JP2018088501A - 半導体基板 - Google Patents

半導体基板 Download PDF

Info

Publication number
JP2018088501A
JP2018088501A JP2016231901A JP2016231901A JP2018088501A JP 2018088501 A JP2018088501 A JP 2018088501A JP 2016231901 A JP2016231901 A JP 2016231901A JP 2016231901 A JP2016231901 A JP 2016231901A JP 2018088501 A JP2018088501 A JP 2018088501A
Authority
JP
Japan
Prior art keywords
layer
crystal layer
semiconductor substrate
avg
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016231901A
Other languages
English (en)
Other versions
JP6859084B2 (ja
Inventor
大貴 山本
Hirotaka Yamamoto
大貴 山本
剛規 長田
Takenori Osada
剛規 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2016231901A priority Critical patent/JP6859084B2/ja
Priority to CN201780073869.0A priority patent/CN110024082A/zh
Priority to EP17877266.1A priority patent/EP3550591A4/en
Priority to PCT/JP2017/042694 priority patent/WO2018101280A1/ja
Priority to TW106141874A priority patent/TWI744429B/zh
Publication of JP2018088501A publication Critical patent/JP2018088501A/ja
Priority to US16/425,501 priority patent/US20190280091A1/en
Application granted granted Critical
Publication of JP6859084B2 publication Critical patent/JP6859084B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】反り量が小さい半導体基板を提供する。
【解決手段】AlGa1−xNからなる第1結晶層およびAlGa1−yNからなる第2結晶層が繰り返し積層された積層構造を有するバッファ層を有し、バッファ層の断面を単一の第1結晶層を含む観察領域においてTEM観察したとき、深さDを変数とするHAADF−STEM強度I(D)が、深さDminで極小値Iminを示し、深さDmax(Dmax>Dmin)で極大値Imaxを示し、Dminより浅く位置する単調減少領域においてI(D)がImaxおよびIminの中間値ImidからIminに至るまでの深さ方向距離DD1と、Dminより深く位置する単調増加領域においてI(D)がIminからImaxに至るまでの深さ方向距離DD2とが、DD1≦0.3×DD2、の条件を満たす半導体基板を提供する。
【選択図】図1

Description

本発明は、半導体基板に関する。
Si基板上にIII族窒化物半導体を結晶成長する技術として、たとえば以下の文献に示すような技術が検討されている。
特許文献1は、デバイス化の工程で発生する割れの抑制を目的として為されたIII族窒化物エピタキシャル基板を開示する。当該III族窒化物エピタキシャル基板は、Si基板と、該Si基板と接する初期層と、該初期層上に形成され、Al組成比が0.5超え1以下のAlGaNからなる第1層およびAl組成比が0超え0.5以下のAlGaNからなる第2層を順次有する積層体を複数組有する超格子積層体と、を有し、前記第2層のAl組成比が、前記基板から離れるほど漸減することを特徴としている。
特許文献2は、窒化物半導体層の割れ(クラック)や結晶欠陥、反りの発生を抑制し、かつ生産性の向上が可能な化合物半導体基板を開示する。当該化合物半導体基板は、結晶面方位が(111)面であるシリコン単結晶基板と、前記シリコン単結晶基板上に形成され、AlGa1−xN単結晶(0<x≦1)で構成された第1バッファ層と、前記第1バッファ層上に形成され、厚さが250nm以上350nm以下のAlGa1−yN単結晶(0≦y<0.1)で構成された第1単層と、厚さが5.0nm以上20nm以下のAlGa1−zN単結晶(0.9<z≦1)で構成された第2単層とが交互に複数積層された第2バッファ層と、前記第2バッファ層上に形成され、少なくとも1層以上の窒化物系半導体単結晶層を含む半導体素子形成領域と、を備える。
特許文献3は、ウェハの反りを抑制しつつ、リーク電流を一層低減させることができる半導体電子デバイスを開示する。当該半導体電子デバイスは、基板上にバッファ層を介して積層された化合物半導体層を備える半導体電子デバイスであって、前記バッファ層は、Al組成が0.2以下の窒化物系化合物半導体を用いて形成された第1の層上に、Al組成が0.8以上の窒化物系化合物半導体を用いて形成された第2の層が積層された複合層を有する。
非特許文献1には、「GaNとAlNを交互に積層させてGaNの上のAlNは緩和させ,AlNの上のGaNには圧縮応力が残るような成長が可能であればGaN/AlNのヒズミ周期構造(Strained Layer Super−latticeと呼称される。以下SLS)を用いて膜全体に圧縮応力を持たせることが可能と予想される。SLS以外にも上に積層させる膜ほど格子定数が広がるような組み合わせにしても圧縮応力を加えることが可能と思われる。」との記載がある。
特開2013−021124号公報 特開2010−232322号公報 特開2008−171843号公報
K. Matsumoto et al., J. Vac. Soc. Jpn. 54, 6 (2011), p376-380.
Si基板上にIII族窒化物半導体層を形成する場合、SiとIII族窒化物半導体結晶との熱膨張係数の違いに起因して、基板の反りやIII族窒化物半導体層の割れ(クラック)が発生する。このため、前記した特許文献および非特許文献に記載されているように、内部圧縮応力を発生する層(応力発生層)を形成し、当該圧縮応力と熱膨張係数の相違に起因して窒化物結晶層に発生する引張応力とが均衡され、室温に戻った状態での半導体基板の反りを抑え、III族窒化物半導体層の割れを防止するようにしている。
しかし、応力発生層による半導体基板の反りの制御については不明な点も多く、応力発生層の構造や物性を明らかにしつつ、当該構造等と反りについての実験結果との関連性を観察することも重要である。そのような観点から、本発明者らは、応力発生層の構造と反り量との関連につき実験検討を重ね、本件発明をするに至った。
本発明の目的は、エピタキシャル成長法を用いてIII族窒化物半導体等の結晶層を形成する場合において、応力を発生するバッファ層の構造と半導体基板の反り量との関連を明らかにし、反り量が適正な範囲となるバッファ層の構造を特定することで、反り量が小さい半導体基板を提供することにある。
上記課題を解決するために、本発明の第1の態様においては、ベース基板と、デバイス形成層と、前記ベース基板および前記デバイス形成層の間に位置するバッファ層とを有し、前記バッファ層が、AlGa1−xNからなる第1結晶層およびAlGa1−yNからなる第2結晶層が繰り返し積層された積層構造を有する半導体基板であって、前記第1結晶層の平均Al組成AVG(x)および前記第2結晶層の平均Al組成AVG(y)が、0<AVG(x)≦1、0≦AVG(y)<1、および、AVG(x)>AVG(y)の条件を満たし、前記バッファ層の断面を単一の前記第1結晶層を含む観察領域においてTEM観察したとき、深さDを変数とするHAADF−STEM強度I(D)が、深さDminで極小値Iminを示し、深さDmax(Dmax>Dmin)で極大値Imaxを示し、前記Dminより浅く位置する単調減少領域において前記I(D)が前記Imaxおよび前記Iminの中間値Imidから前記Iminに至るまでの深さ方向距離DD1と、前記Dminより深く位置する単調増加領域において前記I(D)が前記Iminから前記Imaxに至るまでの深さ方向距離DD2とが、DD1≦0.3×DD2、の条件を満たす半導体基板を提供する。前記I(D)の2階微分dI(D)/dDが、前記Dminと前記Dmaxとの間で、1を超えるゼロクロス点を有してもよい。
「平均Al組成AVG(α)」とは、AlαGa1−αNからなる結晶層のAl組成比αを厚さ方向に渡り平均した値をいい、Al組成比が厚さ方向で変化している場合におけるAl組成比の代表値の一つである。
「観察領域」とは、第1結晶層が1層だけ含まれるようTEM(Transmission Electron Microscope)観察した場合の視野をいい、「HAADF−STEM強度I(D)」とは、結晶層をHAADF−STEM(High-angle Annular Dark Field Scanning TEM)法で観察した場合の濃淡すなわち電子線強度の変化を、深さ(任意位置からの深さ方向における距離)Dの関数として表したものをいう。原子像の影響による脈動の除去のため、HAADF−STEM像から直接得られる電子線強度信号に適当回数のスムージング処理を施したものを「HAADF−STEM強度I(D)」としてもよい。HAADF−STEM像では、重い元素は明るく、軽い元素は暗く見え、原子量の2乗に比例したコントラストが得られる。このため、AlGa1−xN結晶層の場合、Al組成xの値に比例して暗く(信号強度が低く)観察される。
「Dmin」は、観察領域においてI(D)が極小を示す深さであり、I(D)の極小値を「Imin」とする。「Dmax」は、観察領域においてI(D)が極大を示す深さであり、I(D)の極大値を「Imax」とする。「Imid」はIminとImaxとの中間値であり、Imid=(Imax−Imin)/2、である。
「2階微分dI(D)/dD」は、I(D)の1階微分関数dI(D)/dDをさらに微分した関数である。「ゼロクロス点」とは、観察領域における深さDminとDmaxとの間で2階微分dI(D)/dDが0になる深さDの点をいう。
前記デバイス形成層の熱膨張係数が、前記ベース基板の熱膨張係数より大きく、前記第2結晶層の平均格子定数が、前記第1結晶層の平均格子定数より大きくてもよい。前記ベース基板が、シリコン基板であり、前記デバイス形成層が、GaNまたはAlGaNからなる単層または積層であってもよい。前記ベース基板と前記バッファ層との間に、シリコン原子とIII族原子との反応を抑制する反応抑制層をさらに有してもよい。前記反応抑制層と前記バッファ層との間に、バルク結晶状態における格子定数が前記反応抑制層の格子定数より大きい中間層、をさらに有してもよい。反応抑制層として、たとえば低温形成したAlN層が例示でき、中間層として、たとえばAlGaN層が例示できる。
前記第1結晶層の厚さが5.0nmを超え20nm未満であり、前記第2結晶層の厚さが10nm以上300nm以下であり、前記ベース基板上に位置する前記バッファ層および前記デバイス形成層を含む窒化物結晶層の厚さが、500nm以上13000nm以下であることが好ましい。前記AVG(x)および前記AVG(y)が、0.9≦AVG(x)≦1、および、0≦AVG(y)≦0.3の条件を満たしてもよい。
半導体基板100の断面図である。 半導体基板100の一例を断面観察したHAADF−STEM像である。(a)は、バッファ層106の全域が視野に含まれるよう観察したものであり、(b)は、第1結晶層106aが1層だけ含まれる視野(観察領域)においてバッファ層106の一部を観察したものである。 (a)は、図2の一例における第1結晶層106aおよび第2結晶層106bの各1層が視野に含まれるよう観察した断面TEM像であり、(b)は、断面TEM像上に数字を付した各位置におけるEDX分析結果を示す。 観察領域におけるHAADF−STEM強度I(D)を深さDの関数として示したグラフであり、スムージング前とスムージング後のデータを併せて示す。 観察領域における実験例1のHAADF−STEM強度I(D)、1階微分関数dI(D)/dDおよび2階微分dI(D)/dDを深さDの関数として示したグラフである。 観察領域における実験例2のHAADF−STEM強度I(D)、1階微分関数dI(D)/dDおよび2階微分dI(D)/dDを深さDの関数として示したグラフである。 観察領域における実験例3のHAADF−STEM強度I(D)、1階微分関数dI(D)/dDおよび2階微分dI(D)/dDを深さDの関数として示したグラフである。 観察領域における比較例のHAADF−STEM強度I(D)、1階微分関数dI(D)/dDおよび2階微分dI(D)/dDを深さDの関数として示したグラフである。
図1は、半導体基板100の断面図である。半導体基板100は、ベース基板102、反応抑制層104、バッファ層106およびデバイス形成層108を有する。反応抑制層104とバッファ層106の間に中間層110を有する。なお、ベース基板102上の反応抑制層104、バッファ層106およびデバイス形成層108は、たとえばIII族窒化物結晶層であり、この場合、一般的なMOCVD法を用いて形成できる。
ベース基板102は、反応抑制層104、バッファ層106およびデバイス形成層108支持する支持基板である。ベース基板102はシリコン基板とすることが好ましい。ベース基板102としてシリコン基板を用いることにより、材料価格を下げることができ、従来のシリコンプロセスで用いられている半導体製造装置を利用することができる。これにより、コスト競争力を高めることができる。さらに、ベース基板102としてシリコン基板を用いることにより、直径150mm以上の大型の基板を安価にかつ工業的に利用することができるようになる。
ベース基板102をシリコン基板とする場合、デバイス形成層108はGaNまたはAlGaNからなる単層または積層とすることができる。この場合、反応抑制層104を設ける意義が大きい。
反応抑制層104は、ベース基板102とバッファ層106との間に位置する。反応抑制層104は、ベース基板102を構成する原子、たとえば、シリコン原子とIII族原子との反応を抑制する。たとえば反応抑制層104の上層がIII族窒化物半導体層である場合、当該III族窒化物半導体層に含まれるGaとベース基板102に含まれる原子(たとえばSi)との合金化を防止することができる。反応抑制層104として、Alx1Ga1−x1N(0<x1≦1)を挙げることができ、代表的にはAlN層を挙げることができる。反応抑制層104により、ベース基板102の表面を保護し、上層の支持を確実にすることができる。また、反応抑制層104は、ベース基板102上に形成される結晶層の初期核を形成することができる。
バッファ層106は、ベース基板102とデバイス形成層108の間に位置する。バッファ層106は、第1結晶層106aおよび第2結晶層106bが繰り返し積層された積層構造106cを有する。バッファ層106は、半導体基板100全体の反りを低減する応力発生層として機能する。
第1結晶層106aはAlGa1−xNからなり、第2結晶層106bは、AlGa1−yNからなる。そして、第1結晶層106aの平均Al組成AVG(x)および第2結晶層106bの平均Al組成AVG(y)が、0<AVG(x)≦1、0≦AVG(y)<1、および、AVG(x)>AVG(y)の条件を満たす。AVG(x)およびAVG(y)は、0.9≦AVG(x)≦1、および、0≦AVG(y)≦0.3の条件を満たすことが好ましい。第1結晶層106aの厚さは、1nm以上20nm以下、好ましくは5.0nmを超え20nm未満とすることができる。第2結晶層106bの厚さは、5nm以上300nm以下、好ましくは10nm以上300nm以下とすることができる。
第1結晶層106aとしてAlN層を例示することができ、第2結晶層106bとしてAlGaN層を例示することができる。第1結晶層106aと第2結晶層106bの界面は、明瞭な界面である必要はなく、Al組成比が深さ方向において連続的に変化するようなものであってもよい。
図2は、半導体基板100の一例を断面観察したHAADF−STEM像であり、(a)は、バッファ層106の全域が視野に含まれるよう観察したもの、(b)は、第1結晶層106aが1層だけ含まれる視野(観察領域)においてバッファ層106を観察したものである。図2(a)から、バッファ層106の積層構造が確認できる。また、同図(b)では、HAADF−STEM像が、第1結晶層106aの上側(深さが小さい側)で暗く、下側(深さが大きい側)で明るく観察される。重い元素ほど明るく観察されるHAADF−STEM像の特性を考慮すれば、第1結晶層106aにおけるAl組成は、下側(深さが大きい側)で小さく、上側(深さが小さい側)で大きくなっていると推察される。
図3(a)は、図2の一例における第1結晶層106aおよび第2結晶層106bを観察した断面TEM像であり、第1結晶層106aおよび第2結晶層106bの各1層が視野に含まれるよう観察したものである。図3(b)は、図3(a)の断面TEM像上に数字を付した各位置におけるEDX分析(Energy dispersive X-ray spectrometry)の結果を示し、数値は、N原子、Al原子およびGa原子の組成合計に対する原子組成比(単位は原子%)である。
「1」が付された第2結晶層106bのAl組成比およびGa組成比がそれぞれ7.1%および54.9%であり、「2」が付された第1結晶層106aの上部におけるAl組成比およびGa組成比がそれぞれ55.3%および5.2%であり、「3」が付された第1結晶層106aの下部におけるAl組成比およびGa組成比がそれぞれ34.3%および28.0%であることから、第2結晶層106bの組成がGaNに近く、第1結晶層106aの上部の組成がAlNに近く、第1結晶層106aの下部の組成がGaNとAlNのほぼ中間であることがわかる。第1結晶層106aの製膜においてGa原料ガスを意図して導入していないことから、第1結晶層106aの下部では多くのAl原子がGa原子に置換される現象が発生しているといえる。なお、このような置換現象の発生原因は不明であるものの、第1結晶層106a製膜時の炉内に残存しているGa原子の混入等の可能性が原因の一つとして推察される。
本発明者らは、これらの実験検討を踏まえ、HAADF−STEM像の濃淡を定量化することで、第1結晶層106aの深さ方向におけるAl組成(Al/Ga組成比)を詳細に分析し、半導体基板の反り量との相関関係を見出し、本件発明をするに至った。
図4は、観察領域におけるHAADF−STEM強度I(D)を深さDの関数として示したグラフである。HAADF−STEM像では原子が観察されるため、HAADF−STEM強度I(D)は原子を反映した脈動を示す(スムージング前)。図4におけるスムージング後のデータは、脈動を除去するため、適当な回数スムージング処理したものであり、Al組成の詳細検討においては、スムージング後のデータを用いることが好ましい。
図5は、観察領域におけるHAADF−STEM強度I(D)の一例を示したグラフであり、I(D)の1階微分関数dI(D)/dDおよび2階微分dI(D)/dDを併せて示す。HAADF−STEM強度I(D)は、深さDminで極小値Iminを示し、深さDmax(Dmax>Dmin)で極大値Imaxを示す。Dminより浅く位置する単調減少領域においてI(D)は、ImaxおよびIminの中間値ImidからIminに減少し、ImidからImin至るまでの深さ方向距離をDD1とする。Dminより深く位置する単調増加領域においてI(D)は、IminからImaxまで増加し、IminからImaxに至るまでの深さ方向距離をDD2とする。このように深さ方向距離DD1およびDD2を定義した場合、DD1≦0.3×DD2、の条件を満たすことを特徴とする。当該条件を満たすことで半導体基板100の反り量を小さくすることができる。なお、前記条件は、好ましくはDD1≦0.25×DD2、より好ましくはDD1≦0.2×DD2、を満たすことが望ましい。
なお、I(D)の2階微分dI(D)/dDが、DminとDmaxとの間で、1を超えるゼロクロス点を有することが望ましい。ゼロクロス点は、dI(D)/dDが強度0の軸と交わる点であり、図中「黒点」で示している。当該条件を満足することで、半導体基板100の反り量を小さくすることができる。
第1結晶層106aは、平均Al組成AVG(x)が大きいため電気抵抗が大きい。また、第1結晶層106aと第2結晶層106bとの積層構造106cを繰り返し積層することで、耐電圧を高めることができる。このため、半導体基板100の反りを低減しつつ、活性層112の耐圧、移動度等の特性を向上することができる。
第2結晶層106bは、第1結晶層106aとのヘテロ接合面において、理想的には、結晶格子が第1結晶層106aの結晶格子に対しコヒーレントに連続するよう形成される。前記したとおり、第1結晶層106aの平均Al組成AVG(x)および第2結晶層106bの平均Al組成AVG(y)が、0<AVG(x)≦1、0≦AVG(y)<1、および、AVG(x)>AVG(y)の条件を満たすため、第2結晶層106bのバルク状態における格子定数は第1結晶層106aのバルク状態における格子定数より大きくなり、このため、第2結晶層106bには第1結晶層106aに対する圧縮応力が蓄積される。これにより、バッファ層106に圧縮応力が生じる。バッファ層106が圧縮応力を発生することで、当該圧縮応力と、熱膨張係数の相違に起因して窒化物結晶層に発生する引張応力とが均衡され、半導体基板100の反りを低減することができる。
また、バッファ層106は、積層構造106cを複数有する。複数の積層構造106cは、多数の積層構造106cが繰り返し積層された超格子構造を構成してもよい。積層構造106cの繰り返し数は、たとえば2〜500とすることができる。積層構造106cを多数積層することにより、バッファ層106が発生する圧縮応力を大きくすることができる。また、積層構造106cの積層数によりバッファ層106が発生する圧縮応力の大きさを容易に制御することができる。さらに、積層構造106cを多数積層することで、第1結晶層106aによる耐電圧の向上をより高めることができる。
デバイス形成層108は、トランジスタやLED(light emitting diode)等任意のデバイスが形成できる結晶層であり、たとえば二次元電子ガス(2DEG)をチャネルとするHEMT(High Electron Mobility Transistor)用である場合、デバイス形成層108は、活性層112およびショットキ層114を有することができる。活性層112としてGaN層が例示でき、ショットキ層114としてAlGaN層が例示できる。
デバイス形成層108の熱膨張係数が、ベース基板102の熱膨張係数より大きい場合、第2結晶層106bの平均格子定数を第1結晶層106aの平均格子定数より大きいものとすることができる。すなわち、デバイス形成層108をMOCVD法等高温環境下で形成した場合、半導体基板100が室温に戻るとデバイス形成層108の熱収縮がベース基板102より大きく引張応力を受ける。このような場合、前記した通り、第2結晶層106bのバルク状態における格子定数を第1結晶層106aのバルク状態における格子定数より大きくすれば、バッファ層106に圧縮応力が生じ、デバイス形成層108による引張応力をキャンセルすることができる。
活性層112は、たとえばAlx4Ga1−x4N(0≦x4<1)からなり、代表的にはGaN層である。活性層112は、AlInGaN層であってもよい。活性層112は、後に電子素子が形成される層である。活性層112は、2層に分けることができ、上層は炭素原子等の不純物濃度を極力少なくした高純度層とし、下層は炭素原子を含む層とすることができる。下層に炭素原子を含むことで耐電圧を高めることができ、上層の純度を高めることで不純物原子によるキャリアの散乱を少なくし、移動度を高めることができる。
ショットキ層114は、たとえばAlx5Ga1−x5N(0<x5<1)である。活性層112およびショットキ層114のヘテロ界面には2次元電子ガス(2DEG)が生成され、トランジスタのチャネル層として機能させることができる。ショットキ層114は、形成するトランジスタの構造に応じて適宜変更することが可能である。
ベース基板102上に位置するバッファ層106およびデバイス形成層108を含む窒化物結晶層の厚さは、6nm以上20000nm以下とすることができ、好ましくは500nm以上13000nm以下とすることができる。窒化物結晶層の厚さを当該範囲とすることで、半導体基板100の反り量を小さくすることができる。ベース基板102の厚さが400μm以上であり、ベース基板102の直径が100mm以上である場合、反応抑制層104の厚さは、30nm以上300nm以下とすることが好ましい。ベース基板102および反応抑制層104を当該範囲とすることで、半導体基板100の反り量を小さくすることができる。
上記した窒化物結晶層は、ベース基板102より熱膨張係数が大きく、エピタキシャル成長時の高い温度から室温にまで温度が下がると、窒化物結晶層はベース基板102より大きく収縮し、その結果、窒化物結晶層に引張応力を生じる。しかし、本実施形態の半導体基板100では、バッファ層106により圧縮応力が発生されるので、当該圧縮応力を窒化物結晶層の降温による引張応力と均衡させ、半導体基板100の反りを抑制できる。
なお、バッファ層106に第1結晶層106aおよび第2結晶層106bからなる積層構造106cを含む限り、バッファ層106のその他の層構成は任意である。上記では、反応抑制層104とバッファ層106との間に中間層110を形成した例を説明したが、バッファ層106とデバイス形成層108との間、デバイス形成層108の上層に中間層110を形成しても良い。
中間層110は、反応抑制層104とバッファ層106との間に反応抑制層104に接して位置し、バルク結晶状態における格子定数が反応抑制層104の格子定数より大きい層である。中間層110は、たとえばAlx2Ga1−x2N(0<x2<1)からなる。中間層110は、反応抑制層104とのヘテロ接合面において、理想的には、結晶格子が反応抑制層104の結晶格子に対しコヒーレントに連続しているように形成できる。これにより、中間層110は、反応抑制層104との格子定数差に起因して圧縮応力を発生する。また、中間層110は、反応抑制層104で形成した初期核を拡大し、上層に形成するバッファ層106の下地面を形成する。中間層110の厚さは、600nm以下たとえば300nmとすることができる。
なお、中間層110と反応抑制層104のヘテロ界面がコヒーレントに連続しているというのは、あくまでも理想的な状態をいうのであり、実際には欠陥等による格子緩和も混在しており、コヒーレント成長された領域が支配的であるに過ぎないことは、第1結晶層106aおよび第2結晶層106bのヘテロ界面における場合と同様である。
(実施例)
観察領域におけるHAADF−STEM強度I(D)が異なる複数の半導体基板100(実験例1〜3および比較例)を作製した。すなわち、実験例1〜3および比較例の半導体基板100として、ベース基板102にSi基板を用い、Si基板の(111)面上に、反応抑制層104および中間層110として、設計厚さ150〜160nmのAlN層および設計厚さ250nmのAlGaN層を形成した。さらに、バッファ層106として、設計厚さ5nmのAlN層(第1結晶層106a)および設計厚さ28nmのAlGaN層(第2結晶層106b)からなるAlN/AlGaN積層構造(積層構造106c)を繰り返し積層して形成し、デバイス形成層108として、設計厚さ800nmのGaN層(活性層112)および設計厚さ20〜50nmのAlGaN層(ショットキ層114)を形成した。
上記各層(AlN層、AlGaN層およびGaN層)の形成にはMOCVD(Metal Organic Chemical Vapor Deposition)法を用いた。MOCVD法では、III族原料ガスとしてトリメチルアルミニウム(Al(CH)およびトリメチルガリウム(Ga(CH)を用い、窒素原料ガスとしてアンモニア(NH)を用いた。成長温度は1100℃〜1260℃の範囲で選択し、III族原料ガスに対するV族原料ガスの流量比V/III比は、160〜3700の範囲で選択した。なお、予備実験で得た成長速度から設計厚さに対応する成長時間を算出し、成長時間により各層の厚さを制御した、よって、各層の実際の厚さと設計厚さとは異なる。
観察領域におけるHAADF−STEM強度の深さプロファイルI(D)を異ならせることを目的に、実験例1〜3および比較例におけるバッファ層106(AlN層(第1結晶層106a)およびAlGaN層(第2結晶層106b)の繰り返し積層)の成長条件を変化させた。
実験例1においては、AlN層およびAlGaN層の成長切り替え時における成長中断(以下「成長中断」という。)を「あり」とし、AlN層(第1結晶層106a)のV/III比を1580とし、AlGaN層(第2結晶層106b)のAl組成を0.18とした。実験例2においては、成長中断を「無し」とし、他は実験例1と同様とした。実験例3においては、AlGaN層のAl組成を0.33とし、他は実験例1と同様とした。比較例においては、AlN層のV/III比を260とし、他は実験例1と同様とした。なお、ここでいう「Al組成」は、成長条件における「狙い値」であり、実際の結晶層におけるAl組成とは異なる。
作製した実験例1〜3および比較例の各半導体基板について、HAADF−STEM強度I(D)を測定し、1階微分関数dI(D)/dDおよび2階微分dI(D)/dDを計算したうえでDD1およびDD2とゼロクロス点数を評価した。また、各半導体基板について、反り量を測定した。
図5〜図8は、観察領域におけるHAADF−STEM強度I(D)、1階微分関数dI(D)/dDおよび2階微分dI(D)/dDを深さDの関数として示したグラフであり、図5は実験例1、図6は実験例2、図7は実験例3、図8は比較例を示したものである。表1は、実験例1〜3および比較例における特徴的な製膜条件と、DD2に対するDD1の比(DD1/DD2)、ゼロクロス点の数および反り量を纏めてしましたものである。
図5〜図8に示すように、実験例1〜3および比較例において、HAADF−STEM強度の深さ方向におけるプロファイルI(D)はそれぞれ異なり、各サンプルのバッファ層106(AlN層(第1結晶層106a)およびAlGaN層(第2結晶層106b)の繰り返し積層)におけるAl組成(AlGaN層からAlN層にかけてのGa原子の組成比変化の状況)が異なることがわかる。
実験例1〜3および比較例におけるI(D)の相違に対応して、DD1およびDD2が異なり、反り量の絶対値が90μm以内に収まる実験例1〜3においては、DD1/DD2が0.2以下であるのに対し、反り量が173μmと大きい比較例においては、DD1/DD2が0.3以上と大きい。また、反り量が小さい実験例1〜3においてはゼロクロス点の数が5であるのに対し、反り量が大きい比較例ではゼロクロス点の数が1である。
以上の実施例から、DD1/DD2あるいはゼロクロス数により基板の反り量を評価することが可能であり、DD1/DD2およびゼロクロス数が、それぞれ0.3以下(好ましくは0.2以下)および1を超える(好ましくは5以上)であれば良好な反り量を得ることができると言える。
以上説明のとおり、バッファ層106の観察領域におけるHAADF−STEM強度I(D)から定義されるDD1およびDD2を、DD1≦0.3×DD2(好ましくはDD1≦0.25×DD2、より好ましくはDD1≦0.2×DD2)の条件を満たすように形成することで、半導体基板の反り量を小さくすることができる。また、I(D)の2階微分dI(D)/dDから定義されるゼロクロス点数を、1を超える(好ましくは5以上)ものとすることで、半導体基板の反り量を小さくすることができる。
100…半導体基板、102…ベース基板、104…反応抑制層、106…バッファ層、106a…第1結晶層、106b…第2結晶層、106c…積層構造、108…デバイス形成層、110…中間層、112…活性層、114…ショットキ層。

Claims (8)

  1. ベース基板と、デバイス形成層と、前記ベース基板および前記デバイス形成層の間に位置するバッファ層とを有し、
    前記バッファ層が、AlGa1−xNからなる第1結晶層およびAlGa1−yNからなる第2結晶層が繰り返し積層された積層構造を有する半導体基板であって、
    前記第1結晶層の平均Al組成AVG(x)および前記第2結晶層の平均Al組成AVG(y)が、0<AVG(x)≦1、0≦AVG(y)<1、および、AVG(x)>AVG(y)の条件を満たし、
    前記バッファ層の断面を単一の前記第1結晶層を含む観察領域においてTEM観察したとき、深さDを変数とするHAADF−STEM強度I(D)が、深さDminで極小値Iminを示し、深さDmax(Dmax>Dmin)で極大値Imaxを示し、
    前記Dminより浅く位置する単調減少領域において前記I(D)が前記Imaxおよび前記Iminの中間値Imidから前記Iminに至るまでの深さ方向距離DD1と、前記Dminより深く位置する単調増加領域において前記I(D)が前記Iminから前記Imaxに至るまでの深さ方向距離DD2とが、DD1≦0.3×DD2、の条件を満たす
    半導体基板。
  2. 前記I(D)の2階微分dI(D)/dDが、前記Dminと前記Dmaxとの間で、1を超えるゼロクロス点を有する
    請求項1に記載の半導体基板。
  3. 前記デバイス形成層の熱膨張係数が、前記ベース基板の熱膨張係数より大きく、
    前記第2結晶層の平均格子定数が、前記第1結晶層の平均格子定数より大きい
    請求項1または請求項2に記載の半導体基板。
  4. 前記ベース基板が、シリコン基板であり、
    前記デバイス形成層が、GaNまたはAlGaNからなる単層または積層である
    請求項3に記載の半導体基板。
  5. 前記ベース基板と前記バッファ層との間に、シリコン原子とIII族原子との反応を抑制する反応抑制層をさらに有する
    請求項1から請求項4の何れか一項に記載の半導体基板。
  6. 前記反応抑制層と前記バッファ層との間に、バルク結晶状態における格子定数が前記反応抑制層の格子定数より大きい中間層、をさらに有する
    請求項5に記載の半導体基板。
  7. 前記第1結晶層の厚さが5.0nmを超え20nm未満であり、
    前記第2結晶層の厚さが10nm以上300nm以下であり、
    前記ベース基板上に位置する、前記バッファ層および前記デバイス形成層を含む窒化物結晶層の厚さが、500nm以上13000nm以下である
    請求項1から請求項6の何れか一項に記載の半導体基板。
  8. 前記AVG(x)および前記AVG(y)が、0.9≦AVG(x)≦1、および、0≦AVG(y)≦0.3の条件を満たす
    請求項1から請求項7の何れか一項に記載の半導体基板。
JP2016231901A 2016-11-30 2016-11-30 半導体基板 Active JP6859084B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016231901A JP6859084B2 (ja) 2016-11-30 2016-11-30 半導体基板
CN201780073869.0A CN110024082A (zh) 2016-11-30 2017-11-28 半导体衬底
EP17877266.1A EP3550591A4 (en) 2016-11-30 2017-11-28 SEMI-CONDUCTIVE SUBSTRATE
PCT/JP2017/042694 WO2018101280A1 (ja) 2016-11-30 2017-11-28 半導体基板
TW106141874A TWI744429B (zh) 2016-11-30 2017-11-30 半導體基板
US16/425,501 US20190280091A1 (en) 2016-11-30 2019-05-29 Semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016231901A JP6859084B2 (ja) 2016-11-30 2016-11-30 半導体基板

Publications (2)

Publication Number Publication Date
JP2018088501A true JP2018088501A (ja) 2018-06-07
JP6859084B2 JP6859084B2 (ja) 2021-04-14

Family

ID=62242146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016231901A Active JP6859084B2 (ja) 2016-11-30 2016-11-30 半導体基板

Country Status (6)

Country Link
US (1) US20190280091A1 (ja)
EP (1) EP3550591A4 (ja)
JP (1) JP6859084B2 (ja)
CN (1) CN110024082A (ja)
TW (1) TWI744429B (ja)
WO (1) WO2018101280A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6868389B2 (ja) * 2016-12-27 2021-05-12 住友化学株式会社 半導体基板および電子デバイス

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123803A (ja) * 2008-11-20 2010-06-03 Mitsubishi Chemicals Corp 窒化物半導体
WO2011016304A1 (ja) * 2009-08-07 2011-02-10 日本碍子株式会社 半導体素子用エピタキシャル基板、半導体素子用エピタキシャル基板の製造方法、および半導体素子
WO2016072521A1 (ja) * 2014-11-07 2016-05-12 住友化学株式会社 半導体基板および半導体基板の検査方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5224311B2 (ja) 2007-01-05 2013-07-03 古河電気工業株式会社 半導体電子デバイス
EP2221856B1 (en) * 2007-11-21 2020-09-09 Mitsubishi Chemical Corporation Nitride semiconductor, nitride semiconductor crystal growth method, and nitride semiconductor light emitting element
JP5133927B2 (ja) 2009-03-26 2013-01-30 コバレントマテリアル株式会社 化合物半導体基板
EP2538435B1 (en) * 2010-02-16 2019-09-11 NGK Insulators, Ltd. Epitaxial substrate and method for producing same
JP5624940B2 (ja) * 2011-05-17 2014-11-12 古河電気工業株式会社 半導体素子及びその製造方法
JP5804768B2 (ja) * 2011-05-17 2015-11-04 古河電気工業株式会社 半導体素子及びその製造方法
JP5665676B2 (ja) 2011-07-11 2015-02-04 Dowaエレクトロニクス株式会社 Iii族窒化物エピタキシャル基板およびその製造方法
JP5785103B2 (ja) * 2012-01-16 2015-09-24 シャープ株式会社 ヘテロ接合型電界効果トランジスタ用のエピタキシャルウエハ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123803A (ja) * 2008-11-20 2010-06-03 Mitsubishi Chemicals Corp 窒化物半導体
WO2011016304A1 (ja) * 2009-08-07 2011-02-10 日本碍子株式会社 半導体素子用エピタキシャル基板、半導体素子用エピタキシャル基板の製造方法、および半導体素子
WO2016072521A1 (ja) * 2014-11-07 2016-05-12 住友化学株式会社 半導体基板および半導体基板の検査方法

Also Published As

Publication number Publication date
US20190280091A1 (en) 2019-09-12
EP3550591A1 (en) 2019-10-09
JP6859084B2 (ja) 2021-04-14
EP3550591A4 (en) 2020-08-05
TWI744429B (zh) 2021-11-01
TW201834199A (zh) 2018-09-16
CN110024082A (zh) 2019-07-16
WO2018101280A1 (ja) 2018-06-07

Similar Documents

Publication Publication Date Title
CN107799583B (zh) 在异质基底上的第III族氮化物缓冲层结构的p型掺杂
JP5804768B2 (ja) 半導体素子及びその製造方法
TWI611576B (zh) 半導體基板及半導體基板之製造方法
JP2013026321A (ja) 窒化物系半導体層を含むエピタキシャルウエハ
JP6656160B2 (ja) 半導体基板および半導体基板の検査方法
US11011630B2 (en) Semiconductor wafer
JP2013145821A (ja) ヘテロ接合型電界効果トランジスタ用のエピタキシャルウエハ
JP2008545270A (ja) 炭化ケイ素基板上の第iii族窒化物エピタキシャル層
WO2016084311A1 (ja) エピタキシャルウェーハ、半導体素子、エピタキシャルウェーハの製造方法、並びに、半導体素子の製造方法
JP2014103307A (ja) 窒化物半導体素子、窒化物半導体ウェーハ及び窒化物半導体層の形成方法
JP6239017B2 (ja) 窒化物半導体基板
WO2018101280A1 (ja) 半導体基板
CN112687732A (zh) 半导体薄膜结构以及包括其的电子器件
US20160293710A1 (en) Nitride semiconductor substrate
JP2014103377A (ja) 窒化物半導体素子、窒化物半導体ウェーハ及び窒化物半導体層の形成方法
JP5756830B2 (ja) 半導体基板、半導体装置、及び、半導体装置の製造方法
JP2015207771A (ja) 化合物半導体基板
JPWO2015115126A1 (ja) 窒化物半導体積層体およびその製造方法並びに窒化物半導体装置
US20160118486A1 (en) Semiconductor device
WO2016152106A1 (ja) 半導体ウエハ、半導体装置及び半導体ウエハの製造方法
US20240096969A1 (en) Nitride semiconductor with multiple nitride regions of different impurity concentrations, wafer, semiconductor device and method for manufacturing the same
US20230049717A1 (en) Nitride semiconductor, semiconductor device, and method for manufacturing nitride semiconductor
JP2021019009A (ja) 半導体ウエハー及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210325

R150 Certificate of patent or registration of utility model

Ref document number: 6859084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350