CN104791555A - 一种抗低温冲击的pp-r复合管材及其制备方法 - Google Patents

一种抗低温冲击的pp-r复合管材及其制备方法 Download PDF

Info

Publication number
CN104791555A
CN104791555A CN201510142655.7A CN201510142655A CN104791555A CN 104791555 A CN104791555 A CN 104791555A CN 201510142655 A CN201510142655 A CN 201510142655A CN 104791555 A CN104791555 A CN 104791555A
Authority
CN
China
Prior art keywords
composite pipe
low
resin
temperature impact
impact resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510142655.7A
Other languages
English (en)
Inventor
谢松桂
毛明忠
黄华灵
周晓清
徐康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HANGZHOU HONGYAN PIPELINE SYSTEM TECHNOLOGY Co Ltd
Hangzhou Honyar Electrical Co Ltd
Original Assignee
HANGZHOU HONGYAN PIPELINE SYSTEM TECHNOLOGY Co Ltd
Hangzhou Honyar Electrical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANGZHOU HONGYAN PIPELINE SYSTEM TECHNOLOGY Co Ltd, Hangzhou Honyar Electrical Co Ltd filed Critical HANGZHOU HONGYAN PIPELINE SYSTEM TECHNOLOGY Co Ltd
Priority to CN201510142655.7A priority Critical patent/CN104791555A/zh
Publication of CN104791555A publication Critical patent/CN104791555A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/12Rigid pipes of plastics with or without reinforcement
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/223Packed additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08J2323/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2310/00Masterbatches

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

本发明公开了一种抗低温冲击的PP-R复合管材及其制备方法,其中,所述PP-R复合管材包括内外依次嵌套的至少两层,其中至少一层为韧性层,所述PP-R复合管材采用共挤模具一次挤出成型。所述韧性层的材质为PE-RT树脂、PB树脂、PE-100树脂、PP-B树脂中的至少一种。本发明公开的抗低温冲击的PP-R复合管材及其制备方法,能够解决现有技术中PP-R管材抗低温冲击性能差的问题,并且维持PP-R管材原有的优良性能。

Description

一种抗低温冲击的PP-R复合管材及其制备方法
技术领域
本发明涉及管道技术领域,具体涉及一种抗低温冲击的PP-R复合管材及其制备方法。
背景技术
高聚物的微观结构对其性能起着决定性的作用,高聚物的主链结构对分子链的刚柔性影响最大,对于等规聚丙烯来说,由于主链上的甲基在空间有序排列,因此主链上的C-C键内旋受阻,分子链的柔性小,冲击强度较低。采用乙烯丙烯共聚的方法,在丙烯聚合时引入少量乙烯进行共聚,其效果等同于在等规聚丙烯主链上引入缺陷,使主链的平均等规度和等规序列长度均下降,分子链的柔顺性增加。与均聚的等规聚丙烯相比,乙烯丙烯共聚物的拉伸强度、模量、硬度和热变形温度等均有下降,冲击强度得到提高。随着共聚单体中乙烯含量的增加,乙烯丙烯共聚物与等规聚丙烯均聚物的性能差别也将进一步扩大。
PP-R管材以乙烯和丙烯的无规共聚物为原料,无规共聚物中乙烯含量为2.5-5.5%。采用13C-NMR对无规共聚物进行分析可以看出,无规共聚物是镶嵌着单个乙烯单元的长嵌段聚丙烯链结构,乙烯在其序列结构中主要以PPE和PEP存在。在乙烯含量较低时,EPE、EEE、EEP均为零;随着乙烯含量的提高,只出现少量的EPE、EEE和EEP。
PP-R管材在10℃-70℃温度范围(特别在高温度段)具有较高抗蠕变特性,可承受较高工作压力,并具有耐蚀、无毒、可熔接等优点,是冷热水及采暖系统的理想选择。但是,在实际应用中,PP-R管材的低温脆性带来许多显而易见的问题。譬如,在冬季的运输过程中容易被颠破,在施工过程中受重物的撞击易发生碎裂,这些问题困扰着PP-R管材生产厂家或经销商。
目前,为了改善PP-R管材的低温脆性,很多厂家在PP-R粒料中掺混较大比例的PP-B粒料(PP-B含量达25%以上),然后在单螺杆挤出机中直接挤出成型管材。PP-B粒料中乙烯含量达到7%以上,而且EEE、EEP含量较PP-R大大提高。乙丙橡胶对PP-B管材的刚性及韧性的影响是反方向的:随着乙丙橡胶含量的增加,PP-B的韧性即冲击强度提高,而刚性逐步下降。根据国家标准GB/T18742《冷热水用聚丙烯管道系统》中的相关规定,与PP-H、PP-R相比,PP-B在各个级别的设计应力要小35-42%,由此可以看出,PP-B的耐内压性能较PP-R要差很多。因此,在PP-R中掺混大量PP-B粒料,且通过单螺杆挤出机直接挤出时,PP-R材料和PP-B材料混合得不是很均匀,这导致PP-R管材的耐内压性能的下降。
为了改善PP-R管材的耐内压性能,国外一些大型材料、管材厂家(如北欧化工、乔治-费舍尔)通过改善PP的结晶结构,提高管材中β结晶的含量来显著提升管材在高温下的耐内压性能。德国标准DIN8078已经将此类产品单独列出,提高其耐内压性能指标,并命名为PPR-RCT。
为了解决PP-R管材抗低温冲击性能差的问题,需要对PP-R管材进行改良。
发明内容
本发明提供了一种抗低温冲击的PP-R复合管材及其制备方法,能够解决现有技术中PP-R管材抗低温冲击性能差的问题,并且维持PP-R管材原有的优良性能。
一种抗低温冲击的PP-R复合管材,所述PP-R复合管材包括内外依次嵌套的至少两层,其中至少一层为韧性层,所述PP-R复合管材采用共挤模具一次挤出成型。
现有技术中,为了改善管材的低温抗冲击性能,一方面,可以从管材的原料着手,即对材料的原料进行化学改性,或者在原料中添加改性剂进行物理改性;另一方面,也可以从管材的结构着手,即改变管材的结构组成。
本发明通过改变管材的结构组成,在管材中添加韧性层,通过韧性层提升PP-R管材的抗低温冲击性能。现有技术中,PP-R管材有单层、两层、三层甚至五层,本发明中所述的韧性层并非是对PP-R管材中已有层的简单替换,而是在PP-R管材中独立添加的层。
本发明采用共挤模具一次成型所述的抗低温冲击PP-R复合管材,能够使PP-R复合管材的层结构之间配合紧密,且层与层之间不会存在较大的应力,避免PP-R复合管材在长期使用过程中发生形变。
采用共挤模具使韧性层和PP-R层之间相互独立,不存在由于混合不均匀带来的性质不均一问题,使各材料都能完全发挥出原有的优良性能。
PP-R层由如下重量份配比的组分制备而成:
PP-R树脂:100份;
色母料:1.5-3份。
所述PP-R树脂中乙烯含量为3~5.5%,所述PP-R树脂的熔融指数为230℃/2.16kg条件下0.2-0.5g/10min。
所述韧性层由如下重量份配比的组分制备而成:
韧性层树脂:100份;
色母料:0-3份。
作为优选,所述韧性层的材质为PE-RT树脂、PB树脂、PE-100树脂、PP-B树脂中的至少一种。
PE-RT即耐热聚乙烯,采用乙烯和辛烯(或丁烯、己烯)共聚的方法制备,在聚合反应中对聚乙烯分子链上支链的数目和分布进行适度控制得到的一种中密度聚乙烯,因此,具有独特的分子结构,并带有受控的侧链分布,从而提供了优异的耐应力开裂性能和长期耐静液压强度。
PB即聚丁烯,采用丁烯-1(BUTENE-1)合成,是一种线性的全同立构的半结晶性热塑性材料,具有柔软性的异性质体,由其制成的PB管材具有耐寒、耐热、耐压、不生锈、不腐蚀、不结垢、寿命长,且能长期耐老化。
PE-100树脂,是一种高密度聚乙烯,相对分子量分布呈现双峰,低相对分子质量部分提供较好的加工性能,而高相对分子质量部分提供较好的力学性能。利用PE-100树脂制成的管材相比普通的聚乙烯树脂,耐压等级更高,输送安全性更高,相同压力等级下管壁可以更薄。
PP-R复合管材中的韧性层仅用于改善PP-R管材的抗低温冲击性能,考虑到PP-R复合管材的连接问题,优选地,所述PP-R复合管材包括内外嵌套的两层,其中外层为PP-R层,内层为韧性层。
现有的PP-R管材在出现裂纹时,通常是内壁出现裂纹,这种裂纹虽然在表面上看不出来,但是,将影响PP-R管材的实际使用性能,将PP-R复合管材的内层设置为韧性层,也能有效避免管材内壁出现裂纹的问题。
外层的PP-R层使PP-R复合管材仍能采用现有的熔接工艺,与相应的管件之间实现连接。PP-R复合管材为两层时,韧性层对PP-R层的改性效果最好。PP-R复合管材为三层、五层等更多层时,韧性层的改性效果并不是非常明显。
为了保证PP-R复合管材仍然保留其原有的优良性能,本发明提供的PP-R复合管材中的PP-R占较大比例,但与此同时,韧性层也需要具有一定的厚度,以使韧性层能够对PP-R复合管材的抗低温冲击性能起到显著的改性作用。优选地,所述PP-R层和韧性层的厚度比为2~10:1。
进一步优选,所述PP-R层和韧性层的厚度比为4~10:1。最优选,所述PP-R层和韧性层的厚度比为6~10:1。
现有技术中的抗菌PP-R管材在管材中加入了抗菌剂,本发明为了实现相同的抗菌作用,保留抗菌剂的组成,优选地,所述韧性层中含有抗菌剂,韧性层中抗菌剂的重量百分比为1~3%。
抗菌剂可以采用现有技术,例如采用无机抗菌剂,包括金属离子负载型抗菌剂、光催化型抗菌剂等;或者采用有机抗菌剂,包括有机酸类、酚类、季铵盐类等。
抗菌剂加入PP-R层中会导致PP-R管材变脆,将抗菌剂加入韧性层,能够解决PP-R管材变脆的问题,在低温下也能保持良好的抗冲击性能。
现有技术中在低温具有优良韧性的材料有很多,但是,并非所有的材料都能够用于PP-R复合管材,用以改善抗低温冲击性能,在选择韧性层的材料时,首先,要与PP-R材料的加工温度相接近,能够采用一次成型的方法制作出PP-R复合管材,其次,在使用过程中,具有与PP-R材料相近的热胀冷缩性质,避免出现较大的内部应力,还要有良好的耐高温蠕变性能,保证管材在较高温度(60~70℃)下具有很好的长期耐内压能力,最后,在低温下,能够对PP-R材料的抗冲击性能进行有效改良。
作为优选,所述韧性层的材质为PE-RT树脂,所述PP-R层和韧性层的厚度比为4~10:1。
PE-RT树脂为乙烯与1-烯烃的共聚物,1-烯烃为1-辛烯、1-己烯或1-丁烯。1-PE-RT树脂具有I型和II型之分,I型和II型的性质如表1所示:
表1
项目 单位 I型PE-RT典型值 II型PE-RT典型值
密度 g/cm3 0.933 0.947
拉伸屈服强度 MPa 16 22
邵氏硬度D —— 50 60
MRS定级 MPa 8.0 10.0
与I型PE-RT相比,II型PE-RT为高密度耐热聚乙烯,分子量更高,具有更好的力学强度和抗划伤性,基于不同分子量的PE-RT材料性质的不同,并非所有PE-RT都能满足改善抗低温冲击性能的要求,为了得到更好的抗低温冲击性能,优选地,所述PE-RT树脂的密度为0.93~0.95g/cm3,拉伸强度为15~23MPa,190℃/2.16kg条件下的熔融指数为0.5~0.7g/10min。
PE-RT与普通PE相比,分子量呈现双峰分布,低分子量部分能够具有良好的加工性能以及刚性,高分子量部分具有好的耐蠕变性能以及好的耐裂纹扩展能力,采用PE-RT作为韧性层材料,能够与PP-R通过共挤模具一次成型得到管材。
韧性层材料虽然具有多种选择,但是基于高聚物结构的复杂性,每一种高聚物的性能都不单一,为了满足作为本发明中韧性层的性能需求,对各种材料都需进行性质参数的优选。
所述PB树脂中全同立构含量≥96%,所述PB树脂的密度为0.91~0.94g/cm3,拉伸强度为30~35MPa,190℃/2.16kg条件下的熔融指数为0.2~0.7g/10min。
所述PE-100树脂为乙烯与1-烯烃的共聚物,1-烯烃为1-辛烯、1-己烯或1-丁烯,分子量呈双峰或多峰分布。所述PE-100树脂的密度为0.94~0.965g/cm3,拉伸强度为23~33MPa,190℃/2.16kg条件下的熔融指数为0.05~0.45g/10min。
所述PP-B树脂为乙烯和丙烯的嵌段共聚物,所述PP-B树脂中的乙烯含量为6~8%,拉伸强度为23~28MPa,230℃/2.16kg条件下的熔融指数为0.1~0.5g/10min。
本发明还提供了一种所述的抗低温冲击的PP-R复合管材的加工方法,包括以下步骤:将PP-R原料与韧性层原料分别投入两台单螺杆挤出机中,利用共挤模具在190~230℃,通过一步成型得到所述的抗低温冲击的PP-R复合管材。
PP-R原料包括PP-R树脂和相应的色母料,在投入单螺杆挤出机之前,在混合机中将PP-R树脂和相应的色母料混合搅拌2~5min,使混合均匀。
韧性层原料包括韧性层树脂和相应的色母料,在投入单螺杆挤出机之前,在混合机中将韧性层树脂和相应的色母料混合搅拌2~5min,使混合均匀。
本发明提供的PP-R复合管材,不仅抗低温冲击性能好,且能够保留PP-R管材的优良性能,加工方便,无需要对生产设备进行很大改进即可实现。
具体实施方式
实施例1~3
在混合机中将100kg PP-R树脂(韩国油化RP2400),1.5kg色母料混合搅拌3min,得到混合料一,装袋备用。
在混合机中将100kg PE-RT树脂(DOWLEX TM2344),2kg色母料混合搅拌3min,得到混合料二,装袋备用。
将混合料一和混合料二分别投入单螺杆挤出机一和挤出机二,挤出机一温度为190~220℃,挤出机二温度为190~220℃,两台单螺杆挤出机挤出的熔体同时通过共挤模具,一步成型即得抗低温冲击性能良好的PP-R复合管材。
实施例1控制外层厚度与内层厚度之比为10,实施例2控制外层厚度与内层厚度之比为4,实施例3控制外层厚度与内层厚度之比为1。
实施例4~5
在混合机中将100kg PP-R树脂(韩国油化RP2400),1.5kg色母料混合搅拌3min,得到混合料一,装袋备用。
在混合机中将100kg PE-RT树脂(XSene XRT70),2kg色母料混合搅拌3min,得到混合料二,装袋备用。
将混合料一和混合料二分别投入单螺杆挤出机一和挤出机二,挤出机一温度为190~220℃,挤出机二温度为195~230℃,两台单螺杆挤出机挤出的熔体同时通过共挤模具,一步成型即得抗低温冲击性能良好的PP-R复合管材。
实施例4控制外层厚度与内层厚度之比为10,实施例5控制外层厚度与内层厚度之比为4。
实施例6~7
在混合机中将100kg PP-R树脂(韩国油化RP2400),1.5kg色母料混合搅拌3min,得到混合料一,装袋备用。
将混合料一和PB树脂(荷兰Basell 4237)分别投入单螺杆挤出机一和挤出机二,挤出机一温度为190~220℃,挤出机二温度为200~230℃,两台单螺杆挤出机挤出的熔体同时通过共挤模具,一步成型即得抗低温冲击性能良好的PP-R复合管材。
实施例6控制外层厚度与内层厚度之比为10,实施例7控制外层厚度与内层厚度之比为8。
实施例8~10
在混合机中将100kgPP-R树脂(韩国油化RP2400),1.5kg色母料混合物搅拌3min,得到混合料一,装袋备用。
在混合机中将100kgPE-100树脂(韩国SK 6100),2kg色母料混合搅拌3min,得到混合料二,装袋备用。
将混合料一和混合料二分别投入单螺杆挤出机一和挤出机二,挤出机一温度为190~220℃,挤出机二温度为195~230℃,两台单螺杆挤出机挤出的熔体同时通过共挤模具,一步成型即得抗低温冲击性能良好的PP-R复合管材。
实施例8控制外层厚度与内层厚度之比为10,实施例9控制外层厚度与内层厚度之比为6,实施例10控制外层厚度与内层厚度之比为1。
实施例11~13
在混合机中将100kg PP-R树脂(韩国油化RP2400),1.5kg色母料混合搅拌3min,得到混合料一,装袋备用。
在混合机中将100kg PP-B树脂(巴塞尔EP332C),2kg色母料混合搅拌3min,得到混合料二,装袋备用。
将混合料一和混合料二分别投入单螺杆挤出机一和挤出机二,挤出机一温度为190~220℃,挤出机二温度为190~220℃,两台单螺杆挤出机挤出的熔体同时通过共挤模具,一步成型即得抗低温冲击性能良好的PP-R复合管材。
实施例11控制外层厚度与内层厚度之比为10,实施例12控制外层厚度与内层厚度之比为4,实施例13控制外层厚度与内层厚度之比为1。
对比例1
在混合机中将100kgPP-R树脂(韩国油化RP2400),1.5kg色母料混合物搅拌3min,得到混合料,装袋备用。
将混合料投入单螺杆挤出机,挤出机转速为65rpm,温度为190~220℃,得到PP-R管材。
测试方法
选择φ25,S3.2的PP-R复合管材进行试验。PP-R复合管材下线48h后取长500mm试样10根,在温度为(23士2)℃,湿度为(50士10)%条件下进行状态调节,状态调节时间不少于24h,并在此条件下进行试验。
冲击试验仪的结构如JG3050标准中6.5.1所示,将冲击试验仪及状态调节后的试样一起放入低温箱中,冲击仪下垫一块40mm厚的泡沫橡胶垫,低温箱内温度为-15±1℃。
试样及冲击试验仪在低温箱设定温度下放置2h后,将试样放在冲击试验仪的底座上,采用1kg的重锤,20cm下落高度冲击试样。试验后统计内外表面无可见裂纹的试样数量。在无可见裂纹的试样中再取3个试样按GB/T18742.2-2002的表6进行静液压试验。
表2
表2静液压试验结果中,用“√”表示试样无破裂、无渗漏;用“×”表示试样破裂或渗漏。
由表2可以看出,本发明提供的PP-R复合管材都具有良好的抗低温冲击性以及抗静液压性能。

Claims (11)

1.一种抗低温冲击的PP-R复合管材,其特征在于,所述PP-R复合管材包括内外依次嵌套的至少两层,其中至少一层为韧性层,所述PP-R复合管材采用共挤模具一次挤出成型。
2.如权利要求1所述的抗低温冲击的PP-R复合管材,其特征在于,所述韧性层的材质为PE-RT树脂、PB树脂、PE-100树脂、PP-B树脂中的至少一种。
3.如权利要求1或2所述的抗低温冲击的PP-R复合管材,其特征在于,所述PP-R复合管材包括内外嵌套的两层,其中外层为PP-R层,内层为韧性层。
4.如权利要求3所述的抗低温冲击的PP-R复合管材,其特征在于,所述PP-R层和韧性层的厚度比为2~10:1。
5.如权利要求3所述的抗低温冲击的PP-R复合管材,其特征在于,所述韧性层中含有抗菌剂,韧性层中抗菌剂的重量百分比为1~3%。
6.如权利要求3所述的抗低温冲击的PP-R复合管材,其特征在于,所述韧性层的材质为PE-RT树脂,所述PP-R层和韧性层的厚度比为4~10:1。
7.如权利要求6所述的抗低温冲击的PP-R复合管材,其特征在于,所述PE-RT树脂的密度为0.93~0.95g/cm3,拉伸强度为15~23MPa,190℃
/2.16kg条件下的熔融指数为0.5~0.7g/10min。
8.如权利要求2所述的抗低温冲击的PP-R复合管材,其特征在于,所述PB树脂的密度为0.91~0.94g/cm3,拉伸强度为30~35MPa,190℃/2.16kg条件下的熔融指数为0.2~0.7g/10min。
9.如权利要求2所述的抗低温冲击的PP-R复合管材,其特征在于,所述PE-100树脂的密度为0.94~0.965g/cm3,拉伸强度为23~33MPa,190℃/2.16kg条件下的熔融指数为0.05~0.45g/10min。
10.如权利要求2所述的抗低温冲击的PP-R复合管材,其特征在于,所述PP-B树脂中的乙烯含量为6~8%,拉伸强度为23~28MPa,230℃/2.16kg条件下的熔融指数为0.1~0.5g/10min。
11.如权利要求1~10任一所述的抗低温冲击的PP-R复合管材的加工方法,其特征在于,包括以下步骤:将PP-R原料与韧性层原料分别投入两台单螺杆挤出机中,利用共挤模具在190~230℃,通过一步成型得到所述的抗低温冲击的PP-R复合管材。
CN201510142655.7A 2015-03-30 2015-03-30 一种抗低温冲击的pp-r复合管材及其制备方法 Pending CN104791555A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510142655.7A CN104791555A (zh) 2015-03-30 2015-03-30 一种抗低温冲击的pp-r复合管材及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510142655.7A CN104791555A (zh) 2015-03-30 2015-03-30 一种抗低温冲击的pp-r复合管材及其制备方法

Publications (1)

Publication Number Publication Date
CN104791555A true CN104791555A (zh) 2015-07-22

Family

ID=53556596

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510142655.7A Pending CN104791555A (zh) 2015-03-30 2015-03-30 一种抗低温冲击的pp-r复合管材及其制备方法

Country Status (1)

Country Link
CN (1) CN104791555A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108680443A (zh) * 2018-06-26 2018-10-19 鹤山联塑实业发展有限公司 一种用于型材检测的检具
CN109021405A (zh) * 2018-05-31 2018-12-18 广东联塑科技实业有限公司 一种高强度高低温韧性的ppr管材及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1500491A1 (fr) * 2003-07-23 2005-01-26 Nobel Plastiques Conduite multicouche ayant une couche interne comportant une cyclo-oléfine
CN101776185A (zh) * 2009-01-13 2010-07-14 上海龙胜实业有限公司 一种复合管材
CN102392918A (zh) * 2011-11-14 2012-03-28 联塑市政管道(河北)有限公司 一种复合pp管及其制备方法
CN102494201A (zh) * 2011-12-07 2012-06-13 合肥安诺新型建材有限公司 一种环保阻氧抗菌型pp-r管
JP2012215300A (ja) * 2011-03-31 2012-11-08 Sekisui Chem Co Ltd 多層樹脂管
CN204062196U (zh) * 2014-07-31 2014-12-31 河南联塑实业有限公司 一种给水管

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1500491A1 (fr) * 2003-07-23 2005-01-26 Nobel Plastiques Conduite multicouche ayant une couche interne comportant une cyclo-oléfine
CN101776185A (zh) * 2009-01-13 2010-07-14 上海龙胜实业有限公司 一种复合管材
JP2012215300A (ja) * 2011-03-31 2012-11-08 Sekisui Chem Co Ltd 多層樹脂管
CN102392918A (zh) * 2011-11-14 2012-03-28 联塑市政管道(河北)有限公司 一种复合pp管及其制备方法
CN102494201A (zh) * 2011-12-07 2012-06-13 合肥安诺新型建材有限公司 一种环保阻氧抗菌型pp-r管
CN204062196U (zh) * 2014-07-31 2014-12-31 河南联塑实业有限公司 一种给水管

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109021405A (zh) * 2018-05-31 2018-12-18 广东联塑科技实业有限公司 一种高强度高低温韧性的ppr管材及其制备方法和应用
CN108680443A (zh) * 2018-06-26 2018-10-19 鹤山联塑实业发展有限公司 一种用于型材检测的检具

Similar Documents

Publication Publication Date Title
CN110546198B (zh) 具有高的刚度和加工性的富含pp的材料组合物
CN101048454B (zh) 用于注射成型的聚合物组合物
US9115279B2 (en) Polypropylene compounds with high impact performance and improved stress whitening resistance
TW201245326A (en) Modified polylactic acid, polymeric blends and methods of making the same
CN105392835A (zh) 含有玻璃纤维填料的聚丙烯组合物
US10392498B2 (en) Fiber reinforced polypropylene composition with high strain at break
CN103819793A (zh) 一种高抗冲高强度大容量中空塑料桶的制备方法
CN104802482A (zh) 一种三层共挤聚丙烯/聚乙烯/聚丙烯上吹薄膜及其制备方法
KR100988105B1 (ko) 무기 충전제를 함유하는 멀티모달 폴리에틸렌 조성물을포함하는 압력 파이프
EP2989157A1 (en) Multimodal polypropylene composition for pipe applications
CN102164738A (zh) 聚烯烃组合物
KR20080031491A (ko) 무기 충전제를 함유하는 멀티모달 폴리에틸렌 조성물을포함하는 무압 파이프
KR20170110629A (ko) 변형된 폴리프로필렌 및 이의 중합체 블렌드
CN105623106B (zh) 耐摩擦、耐刮痕改性无规共聚聚丙烯材料及其制备方法
CN104791555A (zh) 一种抗低温冲击的pp-r复合管材及其制备方法
CN103068894A (zh) 母料组合物
CN1668688A (zh) 收缩薄膜
EP3095572A1 (en) Process for manufacturing of a fibre-reinforced polymer composition
EP4041528A1 (en) Biaxially oriented pipe
US20080051515A1 (en) Ultra high molecular weight polyethylene articles
JP2021008557A (ja) 樹脂組成物、樹脂成形体及び樹脂組成物の製造方法
EP4034366B1 (en) Biaxially oriented pipe
JP7349772B2 (ja) 外観と強度に優れる中空成形体
CN108395613A (zh) 一种用于中空成型的聚丙烯组合物及其制备方法
EP4061611A1 (en) Biaxially oriented pipe

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150722

RJ01 Rejection of invention patent application after publication