JP2018011938A - 追跡マーカを用いた外科用ロボット自動化 - Google Patents

追跡マーカを用いた外科用ロボット自動化 Download PDF

Info

Publication number
JP2018011938A
JP2018011938A JP2017098044A JP2017098044A JP2018011938A JP 2018011938 A JP2018011938 A JP 2018011938A JP 2017098044 A JP2017098044 A JP 2017098044A JP 2017098044 A JP2017098044 A JP 2017098044A JP 2018011938 A JP2018011938 A JP 2018011938A
Authority
JP
Japan
Prior art keywords
robot
end effector
tracking
marker
markers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017098044A
Other languages
English (en)
Other versions
JP7078355B2 (ja
Inventor
アール.クロフォード ニール
R Crawford Neil
アール.クロフォード ニール
シッチーニ ステファン
Cicchini Stephen
シッチーニ ステファン
ジョンソン ノーバート
Johnson Norbert
ジョンソン ノーバート
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Globus Medical Inc
Original Assignee
Globus Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Globus Medical Inc filed Critical Globus Medical Inc
Publication of JP2018011938A publication Critical patent/JP2018011938A/ja
Application granted granted Critical
Publication of JP7078355B2 publication Critical patent/JP7078355B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/064Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/90Identification means for patients or instruments, e.g. tags
    • A61B90/98Identification means for patients or instruments, e.g. tags using electromagnetic means, e.g. transponders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/32Surgical robots operating autonomously
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/90Identification means for patients or instruments, e.g. tags
    • A61B90/94Identification means for patients or instruments, e.g. tags coded with symbols, e.g. text
    • A61B90/96Identification means for patients or instruments, e.g. tags coded with symbols, e.g. text using barcodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00876Material properties magnetic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • A61B2034/2057Details of tracking cameras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2072Reference field transducer attached to an instrument or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/03Automatic limiting or abutting means, e.g. for safety
    • A61B2090/033Abutting means, stops, e.g. abutting on tissue or skin
    • A61B2090/034Abutting means, stops, e.g. abutting on tissue or skin abutting on parts of the device itself
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0807Indication means
    • A61B2090/0811Indication means for the position of a particular part of an instrument with respect to the rest of the instrument, e.g. position of the anvil of a stapling instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • A61B2090/3762Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy using computed tomography systems [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3937Visible markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3937Visible markers
    • A61B2090/3945Active visible markers, e.g. light emitting diodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3983Reference marker arrangements for use with image guided surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • A61B90/11Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis with guides for needles or instruments, e.g. arcuate slides or ball joints

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Robotics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Biophysics (AREA)
  • Human Computer Interaction (AREA)
  • Electromagnetism (AREA)
  • Manipulator (AREA)

Abstract

【課題】外科用器具が、位置付けられ、移動される際に、高度の的確さをもって追跡することができる外科用ロボットを提供する。【解決手段】物体の3次元位置を検出するためのデバイス、システム、及び方法、ならびにそれに係る外科用自動化。外科用ロボットシステム100は、ロボット基部106、ロボット基部に連結されたロボットアーム104、及びロボットアームに連結されたエンドエフェクタ112を有するロボット102を含み得る。追跡されるべきエンドエフェクタ、外科用器具、患者、及び/または他の物体は、アクティブ及び/またはパッシブ追跡マーカを含む。カメラ、例えば、立体写真測量赤外カメラなどは、追跡マーカを検出することができ、ロボットは、追跡マーカから物体の3次元位置を判定する。【選択図】図13A

Description

関連出願の相互参照
本出願は、2016年4月11日に出願された米国特許出願第15/095,883号の一部継続であり、その米国特許出願は、2013年10月24日に出願された米国特許出願第14/062,707号の一部継続であり、その米国特許出願は、2013年6月21日に出願された米国特許出願第13/924,505号の一部継続出願であり、その米国特許出願は、2012年6月21日に出願された仮出願第61/662,702号に対する優先権を主張し、及び2013年3月15日に出願された仮出願第61/800,527号に対する優先権を主張し、それらの全ては、全ての目的のためにその全体として参照することにより本明細書に組み込まれる。
本開示は、位置認識システム、特に、ロボット支援手術の間のエンドエフェクタ及びツール追跡ならびに操作に関する。
位置認識システムは、3次元(3D)における特定の物体の位置を判定するために及びその物体を追跡するために使用される。ロボット支援手術において、例えば、ある物体、例えば、外科用器具等は、その器具が、例えば、ロボットまたは医師によって位置付けられ、移動される際に、高度の的確さをもって追跡される必要がある。
赤外信号に基づく位置認識システムは、物体の追跡のためにパッシブ及び/もしくはアクティブセンサまたはマーカを使用してもよい。パッシブセンサまたはマーカにおいて、追跡されるべき物体は、パッシブセンサ、例えば、反射性球体ボール等を含んでもよく、それらは、追跡されるべき物体上の効果的な場所に位置付けられる。赤外伝送器は信号を伝送し、反射性球体ボールは信号を反射して、3Dにおける物体の位置の判定を助ける。アクティブセンサまたはマーカにおいて、追跡されるべき物体は、アクティブ赤外伝送器、例えば、発光ダイオード(LED)等を含み、このため、3D検出のためにそれら自体の赤外信号を発生する。
アクティブまたはパッシブ追跡センサのいずれかを用いて、システムは、次いで、赤外カメラ、デジタル信号、アクティブもしくはパッシブセンサの既知の場所、距離、それが応答信号を受信するためにかかった時間、他の既知の変数、またはこれらの組み合わせのうちの1つ以上からの情報あるいはそれに関する情報に基づいて、アクティブ及び/またはパッシブセンサの3次元位置を幾何学的に解明する。
1つの問題は、追跡センサが、典型的には、追跡されるべき物体の一部に強固に取設され、典型的には、物体自体上で移動可能ではないことである。また、システムは、物体の場所を正確に判定するために、典型的には、複数のマーカ、多くの場合、4つのマーカを必要とする。したがって、物体の3次元位置を認識するために改善されたシステム及び方法であって、例えば、物体またはその位置についての追加的な情報を提供するために、正確であるものの移動可能であり得る及び/またはより少ないセンサもしくはマーカを提供され得る、改善されたシステム及び方法を提供する必要性が存在する。
この及び他の必要性にかなうために、ロボット支援手術での使用のために物体の3次元位置を判定するためのデバイス、システム、及び方法が提供される。
一実施形態によれば、外科用ロボットシステムは、ロボット基部及び表示器、ロボット基部に連結されたロボットアーム、ならびにロボットアームに連結されたエンドエフェクタを有する、ロボットであって、エンドエフェクタが1つ以上の追跡マーカを有し、エンドエフェクタの移動が、ロボットによって電子的に制御される、ロボットを含む。システムは、1つ以上の追跡マーカを検出することができる少なくとも1つのカメラを含むカメラスタンドを更に含み、ロボットは、1つ以上の追跡マーカの3次元位置を判定する。
別の実施形態によれば、外科用ロボットシステムは、ロボット基部、ロボット基部に連結されたロボットアーム、及びロボットアームに連結されたエンドエフェクタを有する、ロボットを含む。エンドエフェクタは、エンドエフェクタの基部に取り付けられた第1の複数の追跡マーカ、及びエンドエフェクタの誘導管に取り付けられた第2の複数の追跡マーカを有する。第2の複数の追跡マーカは、第1の構成から第2の構成へと第1の複数の追跡マーカに対して移動可能である。システムは、第1の構成及び第2の構成において第1及び第2の複数の追跡マーカを検出することができる少なくとも1つのカメラを更に含む。ロボットは、第1及び第2の複数の追跡マーカの第1の構成または第2の構成に対応する少なくとも1つのテンプレートからエンドエフェクタの3次元位置を判定する。
別の実施形態によれば、外科用ロボットシステムは、ロボット基部、ロボット基部に連結されたロボットアーム、及びロボットアームに連結されたエンドエフェクタを有する、ロボットを含む。エンドエフェクタは、中心長手方向軸を伴う誘導管及び誘導管に取り付けられた単一追跡マーカを有する。単一追跡マーカは、固定距離だけ中心長手方向軸から隔てられる。システムは、中心線を有する器具と、複数の追跡マーカが取設され、器具から延在するアレイと、を含む。システムは、誘導管上の単一追跡マーカ及び器具上の複数の追跡マーカを検出することができる少なくとも1つのカメラを更に含む。ロボットは、器具の中心線及び単一追跡マーカ間の検出された距離を判定して、検出された距離が固定距離に一致するかを判定する。このようにして、ロボットは、器具が誘導管内に位置付けられたかを判定し得る。
更に別の実施形態によれば、外科用ロボットシステムは、ロボット基部、ロボット基部に連結されたロボットアーム、及びロボットアームに連結されたエンドエフェクタであって、誘導管を有するエンドエフェクタを有する、ロボットを含む。システムは、複数の固定された追跡マーカ及び移動可能な追跡マーカを伴い器具から延在するアレイを有する器具であって、誘導管内に受け入れ可能である器具を含む。システムはまた、患者に挿入されるように構成されたインプラントであって、器具に取り外し可能に連結されるように構成されたインプラントを含む。システムは、器具上の複数の固定された追跡マーカ及び移動可能な追跡マーカを検出することができる少なくとも1つのカメラを更に含み、ロボットは、移動可能な追跡マーカの位置または移動を判定して、インプラントの変数を判定する。インプラントは、拡張可能なインプラント、関節インプラント、または移動可能なインプラントであってもよく、変数は、拡張可能なインプラントの高さ、関節インプラントの移動の角度、または同様のものであってもよい。
外科手技の間のロボットシステム、患者、外科医、及び他の医療要員の場所についての潜在的配設の頭上図である。 一実施形態に係る患者に対する外科用ロボット及びカメラの位置付けを含むロボットシステムを例解する。 例示的な実施形態に従う外科用ロボットシステムを例解する。 例示的な実施形態に従う外科用ロボットの一部を例解する。 例示的な実施形態に従う外科用ロボットのブロック図を例解する。 例示的な実施形態に従う外科用ロボットを例解する。 例示的な実施形態に従うエンドエフェクタを例解する。 例示的な実施形態に従うエンドエフェクタを例解する。 例示的な実施形態に従うエンドエフェクタを例解する。 一実施形態に係るエンドエフェクタの誘導管への外科用器具の挿入前及び後の、外科用器具及びエンドエフェクタを例解する。 例示的な実施形態に従うエンドエフェクタ及びロボットアームの一部分を例解する。 例示的な実施形態に従うエンドエフェクタ及びロボットアームの一部分を例解する。 例示的な実施形態に従うエンドエフェクタ及びロボットアームの一部分を例解する。 例示的な実施形態に従う動的参照アレイ、画像化アレイ、及び他の構成要素を例解する。 例示的な実施形態に従う登録方法を例解する。 例示的な実施形態に係る画像化デバイスの実施形態を例解する。 例示的な実施形態に係る画像化デバイスの実施形態を例解する。 例示的な実施形態に従うロボットアーム及びエンドエフェクタを含むロボットの一部分を例解する。 図13Aに示される、複数の追跡マーカが強固に取り付けられた、エンドエフェクタのクローズアップ図である。 一実施形態に係る複数の追跡マーカが強固に取り付けられたツールまたは器具である。 移動可能な追跡マーカが第1の構成にあるエンドエフェクタの代替版である。 移動可能な追跡マーカが第2の構成にある図14Aに示されるエンドエフェクタである。 図14Aからの第1の構成における追跡マーカのテンプレートを示す。 図14Bからの第2の構成における追跡マーカのテンプレートを示す。 単一追跡マーカのみが取り付けられたエンドエフェクタの代替版を示す。 器具が誘導管を通して配置された図15Aのエンドエフェクタを示す。 2つの異なる位置における器具、及び器具が誘導管内または誘導管の外側に位置付けられるかを判定するための結果として生じる論理を伴う、図15Aのエンドエフェクタを示す。 2つの異なるフレームにおける誘導管内の器具を伴う図15Aのエンドエフェクタ、及び誘導管上の単一追跡マーカに対するその相対距離を示す。 座標系に対して図15Aのエンドエフェクタを示す。 所望の対象軌道へとロボットのエンドエフェクタをナビゲートして移動するための方法のブロック図である。 それぞれ、収縮及び拡張位置に固定されたならびに移動可能な追跡マーカを有する拡張可能なインプラントを挿入するための器具を描写する。 それぞれ、収縮及び拡張位置に固定されたならびに移動可能な追跡マーカを有する拡張可能なインプラントを挿入するための器具を描写する。 それぞれ、挿入及び角度付き位置に固定されたならびに移動可能な追跡マーカを有する関節インプラントを挿入するための器具を描写する。 それぞれ、挿入及び角度付き位置に固定されたならびに移動可能な追跡マーカを有する関節インプラントを挿入するための器具を描写する。
本開示は、本明細書における説明に記載されるまたは図面において例解される構成要素の構築及び配設の詳細にその用途において限定されないことが理解されるものとする。本開示の教示は、他の実施形態において使用及び実践されてもよいし、種々の方法において実践または実行されてもよい。また、本明細書において使用される専門表現及び専門用語が、説明目的のためであり、制限として見なされるべきではないことが理解されるものとする。本明細書における「含む(including)」、「備える(comprising)」、または「有する(having)」、及びこれらの変化形の使用は、その後に列記される項目、及びそれらの同等物、ならびに追加の項目を包含することが意味される。別途指定または制限されない限り、「装着された(mounted)」、「接続された(connected)」、「支持された(supported)」、及び「連結された(coupled)」という用語、ならびにこれらの変化形は、広義に使用され、直接的及び間接的双方の装着、接続、支持、及び連結を包含する。更に、「接続された(connected)」及び「連結された(coupled)」は、物理的もしくは機械的接続または連結に制限されない。
以下の考察は、当業者が本開示の実施形態を作製及び使用することを可能にするために提示される。例解される実施形態への種々の修正は、当業者には容易に明らかであり、本明細書における原理は、本開示の実施形態から逸脱することなく、他の実施形態及び用途に適用され得る。このため、実施形態は、示される実施形態に制限されることを意図しないが、本明細書において開示される原理及び特性と一致する最も広い範囲が与えられるものとする。以下の発明を実施するための形態は、異なる図面における同様の要素が同様の参照番号を有する図面を参照して読まれるものとする。図面は、必ずしも縮尺通りではなく、選択された実施形態を描写し、実施形態の範囲を制限することを意図しない。当業者は、本明細書において提供される実施例が、多くの有用な代替物を有し、実施形態の範囲内にあることを認識するであろう。
ここで、図面を参照すると、図1及び2は、例示的な実施形態に従って外科用ロボットシステム100を例解する。外科用ロボットシステム100は、例えば、外科用ロボット102、1つ以上のロボットアーム104、基部106、表示器110、例えば、誘導管114を含む、エンドエフェクタ112、及び1つ以上の追跡マーカ118を含んでもよい。外科用ロボットシステム100は、患者追跡デバイス116を含んでもよく、また、患者追跡デバイス116は、1つ以上の追跡マーカ118を含み、それは、患者210に(例えば、患者210の骨に)直接固定されるように適合される。外科用ロボットシステム100はまた、例えば、カメラスタンド202上に位置付けられた、カメラ200を利用してもよい。カメラスタンド202は、カメラ200を所望の位置に移動、配向、及び支持するために、任意の適切な構成を有することができる。カメラ200は、任意の適切なカメラまたは複数のカメラ、例えば、カメラ200の視点から見ることができる所与の測定量においてアクティブ及びパッシブ追跡マーカ118を識別することができる、例えば、1つ以上の赤外カメラ(例えば、2焦点または立体写真測量カメラ)等を含んでもよい。カメラ200は、所与の測定量をスキャンしてもよく、3次元におけるマーカ118の位置を識別及び判定するために、マーカ118から来る光を検出してもよい。例えば、アクティブマーカ118は、電気信号(例えば、赤外発光ダイオード(LED))によって作動される赤外発光マーカを含んでもよく、パッシブマーカ118は、例えば、カメラ200または他の適切なデバイス上の照明器によって発出される赤外光を反射するレトロな反射性マーカ(例えば、それらは、入射光の方向に入射するIR放射を反射する)を含んでもよい。
図1及び2は、動作室環境における外科用ロボットシステム100の配置のための潜在的な構成を例解する。例えば、ロボット102は、患者210の近くまたは次に位置付けられてもよい。患者210の頭部の近くが描写されるが、ロボット102は、手術を受けている患者210の領域に応じて、患者210の近くの任意の適切な場所に位置付けることができることが理解されるであろう。カメラ200は、ロボットシステム100から分離されてもよいし、患者210の足に位置付けられてもよい。この場所は、カメラ200が、手術野208への直接的な視線を有することを可能にする。再度、カメラ200は、手術野208への見通し線を有する任意の適切な位置に位置してもよいことが意図される。図示される構成において、外科医120は、ロボット102の向かいに位置付けられてもよいが、依然として、エンドエフェクタ112及び表示器110を操作することができる。外科助手126は、更にまた、エンドエフェクタ112及び表示器110の双方にアクセス可能に、外科医120の向かいに位置付けられてもよい。所望される場合、外科医120及び助手126の場所は、逆にされてもよい。麻酔医122及び看護師または洗浄技師124のための伝統的な領域は、ロボット102及びカメラ200の場所によって邪魔されないままである。
ロボット102の他の構成要素に関して、表示器110は、外科用ロボット102に取設することができ、他の例示的な実施形態において、表示器110は、外科用ロボット102を伴う手術室内、または遠隔の場所のいずれかにおいて、外科用ロボット102から取り外すことができる。エンドエフェクタ112は、ロボットアーム104に連結されてもよく、少なくとも1つのモータによって制御されてもよい。例示的な実施形態において、エンドエフェクタ112は、患者210上で手術を実施するために使用される(本明細書において更に説明される)外科用器具608を受け入れる及び配向させることができる、誘導管114を備えることができる。本明細書において使用される際、「エンドエフェクタ」という用語は、「エンドイフェクチュエータ」及び「イフェクチュエータ要素」という用語と同義的に使用される。誘導管114を用いて一般的に示されるが、エンドエフェクタ112は、手術中の使用に適した任意の適切な器具類と置き換えてもよいことが理解されるであろう。一部の実施形態において、エンドエフェクタ112は、所望の様態における外科用器具608の移動をもたらすために任意の既知の構造を備えることができる。
外科用ロボット102は、エンドエフェクタ112の並進及び配向を制御することができる。ロボット102は、例えば、x、y、及びz軸に沿って、エンドエフェクタ112を移動させることができる。エンドエフェクタ112は、(エンドエフェクタ112と関連付けられるオイラー角(例えば、ロール、ピッチ、及び/またはヨー)のうちの1つ以上を選択的に制御することができるように)x、y、及びz軸、ならびにZフレーム軸のうちの1つ以上の周囲の選択的回転のために構成することができる。一部の例示的な実施形態において、エンドエフェクタ112の並進及び配向の選択的制御は、例えば、回転軸のみを備える6自由度のロボットアームを利用する従来のロボットと比較して、有意に改善された精密性でもって医療手技の実施を可能にすることができる。例えば、外科用ロボットシステム100は、患者210上で動作させるために使用されてもよく、ロボットアーム104は、患者210の身体の上に位置付けることができ、エンドエフェクタ112は、患者210の身体に向かってz軸に対して選択的に角度付けられる。
一部の例示的な実施形態において、外科用器具608の位置は、外科用ロボット102が、手技中、常に外科用器具608の場所を認識することができるように、動的に更新することができる。結果として、一部の例示的な実施形態において、外科用ロボット102は、医師からのいかなる更なる支援も伴わずに(医師がそのように所望しない限り)素早く所望の位置に外科用器具608を移動させることができる。一部の更なる実施形態において、外科用ロボット102は、外科用器具608が、選択された、事前に計画された軌道から外れた場合、外科用器具608の経路を補正するように構成することができる。一部の例示的な実施形態において、外科用ロボット102は、エンドエフェクタ112及び/または外科用器具608の移動の停止、修正、及び/または手動制御を可能にするように構成することができる。このため、使用中、例示的な実施形態において、医師または他のユーザは、システム100を動作させることができ、エンドエフェクタ112及び/または外科用器具608の自主的な移動を停止、修正、または手動で制御するオプションを有する。外科用ロボット102による外科用器具608の制御及び移動を含む、外科用ロボットシステム100の更なる詳細は、その全体として参照することにより本明細書に組み込まれる、同時係属米国特許出願通し番号第13/924,505号において見出すことができる。
ロボット外科用システム100は、3次元においてロボットアーム104、エンドエフェクタ112、患者210、及び/または外科用器具608の移動を追跡するように構成された1つ以上の追跡マーカ118を備えることができる。例示的な実施形態において、複数の追跡マーカ118は、例えば、制限することなく、ロボット102の基部106上、ロボットアーム104上、またはエンドエフェクタ112上等の、ロボット102の外表面に装着(またはそうでなければ固定)することができる。例示的な実施形態において、複数の追跡マーカ118のうちの少なくとも1つの追跡マーカ118は、エンドエフェクタ112に装着またはそうではければ固定することができる。1つ以上の追跡マーカ118は、更に患者210に装着(またはそうではければ固定)することができる。例示的な実施形態において、複数の追跡マーカ118は、外科医、外科用ツール、またはロボット102の他のパーツによって遮られる可能性を低減するように、手術野208から離間して、患者210上に位置付けることができる。更に、1つ以上の追跡マーカ118は、外科用ツール608(例えば、スクリュードライバ、拡張器、インプラント挿入器、または同様のもの)に更に装着(またはそうではければ固定)することができる。このため、追跡マーカ118は、マークされた物体(例えば、エンドエフェクタ112、患者210、及び外科用ツール608)のそれぞれが、ロボット102によって追跡されることを可能にする。例示的な実施形態において、システム100は、例えば、エンドエフェクタ112、(例えば、エンドエフェクタ112の管114内に位置付けられた)外科用器具608の、配向及び場所、ならびに患者210の相対位置を計算するために、マークされた物体のそれぞれから収集された追跡情報を使用することができる。
例示的な実施形態において、マーカ118のうちの1つ以上は、光学マーカであってもよい。一部の実施形態において、エンドエフェクタ112上の1つ以上の追跡マーカ118の位置付けは、エンドエフェクタ112の位置をチェックまたは検証する役割を果たすことによって、位置測定値の精密性を最大化することができる。外科用ロボット102及び外科用器具608の制御、移動、ならびに追跡を含む、外科用ロボットシステム100の更なる詳細は、その全体として参照することにより本明細書に組み込まれる、同時係属米国特許出願通し番号第13/924,505号において見出すことができる。
例示的な実施形態は、外科用器具608に連結された1つ以上のマーカ118を含む。例示的な実施形態において、例えば、患者210及び外科用器具608に連結される、これらのマーカ118、ならびにロボット102のエンドエフェクタ112に連結されるマーカ118は、従来の赤外発光ダイオード(LED)または、例えば、Optotrak(登録商標)等の商業的に入手可能な赤外光追跡システムを使用して追跡されることが可能なOptotrak(登録商標)ダイオードを備えることができる。Optotrak(登録商標)は、Northern Digital Inc.,Waterloo,Ontario,Canadaの登録商標である。他の実施形態において、マーカ118は、Polaris Spectra等の商業的に入手可能な光学追跡システムを使用して追跡されることが可能な従来の反射性球体を備えることができる。Polaris Spectraはまた、Northern Digital Inc.の登録商標である。例示的な実施形態において、エンドエフェクタ112に連結されたマーカ118は、オン及びオフにされ得る赤外発光ダイオードを備えるアクティブマーカであり、患者210及び外科用器具608に連結されるマーカ118は、パッシブ反射性球体を備える。
例示的な実施形態において、マーカ118から発出された及び/またはマーカ118によって反射された光は、カメラ200によって検出することができ、マークされた物体の場所及び移動を監視するために使用することができる。代替の実施形態において、マーカ118は、無線周波数及び/もしくは電磁リフレクタまたはトランシーバを備えることができ、カメラ200は、無線周波数及び/もしくは電磁トランシーバを含むか、またはそれによって置き換えることができる。
外科用ロボットシステム100と同様に、図3は、本開示の例示的な実施形態と一致するドッキング型構成における、外科用ロボットシステム300及びカメラスタンド302を例解する。外科用ロボットシステム300は、表示器304、上部アーム306、下部アーム308、エンドエフェクタ310、垂直カラム312、キャスタ314、キャビネット316、タブレット引出し318、コネクタパネル320、制御パネル322、及び情報のリング部324を含む、ロボット301を備えてもよい。カメラスタンド302は、カメラ326を備えてもよい。これらの構成要素は、図5に関してより多く説明される。図3は、カメラスタンド302が、例えば、使用中でないときに、ロボット301と入れ子にされる、ドッキング型構成における外科用ロボットシステム300を例解する。カメラ326及びロボット301は、例えば、図1及び2に示されるように、外科手技中に、互いに分離してもよいし、任意の適切な場所に位置付けてもよいことが、当業者によって理解されるであろう。
図4は、本開示の例示的な実施形態と一致する基部400を例解する。基部400は、外科用ロボットシステム300の一部分であってもよく、キャビネット316を備えてもよい。キャビネット316は、限定されるものではないが、バッテリ402、配電モジュール404、プラットホームインターフェースボードモジュール406、コンピュータ408、ハンドル412、及びタブレット引出し414を含む、外科用ロボットシステム300のある構成要素を収容してもよい。これらの構成要素間の接続及び関係は、図5に関してより詳細に説明される。
図5は、外科用ロボットシステム300の例示的な実施形態のある構成要素のブロック図を例解する。外科用ロボットシステム300は、プラットホームサブシステム502、コンピュータサブシステム504、動き制御サブシステム506、及び追跡サブシステム532を備えてもよい。プラットホームサブシステム502は、バッテリ402、配電モジュール404、プラットホームインターフェースボードモジュール406、及びタブレット充電ステーション534を更に備えてもよい。コンピュータサブシステム504は、コンピュータ408、表示器304、及びスピーカ536を更に備えてもよい。動き制御サブシステム506は、駆動回路508、モータ510、512、514、516、518、安定器520、522、524、526、エンドエフェクタ310、及びコントローラ538を更に備えてもよい。追跡サブシステム532は、位置センサ540及びカメラ変換器542を更に備えてもよい。システム300はまた、フットペダル544及びタブレット546を備えてもよい。
入力電力は、電源548を介してシステム300に供給され、それは、配電モジュール404に提供されてもよい。配電モジュール404は、入力電力を受け取り、システム300の他のモジュール、構成要素、及びサブシステムに提供される異なる電力供給電圧を発生するように構成される。配電モジュール404は、異なる電圧供給をプラットホームインターフェースモジュール406に提供するように構成されてもよく、それは、例えば、コンピュータ408、表示器304、スピーカ536、ドライバ508等の他の構成要素に、例えば、電力モータ512、514、516、518及びエンドエフェクタ310、モータ510、リング部324、カメラ変換器542、ならびにシステム300のための他の構成要素、例えば、キャビネット316内の電気構成要素を冷却するための送風機に提供されてもよい。
配電モジュール404はまた、電力を他の構成要素、例えば、タブレット引出し318内に位置し得るタブレット充電ステーション534等に提供してもよい。タブレット充電ステーション534は、テーブル546を充電するためにタブレット546と無線または有線通信してもよい。タブレット546は、本開示と一致する及び本明細書に説明される外科医によって使用されてもよい。
配電モジュール404はまた、バッテリ402に接続されてもよく、そのバッテリは、万一配電モジュール404が入力電力548からの電力を受信しない場合において、一時的な電源としての役割を果たす。他のときには、配電モジュール404は、必要な場合、バッテリ402を充電する役割を果たしてもよい。
プラットホームサブシステム502の他の構成要素はまた、コネクタパネル320、制御パネル322、及びリング部324を含んでもよい。コネクタパネル320は、異なるデバイス及び構成要素をシステム300ならびに/または関連付けられた構成要素及びモジュールに接続する役割を果たしてもよい。コネクタパネル320は、異なる構成要素からの線路または接続を受け入れる1つ以上のポートを含んでもよい。例えば、コネクタパネル320は、システム300を他の機器に接地し得る接地端子ポート、フットペダル544をシステム300に接続するためのポート、位置センサ540、カメラ変換器542、及びカメラスタンド302と関連付けられたカメラ326を備え得る追跡サブシステム532に接続するためのポートを有してもよい。コネクタパネル320はまた、他の構成要素、例えば、コンピュータ408等へのUSB、イーサネット(登録商標)、HDMI(登録商標)通信を可能にするために、他のポートを含んでもよい。
制御パネル322は、システム300の動作を制御する種々のボタンもしくは指示器を提供してもよいし、及び/またはシステム300に関する情報を提供してもよい。例えば、制御パネル322は、システム300の電源をオンまたはオフにするためのボタン、垂直カラム312を上げるまたは下げるためのボタン、及びシステム300が物理的に移動することを係止するようにキャスタ314に係合するように設計され得る安定器520〜526を上げるまたは下げるためのボタンを含んでもよい。万一緊急の場合には、他のボタンがシステム300を停止してもよく、それは、全てのモータ電力をなくし得、全ての動きの発生を停止するために機械的制動を加え得る。制御パネル322はまた、ユーザにあるシステム状況を通知する指示器、例えば、線路電力指示器等、またはバッテリ402用の充電の状態を通知する指示器を有してもよい。
リング部324は、システム300のユーザに、システム300が不十分に動作している異なるモード及び該ユーザへのある警告を通知するための視覚的指示器であってもよい。
コンピュータサブシステム504は、コンピュータ408、表示器304、及びスピーカ536を含む。コンピュータ504は、システム300を動作させるためのオペレーティングシステム及びソフトウェアを含む。コンピュータ504は、情報をユーザに表示するために、他の構成要素(例えば、追跡サブシステム532、プラットホームサブシステム502、及び/または動き制御サブシステム506)からの情報を受信及び処理してもよい。更に、コンピュータサブシステム504はまた、音声をユーザに提供するためにスピーカ536を含んでもよい。
追跡サブシステム532は、位置センサ504及び変換器542を含んでもよい。追跡サブシステム532は、図3に関して説明されたようなカメラ326を含むカメラスタンド302に対応してもよい。位置センサ504は、カメラ326であってもよい。追跡サブシステムは、外科手技中にユーザによって使用されるシステム300及び/または器具の異なる構成要素上に位置する、ある一定のマーカの場所を追跡してもよい。この追跡は、それぞれ、アクティブまたはパッシブ要素、例えば、LEDまたは反射性マーカ等の場所を追跡する赤外技術の使用を含む、本開示と一致する様態で行われてもよい。これらの種類のマーカを有する構造の場所、配向、及び位置は、表示器304上でユーザに表示され得るコンピュータ408に提供されてもよい。例えば、これらの種類のマーカを有し、(ナビゲーション空間として呼ばれ得る)この様態で追跡される外科用器具608が、患者の解剖学的構造の3次元画像に関連してユーザに示されてもよい。
動き制御サブシステム506は、垂直カラム312、上部アーム306、下部アーム308を物理的に移動させる、またはエンドエフェクタ310を回転させるように構成されてもよい。物理的移動は、1つ以上のモータ510〜518の使用を通じて行われてもよい。例えば、モータ510は、垂直カラム312を垂直に上げるまたは下げるように構成されてもよい。モータ512は、図3に示されるように垂直カラム312との係合点の周囲に、上部アーム308を横に移動させるように構成されてもよい。モータ514は、図3に示されるように上部アーム308との係合点の周囲に、下部アーム308を横に移動させるように構成されてもよい。モータ516及び518は、一方がロールを制御し得、かつもう一方が傾きを制御し得るような様態で、エンドエフェクタ310を移動させるように構成されてもよく、それによって、エンドエフェクタ310が移動され得る複数の角度を提供する。これらの移動は、コントローラ538によって達成されてもよく、そのコントローラは、エンドエフェクタ310上に配置されたロードセルを通してこれらの移動を制御し得、ユーザが、これらのロードセルを係合することによって作動され得、所望の様態においてシステム300を移動させる。
更に、システム300は、ユーザが、(タッチスクリーン入力デバイスであってもよい)表示器304上に、表示器304上の患者の解剖組織の3次元画像上に外科用器具または構成要素の場所を指示することを通じて、垂直カラム312、上部アーム306、及び下部アーム308の自動移動を提供してもよい。ユーザは、フットペダル544を踏むことまたはいくらかの他の入力手段によって、この自動移動を開始してもよい。
図6は、例示的な実施形態と一致する外科用ロボットシステム600を例解する。外科用ロボットシステム600は、エンドエフェクタ602、ロボットアーム604、誘導管606、器具608、及びロボット基部610を備えてもよい。器具ツール608は、1つ以上の追跡マーカ(例えば、マーカ118等)を含む追跡アレイ612に取設してもよく、関連付けられた軌道614を有してもよい。軌道614は、器具ツール608が、一度それが誘導管606を通して位置付けられるまたは誘導管606内に固定されると進むように構成される移動の経路、例えば、患者への器具ツール608の挿入の経路を表現してもよい。例示的な動作において、ロボット基部610は、外科用ロボットシステム600が、患者210上で動作している際に、ユーザ(例えば、外科医)を支援してもよいように、ロボットアーム604及びエンドエフェクタ602と電子通信するように構成されてもよい。外科用ロボットシステム600は、前に説明した外科用ロボットシステム100及び300と一致してもよい。
追跡アレイ612は、器具ツール608の場所及び配向を監視するために、器具608上に装着されてもよい。追跡アレイ612は、器具608に取設されてもよく、追跡マーカ804を備えてもよい。図8に最も良く見られるように、追跡マーカ804は、例えば、発光ダイオード及び/または他の種類の反射性マーカ(例えば、本明細書における他の箇所に説明されるようなマーカ118)であってもよい。追跡デバイスは、外科用ロボットシステムと関連付けられた1つ以上の見通し線デバイスであってもよい。例として、追跡デバイスは、外科用ロボットシステム100、300と関連付けられた1つ以上のカメラ200、326であってもよいし、また、ロボットアーム604、ロボット基部610、エンドエフェクタ602、及び/または患者210に対する器具608の定義された領域または相対的配向について追跡アレイ612を追跡してもよい。追跡デバイスは、カメラスタンド302及び追跡サブシステム532と併せて説明された構造のものと一致してもよい。
図7A、7B、及び7Cは、例示的な実施形態と一致するエンドエフェクタ602のそれぞれ、上面図、正面図、及び側面図を例解する。エンドエフェクタ602は、1つ以上の追跡マーカ702を備えてもよい。追跡マーカ702は、発光ダイオードまたは他の種類のアクティブ及びパッシブマーカ、例えば、前に説明した追跡マーカ118等であってもよい。例示的な実施形態において、追跡マーカ702は、電気信号によって作動されるアクティブ赤外発光マーカ(例えば、赤外発光ダイオード(LED))である。このため、追跡マーカ702は、赤外マーカ702がカメラ200、326に認識できるように作動させてもよいし、または赤外マーカ702がカメラ200、326に認識できないように非作動にしてもよい。このため、マーカ702がアクティブであるとき、エンドエフェクタ602は、システム100、300、600によって制御されてもよいし、マーカ702が非作動にされるとき、エンドエフェクタ602は、適切な位置に係止され、システム100、300、600によって移動されることができなくてもよい。
マーカ702は、マーカ702が、外科用ロボットシステム100、300、600と関連付けられた1つ以上のカメラ200、326または他の追跡デバイスによって認識されることができるような様態で、エンドエフェクタ602上または内に配置してもよい。カメラ200、326または他の追跡デバイスは、追跡マーカ702の移動を追うことによって、エンドエフェクタ602を、それが異なる位置及び視野角に移動する際に、追跡してもよい。マーカ702及び/またはエンドエフェクタ602の場所は、外科用ロボットシステム100、300、600と関連付けられた表示器110、304、例えば、図2に示されるような表示器110及び/または図3に示される表示器304上に示されてもよい。この表示器110、304は、ユーザが、エンドエフェクタ602が、ロボットアーム604、ロボット基部610、患者210、及び/またはユーザに対する望ましい位置にあることを確保することを可能にし得る。
例えば、図7Aに示されるように、マーカ702は、追跡デバイスが、手術野208から離れて配置され、ロボット102、301の方に向くように、かつ、カメラ200、326が、追跡デバイス100、300、600に対するエンドエフェクタ602の共通配向の範囲を通してマーカ702のうちの少なくとも3つを見ることができるように、エンドエフェクタ602の表面の周囲に配置されてもよい。例えば、マーカ702の分配は、このようにして、エンドエフェクタ602が手術野208において並進及び回転されるときに、エンドエフェクタ602が追跡デバイスによって監視されることを可能にする。
加えて、例示的な実施形態において、エンドエフェクタ602は、外部カメラ200、326がマーカ702を読み取る準備ができたときを検出することができる赤外(IR)受信機を装備してもよい。この検出の直後、エンドエフェクタ602は、次いで、マーカ702を照明してもよい。外部カメラ200、326がマーカ702を読み取る準備ができているというIR受信機による検出は、外部カメラ200、326に、発光ダイオードであり得るマーカ702のデューティーサイクルを同期させる必要性を信号で伝えてもよい。これはまた、全体としてロボットシステムによる低電力消費を可能にし得、それによって、マーカ702が、連続的に照明される代わりに、適時にのみ照明されるであろう。更に、例示的な実施形態において、マーカ702は、他のナビゲーションツール、例えば、異なる種類の外科用器具608等との干渉を防ぐために、電源をオフにしてもよい。
図8は、追跡アレイ612及び追跡マーカ804を含む1つの種類の外科用器具608を描写する。追跡マーカ804は、限定されるものでないが、発光ダイオードまたは反射性球体を含む、本明細書に説明される任意の種類のものであってもよい。マーカ804は、外科用ロボットシステム100、300、600と関連付けられた追跡デバイスによって監視され、カメラ200、326の見通し線のうちの1つ以上であってもよい。カメラ200、326は、追跡アレイ612及びマーカ804の位置ならびに配向に基づいて、器具608の場所を追跡してもよい。ユーザ、例えば、外科医120等は、追跡アレイ612及びマーカ804が、追跡デバイスまたはカメラ200、326によって十分に認識され、器具608及びマーカ804を、例えば、例示的な外科用ロボットシステムの表示器110上に表示させるような様態で、器具608を配向させてもよい。
外科医120が、器具608をエンドエフェクタ602の誘導管606の中に配置し得、器具608を調節し得る様態が、図8において明らかである。エンドエフェクタ112、310、602の中空管または誘導管114、606は、外科用器具608の少なくとも一部分を受け入れるようにサイズ決定及び構成される。誘導管114、606は、外科用器具608のための挿入及び軌道が、患者210の身体内またはその上で所望の解剖学的対象に到達することができるように、ロボットアーム104によって配向されるように構成される。外科用器具608は、略円筒形器具の少なくとも一部分を含んでもよい。スクリュードライバが外科用ツール608として例解されるが、任意の適切な外科用ツール608がエンドエフェクタ602によって位置付けられてもよいことが理解されるであろう。例として、外科用器具608は、誘導ワイヤ、カニューレ、レトラクタ、掘削器、リーマ、スクリュードライバ、挿入ツール、除去ツール、または同様のもののうちの1つ以上を含んでもよい。中空管114、606は円筒形構成を有するように一般的に示されるが、誘導管114、606は、外科用器具608に適応するために及び手術位置にアクセスするために所望された任意の適切な形状、サイズ、及び構成を有してもよいことが当業者によって理解されるであろう。
図9A〜9Cは、例示的な実施形態と一致するエンドエフェクタ602及びロボットアーム604の一部分を例解する。エンドエフェクタ602は、本体1202及びクランプ1204を更に備えてもよい。クランプ1204は、ハンドル1206、ボール1208、バネ1210、及びリップ部1212を備えてもよい。ロボットアーム604は、凹部1214、装着プレート1216、リップ部1218、及び磁石1220を更に備えてもよい。
エンドエフェクタ602は、1つ以上の連結を通して外科用ロボットシステム及びロボットアーム604と機械的にインターフェースを取ってもよいし、ならびに/または係合してもよい。例えば、エンドエフェクタ602は、位置決め連結及び/または補強連結を通してロボットアーム604と係合してもよい。これらの連結を通して、エンドエフェクタ602は、可撓性及び無菌バリアの外側のロボットアーム604と締結してもよい。例示的な実施形態において、位置決め連結は、磁気運動学的装着であってもよく、補強連結は、5つの棒状オーバーセンタクランピングリンク機構であってもよい。
位置決め連結に関して、ロボットアーム604は、装着プレート1216を備えてもよく、それは、非磁気材料、1つ以上の凹部1214、リップ部1218、及び磁石1220であってもよい。磁石1220は、凹部1214のそれぞれの下に装着される。クランプ1204の一部分は、磁気材料を備えてもよく、1つ以上の磁石1220によって吸引されてもよい。クランプ1204及びロボットアーム604の磁気吸引を通して、ボール1208は、それぞれの凹部1214の中に着座されることになる。例えば、図9Bに示されるようなボール1208は、図9Aに示されるような凹部1214内に着座される。この着座は、磁気的に支援された運動学的連結と考えられ得る。磁石1220は、エンドエフェクタ602の配向に関わらず、エンドエフェクタ602の全重量を支持するのに十分強いように構成されてもよい。位置決め連結は、6自由度を固有に抑制する任意の様式の運動学的装着であってもよい。
補強連結に関して、クランプ1204の一部分は、固定接地リンクであるように構成されてもよく、そのように、クランプ1204は、5つの棒リンク機構としての役割を果たしてもよい。クランプハンドル1206を閉じることは、リップ部1212及びリップ部1218が、エンドエフェクタ602及びロボットアーム604を固定するような様態でクランプ1204に係合する際に、エンドエフェクタ602をロボットアーム604に締結し得る。クランプハンドル1206が閉じられると、バネ1210は、クランプ1204が係止位置にある間に伸長または加圧され得る。係止位置は、中心を過ぎたリンク機構を提供する位置であり得る。中心を過ぎた閉じた位置の理由で、リンク機構は、クランプ1204を解放するためにクランプハンドル1206に加えられる力がなければ開かない。このため、係止位置において、エンドエフェクタ602は、ロボットアーム604に強固に固定され得る。
バネ1210は、張力における曲がり梁であってもよい。バネ1210は、高剛性及び高降伏ひずみを呈する材料、例えば、PEEK(ポリエーテルエーテルケトン)バージン材等から成ってもよい。エンドエフェクタ602及びロボットアーム604間のリンク機構は、エンドエフェクタ602及びロボットアーム604間に、2つの連結の締結を妨害せずに、無菌バリアを提供し得る。
補強連結は、複数のバネ部材を用いるリンク機構であってもよい。補強連結は、カムまたは摩擦に基づく機構を用いて掛止めしてもよい。補強連結はまた、ロボットアーム604へのエンドエフェクタ102の締結を支持する十分に強力な電磁石であってもよい。補強連結は、エンドエフェクタ602及びロボットアーム604間の界面上を滑り、かつスクリュー機構、オーバーセンタリンク機構、またはカム機構を用いて締め付ける、エンドエフェクタ602及び/またはロボットアーム604のいずれかから完全に分離したマルチピースカラーであってもよい。
図10及び11を参照すると、外科手技の前または間に、ある登録手技が、ナビゲーション空間及び画像空間の両方において、物体及び患者210の対象の解剖学的構造を追跡するために行われてもよい。かかる登録を行うために、登録システム1400は、図10に例解されるように使用されてもよい。
患者210の位置を追跡するために、患者追跡デバイス116は、患者210の硬い解剖学的構造に固定されるべき患者固定器具1402を含んでもよく、動的参照基部(DRB)1404は、患者固定器具1402に確実に取設されてもよい。例えば、患者固定器具1402は、動的参照基部1404の開口部1406に挿入されてもよい。動的参照基部1404は、追跡デバイス、例えば、追跡サブシステム532等が認識できるマーカ1408を含んでもよい。これらのマーカ1408は、本明細書に前に考察されたように、光学マーカまたは反射性球体、例えば、追跡マーカ118等であってもよい。
患者固定器具1402は、患者210の硬い解剖組織に取設され、外科手技全体を通して取設されたままであってもよい。例示的な実施形態において、患者固定器具1402は、患者210の硬い領域、例えば、外科手技を受ける対象の解剖学的構造から離れて位置する骨に取設される。対象の解剖学的構造を追跡するために、動的参照基部1404は、対象の解剖学的構造の場所を用いて動的参照基部1404を登録するために、対象の解剖学的構造上またはその近くに一時的に配置される登録固定具の使用を通して対象の解剖学的構造と関連付けられる。
登録固定具1410は、枢動アーム1412の使用を通じて、患者固定器具1402に取設される。枢動アーム1412は、登録固定具1410の開口部1414を通して患者固定器具1402を挿入することによって、患者固定器具1402に取設される。枢動アーム1412は、例えば、枢動アーム1412の開口部1418を通してノブ1416を挿入することによって、登録固定具1410に取設される。
枢動アーム1412を使用して、登録固定具1410は、対象の解剖学的構造の上に配置されてもよく、その場所は、登録固定具1410上の追跡マーカ1420及び/または基準1422を使用して、画像空間及びナビゲーション空間において判定されてもよい。登録固定具1410は、ナビゲーション空間において認識できるマーカ1420の集合物を含んでもよい(例えば、マーカ1420は、追跡サブシステム532によって検出可能であってもよい)。追跡マーカ1420は、本明細書において前に説明されるように、赤外光において認識できる光学マーカであってもよい。登録固定具1410はまた、画像化空間(例えば、3次元CT画像)において認識できる基準1422、例えば、軸受ボール等の集合物を含んでもよい。図11に関してより詳細に説明されるように、登録固定具1410を使用して、対象の解剖学的構造は、動的参照基部1404と関連付けられてもよく、それによって、ナビゲーション空間における物体の描写が、解剖学的構造の画像上に重ね合わされることを可能にする。対象の解剖学的構造から離れた位置に位置する動的参照基部1404は、参照点になり得、それによって、外科用領域からの登録固定具1410及び/または枢動アーム1412の取外しを可能にする。
図11は、本開示と一致する登録のための例示的な方法1500を提供する。方法1500は、ステップ1502において始まり、そのステップにおいて、対象の解剖学的構造のグラフィカル表現(または画像(複数可))が、システム100、300 600、例えば、コンピュータ408にインポートされてもよい。グラフィカル表現は、登録固定具1410及び基準1420の検出可能な画像化パターンを含む、患者210の対象の解剖学的構造の3次元CTまたは蛍光透視スキャンであってもよい。
ステップ1504において、基準1420の画像化パターンが、画像化空間において検出及び登録され、コンピュータ408内に記憶される。任意選択的に、このときに、ステップ1506において、登録固定具1410のグラフィカル表現が、対象の解剖学的構造の画像上に重ね合わされてもよい。
ステップ1508において、登録固定具1410のナビゲーションパターンが、マーカ1420を認識することによって検出及び登録される。マーカ1420は、位置センサ540を介して追跡サブシステム532によって赤外光を通してナビゲーション空間において認識される光学マーカであってもよい。このため、対象の解剖学的構造の場所、配向、及び他の情報が、ナビゲーション空間において登録される。したがって、登録固定具1410は、基準1422の使用による画像空間とマーカ1420の使用によるナビゲーション空間の両方において認識されてもよい。ステップ1510において、画像空間内の登録固定具1410の登録が、ナビゲーション空間に転移される。この転移は、例えば、マーカ1420のナビゲーションパターンの位置と比較して、基準1422の画像化パターンの相対位置を使用することによって、行われる。
ステップ1512において、(画像空間を用いて登録された)登録固定具1410のナビゲーション空間の登録が、患者固定器具1402に取設された動的登録アレイ1404のナビゲーション空間に更に転移される。このため、登録固定具1410は、取り外されてもよく、動的参照基部1404は、ナビゲーション空間が画像空間と関連付けられるので、ナビゲーション及び画像空間の両方において、対象の解剖学的構造を追跡するために使用されてもよい。
ステップ1514及び1516において、ナビゲーション空間は、ナビゲーション空間において認識できるマーカ(例えば、光学マーカ804を用いる外科用器具608)を用いて、画像空間及び物体上に重ね合わせてもよい。物体は、対象の解剖学的構造の画像上の外科用器具608のグラフィカル表現を通して追跡されてもよい。
図12A〜12Bは、患者210の手術前、手術中、手術後、及び/またはリアルタイムの画像データを取得するためにロボットシステム100、300、600と併せて使用され得る画像化デバイス1304を例解する。任意の適切な主題が、画像化システム1304を使用して任意の適切な手技のために画像化されてもよい。画像化システム1304は、任意の画像化デバイス、例えば、画像化デバイス1306及び/またはCアーム1308デバイス等であってもよい。X線システムにおいて要求され得る患者210の頻繁な手動の再位置付けを必要とせずに、いくらかの異なる位置から患者210のX線写真を取ることが望ましいであろう。図12Aに例解されるように、画像化システム1304は、「C」形状の両遠位端1312において終端する細長いC形状部材を含むCアーム1308の形態にあってもよい。C形状部材1130は、X線源1314及び画像受信器1316を更に備えてもよい。アームのCアーム1308内の空間は、X線支持構造1318からの実質的な干渉なしで患者を診療するための余地を医師に提供し得る。図12Bに例解されるように、画像化システムは、支持構造画像化デバイス支持構造1328、例えば、車輪1332を有する車輪付移動可能カート1330等に取設されるガントリー筐体1324を有する画像化デバイス1306を含んでもよく、それは、例解されない、画像捕捉部分を取り囲んでもよい。画像捕捉部分は、X線源及び/または発出部分ならびにX線受信及び/または画像受信部分を含んでもよく、それらは、互いから約180度に配置されてもよいし、画像捕捉部分の軌道に対してロータ(例解されない)上に装着されてもよい。画像捕捉部分は、画像取得の間に360度回転するように動作可能であってもよい。画像捕捉部分は、中心点及び/または軸の周囲に回転してもよく、患者210の画像データが、多方向からまたは複数の平面において取得されることを可能にする。ある画像化システム1304が本明細書に例解されるが、任意の適切な画像化システムが、当業者によって選択されてもよいことが理解されるであろう。
次に、図13A〜13Cを参照して、外科用ロボットシステム100、300、600は、所望の外科領域に対するエンドエフェクタ112、602、外科用器具608、及び/または患者210(例えば、患者追跡デバイス116)の正確な位置付けに頼る。図13A〜13Cに示される実施形態では、追跡マーカ118、804が、器具608及び/またはエンドエフェクタ112の一部分に強固に取設される。
図13Aは、基部106、ロボットアーム104、及びエンドエフェクタ112を含むロボット102を有する外科用ロボットシステム100の一部分を描写する。例解されない他の要素、例えば、表示器、カメラ等がまた、本明細書に説明されるように存在してもよい。図13Bは、誘導管114を有するエンドエフェクタ112及びエンドエフェクタ112に強固に取り付けられた複数の追跡マーカ118のクローズアップ図を描写する。この実施形態では、複数の追跡マーカ118が、誘導管112に取設される。図13Cは、複数の追跡マーカ804が器具608に強固に取り付けられた器具608(この場合において、プローブ608A)を描写する。本明細書のどこかに説明されるように、器具608は、任意の適切な外科用器具、例えば、限定されるものではないが、誘導ワイヤ、カニューレ、レトラクタ、掘削器、リーマ、スクリュードライバ、挿入ツール、除去ツール、または同様のものなどを含み得る。
3Dにおいて追跡されるべき器具608、エンドエフェクタ112、または他の物体を追跡するとき、追跡マーカ118、804のアレイは、ツール608またはエンドエフェクタ112の一部分に強固に取設されてもよい。好ましくは、追跡マーカ118、804は、マーカ118、804が邪魔にならない(例えば、外科手術、視界等を妨げない)ように取設される。マーカ118、804は、例えば、アレイ612と共に、追跡されるべき器具608、エンドエフェクタ112、または他の物体に取り付けられてもよい。通常、3つまたは4つのマーカ118、804が、アレイ612と共に使用される。アレイ612は、直線区分、横材を含んでもよく、マーカ118、804が互いに対して異なる相対位置及び場所にあるように非対称的であってもよい。例えば、図13Cに示されるように、4つのマーカ追跡アレイ612を伴うプローブ608Aが示され、図13Bは、異なる4つのマーカ追跡アレイ612を伴うエンドエフェクタ112を描写する。
図13Cでは、追跡アレイ612がプローブ608Aのハンドル620として機能する。このため、4つのマーカ804が、プローブ608Aのハンドル620に取設され、それは、シャフト622及び先端部624の邪魔をしない。これらの4つのマーカ804の立体写真測量追跡は、器具608が剛体として追跡されること、ならびにプローブ608Aが追跡カメラ200、326の前であちこち移動される間に追跡システム100、300、600が、先端部624の位置及びシャフト622の配向を精密に判定することを可能にする。
3D(例えば、複数の剛体)で追跡されるべき1つ以上のツール608、エンドエフェクタ112、または他の物体の自動追跡を可能にするために、各ツール608、エンドエフェクタ112、または同様のもの上のマーカ118、804は、既知のマーカ間隔を用いて非対称的に配設される。非対称的な整列の理由は、どのマーカ118、804が剛体上の特定の場所に対応するか及びマーカ118、804が前または後から見られる、すなわち、鏡映を作られるかどうかが明白であるためである。例えば、マーカ118、804がツール608またはエンドエフェクタ112上で四角形に配設された場合、システム100、300、600は、どのマーカ118、804が四角形のどの角に対応したかが不明であろう。例えば、プローブ608Aの場合、どのマーカ804がシャフト622に最も近かったかが不明であろう。このため、どの方向へシャフト622がアレイ612から延在していたかが分からないであろう。したがって、各アレイ612、及びそれゆえ、追跡されるべき各ツール608、エンドエフェクタ112、または他の物体は、固有のマーカパターンを有するべきであり、それが、追跡されている他のツール608または他の物体と区別されることを可能にする。非対照的及び固有のマーカパターンは、システム100、300、600が、個々のマーカ118、804を検出することを可能にし、次いで、記憶されたテンプレートに対するマーカ間隔をチェックして、それらがどのツール608、エンドエフェクタ112、または他の物体を表わすかを判定する。検出されたマーカ118、804は、次いで、自動的に分類され得、それぞれの追跡された物体に正しい順序で割り当てられ得る。この情報なしでは、剛体計算は、ユーザが、検出されたマーカ118、804のどれが各剛体上のどの位置に対応したかを手動で特定しない限り、重要な幾何学的情報、例えば、ツール先端部624及びシャフト622の整列などを抽出するように行えない可能性がある。これらの概念は、3D光学追跡方法における当業者に一般に知られている。
次に、図14A〜14Dを参照して、移動可能な追跡マーカ918A〜918Dを用いるエンドエフェクタ912の代替版が示される。図14Aでは、移動可能な追跡マーカ918A〜918Dを用いるアレイが第1の構成において示され、図14Bでは、移動可能な追跡マーカ918A〜918Dが第2の構成において示され、それは、第1の構成に対して角度付けられる。図14Cは、例えば、図14Aの第1の構成において、カメラ200、326によって見られるような、追跡マーカ918A〜918Dのテンプレートを示す。図14Dは、例えば、図14Bの第2の構成において、カメラ200、326によって見られるような、追跡マーカ918A〜918Dのテンプレートを示す。
この実施形態では、4つのマーカアレイ追跡が意図され、マーカ918A〜918Dの全てが剛体に対して固定位置にあるとは限らず、代わりに、アレイマーカ918A〜918Dのうちの1つ以上が、例えば、試験の間に、追跡されたマーカ918A〜918Dの自動検出及び分類のためのプロセスを阻害せずに、追跡されている剛体についての更新情報を与えるように調節され得る。
任意のツール、例えば、ロボットシステム100、300、600のエンドエフェクタ912に接続された誘導管914などを追跡するとき、追跡アレイの主な目的は、カメラ座標系におけるエンドエフェクタ912の位置を更新することである。剛性システムを使用するとき、例えば、図13Bに示されるように、反射性マーカ118のアレイ612は、誘導管114から強固に延在する。追跡マーカ118は強固に接続されるので、カメラ座標系におけるマーカの場所の知識はまた、カメラ座標系における誘導管114の中心線、先端部、及び尾部の正確な場所を提供する。典型的には、かかるアレイ612からのエンドエフェクタ112の位置についての情報及び別の追跡されたソースからの対象軌道の場所についての情報が、誘導管114を軌道との整列に移動する及び先端部を軌道ベクトルに沿って特定の場所に移動するロボット102の各軸について入力される必要がある要求された移動を計算するために使用される。
場合によっては、所望の軌道が、厄介なまたは到達できない場所にあるが、誘導管114が旋回されるならば、それは到達され得る。例えば、誘導管114が、ピッチ(手首の上げ下げ角度)軸の限界を超えて上向きに旋回され得る場合、ロボット102の基部106から離れたところを指す非常に急峻な軌道は、到達可能であり得るものの、誘導管114が、それを手首の端部に接続するプレートに平行に取設される場合、到達不可能であろう。かかる軌道に到達するために、ロボット102の基部106が移動され得るか、または異なる誘導管取設を伴う異なるエンドエフェクタ112が、作業中のエンドエフェクタと交換され得る。これらの解決策は両方とも、時間がかかり得、面倒であり得る。
図14A及び14Bに最も良くみられるように、アレイ908は、マーカ918A〜918Dのうちの1つ以上が固定位置になく、代わりに、マーカ918A〜918Dのうちの1つ以上が調節、旋回、枢動、または移動され得るように構成される場合、ロボット102は、検出及び追跡プロセスを阻害せずに、追跡されている物体についての更新情報を提供することができる。例えば、マーカ918A〜918Dのうちの1つが適所に固定されてもよく、かつ他のマーカ918A〜918Dが移動可能であってもよい。マーカ918A〜918Dのうちの2つが適所に固定されてもよく、かつ他のマーカ918A〜918Dが移動可能であってもよい。マーカ918A〜918Dのうちの3つが適所に固定されてもよく、かつ他のマーカ918A〜918Dが移動可能であってもよい。または、マーカ918A〜918Dの全てが移動可能であってもよい。
図14A及び14Bに示される実施形態では、マーカ918A、918Bは、エンドエフェクタ912の基部906に直接的に強固に接続され、マーカ918C、918Dは、管914に強固に接続される。アレイ612と同様に、アレイ908は、マーカ918A〜918Dを追跡されるべきエンドエフェクタ912、器具608、または他の物体に取設するために提供されてもよい。しかしながら、この場合において、アレイ908は、複数の別個の構成要素から成る。例えば、マーカ918A、918Bは、第1のアレイ908Aを用いて基部906に接続してもよく、マーカ918C、918Dは、第2のアレイ908Bを用いて誘導管914に接続してもよい。マーカ918Aは、第1のアレイ908Aの第1の端部に取り付けられてもよく、マーカ918Bは、ある直線距離だけ隔てられ得、第1のアレイ908Aの第2の端部に取り付けられてもよい。第1のアレイ908は実質的に直線であるが、第2のアレイ908Bは、湾曲またはV形状構成を有し、根端に関して、誘導管914に接続され、一方の遠位端においてマーカ918C及び他方の遠位端においてマーカ918Dを有するV形状において、そこから遠位端へと分岐する。特定の構成が本明細書に例示されるが、異なる数及び種類のアレイ908A、908Bならびに異なる配設、数、及び種類のマーカ918A〜918Dを含む他の非対称的設計が意図されることが理解されるであろう。
誘導管914は、例えば、ヒンジ920または他のコネクタをわたって基部906へと、基部906に対して移動可能、旋回可能、または枢動可能であってもよい。このため、マーカ918C、918Dは、誘導管914が枢動、旋回、または移動するときに、マーカ918C、918Dもまた枢動、旋回、または移動するように移動可能である。図14Aに最も良く見られるように、誘導管914は、長手方向軸916を有し、それは、マーカ918A〜918Dが第1の構成を有するように、実質的に法線または垂直配向に整列される。次に、図14Bを参照して、マーカ918A〜918Dが第1の構成とは異なる第2の構成を有するように、長手方向軸916が、今度は、垂直配向に対して角度付けられるように、誘導管914が枢動、旋回、または移動される。
図14A〜14Dについて説明される実施形態とは対照的に、旋回部が誘導管914及びアーム104間に存在し(例えば、手首取設)、4つのマーカ918A〜918Dの全てが、誘導管914に強固に取設されたままであり、この旋回部が、ユーザによって調節された場合、ロボットシステム100、300、600は、誘導管914の配向が変化したことを自動的に検出することができない。ロボットシステム100、300、600は、マーカアレイ908の位置を追跡し、誘導管914が前の配向において手首(ロボットアーム104)に取設されたことを想定して、不正確なロボット軸移動を計算する。1つ以上のマーカ918A〜918D(例えば、2つのマーカ918C、918D)を強固に管914上に及び旋回部にわたって1つ以上のマーカ918A〜918D(例えば、2つのマーカ918A、918B)を保持することによって、新しい位置の自動検出が可能になり、正確なロボットの移動が、ロボットアーム104の端部上の新しいツールまたはエンドエフェクタ112、912の検出に基づいて、計算される。
マーカ918A〜918Dのうちの1つ以上は、任意の適切な手段に従って移動され、枢動され、旋回されるように、または同様に構成される。例えば、マーカ918A〜918Dは、ヒンジ920、例えば、クランプ、バネ、レバー、スライド、トグル、もしくは同様のものなど、あるいはマーカ918A〜918Dを個々にもしくは組み合わせて移動する、アレイ908A、908Bを個々にもしくは組み合わせて移動する、別の部分に対してエンドエフェクタ912の任意の部分を移動する、または別の部分に対してツール608の任意の部分を移動するための任意の他の適切な機構によって移動されてもよい。
図14A及び14Bに示されるように、アレイ908及び誘導管914は、誘導管914が異なる位置に配向されるように、単にクランプまたはヒンジ920を緩めて、アレイ908A、908Bの部分を他の部分908A、908Bに対して移動させて、ヒンジ920を再び締めることによって、再構成可能になり得る。例えば、2つのマーカ918C、918Dは、管914と強固に相互に接続されてもよく、2つのマーカ918A、918Bは、ヒンジ920をわたってロボットアーム104に取設するエンドエフェクタ912の基部906へと強固に相互に接続されてもよい。ヒンジ920は、クランプ、例えば、蝶ナットまたは同様のものなどの形態であってもよく、それは、緩められ得、再び締められ得、ユーザが、第1の構成(図14A)及び第2の構成(図14B)の間で迅速に切り換えることを可能にする。
カメラ200、326は、例えば、図14C及び14Dにおいて識別されるテンプレートのうちの1つにおいて、マーカ918A〜918Dを検出する。アレイ908が第1の構成(図14A)にあり、かつ追跡カメラ200、326がマーカ918A〜918Dを検出する場合には、追跡されたマーカが、図14Cに示されるようなアレイテンプレート1に一致する。アレイ908が第2の構成(図14B)にあり、かつ追跡カメラ200、326が、同じマーカ918A〜918Dを検出する場合には、追跡されたマーカが、図14Dに示されるようなアレイテンプレート2に一致する。アレイテンプレート1及びアレイテンプレート2は、システム100、300、600によって2つの別個のツールとして認識され、それぞれ、誘導管914、マーカ918A〜918D、及びロボットの取設の間のそれ自体の固有に定義された空間的関係を有する。したがって、ユーザは、システム100、300、600に変化を通知せずに、エンドエフェクタ912の位置を第1及び第2の構成の間で調節することができ、システム100、300、600は、ロボット102の移動を軌道上にとどめるように適切に調節することになる。
この実施形態では、マーカアレイが、システム100、300、600がアセンブリを2つの異なるツールまたは2つの異なるエンドエフェクタとして認識することを可能にする固有のテンプレートに一致する、2つのアセンブリ位置が存在する。これらの2つの位置(すなわち、それぞれ、図14C及び14Dに示されるアレイテンプレート1及びアレイテンプレート2)の間または外側の旋回部の任意の位置では、マーカ918A〜918Dは、どのテンプレートにも一致せず、システム100、300、600は、個々のマーカ918A〜918Dが、カメラ200、326によって検出されるにもかかわらず、存在するどのアレイも検出せず、結果は、マーカ918A〜918Dがカメラ200、326の視野から一時的に遮られた場合と同じである。他のアレイテンプレートが、例えば、異なる器具608または他のエンドエフェクタ112、912等を識別する、他の構成のために存在してもよいことが理解されるであろう。
説明される実施形態では、2つの別個のアセンブリ位置が図14A及び14Bに示される。しかしながら、旋回接合、直線接合、旋回及び直線接合の組み合わせ、穴あきボード、または他のアセンブリ上に複数の別個の位置が存在し得ることが理解されるであろう。その場合、固有のマーカテンプレートが、他に対してアレイの1つ以上のマーカ918A〜918Dの位置を調節することによって生成され、それぞれの別個の位置が、特定のテンプレートに一致し、異なる既知の属性を用いて固有のツール608またはエンドエフェクタ112、912を定義する。加えて、エンドエフェクタ912について例示したが、移動可能及び固定されたマーカ918A〜918Dが、追跡されるべき任意の適切な器具608または他の物体と共に使用されてもよいことが理解されるであろう。
外部3D追跡システム100、300、600を使用して、(例えば、図13A及び13Bに描写されるように)ロボットのエンドエフェクタ112に取設された3つ以上のマーカの剛体アレイ全体を追跡するとき、カメラ200、326の座標系においてロボット102の全ての区分の3D位置を直接的に追跡または計算することが可能である。追跡機に対する接合の幾何学的配向は、意図的に知られ、接合の直線または角度位置は、ロボット102の各モータのためのエンコーダから知られ、エンドエフェクタ112から基部116へと移動する部分の全ての3D位置を十分に定義する。同じく、追跡機がロボット102の基部106上に装着される場合(図示せず)、同様に、各モータのエンコーダから知られた接合幾何形態及び接合位置に基づいて、基部106からエンドエフェクタ112までのロボット102の全ての区分の3D位置を追跡または計算することが可能である。
いくつかの状況では、エンドエフェクタ112に強固に取設された3つ未満のマーカ118からロボット102の全ての区分の位置を追跡することが望ましいであろう。具体的には、ツール608が誘導管114に導入される場合、ロボット902の剛体全体の動きを追跡し、ただ1つの追加的なマーカ118が追跡されることが望ましいであろう。
次に、図15A〜15Eを参照して、単一追跡マーカ1018のみを有するエンドエフェクタ1012の代替版が示される。エンドエフェクタ1012は、本明細書に説明される他のエンドエフェクタに類似してもよく、長手方向軸1016に沿って延在する誘導管1014を含んでもよい。単一追跡マーカ1018は、本明細書に説明される他の追跡マーカと同様に、誘導管1014に強固に取り付けられてもよい。この単一マーカ1018は、不足している自由度を追加して、剛体全体の追跡を可能にする目的に役立つことができ、ならびに/または監視マーカとして働き、ロボット及びカメラの位置付けが有効であることについての想定を確保にする目的に役立つことができる。
単一追跡マーカ1018は、任意の便利な方向に突出し、かつ外科医の視野を遮らないエンドエフェクタ1012の剛性延在部分としてロボットエンドエフェクタ1012に取設されてもよい。追跡マーカ1018は、誘導管1014またはエンドエフェクタ1012上の任意の他の適切な場所に取り付けられてもよい。誘導管1014に取り付けられるとき、追跡マーカ1018は、誘導管1014の第1及び第2の端部間のある場所において位置付けられ得る。例えば、図15Aでは、単一追跡マーカ1018が、誘導管1014から前方へ延在し、かつ長手方向に誘導管1014の中点の上方及び誘導管1014の入口の下方に位置付けられた細いシャフト1017の端部上に装着された反射性球体として示される。この位置は、マーカ1018がカメラ200、326によって一般に見えることを可能にするものの、更に、外科医120の視野を遮らないか、または手術室の近傍における他のツールもしくは物体と衝突しない。加えて、マーカ1018がこの位置にある誘導管1014は、誘導管1014に導入された任意のツール608上のマーカアレイが、誘導管1014上の単一マーカ1018が見えるのと同時に見えるために設計される。
図15Bに示されるように、ぴったりと収まるツールまたは器具608が誘導管1014内に配置されると、器具608は、6自由度のうちの4つに機械的に制限されることになる。すなわち、器具608は、誘導管1014の長手方向軸1016の周りを除くあらゆる方向に回転することができず、器具608は、誘導管1014の長手方向軸1016に沿う方向を除くあらゆる方向に転移することができない。換言すれば、器具608は、誘導管1014の中心線に沿って転移すること及びその中心線の周りに回転することのみができる。もう2つのパラメータ、例えば(1)誘導管1014の長手方向軸1016の周りの回転の角度、及び(2)誘導管1014に沿う位置などが知られる場合には、カメラ座標系におけるエンドエフェクタ1012の位置が十分に定義されることになる。
次に、図15Cを参照すると、システム100、300、600は、ツール608が誘導管1014の内側に、その代わりに、誘導管1014の外側ではなくて、ただカメラ200、326の視野のどこかに実際に位置付けられるときに知ることができるはずである。ツール608は、長手方向軸または中心線616と、複数の追跡されたマーカ804を伴うアレイ612を有する。剛体計算が、ツール608上のアレイ612の追跡された位置に基づいて、ツール608の中心線616がカメラ座標系に位置する場所を判定するために使用されてもよい。
単一マーカ1018から誘導管1014の中心線または長手方向軸1016までの固定された法線(垂直)距離DFは、固定され、幾何学的に知られ、単一マーカ1018の位置は、追跡することができる。したがって、ツール中心線616から単一マーカ1018までの検出された距離DDが、誘導管中心線1016から単一マーカ1018までの既知の固定距離DFに一致するとき、ツール608が、誘導管1014内にある(ツール608及び誘導管1014の中心線616、1016が一致する)か、またはこの距離DDが固定距離DFに一致する可能な位置の軌跡におけるある点にいることが判定され得る。例えば、図15Cでは、ツール中心線616から単一マーカ1018までの検出された法線距離DDが、2つの位置における透明なツール608によって表わされたデータの両方のフレーム(追跡されたマーカ座標)において誘導管中心線1016から単一マーカ1018までの固定距離DFに一致し、このため、ツール608が誘導管1014内に位置するときを判定するために追加的な考察が必要であろう。
次に図15Dを参照すると、プログラム化された論理が、追跡データのフレームを探すために使用され得、それにおいて、ツール608が単一球体1018に対してある最小距離を超える分だけ空間内を移動して、ツール608が誘導管1014内を移動している条件を満たすにもかかわらず、ツール中心線616から単一マーカ1018までの検出された距離DDは、正確な長さに固定されたままである。例えば、第1のフレームF1が、第1の位置にあるツール608を用いて検出されてもよく、第2のフレームF2が、(すなわち、第1の位置に対して直線的に移動した)第2の位置にあるツール608を用いて検出されてもよい。ツールアレイ612上のマーカ804は、第1のフレームF1から第2のフレームF2までの所与の量を超える(例えば、合計で5mmを超える)分だけ移動してもよい。この移動があるにもかかわらず、ツール中心線ベクトルC´から単一マーカ1018までの検出された距離DDは、第1のフレームF1及び第2のフレームF2において実質的に同一である。
論理学的に、外科医120またはユーザは、ツール608を誘導管1014内に配置して、それをわずかに回転することまたはそれを誘導管1014の中に下に摺動することができ、システム100、300、600は、5つのマーカ(ツール608上の4つのマーカ804に加えて誘導管1014上の単一マーカ1018)の追跡から、ツール608が誘導管1014内にあることを検出することができる。ツール608が誘導管1014内にあることを知ることで、空間におけるロボットエンドエフェクタ1012の位置及び配向を定義する全ての6自由度が計算され得る。単一マーカ1018を用いないと、たとえツール608が誘導管1014内にあることが確実に知られたとしても、誘導管1014がツールの中心線ベクトルC´に沿って位置する場所及びどのように誘導管1014が中心線ベクトルC´に対して回転されるかは分からない。
図15Eに重点を置くと、単一マーカ1018の存在が、ツール608上の4つのマーカ804と共に追跡され、誘導管1014及びツール608の中心線ベクトルC´と、単一マーカ1018を通る及び中心線ベクトルC´を通る法線ベクトルとを構築することが可能である。この法線ベクトルは、手首の遠位にあるロボットの前腕に対して既知の配向にある配向を有し(この例では、その区分に平行に配向され)、ある特定の固定位置において中心線ベクトルC´に交差する。便宜のために、図15Eに示されるように、3つの互いに直交するベクトルk´、j´、i´が構築され得、誘導管1014の剛体位置及び配向を定義する。3つの互いに直交するベクトルのうちの1つk´は、中心線ベクトルC´から構築され、第2のベクトルj´は、単一マーカ1018を通る法線ベクトルから構築され、第3のベクトルi´は、第1及び第2のベクトルk´、j´のベクトル外積である。これらのベクトルk´、j´、i´に対するロボットの接合位置は、全ての接合がゼロにあるときに知られ及び固定され、したがって、剛体計算は、ロボットがホーム位置にあるときのこれらのベクトルk´、j´、i´に対するロボットの任意の区分の場所を判定するために使用され得る。ロボット移動の間、(ツール608が誘導管1014内にある間の)ツールマーカ804の位置及び単一マーカ1018の位置が追跡システムから検出され、かつ各接合の角度/直線位置がエンコーダから知られる場合には、ロボットの任意の区分の位置及び配向が、判定され得る。
いくつかの実施形態では、誘導管1014に対してツール608の配向を固定することが有用であろう。例えば、エンドエフェクタ誘導管1014は、機械加工またはインプラントの位置付けを可能にするためにその軸1016の周りのある特定の位置において配向されてもよい。誘導管1014に挿入されたツール608に取設されたものの配向は、ツール608上の追跡されたマーカ804から分かるが、カメラ座標系における誘導管1014自体の回転配向は、誘導管1014上の追加的な追跡マーカ1018(または他の実施形態では複数の追跡マーカ)を用いないと分からない。このマーカ1018は、中心線ベクトルC´に対するマーカ1018の配向に基づいて−180°から+180°までの「クロック位置」を本質的に提供する。このため、単一マーカ1018は、追加的な自由度を提供することができ、剛体全体の追跡を可能にし、ならびに/または監視マーカとして機能することができ、ロボット及びカメラの位置付けが有効であることについての想定を確保する。
図16は、ロボット102のエンドエフェクタ1012(または、本明細書に説明される任意の他のエンドエフェクタ)を所望の対象軌道へとナビゲートして移動するための方法1100のブロック図である。ロボットエンドエフェクタ1012または誘導管1014上の単一マーカ1018の別の使用は、方法1100の一部として、ロボット102に取設された全体の追跡アレイを用いずに、ロボット102の自動化された安全な移動を可能にすることである。この方法1100は、追跡カメラ200、326が、ロボット102に対して移動しない(すなわち、それらが固定位置にある)ときに機能し、追跡システムの座標系及びロボットの座標系が共に登録され、ロボット102は、誘導管1014の位置及び配向が、各ロボット軸の符号化された位置のみに基づいて、ロボットのデカルト座標系において正確に判定され得るように較正される。
この方法1100のために、追跡機及びロボットの座標系は、共に登録される必要があり、追跡システムのデカルト座標系からロボットのデカルト座標系への座標変換が必要とされることを意味する。便宜のために、この座標変換は、ロボット工学の分野において周知である並進及び回転の4×4行列であり得る。この変換は、Tcrと呼ばれ、「カメラからロボットへの変換」を意味する。一旦この変換が知られると、それぞれの追跡されたマーカについてのベクトル形態におけるx、y、z座標として受信される追跡データの任意の新しいフレームが、4×4行列を乗じられ得、結果として生じるx、y、z座標は、ロボットの座標系にある。Tcrを得るために、ロボット上の全体の追跡アレイは、それが、ロボットの座標系において既知である場所においてロボットに強固に取設される間に追跡され、次いで、既知の剛体方法が、座標の変換を計算するために使用される。ロボット102の誘導管1014に挿入された任意のツール608は、追加的なマーカ1018もまた読み取られるときに強固に取設されたアレイと同じ剛体情報を提供することができることは明らかであろう。すなわち、ツール608は、固定位置及び配向ではなくて、単に、誘導管1014内の任意の位置に及び誘導管1014内の任意の回転において挿入される必要がある。このため、追跡アレイ612を用いる任意のツール608を誘導管1014に挿入して、ツールのアレイ612に加えて誘導管1014の単一マーカ1018を読み取ることによって、一方で、同時に、ロボットの座標系における誘導管1014の現在の場所を各軸上のエンコーダから判定することによって、Tcrを判定することが可能である。
ロボット102を対象軌道へとナビゲートして移動するための論理は、図16の方法1100に提供される。ループ1102に入る前に、変換Tcrが前に記憶されたことが想定される。このため、ループ1102に入る前に、ステップ1104において、ロボット基部106が固定された後、ロボットが静止している間に誘導管内に挿入されたツールの追跡データの1つ以上のフレームが記憶され、ステップ1106において、カメラ座標からロボット座標へのロボット誘導管位置の変換Tcrが、この静止データ及び前の較正データから計算される。カメラ200、326がロボット102に対して移動しない限り、Tcrは、有効のままであるべきである。カメラ200、326がロボット102に対して移動し、Tcrが再び取得される必要がある場合、システム100、300、600は、ユーザにツール608を誘導管1014に挿入することを促させ得、次いで、自動的に必要な計算を行わせ得る。
方法1100のフローチャートにおいて、収集されたデータの各フレームは、患者210上のDRB1404の追跡された位置、エンドエフェクタ1014上の単一マーカ1018の追跡された位置、及び各ロボット軸の位置のスナップショットから成る。ロボットの軸の位置から、エンドエフェクタ1012上の単一マーカ1018の場所が計算される。この計算された位置は、追跡システムから記録されたようなマーカ1018の実際の位置と比較される。これらの値が合致する場合、ロボット102が既知の場所にあることが保証され得る。ロボット102の対象がロボットの座標系に関して提供され得るように、変換Tcrが、DRB1404の追跡された位置に適用される。次いで、ロボット102は、対象に到達するように移動することを命令され得る。
ステップ1104、1106の後、ループ1102は、追跡システムからDRB1404についての剛体情報を受信するステップ1108と、画像座標から追跡システム座標へと対象先端部及び軌道を変換するステップ1110と、カメラ座標からロボット座標へと対象先端部及び軌道を変換する(Tcrを適用する)ステップ1112と、を含む。ループ1102は、追跡システムからロボットについての単一逸脱マーカ位置を受信するステップ1114と、追跡システム座標からロボット座標へと単一逸脱マーカを変換する(記憶されたTcrを適用する)ステップ1116と、を更に含む。ループ1102はまた、順運動学からロボット座標系における単一ロボットマーカ1018の現在の場所を判定するステップ1118を含む。ステップ1116及び1118からの情報は、変換された追跡された位置からの逸脱マーカ座標が、所与の許容値よりも少ない計算された座標と合致するかどうかを判定するステップ1120のために使用される。合致する場合、ステップ1122に進み、ロボットの移動を計算して、対象x、y、z及び軌道に適用する。合致しない場合、ステップ1124に進み、進行の前に、停止して、誘導管1014への全体のアレイ挿入を要求する。アレイが挿入された後、ステップ1126は、Tcrを再び計算し、次いで、ステップ1108、1114、及び1118の繰返しに進む。
この方法1100は、場所を検証するための単一マーカ1018の連続的な監視が省略される方法に勝る。単一マーカ1018を用いずに、依然として、Tcrを使用してエンドエフェクタ1012の位置を判定すること及びエンドエフェクタ1012を対象の場所に送ることが可能になるが、ロボット102が予想された場所に実際にあったかを検証することは可能ではない。例えば、カメラ200、326が落とされ、Tcrがもはや有効ではなくなった場合、ロボット102は、誤った場所へと移動することになる。この理由のために、単一マーカ1018は、安全性に関する値を提供する。
ロボット102の所与の固定位置のために、理論的には追跡カメラ200、326を新しい場所へ移動することが可能であり、それにおいて、単一の追跡されるマーカ1018は、アレイではなくて単一点であるので、移動されないままである。かかる場合において、システム100、300、600は、単一マーカ1018の計算及び追跡された場所における合致が存在するので、誤りを検出しないことになる。しかしながら、一旦ロボットの軸が誘導管1012を新しい場所に移動させると、計算及び追跡された位置が合致せず、安全性チェックが有効になる。
用語「監視マーカ」は、例えば、DRB1404に対して固定された場所にある単一マーカに関して、使用され得る。この場合において、DRB1404が落とされるかまたはさもなければ取り除かれる場合、監視マーカの相対的な場所が変化し、外科医120は、ナビゲーションに問題があり得ることを警告され得る。同様に、本明細書に説明される実施形態では、ロボットの誘導管1014上の単一マーカ1018を用いて、システム100、300、600は、カメラ200、326がロボット102に対して移動したかどうかを連続的にチェックすることができる。ロボットの座標系への追跡システムの座標系の登録が、例えば、カメラ200、326が落とされることまたは誤動作することによって、あるいはロボットの誤動作によって失われた場合、システム100、300、600は、ユーザに警告することができ、補正がなされ得る。このため、この単一マーカ1018はまた、ロボット102のための監視マーカであると考えられ得る。
ロボット102上に永久的に装着された全てのアレイ(例えば、図7A〜7Cに示されるエンドエフェクタ602上の複数の追跡マーカ702)を用いると、ロボット監視マーカとしての単一マーカ1018のかかる機能は、必要とされないことは明らかであろう。なぜなら、カメラ200、326が、ロボット102に対して固定位置にあることを要求されないからであり、Tcrは、ロボット102の追跡された位置に基づいて各フレームにおいて更新される。全体のアレイの代わりに単一マーカ1018を使用する理由は、全体のアレイがよりかさばる及び目障りであり、それによって、単一マーカ1018よりも外科医の視野及び手術野208へのアクセスを遮り、全体のアレイへの見通し線は、単一マーカ1018への見通し線よりも簡単に遮られるからである。
次に、図17A〜17B及び18A〜18Bを参照すると、器具608、例えば、インプラント容器608B、608Cなどが描写され、それは、固定された及び移動可能な追跡マーカ804、806の両方を含む。インプラント容器608B、608Cは、ハンドル620及びハンドル620から延在する外部シャフト622を有してもよい。シャフト622は、図示されるように、ハンドル620に実質的に垂直に、または任意の他の適切な配向に位置付けられてもよい。内部シャフト626は、一端にノブ628を伴って、外部シャフト622まで延在してもよい。インプラント10、12は、他端において、当業者に既知の典型的な接続機構を使用してインプラント容器608B、608Cの先端部624において、シャフト622に接続する。ノブ628は、回転され得、例えば、インプラント10、12を拡張するかまたは関節式に連結する。本明細書に参照によって組み込まれる米国特許第8,709,086及び8,491,659号は、拡張可能な融合デバイス及び導入方法を説明する。
ツール608、例えば、インプラント容器608B、608Cなどを追跡するとき、追跡アレイ612は、アレイ612を構成する固定されたマーカ804及び1つ以上の移動可能マーカ806の組み合わせを含有してもよく、またはさもなければインプラント容器608B、608Cに取設される。ナビゲーションアレイ612は、少なくとも1つ以上の(例えば、少なくとも2つの)固定位置マーカ804を含んでもよく、それらは、インプラント容器器具608B、608Cに対して既知の場所を用いて位置付けられる。これらの固定されたマーカ804は、器具の幾何形態に対してどの配向にも移動することができず、器具608が空間内にある場所を定義するのに有用である。加えて、アレイ612または器具自体に取設され得る少なくとも1つのマーカ806が存在し、それは、固定されたマーカ804に対して事前に決められた境界内を移動すること(例えば、摺動する、回転すること等)ができる。システム100、300、600(例えば、ソフトウェア)は、移動可能マーカ806の位置をインプラント10の特定の位置、配向、または他の属性(例えば、図17A〜17Bに示される拡張可能な椎体間スペーサの高さもしくは図18A〜18Bに示される関節椎体間スペーサの角度など)に相関させる。このため、システム及び/またはユーザは、移動可能マーカ806の場所に基づいて、インプラント10、12の高さまたは角度を判定することができる。
図17A〜17Bに示される実施形態では、4つの固定されたマーカ804が、インプラント容器608Bを定義するために使用され、第5の移動可能マーカ806が、事前に決められた経路内で摺動することができ、インプラントの高さについてのフィードバック(例えば、収縮位置または拡張位置)を提供する。図17Aは、その最初の高さにおける拡張可能なスペーサ10を示し、図17Bは、移動可能マーカ806が異なる位置に転移された拡張状態におけるスペーサ10を示す。この場合において、移動可能マーカ806は、インプラント10が拡張されるときに、固定されたマーカ804の近くに移動するけれども、この移動は、逆にされてもよいまたはさもなければ異なってもよいことが意図される。マーカ806の直線転移の量は、インプラント10の高さに対応する。2つの位置のみが示されるが、これを連続的な機能として有することが可能であろう。それによって、任意の所与の拡張高さが移動可能マーカ806のある特定の位置に相関され得る。
次に、図18A〜18Bを参照して、4つの固定されたマーカ804が、インプラント容器608Cを定義するために使用され、第5の移動可能マーカ806が、事前に決められた経路内で摺動するように構成され、インプラント関節角度についてのフィードバックを提供する。図18Aは、その最初の直線状態における関節スペーサ12を示し、図18Bは、移動可能マーカ806が異なる位置に転移された状態で、あるオフセット角度において有節状態にあるスペーサ12を示す。マーカ806の直線転移の量は、インプラント12の関節角度に対応する。2つの位置のみが示されるが、これを連続的な機能として有することが可能であろう。それによって、任意の所与の関節角度が、移動可能マーカ806のある特定の位置に相関され得る。
これらの実施形態では、移動可能マーカ806は、連続的に摺動して、位置に基づいてインプラント10、12の属性についてのフィードバックを提供する。また、移動可能マーカ806が、同様にインプラント属性についての更なる情報を提供することができるところにある必要があるという慎重な位置が存在し得ることも意図される。この場合において、全てのマーカ804、806のそれぞれの慎重な構成は、ある特定の配向においてまたはある特定の高さにおいてインプラント容器608B、608C及びインプラント10、12の特定の幾何形態に相関させる。加えて、移動可能マーカ806の任意の動きが、任意の他の種類のナビゲートされたインプラントの他の変数属性のために使用され得る。
移動可能マーカ806の直線移動に関して描写及び説明されたが、マーカ806の回転または他の移動が、インプラント10、12についての情報を提供するために有用であり得る適用が存在し得るので、移動可能マーカ806は、摺動することだけに限定されるべきではない。1組の固定されたマーカ804及び移動可能マーカ806間の位置における相対的な変化が、インプラント10、12または他のデバイスについての関連した情報であり得る。加えて、拡張可能な及び関節インプラント10、12が例示されるが、器具608は、他の医療デバイス及び材料、例えば、スペーサ、ケージ、プレート、締結具、釘、ネジ、ロッド、ピン、ワイヤ構造、縫合糸、固定用クリップ、ステープル、ステント、骨移植、生物製剤、または同様のものなどと共に働くことができる。
本発明のいくつかの実施形態を、前述の明細書において開示してきたが、本発明が関連し、前述の説明及び関連する図面において提示される教示の利益を有する、本発明の多くの修正及び他の実施形態が着想されようことが理解される。このため、本発明が上で開示される具体的な実施形態に制限されないこと、ならびに多くの修正及び他の実施形態が、添付の請求項の範囲内に含まれることが意図されることが、理解される。一実施形態からの特性が、本明細書に説明される異なる実施形態からの特性と組み合わされてもよいまたは使用されてもよいことが更に想像される。更に、本明細書、ならびに以下の請求項において、具体的な用語が採用されるが、それらは、一般的かつ説明的意味においてのみ使用され、説明される発明も、以下の請求項も制限する目的で使用されない。本明細書において引用される各特許及び公開物の開示全体は、各かかる特許または公開物が本明細書において参照することにより個々に組み込まれるかのように、参照することにより組み込まれる。本発明の種々の特性及び利点は、以下の請求項において記載される。

Claims (20)

  1. ロボット基部、前記ロボット基部に連結されたロボットアーム、及び前記ロボットアームに連結されたエンドエフェクタを有するロボットであって、前記エンドエフェクタが、前記エンドエフェクタの基部に取り付けられた第1の複数の追跡マーカ及び前記エンドエフェクタの誘導管に取り付けられた第2の複数の追跡マーカを有し、前記第2の複数の追跡マーカが、第1の構成から第2の構成へと前記第1の複数の追跡マーカに対して移動可能である、ロボットと、
    前記第1の構成及び前記第2の構成において前記第1及び第2の複数の追跡マーカを検出することができる少なくとも1つのカメラであって、前記ロボットが、前記第1及び第2の複数の追跡マーカの前記第1の構成または前記第2の構成に対応する少なくとも1つのテンプレートから前記エンドエフェクタの3次元位置を判定する、少なくとも1つのカメラと、を備える、外科用ロボットシステム。
  2. 前記誘導管が、ヒンジを用いて前記エンドエフェクタの前記基部に接続され、前記誘導管が、前記第1及び第2の構成の間で前記ヒンジの周りに旋回するように構成される、請求項1に記載のシステム。
  3. 前記誘導管が、前記第1の構成において垂直に位置付けられた長手方向軸を有し、前記誘導管は、前記長手方向軸が前記第2の構成において角度を付けられるように枢動される、請求項1に記載のシステム。
  4. 前記第1または第2の構成が前記少なくとも1つのテンプレートに一致しない場合、前記少なくとも1つのカメラは、前記第1及び第2の複数の追跡マーカを検出することができない、請求項1に記載のシステム。
  5. 前記エンドエフェクタに取設された前記1つ以上の追跡マーカが、パッシブ反射性マーカである、請求項1に記載のシステム。
  6. 前記エンドエフェクタにおける前記1つ以上の追跡マーカが、アクティブ状態及び非アクティブ状態を有するアクティブマーカであり、前記アクティブ状態は、前記少なくとも1つのカメラによって検出される赤外信号を発出し、前記非アクティブ状態は、前記1つ以上の追跡マーカが前記少なくとも1つのカメラによって検出されないように、前記赤外信号を発出しない、請求項1に記載のシステム。
  7. 前記ロボットシステムによって追跡されるべき1つ以上の追跡マーカを有する外科用器具を更に備え、前記外科用器具が、外科手技のための所与の軌道に沿って前記外科用器具を整列するために、前記エンドエフェクタ内に位置付けられるように構成される、請求項1に記載のシステム。
  8. ロボット基部、前記ロボット基部に連結されたロボットアーム、及び前記ロボットアームに連結されたエンドエフェクタを有するロボットであって、前記エンドエフェクタが、中心長手方向軸を有する誘導管及び前記誘導管に取り付けられた単一追跡マーカを有し、前記単一追跡マーカが、固定距離だけ前記中心長手方向軸から隔てられる、ロボットと、
    中心線を有する器具及び複数の追跡マーカが取設され前記器具から延在するアレイと、
    前記誘導管上の前記単一追跡マーカ及び前記器具上の前記複数の追跡マーカを検出することができる少なくとも1つのカメラであって、前記ロボットが、前記器具の前記中心線と前記単一追跡マーカの間の検出された距離を判定して、前記検出された距離が前記固定距離に一致するかを判定する、少なくとも1つのカメラと、を備える、外科用ロボットシステム。
  9. 前記ロボットは、前記器具が前記誘導管内に位置付けられたかを判定する、請求項8に記載のシステム。
  10. 前記エンドエフェクタは、前記エンドエフェクタの前記中心長手方向軸を通る中心ベクトルから構築された第1のベクトル、前記単一マーカを通る法線ベクトルから構築された第2のベクトル、ならびに前記第1及び第2のベクトルのベクトル外積から構築された第3のベクトルを定義し、前記第1、第2、及び第3のベクトルは、前記誘導管の位置及び配向を定義する、請求項8に記載のシステム。
  11. 前記少なくとも1つのカメラは、第1の位置における前記器具の第1のフレーム及び第2の位置における前記器具の第2のフレームを取得し、前記検出された距離が、前記第1及び第2のフレームにおいて実質的に同一である場合には、前記器具が、前記誘導管内に位置付けられる、請求項8に記載のシステム。
  12. 前記少なくとも1つのカメラが、立体写真測量赤外カメラを含む、請求項8に記載のシステム。
  13. 前記単一追跡マーカが、前記誘導管の前記第1及び第2の端部間の前記誘導管上の中心の場所に位置付けられる、請求項8に記載のシステム。
  14. ロボット基部、ロボット基部に連結されたロボットアーム、及び前記ロボットアームに連結されたエンドエフェクタであって、誘導管を有するエンドエフェクタを有するロボットと、
    器具であって、複数の固定された追跡マーカ及び移動可能な追跡マーカを伴って前記器具から延在するアレイを有し、前記誘導管内に受け入れられる器具と、
    患者に挿入されるように構成されたインプラントであって、前記器具に取り外し可能に連結されるように構成されたインプラントと、
    前記器具上の前記複数の固定された追跡マーカ及び前記移動可能な追跡マーカを検出することができる少なくとも1つのカメラであって、前記ロボットが、前記移動可能な追跡マーカの位置または移動を判定して、前記インプラントの変数を判定する、少なくとも1つのカメラと、を備える、外科用ロボットシステム。
  15. 前記インプラントが、拡張可能なインプラント、関節インプラント、または移動可能なインプラントである、請求項14に記載のシステム。
  16. 前記インプラントが拡張可能なインプラントであり、前記変数が前記拡張可能なインプラントの高さである、請求項14に記載のシステム。
  17. 前記インプラントが関節インプラントであり、前記変数が前記関節インプラントの移動の角度である、請求項14に記載のシステム。
  18. 前記移動可能な追跡マーカが、前記複数の固定された追跡マーカに対して直線的に転移する、請求項14に記載のシステム。
  19. 前記移動可能な追跡マーカが、前記複数の固定された追跡マーカに対して回転する、請求項14に記載のシステム。
  20. 前記エンドエフェクタが、複数の追跡マーカを有し、前記少なくとも1つのカメラが、前記エンドエフェクタ上の前記複数の追跡マーカを検出することができる、請求項14に記載のシステム。

JP2017098044A 2016-05-18 2017-05-17 追跡マーカを用いた外科用ロボット自動化 Active JP7078355B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/157,444 2016-05-18
US15/157,444 US11896446B2 (en) 2012-06-21 2016-05-18 Surgical robotic automation with tracking markers

Publications (2)

Publication Number Publication Date
JP2018011938A true JP2018011938A (ja) 2018-01-25
JP7078355B2 JP7078355B2 (ja) 2022-05-31

Family

ID=58709311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017098044A Active JP7078355B2 (ja) 2016-05-18 2017-05-17 追跡マーカを用いた外科用ロボット自動化

Country Status (4)

Country Link
US (1) US11896446B2 (ja)
EP (2) EP3278758B1 (ja)
JP (1) JP7078355B2 (ja)
HK (1) HK1250322B (ja)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019202130A (ja) * 2018-05-10 2019-11-28 グローバス メディカル インコーポレイティッド 外科手術のロボットガイダンスに関連するシステムおよび方法
US10799298B2 (en) 2012-06-21 2020-10-13 Globus Medical Inc. Robotic fluoroscopic navigation
US10842461B2 (en) 2012-06-21 2020-11-24 Globus Medical, Inc. Systems and methods of checking registrations for surgical systems
US10874466B2 (en) 2012-06-21 2020-12-29 Globus Medical, Inc. System and method for surgical tool insertion using multiaxis force and moment feedback
US11045267B2 (en) 2012-06-21 2021-06-29 Globus Medical, Inc. Surgical robotic automation with tracking markers
JP2021109107A (ja) * 2020-01-08 2021-08-02 グローバス メディカル インコーポレイティッド ニューロナビゲーション位置合わせおよびロボット軌道誘導のためのシステム、ロボット手術、ならびに関連する方法およびデバイス
JP2021171655A (ja) * 2020-04-28 2021-11-01 グローバス メディカル インコーポレイティッド 蛍光透視イメージングシステムのための固定具ならびに関連するナビゲーションシステムおよび方法
US11253327B2 (en) 2012-06-21 2022-02-22 Globus Medical, Inc. Systems and methods for automatically changing an end-effector on a surgical robot
US11298196B2 (en) 2012-06-21 2022-04-12 Globus Medical Inc. Surgical robotic automation with tracking markers and controlled tool advancement
US11317971B2 (en) 2012-06-21 2022-05-03 Globus Medical, Inc. Systems and methods related to robotic guidance in surgery
US11317978B2 (en) 2019-03-22 2022-05-03 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11382549B2 (en) 2019-03-22 2022-07-12 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11399900B2 (en) 2012-06-21 2022-08-02 Globus Medical, Inc. Robotic systems providing co-registration using natural fiducials and related methods
US11419616B2 (en) 2019-03-22 2022-08-23 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11571265B2 (en) 2019-03-22 2023-02-07 Globus Medical Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11589771B2 (en) 2012-06-21 2023-02-28 Globus Medical Inc. Method for recording probe movement and determining an extent of matter removed
US11786324B2 (en) 2012-06-21 2023-10-17 Globus Medical, Inc. Surgical robotic automation with tracking markers
US11793570B2 (en) 2012-06-21 2023-10-24 Globus Medical Inc. Surgical robotic automation with tracking markers
US11806084B2 (en) 2019-03-22 2023-11-07 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11819365B2 (en) 2012-06-21 2023-11-21 Globus Medical, Inc. System and method for measuring depth of instrumentation
US11857266B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. System for a surveillance marker in robotic-assisted surgery
US11857149B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. Surgical robotic systems with target trajectory deviation monitoring and related methods
US11864839B2 (en) 2012-06-21 2024-01-09 Globus Medical Inc. Methods of adjusting a virtual implant and related surgical navigation systems
US11864745B2 (en) 2012-06-21 2024-01-09 Globus Medical, Inc. Surgical robotic system with retractor
US11883217B2 (en) 2016-02-03 2024-01-30 Globus Medical, Inc. Portable medical imaging system and method
US11896446B2 (en) 2012-06-21 2024-02-13 Globus Medical, Inc Surgical robotic automation with tracking markers
US11911225B2 (en) 2012-06-21 2024-02-27 Globus Medical Inc. Method and system for improving 2D-3D registration convergence
US11944325B2 (en) 2019-03-22 2024-04-02 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11944344B2 (en) 2018-04-13 2024-04-02 Karl Storz Se & Co. Kg Guidance system, method and devices thereof
US11963755B2 (en) 2012-06-21 2024-04-23 Globus Medical Inc. Apparatus for recording probe movement

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013192598A1 (en) * 2012-06-21 2013-12-27 Excelsius Surgical, L.L.C. Surgical robot platform
US10646280B2 (en) * 2012-06-21 2020-05-12 Globus Medical, Inc. System and method for surgical tool insertion using multiaxis force and moment feedback
US20170258535A1 (en) * 2012-06-21 2017-09-14 Globus Medical, Inc. Surgical robotic automation with tracking markers
US11116576B2 (en) * 2012-06-21 2021-09-14 Globus Medical Inc. Dynamic reference arrays and methods of use
KR102602379B1 (ko) 2015-02-20 2023-11-16 스트리커 코포레이션 멸균 차단 조립체, 장착 시스템, 및 수술용 구성 요소들을 결합하기 위한 방법
US10646298B2 (en) * 2015-07-31 2020-05-12 Globus Medical, Inc. Robot arm and methods of use
US9771092B2 (en) * 2015-10-13 2017-09-26 Globus Medical, Inc. Stabilizer wheel assembly and methods of use
WO2018049196A1 (en) 2016-09-09 2018-03-15 GYS Tech, LLC d/b/a Cardan Robotics Methods and systems for display of patient data in computer-assisted surgery
US10004609B2 (en) * 2016-09-23 2018-06-26 Warsaw Orthopedic, Inc. Surgical instrument and method
JP7145599B2 (ja) * 2016-10-10 2022-10-03 グローバス メディカル インコーポレイティッド 2d-3d位置合わせの収束を改善するための方法及びシステム
US10318024B2 (en) * 2016-10-14 2019-06-11 Orthosoft, Inc. Mechanical optical pointer
EP3351202B1 (en) 2017-01-18 2021-09-08 KB Medical SA Universal instrument guide for robotic surgical systems
JP2018114280A (ja) 2017-01-18 2018-07-26 ケービー メディカル エスアー ロボット外科用システムのための汎用器具ガイド、外科用器具システム、及びそれらの使用方法
US10682129B2 (en) * 2017-03-23 2020-06-16 Mobius Imaging, Llc Robotic end effector with adjustable inner diameter
US11065069B2 (en) 2017-05-10 2021-07-20 Mako Surgical Corp. Robotic spine surgery system and methods
US11033341B2 (en) 2017-05-10 2021-06-15 Mako Surgical Corp. Robotic spine surgery system and methods
CA3063693A1 (en) * 2017-05-25 2018-11-29 Covidien Lp Systems and methods for detection of objects within a field of view of an image capture device
WO2018217444A2 (en) 2017-05-25 2018-11-29 Covidien Lp Systems and methods for detection of objects within a field of view of an image capture device
CA3068833A1 (en) * 2017-07-03 2019-01-10 Spine Align, Llc Intraoperative alignment assessment system and method
US11540767B2 (en) 2017-07-03 2023-01-03 Globus Medical Inc. Intraoperative alignment assessment system and method
US10605875B2 (en) * 2017-08-28 2020-03-31 Synaptive Medical (Barbados) Inc. Contrast system and methods for reflective markers
CN111655187A (zh) 2018-01-26 2020-09-11 马科外科公司 用于冲击由手术机器人引导的假体的端部执行器、系统和方法
AU2019261299A1 (en) 2018-04-23 2020-10-29 Mako Surgical Corp. System, method and software program for aiding in positioning of a camera relative to objects in a surgical environment
US11191594B2 (en) 2018-05-25 2021-12-07 Mako Surgical Corp. Versatile tracking arrays for a navigation system and methods of recovering registration using the same
CN110575255B (zh) * 2018-06-07 2022-08-16 格罗伯斯医疗有限公司 使用自然基准提供共配准的机器人系统和相关方法
JP7082090B2 (ja) * 2018-06-27 2022-06-07 グローバス メディカル インコーポレイティッド 仮想インプラントを調整する方法および関連する手術用ナビゲーションシステム
CN111000632B (zh) * 2018-10-08 2023-04-18 格罗伯斯医疗有限公司 具有跟踪标记的手术机器人自动化
EP3890643A2 (en) 2018-12-04 2021-10-13 Mako Surgical Corporation Mounting system with sterile barrier assembly for use in coupling surgical components
CN109998682B (zh) * 2019-04-28 2020-08-18 北京天智航医疗科技股份有限公司 探针装置、精度检测方法、精度检测系统及定位系统
CN112168240B (zh) * 2020-09-24 2022-03-01 武汉联影智融医疗科技有限公司 手术器械标定方法、装置、计算机设备和存储介质
US20230073934A1 (en) * 2021-09-08 2023-03-09 Proprio, Inc. Constellations for tracking instruments, such as surgical instruments, and associated systems and methods
US20230083538A1 (en) * 2021-09-15 2023-03-16 Globus Medical, Inc. Robot surgical platform for cranial surgery
WO2023221296A1 (en) * 2022-05-18 2023-11-23 Precision Robotics (Hong Kong) Limited Connecting assembly and robot

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050215888A1 (en) * 2004-03-05 2005-09-29 Grimm James E Universal support arm and tracking array
US20060264963A1 (en) * 2004-10-27 2006-11-23 Peter Reed Vertebral spreading instrument comprising markers
US20080200794A1 (en) * 2007-02-19 2008-08-21 Robert Teichman Multi-configuration tracknig array and related method
US20140275955A1 (en) * 2012-06-21 2014-09-18 Globus Medical, Inc. Surgical tool systems and method
US20150196365A1 (en) * 2014-01-15 2015-07-16 KB Medical SA Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery

Family Cites Families (377)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2614083B2 (de) 1976-04-01 1979-02-08 Siemens Ag, 1000 Berlin Und 8000 Muenchen Röntgenschichtgerät zur Herstellung von Transversalschichtbildern
US5020933A (en) 1989-09-01 1991-06-04 Andronic Devices, Ltd. Locking mechanism for medical devices
EP0415416B1 (en) 1989-09-01 1995-08-09 Andronic Devices Ltd. Advanced surgical retractor
US5246010A (en) 1990-12-11 1993-09-21 Biotrine Corporation Method and apparatus for exhalation analysis
JP3378401B2 (ja) 1994-08-30 2003-02-17 株式会社日立メディコ X線装置
US5772594A (en) 1995-10-17 1998-06-30 Barrick; Earl F. Fluoroscopic image guided orthopaedic surgery system with intraoperative registration
US6167296A (en) 1996-06-28 2000-12-26 The Board Of Trustees Of The Leland Stanford Junior University Method for volumetric image navigation
US5987960A (en) 1997-09-26 1999-11-23 Picker International, Inc. Tool calibrator
US6031888A (en) 1997-11-26 2000-02-29 Picker International, Inc. Fluoro-assist feature for a diagnostic imaging device
US6064904A (en) 1997-11-28 2000-05-16 Picker International, Inc. Frameless stereotactic CT scanner with virtual needle display for planning image guided interventional procedures
US6477400B1 (en) 1998-08-20 2002-11-05 Sofamor Danek Holdings, Inc. Fluoroscopic image guided orthopaedic surgery system with intraoperative registration
DE19839825C1 (de) 1998-09-01 1999-10-07 Siemens Ag Röntgendiagnostikgerät mit an einer bogenförmigen Halterung einander gegenüberliegend gelagertem Strahlensender und Strahlenempfänger
DE19842798C1 (de) 1998-09-18 2000-05-04 Howmedica Leibinger Gmbh & Co Kalibriervorrichtung
US8527094B2 (en) 1998-11-20 2013-09-03 Intuitive Surgical Operations, Inc. Multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures
US7016457B1 (en) 1998-12-31 2006-03-21 General Electric Company Multimode imaging system for generating high quality images
DE19905974A1 (de) 1999-02-12 2000-09-07 Siemens Ag Verfahren zur Abtastung eines Untersuchungsobjekts mittels eines CT-Geräts
US6778850B1 (en) 1999-03-16 2004-08-17 Accuray, Inc. Frameless radiosurgery treatment system and method
US6501981B1 (en) 1999-03-16 2002-12-31 Accuray, Inc. Apparatus and method for compensating for respiratory and patient motions during treatment
US6144875A (en) 1999-03-16 2000-11-07 Accuray Incorporated Apparatus and method for compensating for respiratory and patient motion during treatment
JP2000271110A (ja) 1999-03-26 2000-10-03 Hitachi Medical Corp 医用x線装置
DE60029234T2 (de) 1999-05-10 2007-05-31 Hansen Medical, Inc., Mountain View Chirurgisches Instrument
DE19927953A1 (de) 1999-06-18 2001-01-11 Siemens Ag Röntgendiagnostikgerät
US6314311B1 (en) 1999-07-28 2001-11-06 Picker International, Inc. Movable mirror laser registration system
US8004229B2 (en) 2005-05-19 2011-08-23 Intuitive Surgical Operations, Inc. Software center and highly configurable robotic systems for surgery and other uses
JP2001135734A (ja) 1999-11-04 2001-05-18 Fuji Electric Co Ltd 電界効果トランジスタの製造方法
US6245028B1 (en) 1999-11-24 2001-06-12 Marconi Medical Systems, Inc. Needle biopsy system
US20010036302A1 (en) 1999-12-10 2001-11-01 Miller Michael I. Method and apparatus for cross modality image registration
WO2001056007A1 (en) 2000-01-28 2001-08-02 Intersense, Inc. Self-referenced tracking
AU2001248161A1 (en) 2000-03-15 2001-09-24 Orthosoft Inc. Automatic calibration system for computer-aided surgical instruments
US6535756B1 (en) 2000-04-07 2003-03-18 Surgical Navigation Technologies, Inc. Trajectory storage apparatus and method for surgical navigation system
US6856826B2 (en) 2000-04-28 2005-02-15 Ge Medical Systems Global Technology Company, Llc Fluoroscopic tracking and visualization system
US6856827B2 (en) 2000-04-28 2005-02-15 Ge Medical Systems Global Technology Company, Llc Fluoroscopic tracking and visualization system
US6484049B1 (en) 2000-04-28 2002-11-19 Ge Medical Systems Global Technology Company, Llc Fluoroscopic tracking and visualization system
US6614453B1 (en) 2000-05-05 2003-09-02 Koninklijke Philips Electronics, N.V. Method and apparatus for medical image display for surgical tool planning and navigation in clinical environments
US6782287B2 (en) 2000-06-27 2004-08-24 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for tracking a medical instrument based on image registration
US6823207B1 (en) 2000-08-26 2004-11-23 Ge Medical Systems Global Technology Company, Llc Integrated fluoroscopic surgical navigation and imaging workstation with command protocol
JP4022145B2 (ja) 2000-09-25 2007-12-12 ゼット − キャット、インコーポレイテッド 光学および/または磁気マーカを備える蛍光透視重ね合せ構造体
US6666579B2 (en) 2000-12-28 2003-12-23 Ge Medical Systems Global Technology Company, Llc Method and apparatus for obtaining and displaying computed tomography images using a fluoroscopy imaging system
JP4153305B2 (ja) 2001-01-30 2008-09-24 ゼット − キャット、インコーポレイテッド 器具較正器および追跡システム
JP4553551B2 (ja) 2001-02-05 2010-09-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 画像診断方法
JP2002253574A (ja) 2001-03-01 2002-09-10 Hitachi Ltd 手術支援装置
CN100556370C (zh) 2001-03-26 2009-11-04 Lb医药有限公司 用于对材料进行切除或加工处理的方法和器械系统
CA2486520A1 (en) 2001-06-13 2002-12-19 Volume Interactions Pte. Ltd. Guide systems for interacting with a subject, and methods therefor
US6584339B2 (en) 2001-06-27 2003-06-24 Vanderbilt University Method and apparatus for collecting and processing physical space data for use while performing image-guided surgery
US7063705B2 (en) 2001-06-29 2006-06-20 Sdgi Holdings, Inc. Fluoroscopic locator and registration device
US20030011624A1 (en) 2001-07-13 2003-01-16 Randy Ellis Deformable transformations for interventional guidance
US6619840B2 (en) 2001-10-15 2003-09-16 Koninklijke Philips Electronics N.V. Interventional volume scanner
US7634306B2 (en) 2002-02-13 2009-12-15 Kinamed, Inc. Non-image, computer assisted navigation system for joint replacement surgery with modular implant system
ES2217210T3 (es) 2002-02-22 2004-11-01 Brainlab Ag Instrumento de calibrado de reducida altura.
US8010180B2 (en) 2002-03-06 2011-08-30 Mako Surgical Corp. Haptic guidance system and method
US7831292B2 (en) 2002-03-06 2010-11-09 Mako Surgical Corp. Guidance system and method for surgical procedures with improved feedback
US7206627B2 (en) 2002-03-06 2007-04-17 Z-Kat, Inc. System and method for intra-operative haptic planning of a medical procedure
US8996169B2 (en) 2011-12-29 2015-03-31 Mako Surgical Corp. Neural monitor-based dynamic haptics
AU2003224711A1 (en) 2002-03-19 2003-10-08 Breakaway Imaging, Llc Computer tomograph with a detector following the movement of a pivotable x-ray source
US7182083B2 (en) 2002-04-03 2007-02-27 Koninklijke Philips Electronics N.V. CT integrated respiratory monitor
US7099428B2 (en) 2002-06-25 2006-08-29 The Regents Of The University Of Michigan High spatial resolution X-ray computed tomography (CT) system
US7107091B2 (en) 2002-07-25 2006-09-12 Orthosoft Inc. Multiple bone tracking
US7231063B2 (en) 2002-08-09 2007-06-12 Intersense, Inc. Fiducial detection system
WO2004015369A2 (en) 2002-08-09 2004-02-19 Intersense, Inc. Motion tracking system and method
US7588573B2 (en) * 2002-09-23 2009-09-15 Warsaw Orthopedic, Inc. Expansion tool for adjustable spinal implant
US8814793B2 (en) 2002-12-03 2014-08-26 Neorad As Respiration monitor
US7945021B2 (en) 2002-12-18 2011-05-17 Varian Medical Systems, Inc. Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager
US7542791B2 (en) 2003-01-30 2009-06-02 Medtronic Navigation, Inc. Method and apparatus for preplanning a surgical procedure
US6988009B2 (en) 2003-02-04 2006-01-17 Zimmer Technology, Inc. Implant registration device for surgical navigation system
US6925339B2 (en) 2003-02-04 2005-08-02 Zimmer Technology, Inc. Implant registration device for surgical navigation system
US7570791B2 (en) 2003-04-25 2009-08-04 Medtronic Navigation, Inc. Method and apparatus for performing 2D to 3D registration
JP4163991B2 (ja) 2003-04-30 2008-10-08 株式会社モリタ製作所 X線ct撮影装置及び撮影方法
US7194120B2 (en) 2003-05-29 2007-03-20 Board Of Regents, The University Of Texas System Methods and systems for image-guided placement of implants
US7171257B2 (en) 2003-06-11 2007-01-30 Accuray Incorporated Apparatus and method for radiosurgery
US7822461B2 (en) 2003-07-11 2010-10-26 Siemens Medical Solutions Usa, Inc. System and method for endoscopic path planning
US7324623B2 (en) 2003-07-15 2008-01-29 Koninklijke Philips Electronics N. V. Computed tomography scanner with large gantry bore
US7313430B2 (en) 2003-08-28 2007-12-25 Medtronic Navigation, Inc. Method and apparatus for performing stereotactic surgery
US7835778B2 (en) 2003-10-16 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for surgical navigation of a multiple piece construct for implantation
US8313430B1 (en) 2006-01-11 2012-11-20 Nuvasive, Inc. Surgical access system and related methods
US7764985B2 (en) 2003-10-20 2010-07-27 Smith & Nephew, Inc. Surgical navigation system component fault interfaces and related processes
WO2005039417A1 (de) 2003-10-22 2005-05-06 Schaerer Mayfield Technologies Gmbh Verfahren zur fluoroskopie-basierten neuronavigation
US9393039B2 (en) 2003-12-17 2016-07-19 Brainlab Ag Universal instrument or instrument set for computer guided surgery
US7488326B2 (en) 2004-01-02 2009-02-10 Zimmer Technology, Inc. Combination targeting guide and driver instrument for use in orthopaedic surgical procedures
US7207995B1 (en) 2004-01-29 2007-04-24 Biomer Manufacturing Corp. Method and apparatus for retaining a guide wire
EP1720479B1 (en) 2004-03-05 2014-04-23 Depuy International Limited Registration methods and apparatus
EP1722705A2 (en) 2004-03-10 2006-11-22 Depuy International Limited Orthopaedic operating systems, methods, implants and instruments
DE102004025612A1 (de) 2004-04-22 2005-11-10 Plus Endoprothetik Ag Einrichtung zum Erfassen einer Kraft-Weg-Kennlinie eines oder mehrerer Bänder, sowie Verfahren zur Erfassung der Kennlinie
US7033363B2 (en) 2004-05-19 2006-04-25 Sean Powell Snap-lock for drill sleeve
US20050267359A1 (en) 2004-05-27 2005-12-01 General Electric Company System, method, and article of manufacture for guiding an end effector to a target position within a person
US7327865B2 (en) 2004-06-30 2008-02-05 Accuray, Inc. Fiducial-less tracking with non-rigid image registration
GB2422759B (en) 2004-08-05 2008-07-16 Elekta Ab Rotatable X-ray scan apparatus with cone beam offset
US8182491B2 (en) 2004-08-06 2012-05-22 Depuy Spine, Inc. Rigidly guided implant placement
US7702379B2 (en) 2004-08-25 2010-04-20 General Electric Company System and method for hybrid tracking in surgical navigation
DE102004042489B4 (de) 2004-08-31 2012-03-29 Siemens Ag Medizinische Untersuchungs- oder Behandlungseinrichtung mit dazugehörigem Verfahren
JP4756045B2 (ja) 2004-09-15 2011-08-24 エーオー テクノロジー エージー 較正装置
CN101035464A (zh) 2004-10-06 2007-09-12 皇家飞利浦电子股份有限公司 计算层析成像方法
US7062006B1 (en) 2005-01-19 2006-06-13 The Board Of Trustees Of The Leland Stanford Junior University Computed tomography with increased field of view
US20060184396A1 (en) 2005-01-28 2006-08-17 Dennis Charles L System and method for surgical navigation
US7231014B2 (en) 2005-02-14 2007-06-12 Varian Medical Systems Technologies, Inc. Multiple mode flat panel X-ray imaging system
EP3470040B1 (en) 2005-02-22 2022-03-16 Mako Surgical Corp. Haptic guidance system and method
GB0504172D0 (en) 2005-03-01 2005-04-06 King S College London Surgical planning
CA2600387C (en) 2005-03-07 2013-12-10 Hector O. Pacheco System and methods for improved access to vertebral bodies for kyphoplasty, vertebroplasty, vertebral body biopsy or screw placement
US8945095B2 (en) 2005-03-30 2015-02-03 Intuitive Surgical Operations, Inc. Force and torque sensing for surgical instruments
US9789608B2 (en) 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US7646903B2 (en) 2005-06-22 2010-01-12 Siemens Medical Solutions Usa, Inc. System and method for path based tree matching
JP2007000406A (ja) 2005-06-24 2007-01-11 Ge Medical Systems Global Technology Co Llc X線ct撮影方法およびx線ct装置
US7840256B2 (en) * 2005-06-27 2010-11-23 Biomet Manufacturing Corporation Image guided tracking array and method
US20070038059A1 (en) 2005-07-07 2007-02-15 Garrett Sheffer Implant and instrument morphing
US20080302950A1 (en) 2005-08-11 2008-12-11 The Brigham And Women's Hospital, Inc. System and Method for Performing Single Photon Emission Computed Tomography (Spect) with a Focal-Length Cone-Beam Collimation
US7643862B2 (en) 2005-09-15 2010-01-05 Biomet Manufacturing Corporation Virtual mouse for use in surgical navigation
US20070073133A1 (en) 2005-09-15 2007-03-29 Schoenefeld Ryan J Virtual mouse for use in surgical navigation
US7835784B2 (en) 2005-09-21 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for positioning a reference frame
EP1769769A1 (en) 2005-09-28 2007-04-04 DePuy Orthopädie GmbH Tracking surgical items
US20070078466A1 (en) 2005-09-30 2007-04-05 Restoration Robotics, Inc. Methods for harvesting follicular units using an automated system
US8224024B2 (en) 2005-10-04 2012-07-17 InterSense, LLC Tracking objects with markers
US7950849B2 (en) 2005-11-29 2011-05-31 General Electric Company Method and device for geometry analysis and calibration of volumetric imaging systems
US8219177B2 (en) 2006-02-16 2012-07-10 Catholic Healthcare West Method and system for performing invasive medical procedures using a surgical robot
US10893912B2 (en) 2006-02-16 2021-01-19 Globus Medical Inc. Surgical tool systems and methods
WO2007095637A1 (en) 2006-02-16 2007-08-23 Catholic Healthcare West (D/B/A St. Joseph's Hospital Medical Center) System utilizing radio frequency signals for tracking and improving navigation of slender instruments during insertion into the body
US8208708B2 (en) 2006-03-30 2012-06-26 Koninklijke Philips Electronics N.V. Targeting method, targeting device, computer readable medium and program element
CN102988074A (zh) 2006-04-14 2013-03-27 威廉博蒙特医院 扫描狭槽锥形束计算机断层摄影以及扫描聚焦光斑锥形束计算机断层摄影
US8021310B2 (en) 2006-04-21 2011-09-20 Nellcor Puritan Bennett Llc Work of breathing display for a ventilation system
US7940999B2 (en) 2006-04-24 2011-05-10 Siemens Medical Solutions Usa, Inc. System and method for learning-based 2D/3D rigid registration for image-guided surgery using Jensen-Shannon divergence
JP2009537229A (ja) 2006-05-19 2009-10-29 マコ サージカル コーポレーション 触覚デバイスを制御するための方法および装置
US8560047B2 (en) 2006-06-16 2013-10-15 Board Of Regents Of The University Of Nebraska Method and apparatus for computer aided surgery
GB0612452D0 (en) 2006-06-22 2006-08-02 Univ Aston Improvements in or relating to drilling apparatus and methods
US20080004523A1 (en) 2006-06-29 2008-01-03 General Electric Company Surgical tool guide
DE102006032127B4 (de) 2006-07-05 2008-04-30 Aesculap Ag & Co. Kg Kalibrierverfahren und Kalibriervorrichtung für eine chirurgische Referenzierungseinheit
US20080013809A1 (en) 2006-07-14 2008-01-17 Bracco Imaging, Spa Methods and apparatuses for registration in image guided surgery
CN101505658B (zh) 2006-08-17 2015-08-19 皇家飞利浦电子股份有限公司 计算机断层摄影图像获取
DE102006041033B4 (de) 2006-09-01 2017-01-19 Siemens Healthcare Gmbh Verfahren zur Rekonstruktion eines dreidimensionalen Bildvolumens
US20080082109A1 (en) 2006-09-08 2008-04-03 Hansen Medical, Inc. Robotic surgical system with forward-oriented field of view guide instrument navigation
US9044190B2 (en) 2006-09-25 2015-06-02 Mazor Robotics Ltd. C-arm computerized tomography system
US8660635B2 (en) 2006-09-29 2014-02-25 Medtronic, Inc. Method and apparatus for optimizing a computer assisted surgical procedure
US8052688B2 (en) 2006-10-06 2011-11-08 Wolf Ii Erich Electromagnetic apparatus and method for nerve localization during spinal surgery
US20080144906A1 (en) 2006-10-09 2008-06-19 General Electric Company System and method for video capture for fluoroscopy and navigation
US20080108991A1 (en) 2006-11-08 2008-05-08 General Electric Company Method and apparatus for performing pedicle screw fusion surgery
EP2081494B1 (en) 2006-11-16 2018-07-11 Vanderbilt University System and method of compensating for organ deformation
US20080119725A1 (en) 2006-11-20 2008-05-22 General Electric Company Systems and Methods for Visual Verification of CT Registration and Feedback
US8727618B2 (en) 2006-11-22 2014-05-20 Siemens Aktiengesellschaft Robotic device and method for trauma patient diagnosis and therapy
US7683332B2 (en) 2006-12-08 2010-03-23 Rush University Medical Center Integrated single photon emission computed tomography (SPECT)/transmission computed tomography (TCT) system for cardiac imaging
US7683331B2 (en) 2006-12-08 2010-03-23 Rush University Medical Center Single photon emission computed tomography (SPECT) system for cardiac imaging
DE102006061178A1 (de) 2006-12-22 2008-06-26 Siemens Ag System zur Durchführung und Überwachung minimal-invasiver Eingriffe
US20080161680A1 (en) 2006-12-29 2008-07-03 General Electric Company System and method for surgical navigation of motion preservation prosthesis
US8340374B2 (en) 2007-01-11 2012-12-25 Kabushiki Kaisha Toshiba 3-dimensional diagnostic imaging system
CA2677239C (en) 2007-02-01 2016-06-21 Interactive Neuroscience Center, Llc Surgical navigation system for guiding an access member
DE102007009017B3 (de) 2007-02-23 2008-09-25 Siemens Ag Anordnung zur Unterstützung eines perkutanen Eingriffs
US8098914B2 (en) 2007-03-05 2012-01-17 Siemens Aktiengesellschaft Registration of CT volumes with fluoroscopic images
US8821511B2 (en) 2007-03-15 2014-09-02 General Electric Company Instrument guide for use with a surgical navigation system
US20080235052A1 (en) 2007-03-19 2008-09-25 General Electric Company System and method for sharing medical information between image-guided surgery systems
US8150494B2 (en) 2007-03-29 2012-04-03 Medtronic Navigation, Inc. Apparatus for registering a physical space to image space
EP2142133B1 (en) 2007-04-16 2012-10-10 NeuroArm Surgical, Ltd. Methods, devices, and systems for automated movements involving medical robots
US8560118B2 (en) 2007-04-16 2013-10-15 Neuroarm Surgical Ltd. Methods, devices, and systems for non-mechanically restricting and/or programming movement of a tool of a manipulator along a single axis
US8311611B2 (en) 2007-04-24 2012-11-13 Medtronic, Inc. Method for performing multiple registrations in a navigated procedure
US8934961B2 (en) 2007-05-18 2015-01-13 Biomet Manufacturing, Llc Trackable diagnostic scope apparatus and methods of use
US20080300477A1 (en) 2007-05-30 2008-12-04 General Electric Company System and method for correction of automated image registration
US9084623B2 (en) 2009-08-15 2015-07-21 Intuitive Surgical Operations, Inc. Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
US9468412B2 (en) 2007-06-22 2016-10-18 General Electric Company System and method for accuracy verification for image based surgical navigation
US8100950B2 (en) 2007-07-27 2012-01-24 The Cleveland Clinic Foundation Oblique lumbar interbody fusion
EP2217147B1 (en) 2007-11-06 2012-06-27 Koninklijke Philips Electronics N.V. Nuclear medicine spect-ct machine with integrated asymmetric flat panel cone-beam ct and spect system
US20100274120A1 (en) 2007-12-21 2010-10-28 Koninklijke Philips Electronics N.V. Synchronous interventional scanner
ES2595366T3 (es) 2008-01-09 2016-12-29 Stryker European Holdings I, Llc Sistema de cirugía estereotáctica asistida por ordenador basada en una visualización tridimensional
WO2009092164A1 (en) 2008-01-25 2009-07-30 Mcmaster University Surgical guidance utilizing tissue feedback
US20090198121A1 (en) 2008-02-01 2009-08-06 Martin Hoheisel Method and apparatus for coordinating contrast agent injection and image acquisition in c-arm computed tomography
US8696458B2 (en) 2008-02-15 2014-04-15 Thales Visionix, Inc. Motion tracking system and method using camera and non-camera sensors
EP2103270B1 (de) 2008-03-18 2012-06-27 BrainLAB AG System für navigations-unterstützte Schulteroperationen zur Positionierung navigierter Behandlungsgeräte bezüglich eines Knochens
US7957831B2 (en) 2008-04-04 2011-06-07 Isaacs Robert E System and device for designing and forming a surgical implant
WO2009126953A2 (en) 2008-04-11 2009-10-15 Physcient, Inc. Methods and devices to decrease tissue trauma during surgery
US9002076B2 (en) 2008-04-15 2015-04-07 Medtronic, Inc. Method and apparatus for optimal trajectory planning
US8968192B2 (en) 2008-06-06 2015-03-03 Warsaw Orthopedic, Inc. Systems and methods for tissue retraction
WO2009152055A2 (en) 2008-06-09 2009-12-17 Mako Surgical Corp. Self-detecting kinematic clamp assembly
US20100076305A1 (en) 2008-06-25 2010-03-25 Deutsches Krebsforschungszentrum Stiftung Des Offentlichen Rechts Method, system and computer program product for targeting of a target with an elongate instrument
TW201004607A (en) 2008-07-25 2010-02-01 Been-Der Yang Image guided navigation system and method thereof
JP2010035984A (ja) 2008-08-08 2010-02-18 Canon Inc X線撮影装置
US9248000B2 (en) 2008-08-15 2016-02-02 Stryker European Holdings I, Llc System for and method of visualizing an interior of body
EP2156790B1 (de) 2008-08-22 2012-03-28 BrainLAB AG Zuordnung von Röntgenmarkern zu im Röntgenbild abgebildeten Bildmarkern
US7900524B2 (en) 2008-09-09 2011-03-08 Intersense, Inc. Monitoring tools
WO2010041193A2 (en) 2008-10-10 2010-04-15 Koninklijke Philips Electronics N.V. Method and apparatus to improve ct image acquisition using a displaced geometry
US8781630B2 (en) 2008-10-14 2014-07-15 University Of Florida Research Foundation, Inc. Imaging platform to provide integrated navigation capabilities for surgical guidance
US8594799B2 (en) 2008-10-31 2013-11-26 Advanced Bionics Cochlear electrode insertion
TWI435705B (zh) 2008-11-20 2014-05-01 Been Der Yang 手術用定位裝置及應用其之影像導航系統
WO2010061810A1 (ja) 2008-11-27 2010-06-03 株式会社 日立メディコ 放射線撮像装置
CN102300512B (zh) 2008-12-01 2016-01-20 马佐尔机器人有限公司 机器人引导的倾斜脊柱稳定化
EP2389114A1 (en) 2009-01-21 2011-11-30 Koninklijke Philips Electronics N.V. Method and apparatus for large field of view imaging and detection and compensation of motion artifacts
EP2381877B1 (en) 2009-01-29 2018-02-28 Imactis Method and device for navigation of a surgical tool
US8463005B2 (en) 2009-03-03 2013-06-11 Brainlab Ag Stent and method for determining the position of a stent
US9737235B2 (en) 2009-03-09 2017-08-22 Medtronic Navigation, Inc. System and method for image-guided navigation
EP2427142B1 (en) 2009-05-08 2017-11-01 Koninklijke Philips N.V. Ultrasonic planning and guidance of implantable medical devices
CN101897593B (zh) 2009-05-26 2014-08-13 清华大学 一种计算机层析成像设备和方法
US8121249B2 (en) 2009-06-04 2012-02-21 Virginia Tech Intellectual Properties, Inc. Multi-parameter X-ray computed tomography
WO2011013164A1 (ja) 2009-07-27 2011-02-03 株式会社島津製作所 放射線撮影装置
US9001963B2 (en) 2009-08-06 2015-04-07 Koninklijke Philips N.V. Method and apparatus for generating computed tomography images with offset detector geometries
US10828786B2 (en) 2009-08-17 2020-11-10 Mazor Robotics Ltd. Device for improving the accuracy of manual operations
JP5517526B2 (ja) 2009-08-27 2014-06-11 Ntn株式会社 遠隔操作型アクチュエータの工具先端位置検出装置
US8465476B2 (en) 2009-09-23 2013-06-18 Intuitive Surgical Operations, Inc. Cannula mounting fixture
KR101609281B1 (ko) 2009-10-01 2016-04-05 마코 서지컬 코포레이션 도구, 다기능 도구용 부품들의 키트 및 다기능 도구용 로봇 시스템
US8709086B2 (en) 2009-10-15 2014-04-29 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US20110098553A1 (en) 2009-10-28 2011-04-28 Steven Robbins Automatic registration of images for image guided surgery
BR112012011326B1 (pt) 2009-11-13 2021-10-26 Intuitive Surgical Operations, Inc Sistema cirúrgico de cânula curva
WO2011070519A1 (en) 2009-12-10 2011-06-16 Koninklijke Philips Electronics N.V. Scanning system for differential phase contrast imaging
JP5431895B2 (ja) 2009-12-11 2014-03-05 西島メディカル株式会社 骨手術用器械
US9381045B2 (en) 2010-01-13 2016-07-05 Jcbd, Llc Sacroiliac joint implant and sacroiliac joint instrument for fusing a sacroiliac joint
JP5795599B2 (ja) 2010-01-13 2015-10-14 コーニンクレッカ フィリップス エヌ ヴェ 内視鏡手術のための画像統合ベースレジストレーション及びナビゲーション
WO2011085814A1 (en) 2010-01-14 2011-07-21 Brainlab Ag Controlling and/or operating a medical device by means of a light pointer
US8376937B2 (en) 2010-01-28 2013-02-19 Warsaw Orhtopedic, Inc. Tissue monitoring surgical retractor system
US9307971B2 (en) 2010-02-01 2016-04-12 Warsaw Orthopedic, Inc. Surgical retractor instrument systems and methods of using the same
US10588647B2 (en) 2010-03-01 2020-03-17 Stryker European Holdings I, Llc Computer assisted surgery system
US9341704B2 (en) 2010-04-13 2016-05-17 Frederic Picard Methods and systems for object tracking
CN102933163A (zh) 2010-04-14 2013-02-13 史密夫和内修有限公司 用于基于患者的计算机辅助手术程序的系统和方法
WO2011134083A1 (en) 2010-04-28 2011-11-03 Ryerson University System and methods for intraoperative guidance feedback
JP2013530028A (ja) 2010-05-04 2013-07-25 パスファインダー セラピューティクス,インコーポレイテッド 擬似特徴を使用する腹部表面マッチングのためのシステムおよび方法
US20110306873A1 (en) 2010-05-07 2011-12-15 Krishna Shenai System for performing highly accurate surgery
US8738115B2 (en) 2010-05-11 2014-05-27 Siemens Aktiengesellschaft Method and apparatus for selective internal radiation therapy planning and implementation
DE102010020284A1 (de) 2010-05-12 2011-11-17 Siemens Aktiengesellschaft Bestimmung von 3D-Positionen und -Orientierungen von chirurgischen Objekten aus 2D-Röntgenbildern
DE102010026674B4 (de) 2010-07-09 2012-09-27 Siemens Aktiengesellschaft Bildgebungsvorrichtung und Strahlentherapiegerät
US20130094742A1 (en) 2010-07-14 2013-04-18 Thomas Feilkas Method and system for determining an imaging direction and calibration of an imaging apparatus
US20120035507A1 (en) 2010-07-22 2012-02-09 Ivan George Device and method for measuring anatomic geometries
US8740882B2 (en) 2010-07-30 2014-06-03 Lg Electronics Inc. Medical robotic system and method of controlling the same
WO2012018821A2 (en) 2010-08-02 2012-02-09 The Johns Hopkins University Method for presenting force sensor information using cooperative robot control and audio feedback
JP2012045278A (ja) 2010-08-30 2012-03-08 Fujifilm Corp X線画像撮影装置およびx線画像撮影方法
US8491659B2 (en) 2010-09-03 2013-07-23 Globus Medical, Inc. Expandable fusion device and method of installation thereof
JP5675236B2 (ja) 2010-09-10 2015-02-25 オリンパス株式会社 マニピュレータシステムの制御装置、マニピュレータシステム、及びマニピュレータシステムの制御方法
RU2594813C2 (ru) 2010-09-15 2016-08-20 Конинклейке Филипс Электроникс Н.В. Роботизированное управление эндоскопом по изображениям сети кровеносных сосудов
JP2012075507A (ja) 2010-09-30 2012-04-19 Panasonic Corp 手術用カメラ
US8526700B2 (en) 2010-10-06 2013-09-03 Robert E. Isaacs Imaging system and method for surgical and interventional medical procedures
US8718346B2 (en) 2011-10-05 2014-05-06 Saferay Spine Llc Imaging system and method for use in surgical and interventional medical procedures
EP2627270B1 (en) 2010-10-13 2017-12-27 Materna Medical, Inc. Apparatus for preventing vaginal lacerations during childbirth
EP3649937A1 (en) 2010-12-13 2020-05-13 Statera Spine, Inc. Methods, systems and devices for clinical data reporting and surgical navigation
EP2468207A1 (en) 2010-12-21 2012-06-27 Renishaw (Ireland) Limited Method and apparatus for analysing images
CA2822287C (en) 2010-12-22 2020-06-30 Viewray Incorporated System and method for image guidance during medical procedures
EP2663252A1 (en) 2011-01-13 2013-11-20 Koninklijke Philips N.V. Intraoperative camera calibration for endoscopic surgery
US20120226145A1 (en) 2011-03-03 2012-09-06 National University Of Singapore Transcutaneous robot-assisted ablation-device insertion navigation system
CN202027725U (zh) 2011-04-01 2011-11-09 上海优益基医疗器械有限公司 一种用于手术导航系统可重复拆装的定位参考架
WO2012131660A1 (en) 2011-04-01 2012-10-04 Ecole Polytechnique Federale De Lausanne (Epfl) Robotic system for spinal and other surgeries
WO2012139031A1 (en) 2011-04-06 2012-10-11 The Trustees Of Columbia University In The City Of New York System, method and computer-accessible medium for providing a panoramic cone beam computed tomography (cbct)
WO2012149548A2 (en) 2011-04-29 2012-11-01 The Johns Hopkins University System and method for tracking and navigation
US8696582B2 (en) 2011-05-10 2014-04-15 The University Of British Columbia Apparatus and method for imaging a medical instrument
US20140096369A1 (en) 2011-06-06 2014-04-10 Ono & Co., Ltd. Method for manufacturing registration template
FR2977471B1 (fr) 2011-07-07 2013-07-05 Aspide Medical Dispositif comprenant une pluralite d'implants pour la fixation de materiel prothetique
US8818105B2 (en) 2011-07-14 2014-08-26 Accuray Incorporated Image registration for image-guided surgery
US10866783B2 (en) 2011-08-21 2020-12-15 Transenterix Europe S.A.R.L. Vocally activated surgical control system
US8879815B2 (en) 2011-08-23 2014-11-04 Siemens Aktiengesellschaft Automatic initialization for 2D/3D registration
DE102011054910B4 (de) 2011-10-28 2013-10-10 Ovesco Endoscopy Ag Magnetischer Endeffektor und Einrichtung zur Führung und Positionierung desselben
IN2014CN03616A (ja) 2011-11-11 2015-10-09 Koninkl Philips Nv
FR2983059B1 (fr) 2011-11-30 2014-11-28 Medtech Procede assiste par robotique de positionnement d'instrument chirurgical par rapport au corps d'un patient et dispositif de mise en oeuvre.
FR2985167A1 (fr) 2011-12-30 2013-07-05 Medtech Procede medical robotise de surveillance de la respiration d'un patient et de correction de la trajectoire robotisee.
RU2634296C2 (ru) 2012-01-03 2017-10-24 Конинклейке Филипс Н.В. Устройство для определения положения
JP5797124B2 (ja) 2012-01-31 2015-10-21 富士フイルム株式会社 手術支援装置、手術支援方法および手術支援プログラム
JP6122875B2 (ja) 2012-02-06 2017-04-26 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 血管ツリー画像内での見えない分岐部の検出
US11207132B2 (en) 2012-03-12 2021-12-28 Nuvasive, Inc. Systems and methods for performing spinal surgery
US8888821B2 (en) 2012-04-05 2014-11-18 Warsaw Orthopedic, Inc. Spinal implant measuring system and method
US10383765B2 (en) 2012-04-24 2019-08-20 Auris Health, Inc. Apparatus and method for a global coordinate system for use in robotic surgery
JP2015519108A (ja) 2012-05-02 2015-07-09 医百科技股▲ふん▼有限公司 口腔内手術中の補助ガイド方法
US9125556B2 (en) 2012-05-14 2015-09-08 Mazor Robotics Ltd. Robotic guided endoscope
WO2013173666A1 (en) 2012-05-18 2013-11-21 Carestream Health, Inc. Cone beam computed tomography volumetric imaging system
JP6368710B2 (ja) 2012-06-01 2018-08-01 インテュイティブ サージカル オペレーションズ, インコーポレイテッド ゼロ空間を使用したマニピュレータアームと患者との衝突回避
US11786324B2 (en) 2012-06-21 2023-10-17 Globus Medical, Inc. Surgical robotic automation with tracking markers
US11045267B2 (en) 2012-06-21 2021-06-29 Globus Medical, Inc. Surgical robotic automation with tracking markers
US10231791B2 (en) 2012-06-21 2019-03-19 Globus Medical, Inc. Infrared signal based position recognition system for use with a robot-assisted surgery
US20180325610A1 (en) 2012-06-21 2018-11-15 Globus Medical, Inc. Methods for indicating and confirming a point of interest using surgical navigation systems
US20150032164A1 (en) 2012-06-21 2015-01-29 Globus Medical, Inc. Methods for Performing Invasive Medical Procedures Using a Surgical Robot
US10136954B2 (en) 2012-06-21 2018-11-27 Globus Medical, Inc. Surgical tool systems and method
US20170258535A1 (en) 2012-06-21 2017-09-14 Globus Medical, Inc. Surgical robotic automation with tracking markers
US11395706B2 (en) 2012-06-21 2022-07-26 Globus Medical Inc. Surgical robot platform
US10646280B2 (en) 2012-06-21 2020-05-12 Globus Medical, Inc. System and method for surgical tool insertion using multiaxis force and moment feedback
US11896446B2 (en) 2012-06-21 2024-02-13 Globus Medical, Inc Surgical robotic automation with tracking markers
WO2013192598A1 (en) 2012-06-21 2013-12-27 Excelsius Surgical, L.L.C. Surgical robot platform
US20130345757A1 (en) 2012-06-22 2013-12-26 Shawn D. Stad Image Guided Intra-Operative Contouring Aid
WO2014010760A1 (ko) 2012-07-10 2014-01-16 메디소스플러스(주) 척추 고정용 최소침습 시술장치
US9993305B2 (en) 2012-08-08 2018-06-12 Ortoma Ab Method and system for computer assisted surgery
JP6123061B2 (ja) 2012-08-10 2017-05-10 アルスロデザイン株式会社 ガイド器具設置誤差検出装置
US10110785B2 (en) 2012-08-10 2018-10-23 Karl Storz Imaging, Inc. Deployable imaging system equipped with solid state imager
CN108524001B (zh) 2012-08-15 2021-06-29 直观外科手术操作公司 利用零空间取消关节运动的系统
DE102012215001B4 (de) 2012-08-23 2021-12-09 Siemens Healthcare Gmbh Verfahren zur 2D-3D-Registrierung eines Modells mit einem Röntgenbild
JP6191103B2 (ja) 2012-09-03 2017-09-06 セイコーエプソン株式会社 移動状態算出方法及び移動状態算出装置
US20140080086A1 (en) 2012-09-20 2014-03-20 Roger Chen Image Navigation Integrated Dental Implant System
US9008757B2 (en) 2012-09-26 2015-04-14 Stryker Corporation Navigation system including optical and non-optical sensors
EP2908733B1 (en) 2012-10-17 2020-07-29 Worcester Polytechnic Institute System for underactuated control of insertion path for asymmetric tip needles
US20140135744A1 (en) 2012-11-09 2014-05-15 Orthosensor Inc Motion and orientation sensing module or device for positioning of implants
WO2014078425A1 (en) 2012-11-14 2014-05-22 Intuitive Surgical Operations, Inc. Smart drapes for collision avoidance
JP2014097220A (ja) 2012-11-15 2014-05-29 Toshiba Corp 手術支援装置
US9001962B2 (en) 2012-12-20 2015-04-07 Triple Ring Technologies, Inc. Method and apparatus for multiple X-ray imaging applications
AU2014207502B2 (en) * 2013-01-16 2018-10-18 Stryker Corporation Navigation systems and methods for indicating line-of-sight errors
CN103969269B (zh) 2013-01-31 2018-09-18 Ge医疗系统环球技术有限公司 用于几何校准ct扫描仪的方法和装置
US20140221819A1 (en) 2013-02-01 2014-08-07 David SARMENT Apparatus, system and method for surgical navigation
EP2951743B1 (en) 2013-02-04 2020-04-29 Children's National Medical Center Hybrid control surgical robotic system
WO2014121268A1 (en) 2013-02-04 2014-08-07 The Cleveland Clinic Foundation Instrument depth tracking for oct-guided procedures
CA2897873A1 (en) 2013-03-13 2014-10-09 Stryker Corporation Systems and methods for establishing virtual constraint boundaries
US9668768B2 (en) 2013-03-15 2017-06-06 Synaptive Medical (Barbados) Inc. Intelligent positioning system and methods therefore
WO2014146701A1 (en) 2013-03-20 2014-09-25 Brainlab Ag Adaptor for receiving a navigated structure which is at least a part of a medical object and method of registering a navigated structure using the adaptor
US9414859B2 (en) 2013-04-19 2016-08-16 Warsaw Orthopedic, Inc. Surgical rod measuring system and method
US8964934B2 (en) 2013-04-25 2015-02-24 Moshe Ein-Gal Cone beam CT scanning
US9592095B2 (en) 2013-05-16 2017-03-14 Intuitive Surgical Operations, Inc. Systems and methods for robotic medical system integration with external imaging
DE102013012397B4 (de) 2013-07-26 2018-05-24 Rg Mechatronics Gmbh OP-Robotersystem
US10786283B2 (en) 2013-08-01 2020-09-29 Musc Foundation For Research Development Skeletal bone fixation mechanism
JP2015036161A (ja) 2013-08-12 2015-02-23 国立大学法人富山大学 関節機構
KR101572487B1 (ko) 2013-08-13 2015-12-02 한국과학기술연구원 환자와 3차원 의료영상의 비침습 정합 시스템 및 방법
CN109954196B (zh) 2013-08-15 2021-11-09 直观外科手术操作公司 用于导管定位和插入的图形用户界面
US20160199148A1 (en) * 2013-08-30 2016-07-14 The Board Of Regents Of The University Of Texas System Endo-navigation systems and methods for surgical procedures and cpr
US20150085970A1 (en) 2013-09-23 2015-03-26 General Electric Company Systems and methods for hybrid scanning
US9283048B2 (en) * 2013-10-04 2016-03-15 KB Medical SA Apparatus and systems for precise guidance of surgical tools
US10507067B2 (en) 2013-10-07 2019-12-17 Technion Research & Development Foundation Ltd. Needle steering by shaft manipulation
WO2015052718A1 (en) 2013-10-07 2015-04-16 Technion Research & Development Foundation Ltd. Gripper for robotic image guided needle insertion
US20150100067A1 (en) 2013-10-08 2015-04-09 University Of Washington Through Its Center For Commercialization Methods and systems for computer-guided placement of bone implants
EP3054877B1 (en) 2013-10-09 2021-12-01 Nuvasive, Inc. Surgical spinal correction
US9848922B2 (en) 2013-10-09 2017-12-26 Nuvasive, Inc. Systems and methods for performing spine surgery
JP7107635B2 (ja) 2013-10-24 2022-07-27 グローバス メディカル インコーポレイティッド 外科用ツールシステム及び方法
ITBO20130599A1 (it) 2013-10-31 2015-05-01 Cefla Coop Metodo e apparato per aumentare il campo di vista in una acquisizione tomografica computerizzata con tecnica cone-beam
US20150146847A1 (en) 2013-11-26 2015-05-28 General Electric Company Systems and methods for providing an x-ray imaging system with nearly continuous zooming capability
JP5754820B2 (ja) 2013-11-28 2015-07-29 国立大学法人東京工業大学 手術用ロボット
US10076385B2 (en) 2013-12-08 2018-09-18 Mazor Robotics Ltd. Method and apparatus for alerting a user to sensed lateral forces upon a guide-sleeve in a robot surgical system
EP2886074B1 (en) 2013-12-20 2016-09-14 Biedermann Technologies GmbH & Co. KG Rod insertion device
KR102470649B1 (ko) 2013-12-31 2022-11-23 마코 서지컬 코포레이션 커스터마이징된 햅틱 경계를 생성하기 위한 시스템 및 방법
WO2015142762A1 (en) 2014-03-17 2015-09-24 Brown Roy A Surgical targeting systems and methods
CN106255472B (zh) 2014-03-17 2020-08-25 直观外科手术操作公司 用于铰接臂中的分离式离合的系统和方法
AU2015234609A1 (en) 2014-03-27 2016-10-13 Alma Mater Studiorum Universita Di Bologna Computer aided surgical navigation and planning in implantology
DE102014104800A1 (de) 2014-04-03 2015-10-08 Aesculap Ag Medizinische Befestigungseinrichtung sowie Referenzierungsvorrichtung und medizinisches Instrumentarium
CN106999168A (zh) 2014-05-23 2017-08-01 英特格锐迪移植股份公司 用于外科手术的轨迹引导装置
JP2017519562A (ja) 2014-06-17 2017-07-20 ニューヴェイジヴ,インコーポレイテッド 外科手術中の脊椎矯正の計画、実施、及び評価のためのシステム及び方法
EP3171868B1 (en) 2014-07-25 2020-09-30 Terumo Kabushiki Kaisha Packaged acetaminophen injection solution preparation
KR102419094B1 (ko) 2014-07-28 2022-07-11 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 다중 중재 절차를 계획하기 위한 시스템과 방법
JP2016033474A (ja) 2014-07-31 2016-03-10 セイコーエプソン株式会社 位置算出方法及び位置算出装置
KR101645392B1 (ko) 2014-08-13 2016-08-02 주식회사 고영테크놀러지 트랙킹 시스템 및 이를 이용한 트랙킹 방법
JP6463038B2 (ja) 2014-08-27 2019-01-30 富士フイルム株式会社 画像位置合せ装置、方法およびプログラム
US9924979B2 (en) 2014-09-09 2018-03-27 Medos International Sarl Proximal-end securement of a minimally invasive working channel
CN110772323B (zh) 2014-09-17 2022-05-17 直观外科手术操作公司 用于利用增广雅可比矩阵控制操纵器接头移动的系统和方法
US10492870B2 (en) 2014-09-23 2019-12-03 Think Surgical, Inc. Multi-planar variable geometry zigzag cut articulating drilling system
DE102014221469A1 (de) 2014-10-22 2016-04-28 Siemens Aktiengesellschaft Röntgengerät
US10441366B2 (en) 2014-10-22 2019-10-15 Think Surgical, Inc. Actively controlled optical tracker with a robot
AU2015337755B2 (en) 2014-10-29 2019-07-25 Intellijoint Surgical Inc. Systems, methods and devices for anatomical registration and surgical localization
WO2016088130A1 (en) 2014-12-04 2016-06-09 Mazor Robotics Ltd. Shaper for vertebral fixation rods
CN106999245B (zh) 2014-12-08 2020-11-10 思想外科有限公司 用于全关节成形术中的基于计划、数字化、以及配准的植入物
US20160166329A1 (en) 2014-12-15 2016-06-16 General Electric Company Tomographic imaging for interventional tool guidance
US10555782B2 (en) 2015-02-18 2020-02-11 Globus Medical, Inc. Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique
EP3265010B1 (en) 2015-03-05 2022-11-02 Think Surgical, Inc. Methods for locating and tracking a tool axis
KR20170125360A (ko) 2015-03-12 2017-11-14 네오시스, 인크. 가상의 환경에서 대응하는 가상의 대상을 조작하도록 물리적 대상을 이용하기 위한 방법 및 관련 장치와 컴퓨터 프로그램 제품
US10856726B2 (en) 2015-03-25 2020-12-08 Sony Corporation Medical support arm apparatus
US10499996B2 (en) 2015-03-26 2019-12-10 Universidade De Coimbra Methods and systems for computer-aided surgery using intra-operative video acquired by a free moving camera
JP6398833B2 (ja) 2015-03-27 2018-10-03 株式会社デンソー 身体支持追従装置
KR102491909B1 (ko) 2015-04-10 2023-01-26 마코 서지컬 코포레이션 수술 도구의 자율 이동 중에 수술 도구를 제어하는 시스템 및 방법
US10085786B2 (en) 2015-04-13 2018-10-02 Medos International Sàrl Driver instruments and related methods
CN113081009A (zh) 2015-04-15 2021-07-09 莫比乌斯成像公司 集成式医学成像与外科手术机器人系统
GB201506842D0 (en) 2015-04-22 2015-06-03 Ucl Business Plc And Schooling Steven Locally rigid vessel based registration for laparoscopic liver surgery
US10180404B2 (en) 2015-04-30 2019-01-15 Shimadzu Corporation X-ray analysis device
US10070928B2 (en) 2015-07-01 2018-09-11 Mako Surgical Corp. Implant placement planning
US10499960B2 (en) 2015-07-13 2019-12-10 IntraFuse, LLC Method of bone fixation
CN107847275B (zh) 2015-07-24 2020-10-30 捷迈有限公司 用于术前规划的用以定位软组织的系统和方法
US10058394B2 (en) 2015-07-31 2018-08-28 Globus Medical, Inc. Robot arm and methods of use
JP6575306B2 (ja) 2015-11-04 2019-09-18 株式会社デンソー ロボット装置
US20170143284A1 (en) 2015-11-25 2017-05-25 Carestream Health, Inc. Method to detect a retained surgical object
US10070939B2 (en) 2015-12-04 2018-09-11 Zaki G. Ibrahim Methods for performing minimally invasive transforaminal lumbar interbody fusion using guidance
US10219868B2 (en) 2016-01-06 2019-03-05 Ethicon Llc Methods, systems, and devices for controlling movement of a robotic surgical system
US10070971B2 (en) * 2016-01-22 2018-09-11 Warsaw Orthopedic, Inc. Surgical instrument and method
EP3405104B1 (en) 2016-01-22 2024-03-06 Nuvasive, Inc. Systems for facilitating spine surgery
US10448910B2 (en) 2016-02-03 2019-10-22 Globus Medical, Inc. Portable medical imaging system
US10117632B2 (en) 2016-02-03 2018-11-06 Globus Medical, Inc. Portable medical imaging system with beam scanning collimator
US10842453B2 (en) 2016-02-03 2020-11-24 Globus Medical, Inc. Portable medical imaging system
US11058378B2 (en) 2016-02-03 2021-07-13 Globus Medical, Inc. Portable medical imaging system
JP2019508134A (ja) 2016-02-26 2019-03-28 シンク サージカル, インコーポレイテッド ロボットの配置をユーザーにガイドするための方法およびシステム
US9962133B2 (en) 2016-03-09 2018-05-08 Medtronic Navigation, Inc. Transformable imaging system
CA3016604A1 (en) 2016-03-12 2017-09-21 Philipp K. Lang Devices and methods for surgery
EP3249427B1 (en) 2016-04-22 2019-06-12 Globus Medical, Inc. A device for regenerating an infrared signal
US20170312032A1 (en) 2016-04-27 2017-11-02 Arthrology Consulting, Llc Method for augmenting a surgical field with virtual guidance content
JP7041073B6 (ja) 2016-04-28 2022-05-30 コーニンクレッカ フィリップス エヌ ヴェ 椎弓根スクリューの最適配置の決定
CA3025300A1 (en) 2016-05-23 2017-11-30 Mako Surgical Corp. Systems and methods for identifying and tracking physical objects during a robotic surgical procedure
CA3024840A1 (en) 2016-05-27 2017-11-30 Mako Surgical Corp. Preoperative planning and associated intraoperative registration for a surgical system
US10849691B2 (en) 2016-06-23 2020-12-01 Mazor Robotics Ltd. Minimally invasive intervertebral rod insertion
EP3264365A1 (en) 2016-06-28 2018-01-03 Siemens Healthcare GmbH Method and device for registration of a first image data set and a second image data set of a target region of a patient
KR101861176B1 (ko) 2016-08-16 2018-05-28 주식회사 고영테크놀러지 정위수술용 수술로봇 및 정위수술용 수술로봇의 제어방법
US9931025B1 (en) 2016-09-30 2018-04-03 Auris Surgical Robotics, Inc. Automated calibration of endoscopes with pull wires
CN109952070B (zh) 2016-10-05 2022-02-01 纽文思公司 手术导航系统及相关方法
WO2018075784A1 (en) 2016-10-21 2018-04-26 Syverson Benjamin Methods and systems for setting trajectories and target locations for image guided surgery
CN106691600A (zh) 2016-11-21 2017-05-24 胡磊 一种脊柱椎弓根钉植入定位装置
EP3351202B1 (en) 2017-01-18 2021-09-08 KB Medical SA Universal instrument guide for robotic surgical systems
CN110621253A (zh) 2017-03-17 2019-12-27 智能联合外科公司 用于导航手术中的增强现实显示的系统和方法
US11089975B2 (en) 2017-03-31 2021-08-17 DePuy Synthes Products, Inc. Systems, devices and methods for enhancing operative accuracy using inertial measurement units
JP6751943B2 (ja) 2017-04-20 2020-09-09 リバーフィールド株式会社 アーム装置
US11065069B2 (en) 2017-05-10 2021-07-20 Mako Surgical Corp. Robotic spine surgery system and methods
CN107088091A (zh) 2017-06-08 2017-08-25 广州技特电子科技有限公司 一种辅助骨科手术的手术导航系统及导航方法
EP3517069B1 (en) 2018-01-29 2024-03-06 Globus Medical, Inc. Surgical robotic automation with tracking markers
CN209153975U (zh) 2018-08-06 2019-07-26 上海术凯机器人有限公司 一种用于骨科导航机器人的器械把持器
JP7340757B2 (ja) 2019-07-31 2023-09-08 パナソニックIpマネジメント株式会社 サーバ、および情報送信方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050215888A1 (en) * 2004-03-05 2005-09-29 Grimm James E Universal support arm and tracking array
US20060264963A1 (en) * 2004-10-27 2006-11-23 Peter Reed Vertebral spreading instrument comprising markers
US20080200794A1 (en) * 2007-02-19 2008-08-21 Robert Teichman Multi-configuration tracknig array and related method
US20140275955A1 (en) * 2012-06-21 2014-09-18 Globus Medical, Inc. Surgical tool systems and method
US20150196365A1 (en) * 2014-01-15 2015-07-16 KB Medical SA Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11589771B2 (en) 2012-06-21 2023-02-28 Globus Medical Inc. Method for recording probe movement and determining an extent of matter removed
US10874466B2 (en) 2012-06-21 2020-12-29 Globus Medical, Inc. System and method for surgical tool insertion using multiaxis force and moment feedback
US10842461B2 (en) 2012-06-21 2020-11-24 Globus Medical, Inc. Systems and methods of checking registrations for surgical systems
US11963755B2 (en) 2012-06-21 2024-04-23 Globus Medical Inc. Apparatus for recording probe movement
US11045267B2 (en) 2012-06-21 2021-06-29 Globus Medical, Inc. Surgical robotic automation with tracking markers
US11911225B2 (en) 2012-06-21 2024-02-27 Globus Medical Inc. Method and system for improving 2D-3D registration convergence
US11896446B2 (en) 2012-06-21 2024-02-13 Globus Medical, Inc Surgical robotic automation with tracking markers
US11253327B2 (en) 2012-06-21 2022-02-22 Globus Medical, Inc. Systems and methods for automatically changing an end-effector on a surgical robot
US11298196B2 (en) 2012-06-21 2022-04-12 Globus Medical Inc. Surgical robotic automation with tracking markers and controlled tool advancement
US11317971B2 (en) 2012-06-21 2022-05-03 Globus Medical, Inc. Systems and methods related to robotic guidance in surgery
US11864745B2 (en) 2012-06-21 2024-01-09 Globus Medical, Inc. Surgical robotic system with retractor
US11864839B2 (en) 2012-06-21 2024-01-09 Globus Medical Inc. Methods of adjusting a virtual implant and related surgical navigation systems
US11399900B2 (en) 2012-06-21 2022-08-02 Globus Medical, Inc. Robotic systems providing co-registration using natural fiducials and related methods
US11857149B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. Surgical robotic systems with target trajectory deviation monitoring and related methods
US11857266B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. System for a surveillance marker in robotic-assisted surgery
US11819365B2 (en) 2012-06-21 2023-11-21 Globus Medical, Inc. System and method for measuring depth of instrumentation
US11819283B2 (en) 2012-06-21 2023-11-21 Globus Medical Inc. Systems and methods related to robotic guidance in surgery
US10799298B2 (en) 2012-06-21 2020-10-13 Globus Medical Inc. Robotic fluoroscopic navigation
US11793570B2 (en) 2012-06-21 2023-10-24 Globus Medical Inc. Surgical robotic automation with tracking markers
US11786324B2 (en) 2012-06-21 2023-10-17 Globus Medical, Inc. Surgical robotic automation with tracking markers
US11883217B2 (en) 2016-02-03 2024-01-30 Globus Medical, Inc. Portable medical imaging system and method
US11944344B2 (en) 2018-04-13 2024-04-02 Karl Storz Se & Co. Kg Guidance system, method and devices thereof
JP2019202130A (ja) * 2018-05-10 2019-11-28 グローバス メディカル インコーポレイティッド 外科手術のロボットガイダンスに関連するシステムおよび方法
US11382549B2 (en) 2019-03-22 2022-07-12 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11850012B2 (en) 2019-03-22 2023-12-26 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11419616B2 (en) 2019-03-22 2022-08-23 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11571265B2 (en) 2019-03-22 2023-02-07 Globus Medical Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11317978B2 (en) 2019-03-22 2022-05-03 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11744598B2 (en) 2019-03-22 2023-09-05 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11944325B2 (en) 2019-03-22 2024-04-02 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11806084B2 (en) 2019-03-22 2023-11-07 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11737696B2 (en) 2019-03-22 2023-08-29 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
JP2021109107A (ja) * 2020-01-08 2021-08-02 グローバス メディカル インコーポレイティッド ニューロナビゲーション位置合わせおよびロボット軌道誘導のためのシステム、ロボット手術、ならびに関連する方法およびデバイス
JP7112534B2 (ja) 2020-01-08 2022-08-03 グローバス メディカル インコーポレイティッド ニューロナビゲーション位置合わせおよびロボット軌道誘導のためのシステム
JP2021171655A (ja) * 2020-04-28 2021-11-01 グローバス メディカル インコーポレイティッド 蛍光透視イメージングシステムのための固定具ならびに関連するナビゲーションシステムおよび方法

Also Published As

Publication number Publication date
HK1250322B (zh) 2020-04-24
EP3479791B1 (en) 2020-08-26
US11896446B2 (en) 2024-02-13
JP7078355B2 (ja) 2022-05-31
EP3278758B1 (en) 2019-08-14
US20160256225A1 (en) 2016-09-08
EP3278758A3 (en) 2018-04-25
EP3479791A1 (en) 2019-05-08
EP3278758A2 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
JP7078355B2 (ja) 追跡マーカを用いた外科用ロボット自動化
US20210282874A1 (en) Surgical robotic automation with tracking markers
CN108969100B (zh) 外科手术机器人系统
US11589771B2 (en) Method for recording probe movement and determining an extent of matter removed
US11864839B2 (en) Methods of adjusting a virtual implant and related surgical navigation systems
US20180279993A1 (en) Medical imaging systems using robotic actuators and related methods
US20180132839A1 (en) Surgical robotic system with retractor
US11793570B2 (en) Surgical robotic automation with tracking markers
EP3586782A1 (en) Controlling a surgical robot to avoid robotic arm collision
US11918313B2 (en) Active end effectors for surgical robots
EP3482694A1 (en) Surgical robotic system with retractor
EP3666212A1 (en) Surgical robotic automation with tracking markers
US20190000571A1 (en) Surgical robotic automation with tracking markers
US20190388161A1 (en) Surgical robotic automation with tracking markers
EP3586785B1 (en) Surgical robotic automation with tracking markers
EP3586784B1 (en) Methods of adjusting a virtual implant and related surgical navigation systems
EP3578128A1 (en) Robotic systems providing co-registration using natural fiducials and related methods
EP3636394A1 (en) Robotic system for spinal fixation elements registration with tracking markers
EP3788980A1 (en) Surgical robotic automation with tracking markers
US20220331034A1 (en) End effector for a surgical robot
US11963755B2 (en) Apparatus for recording probe movement
US20230277084A1 (en) Apparatus and method for recording probe movement
US20240008928A1 (en) Surgical robotic automation with tracking markers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220519

R150 Certificate of patent or registration of utility model

Ref document number: 7078355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150