JP2018080097A - 単結晶製造装置及び単結晶製造方法 - Google Patents

単結晶製造装置及び単結晶製造方法 Download PDF

Info

Publication number
JP2018080097A
JP2018080097A JP2016225223A JP2016225223A JP2018080097A JP 2018080097 A JP2018080097 A JP 2018080097A JP 2016225223 A JP2016225223 A JP 2016225223A JP 2016225223 A JP2016225223 A JP 2016225223A JP 2018080097 A JP2018080097 A JP 2018080097A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
raw material
heater
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016225223A
Other languages
English (en)
Inventor
泰三 北川
Taizo Kitagawa
泰三 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016225223A priority Critical patent/JP2018080097A/ja
Publication of JP2018080097A publication Critical patent/JP2018080097A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

【課題】本発明は、VB法の問題点である種結晶のシーディング時の制御や、結晶成長時の制御を容易にすることで多結晶化等不具合を防止し歩留まりを向上させることを目的とする。【解決手段】原料を保持可能なルツボと、該ルツボを引き下げ可能な引き下げ装置と、前記ルツボ内の前記ルツボの底面よりも上方に保持されたヒーターと、を有する単結晶製造装置。【選択図】図1

Description

本発明は、単結晶製造装置及び単結晶製造方法に関する。特に、ゾーンメルティング法により単結晶を製造する製造装置および製造方法に関する。
近年、タンタル酸リチウムLiTaO3(以下LT)やニオブ酸リチウムLiNbO3(以下LN)などの酸化物単結晶を用いて、携帯電話等に使用される各種の表面波デバイスが製造されている。特にLT、LNの結晶基板の製造にあたっては、製造原価を低減するため結晶ブールの大口径化および長尺化が進められている。上述の単結晶の製造方法には一般的に大きく分けて次の3つの方法がある。すなわち、チョクラルスキー法(以下Cz法、Czochralski法)、バーティカルブリッジマン法(以下VB法、Vertical Bridgeman法)、引き下げ法(以下PD法、Pulling Down法)である(例えば、特許文献1参照)。Cz法は原料を充填したルツボを高温に加熱して原料を融解し、ルツボ内の原料融液の液面に上方から種結晶を接触させた後、回転させながら引き上げることで種結晶と同一方位の単結晶を育成させる方法である。VB法は原料と種結晶をルツボ内に収容し、電気炉内で加熱することで種結晶の一部と原料を融解させ、適切な温度勾配の下、ルツボを引き下げることで単結晶を育成する方法である。また、PD法は、ルツボ下端に通液孔の空いたルツボ内に原料を充填し、電気炉で加熱することで原料を融解し、通液孔より流出した融液にルツボ下方より種結晶を接触させ、種結晶を引き下げることで単結晶を育成させる方法である。
特許第3527203号公報 特開2013−10656号公報
しかしながら、LT、LNの単結晶製造に最も多く利用されているCz法では、結晶直径の制御性を高めるため種結晶と融液付近の温度勾配を大きくする必要があり、結晶内外の温度差に起因したクラックや転位などに起因した結晶構造の乱れによる結晶性の悪化が、歩留まりやデバイス特性の悪化を引き起こす要因となっている。一方、ルツボの材質には原材料融点の関係で、一般的には白金やイリジウムなどの高価な貴金属が選択されるが、Cz法では成長させる結晶直径よりも大きなサイズのルツボが必須であり、またルツボ上方の温度勾配を適切とするために、例えば同じ貴金属で作られたアフターヒーターなどを設置することもある。このように高価な貴金属を多量に使用するため、コスト的にも大きな負担となっている。
また、VB法では、ルツボの内径と同じサイズの単結晶を製造できるため、Cz法ほどは多量の貴金属を使用せず、またルツボ容器内での成長であるため結晶直径の制御が不要であり、温度勾配を小さくすることが可能で結晶性の良い単結晶を製造することができる。例えば、特許文献2では、育成炉の内部空間にルツボを配置し、ルツボ内にニオブ酸リチウムの種結晶及び原料を収容し、育成炉の温度制御により、育成炉内にニオブ酸リチウムの融点以上となる高温部と、高温部よりも下方へ向かって徐々に温度が低くなり、ニオブ酸リチウムの融点以下となる温度勾配部を形成し、高温部から温度勾配部へ向かってルツボを所定の速度で下降させることで、原料に対しルツボ外から電界を加えることなく、原料を単結晶化するとともに単一分極化するようにしたニオブ酸リチウム単結晶の製造方法が記載されている。
しかしながら、VB法は容器内成長であるため結晶の成長位置が不明で、いわゆる種結晶のシーディングが困難であり、種結晶の全融解や種結晶が融けずに成長してしまうなど、歩留まりを低下させる課題がある。また、結晶の成長位置が不明であることから、結晶の成長速度を制御することも困難であり、成長速度が過剰となることに起因した多結晶の発生や結晶性の悪化が見られる。
PD法は、成長させる結晶直径に対応したサイズの貴金属ルツボあるいは板を使用するため、上述した2方法に比べ高価な貴金属の使用量を少なくできる利点があり、特許文献1に記載されているような原料の連続供給装置を備えた構成では、結晶組成が均一でかつ長尺な結晶が得られる。しかしながら、PD法は原料融液を貴金属板と成長した結晶の表面張力で保持することを特徴とするため、原料融液の重量が表面張力を超えた場合、融液が結晶側面に垂れ落ちてしまい、クラックや多結晶化を引き起こすため、結晶の大口径化が困難であるという課題がある。また、成長中の温度勾配が小さくなると原料融液の表面張力が小さくなり、原料融液が垂れ落ちるため、通常はCz法よりも温度勾配を大きくする必要があり、クラックや結晶性の悪化を招くという課題がある。
本発明は、かかる問題点を解決するためになされた発明であり、Cz法での問題点である結晶内外温度差に起因したクラックや転位などを防止し、かつルツボ等の貴金属使用量を抑えられ、VB法の問題点である種結晶のシーディング時の制御や、結晶成長時の制御を容易にすることで多結晶化等不具合を防止し歩留まりを向上させることができる単結晶製造装置及び単結晶製造方法を提供することを目的とする。
上記目的を達成するため、本発明の一態様に係る単結晶製造装置は、原料を保持可能なルツボと、
該ルツボを引き下げ可能な引き下げ装置と、
前記ルツボ内の前記ルツボの底面よりも上方に保持されたヒーターと、を有する。
本発明によれば、Cz法での問題点である結晶内外温度差に起因したクラックや転位などを防止し、かつルツボ等の貴金属使用量を抑えられ、VB法の問題点である種結晶のシーディング時の制御や、結晶成長時の制御を容易にすることで多結晶化等の不具合を防止することができ、歩留りを向上させることができるゾーンメルティング法による単結晶製造装置及び単結晶製造方法を提供できる。
本発明の単結晶製造装置におけるシーディング時の構成を説明する概略断面図である。 本発明の単結晶製造装置の引き下げ時の動作を説明するための概略断面図である。
本発明は、ゾーンメルティング法による単結晶製造装置及び単結晶製造方法である。ゾーンメルティング法は、原料を部分的に加熱して溶融させ、次いで加熱する箇所を移動させ、溶融している部分(ゾーン)を順次反対側の端まで動かす。溶融した部分は加熱する箇所が移動することにより冷却され再度固体化させ単結晶を作製する方法である。
以下、図面を参照して、本発明を実施するための形態の説明を行う。
以下、本発明の単結晶製造装置の一実施形態について、ニオブ酸リチウム単結晶を成長させる例を挙げ、図1、2を用いて説明する。
図1は、本発明の単結晶製造装置におけるシーディング時の構成を説明する概略断面図である。図2は、本発明の単結晶製造装置の引き下げ時の動作を説明するための概略断面図である。本実施形態に係る単結晶製造装置は、ルツボ10と、ルツボ台20と、回転引き下げ装置30と、抵抗加熱ヒーター40と、導線50と、支持碍子60と、電源70と、補助ヒーター80と、炉体90とを有する。本実施形態に係る単結晶製造装置は、筒状の炉体90内において、下側の領域に配置したルツボ台20の上に白金製のルツボ10を設置して構成される。ルツボ台20は、回転引き下げ装置30に連結された軸31に連結支持される。ルツボ台20は、ルツボ台20の下側に配置した回転引下げ装置30により、ルツボ台20及びこれに載置したルツボ10を上下に昇降及び回転させることができる。なお、ルツボ台20は必須ではなく、ルツボ台20を設置せずにルツボ10に直接回転引き下げ装置30に連結された軸31を取り付けてもよい。つまり、回転引き下げ装置30の軸31が直接的にルツボ10を支持する構成であってもよい。また、ルツボ台20を回転引き下げ装置30の一部と捉えてもよい。いずれの場合であっても、回転引き下げ装置30は、ルツボ10を引き下げ可能に支持する。
ルツボ10内の底面よりも上方には、抵抗加熱ヒーター40が配置される。抵抗加熱ヒーター40は、導線50に連結され、上方から吊下げ支持されている。導線50は、炉体90内の上面に取り付けられた支持碍子60により支持されている。導線50は、電源70に接続されている。
炉体90内の外側の領域には、ルツボ10を取り囲むように補助ヒーター80を配置する。また、炉体90及び補助ヒーター80からの熱を断熱するため、その周りに図示しない断熱材を設置してもよい。上述のように、炉体90の周囲に、抵抗加熱ヒーター40及び補助ヒーター80へ電力を供給する電源70がある。
単結晶製造を行う際には、ルツボ10の底面には、ニオブ酸リチウムの種結晶110が設置され、種結晶110の上方近傍に白金製の抵抗加熱ヒーター40が配置され、抵抗加熱ヒーター40の上方にはニオブ酸リチウムの粉末原料120が充填される。
以下、個々に説明する。
炉体90は、筒状の形状を有し、その内側にルツボ10が配置される。炉体90内の雰囲気は大気であってもよいし、必要応じて、不活性ガス等を供給してもよい。また、ルツボ10の周囲は、気体状態とするのではなく、断熱材等を充填してもよい。
ルツボ10は、結晶の原料を内部に保持可能な容器であり、例えば、円柱形状を有し、下側に種結晶110、その上側に単結晶となる粉末原料120を収容する。ルツボ径は、そのまま製造される単結晶の大きさになる。ルツボ10の材質は、単結晶の融点より高くかつ含有成分が溶け出さない材質であればよい。例えば、単結晶がLTであればイリジウム、LNであれば白金等が選択される。
抵抗加熱ヒーター40は、ルツボ10内の種結晶110より上側に位置するように配置される。シーディング時は、種結晶110よりも0mm〜5mm上側に配置する。その後、ルツボ10は結晶の成長とともに下降する。抵抗加熱ヒーター40は炉体90に固定されているため、ルツボ10及びルツボ台20が下降しても、抵抗加熱ヒーター40の位置は維持される。抵抗加熱ヒーター40の材料は、原料120よりも融点が高く、また原料120と反応せず、電気を導通させることで原料融点以上に発熱できる材料であればよい。例えば白金、白金ロジウム合金、あるいはイリジウムのいずれかが選択される。
抵抗加熱ヒーター40の形状は、特に限定されないが、ルツボ10の面積の半分以上を覆う平板形状を有することが好ましい。図2に示されるように、抵抗加熱ヒーター40の周囲の粉末原料120を溶融した溶融帯130が、ルツボ10の内周面に沿った円柱状に形成されることが好ましいため、ルツボ10の内周面まで溶融帯130の外側部分が到達するように、抵抗加熱ヒーター40は、ルツボ10の底面の面積の半分以上を覆う平面面積を有することが好ましい。また、そのような円柱状の溶融帯130を形成するためには、抵抗加熱ヒーター40は、平面的に均一に広がっているとともに、厚さも均一であることが好ましいので、抵抗加熱ヒーター40は、平板形状を有することが好ましい。更に、抵抗加熱ヒーター40は、円形またはドーナツ形状の平板形状であることが好ましい。ルツボ10が円筒形状であるため、ルツボ10の中心軸に関して対称な形状を有しつつ、上下方向の溶融原料の流通を可能とすることができるからである。また、加熱により粉末原料120が溶融して発生した融液内が均一となるように、貫通孔を設けてもよい。結晶育成時、融液面を均一にすることが重要であり、結晶形状に近い形状が好ましい。なお、抵抗加熱ヒーター40が、貫通孔を有しない円形に構成される場合には、抵抗加熱ヒーター40は、ルツボ10の内径よりは小さい直径を有する。融液の流通を可能とするため、外周部に隙間を設ける必要があるからである。
抵抗加熱ヒーター40は、種々の方法により支持されてよいが、例えば、導線50により上方から吊下げ支持されてもよい。これにより、ルツボ10内の形状に変化を加えることなく、また融液の流れを妨げることなく抵抗加熱ヒーター40を支持することができる。このように、導線50は、抵抗加熱ヒーター40に電力を供給するとともに、抵抗加熱ヒーター40を物理的に支持する役割も果たす。
また、電源70と抵抗加熱ヒーター40とを結ぶ導線50のうち、原料120と接する箇所の材質は、原料120よりも融点が高く、また原料120と反応せず、電気を導通させることができる材質であれば良い。例えば白金、白金ロジウム合金、あるいはイリジウムのいずれかが選択される。また、抵抗加熱ヒーター40は、ルツボ10の上方で導線50の一部がセラミック製の支持碍子60により被覆され、この支持碍子60を炉体90に取付けることにより固定されている。補助ヒーター80は、炉体90内の外側の領域でルツボ10が配置された高さ付近に配置する。補助ヒーター80はルツボ10の全体を加熱するヒーターであり、補助ヒーター80だけでは、ルツボ10内の粉末原料120を溶かすまでには至らなく、これに抵抗加熱ヒーター40を加えることで、抵抗加熱ヒーター40の周辺の粉体原料120が融解するように出力が設定される。例えば、単結晶がLTであれば補助ヒーター80の温度は1400℃〜1600℃とし、LNであれば1000℃〜1200℃とする。
回転引下げ装置30は、ルツボ台10の下方に配置する。回転引下げ装置30は、結晶の成長に従い、ルツボ10及びルツボ台20を回転させながら徐々に下側に下降させる。ルツボ10の回転はゼロでも良いが、回転させることで主に抵抗加熱ヒーター40で形成される結晶成長界面近傍の温度分布を均一化する効果があるため、好ましくは1rpm〜20rpmの範囲で回転させた方が好ましい。しかしながら、回転させながらルツボ台20を引き下げることは必須ではなく、よって、回転引き下げを行わない場合には、回転引き下げ装置30は、回転機能を有しない引き下げ装置30として構成されてもよい。
回転引き下げ装置30は、例えば、回転機構であるモータと軸30とを有し、軸30を回転させながらルツボ台20を引き下げるように構成されてもよい。
次に、単結晶の製造方法を説明する。
本発明の実施形態に係る単結晶製造方法により育成する単結晶は、酸化物単結晶である。例えば、LN,LT,YAGなどが挙げられる。以下の説明においては、LNの単結晶の育成の実施形態について説明する。
まず、図1に示されるように、ルツボ10の底面にニオブ酸リチウムの種結晶110を配置する。種結晶110の厚みは20mm以上が好ましいが、何ら限定されるものではない。その上に、単結晶の粉末原料120であるニオブ酸リチウムを入れる。この時、抵抗加熱ヒーター40が種結晶110の上方近傍の所定位置、例えば、種結晶110の上面より0mm〜5mmなるようにルツボ10及びルツボ台20の位置を設定することが好ましい。なお、抵抗加熱ヒーター40の位置は、用途に応じて適切な位置とすることができる。また、抵抗加熱ヒーター40は吊下げ支持されているので、種結晶110をルツボ10の底面上に設置する際には、ルツボ10よりも上方に持ち上げ、種結晶110をルツボ10内に設置してからルツボ10内に配置し、その状態で、粉末原料120をルツボ10内に供給すればよい。
その後、補助ヒーター80を通電し、炉体90の全体を加熱する。この時の種結晶110の周辺の温度は、融点−100℃程度に設定する。
次に、図1に示されるように、抵抗加熱ヒーター40を通電し、抵抗加熱ヒーター40の周辺の種結晶110の上面の一部と粉末原料120の下部が融解し溶融帯130を形成する。好ましくは、溶融帯130の高さが10mm程度になるように抵抗加熱ヒーター40の出力を調整する。なお、補助ヒーター80と抵抗加熱ヒーター40は同時に通電してもよい。
抵抗加熱ヒーター40と補助ヒーター80の発熱量を一定としながら、図2に示すように回転引き下げ装置30を用いてルツボ台20及びルツボ10を徐々に引き下げていくと、下降により溶融帯130の下部が冷却されて融点温度よりも下がり、種結晶110の上面に単結晶140が成長を開始する。抵抗加熱ヒーター40は炉体90に保持されているため、ルツボ10が降下した分、それと同時に粉末原料120の一部も融解することで、溶融帯130の幅はほぼ一定に保たれながら、単結晶140が成長する。下降の速度は、例えば、1〜10mm/時の範囲に設定する。ルツボ10の下降速度が10mm/時より速いと、種結晶110上に単結晶140が育成せず、種結晶110と分離して多結晶化してしまう。下降速度が1mm/時より遅いと、単結晶140は成長するものの生産性が低くなる。好ましくは、ルツボ10及びルツボ台20の下降速度は、5mm/時程度である。
また、結晶育成時の温度勾配は、抵抗加熱ヒーター40が高く、その上下は低くなるように設定する。このように、常に同一の温度勾配のもと単結晶140を成長させることができるため、成長速度の制御が可能となる。また、溶融帯130の位置はほぼ抵抗加熱ヒーター40の位置付近となるため、結晶成長の終点の位置も把握することが可能となり、無駄な成長時間を省くことが可能となる。
原料粉末120をすべて溶融し結晶育成し、その後ルツボ10、炉体90を冷却し単結晶140の育成が完了する。
本発明の実施形態に係る単結晶製造装置のルツボ10は、上述のように育成した単結晶140と同じ形状になる。例えば、ルツボ10の内直径が100mmの場合は、単結晶140の直径は100mm程度のものが得られる。これに対してCz法で引き上げた単結晶用のルツボは、単結晶が同程度の大きさであれば、内直径が約150mmとなり、ルツボのコストを1/2程度引き下げることが可能となる。
本発明の単結晶製造方法によれば、予め設置された抵抗加熱ヒーター40とルツボ10および種結晶110の相対位置を事前に計測しておくことで、加熱により形成された溶融帯130の位置を把握することが可能となり、VB法において課題となったシーディング時の種結晶の全融解や種結晶が融けずに成長してしまうなどの不具合を回避することができる。また、抵抗加熱ヒーター40と補助ヒーター80の加熱温度を適正とすることで、溶融帯130は抵抗加熱ヒーター40の周辺のみに形成され、回転引上げ装置30を用いてルツボ10を引き下げることで成長速度の制御が容易となる。また、成長結晶140はルツボ10内で成長することで、PD法で課題となったような溶融帯130が垂れ落ちるようなことは発生しないため、温度勾配を小さくすることが可能で結晶性の良い大口径の結晶成長が可能となる。加えて、本発明の実施形態で使用する貴金属は、ルツボ10と抵抗加熱ヒーター40のみであり、同じサイズの単結晶140を成長させるにあたって使用するルツボ10のサイズは、Cz法よりも小さいため使用する貴金属の量は少量となりコスト的に有利である。
LN単結晶を育成する単結晶製造装置の実施例について以下説明する。
LN単結晶を育成する単結晶製造装置は、SUS製の円筒状の炉体内に、2インチ径、高さ300mmの白金製のルツボをルツボ台の上に配置した。ルツボ内には炉体より固定した抵抗加熱ヒーターを配置した。炉体内の外側のルツボが配置された高さの近辺には補助ヒーターを配置した。炉体およびヒーターを取り囲むように断熱材を配置した。また、ルツボの下側には回転引き下げ装置を設置した。各ヒーター装置には電力を供給する電源を設置した。
次に、実施例1として、上述の単結晶製造装置を使用して、LN単結晶を育成した。
まず、ルツボ内には、ルツボ底面に2インチ径、厚さ20mmのニオブ酸リチウムの種結晶を入れ、次にニオブ酸リチウムの粉末原料をルツボ高さ250mmまで充填した。この時、同時に抵抗加熱ヒーターを種結晶上面より2mmになるようにルツボ位置を調整した。補助ヒーターに通電し炉体を加熱し、融点より100℃低い1150℃とした。その後、抵抗加熱ヒーターも通電し抵抗加熱ヒーターによる加熱も行った。これにより、抵抗加熱ヒーター付近の粉末原料および種結晶が溶け出し、溶融帯10mmが形成された。その後、ルツボを回転引き下げ装置により、5mm/時の速度で下降させた。これにより、種結晶の表面に単結晶が成長を開始した。その後も継続することにより250mm単結晶を育成した。
その後、炉体を冷却し、成長した単結晶をルツボより取り外し、単結晶を得た。
次に、実施例2としてタンタル酸リチウム単結晶の育成を行った。粉末原料をニオブ酸リチウムからタンタル酸リチウムに及び種結晶もタンタル酸リチウムを使用した。補助ヒーターは、融点より100℃低い1550℃とした。その他は、ニオブ酸リチウムの単結晶育成と同様とした。これにより、タンタル酸リチウムの単結晶を得た。
以上、本発明の好ましい実施形態及び実施例について詳説したが、本発明は、上述した実施形態及び実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施形態及び実施例に種々の変形及び置換を加えることができる。
10 ルツボ
20 ルツボ台
30 回転引き下げ装置
40 抵抗加熱ヒーター
50 導線
60 支持碍子
70 電源
80 補助ヒーター
90 炉体
110 種結晶
120 粉末原料
130 溶融帯
140 単結晶

Claims (17)

  1. 原料を保持可能なルツボと、
    該ルツボを引き下げ可能な引き下げ装置と、
    前記ルツボ内の前記ルツボの底面よりも上方に保持されたヒーターと、を有する単結晶製造装置。
  2. 前記ヒーターは、前記ルツボの前記底面の面積の半分以上を覆う平板状の形状を有する請求項1に記載の単結晶製造装置。
  3. 前記ヒーターは、ルツボの上方から吊り下げ支持された請求項1又は2に記載の単結晶製造装置。
  4. 前記ヒーターは、電気を導通させることで前記原料の融点以上に発熱し、かつ前記原料と反応しない材料からなる請求項1乃至3のいずれか一項に記載の単結晶製造装置。
  5. 前記ヒーターの材料は、白金、白金ロジウム合金、イリジウムのいずれかから選択される請求項1乃至4のいずれか一項に記載の単結晶製造装置。
  6. 前記引き下げ装置は、前記ルツボを回転させながら引き下げ可能である請求項1乃至5のいずれか一項に記載の単結晶製造装置。
  7. 前記ルツボの底面に種結晶、該種結晶の上に粉末状の前記原料が保持されたときに、前記種結晶の上面上又は上方近傍の所定位置に前記ヒーターが配置されるように前記ルツボの高さが調整された請求項1乃至6のいずれか一項に記載の単結晶製造装置。
  8. 前記所定位置は、前記種結晶の上面から0mm〜5mm上方の位置である請求項7に記載の単結晶製造装置。
  9. 前記ルツボの周囲を取り囲む補助ヒーターを更に有する請求項1乃至8のいずれか一項に記載の単結晶製造装置。
  10. 前記原料は、リチウム(Li)粉末とタンタル(Ta)粉末とを混合してなる粉末原料である請求項1乃至9のいずれか一項に記載の単結晶製造装置。
  11. 前記原料は、リチウム(Li)粉末とニオブ(Nb)粉末とを混合してなる粉末原料である請求項1乃至9のいずれか一項に記載の単結晶製造装置。
  12. 引き下げ移動可能なルツボ内に、種結晶を供給する工程と、
    該種結晶の上面又は上方近傍の所定位置にヒーターを配置する工程と、
    前記種結晶上に粉末原料を供給する工程と、
    前記ヒーターを加熱し、前記ヒーターの周囲の前記粉末原料を溶融させる工程と、
    前記ルツボを引き下げ、前記ヒーターの下方に結晶を成長させる工程と、を有する単結晶製造方法。
  13. 前記所定位置は、前記種結晶の上面よりも0mm〜5mm上方の位置である請求項12に記載の単結晶製造方法。
  14. 前記ルツボを周囲からも加熱する請求項12又は13のいずれか一項に記載の単結晶製造方法。
  15. 前記ルツボを回転させながら引き下げる請求項12乃至14のいずれか一項に記載の単結晶製造方法。
  16. 前記粉末原料は、リチウム(Li)粉末とタンタル(Ta)粉末とを混合してなる粉末原料である請求項12乃至15のいずれか一項に記載の単結晶製造方法。
  17. 前記粉末原料は、リチウム(Li)粉末とニオブ(Nb)粉末とを混合してなる粉末原料である請求項12乃至15のいずれか一項に記載の単結晶製造方法。
JP2016225223A 2016-11-18 2016-11-18 単結晶製造装置及び単結晶製造方法 Pending JP2018080097A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016225223A JP2018080097A (ja) 2016-11-18 2016-11-18 単結晶製造装置及び単結晶製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016225223A JP2018080097A (ja) 2016-11-18 2016-11-18 単結晶製造装置及び単結晶製造方法

Publications (1)

Publication Number Publication Date
JP2018080097A true JP2018080097A (ja) 2018-05-24

Family

ID=62197510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016225223A Pending JP2018080097A (ja) 2016-11-18 2016-11-18 単結晶製造装置及び単結晶製造方法

Country Status (1)

Country Link
JP (1) JP2018080097A (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183971U (ja) * 1985-05-08 1986-11-17
JPH0259494A (ja) * 1988-08-24 1990-02-28 Nkk Corp シリコン単結晶の製造方法及び装置
JPH03193689A (ja) * 1989-12-21 1991-08-23 Hitachi Cable Ltd 化合物半導体の結晶製造方法
JPH0416589A (ja) * 1990-05-11 1992-01-21 Ishikawajima Harima Heavy Ind Co Ltd 単結晶製造装置
JP2000344595A (ja) * 1999-03-26 2000-12-12 Natl Inst For Res In Inorg Mater 酸化物単結晶の製造方法及び装置
JP2009221101A (ja) * 2004-11-16 2009-10-01 Nippon Telegr & Teleph Corp <Ntt> 結晶製造装置
JP2010120821A (ja) * 2008-11-20 2010-06-03 Fuji Electric Holdings Co Ltd 結晶成長装置及び結晶成長方法
JP2010260747A (ja) * 2009-04-30 2010-11-18 Hitachi Cable Ltd 半導体結晶の製造方法
JP2014214078A (ja) * 2013-04-30 2014-11-17 日本電信電話株式会社 結晶成長方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183971U (ja) * 1985-05-08 1986-11-17
JPH0259494A (ja) * 1988-08-24 1990-02-28 Nkk Corp シリコン単結晶の製造方法及び装置
JPH03193689A (ja) * 1989-12-21 1991-08-23 Hitachi Cable Ltd 化合物半導体の結晶製造方法
JPH0416589A (ja) * 1990-05-11 1992-01-21 Ishikawajima Harima Heavy Ind Co Ltd 単結晶製造装置
JP2000344595A (ja) * 1999-03-26 2000-12-12 Natl Inst For Res In Inorg Mater 酸化物単結晶の製造方法及び装置
JP2009221101A (ja) * 2004-11-16 2009-10-01 Nippon Telegr & Teleph Corp <Ntt> 結晶製造装置
JP2010120821A (ja) * 2008-11-20 2010-06-03 Fuji Electric Holdings Co Ltd 結晶成長装置及び結晶成長方法
JP2010260747A (ja) * 2009-04-30 2010-11-18 Hitachi Cable Ltd 半導体結晶の製造方法
JP2014214078A (ja) * 2013-04-30 2014-11-17 日本電信電話株式会社 結晶成長方法

Similar Documents

Publication Publication Date Title
KR102054184B1 (ko) 단결정 제조장치 및 단결정 제조방법
JPH092897A (ja) 多結晶半導体の製造方法および製造装置
JP4810346B2 (ja) サファイア単結晶の製造方法
US8268077B2 (en) Upper heater, single crystal production apparatus, and method for producing single crystal
JP2009007203A (ja) 酸化物単結晶育成装置及びそれを用いた酸化物単結晶の製造方法
JP5163386B2 (ja) シリコン融液形成装置
JP2019147698A (ja) 結晶育成装置及び結晶育成方法
JP2002226299A (ja) 単結晶製造装置及び単結晶製造方法
JP6853445B2 (ja) ヒータ断熱構造体および単結晶製造装置
JP6834493B2 (ja) 酸化物単結晶の育成装置及び育成方法
JP2018080097A (ja) 単結晶製造装置及び単結晶製造方法
JP3132412B2 (ja) 単結晶引き上げ方法
JP2018080098A (ja) 単結晶製造装置及び単結晶製造方法
US8691013B2 (en) Feed tool for shielding a portion of a crystal puller
JP2019218255A (ja) ニオブ酸リチウム単結晶の製造方法
JP7106978B2 (ja) 結晶育成装置及び単結晶の製造方法
JPH01317188A (ja) 半導体単結晶の製造方法及び装置
JPS61261288A (ja) シリコン単結晶引上装置
JP3900827B2 (ja) 単結晶引上用石英ルツボ、単結晶引上装置及び単結晶引上方法
JP7275674B2 (ja) ニオブ酸リチウム単結晶の育成方法
JPH11189487A (ja) 酸化物単結晶製造装置
JP2021020826A (ja) 単結晶の製造方法及び単結晶育成装置
JP2019043788A (ja) 単結晶育成方法及び単結晶育成装置
JP2018203563A (ja) 磁歪材料の製造方法
JP7259242B2 (ja) ニオブ酸リチウム単結晶の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210302