JP2018131485A - 樹脂組成物および樹脂成形体 - Google Patents

樹脂組成物および樹脂成形体 Download PDF

Info

Publication number
JP2018131485A
JP2018131485A JP2017024390A JP2017024390A JP2018131485A JP 2018131485 A JP2018131485 A JP 2018131485A JP 2017024390 A JP2017024390 A JP 2017024390A JP 2017024390 A JP2017024390 A JP 2017024390A JP 2018131485 A JP2018131485 A JP 2018131485A
Authority
JP
Japan
Prior art keywords
meth
copolymer
acrylate
resin composition
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017024390A
Other languages
English (en)
Inventor
八百 健二
Kenji Yao
健二 八百
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2017024390A priority Critical patent/JP2018131485A/ja
Priority to US15/641,564 priority patent/US10308790B2/en
Priority to EP17182548.2A priority patent/EP3360924A1/en
Priority to CN201711134382.7A priority patent/CN108424548A/zh
Publication of JP2018131485A publication Critical patent/JP2018131485A/ja
Pending legal-status Critical Current

Links

Abstract

【課題】樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する樹脂組成物の提供。
【解決手段】重量平均分子量3万以上9万以下、及び置換度2.1以上2.6以下であるセルロースアセテートと、ポリヒドロキシアルカノエートと、オレフィン−アルキル(メタ)アクリレート共重合体およびオレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体からなる群から選ばれる少なくとも一つのオレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体と、を有する樹脂組成物。
【選択図】なし

Description

本発明は、樹脂組成物および樹脂成形体に関する。
従来、樹脂組成物としては種々のものが提供され、各種用途に使用されている。樹脂組成物は、特に、家電製品や自動車の各種部品、筐体等に使用されている。また、事務機器、電子電気機器の筐体などの部品にも熱可塑性樹脂が使用されている。
近年では、植物由来の樹脂が利用されており、従来から知られている植物由来の樹脂の一つにセルロース誘導体がある。
例えば、特許文献1には、「セルロースエステル樹脂と、アジピン酸エステルを含む化合物と、ポリヒドロキシアルカノエート樹脂と、を含有する樹脂組成物」が開示されている。
特開2016−069423号公報
従来、セルロースの水酸基の一部または全部がアセチル基で置換されたセルロースアセテートに、アジピン酸エステルを含む化合物とポリヒドロキシアルカノエートとを配合した樹脂組成物を用いて得られた樹脂成形体が知られている。しかし、この樹脂組成物は、流動性が向上するものの、精密成形や大型成形をするためには溶融粘度が高く不十分な場合があった。また、この樹脂組成物を用いて得られた樹脂成形体は、耐熱性が低い場合があった。
本発明の課題は、セルロースアセテートとポリヒドロキシアルカノエートとを含み、さらに、オレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体を含む樹脂組成物において、セルロースアセテートの重量平均分子量が、3万未満である場合、若しくは9万超である場合、又は、セルロースアセテートの置換度が、2.1未満である場合、若しくは2.6超である場合に比べ、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する樹脂組成物を提供することにある。
上記課題は、以下の本発明によって達成される。
請求項1に係る発明は、
重量平均分子量3万以上9万以下、及び置換度2.1以上2.6以下であるセルロースアセテートと、
ポリヒドロキシアルカノエートと、
オレフィン−アルキル(メタ)アクリレート共重合体およびオレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体からなる群から選ばれる少なくとも一つのオレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体と、
を有する樹脂組成物。
請求項2に係る発明は、
前記オレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体が、オレフィン−アルキル(メタ)アクリレート共重合体である請求項1に記載の樹脂組成物。
請求項3に係る発明は、
前記オレフィン−アルキル(メタ)アクリレート共重合体が、エチレン−アルキル(メタ)アクリレート共重合体である請求項2に記載の樹脂組成物。
請求項4に係る発明は、
前記オレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体が、オレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体である請求項1に記載の樹脂組成物。
請求項5に係る発明は、
前記オレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体が、エチレン−(メタ)アクリレート−無水マレイン酸共重合体である請求項4に記載の樹脂組成物。
請求項6に係る発明は、
樹脂組成物全量に対する前記セルロースアセテートの含有量を(A)、樹脂組成物全量に対する前記ポリヒドロキシアルカノエートの含有量を(B)としたとき、前記(A)と前記(B)との含有比率((B)/(A))が、質量比で、0.005以上0.1以下である請求項1〜請求項5のいずれか1項に記載の樹脂組成物。
請求項7に係る発明は、
樹脂組成物全量に対する前記セルロースアセテートの含有量を(A)、樹脂組成物全量に対する前記オレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体の合計含有量を(C)としたとき、前記(A)と前記(C)との含有比率((C)/(A))が、質量比で、0.005以上0.1以下である請求項1〜請求項6のいずれか1項に記載の樹脂組成物。
請求項8に係る発明は、
前記ポリヒドロキシアルカノエートが、3−ヒドロキシブチレートと3−ヒドロキシヘキサノエートとの共重合体である請求項1〜請求項7のいずれか1項に記載の樹脂組成物。
請求項9に係る発明は、
前記3−ヒドロキシブチレートと3−ヒドロキシヘキサノエートとの共重合体に対する、前記3−ヒドロキシヘキサノエートの共重合比が、3モル%以上20モル%以下である請求項8に記載の樹脂組成物。
請求項10に係る発明は、
さらに、可塑剤を含む請求項1〜請求項9のいずれか1項に記載の樹脂組成物。
請求項11に係る発明は、
前記可塑剤が、アジピン酸エステルを含有する化合物である請求項10に記載の樹脂組成物。
請求項12に係る発明は、
請求項1〜請求項11のいずれか1項に記載の樹脂組成物を成形した樹脂成形体。
請求項13に係る発明は、
前記樹脂成形体が、射出成形体である請求項12に記載の樹脂成形体。
請求項1に係る発明によれば、セルロースアセテートとポリヒドロキシアルカノエートとを含み、さらに、オレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体を含む樹脂組成物において、セルロースアセテートの重量平均分子量が、3万未満である場合、若しくは9万超である場合、又は、セルロースアセテートの置換度が、2.1未満である場合、若しくは2.6超である場合に比べ、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する樹脂組成物が提供される。
請求項2〜5に係る発明によれば、セルロースアセテートおよびポリヒドロキシアルカノエートのみ含む樹脂組成物である場合に比べ、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する樹脂組成物が提供される。
請求項6に係る発明によれば、セルロースアセテートの樹脂組成物全量に対する含有量(A)と、ポリヒドロキシアルカノエートの樹脂組成物全量に対する含有量(B)との含有比率((B)/(A))が、質量比で、0.005未満である場合、又は0.1超の場合に比べ、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する樹脂組成物が提供される。
請求項7に係る発明によれば、セルロースアセテートの樹脂組成物全量に対する含有量(A)と、オレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体の樹脂組成物全量に対する合計含有量(C)との含有比率((C)/(A))が、質量比で、0.005未満である場合、又は0.1超の場合に比べ、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する樹脂組成物が提供される。
請求項8、9に係る発明によれば、ポリヒドロキシアルカノエートが、3−ヒドロキシブチレートの単独重合体である場合に比べ、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する樹脂組成物が提供される。
請求項10、11に係る発明によれば、セルロースアセテートの重量平均分子量が、3万未満である場合、若しくは9万超である場合、又は、セルロースアセテートの置換度が、2.1未満である場合、若しくは2.6超である場合に比べ、樹脂組成物が、さらに可塑剤を含んでいるときであっても、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する樹脂組成物が提供される。
請求項12、13に係る発明によれば、セルロースアセテートとポリヒドロキシアルカノエートとを含み、さらに、オレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体を含む樹脂組成物において、セルロースアセテートの重量平均分子量が、3万未満である場合、若しくは9万超である場合、又は、セルロースアセテートの置換度が、2.1未満である場合、若しくは2.6超である場合の樹脂組成物を適用したときに比べ、耐熱性の低下が抑制されている樹脂成形体が提供される。
以下、本発明の樹脂組成物および樹脂成形体の一例である実施形態について説明する。
<樹脂組成物>
本実施形態に係る樹脂組成物は、セルロースアセテートと、ポリヒドロキシアルカノエートとを有する。さらに、本実施形態に係る樹脂組成物は、オレフィン−アルキル(メタ)アクリレート共重合体およびオレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体からなる群から選ばれる少なくとも一つのオレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体(以下、単に、「オレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体」と称する場合がある。)を有する。
従来、セルロースは、その強固な分子内、分子間水素結合力から高い曲げ弾性率を示しており、金属代替など、従来の樹脂材料では適用し難かった分野へ応用できる可能性がある。
しかしながら、セルロースは、剛直な化学構造により、未変性のセルロースの状態では熱可塑性、有機溶剤への溶解性がほとんどないため、射出成形、キャスト成形などの成形加工の用途としては、あまり用いられていない。
そこで、セルロース水酸基の一部をアシル基で置換したセルロースアシレート(アシル化セルロース誘導体)とした上で、可塑剤を加えて成形性を持たせる技術が知られている。
しかし、成形可能な状態になるほどの可塑性を与えるまで可塑剤を含ませると、得られた樹脂成形体は、耐熱性や曲げ弾性率が低下してしまう場合があった。
一方、耐熱性(例えば熱変形温度(1.8MPa)70℃以上)、曲げ弾性率(例えば、3000MPa以上)を従来の樹脂材料と差別化できるように、可塑剤の含有量を抑制すると、可塑性が不足し易くなる。特に、射出成形では、成形温度を高温で行うため、成形体が着色してしまう場合があった。
特開2016−069423号公報(特許文献1)には、セルロースエステルに、アジピン酸エステルとポリヒドロキシアルカノエートを配合することで、曲げ弾性率の低下を抑制しながら、成形温度を低温化し、成形体の着色を改善した技術が開示されている。
しかしながら、特許文献1に開示される樹脂組成物は、樹脂成形体の形状(例えば、厚みが小さく、面積が大きい形状)によっては、成形性が低い場合があった。すなわち、特許文献1に開示される樹脂組成物は、溶融粘度が高く、予め定められた形状に成形するための樹脂組成物の流動性が低い場合があることがわかってきた。また、得られた樹脂成形体の耐熱性が低い場合もあることがわかってきた。
これに対し、本実施形態に係る樹脂組成物は、上記構成により、樹脂成形体の耐熱性の低下を抑制ししつつ、流動性が向上する樹脂組成物が得られる。この理由は定かではないが、以下のように推測される。
まず、樹脂組成物中のセルロースアシレートが、セルロースプロピオネートおよびセルロースブチレートである場合は、分子間力が弱くなるために、樹脂組成物の溶融粘度が低下し、流動性が向上する。その一方で、これらのセルロースアシレートを用いた場合には、樹脂成形体の耐熱性が低下する。
次に、セルロースアセテートの重量平均分子量が3万以上9万以下であることで、セルロースアセテートどうしの分子間力が抑えられるため、ポリヒドロキシアルカノエートが、セルロースアセテートの分子間に入り込み易くなると考えられる。そのため、セルロースアセテートおよびポリヒドロキシアルカノエートが不均一な連続相を形成し難くなり、これらの成分が均一に近い状態の構造を形成し易くなるものと考えられる。その結果、樹脂組成物の流動性が向上することに加え、ポリヒドロキシアルカノエートが剛直に配位しやすくなるため、耐熱性が向上すると考えられる。
また、オレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体が、オレフィン−アルキル(メタ)アクリレート共重合体である場合、セルロースアセテートの重量平均分子量が3万以上9万以下であることで、セルロースアセテートのアセチル基と、共重合体中のアルキルエステル基との親和性が向上し易くなる。そのため、セルロースアセテートのアセチル基と、共重合体中のアルキルエステル基とが相互作用により、セルロースアセテートの側鎖としての働きをすると考えられる。その結果、樹脂組成物の流動性が向上すると考えられる。
一方、オレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体が、オレフィン−アルキル(メタ)アクリレート共重合体およびオレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体である場合、セルロースアセテートの水酸基およびエステル基と、共重合体中の無水マレイン酸構造とが反応することで、セルロースアセテートの側鎖として働くと考えられる。その結果、セルロースアセテートの水素結合力が緩和され、樹脂組成物の流動性が向上し、且つ、一部側鎖同士が配位や結合することにより、耐熱性を向上させるものと考えられる。
さらに、セルロースアセテートの置換度が2.1以上2.6以下であることで、分子間側鎖のパッキングが低く抑えられると考えられる。また、ポリヒドロキシアルカノエートが、セルロースアセテートの分子間に入り込み易くなると考えられる。そして、オレフィン−アルキル(メタ)アクリレート共重合体のセルロースアセテートとの親和力により相互作用が生じ易くなる。又は、オレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体のセルロースアセテートとの共有結合が形成され易くなる。その結果、樹脂組成物の流動性が向上し、且つ、一部側鎖同士が配位や結合することにより、耐熱性を向上させるもの考えられる。
以上から、本実施形態に係る樹脂組成物は、上記構成を有することにより、耐熱性の低下を抑制ししつつ、流動性が向上する樹脂組成物が得られると推測される。
なお、本実施形態に係る樹脂組成物は、流動性が向上するために、例えば、目的とする樹脂成形体の形状が大型および薄型の形状であっても、これら形状の樹脂成形体を成形するための流動性が得られ易くなる。そして、これら形状の樹脂成形体を成形する場合であっても、成形性が低下し難くなる。
以下、本実施形態に係る樹脂組成物の成分を詳細に説明する。
[セルロースアセテート]
本実施形態に係る樹脂組成物は、重量平均分子量3万以上9万以下であり、置換度2.1以上2.6以下のセルロースアセテートを含む。
ここで、セルロースアセテートは、水酸基の一部がアセチル基で置換されたセルロース誘導体であり、具体的には、下記一般式(1)で表されるセルロース誘導体である。
一般式(1)中、R、R、及びRは、それぞれ独立に、水素原子、又はアセチル基を表す。nは2以上の整数を表す。ただし、n個のR、n個のR、及びn個Rのうちの少なくとも一部はアセチル基を表す。
一般式(1)中、nの範囲は特に制限されない。目的とする重量平均分子量の範囲に応じて決定されればよい。例えば、120以上330以下が挙げられる。
−重量平均分子量−
セルロースアセテートの重量平均分子量は、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する点で、4万以上9万以下が好ましく、6万以上9万以下がより好ましい。
重量平均分子量(Mw)は、ジメチルアセトアミド/塩化リチウム=90/10溶液を用い、ゲルパーミエーションクロマトグラフィ装置(GPC装置:東ソー社製、HLC−8320GPC、カラム:TSKgelα−M)にてポリスチレン換算で測定する。
−置換度−
セルロースアセテートの置換度は、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する点で、2.15以上2.6以下であることが好ましく、2.2以上2.5以下であることがより好ましく、2.2以上2.45以下であることがさらに好ましい。
ここで、置換度とは、セルロースが有する水酸基がアセチル基により置換されている程度を示す指標である。つまり、置換度は、セルロースアセテートのアセチル化の程度を示す指標となる。具体的には、置換度はセルロースアセテートのD−グルコピラノース単位に3個ある水酸基がアセチル基で置換された置換個数の分子内平均を意味する。
置換度は、H−NMR(JMN−ECA/JEOL RESONANCE社製)にて、セルロース由来水素とアセチル基由来ピークの積分比から置換度を求める。なお、例えば、セルロースアセテートの構成単位分子量は、アセチル基の置換度が2.4のとき263、アセチル基の置換度が2.9のとき284となる。
セルロースアセテートの重合度の好適な範囲としては、例えば、120以上330以下、200以上300以下、250以上300以下が挙げられる。セルロースアセテートの重合度が上記範囲であると、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する樹脂組成物が得られやすくなる。
なお、セルロースアセテートの重合度は、以下の手順で重量平均分子量から求める。
まず、セルロースアセテートの重量平均分子量を前記方法により測定する。
次いで、セルロースアセテートの骨格分子量で割ることで、セルロースアセテートの重合度を求める。
セルロースアセテートとしては、具体的には、例えば、モノアセチルセルロース、ジアセチルセルロース、及びトリアセチルセルロースが挙げられる。セルロースアセテートは、1種単独で使用してもよく、2種以上を併用してもよい。
セルロースアセテートの製造方法は、特に制限はなく、例えば、セルロースに対し、アセチル化、及び、低分子量化(解重合)、並びに、必要に応じて、脱アセチル化を行う方法により好適に製造される。また、市販品のセルロースアセテートを、予め定められた重量平均分子量となるように、低分子量化(解重合)等を行って製造してもよい。
[ポリヒドロキシアルカノエート]
本実施形態に係る樹脂組成物は、ポリヒドロキシアルカノエートを含有する。ポリヒドロキシアルカノエートは、具体的に、例えば、一般式(2)で表される化学構造を有する樹脂が挙げられる。

(一般式(2)中、R11は、炭素数1以上10以下のアルキレン基を表す。pは、2以上の整数を表す。)
一般式(2)中、R11が表すアルキレン基としては、炭素数3以上6以下のアルキレン基が望ましい。R11が表すアルキレン基は、直鎖状、分岐状のいずれであってもよいが、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する点から、分岐状が好ましい。
ここで、一般式(2)中、R11がアルキレン基を表すとは、1)R11が同じアルキレン基を表す[O−R11−C(=O)−]構造を有すること、2)R11が異なるアルキレン基(R11が炭素数又は分岐が異なるアルキレン基)を表す複数の[O−R11−C(=O)−]構造(即ち、[O−R11A−C(=O)−][O−R11B−C(=O)−]構造)を有することを示している。
つまり、ポリヒドロキシアルカノエートは、1種のヒドロキシアルカノエート(ヒドロキシアルカン酸)の単独重合体であってもよいし、2種以上のヒドロキシアルカノエート(ヒドロキシアルカン酸)の共重合体であってもよい。
一般式(2)中、pの上限は特に限定されないが、例えば、20000以下が挙げられる。pの範囲は、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する点から、500以上10000以下が好ましく、1000以上8000以下がより好ましい。
ポリヒドロキシアルカノエートを形成するヒドロキシアルカン酸としては、乳酸、2−ヒドロキシ酪酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、2−ヒドロキシ−3−メチル酪酸、2−ヒドロキシ−3,3−ジメチル酪酸、3−ヒドロキシ吉草酸、4−ヒドロキシ吉草酸、5−ヒドロキシ吉草酸、3−ヒドロキシヘキサン酸、2−ヒドロキシカプロン酸、2−ヒドロキシイソカプロン酸、6−ヒドロキシカプロン酸、3−ヒドロキシプロピオン酸、3−ヒドロキシ−2,2−ジメチルプロピオン酸、3−ヒドロキシヘキサン酸、2−ヒドロキシ−n−オクタン酸等が挙げられる。
これらの中でも、ポリヒドロキシアルカノエートは、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する点で、炭素数2以上4以下の分岐状のヒドロキシアルカン酸と炭素数5以上7以上の分岐状のヒドロキシアルカン酸との共重合体(但し、炭素数はカルボキシ基の炭素も含む数である。)が好ましい。特に、3−ヒドロキシ酪酸と3−ヒドロキシカプロン酸との共重合体(3−ヒドロキシブチレートと3−ヒドロキシヘキサノエートとの共重合体)がより好ましい。
ポリヒドロキシアルカノエートが、3−ヒドロキシブチレートと3−ヒドロキシヘキサノエートとの共重合体である場合、3−ヒドロキシブチレートと3−ヒドロキシヘキサノエートとの共重合体に対する3−ヒドロキシヘキサノエートの共重合比は、3モル%以上20モル%以下であることがよく、4モル%以上15モル%以下であることが好ましく、5モル%以上12モル%以下であることがより好ましい。3−ヒドロキシヘキサノエートの共重合比が3モル%以上20モル%以下の範囲であることで、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する樹脂組成物が得られ易くなる。
なお、3−ヒドロキシブチレートと3−ヒドロキシヘキサノエートとの共重合体に対する3−ヒドロキシヘキサノエートの共重合比の測定方法は、以下のようにして測定する。
−NMRスペクトルを測定し、ブチレート末端Hとヘキサノエート末端Hの積分比から共重合比を計算する。
ポリヒドロキシアルカノエートの重量平均分子量(Mw)は、10,000以上1,000,000以下(好ましくは50,000以上800,000以下、より好ましくは100,000以上600,000以下)であることがよい。
ポリヒドロキシアルカノエートの重量平均分子量(Mw)が上記範囲であると、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する樹脂組成物が得られ易くなる。
ポリヒドロキシアルカノエートの重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフ(GPC)により測定される値である。具体的には、GPCによる分子量測定は、測定装置として東ソー(株)製、HPLC1100を用い、東ソー(株)製カラム・TSKgel GMHHR−M+TSKgel GMHHR−M(7.8mmI.D.30cm)を使用し、クロロホルム溶媒で行う。そして、重量平均分子量は、この測定結果から単分散ポリスチレン標準試料により作成した分子量校正曲線を使用して算出する。
以下、ポリヒドロキシアルカノエートの具体例を示すが、これに限られるわけではない。
[オレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体]
オレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体は、オレフィン−アルキル(メタ)アクリレート共重合体およびオレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体からなる群から選ばれる少なくとも一つである。
オレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体は、オレフィン−アルキル(メタ)アクリレート共重合体、又はオレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体のうちの1種を用いてもよく、2種を併用してもよい。
なお、本明細書中において、「(メタ)アクリレート」とは、アクリレートおよびメタクリレートの双方を意味する。
−オレフィン−アルキル(メタ)アクリレート共重合体−
オレフィン−アルキル(メタ)アクリレート共重合体は、例えば、オレフィン骨格と、下記式(a−1)で表される骨格を有する共重合体が挙げられる。
式中、R21は水素原子又はメチル基を表し、R22は炭素数1以上10以下のアルキル基を表す。
式(a−1)で表される骨格は、(メタ)アクリレート由来の骨格であることが好ましい。
式(a−1)におけるR21は、水素原子であることが好ましい。
式(a−1)におけるR22は、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する点から、炭素数1以上6以下のアルキル基であることが好ましく、炭素数1以上4以下のアルキル基であることがより好ましく、メチル基又はエチル基であることが更に好ましく、メチル基であることが特に好ましい。
また、R22における前記アルキル基は、直鎖アルキル基であっても、分岐アルキル基であってもよい。
オレフィン−アルキル(メタ)アクリレート共重合体において、式(a−1)で表される骨格を1種単独で有していても、2種以上を有していてもよい。
オレフィン−アルキル(メタ)アクリレート共重合体におけて、式(a−1)で表される骨格の含有量は、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する点から、オレフィン−アルキル(メタ)アクリレート共重合体の全量に対し、15質量%以上35質量%以下(好ましくは18質量%以上35質量%以下、より好ましくは20質量%以上32質量%以下)であることがよい。
前記共重合体は、オレフィン由来の骨格を有する。
前記共重合体に共重合するオレフィンとしては、エチレン性不飽和基を有する脂肪族炭化水素化合物であることが好ましく、エチレン及びα−オレフィンよりなる群から選ばれた少なくとも1種の化合物であることが好ましく、エチレン及びプロピレンよりなる群から選ばれた少なくとも1種の化合物であることが更に好ましく、エチレンであることが特に好ましい。
また、オレフィン−アルキル(メタ)アクリレート共重合体は、オレフィン由来の骨格として、例えば、下記式(b−1)で表される骨格を有することが好ましい。
式中、R23は水素原子又は炭素数1以上8以下のアルキル基を表す。
式(b−1)におけるR23は、得られる樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する点から、水素原子又は炭素数1以上6以下のアルキル基であることが好ましく、水素原子又はメチル基であることがより好ましく、水素原子であることが特に好ましい。
また、R23におけるアルキル基は、直鎖アルキル基であっても、分岐アルキル基であってもよいが、直鎖アルキル基であることが好ましい。
オレフィン−アルキル(メタ)アクリレート共重合体は、式(b−1)で表される骨格を1種単独で有していても、2種以上を有していてもよい。
オレフィン−アルキル(メタ)アクリレート共重合体において、式(b−1)で表される骨格の含有量は、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する点から、オレフィン−アルキル(メタ)アクリレート共重合体の全量に対し、55質量%以上85質量%以下(好ましくは65質量%以上85質量%以下、より好ましくは68質量%以上80質量%以下)であることがよい。
オレフィン−アルキル(メタ)アクリレート共重合体は、式(a−1)又は式(b−1)で表される骨格以外の他の骨格を有していてもよいが、有しないことが好ましい。つまり、式(a−1)及び式(b−1)で表される骨格を有する2元共重合体であることが好ましい。
オレフィン−アルキル(メタ)アクリレート共重合体が、他の骨格を有する場合、他の骨格を形成するモノマーとしては、特に制限はなく、前述した以外の公知のエチレン性不飽和化合物が挙げられる。
他の骨格を形成するモノマーとして、具体的には、スチレン化合物、ビニルエーテル化合物、ビニルエステル化合物、及び、前述した以外の(メタ)アクリレート化合物等が挙げられる。これらは、1種単独で有していても、2種以上を有していてもよい。
オレフィン−アルキル(メタ)アクリレート共重合体が、他の骨格を有する場合、他の骨格の含有量は、オレフィン−アルキル(メタ)アクリレート共重合体の全量に対し、10質量%以下(好ましくは5質量%以下、より好ましくは1質量%以下)であることがよい。
オレフィン−アルキル(メタ)アクリレート共重合体の末端の構造は、特に制限はなく、反応条件や反応停止剤の種類により、種々の基を形成する場合があるが、水素原子、ヒドロキシ基、エチレン性不飽和基、アルコキシ基、及び、アルキルチオ基等が挙げられる。
前記共重合体の重量平均分子量Mwは、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する点から、5,000以上20万以下であることが好ましく、1万以上10万以下であることがより好ましい。
オレフィン−アルキル(メタ)アクリレート共重合体は、1種単独で使用しても、2種以上を併用してもよい。
中でも、オレフィン−アルキル(メタ)アクリレート共重合体は、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する点で、エチレン−アルキル(メタ)アクリレート共重合体であることが好ましい。エチレン−アルキル(メタ)アクリレート共重合体としては、具体的に、例えば、エチレン−メチル(メタ)アクリレート共重合体、エチレン−エチル(メタ)アクリレート共重合体、エチレン−プロピル(メタ)アクリレート共重合体、エチレン−ブチル(メタ)アクリレート共重合体が挙げられる。
−オレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体−
オレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体は、例えば、オレフィン骨格と、下記式(a−2)で表される骨格と、下記式(b−2)で表される骨格と、を有する共重合体が挙げられる。
式中、R31は水素原子又はメチル基を表し、R32は炭素数1以上10以下のアルキル基を表し、R33及びR34はそれぞれ独立に、水素原子又は炭素数1以上10以下のアルキル基を表す。
式(a−2)で表される骨格は、前述のオレフィン−アルキル(メタ)アクリレート共重合体における式(a−1)と同様の骨格であることが挙げられる。
オレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体において、式(a−2)で表される骨格を1種単独で有していても、2種以上を有していてもよい。
オレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体における式(a−2)で表される骨格の含有量は、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する点で、オレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体の全量に対し、1質量%以上40質量%以下(好ましくは2質量%以上35質量%以下、より好ましくは5質量%以上30質量%以下)であることがよい。
式(b−2)で表される骨格は、不飽和−1,2−ジカルボン酸無水物由来の骨格であることが好ましい。
樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する点から、式(b−2)におけるR33及びR34の少なくとも一方は、水素原子であることが好ましく、R33及びR34の両方がいずれも水素原子であることが特に好ましい。
式(b−2)のR33及びR34におけるアルキル基は、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する点から、炭素数1以上6以下のアルキル基であることが好ましく、炭素数1以上4以下のアルキル基であることがより好ましく、メチル基又はエチル基であることが更に好ましく、メチル基であることが特に好ましい。
また、R33及びR34におけるアルキル基は、直鎖アルキル基であっても、分岐アルキル基であってもよい。更に、R33及びR34が結合し、環構造を形成してもよい。前記環構造としては、5員環構造又は6員環構造が好ましい。
オレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体は、式(b−2)で表される骨格を1種単独で有していても、2種以上を有していてもよい。
オレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体において、式(b−2)で表される骨格の含有量は、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する点から、オレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体の全量に対し、0.1質量%以上10質量%以下(好ましくは0.3質量%以上6.5質量%以下、より好ましくは1.0質量%以上5.0質量%以下)であることよい。
オレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体において、式(a−2)で表される骨格の含有量(Ma)と式(b−2)で表される骨格の含有量(Mb)との含有比率(Ma/Mb)は、質量比で、1以上100以下(好ましくは1以上50以下、より好ましく1以上30以下、更に好ましくは5以上10以下)であることがよい。この範囲であると、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上し易くなる。
オレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体は、オレフィン骨格を有する。
前記共重合体に共重合するオレフィンとしては、エチレン性不飽和基を有する脂肪族炭化水素化合物であることが好ましく、エチレン及びα−オレフィンよりなる群から選ばれた少なくとも1種の化合物であることが好ましく、エチレン及びプロピレンよりなる群から選ばれた少なくとも1種の化合物であることが更に好ましく、エチレンであることが特に好ましい。
また、オレフィン由来の骨格として、例えば、下記式(c−2)で表される骨格を有することが好ましい。
式中、R35は水素原子又は炭素数1以上8以下のアルキル基を表す。
オレフィン骨格は、前述のオレフィン−アルキル(メタ)アクリレート共重合体における式(b−1)で表されるオレフィン骨格と同様の骨格であることが挙げられる。
オレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体において、式(c−2)で表される骨格を1種単独で有していても、2種以上を有していてもよい。
前記共重合体における式(c−2)で表される骨格の含有量は、樹脂組成物の流動性、及び得られる樹脂成形体の耐熱性の観点から、前記共重合体の全質量に対し、50質量%以上98.9質量%以下であることが好ましく、60質量%以上95質量%以下であることがより好ましく、65質量%以上92質量%以下であることが特に好ましい。
オレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体は、式(a−2)乃至式(c−2)で表される骨格以外の他の骨格を有していてもよいが、有しないことが好ましい。
他の骨格を形成するモノマーとしては、特に制限はなく、前述した以外の公知のエチレン性不飽和化合物が挙げられる。
他の骨格を形成するモノマーとして具体的には、スチレン化合物、ビニルエーテル化合物、ビニルエステル化合物、及び、前述した以外の(メタ)アクリレート化合物等が挙げられる。
オレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体において、他の骨格を1種単独で有していても、2種以上を有していてもよい。
前記共重合体における他の骨格の含有量は、前記共重合体の全質量に対し、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、1質量%以下であることが更に好ましく、他の骨格を有しないことが特に好ましい。
オレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体は、オレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)の3元共重合体であることが好ましい。
また、前記共重合体は、式(a−2)で表される骨格、式(b−2)で表される骨格、及び、式(c−2)で表される骨格からなる共重合体であることが好ましい。
オレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体の末端の構造は、特に制限はなく、反応条件や反応停止剤の種類により、種々の基を形成する場合があるが、水素原子、ヒドロキシ基、エチレン性不飽和基、アルコキシ基、及び、アルキルチオ基等が挙げられる。
オレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体の重量平均分子量Mwは、樹脂組成物の流動性、及び得られる樹脂成形体の耐熱性の観点から、5,000以上20万以下であることが好ましく、1万以上10万以下であることがより好ましい。
オレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体は、1種単独で使用しても、2種以上を併用してもよい。
中でも、オレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体は、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する点で、エチレン−アルキル(メタ)アクリレート−無水マレイン酸共重合体であることが好ましい。エチレン−アルキル(メタ)アクリレート共重合体としては、具体的に、例えば、エチレン−メチル(メタ)アクリレート−無水マレイン酸共重合体、エチレン−エチル(メタ)アクリレート−無水マレイン酸共重合体、エチレン−プロピル(メタ)アクリレート−無水マレイン酸共重合体、エチレン−ブチル(メタ)アクリレート−無水マレイン酸共重合体が挙げられる。
[樹脂組成物の組成]
(セルロースアセテートとポリヒドロキシアルカノエートとの含有比)
樹脂組成物中のセルロースアセテートの含有量を(A)、ポリヒドロキシアルカノエートの含有量を(B)としたときの(A)と(B)との含有比率(B)/(A)は、質量比で、0.005以上0.1以下であることがよい。この範囲であると、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する樹脂組成物が得られ易くなる。(B)/(A)は、0.01以上0.08以下であることが好ましく、0.02以上0.07以下であることがさらに好ましい。
(セルロースアセテートとオレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体との含有比)
樹脂組成物中のセルロースアセテートの含有量を(A)、オレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体の合計含有量を(C)としたときの(A)と(C)との含有比率(C)/(A)は、質量比で、0.005以上0.1以下であることがよい。この範囲であると、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する樹脂組成物が得られ易くなる。(C)/(A)は、0.01以上0.07以下であることが好ましく、0.01以上0.05以下であることがさらに好ましい。
なお、セルロースアセテート、ポリヒドロキシアルカノエート、及びオレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体の合計含有量は、樹脂組成物全量に対して、85質量%以上であることがよく、90質量%以上であることがよく、95質量%以上であることがよく、100質量%であってもよい。
(セルロースアセテートの含有量)
セルロースアセテートの含有量は、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する点で、樹脂組成物全量に対し、55質量%以上99.6質量%以下であることがよく、65質量%以上99.6質量%以下であることが好ましく、70質量%以上99.6質量%以下であることがより好ましく、75質量%以上99.6質量%以下であることがより好ましく80質量%以上99質量%以下であることがさらに好ましく、85質量%以上98質量%以下であることがさらに好ましく、90質量%以上96質量%以下であることがさらに好ましい。
(ポリヒドロキシアルカノエートの含有量)
ポリヒドロキシアルカノエートの含有量は、同様の点で、樹脂組成物全量に対し、0.2質量部以上15質量%以下であることが好ましく、0.5質量%以上10質量%以下であることがより好ましく、1質量%以上5質量%以下であることがさらに好ましく、2質量%以上5質量%以下であることがさらに好ましい。
(オレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体の含有量)
オレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体の含有量の合計(合計含有量)は、同様の点で、樹脂組成物全量に対し、0.2質量%以上15質量%以下であることが好ましく、0.5質量%以上10質量%以下であることがより好ましく、1質量%以上5質量%以下であることがさらに好ましく、2質量%以上5質量%以下であることがさらに好ましい。
−オレフィン−アルキル(メタ)アクリレート共重合体の含有量−
オレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体が、オレフィン−アルキル(メタ)アクリレート共重合体であるとき、オレフィン−アルキル(メタ)アクリレート共重合体の含有量は、樹脂組成物全量に対し、0.1質量%以上10質量%以下(好ましくは1質量%以上7質量%以下、より好ましくは2質量%以上5質量%以下)であることがよい。
−オレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体の含有量−
オレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体が、オレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体であるとき、オレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体の含有量は、樹脂組成物全量に対し、0.1質量%以上10質量%以下(好ましくは1質量%以上7質量%以下、より好ましくは2質量%以上5質量%以下)であることがよい。
[可塑剤]
本実施形態に係る樹脂組成物は、さらに、可塑剤を含んでいてもよい。
可塑剤としては、例えば、アジピン酸エステル含有化合物、ポリエーテルエステル化合物、縮合りん酸エステル化合物、セバシン酸エステル化合物、グリコールエステル化合物、酢酸エステル化合物、二塩基酸エステル化合物、リン酸エステル化合物、フタル酸エステル化合物、樟脳、クエン酸エステル化合物、ステアリン酸エステル化合物、金属石鹸、ポリオール化合物、ポリアルキレンオキサイド化合物等が挙げられる。
これらの中でも、アジピン酸エステル含有化合物、ポリエーテルエステル化合物が好ましく、アジピン酸エステル含有化合物がより好ましい。
−アジピン酸エステル含有化合物−
アジピン酸エステル含有化合物(アジピン酸エステルを含む化合物)とは、アジピン酸エステル単独の化合物、又は、アジピン酸エステルとアジピン酸エステル以外の成分(アジピン酸エステルとは異なる化合物)との混合物であることを示す。但し、アジピン酸エステル含有化合物は、アジピン酸エステルを全成分に対して50質量%以上で含むことがよい。
アジピン酸エステルとしては、例えば、アジピン酸ジエステル、アジピン酸ポリエステルが挙げられる。具体的には、下記一般式(AE−1)で示されるアジピン酸ジエステル、及び下記一般式(AE−2)で示されるアジピン酸ポリエステル等が挙げられる。
一般式(AE−1)及び(AE−2)中、RAE1及びRAE2は、それぞれ独立に、アルキル基、又はポリオキシアルキル基[−(C2X−O)−RA1](但し、RA1はアルキル基を表す。xは1以上6以下の整数を表す。yは1以上6以下の整数を表す。)を表す。
AE3は、アルキレン基を表す。
m1は、1以上5以下の整数を表す。
m2は、1以上10以下の整数を表す。
一般式(AE−1)及び(AE−2)中、RAE1及びRAE2が表すアルキル基は、炭素数1以上6以下のアルキル基が好ましく、炭素数1以上4以下のアルキル基がより好ましい。RAE1及びRAE2が表すアルキル基は、直鎖状、分岐状、環状のいずれでもよいが、直鎖状、分岐状が好ましい。
一般式(AE−1)及び(AE−2)中、RAE1及びRAE2が表すポリオキシアルキル基[−(C2X−O)−RA1]において、RA1が表すアルキル基は、炭素数1以上6以下のアルキル基が好ましく、炭素数1以上4以下のアルキル基がより好ましい。RA1が表すアルキル基は、直鎖状、分岐状、環状のいずれでもよいが、直鎖状、分岐状が好ましい。xは、1以上6以下の整数を表す。yは、1以上6以下の整数を表す。
一般式(AE−2)中、RAE3が表すアルキレン基は、炭素数1以上6以下のアルキレン基が好ましく、炭素数1以上4以下のアルキレン基がより好ましい。アルキレン基は、直鎖状、分岐状、環状のいずれでもよいが、直鎖状、分岐状が好ましい。
一般式(AE−1)及び(AE−2)中、各符号が表す基は、置換基で置換されていてもよい。置換基としては、アルキル基、アリール基、ヒドロキシル基等が挙げられる。
アジピン酸エステルの分子量(または重量平均分子量)は、100以上10000以下が好ましく、200以上3000以下がより好ましい。なお、重量平均分子量は、前述のポリエーテルエステル化合物の重量平均分子量と同様の測定方法により測定された値である。
以下、アジピン酸エステル含有化合物の具体例を示すが、これに限られるわけではない。
−ポリエーテルエステル化合物−
ポリエーテルエステル化合物として具体的には、例えば、一般式(EE)で表されるポリエーテルエステル化合物が挙げられる。
一般式(EE)中、REE1及びREE2はそれぞれ独立に、炭素数2以上10以下のアルキレン基を表す。AEE1及びAEE2はそれぞれ独立に、炭素数1以上6以下のアルキル基、炭素数6以上12以下のアリール基、又は、炭素数7以上18以下のアラルキル基を表す。mは、1以上の整数を表す。
一般式(EE)中、REE1が表すアルキレン基としては、炭素数3以上10以下のアルキレン基が好ましく、炭素数3以上6以下のアルキレン基がより好ましい。REE1が表すアルキレン基は、直鎖状、分岐状、及び環式のいずれであってもよいが、直鎖状が好ましい。
EE1が表すアルキレン基の炭素数を3以上にすると、樹脂組成物の流動性の低下が抑制され、熱可塑性が発現し易くなる。REE1が表すアルキレン基の炭素数を10以下又はREE1が表すアルキレン基を直鎖状にすると、セルロースアセテートとの親和性が高まり易くなる。このため、REE1が表すアルキレン基を直鎖状とし、且つ炭素数を上記範囲とすると、樹脂組成物の成形性が向上する。
これら観点から、特に、REE1が表すアルキレン基は、n−ヘキシレン基(−(CH−)が好ましい。つまり、ポリエーテルエステル化合物は、REE1としてn−ヘキシレン基(−(CH−)を表す化合物であることが好ましい。
一般式(EE)中、REE2が表すアルキレン基としては、炭素数3以上10以下のアルキレン基が好ましく、炭素数3以上6以下のアルキレン基がより好ましい。REE2が表すアルキレン基は、直鎖状、分岐状、及び環式のいずれであってもよいが、直鎖状が好ましい。
EE2が表すアルキレン基の炭素数を3以上にすると、樹脂組成物の流動性の低下が抑制され、熱可塑性が発現し易くなる。REE2が表すアルキレン基の炭素数を10以下又はREE2が表すアルキレン基を直鎖状にすると、セルロースアセテートとの親和性が高まり易くなる。このため、REE2が表すアルキレン基を直鎖状とし、且つ炭素数を上記範囲とすると、樹脂組成物の成形性が向上する。
これら観点から、特に、REE2が表すアルキレン基は、n−ブチレン基(−(CH−)が好ましい。つまり、ポリエーテルエステル化合物は、REE2としてn−ブチレン基(−(CH−)を表す化合物であることが好ましい。
一般式(EE)中、AEE1、及びAEE2が表すアルキル基は、炭素数1以上6以下のアルキル基であり、炭素数2以上4以下のアルキル基がより好ましい。AEE1、及びAEE2が表すアルキル基は、直鎖状、分岐状、及び環式のいずれであってもよいが、分岐状が好ましい。
EE1、及びAEE2が表すアリール基は、炭素数6以上12以下のアリール基であり、フェニル基、ナフチル基等の無置換アリール基、又はt−ブチルフェニル基、ヒドロキシフェニル基等の置換フェニル基が挙げられる。
EE1、及びAEE2が表すアラルキル基としては、−R−Phで示される基である。Rは、直鎖状又は分岐状の炭素数1以上6以下(好ましくは炭素数2以上4以下)のアルキレン基を表す。Phは、無置換フェニル基、又は直鎖状若しくは分岐状の炭素数1以上6以下(好ましくは炭素数2以上6以下)のアルキル基で置換された置換フェニル基を表す。アラルキル基として具体的には、例えば、ベンジル基、フェニルメチル基(フェネチル基)、フェニルプロピル基、フェニルブチル基等の無置換アラルキル基、又はメチルベンジル基、ジメチルベンジル基、メチルフェネチル基等の置換アラルキル基が挙げられる。
EE1、及びAEE2の少なくとも一方は、アリール基又はアラルキル基を表すことが好ましい。つまり、ポリエーテルエステル化合物は、AEE1、及びAEE2の少なくとも一方としてアリール基(好ましくはフェニル基)又はアラルキル基を表す化合物であることが好ましく、AEE1、及びAEE2の双方としてアリール基(好ましくはフェニル基)又はアラルキル基を表す化合物であることが好ましい。
次に、ポリエーテルエステル化合物の特性について説明する。
ポリエーテルエステル化合物の重量平均分子量(Mw)は、450以上650以下が好ましく、500以上600以下がより好ましい。
重量平均分子量(Mw)を450以上にすると、ブリード(析出する現象)し難くなる。重量平均分子量(Mw)を650以下にすると、セルロースアセテートとの親和性が高まり易くなる。このため、重量平均分子量(Mw)を上記範囲にすると、樹脂組成物の成形性が向上する。
なお、ポリエーテルエステル化合物の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフ(GPC)により測定される値である。具体的には、GPCによる分子量測定は、測定装置として東ソー(株)製、HPLC1100を用い、東ソー(株)製カラム・TSKgel GMHHR−M+TSKgel GMHHR−M(7.8mmI.D.30cm)を使用し、クロロホルム溶媒で行う。そして、重量平均分子量は、この測定結果から単分散ポリスチレン標準試料により作成した分子量校正曲線を使用して算出する。
ポリエーテルエステル化合物の25℃における粘度は、35mPa・s以上50mPa・s以下が好ましく、40mPa・s以上45mPa・s以下がより好ましい。
粘度を35mPa・s以上にすると、セルロースアセテートへの分散性が向上し易くなる。粘度を50mPa・s以下にすると、ポリエーテルエステル化合物の分散の異方性が出現し難くなる。このため、粘度を上記範囲にすると、樹脂組成物の成形性が向上する。
なお、粘度は、E型粘度計により測定される値である。
ポリエーテルエステル化合物の溶解度パラメータ(SP値)が、9.5以上9.9以下が好ましく、9.6以上9.8以下がより好ましい。
溶解度パラメータ(SP値)を9.5以上9.9以下にすると、セルロースアセテートへの分散性が向上し易くなる。
溶解度パラメータ(SP値)は、Fedorの方法により算出された値である、具体的には、溶解度パラメータ(SP値)は、例えば、Polym.Eng.Sci.,vol.14,p.147(1974)の記載に準拠し、下記式によりSP値を算出する。
式:SP値=√(Ev/v)=√(ΣΔei/ΣΔvi)
(式中、Ev:蒸発エネルギー(cal/mol)、v:モル体積(cm/mol)、Δei:それぞれの原子又は原子団の蒸発エネルギー、Δvi:それぞれの原子又は原子団のモル体積)
なお、溶解度パラメータ(SP値)は、単位として(cal/cm1/2を採用するが、慣行に従い単位を省略し、無次元で表記する。
以下、ポリエーテルエステル化合物の具体例を示すが、これに限られるわけではない。
本実施形態に係る樹脂組成物が可塑剤を含む場合、樹脂組成物の全量に対する含有量は特に制限されるものではない。可塑剤を含有していても、樹脂成形体の耐熱性の低下を抑制しつつ、流動性が向上する樹脂組成物が得られ易くなる点で、樹脂組成物の全量に対する含有量は、15質量%以下(好ましくは10質量%以下、より好ましくは5質量%以下)であることがよい。なお、可塑剤の含有量が上記範囲であると、可塑剤のブリードも抑制され易くなる。
[その他の成分]
本実施形態に係る樹脂組成物は、必要に応じて、さらに、上述した以外のその他の成分を含んでいてもよい。その他の成分としては、例えば、難燃剤、相溶化剤、酸化防止剤、離型剤、耐光剤、耐候剤、着色剤、顔料、改質剤、ドリップ防止剤、帯電防止剤、加水分解防止剤、充填剤、補強剤(ガラス繊維、炭素繊維、タルク、クレー、マイカ、ガラスフレーク、ミルドガラス、ガラスビーズ、結晶性シリカ、アルミナ、窒化ケイ素、窒化アルミニウム、ボロンナイトライド等)などが挙げられる。
また、必要に応じて、酢酸放出を防ぐための受酸剤、反応性トラップ剤などの成分(添加剤)を添加してもよい。受酸剤としては、例えば、酸化マグネシウム、酸化アルミニウムなどの酸化物;水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム、ハイドロタルサイトなどの金属水酸化物;炭酸カルシウム;タルク;などが挙げられる。
反応性トラップ剤としては、例えば、エポキシ化合物、酸無水物化合物、カルボジイミドなどが挙げられる。
これらの成分の含有量は、樹脂組成物全量に対してそれぞれ、0質量%以上5質量%以下であることが好ましい。ここで、「0質量%」とはその他の成分を含まないことを意味する。
本実施形態に係る樹脂組成物は、上記樹脂(セルロースアセテート、及びポリヒドロキシアルカノエート)以外の他の樹脂を含有していてもよい。但し、他の樹脂を含む場合、樹脂組成物の全量に対する他の樹脂の含有量は、5質量%以下がよく、1質量%未満であることが好ましい。他の樹脂は、含有しないこと(つまり0質量%)がより好ましい。
他の樹脂としては、例えば、従来公知の熱可塑性樹脂が挙げられ、具体的には、ポリカーボネート樹脂;ポリプロピレン樹脂;ポリエステル樹脂;ポリオレフィン樹脂;ポリエステルカーボネート樹脂;ポリフェニレンエーテル樹脂;ポリフェニレンスルフィド樹脂;ポリスルホン樹脂;ポリエーテルスルホン樹脂;ポリアリーレン樹脂;ポリエーテルイミド樹脂;ポリアセタール樹脂;ポリビニルアセタール樹脂;ポリケトン樹脂;ポリエーテルケトン樹脂;ポリエーテルエーテルケトン樹脂;ポリアリールケトン樹脂;ポリエーテルニトリル樹脂;液晶樹脂;ポリベンズイミダゾール樹脂;ポリパラバン酸樹脂;芳香族アルケニル化合物、メタクリル酸エステル、アクリル酸エステル、およびシアン化ビニル化合物からなる群より選ばれる1種以上のビニル単量体を、重合若しくは共重合させて得られるビニル系重合体若しくは共重合体;ジエン−芳香族アルケニル化合物共重合体;シアン化ビニル−ジエン−芳香族アルケニル化合物共重合体;芳香族アルケニル化合物−ジエン−シアン化ビニル−N−フェニルマレイミド共重合体;シアン化ビニル−(エチレン−ジエン−プロピレン(EPDM))−芳香族アルケニル化合物共重合体;塩化ビニル樹脂;塩素化塩化ビニル樹脂;などが挙げられる。また、コアシェル型のブタジエン−メチルメタクリレート共重合体も挙げられる。これら樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
[樹脂組成物の製造方法]
本実施形態に係る樹脂組成物は、例えば、セルロースアセテート、ポリヒドロキシアルカノエート、及びオレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体を含む樹脂組成物を調製する工程を有する。
本実施形態に係る樹脂組成物は、セルロースアセテート、ポリヒドロキシアルカノエート、及びオレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体と、必要に応じて、可塑剤、その他の成分等と、を含む混合物を溶融混練することにより製造される。他に、本実施形態に係る樹脂組成物は、例えば、上記成分を溶剤に溶解することによっても製造される。
溶融混練の手段としては公知の手段が挙げられ、具体的には、例えば、二軸押出機、ヘンシェルミキサー、バンバリーミキサー、単軸スクリュー押出機、多軸スクリュー押出機、コニーダ等が挙げられる。
<樹脂成形体>
本実施形態に係る樹脂成形体は、本実施形態に係る樹脂組成物により成形されたものである。つまり、重量平均分子量3万以上9万以下、及び置換度2.1以上2.6以下である、セルロースアセテートと、ポリヒドロキシアルカノエートと、オレフィン−アルキル(メタ)アクリレート共重合体およびオレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体からなる群から選ばれる少なくとも一つのオレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体と、を有する樹脂組成物を成形して得られる。
本実施形態に係る樹脂組成物のうち、オレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体が、オレフィン−アルキル(メタ)アクリレート共重合体である場合、樹脂組成物中のセルロースアセテート及びオレフィン−アルキル(メタ)アクリレート共重合体のアセチル基と少なくとも一部が相互作用した状態の樹脂が形成されると考えられる。
また、本実施形態に係る樹脂組成物のうち、オレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体が、オレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体である場合、樹脂組成物中のセルロースアセテート及びオレフィン−アルキル(メタ)アクリレート共重合体の少なくとも一部が反応して、共有結合を有する状態の樹脂が形成されると考えられる。
本実施形態に係る樹脂成形体の成形方法は、形状の自由度が高い点で、射出成形が好ましい。この点で、樹脂成形体は、射出成形によって得られた射出成形体であることが好ましい。
射出成形のシリンダ温度は、例えば200℃以上300℃以下であり、好ましくは240℃以上280℃以下である。射出成形の金型温度は、例えば40℃以上90℃以下であり、60℃以上80℃以下がより好ましい。
射出成形は、例えば、日精樹脂工業社製NEX500、日精樹脂工業社製NEX150、日精樹脂工業社製NEX70000、日精樹脂工業社製PNX40、住友機械社製SE50D等の市販の装置を用いて行ってもよい。
本実施形態に係る樹脂成形体を得るための成形方法は、前述の射出成形に限定されず、例えば、押し出し成形、ブロー成形、熱プレス成形、カレンダ成形、コーティング成形、キャスト成形、ディッピング成形、真空成形、トランスファ成形などを適用してよい。
本実施形態に係る樹脂成形体は、電子・電気機器、事務機器、家電製品、自動車内装材、容器などの用途に好適に用いられる。より具体的には、電子・電気機器や家電製品の筐体;電子・電気機器や家電製品の各種部品;自動車の内装部品;CD−ROMやDVD等の収納ケース;食器;飲料ボトル;食品トレイ;ラップ材;フィルム;シート;などである。
以下に実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例に制限されるものではない。なお、特に断りのない限り「部」は「質量部」を表す。
<セルロースアシレートの準備>
(セルロースアセテートの準備)
−セルロースアセテート(CA1)の合成−
アセチル化:セルロース粉末(日本製紙ケミカル(株)製、KCフロックW50)3部、硫酸0.15部、酢酸30部、及び、無水酢酸6部を反応容器に入れ、20℃で4時間撹拌し、セルロースのアセチル化を行った。
脱アセチル及び低分子量化:撹拌終了後、アセチル化を行った溶液に、ただちに3部の酢酸と1.2部の純水とを加え、20℃で30分間撹拌した。撹拌終了後、0.2M塩酸水溶液4.5部を加え、75℃に加熱して、5時間撹拌した。この溶液を、200部の純水に2時間かけて滴下し、20時間静置した後、孔径6μmのフィルターを通してろ過し、4部の白色粉末を得た。
洗浄:得られた白色粉末を、フィルタープレス(栗田機械製作所社製、SF(PP))を用い、純水にて電導度が50μS以下になるまで洗浄を行った。洗浄後、乾燥した。
後処理:乾燥後の白色粉末3部に、0.2部の酢酸カルシウムと30部の純水とを加え、25℃で2時間撹拌した後、ろ過した。ろ過して得られた粉末を60℃で72時間乾燥し、セルロースアセテート(CA1)を約2.5部得た。
−セルロースアセテート(CA2)の合成−
アセチル化に用いる硫酸量0.15部を0.10部とした以外はCA1と同様にしてセルロースアセテート(CA2)を得た。
−(セルロースアセテート(CA3)の合成−
アセチル化に用いる硫酸量0.15部を0.01部とした以外はCA1と同様にしてセルロースアセテート(CA3)を得た。
−(セルロースアセテート(CA4)の合成−
脱アセチル化及び低分子量化において、5時間撹拌したところを7時間に変えた以外は、CA1と同様の方法でセルロースアセテート(CA4)を得た。
−(セルロースアセテート(CA5)の合成−
脱アセチル化及び低分子量化において、5時間撹拌したところを、4時間30分に変更した以外は、CA1と同様にしてセルロースアセテート(CA5)を得た。
−(セルロースアセテート(CA6)の合成−
アセチル化を行って得られた溶液を室温(25℃)で16時間放置した後、脱アセチル化及び低分子量化を行った以外は、CA1と同様にしてセルロースアセテート(CA6)を得た
−(セルロースアセテート(CA7)の合成−
脱アセチル化及び低分子量化において、75℃で5時間撹拌するところを、65℃で7時間撹拌した以外はCA1と同様にしてセルロースアセテート(CA7)を得た。
−(セルロースアセテート(CA8)の合成−
脱アセチル化及び低分子量化において、75℃で5時間撹拌するところを、80℃で4時間撹拌した以外はCA1と同様にしてセルロースアセテート(CA8)を得た。
(セルロースアセテート(CA9)の準備−
市販のセルロースアセテート(ダイセル社製、L50)を(CA9)として準備した。
−セルロースアセテート(CA10)の準備−
市販のセルロースアセテート(ダイセル社製、L20)を(CA10)として準備した。
(セルロースプロピオネートの準備)
−セルロースプロピオネート(CP1)の合成−
アセチル化において、無水酢酸2部を用いたところを、無水プロピオン酸2.5部用い、脱アシル及び低分子量化において、撹拌時間5時間を7時間に変えた以外は、CA1と同様にしてセルロースプロピオネート(CP1)を得た。
(セルロースブチレートの準備)
−セルロースブチレート(CB1)の合成−
アセチル化において、無水酢酸2部を用いたところを、無水酪酸2.5部用い、脱アシル及び低分子量化において、撹拌時間5時間を7時間に変えた以外は、CA1と同様にしてセルロースブチレート(CB1)を得た。
<重量平均分子量、重合度、置換度の測定>
セルロースアセテートの重合度は、以下の手順で重量平均分子量から求められる。
まず、セルロースアセテートの重量平均分子量を、ジメチルアセトアミド/塩化リチウム=90/10溶液を用い、GPC装置(東ソー(株)製、HLC−8320GPC、カラム:TSKgelα−M)にてポリスチレン換算で測定する。
この方法で合成したセルロースアセテートの重量平均分子量(Mw)と置換度とを評価した結果を表1にまとめる。また、セルロースプロピオネートおよびセルロースブチレートの重量平均分子量(Mw)と置換度とを評価した結果を表2にまとめる。
<ポリヒドロキシアルカノエートの準備>
(ポリヒドロキシアルカノエートHA1〜HA4の準備)
ポリヒドロキシアルカノエート(HA1)〜(HA4)として、下記市販品を準備した。
アオニレックスX131Aを、ポリヒドロキシアルカノエート(HA1)、アオニレックスX151Aを、ポリヒドロキシアルカノエート(HA2)、及びアオニレックスX331Nを、ポリヒドロキシアルカノエート(HA3)とした(いずれも、カネカ社製)。
また、バイオポール(ゼネカ社製)を、ポリヒドロキシアルカノエート(HA4)とした。
準備した各ポリヒドロキシアルカノエートの重量平均分子量と、ポリヒドロキシアルカノエート中のヒドロキシヘキサノエートの共重合比(モル%)を表3にまとめる。
<オレフィン骨格とアルキルエステル骨格とを有する共重合体の準備>
(エチレン−アルキル(メタ)アクリレート共重合体EA1〜EA3の準備)
エチレン−アルキル(メタ)アクリレート共重合体EA1〜EA3として、下記市販品を準備した。
エチレン−アルキル(メタ)アクリレート共重合体である、LOTRYL29MA03を、エチレン−アルキル(メタ)アクリレート共重合体(EA1)、LOTRYL18MA02を、エチレン−アルキル(メタ)アクリレート共重合体(EA2)、LOTRYL35BA320を、エチレン−アルキル(メタ)アクリレート共重合体(EA3)として、準備した(いずれも、アルケマ社製)。
(エチレン−アルキル(メタ)アクリレート共重合体−無水マレイン酸共重合体EAM1〜EAM5の準備)
エチレン−アルキル(メタ)アクリレート共重合体−無水マレイン酸EAM1〜EAM5として、下記市販品を準備した。
エチレン−(メタ)アクリレート−無水マレイン酸共重合体である、LOTADER 8200を、エチレン−(メタ)アクリレート−無水マレイン酸共重合体(EAM1)、LOTADER 4210を、エチレン−(メタ)アクリレート−無水マレイン酸共重合体(EAM2)、LOTADER 4603を、エチレン−(メタ)アクリレート−無水マレイン酸共重合体(EAM3)、LOTADER4700を、エチレン−(メタ)アクリレート−無水マレイン酸共重合体(EAM4)、LOTADER3430を、エチレン−(メタ)アクリレート−無水マレイン酸共重合体(EAM5)として、準備した(いずれも、アルケマ社製)。
準備した各エチレン−アルキル(メタ)アクリレート共重合体、及び各エチレン−アルキル(メタ)アクリレート共重合体−無水マレイン酸共重合体における各骨格の含有量(質量%)を表4にまとめる。
(プロピレン−アルキル(メタ)アクリレート共重合体PA1の準備)
プロピレンモノマー80質量部、メチルアクリレートモノマー20質量部の合計100質量部をアセトン1000質量部に溶解し、アゾイソブチロニトリル0.1質量部を加え40℃、24時間撹拌したものを純水中に滴下し、生じた沈殿をろ過、乾燥しプロピレン−アルキル(メタ)アクリレート共重合体(PA1)を得た。
準備したプロピレン−アルキル(メタ)アクリレート共重合体(PA1)における各骨格の含有量(質量%)を表4にまとめる。
(プロピレン−アルキル(メタ)アクリレート共重合体−無水マレイン酸共重合体PAM1の準備)
プロピレンモノマー80質量部、メチルアクリレートモノマー17質量部、無水マレイン酸モノマー3質量部の合計100質量部をアセトン1000質量部に溶解し、アゾイソブチロニトリル0.1質量部を加え40℃、24時間撹拌したものを純水中に滴下し、生じた沈殿をろ過、乾燥しプロピレン−アルキル(メタ)アクリレート−無水マレイン酸共重合体(PAM1)を得た。
準備したプロピレン−アルキル(メタ)アクリレート共重合体−無水マレイン酸共重合体(PAM1)における各骨格の含有量(質量%)を表4にまとめる。
なお、表4中、「MA」はメチルアクリレートを、「EA」はエチルアクリレートを、「BA」は、ブチルアクリレートを、それぞれ表す。
<可塑剤の準備>
(可塑剤P1〜P3の準備)
市販のアジピン酸エステル含有化合物可塑剤(大八化学工業社製、Daifatty101)を可塑剤(P1)、ポリエーテルエステル可塑剤(ADEKA社製、RS−1000)を可塑剤(P2)、縮合りん酸エステル系可塑剤(大八化学工業社製、PX200)を可塑剤(P3)として準備した。
<実施例1〜42、比較例1〜13>
−混練および射出成形−
表5および表6に示す仕込み組成比で、シリンダ温度を表5および表6にしたがって調製し、2軸混練装置(東芝機械社製、TEX41SS)にて混練を実施し、樹脂組成物(ペレット)を得た。なお、仕込み組成比は、セルロースアシレート100質量部(セルロースアセテート100質量部、セルロースプロピオネート100質量部、又はセルロースブチレート100質量部)に対する量である。また、実施例40はPA1、実施例41はPAM1を使用、実施例42はEA1を2部およびEMA1を2部併用したものである。
得られたペレットについて、射出成形機(日精樹脂工業社製、NEX140III)を用い、射出ピーク圧力が180MPaを越えないシリンダ温度で、ISO多目的ダンベル(測定部幅10mm×厚み4mm)を成形した。
[評価]
−流動性−
上記で得られた樹脂組成物(ペレット)について、キャピラリーフローメーター(東洋精機製作所社製、キャピログラフ1D)を用いて、流動性の評価を行った。流動性の評価は、シリンダ温度220℃、せん断速度1216sec−1における溶融粘度を測定した。溶融粘度が低いほど流動性は良好である。結果を表5および表6に示す。
−耐熱性−
上記で得られたISO多目的ダンベル試験片を用いて、HDT測定装置(東洋精機製作所社製、HDT−3)を用いて、荷重1.8MPaにおける熱変形温度をISO75−2に準拠する方法で測定した。結果を表5および表6に示す。
なお、表5および表6中、「AC」は、セルロースアシレートを、「PHA」は、ポリヒドロキシアルカノエートを、「EA or EAM」は、エチレン−アルキル(メタ)アクリレート共重合体、又は、エチレン−アルキル(メタ)アクリレート共重合体−無水マレイン酸共重合体を、それぞれ表す。ただし、実施例40、41は、プロピレン−アルキル(メタ)アクリレート共重合体、又は、プロピレン−アルキル(メタ)アクリレート共重合体−無水マレイン酸共重合体を、それぞれ表す。
上記結果から、本実施例では、比較例に比べ、流動性および耐熱性の評価結果が良好であることがわかる。

Claims (13)

  1. 重量平均分子量3万以上9万以下、及び置換度2.1以上2.6以下であるセルロースアセテートと、
    ポリヒドロキシアルカノエートと、
    オレフィン−アルキル(メタ)アクリレート共重合体およびオレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体からなる群から選ばれる少なくとも一つのオレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体と、
    を有する樹脂組成物。
  2. 前記オレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体が、オレフィン−アルキル(メタ)アクリレート共重合体である請求項1に記載の樹脂組成物。
  3. 前記オレフィン−アルキル(メタ)アクリレート共重合体が、エチレン−アルキル(メタ)アクリレート共重合体である請求項2に記載の樹脂組成物。
  4. 前記オレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体が、オレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体である請求項1に記載の樹脂組成物。
  5. 前記オレフィン−(メタ)アクリレート−(不飽和−1,2−ジカルボン酸無水物)共重合体が、エチレン−(メタ)アクリレート−無水マレイン酸共重合体である請求項4に記載の樹脂組成物。
  6. 樹脂組成物全量に対する前記セルロースアセテートの含有量を(A)、樹脂組成物全量に対する前記ポリヒドロキシアルカノエートの含有量を(B)としたとき、前記(A)と前記(B)との含有比率((B)/(A))が、質量比で、0.005以上0.1以下である請求項1〜請求項5のいずれか1項に記載の樹脂組成物。
  7. 樹脂組成物全量に対する前記セルロースアセテートの含有量を(A)、樹脂組成物全量に対する前記オレフィン骨格およびアルキル(メタ)アクリレート骨格を持つ共重合体の合計含有量を(C)としたとき、前記(A)と前記(C)との含有比率((C)/(A))が、質量比で、0.005以上0.1以下である請求項1〜請求項6のいずれか1項に記載の樹脂組成物。
  8. 前記ポリヒドロキシアルカノエートが、3−ヒドロキシブチレートと3−ヒドロキシヘキサノエートとの共重合体である請求項1〜請求項7のいずれか1項に記載の樹脂組成物。
  9. 前記3−ヒドロキシブチレートと3−ヒドロキシヘキサノエートとの共重合体に対する、前記3−ヒドロキシヘキサノエートの共重合比が、3モル%以上20モル%以下である請求項8に記載の樹脂組成物。
  10. さらに、可塑剤を含む請求項1〜請求項9のいずれか1項に記載の樹脂組成物。
  11. 前記可塑剤が、アジピン酸エステルを含有する化合物である請求項10に記載の樹脂組成物。
  12. 請求項1〜請求項11のいずれか1項に記載の樹脂組成物を成形した樹脂成形体。
  13. 前記樹脂成形体が、射出成形体である請求項12に記載の樹脂成形体。
JP2017024390A 2017-02-13 2017-02-13 樹脂組成物および樹脂成形体 Pending JP2018131485A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017024390A JP2018131485A (ja) 2017-02-13 2017-02-13 樹脂組成物および樹脂成形体
US15/641,564 US10308790B2 (en) 2017-02-13 2017-07-05 Resin composition and resin molding
EP17182548.2A EP3360924A1 (en) 2017-02-13 2017-07-21 Resin composition and resin molding
CN201711134382.7A CN108424548A (zh) 2017-02-13 2017-11-16 树脂组合物和树脂成形体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017024390A JP2018131485A (ja) 2017-02-13 2017-02-13 樹脂組成物および樹脂成形体

Publications (1)

Publication Number Publication Date
JP2018131485A true JP2018131485A (ja) 2018-08-23

Family

ID=63249297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017024390A Pending JP2018131485A (ja) 2017-02-13 2017-02-13 樹脂組成物および樹脂成形体

Country Status (1)

Country Link
JP (1) JP2018131485A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110872392A (zh) * 2018-08-31 2020-03-10 富士施乐株式会社 树脂组合物和树脂成型品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110872392A (zh) * 2018-08-31 2020-03-10 富士施乐株式会社 树脂组合物和树脂成型品
CN110872392B (zh) * 2018-08-31 2023-02-03 伊士曼化工公司 树脂组合物和树脂成型品

Similar Documents

Publication Publication Date Title
US10308790B2 (en) Resin composition and resin molding
US10689506B2 (en) Resin composition and resin molded body
JP6511755B2 (ja) 樹脂組成物および樹脂成形体
JP2018127579A (ja) 樹脂組成物および樹脂成形体
EP3480247B1 (en) Resin composition and resin molded article
JP6365728B1 (ja) 樹脂組成物および樹脂成形体
CN106893149B (zh) 树脂组合物和树脂成型体
JP6107910B2 (ja) 樹脂組成物、及び樹脂成形体
JP2018131484A (ja) 樹脂組成物および樹脂成形体
JP2017114938A (ja) 樹脂組成物および樹脂成形体
JP2018131485A (ja) 樹脂組成物および樹脂成形体
JP2016183285A (ja) 樹脂組成物及び樹脂成形体
JP2016183283A (ja) 樹脂組成物及び樹脂成形体
JP6705343B2 (ja) 樹脂組成物、及び、樹脂成形体
JP6897196B2 (ja) 樹脂組成物、及び、樹脂成形体
JP6848267B2 (ja) 樹脂組成物、及び、樹脂成形体
JP6805647B2 (ja) 樹脂組成物、及び、樹脂成形体
JP2019026729A (ja) 樹脂組成物及び樹脂成形体
JP2019026728A (ja) 樹脂組成物及び樹脂成形体
JP6160752B1 (ja) セルロースアシレート、樹脂組成物、樹脂成形体、及びセルロースアシレートの製造方法
JP2018024804A (ja) セルロースアシレートの製造方法
JP6197928B1 (ja) セルロースアシレートの製造方法、樹脂組成物の製造方法、及び、樹脂成形体の製造方法
JP2017171854A (ja) 樹脂組成物、樹脂成形体、及び樹脂組成物の製造方法
JP2016183278A (ja) 樹脂組成物、樹脂成形体の製造方法、及び樹脂成形体
JP6790394B2 (ja) 樹脂組成物及び樹脂成形体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210511