JP2017226118A5 - - Google Patents

Download PDF

Info

Publication number
JP2017226118A5
JP2017226118A5 JP2016123052A JP2016123052A JP2017226118A5 JP 2017226118 A5 JP2017226118 A5 JP 2017226118A5 JP 2016123052 A JP2016123052 A JP 2016123052A JP 2016123052 A JP2016123052 A JP 2016123052A JP 2017226118 A5 JP2017226118 A5 JP 2017226118A5
Authority
JP
Japan
Prior art keywords
type crystal
laminate
porous layer
porous
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016123052A
Other languages
English (en)
Other versions
JP6647973B2 (ja
JP2017226118A (ja
Filing date
Publication date
Application filed filed Critical
Priority to JP2016123052A priority Critical patent/JP6647973B2/ja
Priority claimed from JP2016123052A external-priority patent/JP6647973B2/ja
Priority to KR1020170041366A priority patent/KR101867759B1/ko
Priority to CN201710472390.6A priority patent/CN107528035B/zh
Priority to US15/627,556 priority patent/US10367182B2/en
Publication of JP2017226118A publication Critical patent/JP2017226118A/ja
Publication of JP2017226118A5 publication Critical patent/JP2017226118A5/ja
Application granted granted Critical
Publication of JP6647973B2 publication Critical patent/JP6647973B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

非水電解液二次電池では、充放電に伴って電極が膨張収縮を繰り返すために、電極とセパレータの間で応力が発生し、電極活物質が脱落するなどして内部抵抗が増大し、サイクル特性が低下する問題があった。そこで、セパレータの表面にポリフッ化ビニリデンなどの接着性物質をコーティングすることでセパレータと電極の密着性を高める手法が提案されている(特許文献1、2)。しかしながら、接着性物質をコーティングした場合、セパレータのカールが顕在化する問題があった。セパレータにカールが発生すると、製造時のハンドリングが悪くなるため、捲回不良および組み立て不良等、電池の作製に問題が生じる場合がある。
本発明の積層体は、ポリオレフィン系樹脂を主成分とする多孔質基材と、上記多孔質基材の少なくとも一方の面に積層された、ポリフッ化ビニリデン系樹脂を含有する多孔質層と、を含む積層体であって、
上記多孔質基材は、エタノールを含浸した状態における、波長590nmの光に対する位相差が80nm以下であり、かつ、空隙率が30〜60%であ
上記ポリフッ化ビニリデン系樹脂における、α型結晶とβ型結晶の含有量の合計を100モル%とした場合の、上記α型結晶の含有量が、34モル%以上である。
(ここで、上記α型結晶の含有量は、上記多孔質層のIRスペクトルにおける765cm −1 付近の吸収強度から算出され、上記β型結晶の含有量は、上記多孔質層のIRスペクトルにおける840cm −1 付近の吸収強度から算出される。)
本発明の積層体において、
上記ポリフッ化ビニリデン系樹脂が、フッ化ビニリデンのホモポリマー、および/または、フッ化ビニリデンと、ヘキサフルオロプロピレン、テトラフルオロエチレン、トリフルオロエチレン、トリクロロエチレン、およびフッ化ビニルから選択される少なくとも1種類のモノマーとの共重合体であることが好ましい。
また、本発明の非水電解液二次電池用部材は、正極、上記積層体、および負極がこの順で配置されてなる。
また、本発明の非水電解液二次電池は、上記積層体をセパレータとして含む。
〔1.積層体〕
本発明に係る積層体は、ポリオレフィン系樹脂を主成分とする多孔質基材と、上記多孔質基材の少なくとも一方の面に積層された、ポリフッ化ビニリデン系樹脂を含有する多孔質層と、を含む積層体であって、上記多孔質基材は、エタノールを含浸した状態における、波長590nmの光に対する位相差が80nm以下であり、かつ、空隙率が30〜60%であ、かつ、上記ポリフッ化ビニリデン系樹脂における、α型結晶とβ型結晶の含有量の合計を100モル%とした場合の、上記α型結晶の含有量が、34モル%以上である。
(ここで、上記α型結晶の含有量は、上記多孔質層のIRスペクトルにおける765cm −1 付近の吸収強度から算出され、上記β型結晶の含有量は、上記多孔質層のIRスペクトルにおける840cm −1 付近の吸収強度から算出される。)
(1−1)多孔質基材
本発明で用いられる多孔質基材は、本発明の積層体の基材であり、非水電解液二次電池において正極と負極との間に配置される膜状の多孔質フィルムである。上記多孔質基材は、ポリオレフィン系樹脂を主成分とする多孔質基材であって、エタノールを含浸した状態における、波長590nmの光に対する位相差が80nm以下であり、かつ、空隙率が30〜60%である多孔質基材である。
多孔質基材は、ポリオレフィン系樹脂を主成分とする多孔質かつ膜状の基材(ポリオレフィン系多孔質基材、またはポリオレフィン系樹脂微多孔膜とも称する)であればよく、その内部に連結した細孔を有す構造を有し、一方の面から他方の面に気体および/または液体が透過可能であるフィルムである。
多孔質基材は、電池が発熱したときに溶融して、非水電解液二次電池用セパレータとして使用され得る積層体を無孔化することにより、当該積層体にシャットダウン機能を付与するものである。多孔質基材は、1つ層からなるものであってもよいし、複数の層から形成されるものであってもよい。本明細書において、非水電解液二次電池用セパレータを単にセパレータと称する場合もある。
(1−4)多孔質層
本発明で用いられる多孔質層は、ポリフッ化ビニリデン系樹脂を含有する多孔質層であって、上記ポリフッ化ビニリデン系樹脂における、α型結晶とβ型結晶の含有量の合計を100モル%とした場合の、上記α型結晶の含有量が、34モル%以上である。
ここで、α型結晶の含有量は、上記多孔質層のIRスペクトルにおける765cm −1 付近の吸収強度から算出され、β型結晶の含有量は、上記多孔質層のIRスペクトルにおける840cm −1 付近の吸収強度から算出される。
PVDF系樹脂は、その構成単位の総量を100モル%とした場合に、構成単位としてフッ化ビニリデンが通常、85モル%以上、好ましくは90モル%以上、より好ましくは95モル%以上、更に好ましくは98モル%以上含まれている。フッ化ビニリデンが85モル%以上含まれていると、電池製造時の加圧および加熱に耐え得る機械的強度と耐熱性とを確保し易い。
有機フィラーを構成する樹脂(高分子)は、上記例示した分子種の混合物、変性体、誘導体、共重合体(ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体)、または架橋体であってもよい。
上記フィラーの体積平均粒子径は、良好な接着性と滑り性の確保、および積層体の成形性の観点から、0.01μm〜10μmの範囲であることが好ましい。その下限値としては0.05μm以上がより好ましく、0.1μm以上がさらに好ましい。その上限値としては5μm以下がより好ましく、1μm以下がさらに好ましい。
一方、多孔質層の膜厚が多孔質基材の片面において10μmを超えると、当該多孔質層を含む積層体を非水電解液二次電池セパレータとして用いた場合に、当該セパレータ全域におけるリチウムイオンの透過抵抗が増加するので、充放電のサイクルを繰り返すと非水電解液二次電池の正極が劣化し、放電レート特性および充放電のサイクル特性(以下、単にサイクル特性と称する場合もある)が低下する。また、正極および負極間の距離が増加するので当該非水電解液二次電池が大型化する。
多孔質層の物性に関する下記説明においては、多孔質基材の両面に多孔質層が積層される場合には、物性とは、当該多孔質基材および多孔質層を含む積層体を、非水電解液二次電池用セパレータとして備える非水電解液二次電池を製造したときの、当該積層体における正極と対向する面に積層された多孔質層の物性を少なくとも指す。
上記多孔質層の成分体積目付は、以下の方法を用いて算出する。
(1)多孔質層の目付に、当該多孔質層を構成する各成分の重量濃度(多孔質層中の重量濃度)を乗じて、各成分の目付を算出する。
(2)(1)にて得られた各成分の目付を、各々、各成分の真比重で除し、得られた数値の総和を、多孔質層の成分体積目付とする。
であ、分子鎖が、
β型結晶のPVDF系樹脂は、PVDF系樹脂を構成する重合体に含まれるPVDF骨格において、上記骨格中の分子鎖の1つの主鎖炭素に隣り合う炭素原子に結合したフッ素原子と水素原子がそれぞれトランスの立体配置(TT型構造)、すなわち隣り合う炭素原子に結合するフッ素原子と水素原子とが、炭素−炭素結合の方向から見て180°の位置に存在する。
(i)計算式
Beerの法則:A=εbC …(1)
(式中、Aは吸光度、εはモル吸光定数、bは光路長、Cは濃度を表す)
上記式(1)において、α型結晶の特性吸収の吸光度をAα、β型結晶の特性吸収の吸光度をAβ、α型結晶のPVDF系樹脂のモル吸光定数をεα、β型結晶のPVDF系樹脂のモル吸光定数をεβ、α型結晶のPVDF系樹脂の濃度をCα、β型結晶のPVDF系樹脂の濃度をCβとすると、α型結晶とβ型結晶のそれぞれの吸光度の割合は、
β/Aα=(εβ/εα)×(Cβ/Cα) …(1a)
となる。
上記積層体の透気度は、ガーレ値で30〜1000/100ccであることが好ましく、50〜800/100ccであることがより好ましい。積層体が上記透気度を有することにより、上記積層体を非水電解液二次電池用セパレータとして使用した場合に、充分なイオン透過性を得ることができる。透気度が上記範囲を超える場合には、積層体の空隙率が高いために積層体の積層構造が粗になっていることを意味し、結果として積層体の強度が低下して、特に高温での形状安定性が不充分になるおそれがある。一方、透気度が上記範囲未満の場合には、上記積層体を非水電解液二次電池用セパレータとして用いたときに、充分なイオン透過性を得ることができず、当該積層体からなる非水電解液二次電池用セパレータを備える非水電解液二次電池の電池特性を低下させることがある。
(1−10)PVDF系樹脂の結晶形の制御方法
また、本発明に係る積層体は、上述の方法における乾燥条件(乾燥温度、乾燥時の風速および風向、など)および/または析出温度(PVDF系樹脂を含む多孔質層を析出溶媒または低沸点有機酸を用いて析出させる場合の析出温度)を調節することによって、得られる多孔質層に含まれるPVDF系樹脂の結晶形を制御して製造される。具体的には、上記PVDF系樹脂において、α型結晶とβ型結晶の含有量の合計を100モル%とした場合の、α型結晶の含有量が34モル%以上(好ましくは39モル%以上、より好ましくは60モル%以上、さらに好ましくは70モル%以上。また好ましくは95モル%以下)となるように、上記乾燥条件および上記析出温度を調節して、本発明に係る積層体が製造され得る。
上記PVDF系樹脂において、α型結晶とβ型結晶の含有量の合計を100モル%とした場合の、α型結晶の含有量を34モル%以上とするための上記乾燥条件および上記析出温度は、上記多孔質層の製造方法、使用する溶媒(分散媒)、析出溶媒および低沸点有機酸の種類等によって適宜変更され得る。
上記負極活物質としては、例えば、リチウムイオンをドープ・脱ドープ可能な材料、リチウム金属またはリチウム合金等が挙げられる。当該材料としては、具体的には、例えば、(1)天然黒鉛、人造黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維、有機高分子化合物焼成体等の炭素質材料;(2)正極よりも低い電位でリチウムイオンのドープ・脱ドープを行う酸化物、硫化物等のカルコゲン化合物;(3)アルカリ金属と合金化するアルミニウム(Al)、鉛(Pb)、錫(Sn)、ビスマス(Bi)、シリコン(Si)などの金属;(4)アルカリ金属を格子間に挿入可能な立方晶系の金属間化合物(AlSb、MgSi、NiSi;(5)リチウム窒素化合物(Li-xMN(M:遷移金属))等を用いることができる。上記負極活物質のうち、電位平坦性が高く、また平均放電電位が低いために正極と組み合わせた場合に大きなエネルギー密度が得られることから、天然黒鉛、人造黒鉛等の黒鉛材料を主成分とする炭素質材料がより好ましく、黒鉛とシリコンの混合物であって、そのCに対するSiの比率が5%以上のものがより好ましく、10%以上である負極活物質がさらに好ましい。
シート状の負極の製造方法、即ち、負極集電体に負極合剤を担持させる方法としては、例えば、負極合剤となる負極活物質を負極集電体上で加圧成型する方法;適当な有機溶剤を用いて負極活物質をペースト状にして負極合剤を得た後、当該負極合剤を負極集電体に塗工し、乾燥して得られたシート状の負極合剤を加圧して負極集電体に固着する方法;等が挙げられる。上記ペーストには、好ましくは上記導電材、および、上記結着剤が含まれる。
本発明に係る非水電解液二次電池用部材および本発明に係る非水電解液二次電池は、上に示した「PVDF系樹脂を含有し、上記ポリフッ化ビニリデン系樹脂における、α型結晶とβ型結晶の含有量の合計を100モル%とした場合の、上記α型結晶の含有量が、34モル%以上である」多孔質層を含む。そのため、本発明に係る非水電解液二次電池用部材および本発明に係る非水電解液二次電池において、カールの発生が抑制される。
[製造例1]
超高分子量ポリエチレン粉末(GUR2024、ティコナ社製)を68重量%、および重量平均分子量1000のポリエチレンワックス(FNP−0115、日本精鑞社製)32重量%、この超高分子量ポリエチレンとポリエチレンワックスの合計を100重量部として、酸化防止剤(Irg1010、チバ・スペシャリティ・ケミカルズ社製)0.4重量%、酸化防止剤(P168、チバ・スペシャリティ・ケミカルズ社製)0.1重量%、およびステアリン酸ナトリウム1.3重量%を加え、更に全体積に対して38体積%となるように平均孔径0.1μmの炭酸カルシウム(丸尾カルシウム社製)を加え、これらを粉末のままヘンシェルミキサーで混合した後、二軸混練機で溶融混練してポリオレフィン樹脂組成物とした。そして、当該ポリオレフィン樹脂組成物を表面温度が150℃である一対の圧延ロールにて圧延し、速度比を変えた巻取りロールで引張りながら段階的に冷却した。ここでは、圧延ドロー比(巻取りロール速度/圧延ロール速度)1.4倍として、膜厚約62μmのシートを作製した。このシートを塩酸水溶液(塩酸4mol/L、非イオン系界面活性剤0.5重量%)に浸漬させることで炭酸カルシウムを除去し、続いて105℃で6.2倍に延伸して製造例1の多孔質基材を作製した。
[製造例2]
超高分子量ポリエチレン粉末(GUR4032、ティコナ社製)を68.5重量%、および重量平均分子量1000のポリエチレンワックス(FNP−0115、分岐度1/1000C、日本精鑞社製)31.5重量%、この超高分子量ポリエチレンとポリエチレンワックスの合計を100重量部として、酸化防止剤(Irg1010、チバ・スペシャリティ・ケミカルズ社製)0.4重量%、酸化防止剤(P168、チバ・スペシャリティ・ケミカルズ社製)0.1重量%、およびステアリン酸ナトリウム1.3重量%を加え、更に全体積に対して36体積%となるように平均孔径0.1μmの炭酸カルシウム(丸尾カルシウム社製)を加え、これらを粉末のままヘンシェルミキサーで混合した後、二軸混練機で溶融混練してポリオレフィン樹脂組成物とした。そして、当該ポリオレフィン樹脂組成物を表面温度が150℃である一対の圧延ロールにて圧延し、速度比を変えた巻取りロールで引張りながら段階的に冷却した。ここでは、圧延ドロー比(巻取りロール速度/圧延ロール速度)1.4倍として、膜厚約62μmのシートを作製した。このシートを塩酸水溶液(塩酸4mol/L、非イオン系界面活性剤0.5重量%)に浸漬させることで炭酸カルシウムを除去し、続いて105℃で7倍に延伸して製造例2の多孔質基材を作製した。
[製造例3]
超高分子量ポリエチレン粉末(GUR4012、ティコナ社製)を80重量%、および重量平均分子量1000のポリエチレンワックス(FNP−0115、分岐度1/1000C、日本精鑞社製)20重量%、この超高分子量ポリエチレンとポリエチレンワックスの合計を100重量部として、酸化防止剤(Irg1010、チバ・スペシャリティ・ケミカルズ社製)0.4重量%、酸化防止剤(P168、チバ・スペシャリティ・ケミカルズ社製)0.1重量%、およびステアリン酸ナトリウム1.3重量%を加え、更に全体積に対して37体積%となるように平均孔径0.1μmの炭酸カルシウム(丸尾カルシウム社製)を加え、これらを粉末のままヘンシェルミキサーで混合した後、二軸混練機で溶融混練してポリオレフィン樹脂組成物とした。そして、当該ポリオレフィン樹脂組成物を表面温度が150℃である一対の圧延ロールにて圧延し、速度比を変えた巻取りロールで引張りながら段階的に冷却した。ここでは、圧延ドロー比(巻取りロール速度/圧延ロール速度)1.4倍として、膜厚約62μmのシートを作製した。このシートを塩酸水溶液(塩酸4mol/L、非イオン系界面活性剤0.5重量%)に浸漬させることで炭酸カルシウムを除去し、続いて105℃で4倍に延伸して製造例3の多孔質基材を作製した。
[製造例4]
超高分子量ポリエチレン粉末(GUR4012、ティコナ社製)を80重量%、および重量平均分子量1000のポリエチレンワックス(FNP−0115、分岐度1/1000C、日本精鑞社製)20重量%、この超高分子量ポリエチレンとポリエチレンワックスの合計を100重量部として、酸化防止剤(Irg1010、チバ・スペシャリティ・ケミカルズ社製)0.4重量%、酸化防止剤(P168、チバ・スペシャリティ・ケミカルズ社製)0.1重量%、およびステアリン酸ナトリウム1.3重量%を加え、更に全体積に対して37体積%となるように平均孔径0.1μmの炭酸カルシウム(丸尾カルシウム社製)を加え、これらを粉末のままヘンシェルミキサーで混合した後、二軸混練機で溶融混練してポリオレフィン樹脂組成物とした。そして、当該ポリオレフィン樹脂組成物を表面温度が150℃である一対の圧延ロールにて圧延し、速度比を変えた巻取りロールで引張りながら段階的に冷却した。ここでは、圧延ドロー比(巻取りロール速度/圧延ロール速度)1.4倍として、膜厚約62μmのシートを作製した。このシートを塩酸水溶液(塩酸4mol/L、非イオン系界面活性剤0.5重量%)に浸漬させることで炭酸カルシウムを除去し、続いて105℃で5.8倍に延伸して製造例4の多孔質基材を作製した。
(負極)
黒鉛/スチレン−1,3−ブタジエン共重合体/カルボキシメチルセルロースナトリウム(重量比98/1/1)を銅箔に塗布することにより製造された市販の負極を用いた。上記負極を、負極活物質層が形成された部分の大きさが50mm×40mmであり、かつその外周に幅13mmで負極活物質層が形成されていない部分が残るように、銅箔を切り取って負極とした。負極活物質層の厚さは49μm、密度は1.40g/cmであった。
製造例1〜4および比較例1〜3の多孔質基材についての、空隙率、複屈折率、および位相差の測定結果を表1に示す。また、これら多孔質基材を非水電解液二次電池用セパレータとして用いた非水電解液二次電池における、組み立て後の抵抗値の測定結果も表1に合わせて示す。
図2は、表1に示される位相差を横軸とし、10Hz抵抗を縦軸とし、各製造例および比較例の測定結果をプロットしたグラフである。表1および図2に示されるように、空隙率が30〜60%であり、位相差が80nm以下の製造例1〜4の多孔質基材を非水電解液二次電池用セパレータとして用いた非水電解液二次電池では、組み立て後の抵抗値が0.91Ω以下と低い値を示すことがわかる。一方、比較例1〜3は、空隙率が30〜60%であるが、位相差が100nm以上と大きく、非水電解液二次電池の組み立て後の抵抗値が0.99Ω以上と高い値を示すことがわかる。このように、位相差と非水電解液二次電池の組み立て後の電池の内部抵抗とが相関していることが確認され、空隙率30〜60%、および位相差80nm以下の多孔質基材を非水電解液二次電池用セパレータとして用いることで、非水電解液二次電池の組み立て後の電池の内部抵抗が優れることがわかった。

Claims (7)

  1. ポリオレフィン系樹脂を主成分とする多孔質基材と、上記多孔質基材の少なくとも一方の面に積層された、ポリフッ化ビニリデン系樹脂を含有する多孔質層と、を含む積層体であって、
    上記多孔質基材は、エタノールを含浸した状態における、波長590nmの光に対する位相差が80nm以下であり、かつ、空隙率が30〜60%であ
    上記ポリフッ化ビニリデン系樹脂における、α型結晶とβ型結晶の含有量の合計を100モル%とした場合の、上記α型結晶の含有量が、34モル%以上である積層体。
    (ここで、上記α型結晶の含有量は、上記多孔質層のIRスペクトルにおける765cm −1 付近の吸収強度から算出され、上記β型結晶の含有量は、上記多孔質層のIRスペクトルにおける840cm −1 付近の吸収強度から算出される。)
  2. 上記ポリフッ化ビニリデン系樹脂が、フッ化ビニリデンのホモポリマー、および/または、フッ化ビニリデンと、ヘキサフルオロプロピレン、テトラフルオロエチレン、トリフルオロエチレン、トリクロロエチレン、およびフッ化ビニルから選択される少なくとも1種類のモノマーとの共重合体である、請求項1に記載の積層体。
  3. 上記ポリフッ化ビニリデン系樹脂の重量平均分子量が、20万以上、300万以下である、請求項1または2に記載の積層体。
  4. 上記多孔質層が、フィラーを含んでいる、請求項1〜3の何れか1項に記載の積層体。
  5. 上記フィラーの体積平均粒子径が、0.01μm以上、10μm以下である、請求項4に記載の積層体。
  6. 正極、請求項1〜5の何れか1項に記載の積層体、および負極がこの順で配置されてなる、非水電解液二次電池用部材。
  7. 請求項1〜5の何れか1項に記載の積層体をセパレータとして含む、非水電解液二次電池。
JP2016123052A 2016-06-21 2016-06-21 積層体 Active JP6647973B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016123052A JP6647973B2 (ja) 2016-06-21 2016-06-21 積層体
KR1020170041366A KR101867759B1 (ko) 2016-06-21 2017-03-31 적층체
CN201710472390.6A CN107528035B (zh) 2016-06-21 2017-06-20 层叠体
US15/627,556 US10367182B2 (en) 2016-06-21 2017-06-20 Laminated body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016123052A JP6647973B2 (ja) 2016-06-21 2016-06-21 積層体

Publications (3)

Publication Number Publication Date
JP2017226118A JP2017226118A (ja) 2017-12-28
JP2017226118A5 true JP2017226118A5 (ja) 2019-05-09
JP6647973B2 JP6647973B2 (ja) 2020-02-14

Family

ID=60659810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016123052A Active JP6647973B2 (ja) 2016-06-21 2016-06-21 積層体

Country Status (4)

Country Link
US (1) US10367182B2 (ja)
JP (1) JP6647973B2 (ja)
KR (1) KR101867759B1 (ja)
CN (1) CN107528035B (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6736375B2 (ja) 2016-06-21 2020-08-05 住友化学株式会社 積層体
JP6754628B2 (ja) 2016-06-21 2020-09-16 住友化学株式会社 積層体
JP6755726B2 (ja) * 2016-06-21 2020-09-16 住友化学株式会社 積層体
JP6647973B2 (ja) 2016-06-21 2020-02-14 住友化学株式会社 積層体
JP6758943B2 (ja) 2016-06-21 2020-09-23 住友化学株式会社 積層体
JP7074419B2 (ja) 2016-06-21 2022-05-24 住友化学株式会社 積層体
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11205799B2 (en) * 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6507220B1 (ja) * 2017-12-19 2019-04-24 住友化学株式会社 非水電解液二次電池
JP6430617B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6430618B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430623B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6430621B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3931446A (en) 1970-09-26 1976-01-06 Kureha Kagaku Kogyo Kabushiki Kaisha Process for producing polymeric piezoelectric elements and the article formed thereby
JPS5117274A (ja) 1974-08-01 1976-02-12 Matsushita Electric Ind Co Ltd Takoshitsufuirumu
JPS5932161B2 (ja) * 1977-02-16 1984-08-07 三菱レイヨン株式会社 多成分含有流体の処理装置
JPH06104736B2 (ja) 1989-08-03 1994-12-21 東燃株式会社 ポリオレフィン微多孔膜
JPH1186844A (ja) 1996-09-26 1999-03-30 Toray Ind Inc 電池用電極およびそれを用いた電池
TW393797B (en) 1996-09-26 2000-06-11 Toray Industries An electrode for a battery and a battery using it
JPH1140129A (ja) 1997-07-15 1999-02-12 Tounen Tapirusu Kk 極細複合繊維不織布からなる電池用セパレータ及びその製造方法
JPH11300180A (ja) 1998-02-20 1999-11-02 Mitsubishi Chemical Corp 多孔質樹脂膜
JP2001118558A (ja) 1999-10-19 2001-04-27 Asahi Kasei Corp 部分被覆されたセパレータ
JP5079188B2 (ja) * 2001-03-09 2012-11-21 旭化成イーマテリアルズ株式会社 高透過性微多孔膜
JP4459811B2 (ja) 2002-09-25 2010-04-28 株式会社クレハ ポリ弗化ビニリデン系共重合体及びその溶液
JP3867709B2 (ja) 2003-03-26 2007-01-10 ダイキン工業株式会社 薄膜の形成方法
JP4247027B2 (ja) 2003-03-28 2009-04-02 株式会社巴川製紙所 高分子電解質多孔質膜
CN1882436B (zh) 2003-11-19 2010-12-15 东燃化学株式会社 复合微多孔膜及其制造方法和用途
JP4438400B2 (ja) 2003-12-22 2010-03-24 三菱化学株式会社 多孔性フィルム及びその製造方法、並びにそれを用いた電池用セパレータ
WO2005089962A1 (ja) 2004-03-22 2005-09-29 Daikin Industries, Ltd. フッ化ビニリデン単独重合体薄膜の形成方法
JP4808935B2 (ja) 2004-06-01 2011-11-02 東レ東燃機能膜合同会社 ポリエチレン微多孔膜の製造方法並びにその微多孔膜及び用途
KR100775310B1 (ko) 2004-12-22 2007-11-08 주식회사 엘지화학 유/무기 복합 다공성 분리막 및 이를 이용한 전기 화학소자
KR100943234B1 (ko) 2005-05-16 2010-02-18 에스케이에너지 주식회사 액-액 상분리에 의하여 제조된 폴리에틸렌 미세다공막 및그 제조방법
US20070092705A1 (en) 2005-06-18 2007-04-26 Young-Keun Lee Microporous polyethylene film through liquid-liquid phase separation mechanism and preparing method thereof
WO2007034856A1 (ja) * 2005-09-22 2007-03-29 Mitsubishi Plastics, Inc. 多孔積層体の製造方法および多孔積層体
MY145009A (en) 2006-04-19 2011-12-15 Asahi Kasei Chemicals Corp Highly durable porous pvdf film, method of producing the same, and washing method and filtering method using the same
WO2008018181A1 (ja) 2006-08-10 2008-02-14 Kuraray Co., Ltd. フッ化ビニリデン系樹脂よりなる多孔膜及びその製造方法
JP2008062229A (ja) 2006-08-10 2008-03-21 Kuraray Co Ltd ポリフッ化ビニリデン多孔膜およびその製造方法
WO2009044227A1 (en) 2007-10-05 2009-04-09 Tonen Chemical Corporation Microporous polymer membrane
KR101147604B1 (ko) 2007-10-12 2012-05-23 주식회사 엘지화학 젤리-롤형 전극조립체의 변형을 억제하기 위한 제조방법
JP2009103900A (ja) * 2007-10-23 2009-05-14 Nitto Denko Corp 積層光学フィルム、液晶パネルおよび液晶表示装置
JP2009104967A (ja) 2007-10-25 2009-05-14 Nitto Denko Corp 高分子電解質膜の製造方法と高分子電解質膜ならびに膜−電極接合体および高分子電解質型燃料電池
JP2009185093A (ja) 2008-02-01 2009-08-20 Asahi Kasei E-Materials Corp ポリオレフィン微多孔膜
JP5349830B2 (ja) 2008-04-11 2013-11-20 リケンテクノス株式会社 多孔性フィルム
US8592071B2 (en) * 2010-02-26 2013-11-26 Mitsubishi Plastics, Inc. Laminated porous film and separator for battery
KR101698485B1 (ko) 2010-04-13 2017-01-20 삼성전자 주식회사 네트워크를 통해 작동 상태 변경 알림이 가능한 디바이스 및 그 통신 방법
CN103124634A (zh) * 2010-10-01 2013-05-29 三菱树脂株式会社 叠层多孔膜、电池用隔板及电池
JP5553165B2 (ja) 2010-11-11 2014-07-16 トヨタ自動車株式会社 非水二次電池とその製造方法
WO2012137375A1 (ja) 2011-04-08 2012-10-11 帝人株式会社 非水系二次電池用セパレータおよび非水系二次電池
EP2696394B1 (en) 2011-04-08 2016-03-30 Teijin Limited Nonaqueous secondary battery separator and nonaqueous secondary battery
WO2013015230A1 (ja) 2011-07-28 2013-01-31 住友化学株式会社 積層多孔質フィルム及び非水電解液二次電池
CN103947009B (zh) 2011-11-15 2016-03-09 帝人株式会社 非水系二次电池用隔膜及其制造方法以及非水系二次电池
CN104011121B (zh) 2011-12-26 2017-06-13 东丽电池隔膜株式会社 聚烯烃微孔膜、聚烯烃微孔膜卷、及它们的制造方法以及使用它们的电池用隔膜
US10153473B2 (en) 2012-07-26 2018-12-11 Asahi Kasei E-Materials Corporation Separator for electricity storage device, laminate and porous film
KR20150032295A (ko) * 2012-07-30 2015-03-25 데이진 가부시키가이샤 비수 전해질 전지용 세퍼레이터 및 비수 전해질 전지
US10074840B2 (en) 2012-11-30 2018-09-11 Teijin Limited Separator for non-aqueous secondary battery and non-aqueous secondary battery
KR101479749B1 (ko) 2013-03-14 2015-01-07 (주)에프티이앤이 폴리올레핀에 폴리비닐리덴플루오라이드(pvdf)를 전기방사하고 무기물을 코팅한 이차전지용 다공성 분리막 및 이의 제조방법
KR20140113186A (ko) * 2013-03-15 2014-09-24 삼성에스디아이 주식회사 전극 조립체 및 이를 이용한 이차전지의 제조방법
KR101430975B1 (ko) * 2013-08-21 2014-08-18 에스케이씨 주식회사 내열성이 우수한 이차전지용 분리막
JP6331652B2 (ja) 2014-04-25 2018-05-30 凸版印刷株式会社 ガスバリア性フィルムおよびガスバリア性積層体
KR20160002173A (ko) * 2014-06-30 2016-01-07 주식회사 엘지화학 리튬염을 포함하는 다공성 코팅층을 구비하는 이차 전지용 분리막 및 이의 제조 방법
JP6432203B2 (ja) 2014-08-12 2018-12-05 三菱ケミカル株式会社 積層多孔フィルムの製造方法
CN106163806B (zh) 2014-08-29 2018-01-16 住友化学株式会社 层叠体、间隔件和非水二次电池
KR20160038918A (ko) 2014-09-30 2016-04-08 삼성에스디아이 주식회사 분리막, 이의 제조방법 및 이를 이용한 전지
JP6096395B2 (ja) 2015-03-24 2017-03-15 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
KR101814921B1 (ko) * 2015-10-02 2018-01-04 스미또모 가가꾸 가부시키가이샤 다공질층, 적층체, 다공질층을 포함하는 비수 전해액 이차 전지용 부재, 및 다공질층을 포함하는 비수 전해액 이차 전지
JP5938512B1 (ja) * 2015-11-30 2016-06-22 住友化学株式会社 非水電解液二次電池用セパレータ、非水電解液二次電池用積層セパレータ、非水電解液二次電池用部材および非水電解液二次電池
JP6647973B2 (ja) 2016-06-21 2020-02-14 住友化学株式会社 積層体
JP6758943B2 (ja) 2016-06-21 2020-09-23 住友化学株式会社 積層体
JP6754628B2 (ja) 2016-06-21 2020-09-16 住友化学株式会社 積層体
JP7074419B2 (ja) 2016-06-21 2022-05-24 住友化学株式会社 積層体
JP6736375B2 (ja) 2016-06-21 2020-08-05 住友化学株式会社 積層体

Similar Documents

Publication Publication Date Title
JP2017226118A5 (ja)
JP2017226122A5 (ja)
JP2017226121A5 (ja)
JP6647973B2 (ja) 積層体
CN107528026B (zh) 层叠体
JP6153992B2 (ja) 非水電解液二次電池用セパレータ
JP6193333B2 (ja) セパレータ及びその製造方法
JP2017226122A (ja) 積層体
JP2004227972A (ja) 非水電解液二次電池用セパレータ
JP2017228404A (ja) 積層体
KR102345166B1 (ko) 적층 다공질 필름 및 비수 전해액 이차 전지
JP6567126B2 (ja) 非水電解液二次電池用絶縁性多孔質層
US10062888B2 (en) Porous membrane
WO2015156376A1 (ja) セパレータの製造方法
KR102414629B1 (ko) 적층 다공질 필름의 제조 방법
JP5170018B2 (ja) 非水電解液二次電池用セパレータ
KR102272013B1 (ko) 적층 다공질 필름 및 비수 전해액 이차 전지
CN109935767B (zh) 非水电解液二次电池
JP7233157B2 (ja) 非水電解液二次電池用セパレータ
JP6222296B2 (ja) 多孔質膜
KR102304695B1 (ko) 적층 다공질 필름 및 비수 전해액 이차 전지
JP6574886B2 (ja) 非水電解液二次電池用多孔質層
JP7218104B2 (ja) 多孔質層および非水電解液二次電池用積層セパレータ
JP6616876B2 (ja) 非水電解液二次電池用多孔質層
JP6621512B2 (ja) 非水電解液二次電池用多孔質層