JP2018051778A - ポリオレフィン系樹脂多層管 - Google Patents

ポリオレフィン系樹脂多層管 Download PDF

Info

Publication number
JP2018051778A
JP2018051778A JP2016186843A JP2016186843A JP2018051778A JP 2018051778 A JP2018051778 A JP 2018051778A JP 2016186843 A JP2016186843 A JP 2016186843A JP 2016186843 A JP2016186843 A JP 2016186843A JP 2018051778 A JP2018051778 A JP 2018051778A
Authority
JP
Japan
Prior art keywords
layer
polyolefin
less
glass fiber
polyolefin resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016186843A
Other languages
English (en)
Other versions
JP7074421B2 (ja
Inventor
寺地 信治
Shinji Terachi
信治 寺地
三二 敏文
Toshifumi Sanji
敏文 三二
卓弥 西岡
Takuya Nishioka
卓弥 西岡
河内 斉
Hitoshi Kawauchi
斉 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2016186843A priority Critical patent/JP7074421B2/ja
Publication of JP2018051778A publication Critical patent/JP2018051778A/ja
Application granted granted Critical
Publication of JP7074421B2 publication Critical patent/JP7074421B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】高い強度と良好な引張伸びを発現する優れた性能バランスを有することで、耐震性に優れたポリオレフィン系多層管を提供する。
【解決手段】 本発明のポリオレフィン系樹脂多層管100は、軸心から外周への方向に、第1層110、第2層120および第3層310をこの順で含む。第1層110および第3層130は、ポリオレフィン系樹脂を主成分として含む。第2層120は、ポリオレフィン系樹脂とガラス繊維とを含む。第2層120中に含まれるガラス繊維の配合量は、5重量%以上18重量%以下である。成形後の第2層120中に含まれるガラス繊維の平均繊維長は150μm以上700μm以下である。第2層120は、ガラス繊維が軸心に沿う方向に配向された配向層121を含んでよい。この場合、第2層120における配向層121が占める配向面積割合は5%以上40%未満である。
【選択図】図2

Description

本発明は、ポリオレフィン系樹脂多層管に関する。より具体的には、性能バランスに優れ、特に強度と耐震性とのバランスが取れたポリオレフィン系樹脂多層管に関する。
近年、ポリオレフィン系樹脂管は、ガス配管および配水管を主体に展開されてきている。このような動向は、ポリオレフィン系樹脂管が軽量であり、施工性が金属管に比較して格段に良好であることに加え、優れた管性能と柔軟性により、管埋設時の耐震性に優れるという特徴が市場に受け入れられた結果であると考えられる。
しかし、オレフィン系樹脂管は、単層で機能化することに限界があるため、これまで様々な目的を達成するために、複数の層が積層された多層管が開発されている。
たとえば、特開2006−327154号公報(特許文献1)には、地中の有機溶剤および油類等の有害物質が浸透することを確実に防止できることを目的としたポリオレフィン樹脂管埋設水道配管として、ポリオレフィン樹脂本配管の外周表面に、ポリエステル繊維、ポリアミド繊維、ポリプロピレン繊維の繊維からなる不織布、織布、フェルトを多孔質基材としてコンパウンドを含浸させたテープ状の保護層を施工したポリオレフィン樹脂管が開示されている。
また、特開2007−216555号公報(特許文献2)には、強度および作業性に優れることを目的とした繊維強化合成樹脂パイプとして、内周側から、有機不織布層、ガラスクロス層、横巻繊維層、縦方向繊維層、横巻繊維層、有機不織布層の順に六層の繊維強化樹脂層が備えられた繊維強化合成樹脂パイプが開示されている。
特開2006−327154号公報 特開2007−216555号公報
しかしながら、これまでのポリオレフィン系多層管では、強度を向上することは可能であるものの、複層化することにより、柔軟性(特に引張伸び)が大きく損なわれる。このため、耐震性を確保することが困難であった。
そこで本発明の目的は、高い強度と良好な引張伸びを発現する優れた性能バランスを有することで、耐震性に優れたポリオレフィン系多層管を提供することにある。
上記本発明の目的を達成するため、本発明は以下の発明を含む。
(1)
本発明のポリオレフィン系樹脂多層管は、軸心から外周への方向に、第1層、第2層および第3層をこの順で含む。
第1層および第3層は、ポリオレフィン系樹脂を主成分として含む。
第2層は、ポリオレフィン系樹脂とガラス繊維とを含む。第2層中に含まれるガラス繊維の配合量は、5重量%以上18重量%以下である。成形後の第2層中に含まれるガラス繊維の平均繊維長は150μm以上700μm以下である。第2層は、ガラス繊維が軸心に沿う方向に配向された配向層を含む。この場合、第2層における配向層が占める配向面積割合は5%以上40%未満である。
「ガラス繊維が軸心に沿う方向に配向された配向層」とは、ガラス繊維の成形後の平均繊維長の10%以上の長さを有する繊維のうち、少なくとも50%(本数基準)、好ましくは少なくとも70%のものの方向が、当該軸心方向に対して±15°以内である層をいう。
「配向面積割合」とは、軸心を含む面で多層管を切断した場合の断面において、第2層の全体が占める断面積に対する配向層が占める断面積の割合をいう。
このように本発明のポリオレフィン系樹脂多層管は、第2層を繊維強化樹脂層として構成するとともに、ガラス繊維の平均繊維長(成形後)およびガラス繊維の配合量を特定範囲とすることによって、多層管の性能バランスが良好となる。なお、性能バランスが良好であるとは、少なくとも、強度および引張伸びの両方が良好に発現していることをいう。
さらに、第2層中に軸方向の配向層を含ませる場合は、配向の効果として低線膨張性および剛性の向上効果を得ることができるとともに、当該配向層が占める配向面積割合を特定範囲とすることで引張伸びも良好に発現させることができる。
(2)
上記(1)のポリオレフィン系樹脂多層管は、第2層が相溶化剤として酸変性ポリオレフィン系樹脂をさらに含んでよい。
これによって、たとえば常温環境下での耐圧性が向上し、さらに性能バランスが良好となる。
(3)
上記(2)のポリオレフィン系樹脂多層管は、第2層における酸変性ポリオレフィン系樹脂の含有量が、0.3重量%以上10重量%以下であってよい。
これによって、常温環境下における耐圧性向上効果をより効果的に得ることができる。
(4)
上記(1)から(3)のいずれかのポリオレフィン系樹脂多層管は、第1層の相対厚みを1とした場合、第2層の相対厚みが0.5以上2以下であり、第3層の相対厚みが0.5以上1.5以下であってよい。
これによって、第1層および第3層の表面平滑性、耐圧性および引張伸びが良好に得られるとともに、第2層のガラス繊維強化層による強度向上効果も良好に得られ、耐クリープ性を含めてさらに性能バランスが良好となる。
本発明によれば、高い強度と良好な引張伸びを発現する優れた性能バランスを有することで、耐震性に優れたポリオレフィン系多層管が提供される。
本発明の一実施形態の多層管を、軸心に垂直な面で切断した場合の模式的断面図である。 図1のA−A線で軸心方向に切断した場合の模式的拡大断面図である。
以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の要素には同一の符号を付しており、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
[1.多層管]
[1−1.基本構成]
図1は、本発明の一実施形態の多層管を、軸心に垂直な面で切断した場合の模式的断面図である。図2は、図1のA−A線で軸心方向に切断した場合(つまり軸心を含む面で切断した場合)の模式的拡大断面図である。
図1に示す多層管100は、冷温媒管、冷温水管、冷水管、温水管、上下水道管、消火管などの配水管などとして用いられる配管である。多層管100は、軸心Oから外周の方向に、第1層110、第2層120および第3層130が積層されている。第1層110、第2層120および第3層130は、たとえば共押出層であってよい。多層管100は、さらに1または2以上、好ましくは1または2の他の層を含んでいてもよい。第1層110と第2層120との間、および第2層120と第3層130との間の一方または両方には、接着剤層が他の層として介在してもよい。
[1−2.第1層および第3層]
第1層110および第3層130は、いずれも同じポリオレフィン系樹脂を主成分として構成される樹脂層である。したがって、第2層120の両面で機械的特性が揃うとともに、多層管100の製造効率も良い。しかしながら、本発明は、第1層110と第3層130とが互いに異なるポリオレフィン系樹脂から構成されることを除外するものではない。
ポリオレフィン系樹脂としては特に限定されない。たとえば、ポリエチレン、ポリプロピレン、ポリブテン、エチレン−酢酸ビニル共重合体及びエチレン−α−オレフィン共重合体等が挙げられる。成形体の強度、および引張伸び率を向上させる観点からは、ポリエチレンまたはポリプロピレンであることが好ましい。
さらに、ポリエチレン(PE)としては、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)及び高密度ポリエチレン(HDPE)等が挙げられる。ポリプロピレン(PP)としては、ホモPP、ブロックPP及びランダムPP等が挙げられる。この中でも、成形体の剛性、強度、および引張伸び率などをバランスよく発現させる観点からランダムPPであることが好ましい。ポリブテンとしては、ポリブテン−1等が挙げられる。エチレン−α−オレフィン共重合体は、エチレンに対して、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン又は1−オクテン等のα−オレフィンを数モル%程度の割合で共重合させた共重合体であることが好ましい。
これらのポリオレフィン系樹脂は、1種が単独で用いられてもよく、2種以上が併用されてもよい。
第1層110および第3層130は、実質的に樹脂からなり、したがって、後述の第2層120のような繊維を実質的に含まない。繊維を実質的に含まないとは、繊維を全く含まないことが好ましいが、たとえば製造中に微量(後述の第2層120における繊維によって向上される強度および剛性といった特性の発現が認められない程度)で混入しうる繊維を許容する意である。内層である第1層110は、多層管100の内部を流れる水などの媒体に、第2層120に含まれる繊維が混入しないように第2層120の内周面をコートする。また、第3層130は、多層管100の外表面を平滑にすることができる。
上記の他、第1層110および第3層130には、後述の第2層120と同様に相溶化剤およびその他の成分(繊維を除く)を含んでいてもよい。
[1−3.第2層]
第2層120は、マトリックス樹脂と繊維とを含む繊維強化樹脂層である。第2層120は、配向層121および無配向層122を含んで構成される。
[1−3−1.マトリックス樹脂]
第2層120のマトリックス樹脂は、ポリオレフィン系樹脂である。ポリオレフィン系樹脂の具体例としては、第1層110および第3層130の構成樹脂として挙げたものと同様である。第2層120のマトリックス樹脂は、第1層110および第2層120を構成する樹脂と同じであっても異なっていてもよいが、第1層110、第2層120および第3層130の全ての層に同じ樹脂を用いる場合、隣接する層が互いになじみやすく、界面剥離を効果的に抑制することができる点で好ましい。
第2層120は、繊維でマトリックス樹脂を強化することにより、マトリックス樹脂の引張強度および剛性を向上させる。より具体的には、耐圧性および初期の破壊水圧の観点からガラス繊維が用いられる。
[1−3−2.ガラス繊維の含有量]
第2層120中のガラス繊維の含有量は、強度、剛性および引張伸びを良好に得る観点から5%以上であり、好ましくは10%以上である。当該含有量の範囲内の上限値は、引張伸びを良好に得る観点から18%であり、好ましくは15%である。
[1−3−3.ガラス繊維の配向]
配向層121では、繊維が軸心Oに沿う方向に配向している。具体的には、繊維の平均繊維長の10%以上の長さを有する繊維のうち、少なくとも50%、好ましくは少なくとも70%のものの方向が、当該軸心O方向に対して±15°以内に収まっている。ガラス繊維をこのように配向させることによって、多層管100に低線膨張性および剛性の向上効果が付与される。
さらに、第2層120における配向面積割合(図2の断面において、第2層120全体の断面積に対する配向層121の面積の割合)は、多層管100に引張伸びを付与する観点で5%以上40%未満である。多層管100の引張伸びをより良好に得る観点からは、好ましくは5%以上35%以下である。耐圧性能をより良好に得る観点からは、5%以上20%以下であることが好ましい。
上記の配向面積割合の範囲外の60%以上に相当する部分、好ましくは65%超に相当する部分は無配向層122を成している。無配向層122は、本実施形態では第1層110側に存在するが、第1層110および第3層130の両側に存在してもよい。
無配向層122では、配向層121におけるようなガラス繊維の配向はない。具体的には、無配向層122におけるガラス繊維の繊維方向はランダムであり任意の方向である。このため、相対的に繊維方向が軸心O方向である繊維が配向層121に比べて有意に少ない。このような無配向層122を存在させることは、多層管100に耐圧性能を付与する点で好ましい。
なお、繊維の配向態様は、たとえば走査電子顕微鏡を用いて断面を観察することによって確認することができる。観察条件としては特に限定されないが、日本電子社製走査電子顕微鏡JSM−6701Fを用い、蒸着厚み10nm、加速電圧15kV、倍率25倍で観察してよい。これによって、配向層121の境界、たとえば配向層121と無配向層122との境界を目視で確認することができる。
[1−3−4.ガラス繊維の平均繊維長(成形後)]
ガラス繊維は、短繊維すなわち不連続長繊維である。成形後の第2層120中に実際に含まれるガラス繊維の平均繊維長は、配向の効果(低線膨張性および剛性の向上効果)を効率的に得る観点から150μm以上であり、配向の効果をより効率的に得る観点から、好ましくは200μm以上である。当該平均繊維長の範囲内の上限値は、成形性の観点から700μmであり、より良好な成形性を得る観点から、好ましくは650μmである。
成形後の第2層120中に含まれるガラス繊維の平均繊維長は、成形後の第2層120の一部を切り出して採取し、樹脂部分を取り除き、残ったガラス繊維の長さを測定し、その平均値を求めることによって導出される。より具体的には、任意に選出したガラス繊維500本の平均値であってよい。樹脂部分を取り除く手段としては特に限定されず、燃焼させてもよいし、有機溶媒等の樹脂に対する腐食性を有する液体に溶解させてもよい。ガラス繊維の選出においては、マイクロスコープを用いることができる。
[1−3−5.ガラス繊維の平均繊維径]
ガラス繊維の平均繊維径は、たとえば1μm以上30μm以下であってよい。繊維径が上記下限値以上であることは、強度の点で好ましい。繊維径が上記上限値以下であることにより、繊維の配向のコントロールが容易である点で好ましい。これらの効果を一層効果的に得る観点からは、ガラス繊維の繊維径は好ましくは5μm以上20μm以下、より好ましくは5μm以上15μm以下である。なお、平均繊維径とは、第2層120に含まれる複数(たとえば500本)の繊維それぞれの最大径の平均値である。
[1−3−6.ガラス繊維の表面処理および収束剤]
ガラス繊維は表面処理されていてもかまわない。表面処理剤としては、メタクリルシラン、アクリルシラン、アミノシラン、イミダゾールシラン、ビニルシラン及びエポキシシラン等が挙げられる。この中でも、アミノシランが好ましい。
ガラス繊維は、ポリオレフィン収束剤により収束されたものであってもよい。ポリオレフィン収束剤は、ガラス繊維を収束させることができれば特に限定されないが、具体的にはポリオレフィンである。当該ポリオレフィンは、マトリックス樹脂と同様のものであってもよい。つまり、マトリックス樹脂がポリエチレンであれば、収束剤もポリエチレンであってよい。さらに、収束剤としての当該ポリオレフィンには、変性ポリオレフィンが含まれる。ポリオレフィン収束剤の具体例としては、無水マレイン酸変性ポリオレフィン、およびシラン変性ポリオレフィン等が挙げられる。第2層120に良好な強度を具備させる観点からは、ポリオレフィン収束剤は無水マレイン酸変性ポリオレフィンであることが好ましい。
ガラス繊維を良好に収束させる観点からは、ポリオレフィン収束剤の密度は、好ましくは0.85g/cm以上、好ましくは1.1g/cm以下である。
ガラス繊維を良好に収束させる観点からは、ポリオレフィン収束剤のMFR(メルトマスフローレイト)は好ましくは0.01g/10分以上、好ましくは16g/10分以下である。上記MFRは、JIS K7210に基づいて、温度190℃、荷重2.16kgfの条件で測定される値である(以下において同様)。
ガラス繊維をポリオレフィン収束剤により収束させる方法としては、どのような方法でもよい。マトリックス樹脂とポリオレフィン収束剤との合計100重量部に対する繊維の量は、好ましくは6重量部以上、より好ましくは12重量部以上、更に好ましくは19重量部以上、好ましくは533重量部以下、より好ましくは171重量部以下、更に好ましくは138重量部以下である。繊維の量を上記の範囲とすることは、成形体の強度および寸法安定性を良好に得る点で好ましい。
[1−3−7.相溶化剤]
第2層120には相溶化剤が含まれてよい。相溶化剤としては、たとえば、変性ポリオレフィンおよび塩素化ポリオレフィンなどが挙げられる。変性ポリオレフィンとしては、たとえば、酸変性ポリオレフィンおよびシラン変性ポリオレフィンなどが挙げられる。変性ポリオレフィンの変性態様としては、グラフトおよび共重合による変性が挙げられる。酸変性ポリオレフィンは、ポリオレフィン系樹脂が不飽和カルボン酸またはその誘導体によって変性されたものである。不飽和カルボン酸としては、たとえば、マレイン酸、ナジック酸、フマル酸、イタコン酸、シトラコン酸、およびメサコン酸などの不飽和ジカルボン酸、ならびに、アクリル酸、メタクリル酸、クロトン酸、ソルビン酸、アンゲリカ酸、およびフタル酸等が挙げられる。また、その誘導体としては、酸無水物、エステル、アミド、イミド、金属塩等が挙げられ、例えば、無水マレイン酸、無水ナジック酸、無水イタコン酸、無水シトラコン酸、無水フタル酸、アクリル酸メチル、メタクル酸メチル、アクリル酸エチル、アクリル酸ブチル、マレイン酸モノエチルエステル、アクリルアミド、マレイン酸モノアミド、マレイミド、N−ブチルマレイミド、アクリル酸ナトリウム、メタクリル酸ナトリウム等が挙げられる。これらの中でも、不飽和ジカルボン酸及びその誘導体が好ましく、特に無水マレイン酸および無水フタル酸が好ましく挙げられる。
第2層120に強度を具備させる観点からは、相溶化剤は無水マレイン酸変性ポリオレフィンであることが好ましい。相溶化剤は、1種を単独で用いても良いし、2種以上を併用してもよい。
なお、本発明において、相溶化剤としての変性ポリオレフィンは、上述の収束剤としての変性ポリオレフィンとは構成上区別される。第2層120に含まれる相溶化剤の量は、第2層120を製造するための樹脂組成物全体を100重量%として、たとえば0.3重量%以上10重量%以下、好ましくは0.5重量%以上8重量%以下である。相溶化剤の量が上記下限値以上であることは、低線膨張性能および剛性を維持しつつ強度(特に常温での引張強度)を向上させる点で好ましく、上記上限値以下であることは、強度向上効果を効率的に得る点で好ましい。
[1−3−8.配向層と無配向層]
多層管100において、第2層120を構成する配向層121と無配向層122の数は特に限定されない。すなわち、第2層120は、配向層121および無配向層122のいずれかまたは両方を複数含み、配向層121と無配向層122とが交互に積層されるように構成されていてもよい。配向層121が複数含まれる場合、図2に相当する断面において、配向層121の断面積の合計が、第2層120全体の断面積に対して上記の配向面積割合5%以上40%未満、好ましくは5%以上35%以下を占めるように構成されてよい。
さらに、第1層110に最も近い層を配向層121および無配向層122のいずれとするか、および、第3層130に最も近い層を配向層121および無配向層122のいずれとするかについても、任意である。
[1−3−9.その他]
第2層120には、強度、剛性および引張伸びの性能を確保する範囲で、上述以外の他の成分が含まれてよい。当該他の成分は、第2層120を製造するための樹脂組成物からガラス繊維を除いた成分を100重量部とすると、ポリオレフィン系樹脂の含有量が、好ましくは80重量部以上、より好ましくは90重量部以上、更に好ましくは95重量部以上となる量で用いられてよい。ポリオレフィン系樹脂の含有量の範囲に含まれる上限値は、99.99重量%、または99.9重量%であってもよい。
他の成分の例として、マトリックス樹脂としてのポリオレフィン系樹脂以外の他の熱可塑性樹脂が挙げられる。但しこの場合、熱可塑性樹脂は副成分であり、その含有量は、ポリオレフィン系樹脂の含有量よりも少ない。
他の成分の他の例として、酸化防止剤が挙げられる。酸化防止剤は、成形体の高温下での耐久性をより一層高めたり、銅などの金属による耐久性の低下を抑えたりする観点で用いることができる。
上記酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤、アミン系酸化防止剤及びラクトン系酸化防止剤等が挙げられる。酸化防止剤は、1種が単独で用いられてもよく、2種以上が併用されてもよい。
フェノール系酸化防止剤は、ヒンダードフェノール系酸化防止剤であることが好ましい。ヒンダードフェノール系酸化防止剤としては、ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、チオジエチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、N,N’−ヘキサン−1,6−ジイルビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオンアミド]、ベンゼンプロパン酸、3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシ、C7−C9側鎖アルキルエステル、3,3’,3’’,5,5’,5’’−ヘキサ−tert−ブチル−a,a’,a’’−(メシチレン−2,4,6−トリイル)トリ−p−クレゾール、4,6−ビス(ドデシルチオメチル)−o−クレゾール、4,6−ビス(オクチルチオメチル)−o―クレゾール、エチレンビス(オキシエチレン)ビス[3−(5−tert―ブチル−4−ヒドロキシ−m−トリル)プロピオネート]、ヘキサメチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、1,3,5−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン、1,3,5−トリス[(4−tert−ブチル−3−ヒドロキシ−2,6−キシリル)メチル]−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン、2,6−ジ−tert−ブチル−4−[4,6−ビス(オクチルチオ)−1,3,5−トリアジン2−イルアミノ]フェノール、及びジエチル[{3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル}メチル]ホスフォネート等が挙げられる。
リン系酸化防止剤としては、トリス(2,4−ジ−tert−ブチルフェニル)フォスファイト、トリス[2−[[2,4,8,10−テトラ−tert−ブチルジベンゾ[d,f][1,3,2]ジオキサフォスフェフィン−6−イル]オキシ]エチル]アミン、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジフォスファイト、ビス[2,4−ビス(1,1−ジメチルエチル)−6−メチルフェニル]エチルエステル亜リン酸、及びテトラキス(2,4−ジ−tert−ブチルフェニル)(1,1−ビフェニル)−4,4’−ジイルビスホスフォナイト等が挙げられる。
ラクトン系酸化防止剤としては、3−ヒドロキシ−5,7−ジ−tert−ブチル−フラン−2−オンとo−キシレンとの反応生成物等が挙げられる。
成形体の高温下での耐久性を一層高めたり、銅などの金属による耐久性の低下を抑えたりする観点からは、上記酸化防止剤は、3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオン酸ステアリル又は2,4,6−トリス(3’,5’−ジ−tert−ブチル−4’−ヒドロキシベンシル)メシチレンであることが好ましく、上記ポリオレフィン系樹脂組成物は、3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオン酸ステアリル又は2,4,6−トリス(3’,5’−ジ−tert−ブチル−4’−ヒドロキシベンシル)メシチレンを含むことが好ましい。
酸化防止剤の含有量は、第2層120を製造する樹脂組成物を100重量%とすると、好ましくは0.01重量%以上、より好ましくは0.1重量%以上、好ましくは5重量%以下、より好ましくは1重量%以下、更に好ましくは0.5重量%以下である。酸化防止剤の含有量が上記下限以上であることにより、成形体の高温下での耐久性がより一層高くなり、上記上限を超える含有量では、成形体の高温下での耐久性は変わらないため、上記上限以下とすることにより、過剰な酸化防止剤の使用が抑えられる。
第2層120には、必要に応じて、架橋剤、銅害防止剤、滑剤、光安定剤および顔料等の添加剤を含んでいてもよい。
架橋剤としては、有機過酸化物等が挙げられる。有機過酸化物としては、ジクミルパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、及び2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン等が挙げられる。架橋剤は、1種が単独で用いられてもよく、2種以上が併用されてもよい。
有機過酸化物の使用量は特に限定されない。たとえば、マトリックス樹脂であるポリオレフィン系樹脂100重量部に対して、好ましくは0.01重量部以上、好ましくは2重量部以下、より好ましくは1重量部以下である。
滑剤としては特に限定されず、例えば、フッ素系滑剤、パラフィンワックス系滑剤及びステアリン酸系滑剤等が挙げられる。上記滑剤は、1種が単独で用いられてもよく、2種以上が併用されてもよい。
滑剤の使用量は特に限定されない。たとえば、マトリックス樹脂であるポリオレフィン系樹脂100重量部に対して、好ましくは0.01重量部以上、好ましくは3重量部以下である。
光安定剤としては特に限定されず、例えば、サリチル酸エステル系、ベンゾフェノン系、ベンゾトリアゾール系及びシアノアクリレート系等の紫外線吸収剤、並びにヒンダードアミン系の光安定剤等が挙げられる。光安定剤は、1種が単独で用いられてもよく、2種以上が併用されてもよい。
顔料としては特に限定されず、例えば、アゾ系、フタロシアニン系、スレン系及び染料レーキ系等の有機顔料、並びに酸化物系、クロム酸モリブデン系、硫化物−セレン化物系及びフェロシアン化物系等の無機顔料等が挙げられる。上記顔料は、1種が単独で用いられてもよく、2種以上が併用されてもよい。
[1−4.層厚比]
多層管100の第1層110、第2層120および第3層130の層厚の比率は、第1層の相対厚みを1とした場合、第2層の厚みが0.5以上2以下、好ましくは0.5以上1.5以下、第3層の相対厚みが0.5以上1.5以下、好ましくは0.7以上1.2以下となるように設計することができる。各層の厚みをこのような比率とすることによって、第1層および第3層による良好な表面平滑性および耐圧性を得るとともに、第2層の配向の配向の効果と良好な引張伸びに基づく耐震性とが良好に得られ、良好な耐クリープ性を含めたさらに好ましい性能バランスを得ることができる。
なお、第2層120の層厚は、管口径によってさまざまに異なるが、一例として、0.5mm以上20mm以下の範囲内であってもよい。しかしながら、本発明では、第2層120の層厚がこの範囲を超えてもよい。
[2.製造方法]
多層管100は、第1層110および第3層130をそれぞれ製造するための樹脂組成物と、第2層120を製造するための樹脂組成物とを調製し、成形機を用いて成形することができる。成形機としては特に限定されず、単軸押出機、二軸異方向パラレル押出機、二軸異方向コニカル押出機、及び二軸同方向押出機等が挙げられる。
第2層120を製造するための樹脂組成物の調製においては、マトリックス樹脂であるポリオレフィン系樹脂とガラス繊維とが混練される。マトリックス樹脂となるポリオレフィン系樹脂のMFRは、混練時において、0.1g/10分以上10g/10分以下、好ましくは0.3g/10分以上5g/10分以下(条件:230℃、荷重2.16kg)であってよい。マトリックス樹脂のMFRを上記下限値以上とすることは、成形後のガラス繊維の平均繊維長が150μm以上のものを得やすい点で好ましく、MFRを上記上限値以下とすることは、成形後の形状保持や成形のしやすさの点で好ましい。
成形後のガラス繊維の平均繊維長を700μmにより近づける(つまり長くなるように調整する)には、ガラス繊維をサイドフィード方式で添加することが好ましい。
成形後のガラス繊維の平均繊維長を150μmにより近づける(つまり短くなるように調整する)には、マトリックス樹脂のMFRが小さくなるように調整することができる。
添加するガラス繊維(成形前)の平均繊維長は、たとえば1.0mm以上5.0mm以下であってよい。平均繊維長が上記下限値以上であることは、成形後のガラス繊維の平均繊維長が150μm以上のものを得やすい点で好ましく、上記上限値以下であることは、成形後のガラス繊維の平均繊維長が700μm以下のものを得やすい点で好ましい。
添加するガラス繊維の平均繊維径は、たとえば1μm以上30μm以下であってよい。繊維径が上記下限値以上であることは、強度発現の点で好ましい。繊維径が上記上限値以下であることにより、繊維の配向のコントロールが容易である点で好ましい。これらの効果を一層効果的に得る観点からは、ガラス繊維の繊維径は好ましくは5μm以上20μm以下、より好ましくは5μm以上15μm以下である。なお、平均繊維径とは、第2層120に含まれる複数(たとえば500本)の繊維それぞれの最大径の平均値である。
ポリオレフィン系樹脂とガラス繊維との混練においては、ガラス繊維を切断し平均繊維長が150μm以上好ましくは200μm以上、700μm以下好ましくは650μm以下のガラス繊維断片を生じさせる。
成形機を用いて成形する際、賦形する金型および樹脂温度等も、特に限定されない。第2層は、ガラス繊維を含む樹脂組成物を金型内の多層化する直前で流路をいったん絞りさらに拡大することにより、ガラス繊維を軸方向に配向させすぎないように賦形することによって製造することができる。
以下、実施例を挙げ、本発明をさらに詳細に説明するが、本発明は以下の発明に限定されるものではない。
[実施例1]
(多層管の製造)
多層管100を以下のように製造した。
第1層110および第3層130を製造するための樹脂組成物として高密度ポリエチレン(PE100相当、密度0.94g/cm)を用意した。第2層120を製造するための樹脂組成物として、上記と同じ高密度ポリエチレン樹脂の樹脂組成物にガラス繊維(チョップドストランド形状、平均繊維長3mm、平均繊維径13μm、オレフィン収束剤、シラン表面処理品)を10重量%(第2層120を製造するための樹脂組成物全体に対する量)および相溶化剤(無水マレイン酸変性ポリエチレン、融点130℃、密度0.96g/cm)1重量%をブレンドした樹脂組成物を用意した。樹脂組成物は、二軸同方向押出機を用いて混練し、コンパウンドとして調製した。
第1層110および第3層130を製造するための樹脂組成物および第2層120を製造するための樹脂組成物を用いて、共押出により成形を行った。具体的には、3つのシングル押出機(第1層110および第3層130用のシングル押出機のスクリュー径はいずれも40mm、第2層用のシングル押出機のスクリュー径は75mm)を使用して押出し温度200℃で押出し、三層管型の金型を使用して賦形した。ただし、三層管型の第2層の流路は第1層と3層が合流する前に2mmから6mmまで拡大された部分を経る形態で構成されている。
得られた多層管100の内径は51mm、外径は63mm、第1層110、第2層120、第3層130の厚みの比は、1:1:1であった。
(成形後のガラス繊維の繊維長の測定)
多層管100の第2層120から約0.3gの試験片を採取し、500℃で1時間燃焼させた。キーエンス社製マイクロスコープを用い、残ったガラス繊維500本の長さを測定した結果、平均繊維長243μmであった。
[実施例2]
第2層120を製造するための樹脂組成物中のガラス繊維のブレンド量を15重量%としたことを除いて、実施例1と同様に多層管を製造し、成形後のガラス繊維の繊維長を測定した。その結果、平均繊維長221μmであった。
[実施例3]
第2層120を製造するための樹脂組成物中の相溶化剤のブレンド量を5重量%としたことを除いて、実施例1と同様に多層管を製造し、成形後のガラス繊維の繊維長を測定した。その結果、平均繊維長240μmであった。
[実施例4]
多層管の第1層110、第2層120、第3層130の厚みの比を1:0.5:1としたことを除いて、実施例1と同様に多層管を製造し、成形後のガラス繊維の繊維長を測定した。その結果、平均繊維長238μmであった。
[実施例5]
第2層120を製造するための樹脂組成物中の相溶化剤のブレンド量を10重量%としたことを除いて、実施例1と同様に多層管を製造し、成形後のガラス繊維の繊維長を測定した。その結果、平均繊維長233μmであった。
[実施例6]
第2層120を製造するための樹脂組成物中のガラス繊維のブレンド量を5重量%とし、かつ、多層管の第1層110、第2層120、第3層130の厚みの比を1:3:1としたことを除いて、実施例1と同様に多層管を製造し、成形後のガラス繊維の繊維長を測定した。その結果、実施例1同様、平均繊維長240μmであった。
[実施例7]
第2層120を製造するための樹脂組成物中の相溶化剤のブレンド量を15重量%としたことを除いて、実施例1と同様に多層管を製造し、成形後のガラス繊維の繊維長を測定した。その結果、平均繊維長240μmであった。
[比較例1]
第2層120を製造するための樹脂組成物中のガラス繊維のブレンド量を25重量%としたことを除いて、実施例1と同様に多層管を製造し、成形後のガラス繊維の繊維長を測定した。その結果、平均繊維長208μmであった。
[比較例2]
三層管型の第2層の流路は第1層と3層が合流する前に2mmから6mmまで拡大された部分を経る形態で構成されていない金型で成形したことを除いて、実施例1と同様に多層管を製造し、成形後のガラス繊維の繊維長を測定した。その結果、実施例1同様、平均繊維長248μmであった。
[比較例3]
第2層120を製造するための樹脂組成物にガラス繊維を配合しなかったことを除いて実施例1と同様に製管した。つまり、第1層から第3層はいずれも同じ樹脂組成物から構成され、実質的には単層管が製造された。
[比較例4]
樹脂組成物を二軸同方向押出機を用いて混練した時にスクリュー回転数を3倍まで上げてコンパウンド調製したことを除いて、実施例1と同様に多層管を製造し、成形後のガラス繊維の繊維長を測定した。その結果、平均繊維長120μmであった。
[性能試験]
実施例1から実施例7および比較例1から比較例4で得られた管について、以下の性能試験を行った。
[a.引張強度・伸び]
引張降伏強度および引張破断伸びは、JIS K7161(1994)に基づき、以下の条件で試験した。
試験片:JIS K7162(1994)タイプ1B形(打ち抜き加工)
試験温度:23℃
試験速度:50mm/min
試験機:テンシロン(UCT−5T オリエンテック社製)
ただし、試験片は軸方向および周方向に打ち抜いて測定した。周方向を打ち抜く場合は、試作管を200℃で10min間加熱後にハンドプレス機でプレスして平板形状にし、冷却後に打ち抜いた。
[b.配向面積割合]
多層管の、軸心を含む面で厚肉を切断した断面を、日本電子社製走査電子顕微鏡JSM−671Fを用い、蒸着厚み10nm、加速電圧15kV、倍率25倍の条件で目視観察し、第2層の断面積に対する配向層の合計断面積の割合を求めた。
[c.耐圧性測定]
PWA(建築設備用ポリエチレンパイプシステム研究会企画)001規格に準拠して破壊水圧評価を行った。つまり、長さ1000mmの多層管の試験片を切り取り、その内部に常温(25℃)の水を充填するとともに一定速度で水を入れ続けることにより加圧し、多層管が破裂する時の水圧を求めた。
[d.線膨張係数測定]
多層管の線膨張係数を次のようにして求めた。多層管を1000mmの長さに切断し、60℃(Thot)に設定した恒温槽にて24時間養生した。養生後、多層管の長さ(Lhot)を測定した。その後、同じ多層管を、5℃(Tcool)に設定した恒温槽にて24時間養生し、多層配管の長さ(Lcool)を測定した。得られた値を下記の式1に代入し、線膨張係数を決定した。
上記の試験結果を、各実施例および各比較例の構成要素とともに下記表1および表2に示す。これらの表に示されるように、実施例1から実施例7では、高い強度と良好な引張伸びを発現する優れた性能バランスを有する多層管が得られた。耐圧性を向上させるためには周方向の引張降伏強度を向上させることが有効であり、耐震性を向上させるためには軸方向の引張破断伸びを向上させることが有効であった。
本発明の好ましい実施形態は上記の通りであるが、本発明はそれらのみに限定されるものではなく、本発明の趣旨から逸脱することのない様々な実施形態が他になされる。
100 多層管
110 第1層
120 第2層
121 配向層
130 第3層

Claims (4)

  1. 軸心から外周への方向に、第1層、第2層および第3層をこの順で含み、
    前記第1層および前記第3層がポリオレフィン系樹脂を主成分として含み、
    前記第2層が、ポリオレフィン系樹脂とガラス繊維とを含み、前記ガラス繊維の配合量が5重量%以上18重量%以下であり、成形後の前記第2層中に含まれる前記ガラス繊維の平均繊維長が150μm以上700μm以下であり、かつ、
    前記第2層が、前記ガラス繊維が前記軸心に沿う方向に配向された配向層を5%以上40%未満の配向面積割合になるように含む、ポリオレフィン系樹脂多層管。
  2. 前記第2層が相溶化剤として酸変性ポリオレフィン系樹脂をさらに含む、請求項1に記載のポリオレフィン系樹脂多層管。
  3. 前記第2層における前記酸変性ポリオレフィン系樹脂の含有量が、0.3重量%以上10重量%以下である、請求項2に記載のポリオレフィン系樹脂多層管。
  4. 前記第1層の相対厚みを1とした場合、前記第2層の相対厚みが0.5以上2以下であり、前記第3層の相対厚みが0.5以上1.5以下である、請求項1から3のいずれか1項に記載のポリオレフィン系樹脂多層管。
JP2016186843A 2016-09-26 2016-09-26 ポリオレフィン系樹脂多層管 Active JP7074421B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016186843A JP7074421B2 (ja) 2016-09-26 2016-09-26 ポリオレフィン系樹脂多層管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016186843A JP7074421B2 (ja) 2016-09-26 2016-09-26 ポリオレフィン系樹脂多層管

Publications (2)

Publication Number Publication Date
JP2018051778A true JP2018051778A (ja) 2018-04-05
JP7074421B2 JP7074421B2 (ja) 2022-05-24

Family

ID=61834737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016186843A Active JP7074421B2 (ja) 2016-09-26 2016-09-26 ポリオレフィン系樹脂多層管

Country Status (1)

Country Link
JP (1) JP7074421B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021021450A (ja) * 2019-07-29 2021-02-18 積水化学工業株式会社 配管
JP2021021451A (ja) * 2019-07-29 2021-02-18 積水化学工業株式会社 配管

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179538A (ja) * 1990-11-13 1992-06-26 Bando Chem Ind Ltd 短繊維混入ホース状物の製造方法
JPH09309140A (ja) * 1996-05-23 1997-12-02 Sekisui Chem Co Ltd 管状体の製造方法
JPH10180838A (ja) * 1996-12-26 1998-07-07 Sekisui Chem Co Ltd 管状体の製造方法
JP2016155363A (ja) * 2015-02-20 2016-09-01 積水化学工業株式会社 多層管材

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304463A (ja) 2000-04-27 2001-10-31 Showa Denko Kk 繊維強化樹脂製パイプ及び繊維強化多層樹脂製パイプ、ならびにその製造方法
CA2442359C (en) 2001-04-11 2011-04-05 Rapid Biosensor Systems Limited Optical biological measurement system using scraping means to collect the sample

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179538A (ja) * 1990-11-13 1992-06-26 Bando Chem Ind Ltd 短繊維混入ホース状物の製造方法
JPH09309140A (ja) * 1996-05-23 1997-12-02 Sekisui Chem Co Ltd 管状体の製造方法
JPH10180838A (ja) * 1996-12-26 1998-07-07 Sekisui Chem Co Ltd 管状体の製造方法
JP2016155363A (ja) * 2015-02-20 2016-09-01 積水化学工業株式会社 多層管材

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021021450A (ja) * 2019-07-29 2021-02-18 積水化学工業株式会社 配管
JP2021021451A (ja) * 2019-07-29 2021-02-18 積水化学工業株式会社 配管
JP7339803B2 (ja) 2019-07-29 2023-09-06 積水化学工業株式会社 配管
JP7417374B2 (ja) 2019-07-29 2024-01-18 積水化学工業株式会社 配管

Also Published As

Publication number Publication date
JP7074421B2 (ja) 2022-05-24

Similar Documents

Publication Publication Date Title
JP6595787B2 (ja) 多層配管
AU2016220736B2 (en) Fiber-reinforced composite pipe and cold/warm water piping system
JP6523045B2 (ja) ポリオレフィン系樹脂多層配管およびポリオレフィン系樹脂多層配管の製造方法
US10435606B2 (en) Cables made of phase change material
JP6574546B2 (ja) 多層管
JP2008001007A (ja) ホース製造用マンドレル
JP2009534214A (ja) 多層ポリマー構造体
JP2020157609A (ja) 立体造形装置用樹脂成形材料および立体造形装置用フィラメント
JP2018051778A (ja) ポリオレフィン系樹脂多層管
JP6546433B2 (ja) 多層配管
US20090162591A1 (en) Multilayer coolant pipes
CN108883589A (zh) 用于抗冲击玻璃纤维增强管的衬里
JP5712287B2 (ja) 部分的含浸繊維強化熱可塑性強力部材
KR20130117756A (ko) 매스터배치 조성물
JP2019500441A (ja) 相変化材料製ケーブル
JP6484106B2 (ja) 冷温水管路配管システム
JP6510885B2 (ja) 多層管材
EP3469035B1 (en) Heat storage cable including closing system
JP2016055561A (ja) 多層管
WO2016133167A1 (ja) 繊維強化複合管および冷温水配管システム
JP6709309B2 (ja) 多層管
JP2022157416A (ja) 多層管
CN104791555A (zh) 一种抗低温冲击的pp-r复合管材及其制备方法
JP7288648B2 (ja) 芯鞘複合モノフィラメント
TW202402926A (zh) 乙烯系聚合體組成物及其用途

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201116

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201116

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201124

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201201

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210115

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210119

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211012

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211130

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220315

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220322

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220419

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220512

R151 Written notification of patent or utility model registration

Ref document number: 7074421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151