JP2011109082A - Flexible double-sided copper-clad laminate, flexible circuit board, and multilayered circuit board - Google Patents

Flexible double-sided copper-clad laminate, flexible circuit board, and multilayered circuit board Download PDF

Info

Publication number
JP2011109082A
JP2011109082A JP2010235637A JP2010235637A JP2011109082A JP 2011109082 A JP2011109082 A JP 2011109082A JP 2010235637 A JP2010235637 A JP 2010235637A JP 2010235637 A JP2010235637 A JP 2010235637A JP 2011109082 A JP2011109082 A JP 2011109082A
Authority
JP
Japan
Prior art keywords
copper foil
copper
clad laminate
flexible
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010235637A
Other languages
Japanese (ja)
Other versions
JP5689277B2 (en
Inventor
Yasuhiro Hirato
靖浩 平戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2010235637A priority Critical patent/JP5689277B2/en
Publication of JP2011109082A publication Critical patent/JP2011109082A/en
Application granted granted Critical
Publication of JP5689277B2 publication Critical patent/JP5689277B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flexible double-sided copper-clad laminate, a flexible circuit substrate, and a multilayered circuit substrate having high flexibility and resistivity against bending action, and high handleability on manufacturing and processing a wiring substrate. <P>SOLUTION: The flexible double-sided copper-clad laminate has a copper-foil layer at both sides of a polyimide insulating layer, a first copper-foil layer with its equivalent flexural rigidity of 0.003-0.2 N mm per a unit width at a thickness of 9-35 μm, and a second copper-foil layer with its equivalent flexural rigidity of 0.00001-less than 0.003 N mm per the unit width at the thickness of 3-12 μm. In the flexible double-sided copper-clad laminate, the first copper-foil layer has its equivalent flexural rigidity higher than that of the second copper-foil layer, the thickness of the polyimide insulating layer lies is 7-50 μm, and the tensile elastic modulus is 2-9 GPa at 25°C. The flexible circuit substrate has the wiring circuit utilizing the second copper-foil layer. The multilayered circuit substrate is formed by forming the flexible circuit substrate in the multilayered structure. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、携帯電話等の電子機器に用いる基板として好適なフレキシブル両面銅張積層板、及びそれを配線加工して得られるフレキシブル回路基板、並びにフレキシブル回路基板を多層化して得られる多層回路基板に関するものである。   The present invention relates to a flexible double-sided copper-clad laminate suitable as a substrate for use in an electronic device such as a mobile phone, a flexible circuit board obtained by processing the wiring, and a multilayer circuit board obtained by multilayering the flexible circuit board. Is.

近年、携帯電話、ノート型パソコン、デジタルカメラ、ゲーム機などに代表される電子機器は、小型化、薄型化、軽量化が急速に進み、これらに使用される材料に対して、小スペースにおいても部品を収納できる高密度で高性能な材料が望まれるようになっている。この要求に応える材料として、薄く、狭いスペースに折り込むことが可能で、高耐屈曲性を有するフレキシブル回路基板が広汎に使用されるようになっている。しかしながら、高密度化の要求の高い折畳み型携帯電話や摺動型携帯電話等の可動部に用いられるフレキシブル回路基板に対しては、より柔軟で折り曲げが容易な材料が求められている。従来のフレキシブル回路基板では、多層化や小屈曲半径化すると長期間の使用後に断線を起こすといった問題が生じ、十分な耐屈曲性を有するものは必ずしも得られていない。そこで、さらなる高耐屈曲性を実現するためにフレキシブル回路基板の薄化が検討されており、その一手法として、材料であるポリイミド絶縁層と金属箔層を薄化する研究が行われている。   In recent years, electronic devices represented by mobile phones, notebook computers, digital cameras, game machines, and the like have been rapidly reduced in size, thickness, and weight. High-density, high-performance materials that can accommodate components are desired. As a material that meets this requirement, flexible circuit boards that are thin and can be folded into a narrow space and have high bending resistance are widely used. However, materials that are more flexible and easy to bend are required for flexible circuit boards that are used in movable parts such as folding cellular phones and sliding cellular phones, which require high density. In the conventional flexible circuit board, when the number of layers is increased or the bending radius is reduced, there is a problem that disconnection occurs after a long period of use, and a substrate having sufficient bending resistance is not necessarily obtained. Therefore, thinning of a flexible circuit board has been studied in order to realize further high bending resistance, and as one of the methods, research for thinning a polyimide insulating layer and a metal foil layer as materials has been conducted.

例えば、特許第3356568号公報(特許文献1)においては、初期引張弾性率が400kg/mm2以上のポリイミド重合体からなる厚みが10μm以下のポリイミドフィルムの片面又は両面に、厚みが10μm以下の銅層を直接形成してなるフレキシブル銅張積層板が提案されている。しかし、特許文献1に示されたフレキシブル銅張積層板はある程度の高耐屈曲性は有するものの、フレキシブル銅張積層板の製造過程で、一度ポリイミドフィルムを製造し、それに対して銅層を形成することを前提としているため、製造時のハンドリング性の問題からポリイミドフィルムに一定以上の初期引張弾性率を有することが必要であり、またポリイミド層の薄肉化にも限界を有する。 For example, in Japanese Patent No. 3356568 (Patent Document 1), a copper film having a thickness of 10 μm or less is formed on one or both sides of a polyimide film having a thickness of 10 μm or less made of a polyimide polymer having an initial tensile elastic modulus of 400 kg / mm 2 or more. A flexible copper-clad laminate in which layers are directly formed has been proposed. However, although the flexible copper-clad laminate shown in Patent Document 1 has a certain degree of high bending resistance, a polyimide film is produced once in the production process of the flexible copper-clad laminate, and a copper layer is formed thereon. Therefore, it is necessary for the polyimide film to have an initial tensile elastic modulus of a certain level or more due to the problem of handling at the time of production, and there is a limit to the thinning of the polyimide layer.

一方、銅箔などの金属箔にポリイミド前駆体樹脂を溶液状態で塗布し、熱処理するいわゆるキャスト法によるフレキシブル基板用積層板を製造する方法は知られているが、この場合にも、塗工後の搬送工程などでのハンドリング性を維持するために、一定以上の銅箔厚みが必要とされる。そのほかにも、金属箔の厚みの薄いフレキシブル回路基板用積層板の製造方法として、キャリア、剥離層及び極薄金属箔からなるキャリア付極薄金属箔にポリイミド前駆体樹脂を溶液状態で塗布し、熱処理することがWO2006/106723号パンフレット(特許文献2)に開示されているが、キャリアを剥離する工程の増加や製造コストが高くなるため、簡便な製造方法によるフレキシブル回路基板用積層板の提供が望まれる。   On the other hand, a method for producing a laminate for a flexible substrate by a so-called casting method in which a polyimide precursor resin is applied in a solution state to a metal foil such as a copper foil and heat-treated is also known. In order to maintain the handleability in the transporting process, a copper foil thickness of a certain level or more is required. In addition, as a method for producing a laminate for a flexible circuit board with a thin metal foil, a polyimide precursor resin is applied in a solution state to an ultrathin metal foil with a carrier comprising a carrier, a release layer and an ultrathin metal foil, Although heat treatment is disclosed in the pamphlet of WO 2006/106723 (Patent Document 2), an increase in the process of peeling the carrier and a manufacturing cost increase, and therefore, it is possible to provide a laminate for a flexible circuit board by a simple manufacturing method. desired.

更には、薄化されたフレキシブル回路基板用積層板は、回路加工の工程内でのハンドリング性も悪化するため、加工工程での製品歩留まり低下にも繋がるという欠点がある。この問題に対して、積層体を形成した後、エッチングにより銅箔を薄化することで、両面の銅箔を薄肉化したフレキシブル銅張積層板の製造方法が特開平2−22896(特許文献3)に開示されているが、この方法は、一度作製された両面の薄銅箔張フレキシブル回路基板をその後エッチングすることで銅箔厚みを薄くする方法であるため、製造工程の増加や製造コストが高くなることに加え、エッチングに要するエッチング液の処理の問題も懸念されていたことから、簡便かつ経済的なフレキシブル回路基板用積層板の提供が望まれている。   Furthermore, the thin laminated board for a flexible circuit board has a drawback that the handling property in the circuit processing process is also deteriorated, leading to a decrease in product yield in the processing process. In order to solve this problem, a method for manufacturing a flexible copper-clad laminate in which the copper foil on both sides is thinned by forming the laminate and then thinning the copper foil by etching is disclosed in JP-A-2-22896 (Patent Document 3). However, since this method is a method of reducing the copper foil thickness by etching the double-sided thin copper foil-clad flexible circuit board that has been once produced, the increase in the manufacturing process and the manufacturing cost are required. In addition to the increase, there is a concern about the problem of the processing of the etching solution required for etching, and therefore, it is desired to provide a laminate for a flexible circuit board that is simple and economical.

特許第3356568号公報Japanese Patent No. 3356568 WO2006/106723号パンフレットWO2006 / 106723 pamphlet 特開平2−22896号公報JP-A-2-22896

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、高い耐屈曲性や耐折り曲げ性を有すると共に、フレキシブル両面銅張積層板の製造時での高いハンドリング性、並びにその後のフレキシブル両面銅張積層板を配線回路へ加工する加工工程での高いハンドリング性を併せ持つフレキシブル両面銅張積層板を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and has high bending resistance and bending resistance, high handling properties at the time of manufacturing a flexible double-sided copper-clad laminate, and subsequent flexibility. An object of the present invention is to provide a flexible double-sided copper-clad laminate having both high handling properties in the processing step of processing the double-sided copper-clad laminate into a wiring circuit.

本発明者等は、上記課題を解決すべく鋭意研究を重ねた結果、フレキシブル両面銅張積層板のポリイミド絶縁層の両側の銅箔に、特定厚さを有して剛性の高い第一銅箔層と特定厚さを有して柔軟性の高い第二銅箔層とを備えるようにして異なる銅箔を用いることで、上記課題を解決し得ることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have obtained a first copper foil having a specific thickness and high rigidity on the copper foil on both sides of the polyimide insulating layer of the flexible double-sided copper-clad laminate. It has been found that the above-mentioned problems can be solved by using different copper foils so as to include a high-flexibility second copper foil layer having a specific thickness and a layer, and the present invention has been completed. .

すなわち、本発明は、ポリイミド絶縁層の両側に銅箔層を有するフレキシブル両面銅張積層板において、厚さが9μm以上35μm以下であり、単位幅あたりの等価曲げ剛性が0.003N・mm以上0.2N・mm以下の範囲内にある第一銅箔層と、厚さが3μm以上12μm以下であり、単位幅あたりの等価曲げ剛性が0.00001N・mm以上0.003N・mm未満の範囲内にある第二銅箔層とを有して、第一銅箔層の等価曲げ剛性が第二銅箔層の等価曲げ剛性より高く、また、ポリイミド絶縁層の厚さが7μm以上50μm以下であり、25℃における引張弾性率が2GPa以上9GPa以下であることを特徴とするフレキシブル両面銅張積層板である。   That is, according to the present invention, in a flexible double-sided copper clad laminate having copper foil layers on both sides of a polyimide insulating layer, the thickness is 9 μm or more and 35 μm or less, and the equivalent bending rigidity per unit width is 0.003 N · mm or more and 0. The first copper foil layer in the range of 2 N · mm or less, the thickness is 3 μm or more and 12 μm or less, and the equivalent bending rigidity per unit width is in the range of 0.00001 N · mm or more and less than 0.003 N · mm The equivalent bending rigidity of the first copper foil layer is higher than the equivalent bending rigidity of the second copper foil layer, and the thickness of the polyimide insulating layer is not less than 7 μm and not more than 50 μm A flexible double-sided copper-clad laminate having a tensile elastic modulus at 25 ° C. of 2 GPa or more and 9 GPa or less.

また、本発明は、上記フレキシブル両面銅張積層板の第二銅箔層を利用して配線回路を形成し、配線回路の少なくとも一部を屈曲部に使用するフレキシブル回路基板である。更に、本発明は、このフレキシブル回路基板を多層化して得られる多層回路基板である。   Moreover, this invention is a flexible circuit board which forms a wiring circuit using the 2nd copper foil layer of the said flexible double-sided copper clad laminated board, and uses at least one part of a wiring circuit for a bending part. Furthermore, the present invention is a multilayer circuit board obtained by multilayering this flexible circuit board.

本発明によれば、薄肉の銅箔層を有するフレキシブル両面銅張積層板の製造工程や、このフレキシブル両面銅張積層板の配線回路加工を行う回路加工工程において、優れたハンドリング性を有する基板材料を提供することができる。得られたフレキシブル両面銅張積層板は、実用的な機械強度を有し、配線基板に要求される高い屈曲特性等が期待されることから、特に、折畳み型や摺動型の携帯電話、小型液晶周りの折り曲げ部分等、耐折り曲げや耐繰返し屈曲性が要求される電子部品、HDDサスペンション等に好適に用いられる。特に、フレキシブル両面銅張積層板の片面の銅箔層をエッチング除去したフレキシブル回路基板は、耐折性に優れ、これを多層回路基板とすることで、電子機器の更なる小型化、薄肉化に有効である。   According to the present invention, a substrate material having excellent handling properties in a manufacturing process of a flexible double-sided copper-clad laminate having a thin copper foil layer and a circuit processing step of wiring circuit processing of this flexible double-sided copper-clad laminate Can be provided. The obtained flexible double-sided copper-clad laminate has practical mechanical strength and is expected to have the high bending properties required for wiring boards. It is suitably used for electronic parts, HDD suspensions, etc. that require bending resistance and repeated bending resistance, such as bent portions around liquid crystals. In particular, a flexible circuit board obtained by etching and removing a copper foil layer on one side of a flexible double-sided copper-clad laminate has excellent folding resistance, and by using this as a multilayer circuit board, electronic devices can be further reduced in size and thickness. It is valid.

図1(A)は、本発明のフレキシブル両面銅張積層板を示す側面模式図であり、図1(B)は、第一銅箔層の一部を除去して得たフレキシブル回路基板の様子を示す模式図である。FIG. 1 (A) is a schematic side view showing a flexible double-sided copper clad laminate of the present invention, and FIG. 1 (B) shows a state of a flexible circuit board obtained by removing a part of the first copper foil layer. It is a schematic diagram which shows. 図2(A)及び(B)は、フレキシブル回路基板に屈曲部を形成した様子を示す側面模式図である。2A and 2B are schematic side views showing a state in which a bent portion is formed on the flexible circuit board. 図3は、フレキシブル回路基板を用いて多層回路基板にした様子を示す側面模式図である。FIG. 3 is a schematic side view illustrating a multilayer circuit board using a flexible circuit board. 図4は、フレキシブル回路基板にシールド層を設けた実施形態を示す側面模式図である。FIG. 4 is a schematic side view showing an embodiment in which a shield layer is provided on a flexible circuit board.

以下、本発明を詳細に説明する。
本発明のフレキシブル両面銅張積層板(以下、単に「両面銅張積層板」と言うこともある)は、ポリイミド絶縁層の両側に銅箔を有し、これらの銅箔としては、電解銅箔、圧延銅箔などが挙げられ、銅を90%以上含む合金銅箔も含まれる。詳しくは、ポリイミド絶縁層の両側に設けられる銅箔は、異なる特性のものが用いられ、ポリイミド絶縁層の片側には、厚さ9μm以上35μm以下、好ましくは12μm以上18μm以下であり、銅箔層の単位幅あたりの等価曲げ剛性が0.003N・mm以上0.2N・mm以下、好ましくは0.004N・mm以上0.05N・mm以下の範囲である第一銅箔層と、第一銅箔層と反対側には、厚さ3μm以上12μm以下、好ましくは6μm以上12μm以下であり、銅箔層の単位幅あたりの等価曲げ剛性が0.00001N・mm以上0.003N・mm未満、好ましくは0.0002N・mm以上0.002N・mm以下の範囲にある第二銅箔層とを有する。すなわち、第一銅箔層は、第二銅箔より等価曲げ剛性が高く、フレキシブル両面銅張積層板の製造時や、配線回路加工時でのハンドリング性を担保する。一方、第二銅箔層は、第一銅箔層より等価曲げ剛性が低くて柔軟性を有しており、配線回路を形成した際の耐屈曲性を担保する。具体的には、第一銅箔層の等価曲げ剛性が第二銅箔の等価曲げ剛性より1.2倍以上高いことが好ましく、2倍以上がより好ましい。最も好ましくは、2倍〜100倍の範囲であるのが良い。
Hereinafter, the present invention will be described in detail.
The flexible double-sided copper-clad laminate of the present invention (hereinafter sometimes simply referred to as “double-sided copper-clad laminate”) has copper foils on both sides of the polyimide insulating layer. Rolled copper foil and the like, and alloy copper foil containing 90% or more of copper is also included. Specifically, the copper foil provided on both sides of the polyimide insulating layer has different characteristics, and on one side of the polyimide insulating layer, the thickness is 9 μm or more and 35 μm or less, preferably 12 μm or more and 18 μm or less. A first copper foil layer having an equivalent bending rigidity per unit width of 0.003 N · mm to 0.2 N · mm, preferably 0.004 N · mm to 0.05 N · mm; On the opposite side of the foil layer, the thickness is 3 μm or more and 12 μm or less, preferably 6 μm or more and 12 μm or less, and the equivalent bending rigidity per unit width of the copper foil layer is 0.00001 N · mm or more and less than 0.003 N · mm, preferably Has a second copper foil layer in the range of 0.0002 N · mm to 0.002 N · mm. That is, the first copper foil layer has a higher equivalent bending rigidity than the second copper foil, and ensures handling at the time of manufacturing a flexible double-sided copper-clad laminate or processing a wiring circuit. On the other hand, the second copper foil layer has lower flexibility than the first copper foil layer and has flexibility, and ensures the bending resistance when the wiring circuit is formed. Specifically, the equivalent bending rigidity of the first copper foil layer is preferably 1.2 times or more higher than the equivalent bending rigidity of the second copper foil, and more preferably 2 times or more. Most preferably, it is in the range of 2 to 100 times.

第一銅箔層の厚さが9μmに満たず、銅箔層の単位幅あたりの等価曲げ剛性が0.003N・mmに満たないと、両面銅張積層板自体のハンドリング性を損なうため量産化に適さず、反対に、銅箔層の厚さが35μmを超え、銅箔層の単位幅あたりの等価曲げ剛性が0.2N・mmを超えると、銅箔価格が高価になりすぎるため経済的に不利である。一方、第二銅箔層の厚さが3μmに満たず、銅箔層の単位幅あたりの等価曲げ剛性が0.00001N・mmに満たないと、銅箔の入手が困難であることに加え、それ自身のハンドリング性を損なうため量産化に適さず、反対に、銅箔層の厚さが12μmを超え、銅箔層の単位幅あたりの等価曲げ剛性が0.003N・mm以上になると、屈曲性に劣る材料となる。なお、銅箔層の単位幅あたりの等価曲げ剛性は、銅箔の圧延方向(MD方向)に曲げられた際の銅箔の剛性を表し、銅箔の圧延方向に対して直交する方向(TD方向)に沿った1mmあたりの銅箔の剛性を示すものである。圧延銅箔は、通常、圧延方向に沿ってロール状に巻き取られるため、ロール状に巻き取られた銅箔ロールのMD方向及びTD方向は直ちに特定できる。また、銅箔が電解銅箔の場合、上記MD方向は、ロールに巻かれた銅箔の長手方向とみなして指しつかえない。   If the thickness of the first copper foil layer is less than 9μm and the equivalent bending stiffness per unit width of the copper foil layer is less than 0.003N · mm, the handling of the double-sided copper-clad laminate itself will be impaired and mass production will begin. On the other hand, if the thickness of the copper foil layer exceeds 35 μm and the equivalent bending rigidity per unit width of the copper foil layer exceeds 0.2 N · mm, the copper foil price becomes too expensive and economical. Disadvantageous. On the other hand, if the thickness of the second copper foil layer is less than 3 μm and the equivalent bending rigidity per unit width of the copper foil layer is less than 0.00001 N · mm, it is difficult to obtain the copper foil, It is not suitable for mass production because it impairs its own handling characteristics. Conversely, if the thickness of the copper foil layer exceeds 12μm and the equivalent bending rigidity per unit width of the copper foil layer is 0.003N · mm or more, it will be bent. It becomes a material with inferior properties. The equivalent bending rigidity per unit width of the copper foil layer represents the rigidity of the copper foil when bent in the rolling direction (MD direction) of the copper foil, and is a direction orthogonal to the rolling direction of the copper foil (TD). This shows the rigidity of the copper foil per 1 mm along (direction). Since the rolled copper foil is usually wound in a roll shape along the rolling direction, the MD direction and the TD direction of the copper foil roll wound in the roll shape can be immediately identified. Further, when the copper foil is an electrolytic copper foil, the MD direction cannot be regarded as the longitudinal direction of the copper foil wound around the roll.

第一銅箔層、及び第二銅箔層を形成する銅箔は、それぞれ上記のような厚みや剛性を備えたものを選定して用いることができ、具体例としては、市販されている古河電工株式会社製F2−WS箔、UWZ箔、日本電解株式会社製HLB箔、三井金属株式会社製DFF箔、日鉱金属株式会社製BHY箔、HA箔等を挙げることができる。また、これらの市販品を含めて、それ以外のものを使用した場合であっても、後述するように、ポリイミド絶縁層を形成する際の熱硬化や、熱圧着工程等で負荷される熱処理により、銅箔の等価曲げ剛性がそれぞれ所定の範囲になるようにしてもよい。   The copper foils forming the first copper foil layer and the second copper foil layer can be selected and used as those having the thickness and rigidity as described above, and as a specific example, commercially available Furukawa Electric industry F2-WS foil, UWZ foil, Nippon Electrolytic Co., Ltd. HLB foil, Mitsui Kinzoku Co., Ltd. DFF foil, Nikko Metal Co., Ltd. BHY foil, HA foil, etc. can be mentioned. In addition, even if these other products are used, including these commercially available products, as will be described later, by heat curing when forming the polyimide insulating layer, heat treatment applied in the thermocompression bonding process, etc. The equivalent bending rigidity of the copper foil may be in a predetermined range.

本発明のフレキシブル両面銅張積層板におけるポリイミド絶縁層は、厚さが7μm以上50μm以下、好ましくは12μm以上25μm以下であり、25℃における引張弾性率が2GPa以上9GPa以下、好ましくは4GPa以上8GPa以下であることが必要である。ポリイミド絶縁層の厚さが7μmに満たないか、引張弾性率が2GPaに満たないと、ハンドリング性の問題からフレキシブル銅張積層板の製造工程やその後の回路加工工程での製造が困難であり、反対に、ポリイミド絶縁層の厚さが50μmを超えるか、9GPaを超えると、充分な耐屈曲性能の発現が困難となることや、配線板の柔軟性が損なわれることがある。   The polyimide insulating layer in the flexible double-sided copper-clad laminate of the present invention has a thickness of 7 μm to 50 μm, preferably 12 μm to 25 μm, and a tensile elastic modulus at 25 ° C. of 2 GPa to 9 GPa, preferably 4 GPa to 8 GPa. It is necessary to be. If the thickness of the polyimide insulating layer is less than 7 μm or the tensile modulus is less than 2 GPa, it is difficult to manufacture the flexible copper clad laminate in the manufacturing process and the subsequent circuit processing process due to handling problems. On the other hand, if the thickness of the polyimide insulating layer exceeds 50 μm or exceeds 9 GPa, it may be difficult to develop sufficient bending resistance and the flexibility of the wiring board may be impaired.

ポリイミド絶縁層は、ポリイミド前駆体樹脂溶液(ポリアミド酸溶液ともいう。)を銅箔上に直接塗布した後、熱処理により乾燥、硬化することにより形成する所謂キャスト法によるものが好ましい。ポリイミド絶縁層は、単層のみから形成されるものでも、複数層からなるものでもよい。ポリイミド絶縁層を複数層とする場合、異なる構成成分からなるポリイミド前駆体樹脂の上に他のポリイミド前駆体樹脂を順次塗布して形成することができる。ポリイミド絶縁層が複数層からなる場合、同一の構成のポリイミド前駆体樹脂を2回以上使用してもよい。   The polyimide insulating layer is preferably formed by a so-called casting method in which a polyimide precursor resin solution (also referred to as a polyamic acid solution) is directly applied on a copper foil and then dried and cured by heat treatment. The polyimide insulating layer may be formed of only a single layer or may be formed of a plurality of layers. When making a polyimide insulating layer into multiple layers, it can form by apply | coating another polyimide precursor resin sequentially on the polyimide precursor resin which consists of a different structural component. When the polyimide insulating layer is composed of a plurality of layers, the polyimide precursor resin having the same configuration may be used twice or more.

ポリイミド前駆体樹脂溶液は、公知のジアミンと酸無水物とを溶媒の存在下で重合して製造することができ、この際、重合される樹脂粘度は、500cps以上35,000cps以下の範囲とすることが好ましい。   The polyimide precursor resin solution can be produced by polymerizing a known diamine and acid anhydride in the presence of a solvent, and the resin viscosity to be polymerized should be in the range of 500 cps to 35,000 cps. Is preferred.

用いられるジアミンとしては、例えば、4,6-ジメチル-m-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、2,4-ジアミノメシチレン、4,4'-メチレンジ-o-トルイジン、4,4'-メチレンジ-2,6-キシリジン、4,4'-メチレン-2,6-ジエチルアニリン、2,4-トルエンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、4,4'-ジアミノジフェニルプロパン、3,3'-ジアミノジフェニルプロパン、4,4'-ジアミノジフェニルエタン、3,3'-ジアミノジフェニルエタン、4,4'-ジアミノジフェニルメタン、3,3'-ジアミノジフェニルメタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン4,4'-ジアミノジフェニルスルフィド、3,3'-ジアミノジフェニルスルフィド、4,4'-ジアミノジフェニルスルホン、3,3'-ジアミノジフェニルスルホン、4,4'-ジアミノジフェニルエーテル、3,3-ジアミノジフェニルエーテル、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジジン、3,3'-ジアミノビフェニル、3,3'-ジメチル-4,4'-ジアミノビフェニル、3,3'-ジメトキシベンジジン、4,4'-ジアミノ-p-テルフェニル、3,3'-ジアミノ-p-テルフェニル、ビス(p-アミノシクロヘキシル)メタン、ビス(p-β-アミノ-t-ブチルフェニル)エーテル、ビス(p-β-メチル-δ-アミノペンチル)ベンゼン、p-ビス(2-メチル-4-アミノペンチル)ベンゼン、p-ビス(1,1-ジメチル-5-アミノペンチル)ベンゼン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,4-ビス(β-アミノ-t-ブチル)トルエン、2,4-ジアミノトルエン、m-キシレン-2,5-ジアミン、p-キシレン-2,5-ジアミン、m-キシリレンジアミン、p-キシリレンジアミン、2,6-ジアミノピリジン、2,5-ジアミノピリジン、2,5-ジアミノ-1,3,4-オキサジアゾール、ピペラジン、2,2'-ジメチル-4,4'-ジアミノビフェニル、3,7-ジアミノジベンゾフラン、1,5-ジアミノフルオレン、ジベンゾ-p-ジオキシン-2,7-ジアミン、4,4'-ジアミノベンジルなどが挙げられる。   Examples of the diamine used include 4,6-dimethyl-m-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, 2,4-diaminomesitylene, 4,4′-methylenedi-o-toluidine, 4, 4'-methylenedi-2,6-xylidine, 4,4'-methylene-2,6-diethylaniline, 2,4-toluenediamine, m-phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenylpropane 3,3'-diaminodiphenylpropane, 4,4'-diaminodiphenylethane, 3,3'-diaminodiphenylethane, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 2,2-bis [ 4- (4-aminophenoxy) phenyl] propane 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4 '-Diaminodiphenyl ether, 3,3-di Minodiphenyl ether, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, benzidine, 3,3'-diamino Biphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxybenzidine, 4,4'-diamino-p-terphenyl, 3,3'-diamino-p-terphenyl, bis (p-aminocyclohexyl) methane, bis (p-β-amino-t-butylphenyl) ether, bis (p-β-methyl-δ-aminopentyl) benzene, p-bis (2-methyl-4-aminopentyl) ) Benzene, p-bis (1,1-dimethyl-5-aminopentyl) benzene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,4-bis (β-amino-t-butyl) toluene, 2,4-diaminotoluene, m-xylene-2,5-diamine, p-xylene-2,5-diamine, m-xylylenediamine, p-xylylene Diamine, 2,6-diaminopyridine, 2,5-diaminopyridine, 2,5-diamino-1,3,4-oxadiazole, piperazine, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3 , 7-diaminodibenzofuran, 1,5-diaminofluorene, dibenzo-p-dioxin-2,7-diamine, 4,4′-diaminobenzyl and the like.

また、酸無水物としては、例えば、ピロメリット酸二無水物、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物、2,2',3,3'-ベンゾフェノンテトラカルボン酸二無水物、2,3,3',4'-ベンゾフェノンテトラカルボン酸二無水物、ナフタレン-1,2,5,6-テトラカルボン酸二無水物、ナフタレン-1,2,4,5-テトラカルボン酸二無水物、ナフタレン-1,4,5,8-テトラカルボン酸二無水物、ナフタレン-1,2,6,7-テトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-1,2,5,6-テトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-2,3,6,7-テトラカルボン酸二無水物、2,6-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,7-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,3,6,7-テトラクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、1,4,5,8-テトラクロロナフタレン-2,3,6,7-テトラカルボン酸二無水物、3,3',4,4'-ビフェニルテトラカルボン酸二無水物、2,2',3,3'-ビフェニルテトラカルボン酸二無水物、2,3,3',4'-ビフェニルテトラカルボン酸二無水物、3,3'',4,4''-p-テルフェニルテトラカルボン酸二無水物、2,2'',3,3''-p-テルフェニルテトラカルボン酸二無水物、2,3,3'',4''-p-テルフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-プロパン二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3.4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ペリレン-2,3,8,9-テトラカルボン酸二無水物、ペリレン-3,4,9,10-テトラカルボン酸二無水物、ペリレン-4,5,10,11-テトラカルボン酸二無水物、ペリレン-5,6,11,12-テトラカルボン酸二無水物、フェナンスレン-1,2,7,8-テトラカルボン酸二無水物、フェナンスレン-1, 2,6,7-テトラカルボン酸二無水物、フェナンスレン-1,2,9,10-テトラカルボン酸二無水物、シクロペンタン-1,2,3,4-テトラカルボン酸二無水物、ピラジン-2,3,5,6-テトラカルボン酸二無水物、ピロリジン-2,3,4,5-テトラカルボン酸二無水物、チオフェン-2,3,4,5-テトラカルボン酸二無水物、4,4'-オキシジフタル酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物などが挙げられる。   Examples of the acid anhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, and 2,2 ′, 3,3′-benzophenone tetracarboxylic acid dianhydride. Anhydride, 2,3,3 ', 4'-benzophenonetetracarboxylic dianhydride, naphthalene-1,2,5,6-tetracarboxylic dianhydride, naphthalene-1,2,4,5-tetracarboxylic Acid dianhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride, naphthalene-1,2,6,7-tetracarboxylic dianhydride, 4,8-dimethyl-1,2,3 , 5,6,7-Hexahydronaphthalene-1,2,5,6-tetracarboxylic dianhydride, 4,8-dimethyl-1,2,3,5,6,7-hexahydronaphthalene-2, 3,6,7-tetracarboxylic dianhydride, 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,7-dichloronaphthalene-1,4,5,8- Tetracarboxylic dianhydride, 2,3,6,7-tetrachloronaphthalene-1,4,5,8-tetracarboxylic acid Anhydride, 1,4,5,8-tetrachloronaphthalene-2,3,6,7-tetracarboxylic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2, 2 ', 3,3'-biphenyltetracarboxylic dianhydride, 2,3,3', 4'-biphenyltetracarboxylic dianhydride, 3,3``, 4,4 ''-p-terphenyl Tetracarboxylic dianhydride, 2,2``, 3,3 ''-p-terphenyltetracarboxylic dianhydride, 2,3,3 '', 4 ''-p-terphenyltetracarboxylic dianhydride Anhydride, 2,2-bis (2,3-dicarboxyphenyl) -propane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -propane dianhydride, bis (2,3-di Carboxyphenyl) ether dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3.4-dicarboxyphenyl) methane dianhydride, bis (2,3-dicarboxyphenyl) sulfone dianhydride Bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,1- (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, perylene-2,3,8,9-tetracarboxylic dianhydride Perylene-3,4,9,10-tetracarboxylic dianhydride, perylene-4,5,10,11-tetracarboxylic dianhydride, perylene-5,6,11,12-tetracarboxylic dianhydride Phenanthrene-1,2,7,8-tetracarboxylic dianhydride, phenanthrene-1, 2,6,7-tetracarboxylic dianhydride, phenanthrene-1,2,9,10-tetracarboxylic dianhydride Anhydride, cyclopentane-1,2,3,4-tetracarboxylic dianhydride, pyrazine-2,3,5,6-tetracarboxylic dianhydride, pyrrolidine-2,3,4,5-tetracarboxylic Acid dianhydride, thiophene-2,3,4,5-tetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride, etc. Can be mentioned.

ジアミン及び酸無水物は、それぞれ1種のみを使用してもよく2種以上を併用することもできる。また、重合に使用される溶媒は、ジメチルアセトアミド、N-メチルピロリジノン、2-ブタノン、ジグライム、キシレン等が挙げられ、1種又は2種以上併用して使用することもできる。   Each diamine and acid anhydride may be used alone or in combination of two or more. Examples of the solvent used for the polymerization include dimethylacetamide, N-methylpyrrolidinone, 2-butanone, diglyme, xylene and the like, and they can be used alone or in combination of two or more.

本発明のフレキシブル両面銅張積層板を製造する方法について特に制限はないが、好ましくは、剛性の高い第一銅箔層上に上記ポリイミド絶縁層を形成し、その後、柔軟性の高い第二銅箔層を加熱加圧条件下、積層することによって得るのが良い。ポリイミド絶縁層を形成するにあたっては、先ず、剛性の高い第一銅箔層を準備し、この第一銅箔上に少なくとも1種類のポリイミド前駆体樹脂溶液を直接塗工し、次いで、乾燥及びイミド化のために熱処理を行うのが良い。樹脂溶液の塗工方法としては、適宜公知の方法を用いることができ、例えばロールコーター、ダイコーター、バーコーターを挙げることができる。また、第一銅箔層上に塗工したポリイミド前駆体樹脂溶液の乾燥条件としては、樹脂溶液中の溶媒を除去できる条件であればよく、例えば150℃以下の温度であることが好ましい。また、イミド化のための熱処理は、120℃以上400℃以下の温度で5分以上行なうことが好ましい。   Although there is no restriction | limiting in particular about the method of manufacturing the flexible double-sided copper clad laminated board of this invention, Preferably, the said polyimide insulating layer is formed on the highly rigid 1st copper foil layer, and cupric copper with high flexibility after that is preferable. It is good to obtain by laminating | stacking a foil layer on heating-pressing conditions. In forming the polyimide insulating layer, first, a highly rigid first copper foil layer is prepared, and at least one polyimide precursor resin solution is directly coated on the first copper foil, followed by drying and imide It is better to perform heat treatment to make it easier. As a coating method of the resin solution, a known method can be used as appropriate, and examples thereof include a roll coater, a die coater, and a bar coater. Moreover, as drying conditions of the polyimide precursor resin solution coated on the 1st copper foil layer, what is necessary is just the conditions which can remove the solvent in a resin solution, for example, it is preferable that it is a temperature of 150 degrees C or less. The heat treatment for imidization is preferably performed at a temperature of 120 ° C. or higher and 400 ° C. or lower for 5 minutes or longer.

このようにして、第一銅箔層上にポリイミド絶縁層が形成されたフレキシブル片側銅張積層体を得た後、このフレキシブル片側銅張積層体に、更に第二銅箔が外側になるように、すなわち、ポリイミド絶縁層と第二銅箔層とが接するように積層する。積層する方法としては、適宜公知の方法を採用することができ、例えば、通常のハイドロプレス、真空タイプのハイドロプレス、オートクレーブ加圧式真空プレス、加熱ロールプレス、ダブルベルトプレス、連続式熱ラミネータなどを用いることができる。この際の積層温度は、銅箔とポリイミドの接着強度の観点から300℃以上430℃以下の範囲であることが好ましく、350℃以上400℃以下であることがより好ましい。   Thus, after obtaining the flexible one side copper clad laminated body by which the polyimide insulating layer was formed on the 1st copper foil layer, in this flexible one side copper clad laminated body, so that a 2nd copper foil may become an outer side further That is, it laminates | stacks so that a polyimide insulating layer and a 2nd copper foil layer may contact | connect. As a method of laminating, a publicly known method can be adopted as appropriate, for example, a normal hydro press, a vacuum type hydro press, an autoclave pressurizing vacuum press, a heating roll press, a double belt press, a continuous thermal laminator, etc. Can be used. In this case, the lamination temperature is preferably in the range of 300 ° C. or higher and 430 ° C. or lower, more preferably 350 ° C. or higher and 400 ° C. or lower, from the viewpoint of the adhesive strength between the copper foil and the polyimide.

得られたフレキシブル両面銅張積層板は、エッチング処理により、所定の形状にパターン加工を行なうことで、フレキシブル回路基板とすることができる。通常、フレキシブル回路基板は、配線回路加工後、配線回路がカバーレイフィルムにて保護される。エッチング処理の方法は特に制限されず、適宜公知の方法を用いることができる。このようなエッチング処理の好適な方法としては、例えば、銅箔上にアルカリ現像型のドライフィルムを用いて回路パターンを形成した後に、エッチング液を利用してドライフィルムに保護されていない部分の導体膜を除去して配線回路を形成し、その後ドライフィルムを剥離する方法を挙げることができる。   The obtained flexible double-sided copper-clad laminate can be formed into a flexible circuit board by patterning into a predetermined shape by etching. Usually, a flexible circuit board is protected by a coverlay film after the wiring circuit is processed. The method for the etching treatment is not particularly limited, and a known method can be used as appropriate. As a suitable method for such an etching process, for example, after a circuit pattern is formed on a copper foil using an alkali development type dry film, a portion of the conductor not protected by the dry film using an etching solution is used. A method of forming a wiring circuit by removing the film and then peeling the dry film can be mentioned.

本発明のフレキシブル回路基板は、屈曲又は折り曲げ部分に使用される配線回路部品であって、屈曲又は折り曲げ部分に使用される配線回路が実質的に片面のみに設けられているフレキシブル回路基板として使用することができる。好適には、フレキシブル両面銅張積層板の第二銅箔層を利用して配線回路を形成し、配線回路の少なくとも一部を屈曲部として使用することができ、より好適には、少なくとも屈曲部に相当する位置の第一銅箔層を除去して使用するのが良い。すなわち、本発明では、屈曲又は折り曲げ部分に使用される配線回路を実質的に片面のみに設けることで、繰返し屈曲など耐折性に優れたフレキシブル回路基板とすることができる。   The flexible circuit board of the present invention is a wiring circuit component used in a bent or bent portion, and is used as a flexible circuit board in which the wiring circuit used in the bent or bent portion is provided substantially only on one side. be able to. Preferably, a wiring circuit can be formed using the second copper foil layer of the flexible double-sided copper-clad laminate, and at least a part of the wiring circuit can be used as a bent portion, more preferably at least a bent portion. The first copper foil layer at a position corresponding to is preferably used after being removed. That is, in the present invention, a flexible circuit board having excellent folding resistance such as repeated bending can be obtained by providing a wiring circuit used for a bent or bent portion substantially on only one side.

図1(A)は、本発明のフレキシブル両面銅張積層板を示したものであり、図1(B)は、第一銅箔層1の一部を除去して、屈曲部を形成するためのフレキシブル回路基板の様子を示す模式図である。除去する第一銅箔層1は、フレキシブル回路基板の種類や用途によっても異なるが、第一銅箔層の主要部(すなわち80%以上)が除去され、図1(B)に示すように、配線回路として機能するような箇所は残さずに、屈曲部に係らない箇所にのみ銅箔が残存するようにするのが良い。   FIG. 1 (A) shows a flexible double-sided copper clad laminate of the present invention, and FIG. 1 (B) is for removing a part of the first copper foil layer 1 to form a bent portion. It is a schematic diagram which shows the mode of this flexible circuit board. The first copper foil layer 1 to be removed varies depending on the type and application of the flexible circuit board, but the main part of the first copper foil layer (that is, 80% or more) is removed, as shown in FIG. It is preferable that the copper foil remains only in a portion not related to the bent portion without leaving a portion that functions as a wiring circuit.

上記のようにしたフレキシブル回路基板は、例えば図2に示したような形態で使用される。この際、第二銅箔層により形成された配線回路は、屈曲させた際、図2(A)に示されるように、外側に位置するようにしてもよく、図2(B)に示されるように、内側に位置するようにしてもよい。また、フレキシブル回路基板に形成される屈曲部4については、2つ折り等によって形成されるもののほか、例えば摺動屈曲、折り曲げ屈曲、ヒンジ屈曲又はスライド屈曲から選ばれたいずれかの繰り返し動作を伴うような屈曲部であっても優れた耐屈曲性を示すことができる。   The flexible circuit board configured as described above is used in a form as shown in FIG. 2, for example. At this time, the wiring circuit formed by the second copper foil layer may be positioned outside as shown in FIG. 2 (A) when bent, as shown in FIG. 2 (B). As such, it may be located inside. Further, the bent portion 4 formed on the flexible circuit board is not only formed by folding in two or the like, but also includes any repeated operation selected from sliding bending, bending bending, hinge bending or sliding bending, for example. Even a bent portion can exhibit excellent bending resistance.

また、図3は、上記フレキシブル回路基板を多層化して得られる多層回路基板を示したものである。フレキシブル回路基板を多層化することで、電子機器の小型化、薄肉化が可能となる。フレキシブル回路基板を多層化する方法としては、図3に示したように、図1で示した形態のフレキシブル回路基板を準備し、その配線回路に加工した面をカバーレイフィルム等の絶縁層5で保護する。ここで使用される絶縁層5は特に制限されないが、例えば、ポリイミドフィルムの一方の面にエポキシ系やアクリル系樹脂の接着層が設けられたカバーレイフィルムが挙げられる。絶縁層5の厚さは特に限定されるものではないが、5μm以上50μm以下であることが好ましく、10μm以上30μm以下であることがより好ましい。このような絶縁層5としては、市販されているカバーレイフィルムを用いることができ、例えば、CAE0525KA(有沢社製)、CAE0515KA(有沢社製)、CISV1215(ニッカン工業社製)、CA231(信越製)等が挙げられる。そして、第一銅箔層1及び第二銅箔層3が絶縁層5で保護されたフレキシブル回路基板を、公知のボンディングシート等からなる接着層6を介して重ね合わせれば、多層回路基板を得ることができる。   FIG. 3 shows a multilayer circuit board obtained by multilayering the flexible circuit board. By making the flexible circuit board multilayer, the electronic device can be reduced in size and thickness. As shown in FIG. 3, a flexible circuit board having the form shown in FIG. 1 is prepared, and the surface processed into the wiring circuit is covered with an insulating layer 5 such as a coverlay film. Protect. The insulating layer 5 used here is not particularly limited, and examples thereof include a coverlay film in which an adhesive layer of an epoxy or acrylic resin is provided on one surface of a polyimide film. The thickness of the insulating layer 5 is not particularly limited, but is preferably 5 μm or more and 50 μm or less, and more preferably 10 μm or more and 30 μm or less. As such an insulating layer 5, a commercially available coverlay film can be used. For example, CAE0525KA (manufactured by Arisawa), CAE0515KA (manufactured by Arisawa), CISV1215 (manufactured by Nikkan Kogyo), CA231 (manufactured by Shin-Etsu). ) And the like. And if the flexible circuit board by which the 1st copper foil layer 1 and the 2nd copper foil layer 3 were protected by the insulating layer 5 is piled up via the contact bonding layer 6 which consists of a well-known bonding sheet etc., a multilayer circuit board will be obtained. be able to.

また、フレキシブル回路基板には、必要に応じてシールド効果を持たせるために、図4に示したように、フィルム状やペースト状のシールド層7を設けるようにすることも可能である。シールド層7の形成材料については特に制限されないが、折り曲げ部位(屈曲部)の反発力を低減させるためにシールドフィルムなどを使用するのが好ましい。上述したように、フレキシブル回路基板は、折り曲げ部位以外を接着層などで固定し、2層以上に多層化することで多層回路基板とすることが可能である。なお、図3は屈曲部が2層となるように積層したものであるが、3層、4層と積層することで更に多層化することが可能である。   Further, the flexible circuit board may be provided with a film-like or paste-like shield layer 7 as shown in FIG. 4 in order to have a shielding effect as required. The material for forming the shield layer 7 is not particularly limited, but it is preferable to use a shield film or the like in order to reduce the repulsive force at the bent portion (bent portion). As described above, the flexible circuit board can be formed into a multilayer circuit board by fixing the part other than the bent portion with an adhesive layer or the like and multilayering it into two or more layers. Note that FIG. 3 is a laminate in which the bent portion has two layers, but it is possible to further increase the number of layers by stacking three layers and four layers.

以下、実施例に基づき本発明をより詳細に説明する。なお、下記の実施例における各特性評価は、以下の方法により行った。   Hereinafter, based on an Example, this invention is demonstrated in detail. In addition, each characteristic evaluation in the following Example was performed with the following method.

[引張弾性率の測定]
東洋精機(株)製ストログラフR-1を用いて、温度23℃、相対湿度50%の環境下で引張弾性率の値を測定した。
[Measurement of tensile modulus]
The value of the tensile elastic modulus was measured in an environment of a temperature of 23 ° C. and a relative humidity of 50% using a strograph R-1 manufactured by Toyo Seiki Co., Ltd.

[両面銅張積層板の単位幅あたりの等価曲げ剛性の計算]
材料のハンドリング性を評価する方法として、フレキシブル両面銅張積層板において回路を形成する銅箔のTD方向に沿った幅1mmあたりの等価曲げ剛性(「等価曲げ剛性/幅」)を次のようにして計算した。先ず、各実施例で挙げた同じ条件で単独でポリイミド絶縁層を形成して引張弾性率(EPI)を測定し、同じく、各実施例で挙げた条件と同じ加熱処理を施した銅箔のMD方向の引張弾性率(第二銅箔層に用いた銅箔のそれをECAとし、第一銅箔層に用いた銅箔のそれをECBとする)を測定した。そして、各実施例で挙げた同じ条件のポリイミド絶縁層の厚み(tPI)と、銅箔の厚み(第二銅箔層に用いた銅箔のそれをtCAとし、第一銅箔層に用いた銅箔のそれをtCBする)とともに、先に求めた各弾性率を用いて、以下の式(1)から、フレキシブル両面銅張積層板の1mm幅あたりの等価曲げ剛性を求めた。

Figure 2011109082
[Calculation of equivalent bending stiffness per unit width of double-sided copper-clad laminate]
As a method for evaluating the handling property of the material, the equivalent bending stiffness per 1 mm width (“equivalent bending stiffness / width”) along the TD direction of the copper foil forming the circuit in the flexible double-sided copper-clad laminate is as follows. Calculated. First, a polyimide insulating layer was formed independently under the same conditions as mentioned in each example, and the tensile elastic modulus (E PI ) was measured. Similarly, the copper foil subjected to the same heat treatment as those mentioned in each example tensile elastic modulus in the MD direction (that of the copper foil used in the second copper foil layer and E CA, it is referred to as E CB of the copper foil used for the first copper foil layer) was measured. Then, the thickness of the polyimide insulating layers of the same conditions mentioned in Examples (t PI), it thickness of the copper foil (copper foil used in the second copper foil layer and t CA, the first copper foil layer therewith a to t CB) of a copper foil was used, with the elastic modulus of the previously obtained from the following equation (1), was determined the equivalent flexural rigidity per 1mm width of the flexible double-sided copper-clad laminate.
Figure 2011109082

[片面銅張積層板の単位幅あたりの等価曲げ剛性の計算]
高い耐屈曲性や耐折り曲げ性の要求される材料評価としては、剛性の高い第一銅箔を除去した片面銅箔貼フレキシブル積層板において回路を形成する銅箔のTD方向に沿った幅1mmあたりの等価曲げ剛性(「等価曲げ剛性/幅」)を、先の式(1)の場合と同様に、下記式(2)から計算した。

Figure 2011109082
[Calculation of equivalent bending stiffness per unit width of single-sided copper-clad laminate]
As a material evaluation that requires high bending resistance and bending resistance, per 1 mm width along the TD direction of the copper foil that forms a circuit in a single-sided copper foil-laminated flexible laminate from which the highly rigid first copper foil is removed. The equivalent bending stiffness (“equivalent bending stiffness / width”) was calculated from the following equation (2) in the same manner as in the previous equation (1).
Figure 2011109082

[銅箔の単位幅あたりの等価曲げ剛性の計算]
銅箔の単位幅あたりの等価曲げ剛性は、銅箔のMD方向に曲げられた際の材料の剛性を示すものであり、各実施例で挙げた条件と同じ加熱処理を施した銅箔のMD方向の引張弾性率を測定した。そして、各実施例で挙げた同じ条件の銅箔の厚みとともに、先に求めた弾性率を用いて、以下の式(3)から銅箔のTD方向の1mmあたりの銅箔の剛性を計算した。

Figure 2011109082
[Calculation of equivalent bending stiffness per unit width of copper foil]
The equivalent bending rigidity per unit width of the copper foil indicates the rigidity of the material when the copper foil is bent in the MD direction, and the MD of the copper foil that has been subjected to the same heat treatment as that described in each example. The tensile modulus in the direction was measured. And the rigidity of the copper foil per 1 mm of TD direction of copper foil was computed from the following formula | equation (3) using the elasticity modulus calculated | required previously with the thickness of the copper foil of the same conditions quoted in each Example. .
Figure 2011109082

[ハンドリング性の判定]
フレキシブル両面銅張積層板のハンドリング性の評価として、上記で求めた等価曲げ剛性/幅の値が0.05N・mm未満を×判定とし、0.05N・mm以上0.1N・mm以下を○判定とし、0.1N・mmを超えたものを◎判定として、3段階で評価した。
[Handling judgment]
As an evaluation of the handling properties of flexible double-sided copper-clad laminates, the value of the equivalent bending stiffness / width obtained above is less than 0.05 N · mm, and x is judged, and 0.05 N · mm to 0.1 N · mm Evaluation was made in three stages with a value exceeding 0.1 N · mm as ◎.

[反発力の判定]
第一銅箔層に用いた剛性の高い銅箔を除去した片面銅箔貼フレキシブル積層板の反発力評価として、等価曲げ剛性/幅の値に基づき、以下の3段階で評価した。
0.00N・mm以上0.01N・mm以下を◎判定、
0.01N・mm以上0.05N・mm以下を○判定、
0.05N・mm< を×判定、とした。
[Determination of repulsive force]
As the repulsive force evaluation of the single-sided copper foil-laminated flexible laminate from which the high-stiffness copper foil used for the first copper foil layer was removed, the evaluation was made in the following three stages based on the value of equivalent bending rigidity / width.
0.00N ・ mm or more and 0.01N ・ mm or less
○ Judged 0.01N ・ mm or more and 0.05N ・ mm or less,
0.05 N · mm <was determined as x.

[総合判定]
ハンドリング性および反発力の判定が双方とも○又は◎である場合を総合判定◎とし、どちらか一方にでも×判定がある場合を総合判定×とした。
[Comprehensive judgment]
A case where both the handling property and the repulsive force were judged as “good” or “good” was regarded as a comprehensive judgment “総 合”, and a case where there was a “x” judgment in either one was designated as a comprehensive judgment “x”.

(合成例1)
反応容器にN,N-ジメチルアセトアミドを入れ、この反応容器に4,4’-ジアミノ-2’-メトキシベンズアニリド(MABA)を容器中で撹拌しながら溶解させた。次に、無水ピロメリット酸(PMDA)及び4,4’-ジアミノジフェニルエーテル(DAPE)を加えた。この際、モノマーの投入総量が15wt%であり、各ジアミンのモル比率は、MABA:DAPEが60:40となるよう投入した。その後、3時間撹拌を続けて重合反応を行い、粘稠なポリイミド前駆体樹脂液aを得た。
(Synthesis Example 1)
N, N-dimethylacetamide was placed in the reaction vessel, and 4,4′-diamino-2′-methoxybenzanilide (MABA) was dissolved in the reaction vessel with stirring. Next, pyromellitic anhydride (PMDA) and 4,4′-diaminodiphenyl ether (DAPE) were added. At this time, the total amount of monomers charged was 15 wt%, and the molar ratio of each diamine was charged so that MABA: DAPE was 60:40. Thereafter, stirring was continued for 3 hours to carry out a polymerization reaction to obtain a viscous polyimide precursor resin liquid a.

(合成例2)
反応容器にN,N-ジメチルアセトアミドを入れ、この反応容器に2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)及び1,4-ビス(4-アミノフェノキシ)ベンゼン(TPE-Q)を容器中で撹拌しながら溶解させた。次に、PMDAを加えた。この際、モノマーの投入総量が15wt%であり、各ジアミンのモル比率は、BAPP:TPE-Qが80:20となるよう投入した。その後、3時間撹拌を続けて重合反応を行い、粘稠なポリイミド前駆体樹脂液bを得た。
(Synthesis Example 2)
N, N-dimethylacetamide is placed in a reaction vessel, and 2,2'-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) and 1,4-bis (4-aminophenoxy) benzene are added to this reaction vessel. (TPE-Q) was dissolved in the vessel with stirring. Next, PMDA was added. At this time, the total amount of monomers charged was 15 wt%, and the molar ratio of each diamine was charged so that BAPP: TPE-Q was 80:20. Thereafter, stirring was continued for 3 hours to conduct a polymerization reaction, thereby obtaining a viscous polyimide precursor resin liquid b.

[実施例1]
第一銅箔層に用いる銅箔として、表1記載の機械物性を有する12μm厚さの電解銅箔(銅箔1)を準備し、この銅箔上に合成例2で得られたポリイミド前駆体樹脂液bを硬化後の厚みが2μmとなるように塗布し、130℃で5分間乾燥した後、合成例1で得られたポリイミド前駆体樹脂液aを硬化後の厚みが8μmとなるように塗布し、130℃で5分間乾燥し、さらに合成例2で得られたポリイミド前駆体樹脂液bを硬化後の厚みが2μmとなるように塗布し、130℃で加熱乾燥し溶媒を除去した。これを、130℃から380℃まで10分かけて段階的に昇温された熱処理工程を経由させ、ポリイミド樹脂層(ポリイミド絶縁層)の厚みが12μmの片面銅張積層体を得た。この片面銅張積層体のポリイミド樹脂層に、第二銅箔として表1記載の機械物性を有する12μm厚さの圧延銅箔(銅箔2)を重ねて、ロール表面の設定温度380℃、プレスロール間の線圧150kN/cm、通過時間3秒間で連続的に熱圧着することで第二銅箔層を積層させて、実施例1に係る両面銅張積層板を得た。なお、表1に示した各銅箔の物性値は、事前に実施例と同じ条件で熱処理して求めたものである。
[Example 1]
As a copper foil used for the first copper foil layer, a 12 μm-thick electrolytic copper foil (copper foil 1) having mechanical properties shown in Table 1 was prepared, and the polyimide precursor obtained in Synthesis Example 2 on this copper foil. The resin liquid b was applied so that the thickness after curing was 2 μm, dried at 130 ° C. for 5 minutes, and then the polyimide precursor resin liquid a obtained in Synthesis Example 1 was cured so that the thickness after curing was 8 μm. It was applied and dried at 130 ° C. for 5 minutes. Further, the polyimide precursor resin liquid b obtained in Synthesis Example 2 was applied so that the thickness after curing was 2 μm, and dried by heating at 130 ° C. to remove the solvent. This was passed through a heat treatment step in which the temperature was raised stepwise from 130 ° C. to 380 ° C. over 10 minutes to obtain a single-sided copper clad laminate having a polyimide resin layer (polyimide insulating layer) thickness of 12 μm. A 12 μm-thick rolled copper foil (copper foil 2) having the mechanical properties described in Table 1 as a second copper foil is layered on the polyimide resin layer of this single-sided copper-clad laminate, and the set temperature of the roll surface is 380 ° C., press The second copper foil layer was laminated by continuous thermocompression bonding with a linear pressure between rolls of 150 kN / cm and a passage time of 3 seconds, to obtain a double-sided copper-clad laminate according to Example 1. In addition, the physical-property value of each copper foil shown in Table 1 was calculated | required by heat-processing in the same conditions as an Example beforehand.

得られた両面銅張積層板の1mm幅あたりの等価曲げ剛性を計算した結果、0.0073N・mmと良好なハンドリング性を示す結果であった。また、第一銅箔層をエッチングにより除去した片面銅張積層板の等価曲げ剛性を計算した結果、0.010N・mmと低反発力を示す結果であった。結果を表2に示す。   As a result of calculating the equivalent bending rigidity per 1 mm width of the obtained double-sided copper-clad laminate, it was a result showing good handling properties as 0.0073 N · mm. Moreover, as a result of calculating the equivalent bending rigidity of the single-sided copper clad laminate from which the first copper foil layer was removed by etching, the result showed a low repulsion force of 0.010 N · mm. The results are shown in Table 2.

Figure 2011109082
Figure 2011109082

Figure 2011109082
Figure 2011109082

[実施例2]
第一銅箔層として、表1記載の機械物性を有する18μm厚さの電解銅箔(銅箔3)に変更した以外は、実施例1と同様の方法で片面銅張積層体を得た。また、この片面銅張積層体のポリイミド樹脂層に重ねる第二銅箔層を、表1記載の機械物性を有する3μm厚さの電解銅箔(銅箔4)に変更した以外は、実施例1と同様の方法で両面銅張積層板を得た。
[Example 2]
A single-sided copper clad laminate was obtained in the same manner as in Example 1 except that the first copper foil layer was changed to an 18 μm thick electrolytic copper foil (copper foil 3) having mechanical properties shown in Table 1. Moreover, Example 1 except having changed the 2nd copper foil layer piled up on the polyimide resin layer of this single-sided copper clad laminated body to the 3 micrometers-thick electrolytic copper foil (copper foil 4) which has the mechanical physical property of Table 1. A double-sided copper-clad laminate was obtained by the same method.

得られた両面銅張積層板の等価曲げ剛性を計算した結果、0.082N・mmと良好なハンドリング性を示す結果であった。また、第一銅箔層をエッチングにより除去した片面銅張積層板の等価曲げ剛性を計算した結果、0.004N・mmと低反発力を示す結果であった。結果を表2に示す。   As a result of calculating the equivalent bending rigidity of the obtained double-sided copper-clad laminate, it was 0.082 N · mm, indicating good handling properties. Moreover, as a result of calculating the equivalent bending rigidity of the single-sided copper clad laminate from which the first copper foil layer was removed by etching, the result showed a low repulsion force of 0.004 N · mm. The results are shown in Table 2.

[実施例3]
第一銅箔層として、表1記載の機械物性を有する18μm厚さの電解銅箔(銅箔3)を準備し、この銅箔上に合成例2で得られたポリイミド前駆体樹脂液bを硬化後の厚みが2μmとなるように塗布し、130℃で5分間乾燥した後、合成例1で得られたポリイミド前駆体樹脂液aを硬化後の厚みが21μmとなるように塗布し、130℃で5分間乾燥し、さらに合成例2で得られたポリイミド前駆体樹脂液bを硬化後の厚みが2μmとなるように塗布し、130℃で加熱乾燥し溶媒を除去した。これを、130℃から380℃まで10分かけて段階的に昇温された熱処理工程を経由させ、ポリイミド樹脂層の厚み25μmの片面銅張積層体を得た。この片面銅張積層体のポリイミド樹脂層に積層する第二銅箔層として、表1記載の機械物性を有する9μm厚さの圧延銅箔(銅箔5)を用いて、実施例1と同様の方法で両面銅張積層板を得た。
[Example 3]
As a 1st copper foil layer, the 18-micrometer-thick electrolytic copper foil (copper foil 3) which has the mechanical physical property of Table 1 was prepared, and the polyimide precursor resin liquid b obtained by the synthesis example 2 on this copper foil was used. After coating to a thickness of 2 μm after curing and drying at 130 ° C. for 5 minutes, the polyimide precursor resin liquid a obtained in Synthesis Example 1 was applied to a thickness of 21 μm after curing, and 130 It dried at 5 degreeC for 5 minutes, and also apply | coated the polyimide precursor resin liquid b obtained by the synthesis example 2 so that the thickness after hardening might be set to 2 micrometers, and it heat-dried at 130 degreeC, and removed the solvent. This was passed through a heat treatment step in which the temperature was raised stepwise from 130 ° C. to 380 ° C. over 10 minutes to obtain a single-sided copper clad laminate having a polyimide resin layer thickness of 25 μm. As the second copper foil layer to be laminated on the polyimide resin layer of this single-sided copper clad laminate, a 9 μm-thick rolled copper foil (copper foil 5) having the mechanical properties shown in Table 1 was used. A double-sided copper clad laminate was obtained by this method.

得られた両面銅張積層板の等価曲げ剛性を計算した結果、0.203N・mmと良好なハンドリング性を示す結果であった。また、第一銅箔層をエッチングにより除去した片面銅張積層板の等価曲げ剛性を計算した結果、0.029N・mmと低反発力を示す結果であった。結果を表2に示す。   As a result of calculating the equivalent bending rigidity of the obtained double-sided copper-clad laminate, the result was as good as 0.203 N · mm. Moreover, as a result of calculating the equivalent bending rigidity of the single-sided copper clad laminate from which the first copper foil layer was removed by etching, the result showed a low repulsive force of 0.029 N · mm. The results are shown in Table 2.

[実施例4]
第一銅箔層として、表1記載の機械物性を有する35μm厚さの圧延銅箔(銅箔6)を用いた以外は、実施例3と同様の方法で片面銅張積層体を得た。この片面銅張積層体のポリイミド樹脂層に、第二銅箔層として、表1記載の機械物性を有する6μm厚さの電解銅箔(銅箔7)を用いて、実施例1と同様の方法で両面銅張積層板を得た。
[Example 4]
A single-sided copper clad laminate was obtained in the same manner as in Example 3 except that a rolled copper foil (copper foil 6) having a thickness of 35 μm having mechanical properties shown in Table 1 was used as the first copper foil layer. The same method as in Example 1 was used by using a 6 μm thick electrolytic copper foil (copper foil 7) having the mechanical properties shown in Table 1 as the second copper foil layer for the polyimide resin layer of this single-sided copper clad laminate. A double-sided copper-clad laminate was obtained.

得られた両面銅張積層板の等価曲げ剛性を計算した結果、0.442N・mmと良好なハンドリング性を示す結果であった。また、第一銅箔層をエッチングにより除去した片面銅張積層板の等価曲げ剛性を計算した結果、0.031N・mmと低反発力を示す結果であった。結果を表2に示す。   As a result of calculating the equivalent bending rigidity of the obtained double-sided copper-clad laminate, it was 0.442 N · mm and a good handling property. Moreover, as a result of calculating the equivalent bending rigidity of the single-sided copper clad laminate from which the first copper foil layer was removed by etching, the result showed a low repulsion force of 0.031 N · mm. The results are shown in Table 2.

[実施例5]
第一銅箔層として、表1記載の機械物性を有する9μm厚さの電解銅箔(銅箔8)を用いた以外は、実施例1と同様の方法で片面銅張積層体を得た。この片面銅張積層体のポリイミド樹脂層に、第二銅箔層として、表1記載の機械物性を有する9μm厚さの電解銅箔(銅箔9)を用いて、実施例1と同様の方法で両面銅張積層板を得た。
[Example 5]
A single-sided copper clad laminate was obtained in the same manner as in Example 1 except that a 9 μm-thick electrolytic copper foil (copper foil 8) having mechanical properties shown in Table 1 was used as the first copper foil layer. The same method as in Example 1 was used by using, as the second copper foil layer, a 9 μm-thick electrolytic copper foil (copper foil 9) having the mechanical properties shown in Table 1 for the polyimide resin layer of this single-sided copper clad laminate. A double-sided copper-clad laminate was obtained.

得られた両面銅張積層板の等価曲げ剛性を計算した結果、0.082N・mmと良好なハンドリング性を示す結果であった。また、第一銅箔層をエッチングにより除去した片面銅張積層板の等価曲げ剛性を計算した結果、0.010N・mmと低反発力を示す結果であった。結果を表2に示す。   As a result of calculating the equivalent bending rigidity of the obtained double-sided copper-clad laminate, it was 0.082 N · mm, indicating good handling properties. Moreover, as a result of calculating the equivalent bending rigidity of the single-sided copper clad laminate from which the first copper foil layer was removed by etching, the result showed a low repulsion force of 0.010 N · mm. The results are shown in Table 2.

[比較例1]
第一銅箔層として、表1記載の機械物性を有する6μm厚さの圧延銅箔(銅箔10)を用いた以外は、実施例1と同様の方法で片面銅張積層体を得た。この片面銅張積層体のポリイミド樹脂層に、第二銅箔層として表1記載の機械物性を有する6μm厚さの圧延銅箔(銅箔10)を用いて、実施例1と同様の方法で両面銅張積層板を得た。
[Comparative Example 1]
A single-sided copper clad laminate was obtained in the same manner as in Example 1 except that a rolled copper foil (copper foil 10) having a thickness of 6 μm having mechanical properties shown in Table 1 was used as the first copper foil layer. By using a 6 μm-thick rolled copper foil (copper foil 10) having mechanical properties described in Table 1 as the second copper foil layer in the polyimide resin layer of this single-sided copper-clad laminate, the same method as in Example 1 was used. A double-sided copper-clad laminate was obtained.

得られた両面銅張積層板の第一銅箔層をエッチングにより除去した片面銅張積層体の等価曲げ剛性を計算した結果、0.004N・mmと低反発力を示す結果であったが、両面銅張積層板の等価曲げ剛性を計算した結果、0.013N・mmと低いハンドリング性を示す結果であった。結果を表2に示す。   As a result of calculating the equivalent bending rigidity of the single-sided copper-clad laminate in which the first copper foil layer of the obtained double-sided copper-clad laminate was removed by etching, the result showed a low repulsive force of 0.004 N · mm. As a result of calculating the equivalent bending rigidity of the double-sided copper-clad laminate, the result was as low as 0.013 N · mm. The results are shown in Table 2.

[比較例2]
第一銅箔層として、表1記載の機械物性を有する9μm厚さの圧延銅箔(銅箔11)を用いた以外は、実施例1と同様の方法で片面銅張積層体を得た。この片面銅張積層体のポリイミド樹脂層に、第二銅箔層として表1記載の機械物性を有する2μm厚さの圧延銅箔(銅箔12)を用いて、実施例1と同様の方法で両面銅張積層板を得た。
[Comparative Example 2]
A single-sided copper clad laminate was obtained in the same manner as in Example 1 except that a 9 μm-thick rolled copper foil (copper foil 11) having mechanical properties shown in Table 1 was used as the first copper foil layer. By using the 2 μm-thick rolled copper foil (copper foil 12) having the mechanical properties described in Table 1 as the second copper foil layer in the polyimide resin layer of this single-sided copper clad laminate, the same method as in Example 1 was used. A double-sided copper-clad laminate was obtained.

得られた両面銅張積層板の第一銅箔層をエッチングにより除去した片面銅張積層体の等価曲げ剛性を計算した結果、0.002N・mmと低反発力を示す結果であったが、両面銅張積層板の等価曲げ剛性を計算した結果、0.035N・mmと低いハンドリング性を示す結果であった。結果を表2に示す。   As a result of calculating the equivalent bending rigidity of the single-sided copper-clad laminate obtained by etching away the first copper foil layer of the obtained double-sided copper-clad laminate, the result showed a low repulsion force of 0.002 N · mm. As a result of calculating the equivalent bending rigidity of the double-sided copper-clad laminate, the result was as low as 0.035 N · mm. The results are shown in Table 2.

[比較例3]
第一銅箔層として、表1記載の機械物性を有する18μm厚さの電解銅箔(銅箔3)を用いた以外は、実施例3と同様の方法で片面銅張積層体を得た。この片面銅張積層体のポリイミド樹脂層に、第二銅箔層として表1記載の機械物性を有する18μm厚さの電解銅箔(銅箔13)を用いて、実施例1と同様の方法で両面銅張積層板を得た。
[Comparative Example 3]
A single-sided copper clad laminate was obtained in the same manner as in Example 3 except that an 18 μm-thick electrolytic copper foil (copper foil 3) having mechanical properties shown in Table 1 was used as the first copper foil layer. In this single-sided copper clad laminate, an 18 μm-thick electrolytic copper foil (copper foil 13) having mechanical properties described in Table 1 was used as the second copper foil layer in the same manner as in Example 1. A double-sided copper-clad laminate was obtained.

得られた両面銅張積層板の等価曲げ剛性を計算した結果、0.787N・mmと良好なハンドリング性を示す結果であったが、第一銅箔層をエッチングにより除去した片面銅張積層体の等価曲げ剛性を計算した結果、0.104N・mmと高い反発力を示す結果であった。結果を表2に示す。   As a result of calculating the equivalent bending rigidity of the obtained double-sided copper-clad laminate, it was a result showing good handling properties of 0.787 N · mm, but the single-sided copper-clad laminate in which the first copper foil layer was removed by etching As a result of calculating the equivalent bending stiffness, the result showed a high repulsive force of 0.104 N · mm. The results are shown in Table 2.

1:第一銅箔層
2:ポリイミド絶縁層
3:第二銅箔層
4:屈曲部
5:絶縁層
6:接着層
7:シールド層
1: first copper foil layer 2: polyimide insulating layer 3: second copper foil layer 4: bent portion 5: insulating layer 6: adhesive layer 7: shield layer

Claims (5)

ポリイミド絶縁層の両側に銅箔層を有するフレキシブル両面銅張積層板において、
厚さが9μm以上35μm以下であり、単位幅あたりの等価曲げ剛性が0.003N・mm以上0.2N・mm以下の範囲内にある第一銅箔層と、
厚さが3μm以上12μm以下であり、単位幅あたりの等価曲げ剛性が0.00001N・mm以上0.003N・mm未満の範囲内にある第二銅箔層とを有して、第一銅箔層の等価曲げ剛性が第二銅箔層の等価曲げ剛性より高く、また、
ポリイミド絶縁層の厚さが7μm以上50μm以下であり、25℃における引張弾性率が2GPa以上9GPa以下であることを特徴とするフレキシブル両面銅張積層板。
In a flexible double-sided copper-clad laminate with copper foil layers on both sides of the polyimide insulation layer,
A first copper foil layer having a thickness of 9 μm or more and 35 μm or less and an equivalent bending rigidity per unit width of 0.003 N · mm or more and 0.2 N · mm or less;
A second copper foil layer having a thickness of 3 μm or more and 12 μm or less and an equivalent bending stiffness per unit width in the range of 0.00001 N · mm or more and less than 0.003 N · mm, The equivalent bending stiffness of the layer is higher than the equivalent bending stiffness of the second copper foil layer, and
A flexible double-sided copper-clad laminate, wherein the polyimide insulating layer has a thickness of 7 µm to 50 µm and a tensile elastic modulus at 25 ° C of 2 GPa to 9 GPa.
請求項1記載のフレキシブル両面銅張積層板の第二銅箔層を利用して配線回路を形成し、配線回路の少なくとも一部を屈曲部に使用するフレキシブル回路基板。   The flexible circuit board which forms a wiring circuit using the 2nd copper foil layer of the flexible double-sided copper clad laminated board of Claim 1, and uses at least one part of a wiring circuit for a bending part. 少なくとも屈曲部に相当する位置の第一銅箔層は除去されている請求項2に記載のフレキシブル回路基板。   The flexible circuit board according to claim 2, wherein at least the first copper foil layer at a position corresponding to the bent portion is removed. 摺動屈曲、折り曲げ屈曲、ヒンジ屈曲又はスライド屈曲から選ばれたいずれかの繰り返し動作を伴う屈曲部が形成される請求項2又は3に記載のフレキシブル回路基板。   4. The flexible circuit board according to claim 2, wherein a bent portion having a repetitive operation selected from sliding bending, bending bending, hinge bending, or sliding bending is formed. 5. 請求項2〜4のいずれかに記載のフレキシブル回路基板を多層化して得られる多層回路基板。   A multilayer circuit board obtained by multilayering the flexible circuit board according to claim 2.
JP2010235637A 2009-10-22 2010-10-20 Flexible circuit board and multilayer circuit board Active JP5689277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010235637A JP5689277B2 (en) 2009-10-22 2010-10-20 Flexible circuit board and multilayer circuit board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009243053 2009-10-22
JP2009243053 2009-10-22
JP2010235637A JP5689277B2 (en) 2009-10-22 2010-10-20 Flexible circuit board and multilayer circuit board

Publications (2)

Publication Number Publication Date
JP2011109082A true JP2011109082A (en) 2011-06-02
JP5689277B2 JP5689277B2 (en) 2015-03-25

Family

ID=44232190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010235637A Active JP5689277B2 (en) 2009-10-22 2010-10-20 Flexible circuit board and multilayer circuit board

Country Status (1)

Country Link
JP (1) JP5689277B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011121361A (en) * 2009-11-11 2011-06-23 Nippon Steel Chem Co Ltd Manufacturing method of flexible double-sided copper clad laminate
WO2015041190A1 (en) * 2013-09-20 2015-03-26 東洋紡株式会社 Rigid composite laminate plate, method for manufacturing same, laminate, and method for manufacturing device using laminate
CN104754864A (en) * 2013-12-27 2015-07-01 新日铁住金化学株式会社 Flexible copper-clad laminate and flexible circuit substrate
CN105101617A (en) * 2015-07-24 2015-11-25 业成光电(深圳)有限公司 Flexible circuit board and circuit structure
CN105451436A (en) * 2014-09-19 2016-03-30 新日铁住金化学株式会社 Copper-covering laminated plate and circuit board
CN105472880A (en) * 2014-09-30 2016-04-06 新日铁住金化学株式会社 Flexible circuit substrate and electronic device
CN110602874A (en) * 2019-09-18 2019-12-20 昆山工研院新型平板显示技术中心有限公司 Flexible circuit board, preparation method thereof and display device
CN111050462A (en) * 2019-11-29 2020-04-21 苏州市迪飞特电子有限公司 Low-impedance flexible circuit board and manufacturing method thereof
CN114698225A (en) * 2020-12-31 2022-07-01 深南电路股份有限公司 Battery protection plate, manufacturing method thereof and electronic device
CN117939795A (en) * 2024-03-25 2024-04-26 厦门源乾电子有限公司 Preparation method of flexible hollowed-out board for vehicle and cleaning equipment for preparation of flexible hollowed-out board

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027466U (en) * 1983-07-30 1985-02-25 日本メクトロン株式会社 Base material for flexible circuit boards
JPH08156176A (en) * 1994-11-30 1996-06-18 Kanegafuchi Chem Ind Co Ltd Novel flexible copper clad laminated sheet
JPH11204898A (en) * 1998-01-07 1999-07-30 Nec Niigata Ltd Double-side flexible wiring board
JP2004351759A (en) * 2003-05-29 2004-12-16 Mitsui Chemicals Inc Resin metal laminate having little warpage and manufacturing method thereof
JP2005280163A (en) * 2004-03-30 2005-10-13 Nippon Steel Chem Co Ltd Flexible copper-clad laminate and its manufacturing method
JP2006352103A (en) * 2005-05-20 2006-12-28 Hitachi Chem Co Ltd Printed wiring board
JP2007273766A (en) * 2006-03-31 2007-10-18 Nippon Steel Chem Co Ltd Laminate for wiring board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027466U (en) * 1983-07-30 1985-02-25 日本メクトロン株式会社 Base material for flexible circuit boards
JPH08156176A (en) * 1994-11-30 1996-06-18 Kanegafuchi Chem Ind Co Ltd Novel flexible copper clad laminated sheet
JPH11204898A (en) * 1998-01-07 1999-07-30 Nec Niigata Ltd Double-side flexible wiring board
JP2004351759A (en) * 2003-05-29 2004-12-16 Mitsui Chemicals Inc Resin metal laminate having little warpage and manufacturing method thereof
JP2005280163A (en) * 2004-03-30 2005-10-13 Nippon Steel Chem Co Ltd Flexible copper-clad laminate and its manufacturing method
JP2006352103A (en) * 2005-05-20 2006-12-28 Hitachi Chem Co Ltd Printed wiring board
JP2007273766A (en) * 2006-03-31 2007-10-18 Nippon Steel Chem Co Ltd Laminate for wiring board

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011121361A (en) * 2009-11-11 2011-06-23 Nippon Steel Chem Co Ltd Manufacturing method of flexible double-sided copper clad laminate
WO2015041190A1 (en) * 2013-09-20 2015-03-26 東洋紡株式会社 Rigid composite laminate plate, method for manufacturing same, laminate, and method for manufacturing device using laminate
JPWO2015041190A1 (en) * 2013-09-20 2017-03-02 東洋紡株式会社 Rigid composite laminate, method for producing the same, laminate, and device production method using the laminate
JP2015127120A (en) * 2013-12-27 2015-07-09 新日鉄住金化学株式会社 Flexible copper-clad laminate sheet and flexible circuit board
KR102288004B1 (en) * 2013-12-27 2021-08-09 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Flexible copper-clad laminate and flexible circuit substrate
KR20150077300A (en) * 2013-12-27 2015-07-07 신닛테츠 수미킨 가가쿠 가부시키가이샤 Flexible copper-clad laminate and flexible circuit substrate
CN104754864A (en) * 2013-12-27 2015-07-01 新日铁住金化学株式会社 Flexible copper-clad laminate and flexible circuit substrate
TWI633006B (en) * 2013-12-27 2018-08-21 新日鐵住金化學股份有限公司 Flexible copper clad laminated plate and flexible circuit substrate
CN105451436B (en) * 2014-09-19 2019-02-26 日铁化学材料株式会社 Copper-coated laminated board and circuit substrate
CN105451436A (en) * 2014-09-19 2016-03-30 新日铁住金化学株式会社 Copper-covering laminated plate and circuit board
CN105472880A (en) * 2014-09-30 2016-04-06 新日铁住金化学株式会社 Flexible circuit substrate and electronic device
CN105472880B (en) * 2014-09-30 2019-07-02 日铁化学材料株式会社 Flexible circuit board and electronic equipment
CN105101617A (en) * 2015-07-24 2015-11-25 业成光电(深圳)有限公司 Flexible circuit board and circuit structure
CN110602874A (en) * 2019-09-18 2019-12-20 昆山工研院新型平板显示技术中心有限公司 Flexible circuit board, preparation method thereof and display device
CN111050462A (en) * 2019-11-29 2020-04-21 苏州市迪飞特电子有限公司 Low-impedance flexible circuit board and manufacturing method thereof
CN114698225A (en) * 2020-12-31 2022-07-01 深南电路股份有限公司 Battery protection plate, manufacturing method thereof and electronic device
CN117939795A (en) * 2024-03-25 2024-04-26 厦门源乾电子有限公司 Preparation method of flexible hollowed-out board for vehicle and cleaning equipment for preparation of flexible hollowed-out board
CN117939795B (en) * 2024-03-25 2024-06-07 厦门源乾电子有限公司 Preparation method of flexible hollowed-out board for vehicle and cleaning equipment for preparation of flexible hollowed-out board

Also Published As

Publication number Publication date
JP5689277B2 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
JP5689277B2 (en) Flexible circuit board and multilayer circuit board
KR102319574B1 (en) Method of manufacturing flexible copper-clad laminate
JP6581224B2 (en) Flexible copper clad laminate
KR102092419B1 (en) Flexible copper-clad laminate
JP2014141083A5 (en)
JP2010125793A (en) Bilayer double-side flexible metal laminate plate and method of manufacturing the same
KR20180022827A (en) METHOD AND APPARATUS FOR MANUFACTURING SINGLE-SIDED METAL LAM
JP2007273766A (en) Laminate for wiring board
KR102268762B1 (en) Manufacturing method of flexible metal clad laminate
JP4642664B2 (en) Laminate for wiring board
JP5689284B2 (en) Method for producing flexible double-sided copper-clad laminate
JP2015088631A (en) Flexible copper-clad laminate, flexible circuit board and use thereof
JP2015127118A (en) Metal-clad laminate and circuit board
JP2007118477A (en) Double-sided metal foil lamination plate and method for manufacturing the same
JP2020015237A (en) Method for manufacturing metal-clad laminate and method for manufacturing circuit board
JP6496812B2 (en) Polyimide laminated film, method for producing polyimide laminated film, method for producing thermoplastic polyimide, and method for producing flexible metal-clad laminate
KR101690058B1 (en) Thermoplastic polyimide adhesive film with excellent slip property and flexible laminated plate including the same
JP4410021B2 (en) Method for producing flexible metal-clad laminate with improved productivity and flexible metal-clad laminate obtained thereby
JP6603032B2 (en) Copper-clad laminate and circuit board
KR101546393B1 (en) Flexible metal-clad laminate and method of producing the same
JP2001270035A (en) Flexible metal foil laminate
KR101439496B1 (en) Polyamic acid composition, method for preparing the same and polyimide metal clad laminate the same
JP2008177214A (en) Laminate for flexible circuit board and manufacturing method thereof
JP2022016735A (en) Polyimide film having gas barrier layer
KR20240152390A (en) Method for manufacturing single-sided metal-clad laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150128

R150 Certificate of patent or registration of utility model

Ref document number: 5689277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250