JP2018023625A - ドラム式洗濯機の制御方法 - Google Patents

ドラム式洗濯機の制御方法 Download PDF

Info

Publication number
JP2018023625A
JP2018023625A JP2016157775A JP2016157775A JP2018023625A JP 2018023625 A JP2018023625 A JP 2018023625A JP 2016157775 A JP2016157775 A JP 2016157775A JP 2016157775 A JP2016157775 A JP 2016157775A JP 2018023625 A JP2018023625 A JP 2018023625A
Authority
JP
Japan
Prior art keywords
drum
eccentricity
control unit
central control
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016157775A
Other languages
English (en)
Other versions
JP6753726B2 (ja
Inventor
川口 智也
Tomoya Kawaguchi
智也 川口
佐藤 弘樹
Hiroki Sato
弘樹 佐藤
宏之 北川
Hiroyuki Kitagawa
宏之 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Haier Washing Machine Co Ltd
Aqua KK
Original Assignee
Qingdao Haier Washing Machine Co Ltd
Aqua KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Haier Washing Machine Co Ltd, Aqua KK filed Critical Qingdao Haier Washing Machine Co Ltd
Priority to JP2016157775A priority Critical patent/JP6753726B2/ja
Priority to CN201780048440.6A priority patent/CN109563667B/zh
Priority to PCT/CN2017/093273 priority patent/WO2018028388A1/zh
Publication of JP2018023625A publication Critical patent/JP2018023625A/ja
Application granted granted Critical
Publication of JP6753726B2 publication Critical patent/JP6753726B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/48Preventing or reducing imbalance or noise
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/26Imbalance; Noise level
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/46Drum speed; Actuation of motors, e.g. starting or interrupting
    • D06F2105/48Drum speed
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/32Control of operational steps, e.g. optimisation or improvement of operational steps depending on the condition of the laundry
    • D06F33/40Control of operational steps, e.g. optimisation or improvement of operational steps depending on the condition of the laundry of centrifugal separation of water from the laundry

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Main Body Construction Of Washing Machines And Laundry Dryers (AREA)

Abstract

【課題】ドラムの偏心による振動や騒音の発生を抑制し、且つ運転時間の遅延を有効に回避することができるドラム式洗濯機を提供する。【解決手段】脱水工程において、ドラムの回転数が当該ドラムの共振点よりも低い第一の回転数に達した時点に、偏芯量並びに仮偏芯位置を検出する第一の偏芯検出ステップSP2と、当該第一の偏芯検出ステップSP2により検出した偏芯量が、仮偏芯位置によって異なる値に設定される第一の偏芯量閾値よりも大きいときには、ドラムの回転数を下げるか或いはドラムの回転を停止することによりドラム内の洗濯物をドラム内で上下に攪拌し、その後に第一の回転数まで回転数を上昇させる洗濯物攪拌ステップSP5とを有する制御方法により、ドラム内に洗濯物の偏在があっても、アンバランスを確実に低減し、脱水工程を速やかに行うことによって洗濯時間を短縮できる。【選択図】図8

Description

本発明は脱水機能を有する洗濯機の制御方法に関する。
一般家庭あるいはコインランドリーなどに設置される洗濯機は、洗濯脱水機能、洗濯脱水乾燥機能を備えるものがある。
脱水機能を有する洗濯機は、ドラム内で洗濯物の偏りにより振動や騒音が発生する。また洗濯物の偏りが大きければ、回転時のドラムの偏心が大きくなり、回転に大きなトルクが必要となるので脱水運転を開始することができない。
これを解消するためには、使用者が洗濯機の運転を停止して手作業により洗濯物の偏りを解消していた。
かかる煩瑣な作業を解消するために、洗濯物の偏りであるアンバランスの大きさが所定値より大きいと判定した場合に、位置検出手段の出力タイミングに応じて遠心力が重力よりも小さくなる回転速度になるまでドラムを減速させて洗濯物の偏在を解消するようにしたものが提案されている(特許文献1参照)。
また、脱水時に洗濯物がドラムの前部に偏るアンバランスの発生を防止するため、ドラムの前部及び後部に対して配設した加速度センサにより、検出された振動量の差を算出し、洗濯物がドラムの前部に偏るアンバランス状態を検知するようにしたものが提案されている(特許文献2参照)。
また近時では、特許文献3に記載されたもののように、ドラムの周方向に均等に複数設けられたバランサへの注水を行うことによりドラムのアンバランス状態を積極的に解消しようとする技術も提案されている。
特開平9−290089号公報 特開2009− 82558号公報 特開2016− 197号公報
上記特許文献1に開示された技術は、ドラムの回転を減速することにより遠心力を低下させ、重なり合っている洗濯物を重力により落下させるようにしたものである。しかしながら、この従来技術では互いに絡まりあって塊となっている洗濯物は、そのまま落下することになるので、塊を解きほぐすことはできない。このような状態でドラムを回転すると、アンバランスは解消されていないので、再度アンバランスが検出され、ドラムの減速が繰り返されることになる。
一方、上記特許文献2に開示された技術は、ドラムの回転時にあって、前部の振動検出手段によって検出された振動値と後部の検出手段によって検出された振動値との差を算出する。そして、この振動値の差が予め設定された閾値を超えた場合、ドラムの回転を減速または停止するようにしたものである。
しかしながら、この従来技術によっても互いに絡まりあって塊となっている洗濯物は、依然として解きほぐされずドラム内に残存することになり、アンバランスを解消する根本的な解決策とはならない。
そこで、上記特許文献3に記載の技術であれば、上記2つの特許文献では解決できなかった課題を解決することが期待される。そして現在、上述した課題を積極的に解決するための更なる具体的な制御手順や具体的な構成が提供されることが期待されている。
本発明はかかる従来の問題を解決するものである。本発明により、洗濯槽内に洗濯物の偏在があっても、脱水工程時において洗濯槽のアンバランスを確実に低減し、脱水工程を速やかに行うことによって洗濯時間を短縮することができるドラム式洗濯機の制御方法を提供することができる。
本発明は、水平方向又は傾斜方向に延びる軸線周りに回転可能に構成された有底筒状のドラムと、前記ドラムの軸線方向に沿って前記ドラムの内周面に三つ以上配設される中空のバッフルと、前記バッフルの各々に注水するための受水ユニットと、前記ドラムの振動を検出する加速度センサと、前記加速度センサにより検出された前記ドラムの振動に基づいて前記ドラム内の偏芯量及び偏芯位置を検出する偏芯検出手段とを有するドラム式洗濯機の制御方法であって、脱水工程において、前記ドラムの回転数が前記ドラムの共振点よりも低い第一の回転数に達した時点に、偏芯量及び偏芯位置を検出する第一の偏芯検出ステップと、前記第一の偏芯検出ステップにより検出した偏芯量が、偏芯位置によって異なる値に設定される第一の偏芯量閾値よりも大きいときには、前記ドラムの回転数を下げる、或いは前記ドラムの回転を停止することにより前記ドラム内の洗濯物を前記ドラム内で上下に攪拌させる洗濯物攪拌ステップと、前記第一の偏芯検出ステップにより検出した偏芯量が、前記第一の偏芯量閾値以下であれば、前記ドラムの回転数を、前記共振点を超えて上昇させるとともに、偏芯量及び偏芯位置を継続的に検出する第二の偏芯検出ステップと、前記第二の偏芯検出ステップにより検出した偏芯量が、前記ドラムの回転数によって異なる値に設定される注水用偏芯量閾値以上となれば前記ドラムの回転数をほぼ一定として前記バッフルに注水する注水ステップと、前記注水ステップにより偏芯量が、ドラムの回転数によって異なる値に設定される回転数上昇用閾値以下となれば、注水を停止するとともに前記ドラムの回転数を上昇させる回転数上昇ステップとを有し、前記第二の偏芯検出ステップ、前記注水ステップ及び前記回転数上昇ステップを、前記ドラムの回転数が予め定める脱水定常回転数に至るまで行うことを特徴とするドラム式洗濯機の制御方法である。
また本発明は、前記第一の偏芯量閾値は、前記偏芯位置が前記バッフルと対面した位置にあるときに最も大きく設定されることを特徴とする。
また本発明は、前記第一の偏芯量閾値は、前記偏芯位置が対向負荷の状態にあると判断された場合には、前記対向負荷の状態ではないときに設定されている値よりも低い値に設定されることを特徴とする。
また本発明は、前記加速度センサが、左右方向、上下方向及び前後方向の加速度をそれぞれ検出し得るものであり、前記第一の偏芯量閾値は、左右方向、上下方向及び前後方向の加速度ごとに、異なる値に設定されることを特徴とする。
また本発明は、前記注水用偏芯量閾値と前記回転数上昇用閾値との差は、回転数の上昇に伴い漸次或いは段階的に小さくなるように設定されることを特徴とする。
また本発明は、偏芯量が多くなるに伴い、前記注水用偏芯量閾値と前記回転数上昇用閾値との差が漸次或いは段階的に大きくなるように設定されることを特徴とする。
本発明によれば、洗濯物の偏りにより生じた偏芯が速やかに解消されるので、洗濯槽の回転を途中で減速あるいは停止することなく、通常の脱水工程を安定して継続することに加え、注水するタイミング及び注水時間の最適化による脱水工程の時間短縮を実現することができる。
本発明の洗濯機の制御方法は、バッフルへの注水により偏芯を解消し易い偏芯位置に対する第一の閾値を大きく設定することで、バッフルへの注水による効果をより大きく活かして脱水運転をより安定して継続させることができる。
本発明の洗濯機の制御方法は、バッフルへの注水により偏芯が解消され難い対向負荷であるときには第一の閾値を低く設定することで、長時間注水しても偏芯が解消されずに無駄に時間を経過させてしまうという不具合を有効に回避することができる。
本発明の洗濯機の制御方法は加速度センサが検出する振動方向毎に異なる第一の閾値を設定するので、より正確な量の注水を行うことが可能となる。
本発明の洗濯機の制御方法は、ドラムの回転数の如何に関わらず安定して正確な注水を行うことが可能となる。
本発明の洗濯機の制御方法は、ドラムに掛かる偏芯量の如何に関わらず安定して正確な注水を行うことが可能となる。
本発明の一実施形態に係る洗濯機1の断面を模式的に示す図である。 同洗濯機1の電気系ブロック図である。 同洗濯機1の脱水工程での制御の流れを説明するための図である。 開口させる給水バルブ62を示すパラメータ表である。 ドラム2内の偏芯位置を示す模式的な図である。 ドラム2内が対向負荷にある状態を示す模式的な図である。 本実施形態の洗濯機1の脱水工程の概要を示すグラフである。 同洗濯機1の脱水工程での制御の流れを示すフローチャートである。 偏芯位置調整処理を示すフローチャートである。 脱水本工程を示す模式的なフローチャートである。 脱水本工程を示すフローチャートである。 加速度センサ12から得られた加速度と、近接スイッチ14から得られたパルス信号psとの関係を示したグラフである。 偏芯量・仮偏芯位置測定の処理を示すフローチャートである。 極大値・極小値決定の処理を示すフローチャートである。 立上げ判定の処理を示す模式的なフローチャートである。 立上げ判定の処理を示す具体的なフローチャートである。 注水工程の処理を示す模式的なフローチャートである。 注水工程の処理を示す具体的なフローチャートである。 偏芯位置正式決定の処理を示すフローチャートである。 同洗濯機1の脱水工程での制御の流れを説明するための図である。 同洗濯機1の注水実施の処理を示すフローチャートである。 給水バルブ駆動の具体的な処理を示すフローチャートである。 給水量判定の具体的な処理を示すフローチャートである。 偏芯量増加判定の処理を示すフローチャートである。 加速可否判定の処理を示すフローチャートである。 加速判定変更の処理を示すフローチャートである。
以下、本発明の一実施形態を図に基づいて詳細に説明する。
図1は本実施形態の洗濯機1の構成を示す模式的な断面図である。図2は、本実施形態の洗濯機1の電気的な構成を示した機能ブロック図である。
本実施形態の洗濯機1は、例えばコインランドリーや家庭にて好適に使用され得るものであり、洗濯機本体1aと、略水平に延出してなる軸線S1を有した外槽3及びドラム2からなる洗濯槽1bと、受水ユニット5及びノズルユニット6を有する注水装置1cと、駆動装置40と、図2にのみ示される制御手段30とを備えたものである。
図1に示す洗濯機本体1aは、略直方体形状である。洗濯機本体1aの前面10aには、ドラム2に対して洗濯物を出し入れするための開口11が形成されるとともに、この開口11を開閉可能な開閉蓋11aが取り付けられる。同図に示すように洗濯機本体1aは、その前面10aが若干上方に向いて面することにより、ドラム2に対して洗濯物を出し入れするための開口11が斜め上方を向いて形成され、この開口11を開閉可能な開閉蓋11aを使用者が斜め上方から開閉する態様のものである。すなわち本実施形態に係る洗濯機1は、洗濯槽1bが斜め方向に取り付けられた、所謂斜めドラム式全自動洗濯機と称されるものである。
外槽3は、洗濯機本体1aの内部に配置された有底筒状の部材であり、内部に洗濯水を貯留可能である。図1に示すように、外槽3の外周面3aには、左右方向、上下方向及び前後方向の三方向の加速度を検出可能な加速度センサ12が取り付けられる。
ドラム2は、外槽3内において外槽3と同軸に配置されるとともに、回転自在に支持される有底筒状の部材である。ドラム2は、内部に洗濯物を収容可能で、その壁面2aに多数の通水孔2b(図1参照)を有する。
駆動装置40は、図1に示すように、モータ10によりプーリー15,15及びベルト15bを回転させるとともに、ドラム2の底部2cに向けて延出する駆動軸17を回転させて、ドラム2に駆動力を与え、ドラム2を回転させる。また、一方のプーリー15の近傍には、当該プーリー15に形成されたマーク15aの通過を検出できる近接スイッチ14が設けられる。そして本実施形態では、この近接スイッチ14が、ドラム位置検出装置に相当する。
図1に示すように、ドラム2の内周面2a1には、周方向に等間隔(等角度)で中空バランサとしてのバッフル7が3つ設けられる。各バッフル7は、ドラム2の基端部2cから先端部に亘ってドラム2の軸線方向に延び、ドラム2の内周面2a1から軸線S1に向けて突出して形成される。また各バッフル7は中空状である。
受水ユニット5は、導水樋5aが例えばドラム2の軸線S1に沿って径方向に三層重層されて構成されるもので、図3に示すようにドラム2の内周面2a1に固定される。導水樋5aは、バッフル7と同数だけ設けられ、単独で何れかのバッフル7に調整水Wを流せる通水経路が内部に形成される。そしてバッフル7の内部には、図1に示すように連通部材5a1が接続され、受水ユニット5から調整水Wが供給される。
このような受水ユニット5とバッフル7とは、連通部材5a1でそれぞれ接続される。
ノズルユニット6は、このような導水樋5aに個別に調整水Wを注水するものである。ノズルユニット6は、3本の注水ノズル6aと、これらの注水ノズル6aにそれぞれ接続される給水バルブ62a,62b,62cとを有する。注水ノズル6aは、導水樋5aと同数だけ設けられ、それぞれ別々の導水樋5aに注水可能な位置に配置される。なお、本実施形態では調整水Wとして水道水が用いられる。また、給水バルブ62a,62b,62cとしては、方向切換給水バルブを採用することも可能である。
このような構成であると、排水バルブ50aが開かれて外槽3内の洗濯水が排水口50より排出される脱水工程では、ノズルユニット6の何れかの注水ノズル6aから受水ユニット5の導水樋5a内に注水された調整水Wは、連通部材5a1を介してバッフル7内に流れ込む。例えば、何れかの注水ノズル6aから調整水Wが注水される場合には、図2に矢印で示すように、導水樋5aから連通部材5a1を介してバッフル7に調整水Wが流れ込む。
バッフル7は、注水装置1cにより洗濯槽1bの先端1d側から注水された調整水Wが脱水工程時の遠心力により滞留する滞留部71と、注水された調整水Wを洗濯槽1bの基端1e側から排出させ得る出口部72とを有する。バッフル7内に流れ込んだ調整水Wは、ドラム2が高速回転状態にあると、遠心力によりドラム2の内周面2a1にはりついて滞留する。これにより当該バッフル7の重量が増加し、ドラム2の偏芯量(M)が変化する。このようにバッフル7は、遠心力により調整水Wを貯めることが可能なポケットバッフル構造である。そして、脱水工程が終了に近づいてドラム2の回転速度が低下すると、バッフル7内の遠心力が次第に減衰し、調整水Wが重力によって出口部72から流れ出て、外槽3外へ排水される。このとき、調整水Wは出口部72を介してドラム2外の下外方に流れ込む。そのため、調整水Wは、ドラム2内の衣類を濡らすことなく排水される。
図2は、本実施形態の洗濯機1の電気的構成を示すブロック図である。洗濯機1の動作は、マイクロコンピュータを含む制御手段30によって制御される。制御手段30は、システム全体の制御を司る中央制御部(CPU)31を備え、この制御手段30に、それぞれ以下に詳述する値である、ドラム2の共振点CPよりも低い所定の回転数である第一の回転数(N1)、第一の偏芯量閾値(ma)、注水用偏芯量閾値(mb)、回転数上昇用閾値(mc)、偏芯量許容閾値(md)や脱水定常回転数が格納されるメモリ32を接続する。また、制御手段30により、メモリ32に格納されたプログラムをマイクロコンピュータが実行することにより、予め定められた運転動作が行われるとともに、メモリ32には、上記プログラムを実行する際に用いられるデータ等が一時的に記憶される。
中央制御部31は回転速度制御部33へ制御信号を出力し、さらにその制御信号をモータ制御部(モータ制御回路)34へ出力してモータ10の回転制御を行う。なお、回転速度制御部33はモータ制御部34からモータ10の回転速度を示す信号を実時間で入力し、制御要素となるようにしている。
アンバランス量検出部35には加速度センサ12が接続される。アンバランス位置検出部36には加速度センサ12及び近接スイッチ14が接続される。アンバランス量検出部35とアンバランス位置検出部36とによって偏芯検出手段を構成する。
これにより、近接スイッチ14がマーカー15a(図1参照)を検知すると、加速度センサ12から得られた左右方向、上下方向及び前後方向の加速度の大きさから、アンバランス量検出部35においてドラム2の偏芯量(M)が算出され、この偏芯量(M)がアンバランス量判定部37へ出力される。
アンバランス位置検出部36は、近接スイッチ14から入力されたマーカー15aの位置を示す信号からアンバランス方向の角度を算出し、偏芯位置(N)であるアンバランス位置信号を注水制御部38へ出力する。ここで、アンバランス方向の角度とは、軸線S1の周方向におけるバッフル7に対する相対角度である。本実施形態では図5に示すようにその一例として、軸線S1を中心として等角度間隔で配される3つのバッフル7(A),7(B),7(C)と偏芯位置との相対角度を示すべくバッフル7(B),7(C)との中間位置を0°に設定している。
注水制御部38は、アンバランス量判定部37及びアンバランス位置検出部36からの偏芯量(M)と偏芯位置(N)を示す信号が入力されると、予め格納される制御プログラムに基づいて給水すべきバッフル7及びその給水量を判断する。そして注水制御部38は、選定した給水バルブ62a,62b,62cを開き、調整水Wの注入を開始する。注水制御部38は、ドラム2に予め定める基準以上の偏芯量(M)が生じたときは、偏芯量(M)の算出に基づいて選定された注水ノズル6aから受水ユニット5の導水樋5aに調整水Wの注入を開始し、偏芯量(M)が予め定める基準以下となったとき、調整水Wの注入を停止する。
なお、注水制御部38は、例えば図3に示すように、偏芯の要因となっている洗濯物の塊LD(X)がドラム2のバッフル7(B)とバッフル7(C)の間にある場合は、バッフル7(A)に調整水Wを供給するよう制御する。また、洗濯物の塊LD(Y)がバッフル7(A)の近傍にある場合は、バッフル7(B)とバッフル7(C)の両方に調整水Wを供給するよう制御する。
本実施形態では、洗濯物の塊LD(Y)が何れかのバッフル7近傍にある場合のように、偏芯量(M)を低減するために複数のバッフル7への注水を要するケースにおける具体的な制御について特に詳述する。
中央制御部31は、図4のパラメータ表に記載された通り、給水バルブX、給水バルブZを開口させている。本実施形態では、偏芯位置(N)の特定を、図5に示すように、ドラム2を周方向に関して6等分することにより、注水すべきバッフル7を一つに特定する偏芯位置(N)と、注水すべきバッフル7を二つに特定する偏芯位置(N)とに場合分けされる。ここで本実施形態における「偏芯位置(N)」という記載は、仮に算出される仮偏芯位置θ1と、正式に決定される正式偏芯位置θ2の何れか或いは両方を示す概念である。仮偏芯位置θ1、正式偏芯位置θ2については後に詳述する。
注水すべきバッフル7を一つに特定する偏芯位置(N)の領域Yとは、領域(P(A)),(P(B))及び(P(C))である。また、偏芯の解消に要する偏芯位置(N)の領域Yとは、領域(P(AB)),(P(BC))及び(P(CA))である。また領域(P(A))、(P(B))及び(P(C))の軸心S1を中心とした角度は20°、領域(P(AB)),(P(BC))及び(P(CA))の軸心S1を中心とした角度は100°に設定されている。
加えてABCのうち記載されていない文字に相当するバッフル7は、本実施形態では偏芯位置(N)に最も近接したバッフル7である。
また本実施形態では、加速度センサ12が、左右方向、上下方向及び前後方向の加速度を検出し得る、三軸のセンサとなっている。これにより、図6に示すような洗濯物がドラム2の基端側と先端側とに相対するように位置づけられる状態(対向負荷の状態)であっても、正確に偏芯位置(N)及び偏芯量(M)を検出することができる。対向負荷の状態における偏芯位置(N)及び偏芯量(M)の検出手法については後に詳述する。
本実施形態に係る洗濯機1の制御方法は、ドラム2の回転数がドラム2の共振点CPよりも低い第一の回転数(N1)に達した時点で、偏芯量(M)並びに仮偏芯位置θ1を検出する第一の偏芯検出ステップと、第一の偏芯検出ステップにより検出した偏芯量(M)が、仮偏芯位置θ1によって異なる値に設定される第一の偏芯量閾値(ma)よりも大きいときには、ドラム2の回転数を下げるか或いはドラム2の回転を停止することによりドラム2内の洗濯物をドラム2内で上下に攪拌し、その後に前記第一の回転数(N1)までドラム2の回転数を上げる洗濯物攪拌ステップとを有する。
図7は、本実施形態の洗濯機1の脱水工程の概要を示すグラフである。図7において縦軸はドラム2の回転数を示し、横軸は時間を示す。図8、図10及び図11は、脱水工程の主たる概要を示すフローチャートである。図8は、脱水工程のうちの前半部分に係る脱水前工程を示し、図10及び図11は、脱水前工程を経た後の工程である脱水本工程を示す。
本実施形態では、中央制御部31が、図示しない脱水ボタンからの入力信号あるいは洗濯コース運転中に脱水工程を開始すべき旨の信号を受信すると、ステップSP1に進み、脱水前工程を開始する。
<ステップSP1>
ステップSP1では、中央制御部31は、ドラム2をほぐし反転させた後、ドラム2の回転をドラム2の共振点CPよりも低い第一の回転数(N1)まで上昇させる。ドラム2の回転数が第一の回転数(N1)にまで到達したときステップSP2に移行する。なお本実施形態では第一の回転数(N1)を、ドラム2の共振点CPである約300rpmよりも低い180rpmに設定している。
<ステップSP2>
ステップSP2では、中央制御部31は、加速度センサ12から与えられた加速度信号に基づいて、偏芯検出手段に偏芯量(M)及び仮偏芯位置θ1を算出させる本実施形態に係る偏芯量・仮偏芯位置測定の制御を実行する。具体的に説明すると、図8におけるステップSP2たる偏芯量・仮偏芯位置測定の制御は、本発明に係る第一の偏芯検出ステップに相当する。このとき中央制御部31は、例えば加速度センサ12から得られた左右方向、上下方向及び前後方向に係る加速度信号を基に、各方向についてそれぞれ偏芯量(M)を算出させる。本制御に採用される値は算出された3つの方向の値のうち、前後方向に係る偏芯量(M)と、上下方向または左右方向のうち何れか一の方向に係る加速度信号とを基に算出された偏芯量(M)である。
<ステップSP3>
中央制御部31は、算出された偏芯量(M)と、メモリ32に格納された第一の偏芯量閾値(ma)とを比較し、M<maが成り立つか否か判断する、立上げ判定を行う。中央制御部31は、M<maが成り立つと判断するとステップSP4に進み、M<maが成り立たないと判断するとステップSP5に進む。ここで、第一の偏芯量閾値(ma)は、バッフル7に調整水Wを供給しても、脱水定常回転数までドラム2の回転数を上昇可能な程度まで偏芯量(M)を低減することが困難なほどに洗濯物の偏りが大きい場合を想定した閾値である。すなわち、ステップSP5に進む場合、バッフル7に調整水Wを供給しても脱水工程を完遂することが難しい程度に偏芯量(M)が大きいことを意味する。
第一の偏芯量閾値(ma)について更に説明する。本実施形態では加速度センサ12は、左右方向、上下方向及び前後方向の加速度をそれぞれ検出し得るものが適用されている。そして左右方向、上下方向及び前後方向の加速度信号ごとに、異なる第一の偏芯量閾値(ma_x,ma_z,ma_y)が設定されている。
<ステップSP4>
ステップSP4では、中央制御部31は、ステップSP2において算出された偏芯量(M)が、偏芯位置毎に設定された第一の偏芯量閾値(ma)よりも小さいとき、ドラム2の回転数を上昇させる。また中央制御部31は、ドラム2の回転数を上昇させながら、継続的に本実施形態に係る偏芯量・仮偏芯位置測定の制御を実行している。ここで、「継続的に」とは、必ずしも絶え間なく連続的に行う態様に限られるものではない。脱水定常回転数に至るまでの任意の複数の回転数にまでドラム2の回転数が上昇したときに、間欠的に本実施形態に係る偏芯量・仮偏芯位置測定の制御を実行する態様としても良いことは勿論である。このステップSP4が、本発明に係る第二の偏芯検出ステップに相当する。
ステップSP5では、中央制御部31は、ドラム2の回転を停止させるか、或いはドラム2の回転数を遠心力よりも重力が勝る回転数まで下げることにより、ドラム2内の洗濯物を上下方向に攪拌するという偏芯位置調整処理の制御を行う。その後、ステップSP1に戻る。ステップSP5が、本発明に係る洗濯物攪拌ステップに相当する。図7では、バッフル7へ注水することなくドラム2の回転数が脱水定常回転数にまで到達したときの回転数の挙動を実線にて示している。また図7では一度だけバッフル7へ注水した後、回転数が脱水定常回転数にまで到達したときの回転数の挙動を上側の想像線にて示し、ステップSP5に係るドラム2の回転数の挙動を下側の想像線で示す。
偏芯位置調整処理の制御について、更に図9に示して説明する。まず、上記ステップSP3により偏芯量(M)が、低減が難しい程度にまで大きいと判断されると、ドラム2の回転を停止する(ステップSP51)。その後、遠心力を下回る回転数にてドラム2を回転させ、ドラム2内の洗濯物を攪拌し、偏芯量(M)を変化させる(ステップSP52)。
以下、ステップSP4以降の脱水本工程に係る制御について図10に模式的に、図11に具体的に示して説明する。
<ステップSP6>
ステップSP6では、中央制御部31は、図8に示したステップSP2にて算出された偏芯量(M)が、ドラム2の回転数毎に予め設定された注水用偏芯量閾値(mb)よりも大きいか否かの判定を行う。中央制御部31は、偏芯量(M)が注水用偏芯量閾値(mb)よりも低いときはバッフル7への注水を行うことなくステップSP7へ移行する。中央制御部31は、偏芯量(M)が注水用偏芯量閾値(mb)よりも大きいときは、注水工程においてバッフル7への注水を行った後にSP7へ移行する。
<ステップSP7>
ステップSP7では、中央制御部31は、ドラム2の回転数を所定の加速度にて上昇させる。
<ステップSP8>
ステップSP8では、中央制御部31は、ドラム2の回転数が脱水定常回転数に到達すると、そのまま脱水工程の終了までドラム2の回転数を維持する。本実施形態では脱水定常回転数は800rpmに設定されている。
図11は、本実施形態に係る脱水本工程の具体的な処理を示すフローチャートである。
<ステップSP71>
ステップSP71では、中央制御部31は、ドラム2の回転数が400rpmに至るまで回転数を毎秒20rpmずつ上昇させる。中央制御部31は、ステップSP71を行いながら平行してステップSP6を実行する。
<ステップSP72>
ステップSP72では、中央制御部31は、ドラム2の回転数が400rpmにまで到達したか否かを判定する。中央制御部31は、回転数が400rpmに到達していなければステップSP71へ移行する。中央制御部31は、回転数が400rpmに到達していればステップSP73へ移行する。
<ステップSP73>
ステップSP72では、中央制御部31は、ドラム2の回転数が600rpmに至るまで回転数を毎秒5rpmずつ上昇させる。中央制御部31は、ステップSP72を行いながら平行してステップSP6を実行する。
<ステップSP74>
ステップSP74では、中央制御部31は、ドラム2の回転数が600rpmにまで到達したか否かを判定する。中央制御部31は、回転数が600rpmに到達していなければステップSP73へ移行する。中央制御部31は、回転数が600rpmに到達していればステップSP75へ移行する。ここで、ドラム2の回転数が400〜600rpmまで上昇する際の加速度が他の回転域に比べ低いのは、洗濯物から脱水される水の量が当該回転域では他の回転域より多く、脱水される水による不要な騒音を低減させるためである。
<ステップSP75>
ステップSP72では、中央制御部31は、ドラム2の回転数が800rpmに至るまで回転数を毎秒20rpmずつ上昇させる。中央制御部31は、ステップSP72を行いながら平行してステップSP6を実行する。
<ステップSP76>
ステップSP76では、中央制御部31は、ドラム2の回転数が800rpmにまで到達したか否かを判定する。中央制御部31は、回転数が800rpmに到達していなければステップSP75へ移行する。中央制御部31は、回転数が800rpmに到達していればステップSP8へ移行する。
<ステップSP8>
ステップSP8では、中央制御部31は、ドラム2の回転数が脱水定常回転数であるに800rpmまで到達すると、そのまま脱水工程を継続し、予め定められた時間が経過したことを確認した後に洗濯を終了する。換言すれば中央制御部31は、通常の洗濯における脱水工程同様、ドラム2を脱水定常回転数で所定時間回転させ、脱水処理を行う。その後、脱水処理は終了される。そして、脱水が終了してドラム2の減速が始まり、遠心力が重力加速度を下回ると、バッフル7内の調整水Wが流れ出し、排水される。
本実施形態に係る制御方法では、第二の偏芯検出ステップであるステップSP3以降は、注水ステップであるステップSP6及び回転数上昇ステップであるステップSP7は、ドラム2の回転数が脱水定常回転数に至るまで繰り返し行われる。
続いて、本実施形態に係る制御方法の具体的な態様についてさらに説明する。
本実施形態における仮偏芯位置θ1の算出手順について説明する。本実施形態では、脱水工程において、加速度センサ12から発信されるドラム2の少なくとも1周期t2を示す加速度に係る信号における任意の時点と近接スイッチ14からパルス信号psが発信されるタイミングとの時間差t1を演算し、時間差t1とドラム2の回転数との関係からドラム2内の周方向における仮偏芯位置θ1を算出し、算出された仮偏芯位置θ1に基づいて偏芯量(M)を低減させる制御を行うとともに、加速度センサ12からの少なくとも前後方向を含む複数の方向に係る信号のうち、何れかの信号を仮偏芯位置θ1の算出に利用することを特徴とする。以下、特に本実施形態に係る仮偏芯位置θ1の具体的な算出手順について、図12〜図14に示して説明する。
図12は、加速度に基づいて算出された加速度の時間変化を示す情報と、近接スイッチ14から得られたパルス信号psとの関係を示したグラフである。図12では便宜上、加速度センサ12から得られた前後方向の加速度の極大値(Ymax)とパルス信号psとの時間差t1から、仮偏芯位置θ1を算出する。なお、図12に示す本実施形態では一例として、加速度の極大値(Ymax)及び極小値(Ymin)から仮偏芯位置θ1を算出する態様を示したが、本発明の他の実施例として加速度ゼロ点、加速度の極大値(Ymax)、極小値(Ymin)何れか一又は複数から仮偏芯位置θ1を算出するようにしてもよい。
図13は、偏芯量・仮偏芯位置測定の処理を示すフローチャートである。
<ステップSP21>
ステップSP31では、中央制御部31は、加速度センサ12から、左右方向、前後方向及び上下方向に係る加速度(X,Y,Z)を検出する。
<ステップSP22>
ステップSP22では、中央制御部31は、加速度センサ12から得られた加速度(X,Y,Z)及び近接スイッチ14からの割り込み信号であるパルス信号psから、加速度(X,Y,Z)の極大値(XmaxYmax、Zmax)・極小値(Xmin,Ymin,Zmin)を決定する計算処理を行う。具体的な態様については後に説明する。
<ステップSP23>
ステップSP23では、中央制御部31は、近接スイッチ14からの割り込み信号である複数のパルス信号ps間の間隔から、ドラム2が1回転する時間である1周期t2の値を算出、決定する。
<ステップSP24>
ステップSP24では、中央制御部31は、近接スイッチ14からの割り込み信号である複数のパルス信号ps及びステップSP22から得られた加速度(X,Y,Z)の極大値(Xmax,Ymax,Zmax)から、その時間差t1を算出、決定する。中央制御部31はステップSP24において、図12に図示した前後方向に係る時間差t1である時間差t1_Y以外でも、左右方向、上下方向に係る時間差t1_X,t1_Zも併せて算出している。
<ステップSP25>
ステップSP25では、中央制御部31は、ステップSP22から得られた加速度(X,Y,Z)の極大値(Xmax,Ymax,Zmax)・極小値(Xmin,Ymin,Zmin)から、偏芯量(M)である左右方向、前後方向及び上下方向それぞれに係る偏芯量Mx,My,Mzを算出、決定する。偏芯量Mx,My,Mzは、本実施形態では極大値(Xmax,Ymax,Zmax)及び極小値(Xmin,Ymin,Zmin)の差から求められる。
<ステップSP26>
ステップSP26では、中央制御部31は、ステップSP23から得られた1周期t2、ステップSP24から得られた時間差t1から、左右方向、前後方向及び上下方向それぞれに係る仮偏芯位置θ1−X,θ1−Y,θ1−Zを以下の式により算出、決定する。
θ1−X=t1_X×360÷t2
θ1−Y=t1_Y×360÷t2
θ1−Z=t1_Z×360÷t2
図14は、加速度(X,Y,Z)の極大値(Xmax,Ymax,Zmax)・極小値(Xmin,Ymin,Zmin)を決定する計算処理について具体的に示したフローチャートである。実際に加速度センサから入力される加速度(X,Y,Z)の値は1ミリ秒毎にそれぞれ入力されていくが、極大から極小を繰り返す大まかな起伏を示しながら入力値毎に更に細かな起伏を繰り返す傾向にある。そこで本実施形態では中央制御部31は、これら複数の入力値の移動平均の値を、計算処理に用いる加速度(X1,Y1,Z1)として用いて計算処理を行う。これにより、上記細かな起伏が中央制御部31による計算処理に与える影響を低減せしめている。
<ステップSP221>
ステップSP221では、中央制御部31は、入力された加速度(X,Y,Z)の16移動平均の計算を2回平行して実施しながら、これら16ミリ秒毎に得られる移動平均値を加速度(X1,Y1,Z1)として認識し、継続して入力する。具体的には、中央制御部31は一例として、1〜16番目、17〜32番目の入力値から移動平均値を算出し入力することに平行して、2〜17番目、18〜32番目の入力値からも移動平均値を二回目の値として算出する。これにより、計算処理には、1回目、2回目の何れかの移動平均値を用いることができる。具体的には例えば、1〜16番目の入力値からの移動平均値が何らかの理由で算出できなくても、代替として2〜17番目の入力値から移動平均値を算出し、計算処理に供し得る。
<ステップSP222>
ステップSP222では、中央制御部31は、近接スイッチ14から得られたパルス信号psの入力を受け付ける。
<ステップSP223>
ステップSP222では、中央制御部31は、ステップSP221により継続的に入力される加速度(X1,Y1,Z1)を暫定的な極大値・極小値を随時更新していく。
<ステップSP224>
ステップSP224では、中央制御部31は、近接スイッチ14から得られるステップSP222から得られたパルス信号psの次のパルス信号psを受け付ける。
<ステップSP225>
ステップSP225では、中央制御部31は、ステップSP222、ステップSP224によるパルス信号ps間に得られた加速度(X1,Y1,Z1)の極大値・極小値を、決定された加速度(X,Y,Z)の極大値(Xmax,Ymax,Zmax)・極小値(Xmin,Ymin,Zmin)とする。
図15は立上げ判定の一実施例を示すフローチャートであり、図16は、立上げ判定の他の実施例を示すフローチャートである。以下、立上げ判定について説明する。
<ステップSP31>
ステップSP31では、中央制御部31は、ステップSP25により決定された左右方向の偏芯量Mxと上下方向の偏芯量Mzとのうち、大きい値を示す偏芯量(M)を選択する。本実施形態では説明の便宜上、選択された偏芯量(M)を偏芯量Mxzと記す。
<ステップSP32>
ステップSP32では、中央制御部31は、偏芯量Mxzが第一の偏芯量閾値(ma)である閾値M_xzを上回っているか否かを判定する。中央制御部31は、偏芯量Mxzが閾値M_xzを下回っていればステップSP33へ移行する。中央制御部31は、偏芯量Mxzが閾値M_xzを上回っていれば、立上げ不可と判定しステップSP5に移行して偏芯量調整処理を行う。
<ステップSP33>
ステップSP33では、中央制御部31は、前後方向の偏芯量Myが第一の偏芯量閾値(ma)である閾値M_yを上回っているか否かを判定する。中央制御部31は、偏芯量Myが閾値M_yを下回っていれば立上げ可能と判定する。この場合ドラム2の回転数を上昇させる。中央制御部31は、偏芯量Myが閾値M_yを上回っていれば、立上げ不可と判定しステップSP5に移行して偏芯量調整処理を行う。
次に立上げ判定の他の実施例について、図16を参照して説明する。本実施形態では、中央制御部31は、立上げ判定に用いる閾値M_xz,閾値M_yを、ドラム2の偏芯の状態によって適宜異ならせて立上げ判定を行う。
本実施形態では、第一の偏芯検出ステップであるステップSP3について、図6に示されるような対向負荷の状態にあるときは第一の偏芯量閾値(ma)を対向負荷の状態にないときよりも小さい値に設定する。また本実施形態では、対向負荷の状態でないとき、仮偏芯位置θ1に応じて第一の偏芯量閾値(ma)を異ならせて設定する。
中央制御部31は、本実施形態で用いる第一の偏芯量閾値(ma)として、メモリ32にそれぞれ格納された閾値M_xz1,閾値M_y1,閾値M_xz2,閾値M_y2,閾値M_xz3,閾値M_y3を選択的に読み出す。これらの閾値のうち、閾値M_xz1,閾値M_y1がもっとも大きな値であり、閾値M_xz3,閾値M_y3が最も低い値である。
図16に示す立上げ判定について説明する。中央制御部31は、前述したステップSP31の処理を行う。その後、ステップSP34に移行する。
<ステップSP34>
ステップSP34では、中央制御部31は、ステップSP31にて選択された偏芯量Mxzの値が、前後方向に係る偏芯量Myに対して小さいか否かを判定する。中央制御部31は、偏芯量Mxzの値の方が小さければステップSP35に移行する。中央制御部31は、偏芯量Mxzの値の方が大きければステップSP36へ移行する。
<ステップSP35>
ステップSP35では、中央制御部31は、その後のステップSP32,SP33にて用いる第一の偏芯量閾値(ma)として、閾値M_xz3,閾値M_y3をメモリ32から読み出し適用する。すなわち本実施形態では中央制御部31は、ドラム2が対向負荷の状態にあると判断された場合には、対向負荷ではないときに設定されているときよりも、第一の偏芯量閾値(ma)をより低い値に設定する。これによって、ドラム2が対向負荷の状態にあるときは、タンブリングとも称される偏芯位置調整処理への移行が、最も行われ易くなっている。
<ステップSP36>
ステップSP36では、中央制御部31は、メモリ32に格納された仮偏芯位置θ1が図5のパラメータ表に示す領域Yのうち、どの領域Yであるかを読み出す。中央制御部31は、仮偏芯位置θ1が給水バルブZの設定されていない領域Y、すなわち領域(P(A))、(P(B))又は(P(C))であると判断すると、ステップSP38へ移行する。中央制御部31は、仮偏芯位置θ1が給水バルブZの設定されている領域Y、すなわち領域(P(AB))、(P(BC))又は(P(CA))であると判断すると、ステップSP37へ移行する。
<ステップSP37>
ステップSP37では、中央制御部31は、その後のステップSP32,SP33にて用いる第一の偏芯量閾値(ma)として、閾値M_xz2,閾値M_y2をメモリ32から読み出し適用する。
<ステップSP38>
ステップSP37では、中央制御部31は、その後のステップSP32,SP33にて用いる第一の偏芯量閾値(ma)として、閾値M_xz1,閾値M_y1をメモリ32から読み出し適用する。本実施形態では第一の偏芯検出ステップであるステップSP3について、仮偏芯位置θ1に応じて第一の偏芯量閾値(ma)を異ならせて設定する。具体的には、仮偏芯位置θ1が領域(P(A)),(P(B))又は(P(C))にあるとき、偏芯量閾値(ma)を小さく設定し、仮偏芯位置θ1が領域(P(AB)),(P(BC))又は(P(CA))にあるとき、偏芯量閾値(ma)を大きく設定する。
その後中央制御部31は、ステップSP35,ステップSP37,ステップSP38にて適用された閾値を用いて図15同様にステップST32及びステップST33を行う。
以上で、脱水工程のうち、脱水前工程に係る処理の説明を終了する。以降、上記ステップSP6以降の脱水本工程に係る処理について説明する。ここでステップSP7,ステップSP8に係る処理は既に上述しているので、主にステップSP6すなわち注水工程に係る具体的な処理について説明する。
図17は、注水工程の概要を示すフローチャートである。このように本実施形態の注水工程では、上述したようにドラム2の回転数が180rpmに到達して以降継続して行われているステップSP2である偏芯量・仮偏芯位置測定の処理のもと、ステップST61である偏芯位置決定の処理と、ステップ62である注水実施の処理とが主に行われている。
<ステップSP61>
ステップSP61では、中央制御部31は、仮偏芯位置θ1から正式偏芯位置θ2を決定する。芯位置決定の処理については後述する。
<ステップSP62>
ステップSP62では、中央制御部31は、偏芯量(M)及びステップSP61にて得られた正式偏芯位置θ2に応じてバッフル7への注水を実施する。注水実施の処理については後述する。
図18は、本実施形態に係る注水工程の具体的な処理手順を示すフローチャートである。ドラム2の回転数が180rpmに到達して以降継続して行われているステップSP2たる偏芯量・仮偏芯位置測定の処理から、上記ステップ61に至るまでの手順の一例が記されている。
ステップ63では、中央制御部31は、ステップSP2より決定された左右方向の偏芯量Mxと上下方向の偏芯量Mzとのうち、大きい方の値を偏芯量(M)として選択する。本実施形態では説明の便宜上、選択された偏芯量(M)を偏芯量Mxzと記す。
<ステップSP64>
ステップSP64では、中央制御部31は、偏芯量Mxzが注水用偏芯量閾値(mb)である閾値M_xz4を上回っているか否かを判定する。偏芯量Mxzが閾値M_xz4を下回っていればステップSP65へ移行する。選択された偏芯量Mxzが閾値M_xz4を上回っていれば、ステップSP66へ移行する。
<ステップSP65>
ステップSP65では、中央制御部31は、前後方向の偏芯量Myが注水用偏芯量閾値(mb)である閾値M_y4を上回っているか否かを判定する。中央制御部31は、偏芯量Myが閾値M_y4を下回っていれば偏芯量(M)の算出を行わない。換言すれば、中央制御部31は、この場合における偏芯量(M)はバッフル7への注水を要しない程度のものと判定する。この場合中央制御部31は、ドラム2の回転数を上昇させる。中央制御部31は、偏芯量Myが閾値M_yを上回っていれば、ステップSP66へ移行する。
<ステップSP66>
ステップSP66では、中央制御部31は、ドラム2の回転数を上昇させずに維持させる。その後、中央制御部31は、上述したステップSP61である偏芯位置決定の処理、ステップSP62である注水実施の処理を行う。
<ステップSP67>
ステップSP67では、中央制御部31は、ドラム2の回転数を上昇させずに維持させる。その後中央制御部31は、ステップSP61である偏芯位置決定の処理、ステップSP62である注水実施の処理を行う。
図17及び図18に示すように、本実施形態に係る制御方法では、加速度センサ12からの前後方向を含む複数の方向に係る信号に基づいてそれぞれ偏芯量(M)を算出し、算出される偏芯量(M)が注水用偏芯量閾値(mb)以上となる信号に基づいて決定された偏芯位置(N)である正式偏芯位置θ2に基づいて注水実施の処理を行うことを特徴とする。
偏芯位置正式決定の処理について、図19及び図20を参照して説明する。図19は偏芯位置正式決定の処理手順を示すフローチャートである。図20は、図19に示される偏芯量(M)と、第一閾値及び第二閾値との関係を示す図である。メモリ32には、図20に係るデータが格納され、状況に応じて所要のデータが適宜読み出される。なお図20における偏芯荷重量たる偏芯量Mx,My,Mzにおける数字の単位はグラム(g)である。また同図における第一閾値a1,b1,c1及び第二閾値a2,b2,c2における数字の単位はrpmである。
図20に示すように、仮偏芯位置θ1は正式偏芯位置θ2に対応するものの、ドラム2の回転数に応じて仮偏芯位置θ1と正式偏芯位置θ2との関係が異なる。本実施形態では、偏芯量(M)及びドラム2の回転数により、正式偏芯位置θ2を算出するための手順を異ならせている。具体的には、ドラム2の回転数が第一閾値a1,b1,c1よりも低い回転数にあるとき、ドラム2の回転数が第一閾値a1,b1,c1以上且つ第二閾値a2,b2,c2よりも低い回転数にあるとき、及び、ドラム2の回転数が第二閾値a2,b2,c2以上の回転数にあるときで、正式偏芯位置θ2を算出する式を異ならせている。
<ステップSP611>
ステップSP611では、中央制御部31は、偏芯量Mx,My,Mzについてそれぞれ図20の表し従い第一閾値a1,b1,c1及び第二閾値a2,b2,c2を決定する。換言すれば中央制御部31はメモリ32から偏芯量Mx,My,Mzに対応する第一閾値a1,b1,c1及び第二閾値a2,b2,c2を読み出す。
<ステップSP612>
ステップSP612では、中央制御部31は、ドラム2の回転数が第一閾値a1,b1,c1よりも低いか否かを判定する。ドラム2の回転数が第一閾値a1,b1,c1よりも低い場合はステップ613へ移行する。ドラム2の回転数が第一閾値a1,b1,c1以上である場合はステップ614へ移行する。
<ステップSP613>
ステップSP613では、中央制御部31は、仮偏芯位置θ1の値をそのまま正式偏芯位置θ2の値として決定する。
<ステップSP614>
ステップSP614では、中央制御部31は、ドラム2の回転数が第二閾値a2,b2,c2よりも低いか否かを判定する。中央制御部31は、ドラム2の回転数が第一閾値a2,b2,c2よりも低い場合はステップ615へ移行する。中央制御部31は、ドラム2の回転数が第一閾値a2,b2,c2以上である場合はステップ616へ移行する。
<ステップSP615>
ステップSP615では、中央制御部31は、仮偏芯位置θ1に90°を引いた値を正式偏芯位置θ2の値として決定する。中央制御部31は、この場合正式偏芯位置θ2の値が0よりも低くなるときは、さらに360°足した値を正式偏芯位置θ2とする。
<ステップSP616>
ステップSP616では、中央制御部31は、仮偏芯位置θ1に180°を引いた値を正式偏芯位置θ2の値として決定する。中央制御部31は、この場合正式偏芯位置θ2の値が0よりも低くなるときは、さらに360°足した値を正式偏芯位置θ2とする。
ステップSP62に示す注水実施の処理について説明する。図21は注水実施の処理手順を示すフローチャートである。
<ステップSP621>
ステップSP621では、中央制御部31は、上記ステップSP31同様、上記ステップSP25により決定された左右方向の偏芯量Mxと上下方向の偏芯量Mzとのうち、大きい方の値を偏芯量Mxzとする。加えて中央制御部31は、偏芯量Mxzの値が、偏芯量Myに対して大きいか否かを判定する。中央制御部31は、偏芯量Mxzの方が大きければステップSP622に移行する。中央制御部31は、偏芯量Mxzの方が小さければステップSP623へ移行する。
<ステップSP622>
ステップSP622では、中央制御部31は、偏芯量Mx,偏芯量Mzのうち、大きい方の値を示した偏芯量(M)に基づいた決定偏芯位置θ2を注水に適用すると判定する。
<ステップSP623>
ステップSP623では、中央制御部31は、偏芯量Myに基づいた決定偏芯位置θ2を注水に適用すると判定する。
<ステップSP624>
ステップSP624では、中央制御部31は、給水バルブ駆動の処理を実行する。給水バルブ駆動の処理の具体的な手順については後述する。
<ステップSP625>
ステップSP625では、中央制御部31は、バッフル7への給水量が適切か否かを判定する給水量判定の処理を実行する。当該処理の具体的な手順については後述する。
<ステップSP626>
ステップSP626では、中央制御部31は、ステップSP625に係る給水量判定の処理において、何れかのバッフル7が満水でないと判定された場合はステップSP627へ移行する。また中央制御部31は、ステップSP625に係る給水量判定の処理において、何れかのバッフル7が満水であると判定された場合はSP632へ移行する。
<ステップSP627>
ステップSP627では、中央制御部31は、本来であれば偏芯量(M)を減少させるべく注水するところ、逆に偏芯量(M)が増加してしまったか否かの判定である偏芯量増加判定を実行する。偏芯量増加判定の具体的な手順については後述する。
<ステップSP628>
ステップSP628では、中央制御部31は、ステップSP627に係る偏芯量増加判定において、偏芯量増加情報たる、M増加情報(NG)の有無を判定する。中央制御部31は、M増加情報(NG)が無かった場合には、ステップSP631へ移行する。中央制御部31は、M増加情報(NG)が有った場合には、ステップSP629へ移行する。
<ステップSP629>
ステップSP629では、中央制御部31は、ステップSP628においてM増加情報(NG)が3回以下であるか否かを判定する。中央制御部31は、M増加情報(NG)が3回以下であれば、ステップSP631へ移行する。中央制御部31は、M増加情報(NG)が3回以下で無ければ、ステップSP632へ移行する。
<ステップSP630>
ステップSP630では、中央制御部31は、ステップSP622,SP623において適用された何れか一の偏芯量Mx,My,Mzを基に算出された決定偏芯位置θ2のデータを、他のデータへと変更する。
<ステップSP631>
ステップSP631では、中央制御部31は、ドラム2の回転数を加速させるか否かの加速可否判定を実行する。加速可否判定の具体的な手順については後述する。
<ステップSP632>
ステップSP632では、中央制御部31は、ドラム2を加速させるか否かの判定基準を変更させる加速判定変更の処理を実行する。当該処理の具体的な手順については後述する。
本実施形態では上述の通り、ステップSP630において決定偏芯位置θ2のデータを他のデータへと変更するが、変更した決定偏芯位置θ2のデータを基にバッフル7への注水を行っても偏芯量(M)の低減が見られなかった場合は、図示しないが上述したステップSP5の偏芯位置調整処理に係る制御を行うことにより、ドラム2内の洗濯物の配置を変更し、再度脱水工程を開始するようにしている。
続いて、上述したステップSP624に係る給水バルブ駆動の処理の具体的な手順について図22を参照して説明する。
<ステップSP633>
ステップSP633では、中央制御部31は、給水バルブ62a,62b,62cの駆動に適用する正式偏芯位置θ_fixを取得する。正式偏芯位置θ_fixとは、偏芯量Mx,My,Mzより得られた正式偏芯位置θ2の何れかの値である。また本実施形態では、正式偏芯位置θ_fixは図5に示すように、軸心S1の周方向に延びる任意の仮想線からの相対角度で示され、0°〜359°を意味する0〜359の何れかの数値として図22に図示される。
<ステップSP634>
ステップSP634では、中央制御部31は、正式偏芯位置θ_fixが10より小さいか或いは350よりも大きい値であるという条件に該当するか否かを判定する。中央制御部31は、上記条件に該当する場合は、ステップSP635へ移行する。中央制御部31は、上記条件に該当しない場合は、ステップSP636へ移行する。
<ステップSP635>
ステップSP635では、中央制御部31は、正式偏芯位置θ_fixが、図5に示す領域P(A)内にあると判定するとともに、給水バルブ62aを駆動し、バッフル7(A)へ給水する。
<ステップSP636>
ステップSP636では、中央制御部31は、正式偏芯位置θ_fixが10以上であり且つ110以下の値であるという条件に該当するか否かを判定する。中央制御部31は、上記条件に該当する場合は、ステップSP637へ移行する。中央制御部31は、上記条件に該当しない場合は、ステップSP638へ移行する。
<ステップSP637>
ステップSP636では、中央制御部31は、正式偏芯位置θ_fixが、図5に示す領域P(AB)内にあると判定するとともに、給水バルブ62a,62bを駆動し、バッフル7(A),7(B)へ給水する。
<ステップSP638>
ステップSP638では、中央制御部31は、正式偏芯位置θ_fixが110以上であり且つ130以下の値であるという条件に該当するか否かを判定する。中央制御部31は、上記条件に該当する場合は、ステップSP639へ移行する。中央制御部31は、上記条件に該当しない場合は、ステップSP640へ移行する。
<ステップSP639>
ステップSP639では、中央制御部31は、正式偏芯位置θ_fixが、図5に示す領域P(B)内にあると判定するとともに、給水バルブ62bを駆動し、バッフル7(B)へ給水する。
<ステップSP640>
ステップSP640では、中央制御部31は、正式偏芯位置θ_fixが130以上であり且つ230以下の値であるという条件に該当するか否かを判定する。中央制御部31は、上記条件に該当する場合は、ステップSP641へ移行する。中央制御部31は、上記条件に該当しない場合は、ステップSP642へ移行する。
<ステップSP641>
ステップSP641では、中央制御部31は、正式偏芯位置θ_fixが、図5に示す領域P(BC)内にあると判定するとともに、給水バルブ62b,62cを駆動し、バッフル7(B),7(C)へ給水する。
<ステップSP642>
ステップSP642では、中央制御部31は、正式偏芯位置θ_fixが230以上であり且つ250以下の値であるという条件に該当するか否かを判定する。中央制御部31は、上記条件に該当する場合は、ステップSP643へ移行する。中央制御部31は、上記条件に該当しない場合は、ステップSP644へ移行する。
<ステップSP643>
ステップSP643では、中央制御部31は、正式偏芯位置θ_fixが、図5に示す領域P(C)内にあると判定するとともに、給水バルブ62cを駆動し、バッフル7(C)へ給水する。
<ステップSP644>
ステップSP644では、中央制御部31は、正式偏芯位置θ_fixが250以上であり且つ350以下の値であるという条件に該当すると判定するとともに、ステップSP645へ移行する。
<ステップSP645>
ステップSP645では、中央制御部31は、正式偏芯位置θ_fixが、図5に示す領域P(CA)内にあると判定するとともに、給水バルブ62c、62aを駆動し、バッフル7(C),7(A)へ給水する。
本実施形態では、図22に示す給水バルブの駆動の処理を行いながらも常に仮偏芯位置θ1と、正式偏芯位置θ2の算出、決定を行っている。それ故に、本発明に係る同時注水ステップに相当するステップSP637、SP641、SP645から、単一のバッフル7(A),(B)又は(C)へと注水するバッフル7を切り替える本発明に係る注水切り替えステップに相当するステップSP635,SP639又はSP643へ移行することは勿論である。
続いて、上述したステップSP625に係る給水量判定の処理の具体的な手順について図23を参照して説明する。
<ステップSP646>
ステップSP646では、中央制御部31は、給水バルブ62a,62b,62cそれぞれの駆動時間を積算する。
<ステップSP647>
ステップSP646では、中央制御部31は、駆動時間の積算から、給水バルブ62a,62b,62cそれぞれの給水量に換算する。
<ステップSP648>
ステップSP648では、中央制御部31は、給水バルブ62aの積算給水量が1000gに達したか否かの判定を行う。中央制御部31は、積算給水量が1000gに達したと判定した場合は、ステップSP649へ移行する。中央制御部31は、積算給水量が1000gに達していないと判定した場合は、ステップSP650へ移行する。
<ステップSP649>
ステップSP649では、中央制御部31は、給水バルブ62aにより給水されるバッフル7(A)が満水であると判定し、図21に示すステップSP626の処理に際し、YESを示す情報を送信する。
<ステップSP650>
ステップSP650では、中央制御部31は、給水バルブ62bの積算給水量が1000gに達したか否かの判定を行う。中央制御部31は、積算給水量が1000gに達したと判定した場合は、ステップSP651へ移行する。中央制御部31は、積算給水量が1000gに達していないと判定した場合は、ステップSP652へ移行する。
<ステップSP651>
ステップSP651では、中央制御部31は、給水バルブ62bにより給水されるバッフル7(B)が満水であると判定し、図21に示すステップSP626の処理に際し、YESを示す情報を送信する。
<ステップSP652>
ステップSP652では、中央制御部31は、給水バルブ62cの積算給水量が1000gに達したか否かの判定を行う。中央制御部31は、積算給水量が1000gに達したと判定した場合は、ステップSP653へ移行する。中央制御部31は、積算給水量が1000gに達していないと判定した場合は、ステップSP654へ移行する
<ステップSP653>
ステップSP653では、中央制御部31は、給水バルブ62cにより給水されるバッフル7(C)が満水であると判定し、図21に示すステップSP626の処理に際し、YESを示す情報を送信する。
<ステップSP654>
ステップSP654では、中央制御部31は、給水バルブ62a,62b,62cにより給水される何れのバッフル7(A),7(B),7(C)も満水でないと判定し、図21に示すステップSP626の処理に際し、NOを示す情報を送信する。
続いて、ステップSP627に示す偏芯量増加判定について説明する。図24は偏芯量増加判定の処理手順を示すフローチャートである。
<ステップSP655>
ステップSP655では、中央制御部31は、給水バルブ62a,62b,62cにより給水される時間が5秒間経過したときに偏芯量Mx,My,Mzが低減されたか否かを判定する。中央制御部31は、偏芯量Mx,My,Mzが低減されたと判定した場合は、ステップSP656へ移行する。中央制御部31は、偏芯量Mx,My,Mzが低減されていないと判定した場合は、ステップSP657へ移行する。なお、ここで偏芯量Mx,My,Mzが低減されたか否かの判定基準は、必ずしも正式偏芯位置θ_fix算出時に適用した偏芯量(M)のみに限られない。例えば偏芯量Mxと偏芯量Myの和(差し引き)に基づいて判定する態様であってもよいし、偏芯量Mzと偏芯量Myとの和(差し引き)に基づいて判定する態様であっても良い。
<ステップSP656>
ステップSP656では、中央制御部31は、偏芯量(M)の増加はないと判定する。中央制御部31は、図21におけるステップSP629においてNOを示す信号を送信するか、或いは何ら信号を送信しない。
<ステップSP657>
ステップSP657では、中央制御部31は、偏芯量(M)の増加はあると判定し、ステップSP658へと移行する。
<ステップSP658>
ステップSP658では、中央制御部31は、図21におけるステップSP628においてYESの判定をさせるべく所定の信号である偏芯量増加情報たる、M増加情報(NG)を送付する。
続いて、ステップSP631に示す加速可否判定について説明する。図25は加速可否判定の処理手順を示すフローチャートである。
<ステップSP659>
ステップSP659では、中央制御部31は、偏芯量Mxzが回転数上昇用閾値(mc)たる閾値m_xz5よりも小さいか否かを判定する。中央制御部31は、偏芯量Mxzが閾値m_xz5よりも小さいと判定した場合、ステップ660へ移行する。中央制御部31は、偏芯量Mxzが閾値m_xz5よりも小さくないと判定した場合、未だ加速し得ないと判定し、バッフル7への給水を継続させるべくステップSP625へ移行する。
<ステップSP660>
ステップSP660では、中央制御部31は、偏芯量Myが回転数上昇用閾値(mc)である閾値m_y5よりも小さいか否かを判定する。中央制御部31は、偏芯量Myが閾値m_y5よりも小さいと判定した場合、加速可能であると判定し、ドラム2の加速を再開させる。中央制御部31は、偏芯量Myが閾値m_y5よりも小さくないと判定した場合、未だ加速し得ないと判定し、バッフル7への給水を継続させるべくステップSP625へ移行する。
ここで、図18に示される注水用偏芯量閾値(mb)と図25に示される回転数上昇用閾値(mc)との関係について説明する。本実施形態では上述の通り加速度センサ12として、左右方向、上下方向及び前後方向の加速度をそれぞれ検出し得る三軸の加速度センサ12が適用されている。そして本実施形態では、それら三つの加速度の方向毎に、異なった注水用偏芯量閾値(mb)と回転数上昇用閾値(mc)が設定されている。また、本実施形態では、注水用偏芯量閾値(mb)と回転数上昇用閾値(mc)との差は、回転数の上昇に伴い漸次或いは段階的に小さくなるように設定される。加えて本実施形態では、ドラム2の偏芯量(M)が多くなるに伴い、注水用偏芯量閾値(mb)と回転数上昇用閾値(mc)との差が漸次或いは段階的に大きくなるように設定されている。
続いて、ステップSP632に示す加速判定変更の処理について説明する。図26は加速判定変更の処理手順を示すフローチャートである。
<ステップSP661>
ステップSP661では、中央制御部31は、上述したステップSP631に係る加速可否判定に用いた回転数上昇用閾値(mc)である閾値m_xz5,閾値m_y5を、より大きな値を示す偏芯量許容閾値(md)である閾値m_xz6,閾値m_y6へと変更し、ステップSP631に移行する。中央制御部31は、閾値m_xz6,閾値m_y6を用いてステップSP631に係る加速可否判定を行う。
<ステップSP662>
ステップSP662では、中央制御部31は、ステップSP661によって変更された偏芯量許容閾値(md)たる閾値m_xz6,閾値m_y6を用いて行われたステップSP631の加速可否判定により、加速可能か否かの判定を行う。中央制御部31は、加速可否判定の結果が加速可能である場合には、ドラム2を加速させる。中央制御部31は、加速可否判定の結果が加速不可である場合には、脱水工程の継続が困難であると判定し、上記ステップSP5の偏芯位置調整処理を行う。
上述の通りステップSP5では、中央制御部31は、ドラム2の回転を停止させるか、或いはドラム2の回転数を遠心力よりも重力が勝る回転数まで下げることにより、ドラム2内の洗濯物を上下方向に攪拌する。その後、再び脱水工程はステップSP1から開始されることとなる。
以上のように本実施形態のドラム式洗濯機1の制御方法は、脱水工程において、ドラム2の回転数がドラム2の共振点CPよりも低い第一の回転数(N1)に達した時点に、偏芯量(M)並びに偏芯位置(N)たる仮偏芯位置θ1を検出する第一の偏芯検出ステップと、第一の偏芯検出ステップにより検出した偏芯量(M)が、偏芯位置(N)によって異なる値に設定される第一の偏芯量閾値(ma)よりも大きいときには、ドラム2の回転数を下げるか或いはドラム2の回転を停止することによりドラム2内の洗濯物を上下に攪拌し、その後に第一の回転数(N1)までドラム2の回転数を上昇させる洗濯物攪拌ステップと、第一の偏芯検出ステップにより検出した偏芯量(M)が、第一の偏芯量閾値(ma)以下であれば、ドラム2の回転数を共振点CPを超えて上昇させていくと同時に、偏芯量(M)、偏芯位置(N)を継続的に検出する第二の偏芯検出ステップと、第二の偏芯検出ステップにより検出した偏芯量(M)が、ドラム2の回転数によって異なる値に設定される注水用偏芯量閾値(mb)以上となればドラム2の回転数を一定としてバッフル7に注水することにより偏芯量(M)を低下させる注水ステップと、注水ステップにより低下した偏芯量(M)がドラム2の回転数によって異なる値に設定される回転数上昇用閾値(mc)以下となれば、注水を停止するとともにドラム2の回転数を上昇させる回転数上昇ステップとを有し、第二の偏芯検出ステップ、注水ステップ及び回転数上昇ステップを、ドラム2の回転数が所定の脱水定常回転数に至るまで行うことを特徴とするドラム式洗濯機1の制御方法である。
本実施形態によれば、洗濯物の偏りにより生じた偏芯量(M)が速やかに低減されるので、ドラム2の回転を途中で減速あるいは停止することなく、通常の脱水工程を安定して継続することに加え、バッフル7に注水するタイミング及び注水時間の最適化による脱水工程の時間短縮を実現できる。
また本実施形態では、バッフル7への注水により偏芯量(M)を低減し易い、仮偏芯位置θ1がバッフル7に対向する位置にある場合には第一の偏芯量閾値(ma)を大きく設定することで、バッフル7への注水による効果をより大きく活かして脱水運転をより安定して継続させることができる。
また本実施形態では、ドラム2が対向負荷の状態にあると判断された場合には、対向負荷ではないときに設定されているときよりも第一の偏芯量閾値(ma)が低い値に設定されるため、長時間バッフル7への注水を行っても偏芯量(M)が低減されずに、脱水に要する時間が長時間となってしまうという不具合を有効に回避することができる。
また本実施形態では、加速度センサ12が、左右方向、上下方向及び前後方向の加速度をそれぞれ検出し得るとし、これら左右方向、上下方向並びに前後方向の加速度ごとに、異なる第一の偏芯量閾値(ma)を設定するので、より正確な偏芯量(M)、仮偏芯位置θ1に基づいた制御が実現される。
また本実施形態では、注水用偏芯量閾値(mb)と回転数上昇用閾値(mc)との差は、回転数の上昇に伴い漸次或いは段階的に小さくなるように設定されるので、ドラム2の回転数の如何に関わらず安定して正確な注水を行うことが実現されている。
また本実施形態では、偏芯量(M)が多くなるに伴い、注水用偏芯量閾値(mb)と回転数上昇用閾値(mc)との差が漸次或いは段階的に大きくなるように設定されるので、偏芯量(M)の如何に関わらず安定して正確な注水を行うことが実現されている。
以上、本発明の一実施形態について説明したが、本実施形態の構成は上述したものに限定されず、種々の変形が可能である。
例えば、上記実施形態では洗濯機として、家庭用として好適に利用され得る所謂斜めドラム型全自動洗濯機に本発明を適用した一例を開示したが勿論、コインランドリー店舗にて広く好適に適用されている横型の洗濯乾燥機であっても、本発明に係る制御方法は好適に適用され得る。
また例えば、上記実施形態ではバッフル7を三つ設けた態様を開示したが勿論バッフル7を四つ以上備えた構成としてもよい。またバッフル7は必ずしもドラム2の周方向に関して等角度間隔で配置されることは要さず、またそれぞれ同じ形状であることも要さないことは勿論である。
また、上記実施形態では加速度センサ12は左右方向、上下方向及び前後方向の加速度を検出し得る三軸の加速度センサを一つ配置していたが、上下方向、左右方向、前後方向のうち何れか一の方向のみの加速度を検出し得る加速度センサを複数個取り付けて加速度センサ12を構成してもよい。
その他の構成も、本発明の趣旨を逸脱しない範囲で種々変形が可能である。
1・・・洗濯機
2・・・ドラム
7・・・バッフル
CP・・・共振点
N、θ1、θ2・・・偏芯位置
N1・・・第一の回転数
M・・・偏芯量
ma・・・第一の偏芯量閾値
mb・・・注水用偏芯量閾値
mc・・・回転数上昇用閾値
SP2・・・第一の偏芯検出ステップ
SP4・・・第二の偏芯検出ステップ
SP6・・・注水ステップ
SP8・・・回転数上昇ステップ

Claims (6)

  1. 水平方向又は傾斜方向に延びる軸線周りに回転可能に構成された有底筒状のドラムと、前記ドラムの軸線方向に沿って前記ドラムの内周面に三つ以上配設される中空のバッフルと、前記バッフルの各々に注水するための受水ユニットと、前記ドラムの振動を検出する加速度センサと、前記加速度センサにより検出された前記ドラムの振動に基づいて前記ドラム内の偏芯量及び偏芯位置を検出する偏芯検出手段とを有するドラム式洗濯機の制御方法であって、
    脱水工程において、
    前記ドラムの回転数が前記ドラムの共振点よりも低い第一の回転数に達した時点に、偏芯量及び偏芯位置を検出する第一の偏芯検出ステップと、
    前記第一の偏芯検出ステップにより検出した偏芯量が、偏芯位置によって異なる値に設定される第一の偏芯量閾値よりも大きいときには、前記ドラムの回転数を下げる、或いは前記ドラムの回転を停止することにより前記ドラム内の洗濯物を前記ドラム内で上下に攪拌させる洗濯物攪拌ステップと、
    前記第一の偏芯検出ステップにより検出した偏芯量が、前記第一の偏芯量閾値以下であれば、前記ドラムの回転数を、前記共振点を超えて上昇させるとともに、偏芯量及び偏芯位置を継続的に検出する第二の偏芯検出ステップと、
    前記第二の偏芯検出ステップにより検出した偏芯量が、前記ドラムの回転数によって異なる値に設定される注水用偏芯量閾値以上となれば前記ドラムの回転数をほぼ一定として前記バッフルに注水する注水ステップと、
    前記注水ステップにより偏芯量が、ドラムの回転数によって異なる値に設定される回転数上昇用閾値以下となれば、注水を停止するとともに前記ドラムの回転数を上昇させる回転数上昇ステップとを有し、
    前記第二の偏芯検出ステップ、前記注水ステップ及び前記回転数上昇ステップを、前記ドラムの回転数が予め定める脱水定常回転数に至るまで行うことを特徴とするドラム式洗濯機の制御方法。
  2. 前記第一の偏芯量閾値は、前記偏芯位置が前記バッフルと対面した位置にあるときに最も大きく設定されることを特徴とする請求項1記載のドラム式洗濯機の制御方法。
  3. 前記第一の偏芯量閾値は、前記偏芯位置が対向負荷の状態にあると判断された場合には、前記対向負荷の状態ではないときに設定されている値よりも低い値に設定されることを特徴とする請求項1又は2記載のドラム式洗濯機の制御方法。
  4. 前記加速度センサが、左右方向、上下方向及び前後方向の加速度をそれぞれ検出し得るものであり、
    前記第一の偏芯量閾値は、左右方向、上下方向及び前後方向の加速度ごとに、異なる値に設定されることを特徴とする請求項1又は2記載のドラム式洗濯機の制御方法。
  5. 前記注水用偏芯量閾値と前記回転数上昇用閾値との差は、回転数の上昇に伴い漸次或いは段階的に小さくなるように設定されることを特徴とする請求項1又は2記載のドラム式洗濯機の制御方法。
  6. 前記注水用偏芯量閾値と前記回転数上昇用閾値との差は、偏芯量が多くなるに伴い、漸次或いは段階的に大きくなるように設定されることを特徴とする請求項1又は2記載のドラム式洗濯機の制御方法。
JP2016157775A 2016-08-10 2016-08-10 ドラム式洗濯機の制御方法 Active JP6753726B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016157775A JP6753726B2 (ja) 2016-08-10 2016-08-10 ドラム式洗濯機の制御方法
CN201780048440.6A CN109563667B (zh) 2016-08-10 2017-07-18 滚筒洗衣机的控制方法
PCT/CN2017/093273 WO2018028388A1 (zh) 2016-08-10 2017-07-18 滚筒洗衣机的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016157775A JP6753726B2 (ja) 2016-08-10 2016-08-10 ドラム式洗濯機の制御方法

Publications (2)

Publication Number Publication Date
JP2018023625A true JP2018023625A (ja) 2018-02-15
JP6753726B2 JP6753726B2 (ja) 2020-09-09

Family

ID=61162771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016157775A Active JP6753726B2 (ja) 2016-08-10 2016-08-10 ドラム式洗濯機の制御方法

Country Status (3)

Country Link
JP (1) JP6753726B2 (ja)
CN (1) CN109563667B (ja)
WO (1) WO2018028388A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020010774A (ja) * 2018-07-13 2020-01-23 青島海爾洗衣机有限公司QingDao Haier Washing Machine Co.,Ltd. ドラム式洗濯機
JP2020081417A (ja) * 2018-11-27 2020-06-04 日立グローバルライフソリューションズ株式会社 洗濯機
JP2020185056A (ja) * 2019-05-10 2020-11-19 青島海爾洗衣机有限公司QingDao Haier Washing Machine Co.,Ltd. 洗濯機
WO2022068050A1 (zh) * 2020-09-30 2022-04-07 无锡小天鹅电器有限公司 一种平衡装置、筒体组件及衣物处理设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7369394B2 (ja) * 2019-05-10 2023-10-26 青島海爾洗衣机有限公司 洗濯機
JP7482479B2 (ja) * 2020-06-29 2024-05-14 青島海爾洗衣机有限公司 洗濯機
CN112746445B (zh) * 2020-12-25 2022-03-18 珠海格力电器股份有限公司 一种洗衣机控制方法、装置、电子设备及可读存储介质
CN113186690A (zh) * 2021-04-29 2021-07-30 四川虹美智能科技有限公司 滚筒洗衣机脱水控制方法及装置
CN113652838A (zh) * 2021-09-06 2021-11-16 海信(山东)冰箱有限公司 一种洗衣机的控制方法、装置及其洗衣机
CN114622378B (zh) * 2022-01-21 2023-03-07 珠海格力电器股份有限公司 偏心量反向标定方法以及滚筒洗衣机检测装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11244594A (ja) * 1998-03-03 1999-09-14 Sanyo Electric Co Ltd ドラム式遠心脱水装置
WO2001079603A1 (fr) * 2000-04-19 2001-10-25 Sanyo Electric Co., Ltd. Machine a laver du type a tambour et procede de commande associe
JP2016000197A (ja) * 2014-05-19 2016-01-07 ハイアールアジア株式会社 洗濯機

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002136792A (ja) * 2000-11-01 2002-05-14 Sanyo Electric Co Ltd ドラム式洗濯機
JP2002346281A (ja) * 2001-05-30 2002-12-03 Sanyo Electric Co Ltd ドラム式洗濯機
CN1619043A (zh) * 2003-11-20 2005-05-25 Lg电子株式会社 滚筒洗衣机的提升装置以及使用该提升装置的滚筒洗衣机
KR101073500B1 (ko) * 2004-06-02 2011-10-17 삼성전자주식회사 드럼 세탁기
JP2007167263A (ja) * 2005-12-21 2007-07-05 Sanyo Electric Co Ltd ドラム式洗濯機
JP2010075669A (ja) * 2008-09-01 2010-04-08 Panasonic Corp 洗濯機
CN101736553A (zh) * 2009-12-04 2010-06-16 合肥荣事达三洋电器股份有限公司 一种斜滚筒洗衣机脱水不平衡的检测方法
EP2659045A2 (en) * 2010-12-27 2013-11-06 Arçelik Anonim Sirketi Washing machine wherein the unbalanced load is balanced
CN103911804B (zh) * 2013-01-07 2017-09-29 青岛海尔滚筒洗衣机有限公司 一种洗衣机脱水分布控制方法
CN104120584B (zh) * 2013-04-26 2018-08-07 青岛海尔洗衣机有限公司 一种具有主动注水平衡环的洗衣机及控制方法
CN103451891B (zh) * 2013-09-03 2015-10-07 无锡小天鹅通用电器有限公司 振动传感器检测滚筒洗衣机偏心负载的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11244594A (ja) * 1998-03-03 1999-09-14 Sanyo Electric Co Ltd ドラム式遠心脱水装置
WO2001079603A1 (fr) * 2000-04-19 2001-10-25 Sanyo Electric Co., Ltd. Machine a laver du type a tambour et procede de commande associe
JP2016000197A (ja) * 2014-05-19 2016-01-07 ハイアールアジア株式会社 洗濯機

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020010774A (ja) * 2018-07-13 2020-01-23 青島海爾洗衣机有限公司QingDao Haier Washing Machine Co.,Ltd. ドラム式洗濯機
JP7218853B2 (ja) 2018-07-13 2023-02-07 青島海爾洗衣机有限公司 ドラム式洗濯機
JP2020081417A (ja) * 2018-11-27 2020-06-04 日立グローバルライフソリューションズ株式会社 洗濯機
JP7178244B2 (ja) 2018-11-27 2022-11-25 日立グローバルライフソリューションズ株式会社 洗濯機
JP2020185056A (ja) * 2019-05-10 2020-11-19 青島海爾洗衣机有限公司QingDao Haier Washing Machine Co.,Ltd. 洗濯機
JP7442114B2 (ja) 2019-05-10 2024-03-04 青島海爾洗衣机有限公司 洗濯機
WO2022068050A1 (zh) * 2020-09-30 2022-04-07 无锡小天鹅电器有限公司 一种平衡装置、筒体组件及衣物处理设备
CN114318777A (zh) * 2020-09-30 2022-04-12 无锡小天鹅电器有限公司 一种平衡装置、筒体组件及衣物处理设备
CN114318777B (zh) * 2020-09-30 2023-02-17 无锡小天鹅电器有限公司 一种平衡装置、筒体组件及衣物处理设备

Also Published As

Publication number Publication date
CN109563667A (zh) 2019-04-02
JP6753726B2 (ja) 2020-09-09
WO2018028388A1 (zh) 2018-02-15
CN109563667B (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
JP6753726B2 (ja) ドラム式洗濯機の制御方法
JP6807063B2 (ja) ドラム式洗濯機の制御方法
JP6792233B2 (ja) ドラム式洗濯機の制御方法
JP4257312B2 (ja) ドラム式洗濯機
JP7100839B2 (ja) ドラム式洗濯機
US8893341B2 (en) Washing machine and method of controlling spin-drying thereof
JP7061754B2 (ja) 洗濯機
JP2019092706A (ja) ドラム式洗濯機
JP2006296540A (ja) 洗濯機
JP7061755B2 (ja) ドラム式洗濯機
JP7473907B2 (ja) 洗濯機
JP7442114B2 (ja) 洗濯機
JP7369394B2 (ja) 洗濯機
KR20080040947A (ko) 세탁기 및 그 제어방법
JP2023010153A (ja) 洗濯機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200820

R150 Certificate of patent or registration of utility model

Ref document number: 6753726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250