolytic copper foil having a thickness of 12 μm The solution was uniformly coated and dried by heating at 130.degree. C. to remove the solvent. Next, the resin solution of the polyamic acid c prepared in Synthesis Example 3 was uniformly coated on the coated surface side so that the thickness after curing was 16 μm, and dried by heating at 130 ° C. to remove the solvent. Furthermore, a resin solution of the same polyamic acid a as that applied in the first layer is uniformly applied on the coated surface side to a cured thickness of 2.0 μm and dried by heating at 130 ° C. to remove the solvent. did. This long laminate is heat-treated for a total of about 6 minutes in a continuous curing furnace set so that the temperature rises stepwise from 130 ° C. to 300 ° C., and the thickness of the polyimide layer is A 20 μm single-sided flexible copper-clad laminate was obtained. Table 1 shows the evaluation results of the bending resistance of the obtained single-sided flexible copper-clad laminate.

(実施例3)
厚さ12μmで長尺状の市販の電解銅箔の片面(表面粗さRz=1.2μm)に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが2.2μmとなるように均一に塗布した後、130℃で加熱乾燥し溶媒を除去した。次に、この塗布面側に合成例3で調製したポリアミド酸cの樹脂溶液を硬化後の厚みが7.6μmとなるように均一に塗布し、130℃で加熱乾燥し溶媒を除去した。更に、この塗布面側に第1層目で塗布したものと同じポリアミド酸aの樹脂溶液を硬化後の厚みが2.2μmとなるように均一に塗布し、130℃で加熱乾燥し溶媒を除去した。この長尺状の積層体を130℃から開始して300℃まで段階的に温度が上がるように設定した連続硬化炉にて、合計6分程度の時間をかけて熱処理し、ポリイミド層の厚みが12μmの片面フレキシブル銅張積層板を得た。得られた片面フレキシブル銅張積層板についての耐折り曲げ性の評価結果を表1に示す。
(Example 3)
The thickness after curing of the resin solution of polyamic acid a prepared in Synthesis Example 1 on one side (surface roughness Rz = 1.2 μm) of a long, commercially available electrolytic copper foil having a thickness of 12 μm is 2.2 μm. The solution was uniformly coated and dried by heating at 130.degree. C. to remove the solvent. Next, the resin solution of polyamic acid c prepared in Synthesis Example 3 was uniformly coated on the coated surface side to a cured thickness of 7.6 μm, and dried by heating at 130 ° C. to remove the solvent. Furthermore, a resin solution of the same polyamic acid a as that applied in the first layer is uniformly applied on the coated surface side to a cured thickness of 2.2 μm, and dried by heating at 130 ° C. to remove the solvent. did. This long laminate is heat-treated for a total of about 6 minutes in a continuous curing furnace set so that the temperature rises stepwise from 130 ° C. to 300 ° C., and the thickness of the polyimide layer is A 12 μm single-sided flexible copper-clad laminate was obtained. Table 1 shows the evaluation results of the bending resistance of the obtained single-sided flexible copper-clad laminate.

(実施例4)
厚さ12μmで長尺状の市販の電解銅箔の片面(表面粗さRz=1.20μm)に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが2.0μmとなるように均一に塗布した後、130℃で加熱乾燥し溶媒を除去した。次に、この塗布面側に合成例3で調製したポリアミド酸cの樹脂溶液を硬化後の厚みが5.0μmとなるように均一に塗布し、130℃で加熱乾燥し溶媒を除去した。更に、この塗布面側に第1層目で塗布したものと同じポリアミド酸aの樹脂溶液を硬化後の厚みが2.0μmとなるように均一に塗布し、130℃で加熱乾燥し溶媒を除去した。この長尺状の積層体を130℃から開始して300℃まで段階的に温度が上がるように設定した連続硬化炉にて、合計6分程度の時間をかけて熱処理し、ポリイミド層の厚みが9μmの片面フレキシブル銅張積層板を得た。得られた片面フレキシブル銅張積層板についての耐折り曲げ性の評価結果を表1に示す。
(Example 4)
A thickness of 2.0 μm after curing the resin solution of polyamic acid a prepared in Synthesis Example 1 on one side (surface roughness Rz = 1.20 μm) of a long 12 μm thick commercially available electrolytic copper foil The solution was uniformly coated and dried by heating at 130.degree. C. to remove the solvent. Next, the resin solution of polyamic acid c prepared in Synthesis Example 3 was uniformly coated on the coated surface side to a cured thickness of 5.0 μm, and dried by heating at 130 ° C. to remove the solvent. Furthermore, a resin solution of the same polyamic acid a as that applied in the first layer is uniformly applied on the coated surface side to a cured thickness of 2.0 μm and dried by heating at 130 ° C. to remove the solvent. did. This long laminate is heat-treated for a total of about 6 minutes in a continuous curing furnace set so that the temperature rises stepwise from 130 ° C. to 300 ° C., and the thickness of the polyimide layer is A 9 μm single-sided flexible copper-clad laminate was obtained. Table 1 shows the evaluation results of the bending resistance of the obtained single-sided flexible copper-clad laminate.

(実施例5)
厚さ9μmで長尺状の市販の電解銅箔の片面(表面粗さRz=1.2μm)を使用した以外は、実施例4と同様にしてフレキシブル銅張積層板を得た。得られたフレキシブル銅張積層板の耐折り曲げ性の評価結果を表1に示す。
(Example 5)
A flexible copper-clad laminate was obtained in the same manner as in Example 4, except that one side (surface roughness Rz = 1.2 μm) of a long commercially available electrolytic copper foil having a thickness of 9 μm was used. The evaluation results of the bending resistance of the obtained flexible copper clad laminate are shown in Table 1.

(実施例6)
厚さ12μmで長尺状の市販の電解銅箔の片面(表面粗さRz=1.9μm)を使用した以外は、実施例3と同様にしてフレキシブル銅張積層板を得た。得られたフレキシブル銅張積層板の耐折り曲げ性の評価結果を表1に示す。
(Example 6)
A flexible copper-clad laminate was obtained in the same manner as in Example 3, except that one side (surface roughness Rz = 1.9 μm) of a long, commercially available electrolytic copper foil having a thickness of 12 μm was used. The evaluation results of the bending resistance of the obtained flexible copper clad laminate are shown in Table 1.

(実施例7)
厚さ9μmで長尺状の市販の電解銅箔の片面(表面粗さRz=1.2μm)を使用した以外は、実施例3と同様にしてフレキシブル銅張積層板を得た。得られたフレキシブル銅張積層板の耐折り曲げ性の評価結果を表1に示す。
(Example 7)
A flexible copper-clad laminate was obtained in the same manner as in Example 3, except that one side (surface roughness Rz = 1.2 μm) of a long, commercially available electrolytic copper foil having a thickness of 9 μm was used. The evaluation results of the bending resistance of the obtained flexible copper clad laminate are shown in Table 1.

(実施例8)
厚さ12μmで長尺状の市販の電解銅箔の片面(表面粗さRz=2.2μm)を使用した以外は、実施例3と同様にしてフレキシブル銅張積層板を得た。得られたフレキシブル銅張積層板の耐折り曲げ性の評価結果を表1に示す。
(Example 8)
A flexible copper-clad laminate was obtained in the same manner as in Example 3, except that one side (surface roughness Rz = 2.2 μm) of a long, commercially available electrolytic copper foil having a thickness of 12 μm was used. The evaluation results of the bending resistance of the obtained flexible copper clad laminate are shown in Table 1.

(比較例1)
表1に示した特性を有し、厚さ12μmで長尺状の市販の電解銅箔の片面(表面粗さRz=1.2μm)を使用し、ポリイミド層の厚み構成を以下のように変更した以外は実施例1と同様にしてフレキシブル銅張積層板を得た。ここで、ポリイミド層の厚み構成は、銅箔上に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが4.0μm、その上に合成例2で調製したポリアミド酸bの樹脂溶液を硬化後の厚みが42.0μm、更にその上に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが4.0μmとなるようにした。得られたフレキシブル銅張積層板についての耐折り曲げ性の評価結果を表1に示す。
(Comparative example 1)
Using one side (surface roughness Rz = 1.2 μm) of a long strip commercially available electrolytic copper foil having the characteristics shown in Table 1 and a thickness of 12 μm, the thickness configuration of the polyimide layer was changed as follows A flexible copper-clad laminate was obtained in the same manner as in Example 1 except for the above. Here, the thickness configuration of the polyimide layer is that the resin solution of the polyamic acid a prepared in Synthesis Example 1 on a copper foil has a thickness of 4.0 μm after curing and the resin of the polyamic acid b prepared in Synthesis Example 2 thereon. The cured solution thickness was 42.0 μm, and the resin solution of the polyamic acid a prepared in Synthesis Example 1 was further cured to a thickness of 4.0 μm. Table 1 shows the evaluation results of the bending resistance of the obtained flexible copper clad laminate.

(比較例2)
表1に示した特性を有し、厚さ12μmで長尺状の市販の電解銅箔の片面(表面粗さRz=2.0μm)を使用し、ポリイミド層の厚み構成を以下のように変更した以外は実施例2と同様にしてフレキシブル銅張積層板を得た。ここで、ポリイミド層の厚み構成は、銅箔上に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが3.0μm、その上に合成例3で調製したポリアミド酸cの樹脂溶液を硬化後の厚みが32.0μm、更にその上に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが3.0μmとなるようにした。
(Comparative example 2)
Using one side (surface roughness Rz = 2.0 μm) of a long strip commercially available electrolytic copper foil having the characteristics shown in Table 1 and a thickness of 12 μm, the thickness configuration of the polyimide layer is changed as follows A flexible copper-clad laminate was obtained in the same manner as in Example 2 except for the above. Here, the thickness configuration of the polyimide layer is 3.0 μm after curing of the resin solution of the polyamic acid a prepared in Synthesis Example 1 on a copper foil, and the resin of the polyamic acid c prepared in Synthesis Example 3 thereon. The thickness after curing of the solution was 32.0 μm, and further, the resin solution of the polyamic acid a prepared in Synthesis Example 1 was 3.0 μm after curing.

(比較例3)
表1に示した特性を有し、厚さ12μmで長尺状の市販の電解銅箔の片面(表面粗さRz=1.8μm)を使用し、ポリイミド層の厚み構成を以下のように変更した以外は実施例2と同様にしてフレキシブル銅張積層板を得た。ここで、ポリイミド層の厚み構成は、銅箔上に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが2.5μm、その上に合成例3で調製したポリアミド酸cの樹脂溶液を硬化後の厚みが20.0μm、更にその上に合成例1で調製したポリアミド酸aの樹脂溶液を硬化後の厚みが2.5μmとなるようにした。
(Comparative example 3)
Using one side (surface roughness Rz = 1.8 μm) of a long strip commercially available electrolytic copper foil having the characteristics shown in Table 1 and a thickness of 12 μm, the thickness configuration of the polyimide layer is changed as follows: A flexible copper-clad laminate was obtained in the same manner as in Example 2 except for the above. Here, the thickness configuration of the polyimide layer is such that the resin solution of polyamic acid a prepared in Synthesis Example 1 on a copper foil has a thickness of 2.5 μm after curing and the resin of polyamic acid c prepared in Synthesis Example 3 thereon. The cured solution thickness was 20.0 μm, and the resin solution of the polyamic acid a prepared in Synthesis Example 1 was further cured to a thickness of 2.5 μm.

Figure 0006534471
Figure 0006534471

表1から、ポリイミド層の厚みが5〜30μm、引張弾性率が4〜10GPaであり、銅箔の厚みが6〜20μmの範囲内、引張弾性率が25〜35GPaの範囲内であり、かつ、ポリイミド層と接する面の銅箔の十点平均粗さ(Rz)が0.7〜2.2μmの範囲内であり、かつ、折れ癖係数[PF]が0.96±0.025の範囲内にある実施例1〜8のフレキシブル銅張積層板は、耐折り曲げ性が満足できる結果であった。一方、ポリイミド層の厚みが30μmを超える比較例1及び2、銅箔の引張弾性率が35GPaを超える比較例3では、いずれも、はぜ折り回数が少なく、耐折り曲げ性が不良であった。   From Table 1, the thickness of the polyimide layer is 5 to 30 μm, the tensile elastic modulus is 4 to 10 GPa, the thickness of the copper foil is in the range of 6 to 20 μm, the tensile elastic modulus is in the range of 25 to 35 GPa, The ten-point average roughness (Rz) of the copper foil on the surface in contact with the polyimide layer is in the range of 0.7 to 2.2 μm, and the bending coefficient [PF] is in the range of 0.96 ± 0.025. The flexible copper-clad laminates of Examples 1 to 8 of the present invention show that the bending resistance is satisfactory. On the other hand, in Comparative Examples 1 and 2 in which the thickness of the polyimide layer exceeds 30 μm and Comparative Example 3 in which the tensile modulus of the copper foil exceeds 35 GPa, the number of folds is small and bending resistance is poor.

以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはない。   Although the embodiments of the present invention have been described in detail for the purpose of illustration, the present invention is not limited to the above embodiments.

1:回路基板
11:ポリイミド層
12、51:銅配線
20、21:試料ステージ
22:ローラー
40:試験片
40C:試験片の折り曲げ箇所
52:銅配線のU字部
1: Circuit board
11: Polyimide layer
12, 51: Copper wiring
20, 21: sample stage
22: Roller
40: Test piece
40C: Bending point of test piece
52: U-shaped part of copper wiring

Claims (5)

電子機器の筐体内に上面側が180度反転して下面側になるように折り曲げるはぜ折りによって折り畳んで収納されるフレキシブル回路基板であって、
厚み5〜30μmの範囲内、引張弾性率4〜10GPaの範囲内のポリイミド層(A)と、
前記ポリイミド層(A)の少なくとも一方の面に積層された厚み6〜20μmの範囲内、引張弾性率25〜35GPaの範囲内の銅箔(B)からなる銅配線と、を有しており、
前記ポリイミド層(A)と接する側の面の銅箔(B)の十点平均粗さ(Rz)が0.7〜2.2μmの範囲内であり、かつ、前記フレキシブル回路基板のギャップ0.3mmでの折り曲げ試験での、下記式(1)によって計算される折れ癖係数[PF]が0.96±0.025の範囲内にあることを特徴とするフレキシブル回路基板。
Figure 0006534471
[式(1)において、|ε|は銅配線の屈曲平均ひずみ値の絶対値であり、εcは銅配線の引張弾性限界ひずみである。]
A flexible circuit board which is folded so as to be folded and folded by being folded so that the upper surface side is turned 180 degrees and the lower surface side is folded in a housing of the electronic device,
A polyimide layer (A) in the range of 5 to 30 μm in thickness and in the range of tensile modulus of 4 to 10 GPa,
And copper wiring composed of copper foil (B) within a thickness of 6 to 20 μm and having a tensile modulus of elasticity of 25 to 35 GPa laminated on at least one surface of the polyimide layer (A),
The ten-point average roughness (Rz) of the copper foil (B) on the side in contact with the polyimide layer (A) is in the range of 0.7 to 2.2 μm, and the gap 0. A flexible circuit board characterized in that a bending modulus [PF] calculated by the following formula (1) in a bending test at 3 mm is in a range of 0.96 ± 0.025.
Figure 0006534471
[In formula (1), | ε | is an absolute value of the bending average strain value of the copper wiring, and εc is a tensile elastic limit strain of the copper wiring. ]
ポリイミド層(A)が、熱膨張係数30×10−6/K未満の低熱膨張性のポリイミド層(i)と、熱膨張係数30×10−6/K以上の高熱膨張性のポリイミド層(ii)とを含み、高熱膨張性のポリイミド層(ii)が直接銅箔(B)と接している請求項1に記載のフレキシブル回路基板。 Polyimide layer (A), low thermal expansion polyimide layer is less than the thermal expansion coefficient of 30 × 10 -6 / K and (i), the thermal expansion coefficient of 30 × 10 -6 / K or more high thermal expansion of the polyimide layer (ii The flexible circuit board according to claim 1, wherein the high thermal expansion polyimide layer (ii) is in direct contact with the copper foil (B). ポリイミド層(A)の厚みが8〜15μmの範囲内であり、引張弾性率が6〜10GPaの範囲内である請求項1又は2に記載のフレキシブル回路基板。   The flexible circuit board according to claim 1 or 2, wherein the thickness of the polyimide layer (A) is in the range of 8 to 15 μm, and the tensile elastic modulus is in the range of 6 to 10 GPa. ポリイミド層(A)と銅箔(B)との厚み比[ポリイミド層(A)/銅箔(B)]が0.9〜1.1の範囲内にある請求項1〜3のいずれかに記載のフレキシブル回路基板。   The thickness ratio [polyimide layer (A) / copper foil (B)] of a polyimide layer (A) and copper foil (B) exists in the range of 0.9-1.1 in any one of Claims 1-3. The flexible circuit board of description. 銅箔(B)が電解銅箔である請求項1〜4のいずれかに記載のフレキシブル回路基板。   A copper foil (B) is an electrolytic copper foil, The flexible circuit board in any one of Claims 1-4.
JP2018071458A 2012-12-28 2018-04-03 Flexible circuit board Active JP6534471B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012288127 2012-12-28
JP2012288127 2012-12-28

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013267806A Division JP6320031B2 (en) 2012-12-28 2013-12-25 Flexible copper clad laminate

Publications (2)

Publication Number Publication Date
JP2018139295A JP2018139295A (en) 2018-09-06
JP6534471B2 true JP6534471B2 (en) 2019-06-26

Family

ID=51042338

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013267806A Active JP6320031B2 (en) 2012-12-28 2013-12-25 Flexible copper clad laminate
JP2018071458A Active JP6534471B2 (en) 2012-12-28 2018-04-03 Flexible circuit board

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013267806A Active JP6320031B2 (en) 2012-12-28 2013-12-25 Flexible copper clad laminate

Country Status (4)

Country Link
JP (2) JP6320031B2 (en)
KR (2) KR102092419B1 (en)
CN (1) CN103917042B (en)
TW (1) TWI587756B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5968380B2 (en) * 2014-08-16 2016-08-10 ユアサシステム機器株式会社 Bending test machine
JP6360760B2 (en) * 2014-09-19 2018-07-18 新日鉄住金化学株式会社 Copper-clad laminate and circuit board
JP6436809B2 (en) * 2015-02-09 2018-12-12 日鉄ケミカル&マテリアル株式会社 Flexible circuit board and electronic device
CN107113981B (en) 2014-12-22 2019-12-10 住友电气工业株式会社 Substrate for printed wiring board and method for manufacturing substrate for printed wiring board
JP6580128B2 (en) * 2015-03-31 2019-09-25 株式会社カネカ Manufacturing method of rigid flexible wiring board
CN106856646A (en) * 2016-11-13 2017-06-16 惠州市大亚湾科翔科技电路板有限公司 A kind of flexibility covers metal lamination
JP2019126982A (en) * 2018-01-25 2019-08-01 宇部エクシモ株式会社 Metal laminate, female connector, male connector and connector structure
CN110570768B (en) * 2019-09-11 2022-08-09 Oppo(重庆)智能科技有限公司 Folding substrate, folding screen and electronic equipment
JP7357815B1 (en) * 2023-03-29 2023-10-06 住友化学株式会社 laminated film
JP7336614B1 (en) * 2023-03-29 2023-08-31 住友化学株式会社 laminated film
CN117250207B (en) * 2023-11-17 2024-01-30 四川睿杰鑫电子股份有限公司 Flexible circuit board detection device and detection method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309466A (en) * 1979-12-17 1982-01-05 Champion International Corporation Flexible laminated packaging material comprising metallized intermediate layer
JPS63290735A (en) * 1987-05-22 1988-11-28 Matsushita Electric Works Ltd Flexible laminated sheet
JPH04264792A (en) * 1991-02-19 1992-09-21 Sumitomo Electric Ind Ltd Flexible printed wiring board
CN2216318Y (en) * 1994-11-24 1995-12-27 刘宝申 Flexible polyester film coated copper foil plate and film-coated circuit board
JP3490940B2 (en) * 1999-11-02 2004-01-26 ソニーケミカル株式会社 Circuit board manufacturing method
TW591671B (en) * 2001-06-27 2004-06-11 Shinetsu Chemical Co Substrate for flexible printed wiring
JP4443977B2 (en) * 2004-03-30 2010-03-31 新日鐵化学株式会社 Flexible copper clad laminate and manufacturing method thereof
KR101137274B1 (en) * 2005-04-04 2012-04-20 우베 고산 가부시키가이샤 Copper clad laminate
JP2007208087A (en) 2006-02-03 2007-08-16 Kaneka Corp High turnable flexible printed wiring board
JP2007273766A (en) * 2006-03-31 2007-10-18 Nippon Steel Chem Co Ltd Laminate for wiring board
JP2008098613A (en) * 2006-09-12 2008-04-24 Sumitomo Bakelite Co Ltd Flexible print circuit board
JP5031639B2 (en) * 2008-03-31 2012-09-19 新日鐵化学株式会社 Flexible copper clad laminate
JP2011166078A (en) * 2010-02-15 2011-08-25 Fujikura Ltd Flexible printed wiring board
JP2012006200A (en) * 2010-06-23 2012-01-12 Asahi Kasei E-Materials Corp Polyimide metal laminate and printed wiring board obtained by using the same
JP5858915B2 (en) * 2010-08-09 2016-02-10 新日鉄住金化学株式会社 Flexible circuit board for repeated bending applications, electronic devices and mobile phones using the same
CN103429663B (en) * 2010-12-28 2015-11-25 三井化学东赛璐株式会社 Resin combination, containing its protective membrane, dry film, circuit substrate and Mulitilayer circuit board
JP5865759B2 (en) * 2011-03-31 2016-02-17 新日鉄住金化学株式会社 Copper foil, copper-clad laminate, flexible circuit board, and method for producing copper-clad laminate
TWI599277B (en) * 2012-09-28 2017-09-11 新日鐵住金化學股份有限公司 Flexible copper-clad laminate

Also Published As

Publication number Publication date
KR102092419B1 (en) 2020-03-23
JP2018139295A (en) 2018-09-06
TW201440586A (en) 2014-10-16
KR20140086899A (en) 2014-07-08
JP6320031B2 (en) 2018-05-09
KR20200015643A (en) 2020-02-12
CN103917042A (en) 2014-07-09
CN103917042B (en) 2018-03-30
JP2014141083A (en) 2014-08-07
TWI587756B (en) 2017-06-11

Similar Documents

Publication Publication Date Title
JP6534471B2 (en) Flexible circuit board
JP6545302B2 (en) Flexible circuit board
KR102319574B1 (en) Method of manufacturing flexible copper-clad laminate
JP2014141083A5 (en)
JP5180814B2 (en) Laminated body for flexible wiring board
JP5524475B2 (en) Two-layer double-sided flexible metal laminate and its manufacturing method
JP2007273766A (en) Laminate for wiring board
JP2015088631A (en) Flexible copper-clad laminate, flexible circuit board and use thereof
TWI660649B (en) Flexible circuit board and electronic equipment
KR102288004B1 (en) Flexible copper-clad laminate and flexible circuit substrate
JP2021009997A (en) Polyimide film, metal-clad laminate, and flexible circuit board
JP2021009997A5 (en)
JP6732065B2 (en) Flexible copper clad laminate and flexible circuit board
JP2015070237A (en) Flexible copper clad laminate and flexible circuit board
JP4694142B2 (en) Manufacturing method of substrate for flexible printed wiring board
KR101546393B1 (en) Flexible metal-clad laminate and method of producing the same
JP2005329641A (en) Substrate for flexible printed circuit board and its production method
JP2019083321A (en) Flexible circuit board, method of using the same, and electronic device
JP2021009906A (en) Polyimide film, metal-clad laminate, flexible circuit board, and electronic device
JP2008177214A (en) Laminate for flexible circuit board and manufacturing method thereof
BR102016017275A2 (en) laminate and process of its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190528

R150 Certificate of patent or registration of utility model

Ref document number: 6534471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250