WO2005089962A1 - フッ化ビニリデン単独重合体薄膜の形成方法 - Google Patents

フッ化ビニリデン単独重合体薄膜の形成方法 Download PDF

Info

Publication number
WO2005089962A1
WO2005089962A1 PCT/JP2005/004102 JP2005004102W WO2005089962A1 WO 2005089962 A1 WO2005089962 A1 WO 2005089962A1 JP 2005004102 W JP2005004102 W JP 2005004102W WO 2005089962 A1 WO2005089962 A1 WO 2005089962A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
crystal structure
homopolymer
fluoride homopolymer
thin film
Prior art date
Application number
PCT/JP2005/004102
Other languages
English (en)
French (fr)
Inventor
Takayuki Araki
Tetsuhiro Kodani
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP05720374A priority Critical patent/EP1743710A1/en
Priority to JP2006511165A priority patent/JPWO2005089962A1/ja
Priority to US10/593,299 priority patent/US20070190334A1/en
Publication of WO2005089962A1 publication Critical patent/WO2005089962A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F114/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F114/18Monomers containing fluorine
    • C08F114/22Vinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/14Esterification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/30Chemical modification of a polymer leading to the formation or introduction of aliphatic or alicyclic unsaturated groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/40Chemical modification of a polymer taking place solely at one end or both ends of the polymer backbone, i.e. not in the side or lateral chains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • Y10T428/31544Addition polymer is perhalogenated

Definitions

  • the present invention relates to a method for forming a thin film of a single polymer of bi-lidene fluoride having a type I crystal structure alone or as a main component.
  • a thin film made of a vinylidene fluoride homopolymer having a type I crystal structure alone or as a main component, which has functions such as substrate adhesion, self-assembly properties, and polymer binding properties, and a substrate The present invention relates to a laminate comprising the same, a ferroelectric device using the same, and a novel bi-lidene fluoride homopolymer.
  • Polymer-type ferroelectric materials have advantages over inorganic ferroelectric materials such as ceramics in that they are flexible, lightweight, workable, and inexpensive.
  • PVdF poly (vinylidene fluoride)
  • VdFZTrFE bi-lidene fluoride Z-trifluoroethylene
  • PVdF is roughly divided into three types of crystal structures, ie, type I (also called type 13), type II (hypertype), and type III ( ⁇ type), of which a sufficiently large ferroelectricity can be exhibited. Only for type I crystals.
  • a high molecular weight PVdF produced by a radical polymerization method forms a type II crystal structure, and does not exhibit ferroelectricity as it is.
  • complicated post-processes such as film stretching and heat treatment and high-pressure quenching during casting are required.
  • a first object of the present invention is to provide a method for forming a thin film of a bi-lidene fluoride homopolymer having an I-type crystal structure which is applicable to various substrates and has various functions. It is in
  • a second object of the present invention is to provide a self-assembled film of a vinylidene fluoride homopolymer having a type I crystal structure capable of providing various functions or a vinylidene fluoride homopolymer bonded to each other.
  • An object of the present invention is to provide a laminate having a thin film on a substrate.
  • a third object of the present invention is to provide a novel homopolymer of bi-lidene fluoride.
  • the inventors of the present invention have conducted intensive studies and, as a result, have focused on the use of a functional functional group at the terminal of vinylidene fluoride homopolymer having an I-type crystal structure, and have investigated the adhesion to the substrate and the self-assembly. It has been found that it is possible to improve the properties and the strength and heat resistance of the obtained thin film.
  • the present invention is a method for forming a thin film having a homopolymer power of bi-lidene fluoride having a type I crystal structure alone or as a main component, wherein the formula (1):
  • R 1 is a divalent organic group, provided that V does not include structural units of bi-lidene fluoride homopolymer; ⁇ is 0 or 1; ⁇ is a functional functional group) At one or both ends And the number average degree of polymerization of vinylidene fluoride homopolymer units, that is, the number average polymerization degree of vinylidene fluoride units in the structural units of vinylidene fluoride homopolymer is from 3 to 100. Applying the union to the base material to form a bi-lidene fluoride homopolymer thin film having a type I crystal structure alone or as a main component. It relates to a forming method.
  • the bi-lidene fluoride homopolymer having the type I crystal structure alone or as a main component in the strong thin film is the same as the type I crystal in the bi-lidene fluoride homopolymer thin film calculated by IR analysis.
  • the abundance ratio of each of the vinylidene fluoride homopolymers having the II, III, and III crystal structures is represented by (Formula 1):
  • Y represents a functional group capable of imparting adhesion to the surface of a substrate made of an organic material, Z, or an inorganic material to the bi-lidene fluoride homopolymer.
  • Functional groups capable of self-assembly of a vinylidene fluoride homopolymer on the surface of an organic material, a Z or inorganic material, or a functional group capable of bonding vinylidene fluoride homopolymers to each other .
  • Y in the above formula (1) is SH or Z or —SiX R 6 (n is an integer of 0-2; R 6 is CH Or CH; X is one OR 7 , one COOH, — C
  • OOR 7 one NH R 7 , one OCN or a halogen atom (where R 7 is CH, CH or CH
  • the present invention also provides a vinylidene fluoride homopolymer having a type I crystal structure alone or as a main component, in which the vinylidene fluoride homopolymer unit has a number average degree of polymerization of 3 to 100.
  • the present invention relates to a laminate having a self-assembled thin film on a substrate.
  • the present invention provides a method for bonding vinylidene fluoride homopolymers having a number-average degree of polymerization of vinylidene fluoride homopolymer units of 3 to 100 alone or having a type I crystal structure alone or as a main component.
  • the present invention also relates to a laminate having a thin film formed on a substrate.
  • the fusidani vinylidene homopolymer containing the I-type crystal structure in the thin film alone or as a main component also satisfies the above-mentioned (Equation 1) and (Equation 2). Is preferred.
  • R 1 is a divalent organic group, but does not include structural units of bi-lidene fluoride homopolymer; n is 0 or! Y 1 is —SH and / or —SiX R 6 (n is 0—integer of 2; R 6 is CH
  • a vinylidene fluoride homopolymer having the type I crystal structure alone or as a main component on a base material.
  • the thin film formed by bonding together is represented by the formula (1-2):
  • the thin film is formed by bonding bi-lidene fluoride homopolymers having a number average polymerization degree of 3-100 of bi-lidene fluoride homopolymer unit.
  • the present invention further relates to a ferroelectric device having the above-mentioned laminate strength.
  • a 1 is a structural unit of a bi-lidene fluoride homopolymer having a number average degree of polymerization of 3 to 100;
  • Z 1 is a polyfluoroalkyl group or an alkyl group;
  • R 1Q and R 11 are the same or different , Divalent organic groups, but does not include bi-lidene fluoride homopolymer unit having solely or as a main component the type I crystal structure;
  • nl and n2 are the same or different and 0 or!
  • M 1 is a hydrogen atom or Is an alkali metal atom
  • a 2 and A 3 are the same force or different fluoride mold - is a structural unit of isopropylidene homopolymer, the number average polymerization degree of the total of A 2 and A 3 is a 3- 100;
  • R 2 is divalent organic group, however Shi fluoride mildew - Do contains structural units of the alkylidene homopolymers,;
  • R 12 and R 13 are the same force or different, a divalent organic group, provided that hydrofluoric mold - isopropylidene homopolymer does not include structural units;
  • n 3 and n4 are the same or different 0 or 1;
  • M 2 and M 3 are the same or different, vinylidene fluoride homopolymer represented by hydrogen atom or an alkali metal atom
  • a self-assembled film of a bi-lidene fluoride homopolymer having an I-type crystal structure capable of providing various functions or a bi-lidene fluoride homopolymer is bonded to each other.
  • a laminate having a thin film on a substrate can be provided.
  • a novel vinylidene fluoride homopolymer useful in the above invention can be provided.
  • FIG. 1 is an IR chart of a vinylidene fluoride homopolymer having an all-I type crystal structure.
  • FIG. 2 is an IR chart of a bi-lidene fluoride homopolymer having an all-II type crystal structure.
  • FIG.3 Drawing for explaining the method of reading the peak height of characteristic absorption of type I crystal structure and type II crystal structure from the IR chart of vinylidene fluoride homopolymer, which also has a mixed power of type 1 crystal structure and type II crystal structure It is.
  • FIG. 4 I of vinylidene fluoride homopolymer, which also has a mixed power of type 11 crystal structure and type III crystal structure 6 is a drawing for explaining a method of reading peak heights of characteristic absorptions of a type II crystal structure and a type III crystal structure from an R chart.
  • FIG. 6 is an IR chart of a vinylidene fluoride homopolymer having an all-I type crystal structure obtained in Synthesis Example 1 (1-1).
  • FIG. 7 is an IR chart of a bi-lidene fluoride homopolymer having a mixed power of the type I crystal structure and the type III crystal structure obtained in Synthesis Example 1 (g).
  • FIG. 8 is an IR chart of a bilidene fluoride homopolymer obtained as a mixture of the type II crystal structure and the type III crystal structure obtained in Synthesis Example 2 (2-1).
  • FIG. 9 is an IR chart of a bilidene fluoride homopolymer obtained as a mixture of the type I crystal structure and the type II crystal structure obtained in Synthesis Example 3 (3-1).
  • FIG. 10 is an IR chart of a hydroxyl group-terminated vinylidene fluoride homopolymer having an all-I type crystal structure obtained in Synthesis Example 4.
  • FIG. 11 is an IR chart of a mercapto group-terminated bi-lidene fluoride homopolymer having an all-I type crystal structure obtained in Synthesis Example 5.
  • 1 is an IR chart of a bilidene fluoride homopolymer.
  • FIG. 13 is an IR chart of a polymer obtained by the addition reaction of allyl-terminated bi-lidene fluoride oligomer terminal acrylates obtained in Synthesis Example 12 with all I-type crystal structures.
  • the method for forming a thin film of the present invention has a functional functional group at one end or both ends, and the vinylidene fluoride homopolymer unit has a number average polymerization degree of 3-100.
  • This is a method of forming a thin film of a bi-lidene fluoride homopolymer having a type I crystal structure alone or as a main component on a substrate using a certain bi-lidene fluoride homopolymer.
  • the method of the present invention not only specific substrates such as KBr and KC1 but also all other substrates can be used. This is preferable in that it can be applied to a thin film and various functions can be imparted to the thin film by selecting the functional group at the terminal. In addition, it is preferable in that a method using generally used conditions can be adopted as the coating method and conditions. However, this does not preclude coating under special application conditions such as cryogenic temperatures.
  • the thin film obtained by the method of the present invention is composed of a single polymer of vinylidene fluoride having an I-type crystal structure alone or as a main component. , And can impart substrate adhesion, self-assembly, strength, heat resistance, and the like.
  • the homopolymer of bi-lidene fluoride used for forming the thin film of the present invention has the I-type crystal structure alone or as a main component by itself, or has the I-type crystal structure alone or the main component by post-treatment.
  • a bi-lidene fluoride homopolymer having a type I crystal structure is present at a higher ratio than a bi-lidene fluoride homopolymer having a type II crystal structure, and a bi-lidene fluoride having a type III crystal structure is present.
  • U which is preferably present in a higher ratio than the homopolymer.
  • the type I crystal structure of the vinylidene fluoride homopolymer is such that a fluorine atom and a hydrogen atom bonded to a carbon atom adjacent to one main chain carbon in the polymer molecule are each in the trans conformation (TT type structure). ), That is, a fluorine atom and a hydrogen atom bonded to adjacent carbon atoms exist at a position of 180 degrees when viewed from the direction of the carbon-carbon bond.
  • the bi-lidene fluoride homopolymer having the I-type crystal structure may be such that one polymer molecule as a whole has a TT-type structure, or a part of the polymer molecule.
  • the carbon-carbon bond in which the TT-type structure constitutes the TT-type main chain has a planar zigzag structure, and the dipole efficiency of C-F and C-H bonds is perpendicular to the molecular chain.
  • the type II crystal structure of the vinylidene fluoride homopolymer is such that a fluorine atom (or a hydrogen atom) bonded to one main chain carbon in a polymer molecule is bonded to one adjacent carbon atom.
  • a hydrogen atom (or fluorine atom) is located at the trans position, and a hydrogen atom (or fluorine atom) bonded to the carbon atom adjacent to the other (opposite side) is at the gauche position (60 ° position).
  • the chain of the three-dimensional structure has two or more consecutive
  • the dipole efficiency of C F and C-H bonds in the T G T G "type is perpendicular and parallel to the molecular chain, respectively.
  • all type II crystal structures those having characteristic absorption of the type II crystal structure but substantially no characteristic absorption of the type I crystal structure and the type III crystal structure are referred to as "all type II crystal structures”.
  • the type III crystal structure of the vinylidene fluoride homopolymer has a three-dimensional structure in which a TT type structure and a TG type structure are alternately and continuously formed.
  • the dipole efficiency of CF and CH bonds in the T 3 GT 3 "G type is perpendicular and parallel to the molecular chain, respectively.
  • the phrase "having the I-type crystal structure as a main component” preferably means that the abundance ratio of the vinylidene fluoride homopolymer having the I-type crystal structure is represented by the following (Formula 1) and It means the one that also satisfies the relationship of in Equation (2).
  • the confirmation and abundance ratio of the vinylidene fluoride homopolymers of the type I, type II and type III crystal structures can be analyzed by various methods such as X-ray analysis and IR analysis.
  • the content F (I) of the type I crystal structure in the bilidene homopolymer is calculated from the peak height (absorbance A) of the characteristic absorption of each crystal structure in the chart measured by IR analysis by the following method. I do.
  • the absorbance of the characteristic absorption of the type I crystal structure is A "
  • the absorbance of the characteristic absorption of the type II crystal structure is A"
  • the correction coefficient ⁇ ⁇ ⁇ was determined by repeating the process for the samples with different mixing ratios, and their average value was 1.681.
  • Preferred examples of the bi-lidene fluoride homopolymer in the thin film obtained by the formation method of the present invention include the following formulas:
  • the abundance ratio of the type I crystal is calculated by the following formula:
  • R 1 is a divalent organic group, but does not include a bi-lidene fluoride homopolymer unit; n is 0 or 1; Y is a functional group).
  • R 1 is a divalent organic group (provided that hydrofluoric mold - Do include isopropylidene homopolymer units) is.
  • the divalent organic group for R 1 include an alkylene group such as an ethylene group, a propylene group, a butylene group, and a pentylene group; a methyleneoxyethylene group, a methyleneoxypropylene group, and an ethyleneoxypropylene group.
  • the functional functional group represented by Y is a functional group having a function of imparting an interaction including a chemical bond to a vinylidene fluoride homopolymer.
  • the presence of this functional functional group at one or both ends of the vinylidene fluoride homopolymer allows the vinylidene fluoride homopolymer to interact with the base material for forming a thin film, including a chemical bond.
  • the interaction including a chemical bond as referred to herein is an interaction that produces a covalent bond, an ionic bond, a coordination bond, and a hydrogen bond. And polymer binding ability.
  • a functional group a functional group composed of an atomic group containing a hetero atom is preferable.
  • the ion-bonding functional group may be a cationic group or a cationic group as long as it is a functional group that forms an ionic bond in the presence of a counter ion.
  • metal ions such as Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Zn, Cd, Ag, and Cu can be used.
  • the coordinating functional group refers to a functional group having a lone electron pair (loan pair) and having coordinating ability. Specific examples thereof include a mercapto group, an amine group, a phosphine group, and a chalcogen group having an oxygen atom, sulfur, selenium, and tellurium, and these alone or in combination form a coordination bond.
  • the hydrogen-bonding functional group is a functional group capable of forming a hydrogen bond, and specifically includes a carboxyl group, an amino group, a substituted amino group, an amide group, a substituted amide group, an ether group, and a sulfone. Examples thereof include groups in which nitrogen constituting a ring such as an acid group or a sulfonyl group, a pyridine ring, a biviridine ring or the like, alone or in combination, forms a hydrogen bond.
  • Examples of the functional group having a substrate adhesion function include the above-described covalent bonding functional group, ionic bonding functional group, coordination bonding functional group, and hydrogen bonding functional group. Depending on the nature of these interactions, you may choose to play them!
  • an ion-bonding functional group and a coordination-bonding functional group are preferred, and when an organic material is used as a substrate, a covalent bonding functional group and a hydrogen-bonding functional group are preferred. Functional groups and the like are preferred.
  • the self-assembled functional group refers to a bilayeridene fluoride formed of a monomolecular film by forming a self-assembled film by interaction of a molecule having the functional group with a specific substrate surface.
  • the thin film obtained by self-assembly is characterized by having a high density and a highly ordered structure, unlike simple surface modification (such as a coating film). For this reason, it is particularly useful for imparting functionality such as catalytic action and biological function to the surface of the base material, and is suitable for use in sensors and electronic devices.
  • the thin film formed on the substrate is a monomolecular film bonded to the base material, when the thin film is used as a ferroelectric device in the present invention, the adhesion to the substrate is improved. In addition, effects such as a small applied voltage are required. In addition, it becomes possible to control the positioning of individual atoms at the molecular level, and it becomes easier to obtain a clear structure in a dimensional region (lnm force is also 1000 ⁇ m), which is difficult with other methods such as lithography. It is also possible to manufacture a small ferroelectric device in a dimensional region.
  • CH CH mercapto group, disulfide group, organosilane
  • CH CH mercapto groups
  • organosilane conjugates are particularly preferred
  • Examples of the organic silane compound include: SIX R 6 (n is an integer of 0 to 2; R 6 is CH or CH; X
  • 3-nn 3 25 represents one OR 7 , one COOH, one COOR 7 , one NHR 7 , one OCN or a halogen atom (however,
  • Suitable base materials used for forming a thin film having a self-assembly function include metal base materials such as gold, platinum, silver, copper, and silicon; tin oxide, indium tin oxide, and zinc oxide.
  • metal base materials such as gold, platinum, silver, copper, and silicon
  • tin oxide, indium tin oxide, and zinc oxide e.g., gold, platinum, silver, copper, and silicon
  • tin oxide, indium tin oxide, and zinc oxide e.g., zinc oxide.
  • An oxide-based transparent substrate such as glass, or a metal oxide-based substrate having a natural oxide film such as tin, indium, aluminum, copper, chromium, titanium, iron, or nickel on the surface is preferable, and a self-assembly function. What is necessary is just to select suitably according to the kind of an acidic functional group.
  • the functional group is a mercapto group, a disulfide group, or a sulfide group
  • the gold, platinum, silver, or copper base material is used.
  • the functional group is an organic silane compound residue, an acid anhydride residue, or a vinyl group
  • the silicon substrate is a carboxyl functional group
  • a metal oxide substrate is used, and if the functional group is NC, a platinum substrate is preferably selected.
  • These vinylidene fluoride homopolymers having functional functional groups have a functional functional group
  • the thin film which may have one or more kinds, may be formed of one or more kinds of the biphenylene fluoride homopolymer having these functional groups.
  • the vinylidene fluoride homopolymer having a functional functional group may be subjected to a chemical reaction in order to develop an interaction including a chemical bond after being applied to the substrate.
  • a chemical reaction an additive such as a reaction initiator which may use any of a well-known photoreaction and thermal reaction may be used.
  • a bi-lidene fluoride monopolymer having a type I crystal structure alone or as a main component is obtained. It can improve performance such as adhesion of the combined thin film to the substrate, densification of the thin film, strength of the thin film, and heat resistance of the thin film.
  • the lower limit of the number-average degree of polymerization focused on the repeating unit consisting of only bi-lidene fluoride in the homopolymer of bi-lidene fluoride in the thin film has a lower limit of preferably 3, more preferably 4, and particularly preferably 5.
  • the upper limit of the mushroom is 100, and the width is 30, especially 15.
  • the lower limit of the number-average degree of polymerization is preferably 4, especially 5, and the upper limit is preferably 20, more preferably 15, more preferably 12, and especially preferably 10. If the number average degree of polymerization is too large, the ratio of the type I crystal structure in the thin film may decrease.
  • the vinylidene fluoride homopolymer as a raw material used in the method for forming a thin film of the present invention is a vinylidene fluoride homopolymer having a functional site of the formula (1) at one end or both ends.
  • the crystal structure may be the single type I, the single type ⁇ , a mixture thereof, or a type including the m type.
  • the vinylidene fluoride homopolymer containing a terminal functional group as a raw material is, for example, a vinylidene fluoride homopolymer having an iodine atom or a bromine atom at the end, and It can be produced by modifying the site represented by the formula (1).
  • the modification of the terminal may proceed in a one-step reaction, but may be modified to another terminal group and then modified to the intended functional terminal group.
  • the denaturation method will be described later in detail.
  • the terminal functional functional group-containing bilidene fluoride homopolymer as a raw material is applied to a substrate that does not necessarily need to have the type I crystal structure alone or as a main component. Or a biphenylene fluoride homopolymer having a type I crystal structure alone or as a main component after the step of applying to a substrate.
  • a terminal functional functional group-containing bilidene fluoride homopolymer having an I-type crystal structure alone or as a main component is used. Is preferably used as a starting material (raw powder).
  • the terminal functional functional group-containing bilidene fluoride homopolymer having the I-type crystal structure alone or as a main component has the I-type crystal structure having an iodine atom or a bromine atom at the terminal alone or as a main component. It can be produced by modifying an iodine atom or bromine atom terminal of a bi-lidene fluoride homopolymer to a functional functional group terminal.
  • a method for producing a bi-lidene fluoride homopolymer having a type I crystal structure having an iodine atom or a bromine atom alone or as a main component has been developed by the present inventors.
  • bi-lidene fluoride is represented by the formula (1A):
  • R 9 is a monovalent organic group, but does not include a vinylidene fluoride homopolymer unit having a crystal structure of type I alone or as a main component; x 1Q is an iodine atom or a bromine atom) Iodine compound or bromine compound or formula (1B):
  • R 2 is a divalent organic group, but does not include a bilidene fluoride homopolymer unit having a type I crystal structure alone or as a main component; x 1Q is an iodine atom or a bromine atom) Radical polymerization in the presence of an iodine compound or a bromine compound as a chain transfer agent (telogen) results in bilidene fluoride having a terminal iodine atom or bromine atom type I crystal structure alone or as a main component. A homopolymer can be obtained.
  • R 9 is a monovalent organic group (however, it does not include a bi-lidene fluoride homopolymer unit having an I-type crystal structure alone or as a main component), and is preferably a carbon atom. Examples include the number 1 1 50, and even 1 1 20 fluoroalkyl groups and alkyl groups. Of these, polyfluoroalkyl groups are preferred, and perfluoroalkyl groups are more preferred, especially CF
  • R 2 is a divalent organic group (provided that the type I crystal structure is used alone or as a main component) Does not include a bi-lidene fluoride homopolymer unit), preferably a fluoroalkylene group having 1 to 50 carbon atoms, more preferably 2 to 20 carbon atoms, particularly a polyfluoroalkylene group. . Among them, CF is superior in terms of improving ferroelectric properties,
  • Perfluoroalkylene groups such as F and C F are preferred, especially CF, C F, C F and C F
  • chain transfer agent (1A) or (1B) has the formula (la):
  • X 1Q is an iodine atom or a bromine atom
  • Rf 2 is an iodine compound or a bromine compound having at least one carbon atom having at least one moiety represented by Rf 2 having the same force or different and having a fluorine atom or a perfluoroalkyl group having 115 carbon atoms
  • the molecular weight distribution is narrow!
  • the ratio of polymers and branches is small! / Polymer chains can be synthesized, the content ratio of type I crystal structure is high, and bi-lidene fluoride homopolymer can be obtained. Preferred in terms of.
  • Rf 1 and Rf 2 for example, a fluorine atom, CF, CF, CF and the like, Naka
  • a fluorine atom at the site of the formula (la) from the viewpoint that the content ratio of the type I crystal structure is high and a single polymer of bilidene fluoride is obtained.
  • site of the formula (la) include one CFBr, one CFI
  • the iodine compound or bromine compound having the site of the formula (la) has a point that the polymerization reaction proceeds at a higher yield, and a polymer having a smaller molecular weight distribution and less branched chains is obtained. More preferably, the compound is a perfluoro compound having a site of the formula (la), which is preferably a polyfluoro compound having a site.
  • X 1Q is an iodine atom or a bromine atom; n is an integer of 1 to 20), or at least one kind of perfluoroiodide or perfluorobromide, or a formula (2B):
  • X 1Q is an iodine atom or a bromine atom; n is an integer of 120), and is preferably at least one kind of perfluorinated iodide or perfluorined bromide.
  • Examples of such perfluoro compounds include monoiodide perfluoromethane, monoiodide perfluoroethane, monoiodide perfluoropropane, monoiodide perfluorobutane (for example, 2-iodide perfluorobutane).
  • Fluorobutane 1 iodide perfluoro (1,1-dimethylethane)), monoiodide perfluoropentane (for example, 1 iodide perfluoro (4 methylbutane)), 1 iodide perfluoro n -Nonfluoride, monoiodide perfluorocyclobutane, 2-iodide perfluoro (1-cyclobutyl) ethane, monoiodide perfluorocyclohexane, etc.
  • Bromine in which the iodine atom of the iodine compound is replaced with a bromine atom Compounds: diiodide perfluoromethane, 1,2-diiodide perfluoroethane, 1,3-diiodide perfluoro-n-propane, 1,4 diiodide perfluoro-n-butane, 1,7- Perfluorinated iodide compounds such as diiodide perfluoro-n-octane, 1,2-di (iodide difluoromethyl) perfluorocyclobutane, 2-iodide 1,1,1 trifluorofluoroethane And bromine compounds in which the iodine atom of these iodine compounds is replaced with a bromine atom.
  • an iodine compound is preferred, and more preferably n force S 1 or 4m (where m is 1 to 5)! /.
  • iodine compound of the formula (2A) include CF I, F (CF) I
  • CF I is preferred.
  • the iodine compound of the formula (2B) has the formula: I (CF CF) I (nl is 1
  • I (CFCF) I is preferable.
  • the number-average degree of polymerization focusing on the repeating unit consisting of only bi-lidene fluoride in the bi-lidene fluoride homopolymer has a lower limit of 3, more preferably 4, and particularly preferably 5 is an upper limit. 100, especially 30, especially 15.
  • the lower limit of the number average degree of polymerization is 4, especially 5, and the upper limit is preferably 20, more preferably 15, more preferably 12, particularly preferably 10,! /. If the number average degree of polymerization is too large, the ratio of type I crystal structure may decrease
  • Homopolymerization of bi-lidene fluoride is carried out by a radical reaction of bi-lidene fluoride in the presence of the aforementioned chain transfer agent, and is usually started by contacting a radical generator.
  • a radical generation source a radical polymerization initiator, light, heat, or the like can be used.
  • production in the presence of a radical polymerization initiator is preferable because the degree of polymerization can be controlled. This is preferred in that it can proceed smoothly and that the polymer can be obtained in high yield.
  • radical polymerization initiator peroxides, azo-based initiators and the like can be used.
  • n-propylperoxydicarbonate i-propyl Peroxydicarbonates such as ruberoxydicarbonate, n-butylperoxydicarbonate, t-butylperoxydicarbonate, bis (4t-butylcyclohexyl) peroxydicarbonate; a, a, 1-bis (neo Decanolyloxy) diisopropylbenzene, Tamyl peroxy neodecanoate, 1,1,3,3-Tetramethylbutyperoxy neodecanoate, 1-Cyclohexyl 1 Methylethyl peroxy neodecanoate , T-hexyloxy neodecanoate, t-butyl peroxy neodecanoate, t-hexyl oxybivalate, t-butyl peroxybivalate, 1,1,3,3-tetra
  • Peroxides having a fluorine atom can also be used, and fluorinated disilver peroxides, fluorinated peroxydicarbonates, fluorinated peroxydiesters, and fluorinated dialkyl peroxides can be used. Power One or two or more selected are preferred. Above all, for example, pentafluoropropionyl peroxide (CF CF COO)
  • Difluoroa such as heptanyl peroxide (CHF CF CF CF CF COO)
  • Silver oxides are preferred.
  • Examples of the azo radical polymerization initiator include, for example, 2,2, -azobisisobuty-tolyl, 2,2, -azobis (2,4-dimethylvale-tolyl), 2,2, -azobis ( 2 methylvalero-tolyl), 2,2, -azobis (2-cyclopropylpropio-tolyl), dimethyl 2,2,2-azobisisobutyrate, 2,2, -azobis [2 (hydroxymethyl) propio-tolyl], 4,4 , Azobis (4-cyanopentenoic acid) and the like.
  • radical polymerization initiators among them, peroxydicarbonates, difluorosilver oxides, oxyperesters, persulfates, and the like are preferable.
  • the amount of the iodine compound to be used is preferably lower than or equal to 0.01, more preferably lower than or equal to 0.02, and more preferably lower than or equal to 0.01, relative to 1 of vinylidene fluoride monomer used.
  • the amount of the radical polymerization initiator to be used is, with respect to 1 mol of the chain transfer agent used, a lower limit of 0.0001 monole, preferably 0.01 monole, more preferably 0.03 monole, and particularly preferably.
  • the amount is 0.04 monoles, and the upper limit is 0.9 monoles, preferably 0.1 monoles, more preferably 0.1 monoles, and particularly preferably 0.08 moles.
  • Polymerization methods that can be employed in the production method of the bi-lidene fluoride homopolymer include a barta polymerization method without using a polymerization solvent, a solution polymerization method using a solvent that dissolves a monomer in a polymerization site, and a solution polymerization method.
  • Examples thereof include a suspension polymerization method in which a solvent for dissolving or dispersing the monomer in the polymerization site and a dispersion medium such as water are added as necessary, and an emulsion polymerization method in an aqueous solvent containing an emulsifier.
  • the solution polymerization method and the suspension polymerization method are preferred in that the degree of polymerization is easily controlled!
  • ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; ethyl acetate, cellosolve acetate, ⁇ -butyl acetate, isobutyl acetate, methyl butyl acetate; Ester solvents such as sorbate acetate and carbitol acetate; methyl alcohol, ethyl alcohol, isopropyl alcohol, ⁇ -butynoleanol, isobutynoleanol, tert-butynoleanol, sec butyl alcohol Alcohol solvents such as tert-amyl alcohol, 3-pentanol, octyl alcohol and 3-methyl-3-methoxybutanol; and aromatic solvents such as benzene, toluene and xylene
  • fluorinated solvents such as CFFO) CFCF (n: 0 or an integer of 1 to 10), N (CF)
  • fluorinated solvent power is preferred because it is easy to control the degree of polymerization.
  • fluorinated solvent power is preferred because it is easy to control the degree of polymerization.
  • the polymerization temperature can be appropriately selected depending on the type of the radical polymerization initiator used, but is usually 10 to 200 ° C, the lower limit is preferably 5 ° C, more preferably 10 ° C, and the upper limit is Preferably it is 150 ° C, more preferably 100 ° C.
  • the polymer obtained by force is a homopolymer of bi-lidene fluoride having at least one terminal of an iodine atom or a bromine atom and having a type I crystal structure solely or as a main component.
  • compound (1A) as a transfer agent, the compound of formula (IA-1):
  • a 1 is a structural unit of a bi-lidene fluoride homopolymer having a number average degree of polymerization of 5 to 12;
  • R 9 is a monovalent organic group, provided that the structural unit of the bi-lidene fluoride homopolymer is X 1Q is a boron atom or a bromine atom) to obtain a homopolymer of bilidene fluoride, and when the compound (1B) is used as a chain transfer agent, the compound represented by the formula (IB-1):
  • a 2 and A 3 are the same force or different fluoride mildew - a structural unit of the isopropylidene homopolymer, the number average polymerization degree of the total of the structural units A 2 and A 3 is 2-20;
  • X U And X 12 are an iodine atom or a bromine atom;
  • R 2 is a divalent organic group, provided that the structural unit of the bi-lidene fluoride homopolymer is not included. can get.
  • Bi-lidene fluoride homopolymer (IA-1) is attached to one end of one polymer molecule. It is a bi-lidene fluoride homopolymer having a hydrogen atom or a bromine atom.
  • the structure at one end is a CF group, for example, a long-chain perfluoroalkyl
  • the purity of the type I crystal structure is higher (for example, the ratio of the type II crystal is lower) as compared with the case where a group or a branched perfluoroalkyl group is at the end.
  • the polymer of the formula (IA-1) can be synthesized by various methods.
  • the use of the above-mentioned production method is preferred in that a polymer having a narrow molecular weight distribution can be synthesized, and is also preferable in that the purity of the type I crystal structure can be increased.
  • the molecular weight distribution of the polymer represented by the formula (IA-1) varies depending on the average degree of polymerization.
  • the MwZMn determined by GPC analysis is 1 or more and 3 or less, preferably 2 or less, more preferably 2 or less. Is less than 1.5. As the molecular weight distribution increases, the purity of the type I crystal structure tends to decrease.
  • the bi-lidene fluoride homopolymer (IB-1) is a bi-lidene fluoride homopolymer having an iodine atom or a bromine atom at both ends in one polymer molecule, and has the formula (1B )).
  • hydrofluoric mold represented by - isopropylidene homopolymer is obtained, the purity of these polymers are crystal form I Is high.
  • the upper limit of the number average polymerization degree of the force number average degree of polymerization selected from a range of 5-20 of the sum of the structural units A 2 and A 3 is preferably 15, particularly preferably 12.
  • X 1Q is an iodine atom, which has a narrow molecular weight distribution and is preferable in that a polymer can be synthesized. It is also preferable in that the purity can be increased.
  • m is more preferably 2, which is a force that can also select an integer force of 1 to 5, and this is particularly high in the purity of the type I crystal structure.
  • formula (IB- 1) polymer contact, the molecular weight distribution of the portion of the structural unit A 2 and A 3 Te of the different forces for example GPC analysis by the number average polymerization degree of the total of the structural units A 2 and A 3
  • the MwZMn obtained by the method is 1 or more and 3 or less, preferably 2 or less, more preferably 1.5 or less.
  • the purity of type I crystal tends to be low.
  • the force S is preferably 20% or less, more preferably 10% or less, particularly preferably 5% or less.
  • the bi-lidene fluoride homopolymer represented by the formula (IA-1) and the formula (IB-1) is a type I polymer satisfying the relationship represented by the above (Formula 1) and (Formula 2), respectively.
  • Those containing a crystal structure (type I crystal structure alone or as a main component) are preferred, and those containing high purity type I crystals can effectively impart ferroelectric properties to thin films. From the point of view, those satisfying the relations expressed by (Equation 3) and (Equation 4) are preferable.
  • the iodine atom or the iodine atom containing the type I crystal structure alone or as a main component Has described in detail a bi-lidene fluoride homopolymer having a bromine atom terminal.
  • the formula (1 ) The crystal structure of type II alone or a mixture of type I and type II with type II as the main component, and Including type III! /, Anything! / ,.
  • bi-lidene fluoride homopolymers containing a type II crystal structure alone or as a main component are known from iodine atom or bromine atom containing a type II crystal structure alone or as a main component.
  • -It can be produced by modifying the terminal of a homopolymer of lidene (for example, described in Matsushige et al., Jpn. J. Appl. Phys., 39, 6358 (2000)) to a functional functional group terminal.
  • the functionalized functional group terminal vinylidene fluoride homopolymer having an I-type crystal structure has a structure in which the above-mentioned terminal is an iodine atom or bromine atom type I crystal structure alone or as a main component.
  • the compound can be produced by modifying the terminal of the iodine atom or bromine atom of the union into a functional site represented by the above formula (1).
  • the terminal may be modified to another terminal once, and then modified to the intended functional terminal.
  • the bi-lidene fluoride homopolymer applied to the base material preferably has a terminal modification rate of 60% or more, more preferably 70% or more, particularly preferably 80% or more. Is preferred, and particularly preferred is 85% or more.
  • the terminal modification rate may be analyzed by, for example, NMR.
  • the terminal modification reaction itself may be carried out in a high yield, but the terminal is modified by a reprecipitation method, a distillation method, a chromatography method, a vapor deposition method or the like described later. A separation process for separating the waste may be performed.
  • a vinylidene fluoride homopolymer having a functional group-containing site at the terminal of the formula (1) used in the present invention for example, (IA) And (IB) can be manufactured.
  • the method of modifying the terminal portion of the bi-lidene fluoride homopolymer having an iodine atom or a bromine atom at the terminal to the site of the formula (1) is based on the type of the functional group Y of the site (1), Various methods can be used depending on the repeating units of bi-lidene fluoride of the bi-lidene homopolymer. Can be adopted. Specific examples of such a modification method are described below, but the terminal modification method is not limited to these exemplified methods.
  • reaction formula 2 A polymer can be obtained (reaction formula 2).
  • Add 1-10 equivalents and 1-10 equivalents of organic amine add enough amount to dissolve the bi-lidene fluoride homopolymer obtained by adding alcohol to the end of anhydrous THF, and add the reaction at 0-100 ° C. By conducting the reaction until the conversion does not change, a bi-lidene fluoride homopolymer having an atalyloyl group at the terminal can be obtained (Reaction formula 7).
  • each is equivalent to 1 equivalent of bi-lidene fluoride homopolymer.
  • the amount of the reagent is preferably twice the amount described above.
  • the structure other than the terminal site is not substantially changed. If the number average molecular weight and the molecular weight distribution of the vinylidene fluoride site are maintained, the crystal structure and the The ratio is maintained.
  • the Futani-bilidene homopolymer having an I-type crystal structure having a site of the formula (1) at least at one of its terminals by force for example, the formula (IA):
  • a 1 is a structural unit of a bi-lidene fluoride homopolymer having a number average degree of polymerization of 5 to 12; X 1 and X 2 are the same or different, and a moiety of the above formula (1), polyfluoro An alkyl group or an alkyl group, provided that at least one of X 1 and X 2 is a site of the above formula (1)
  • a 2 and A 3 are structural units of the same power or different bi-lidene fluoride homopolymers and have a number average degree of polymerization of 2-20;
  • X 3 and X 4 have the same power or different A site of the above formula (1), a polyfluoroalkyl group or an alkyl group, provided that at least one of X 3 and X 4 is a site of the above formula (1);
  • R 2 is a divalent organic group;
  • groups other than the moiety represented by the formula (1) include, for example, H, F, one CH, one CH CH, one CH CH CH, one CF, One CH CF, One CF CH, One CF CF,
  • a 1 is a structural unit of a bi-lidene fluoride homopolymer having a number average degree of polymerization of 3 to 100;
  • Z 1 is a polyfluoroalkyl group or an alkyl group;
  • R 1Q and R 11 are the same or different , Divalent organic groups, but does not include bi-lidene fluoride homopolymer unit having solely or as a main component the type I crystal structure;
  • nl and n2 are the same or different and 0 or!
  • M 1 is a hydrogen atom or Is an alkali metal atom), and a formula (IB-3): M 2 — S— (R 12 ) — A 2 — R 2 — A 3 — (R 13 ) -SM 3 (IB— 3)
  • a 2 and A 3 are the same force or different fluoride mold - is a structural unit of isopropylidene homopolymer, the number average polymerization degree of the total of A 2 and A 3 is a 3- 100;
  • R 2 is divalent organic group only Shi fluoride molds, - Do include isopropylidene homopolymer units,;
  • R 12 and R 13 are the same force or different, a divalent organic group, provided that hydrofluoric mold - isopropylidene homopolymer units It contained such ⁇ ;
  • n3 and n4 are the same or different 0 or 1;
  • M 2 and M 3 are the same or different, hydrofluoric mold represented by a hydrogen atom or a ⁇ alkali metal atom) - isopropylidene homopolymer
  • Examples of the alkali metal that can be taken by M 2 and M 3 include, for example, Li, Na, and K. Li and Na are particularly preferred from the viewpoint of improving ferroelectricity.
  • R 1Q, R U, R 12 and R 13 are the same as R 1 in Formula (1), R 1Q and R U, R 1 2 and R 13 are also the same or different, respectively, You can! /
  • vinylidene fluoride homopolymer represented by the formula (IA-2) include, for example, [0169] [Formula 10]
  • Rf is a perfluoroalkyl group or a carbon number having 15 to 15 carbon atoms), a polyfluoroalkyl group having 5 carbon atoms;
  • VdF is a bi-lidene fluoride unit (the same applies hereinafter)
  • bi-lidene fluoride homopolymer represented by the formula (IB-3) include, for example,
  • R 2 is ⁇ CF 2 "T i, the total number of Vcl F units A 2 and A s is 4 to 40, R 12 and R 13 are CH 2" below 6, M 2 and M 3 are H or N a There are some, especially R 2 The total number of Vd F units A s and A 3 are 4 to 15, R and R 13 is
  • ⁇ CH ? — ⁇ -? ⁇ ⁇ 2 and ⁇ 3 are ⁇ or Na Is preferred.
  • the method for forming a thin film according to the present invention provides a method for forming a thin film having a site (1) at at least one end and having an I-type crystal structure, preferably using the I-type crystal structure alone or as a main component. This is a method of forming a thin film on a substrate by applying a homopolymer of Riden to the substrate.
  • the bi-lidene fluoride homopolymer may be obtained by directly applying a reaction product (raw powder) to a substrate, or after subjecting a bi-lidene fluoride homopolymer to any treatment step.
  • a bi-lidene fluoride homopolymer may be applied to the substrate.
  • processing steps to be added include, for example, a washing step for removing low molecular weight impurities and the like in the bulk polymer, a separating step for separating a vinylidene fluoride homopolymer into one having a specific molecular weight, and a re-processing step.
  • processing steps to be added include precipitation and recrystallization, heating for drying, vacuum treatment, heat treatment for growing crystals, and solvent treatment for increasing the purity of the type I crystal structure.
  • the separation into a specific molecular weight by the separation step increases the purity of, for example, the type I crystal structure, thereby more effectively imparting the thin film of the present invention with ferroelectric properties. be able to.
  • the separation step can be preferably performed by, for example, a reprecipitation method, a distillation method, a chromatography method, a vapor deposition method, or the like.
  • the vinylidene fluoride homopolymer bulk is dissolved in a minimum amount of a solvent (a good solvent), and then the solubility of the vinylidene fluoride homopolymer bulk is reduced.
  • the vinylidene fluoride homopolymer is re-precipitated in a low solvent (poor solvent) to separate a single molecular weight vinylidene fluoride homopolymer.
  • the bulk of the bi-lidene fluoride homopolymer is usually dissolved in a good solvent in an amount of 118 to 80% by weight, preferably 1 to 70% by weight, more preferably 1 to 50% by weight. Is preferred,.
  • the amount of the poor solvent is preferably about 10 to 20 times the amount of the good solvent.
  • the temperature at the time of reprecipitation is usually ⁇ 30 to 150 ° C., preferably 0 to 80 ° C., and more preferably 25 to 50 ° C.
  • the good solvent and the poor solvent may be appropriately selected depending on the solubility of the vinylidene fluoride homopolymer to be reprecipitated.
  • acetone, methyl ethyl ketone, methyl isobutyl keto Ketone solvents such as cyclohexane, cyclohexanone, and acetyl acetone
  • ester solvents such as ethyl acetate, cellosolve acetate, n-butyl acetate, isobutyl acetate, methyl sorbitol acetate, carbitol acetate, and dibutyl phthalate
  • aldehydes such as benzaldehyde Amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone
  • amide solvents such as N, N-dimethylformamide, N, N-dimethylformamide
  • Carboxylic acid solvents such
  • a vinylidene fluoride homopolymer having a single molecular weight can be efficiently separated by distilling the raw vinylidene fluoride homopolymer at a constant pressure (reduced pressure) at a constant temperature. it can.
  • the pressure at the time of distillation is usually 0.1 lPa to 10 KPa, preferably 1Pa to 50KPa, more preferably 10Pa to 1KPa.
  • the temperature during distillation is usually 0-500 ° C, preferably 0-250 ° C
  • a single molecular weight bi-lidene fluoride homopolymer can be separated by performing an operation of washing the bulk of the bi-lidene fluoride homopolymer with a solvent.
  • a solvent used for washing a solvent capable of dissolving a target biphenylidene fluoride homopolymer may be arbitrarily used. Specifically, those similar to those exemplified in the reprecipitation method can be used.
  • the temperature of the solvent at the time of washing is usually -30 to 150 ° C, preferably 0 to 80 ° C, and more preferably 25 to 50 ° C. C.
  • the washing operation varies depending on the washing solvent to be used, but it can be any number of times in principle, usually 100 or less, preferably 50 or less, more preferably 10 or less.
  • a single molecular weight bi-lidene fluoride homopolymer can be efficiently isolated.
  • any of the known methods may be employed.
  • liquid chromatography or gas chromatography is preferably employed.
  • the temperature at that time is usually ⁇ 30 to 150 ° C., preferably 0 to 100 ° C., and more preferably 25 to 80 ° C.
  • a single-molecular weight vinylidene fluoride homopolymer is efficiently deposited by vapor-depositing a raw material of a vinylidene fluoride homopolymer at a constant pressure (reduced pressure) at a constant temperature.
  • the coalescence can be isolated.
  • the raw vinylidene fluoride homopolymer is heated or cooled, and the temperature is usually ⁇ 30 to 1000 ° C., preferably 0 to 800 ° C., and more preferably 0 to 500 ° C. It is.
  • Pressure in the system during deposition is usually 1 X 10- 6 Pa- 100KPa, preferably lKPa less, more preferable properly is less 1 Pa.
  • the purity of the type I crystal structure is increased and the thin film of the present invention can be more effectively provided with ferroelectric properties. It is preferable to increase the purity of the vinylidene fluoride homopolymer to 70% by weight or more, more preferably 80% by weight or more, more preferably 90% by weight or more, and particularly preferably 95% by weight or more.
  • the bi-lidene fluoride polymer was dissolved in a solvent containing an organic solvent having a dipole moment of 2.8 or more alone or as a part thereof. Thereafter, a step of evaporating the solvent is exemplified. Treatment with a solvent containing a dipole moment of 2.8 or more, either alone or as a part, results in higher purity of the type I crystal structure.
  • the value of the dipole moment used in the present invention is mainly based on the Chemical Handbook 'Basic Edition' Revised 3rd Edition (edited by The Chemical Society of Japan: Maruzen) and the CRC Handbook of Chemistry and Physics (Lide, David R .: CRC Press).
  • the dipole moment of the organic solvent is preferably 3.0 or more, more preferably 3.5 or more, and especially 3.7 or more, from the viewpoint that the generation rate of the type I crystal structure is high.
  • a solvent partially containing an organic solvent having a dipole moment of 2.8 or more can also be used effectively.
  • an organic solvent having a dipole moment of 2.8 or more is contained in an amount of 5% by mass or more, more preferably 10% by mass or more, particularly 30% by mass or more, and the organic solvent having a dipole moment of 2.8 or more
  • the effect of purifying the type I crystal structure is comparable to that of single use.
  • organic solvents to be mixed those having a lower boiling point than those of organic solvents having a dipole moment of 2.8 or more are preferably used.
  • methylethyl ketone (MEK) tetrahydrofuran (THF)
  • Ethyl acetate acetic acid
  • pyridine a compound having a lower boiling point than those of organic solvents having a dipole moment of 2.8 or more
  • PEGMEA polyethylene glycol methyl ether acrylate
  • MAK methylamyl ketone
  • the dissolution temperature is usually -30 to 150 ° C, preferably 0 to 80 ° C, and more preferably 25 to 50 ° C. If it is too high, the vinylidene fluoride homopolymer or the solvent tends to deteriorate, and if it is too low, the solvent tends to solidify, the viscosity increases, or the vinylidene fluoride homopolymer tends to be difficult to dissolve.
  • the concentration of the bi-lidene fluoride homopolymer solution may be appropriately selected depending on the type of the organic solvent, the dissolution temperature, and the like.
  • a preferable concentration is 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 1% by mass or more, 50% by mass or less, preferably 30% by mass or less, more preferably 20% by mass or less. is there.
  • the method of evaporating the organic solvent is not particularly limited.
  • a method in which the organic solvent is left in an open system at atmospheric pressure a method in which the organic solvent is left in a closed system under atmospheric pressure, and a method in which the organic solvent evaporates under reduced pressure at room temperature.
  • Ordinary methods such as a method and a method of evaporating by heating under reduced pressure can be adopted.
  • the temperature at which the vinylidene fluoride homopolymer does not melt, which is related to the ambient pressure is preferably 0 ° C.
  • the temperature at which the vinylidene fluoride homopolymer does not melt which is related to the ambient pressure, is preferably 0 ° C.
  • 150 ° C. or lower preferably 100 ° C. or lower, more preferably 50 ° C. or lower.
  • the ambient pressure is preferably a point force for lowering the transpiration temperature, atmospheric pressure, and particularly preferably reduced pressure.
  • the preferred ambient pressure is at least 0.0013 Pa, more preferably at least 0.133 kPa, especially at least 1.333 kPa, below atmospheric pressure, more preferably below 9.333 kPa, especially below 6.666 kPa.
  • a bi-lidene fluoride homopolymer having the I-type crystal structure alone or as a main component is used as a starting bulk powder, it is blended with a solvent or an additive to form a coating. After forming the thin film, a thin film may be formed.
  • a polymer of vinylidene fluoride is dissolved or dispersed in a liquid medium and applied in the form of a coating solution (paint).
  • a coating solution method a method in which a vinylidene fluoride homopolymer is directly applied to a substrate in the form of a powder (powder coating method);
  • a method of sublimating under heating and coating by vapor deposition vacuum vapor deposition method
  • vacuum vapor deposition method can be preferably used.
  • the liquid medium used is a solution in which the bi-lidene fluoride homopolymer is dissolved or homogenized. Anything that can be dispersed in is available. Among them, in order to control the thickness of the thin film, a liquid medium in which the bi-lidene fluoride homopolymer is dissolved is preferred.
  • Examples of such a liquid medium include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and acetyl acetone; ethyl acetate, cellosolve acetate, n-butyl acetate, isobutyl acetate, Oral solvent such as solvent acetate, carbitol acetate, dibutyl phthalate; aldehyde solvent such as benzaldehyde; amine solvent such as dimethylamine, dibutylamine, dimethyla-phosphine, methylamine, benzylamine; N, N-dimethylformamide, N Amide solvents such as N, N-dimethylacetamide and N-methyl-2-pyrrolidone; carboxylic anhydride solvents such as acetic anhydride; carboxylic acid solvents such as acetic acid; chloroform, dichloromethane, 1,
  • ketone solvents and amide solvents are preferred in that they can dissolve the homopolymer of bi-lidene-carbonate in a good condition.
  • a thin film can be formed even if it is insoluble in a liquid solvent.
  • an aqueous dispersion of a Futsudani vinylidene homopolymer can be used.
  • the concentration of the bi-lidene fluoride homopolymer in these coating solutions varies depending on the intended film thickness, the viscosity of the coating solution, and the like, but is 0.1% by weight or more, preferably 0.5% by weight. %, More preferably 1% by weight or more, 50% by weight or less, preferably 30% by weight or less, more preferably 20% by weight or less.
  • a method of applying to the substrate using these coating solutions known coating methods such as spin coating, dip coating, spray coating, roll coating, and gravure coating can be employed.
  • a spin coating method, a gravure coating method, or the like is preferable, and a spin coating method is particularly preferable.
  • a drying step for removing the solvent may be performed.
  • a drying method for example, air drying at room temperature, heat drying, vacuum drying, etc. can be adopted, but care should be taken since drying at an excessively high temperature may change the crystal structure of Form I.
  • heat drying at a temperature lower than the melting point of the vinylidene fluoride homopolymer is preferable.
  • the temperature of drying by heating is different depending on the boiling point of the solvent used, for example, 30 ° C or higher, preferably 40 ° C or higher, more preferably 50 ° C or higher, 150 ° C or lower, preferably 100 ° C or lower, It is more preferably at most 80 ° C.
  • the vinylidene fluoride homopolymer thin film formed on the substrate by being applied in the form of a coating solution maintains the I-type crystal structure, and has an ability to exhibit excellent ferroelectricity. It has.
  • a method in which a thin film is formed on a substrate by a vacuum evaporation method using a vacuum evaporation apparatus is also preferable.
  • the temperature and degree of vacuum during vacuum deposition are appropriately selected depending on the degree of polymerization and sublimability of the homopolymer of vinylidene fluoride.
  • Power deposition temperature is between room temperature and 200 ° C, preferably 100 ° C or lower.
  • the substrate temperature is 0-100 ° C, preferably above room temperature and below 50 ° C.
  • a method for forming a thin film is as follows.
  • a conventionally well-known method of forming a bi-lidene fluoride homopolymer thin film having an I-type crystal structure alone or as a main component from a bi-lidene fluoride homopolymer of atoms or bromine atoms can be employed.
  • a vinylidene fluoride homopolymer containing a type II crystal structure alone or as a main component, or further containing a type III crystal structure is used as a starting bulk powder, and the vinylidene fluoride homopolymer is used as a specific substrate
  • Examples include a method of forming a thin film on a substrate (Pt or the like) by a vacuum evaporation method.
  • the types of applicable substrates can be greatly widened, and a bi-lidene fluoride homopolymer thin film having an I-type crystal structure can be formed on various substrates.
  • the type of substrate is selected from the group consisting of a force S, a silicon-based substrate, and a metal-based substrate, which are appropriately selected depending on the purpose and use of the intended laminate, and the type of the vinylidene fluoride homopolymer used as the starting bulk.
  • ceramic base materials such as glass base materials and resin base materials are selected.
  • examples of the substrate include, for example, a conductive substrate on which an electrode can be formed. It is preferable that a conductive base material formed by forming a thin film of a conductive material on an insulating base material such as a silicon base material, a ceramic base material (such as a glass base material), or a resin base material is also preferable. .
  • Metallic materials for the conductive substrate or the conductive thin film include aluminum, copper, chromium, nickel, zinc, stainless steel, gold, silver, platinum, tantalum, titanium, niobium, molybdenum, and indium tin oxide.
  • a dagger (ITO) or the like can be used. Above all, it is preferable to form a thin film of aluminum, gold, silver, platinum, tantalum, titanium or the like on a silicon wafer. Further, as the metal base material, aluminum, copper, gold, silver, platinum and the like are also preferable.
  • These conductive thin films provided on the surface of the base material may be patterned into a predetermined circuit by a known method such as a photolithography method or a mask deposition method as necessary.
  • a vinylidene fluoride homopolymer thin film having an I-type crystal structure is formed by the method described above.
  • the film thickness of the vinylidene fluoride homopolymer thin film having the I-type crystal structure is a force that is appropriately selected depending on the purpose and application of the intended laminate. Usually, it is lnm or more, preferably 5nm or more, and particularly preferably lOnm or more, 10 / zm or less, preferably 1 m or less, particularly preferably about 500 ⁇ m or less.
  • the adhesion of the thin film to the substrate is improved as described above.
  • the self-organization of the thin film occurs, and the polymers are bonded to each other to improve the strength and heat resistance of the thin film.
  • the formed thin film may be subjected to, for example, a treatment by heat treatment, light irradiation, or the like, or a treatment for promoting formation of a well-known chemical bond or interaction by a chemical reaction.
  • a treatment by heat treatment, light irradiation, or the like or a treatment for promoting formation of a well-known chemical bond or interaction by a chemical reaction.
  • the improvement in adhesion, strength, and heat resistance of the thin film can be confirmed by a known method such as a scratch test, a pencil hardness test, and a grid test.
  • an appropriate temperature and an appropriate solution concentration are selected at the time of forming the thin film, or the formed thin film is treated by a known method such as heat treatment or light irradiation. Should be applied.
  • a covalent bond is formed on the formed thin film by, for example, a heat treatment, light irradiation, condensation reaction between the polymers, polyaddition reaction, addition condensation reaction, ring opening reaction and the like.
  • the treatment may be performed using a known method for forming a chemical bond by an ionic bond, a coordinate bond, a hydrogen bond, or the like.
  • an appropriate amount of added carohydrate for accelerating the reaction may be added.
  • the present invention also provides a vinylidene fluoride homopolymer having a number-average degree of polymerization of a vinylidene fluoride homopolymer unit of 3 to 100, and a homopolymer of bi-lidene fluoride having a type I crystal structure alone or as a main component.
  • the present invention relates to a laminate having a dani film on a substrate.
  • the self-assembled dangling film is as described above, and has the formula (1-1):
  • R 1 is a divalent organic group, but does not include a structural unit of bi-lidene fluoride homopolymer; n is 0 or 1; is —SH and / or —SiX R 6 (n is 0 — Integer of 2; R 6 is CH
  • the present invention provides a vinylidene fluoride homopolymer unit having a number average polymerization degree of 3-100.
  • the present invention also relates to a laminate characterized by having a thin film formed on a base material, wherein the homopolymers of bi-lidene fluoride having the I-type crystal structure alone or as a main component are bonded to each other.
  • the vinylidene fluoride homopolymer containing a polymer-binding functional group is as described above, and has the formula (12):
  • the thin film is formed by bonding bi-lidene fluoride homopolymers having a number average polymerization degree of 3-100 of bi-lidene fluoride homopolymer unit.
  • the fusidani vinylidene homopolymer having the I-type crystal structure in the thin film alone or as a main component is represented by the above (Formula 1) and (Formula 2), more preferably (Formula 3) It is preferable to satisfy the relationship of the deviation in and (Equation 4).
  • the present invention further relates to a ferroelectric device having the above-mentioned laminate strength.
  • a thin film of a bi-lidene fluoride homopolymer having an I-type crystal structure alone or as a main component is formed on a substrate, and then formed.
  • a heat treatment step heat treatment step
  • the heat treatment step of the bi-lidene fluoride homopolymer thin film is usually performed for the purpose of growing the crystals in the vinylidene fluoride homopolymer thin film and increasing the crystal size, and as a result, improving the ferroelectric properties. it can.
  • a force that can be appropriately selected depending on the number average degree of polymerization, the crystal melting point, and the type of the base material of the homopolymer of vinylidene fluoride is usually 50 ° C or higher, preferably 60 ° C or higher. It is preferably at least 70 ° C, particularly preferably at least 80 ° C, and the upper limit is usually at a temperature below the crystal melting point, preferably at 5 ° C below the crystal melting point, more preferably at 10 ° C below the crystal melting point. Temperature.
  • the heat treatment time is generally about 10 minutes or longer, preferably 20 minutes or longer, and more preferably 30 minutes or longer.
  • the time is about 10 hours or less, preferably 5 hours or less, more preferably 3 hours or less, and particularly about 2 hours or less. After heating, it is preferable to leave at room temperature or the like and allow it to cool slowly.
  • a polarization treatment is performed after forming the thin film or after or without the heat treatment step.
  • a step may be further performed.
  • Conventionally known methods can be used for the polarization treatment. For example, a method of depositing an electrode on the film or contacting the electrode and applying a DC or AC electric field or a DC or AC voltage thereto, or a method of performing a polarization treatment by corona discharge can be used.
  • the applied electric field in the polarization step is a force that can be appropriately selected depending on the thickness of the thin film, the abundance of the I-type crystal structure, and the like. Usually, it is lOMVZm or more, preferably 50 MVZm or more, and more preferably 80 MVZm or more.
  • the electric field is not more than the electric field of the breakdown electric field strength, preferably not more than 250 MVZm, more preferably not more than 200 MVZm. If the applied electric field is too low or the application time is too short, sufficient polarization treatment will not be achieved, and if the applied electric field is too high or the application time is too long, the bonds of the polymer molecules will be partially broken, This is not preferred because
  • the application time is usually at least 20 nanoseconds, preferably at least 1 second, more preferably at least 1 minute, up to about 48 hours, preferably up to 6 hours, more preferably up to 2 hours.
  • the temperature of the thin film in the polarization step is usually 0 ° C or higher, preferably 10 ° C or higher, more preferably 25 ° C or higher, and is equal to or lower than the crystal melting point of the vinylidene fluoride homopolymer, preferably 120 ° C or lower. ° C or lower, more preferably 85 ° C or lower.
  • a bi-lidene fluoride homopolymer thin film was obtained.
  • the film layer may be patterned into a predetermined circuit by a known method such as photolithography and mask deposition if necessary.
  • a layer of another material may be further provided on the bi-lidene fluoride homopolymer thin film layer, if necessary.
  • a layer of a conductive material that can be an electrode similar to that described above, an insulating layer of silicon, ceramics, resin, and the like are provided in a sandwich shape with a bi-lidene fluoride homopolymer thin film interposed therebetween. It is also possible to form a multilayer.
  • the laminate obtained in this way has ferroelectricity.
  • Ferroelectricity in the present invention refers to a property in which permanent dipoles inside a substance are oriented in the same direction by the action of some force, and when an electric field is applied, polarization occurs even when the field is not applied. ⁇ (Polarization that occurs without an electric field is called spontaneous polarization), and the property that spontaneous polarization can be reversed by an external electric field. Whether a substance is a ferroelectric substance can be determined by examining the relationship between the electric field E and the electric displacement D. If a ferroelectric substance is used, when an AC electric field having a relatively large amplitude is applied, hysteresis like a ferromagnetic substance (history) It can be seen by showing the curve.
  • a substance having ferroelectricity has properties associated with piezoelectricity, pyroelectricity, an electro-optic effect or a non-linear optical effect t, and an electrical or optical function.
  • the thin film or laminate obtained by the present invention has improved mechanical strength and increased heat resistance, and thus has high environmental resistance and high performance, such as FE-RAM, infrared sensor, and microphone.
  • Intruder detection device keyboard switch, underwater communication bimorph type display, sonar, optical shutter, light Fiber voltmeter, hide mouth phone, ultrasonic light modulation / deflection device, ultrasonic delay line, ultrasonic force melometer, POSFET, accelerometer, tool abnormality sensor, AE detection, robot sensor, impact sensor, flow meter, vibration meter , Ultrasonic flaw detection, ultrasonic thickness gauge, fire alarm, intruder detection, pyroelectric
  • KBr method 11 Mix 5 mg of bi-lidene fluoride polymer powder with 100-500 mg of KBr powder, pressurize and pelletize, fix the pellet in a measuring device, and measure at 25 ° C. (1-2) Measuring device
  • the D-E hysteresis curve for that material will be rectangular. Therefore, in the present invention, the current-voltage characteristics are examined under the following conditions, a DE hysteresis curve is drawn, and the presence or absence of ferroelectricity is determined.
  • a triangular wave voltage with a frequency of 15 mHz and an amplitude of 120 V is applied to the aluminum electrodes formed on both sides of the VdF thin film.
  • HLC-8020 (main unit) manufactured by Tosoh Corporation, shodex GPC-KF-801, GPC-KF-802, GPC-KF-806MX2 X (column) manufactured by Showa Denko KK are used.
  • HCFC-225 50 g was placed in a 300-ml stainless steel auto turret equipped with a knob, a pressure gauge, and a thermometer, and cooled with dry ice Z methanol solution while cooling with g-n-propyl peroxydicarbonate (50 g). (Weight% methanol solution) 0.78 g was added, and the system was sufficiently purged with nitrogen gas. After reducing the pressure inside the system, 5.2 g of CF I was charged with knurling
  • VdF was charged until the internal pressure of the system reached 0.8 MPaG, and VdF was continuously supplied while maintaining the internal pressure of the system at 0.8 MPaG and the internal temperature of the system at 45 ° C.
  • the reaction was performed for 9 hours.
  • VdF polymer The precipitated reaction solid (hereinafter referred to as “VdF polymer”) was taken out and vacuum-dried in a desiccator until a constant weight was obtained, thereby obtaining 13.2 g of VdF polymer.
  • VdF polymer was analyzed by 19 F-NMR, and the number average degree of polymerization (n) of VdF was determined.
  • the number average degree of polymerization (n) was 8.1.
  • the abnormal binding ratio was 4.0%, and MwZMn was 1.06.
  • VdF polymer was subjected to IR analysis and powder X-ray diffraction analysis, and only peaks characteristic of the type I crystal structure were observed, confirming that the VdF polymer had the entire type I crystal structure (Fig. 6). reference).
  • HCFC-225 50 g was placed in a 300-ml stainless steel auto turret equipped with a knob, a pressure gauge, and a thermometer, and cooled with dry ice Z methanol solution while cooling with g-n-propyl peroxydicarbonate (50 g). (Weight% methanol solution) 0.53 g was added, and the system was sufficiently purged with nitrogen gas. After reducing the pressure inside the system,
  • VdF polymer The precipitated reaction solid (VdF polymer) was taken out, and the reaction solid was dried in a desiccator under vacuum until a constant weight was obtained, thereby obtaining 10. Og of a VdF polymer.
  • VdF polymer was analyzed by 19 F-NMR, and the number average polymerization degree (n) of VdF was determined to be 5.2.
  • the abnormal binding ratio was 4.3%, and MwZMn was 1.08.
  • VdF polymer was subjected to IR analysis and powder X-ray diffraction analysis. As a result, only a peak characteristic of the type I crystal structure was observed, confirming that the VdF polymer had the entire type I crystal structure.
  • HCFC-225 50 g was placed in a 300 ml stainless steel auto turret equipped with a knob, a pressure gauge, and a thermometer, and cooled with dry ice Z methanol solution while cooling with g-n-propyl peroxydicarbonate (50 g). (Weight% methanol solution) 0.53 g was added, and the system was sufficiently purged with nitrogen gas.
  • VdF polymer The precipitated reaction solid (VdF polymer) was taken out, and dried in a desiccator under reduced pressure to a constant weight to obtain 13.4 g of VdF polymer.
  • VdF polymer was analyzed by 19 F-NMR, and the number average polymerization degree (n) of VdF was determined to be 10.1.
  • the abnormal binding ratio was 3.9%, and MwZMn was 1.08.
  • HCFC-225 50 g was placed in a 300-ml stainless steel auto turret equipped with a knob, a pressure gauge, and a thermometer, and cooled with dry ice Z methanol solution while cooling with g-n-propyl peroxydicarbonate (50 g). (Weight% methanol solution) 0.38 g was added, and the system was sufficiently purged with nitrogen gas. After reducing the pressure inside the system, the knurling force also increased to CF I 3.5 g
  • VdF polymer The precipitated reaction solid (VdF polymer) was taken out, and the reaction solid was vacuum-dried in a desiccator until a constant weight was obtained, thereby obtaining 11.2 g of a VdF polymer.
  • VdF polymer was analyzed by 19 F-NMR, and the number average polymerization degree (n) of VdF was determined to be 11.0.
  • the abnormal binding ratio was 4.4%, and MwZMn was 1.13.
  • VdF was charged until the internal pressure of the system reached 0.8 MPaG, and VdF was continuously supplied while maintaining the internal pressure of the system at 0.8 MPaG and the internal temperature of the system at 45 ° C.
  • the reaction was performed for 9 hours.
  • VdF polymer The precipitated reaction solid (VdF polymer) was taken out, and the reaction solid was dried in a desiccator under vacuum until a constant weight was obtained, to obtain 7.9 g of a VdF polymer.
  • VdF polymer was analyzed by 19 F-NMR, and the number average polymerization degree (n) of VdF was determined to be 18.4. The abnormal binding ratio was 3.8%, and MwZMn was 1.17.
  • HCFC-225 50 g was placed in a 300-ml stainless steel auto turret equipped with a knob, a pressure gauge, and a thermometer, and cooled with dry ice Z methanol solution while cooling with g-n-propyl peroxydicarbonate (50 g). (Wt% methanol solution) 0.27 g was added, and the system was sufficiently purged with nitrogen gas. After reducing the pressure in the system, 2.5 g of Nolebuka Palla CF I was charged.
  • VdF was charged until the internal pressure of the system reached 0.8 MPaG, and VdF was continuously supplied while maintaining the internal pressure of the system at 0.8 MPaG and the internal temperature of the system at 45 ° C.
  • the reaction was performed for 9 hours.
  • VdF polymer The precipitated reaction solid (VdF polymer) was taken out, and the reaction solid was dried in a desiccator under vacuum until a constant weight was obtained, thereby obtaining 12.2 g of a VdF polymer.
  • VdF polymer was analyzed by 19 F-NMR, and the number average degree of polymerization (n) of VdF was determined. It was 14.6. The abnormal binding ratio was 4.1%, and MwZMn was 1.14.
  • HCFC-225 500 g was placed in a 3-liter stainless steel autoclave equipped with a knob, pressure gauge and thermometer, and cooled with dry ice Z methanol solution. (Weight% methanol solution) 21 g was added, and the inside of the system was sufficiently replaced with nitrogen gas. After reducing the pressure inside the system, 200 g of Norlevuka Palla CF I was charged.
  • VdF was charged until the internal pressure of the system reached 0.8 MPaG, and VdF was continuously supplied while maintaining the internal pressure of the system at 0.8 MPaG and the internal temperature of the system at 45 ° C.
  • the reaction was performed for 3.5 hours.
  • the precipitated reaction solid was filtered off, and the filtrate was fractionated under reduced pressure (5 mmHg).
  • the fraction at 55 ° C was analyzed by 19 F-NMR, and the number average polymerization degree of the 55 ° C fraction (n) When asked, it was 3.
  • 3 g of the powder was placed in a petri dish, left in a dryer, and heated at 200 ° C. for 1 hour to completely melt the powder. Then, it was taken out of the dryer and left at 25 ° C for rapid cooling to 25 ° C.
  • the obtained VdF polymer was subjected to IR analysis. As a result, both peaks characteristic of the type I crystal structure and peaks characteristic of the type III crystal structure were observed. It was confirmed that those with a type crystal structure were mixed. Furthermore, the calculated content (F (I)) of the type I crystal structure was 67% by weight (see FIG. 7).
  • VdF polymer VdF polymer
  • VdF polymer was analyzed by 19 F-NMR, and the number average polymerization degree (n) of VdF was determined to be 10.9. Mw / Mn was 1.10.
  • HCFC-225 50 g was placed in a 300-ml stainless steel auto turret equipped with a knob, a pressure gauge, and a thermometer, and cooled with dry ice Z methanol solution while cooling with g-n-propyl peroxydicarbonate (50 g). (Wt% methanol solution) 0.27 g was added, and the system was sufficiently purged with nitrogen gas. After reducing the pressure in the system, I (CF CF) I
  • VdF polymer After the reaction, the precipitated reaction solid (VdF polymer) was collected by filtration, washed with HCFC-225, and then dried in a desiccator to a constant weight in a desiccator to obtain a VdF polymer (8.8 g). Get It was.
  • VdF polymer was analyzed by 19 F-NMR, and the number average degree of polymerization (n + m) of VdF was determined to be 8.7. Mw / Mn was 1.03.
  • HCFC-225 50 g was placed in a 300-ml stainless steel auto turret equipped with a knob, a pressure gauge, and a thermometer, and cooled with dry ice Z methanol solution while cooling with g-n-propyl peroxydicarbonate (50 g). (Wt% methanol solution) 0.162 g was added, and the system was sufficiently purged with nitrogen gas. After reducing the pressure in the system, I (CF CF) I
  • VdF polymer was collected by filtration, washed with HCFC-225, and dried in a desiccator to a constant weight in a desiccator to obtain a VdF polymer (7.2 g). Was obtained.
  • VdF polymer was analyzed by 19 F-NMR, and the number average polymerization degree (n + m) of VdF was determined. MwZMn was 1.04.
  • reaction solid was vacuum-dried in a desiccator until a constant weight was obtained, to obtain 2.2 g.
  • reaction solid was analyzed by NMR and 19 F-NMR.
  • reaction solid was an aryl alcohol adduct of a VdF polymer.
  • terminal modification rate determined by 1 H-NMR was 90%.
  • AIBNO. 034 g was charged into a 300-ml stainless steel autoclave equipped with a valve, pressure gauge, and thermometer, and the system was sufficiently purged with nitrogen gas. After the temperature was raised to 65 ° C, ethylene gas was charged until the internal pressure of the system reached 0.7 MPaG, and ethylene gas was continuously supplied while maintaining the internal pressure of 0.7 MPaG and the internal temperature of 65 ° C. The reaction was performed for 5 hours.
  • reaction solid was analyzed by NMR and 19 F-NMR.
  • reaction solid was a VdF polymer ethylene adduct.
  • terminal modification rate determined by 1 H-NMR was 97%.
  • VdF polymer ethylene adduct was subjected to powder X-ray diffraction analysis. Only peaks characteristic of the type I crystal structure were observed, confirming that the VdF polymer had an all-I type crystal structure.
  • reaction solid was analyzed by 3 ⁇ 4 NMR to find that it was 3.4-3.2p derived from CH CH I.
  • reaction solid was a VdF polymer having a mercapto group at the terminal.
  • terminal modification rate determined by 1 H-NMR was 90%.
  • reaction solid was analyzed by NMR to find that it was derived from added allylic alcohol.
  • reaction solid was a VdF polymer having a vinyl group at the terminal.
  • terminal modification rate determined by 1 H-NMR was 95%.
  • VdF polymer having a terminal bull group obtained in Synthesis Example 6 lg, 40% by weight 0.67 mg of a sopropanol solution, 2.6 g of triethoxysilane, and 30 g of ethanol were charged into a 100 ml three-necked flask equipped with a reflux condenser and a thermometer, and heated under reflux for 4 hours.
  • reaction solid was a VdF polymer having an organosilane group at the terminal.
  • terminal modification rate determined by 1 H-NMR was 92%.
  • the polymer was confirmed to be a polymer. At this time, the terminal modification rate determined by 1 H-NMR was 88%.
  • reaction solid was dried in a desiccator under vacuum to a constant weight to obtain 2.4 g.
  • reaction solid was analyzed by ⁇ H-NMR and 19 F-NMR.
  • reaction solid was an aryl alcohol adduct of the VdF polymer.
  • terminal modification rate determined by 1 H-NMR was 90%.
  • reaction solid contained 4.4-3.5 ppm and 4.0-3.7p
  • the peak of pm almost disappeared, and this is caused by the reduction of iodine.
  • reaction solid was analyzed by NMR and 19 F-NMR.
  • reaction solid was a VdF polymer ethylene adduct.
  • terminal modification rate determined by 1 H-NMR was 97%.
  • reaction solid was a VdF polymer having a mercapto group at the terminal.
  • terminal modification rate determined by 1 H-NMR was 93%.
  • CH CH OCOCH 400 mg of CH, 5 ml of benzene, 24 mg of AIBN, dry While cooling with ice-z methanol solution, the inside of the system was sufficiently replaced with nitrogen gas. Thereafter, the reaction was carried out for 23 hours while keeping the inside of the reaction system at 65 ° C.
  • reaction solid was recycled. Only a high molecular weight substance was taken out by GPC, and a thin film was formed on a Si substrate by spin coating. When powder X-ray diffraction analysis was performed on the obtained thin film, only peaks characteristic of the type I crystal structure were observed, confirming that the thin film had the entire type I crystal structure (see FIG. 13).
  • MIKASA SPINCOATER 1H-D7 manufactured by Mikasa Corporation
  • Example 2 (Production of Thin Film of VdF Polymer Having Functional Group Terminal Type I Crystal Structure by Vacuum Evaporation Method) Using a functional functional group-terminated VdF polymer powder of all I-type crystal structure synthesized in Synthesis Example 4, a 2 m-thick VdF polymer thin film of all I-type crystal structure was formed on a silicon substrate by vacuum evaporation. did.
  • Vacuum evaporation was performed under the following conditions and equipment.
  • Aluminum was vacuum-deposited as a second electrode by a conventional method on the functional functional group-terminated VdF polymer thin film having an all-I-type crystal structure produced on Synthesis Example 6 formed on an aluminum electrode.
  • a method for forming a thin film of a bi-lidene fluoride homopolymer having an I-type crystal structure which is applicable to various substrates and has various functions.
  • a thin film of a bi-lidene fluoride homopolymer having an I-type crystal structure can be formed on various substrates by a relatively simple method (coating conditions, techniques, etc.) in addition to the conventional method. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

 比較的簡便な方法(被覆条件、手法など)で、種々の基材に適用可能なI型結晶構造の機能性官能基末端フッ化ビニリデン単独重合体の薄膜の形成方法を提供する。フッ化ビニリデンの単独重合体からなる薄膜の形成方法であって、式(1):−(R1)n−Y (1)(式中、R1は2価の有機基、ただしフッ化ビニリデン単独重合体単位は含まない;nは0または1;Yは機能性官能基)で表される部位を片末端または両末端に有するフッ化ビニリデン繰返し単位を3~100有するフッ化ビニリデン単独重合体を基材に適用して、I型結晶構造を単独または主成分とするフッ化ビニリデン単独重合体の薄膜を形成するフッ化ビニリデン単独重合体の薄膜の形成方法。

Description

明 細 書
フッ化ビニリデン単独重合体薄膜の形成方法
技術分野
[0001] 本発明は、 I型結晶構造を単独または主成分として有するフッ化ビ-リデン単独重 合体力 なる薄膜の形成方法に関する。また、基材密着性、自己組織化性、重合体 結合性などの機能性を有する I型結晶構造を単独または主成分とするフッ化ビニリデ ン単独重合体カゝらなる薄膜と基材とからなる積層体、それを用いた強誘電性デバイス 、さらには新規フッ化ビ-リデン単独重合体にも関する。
背景技術
[0002] ポリマー型の強誘電材料は、セラミックなどの無機系強誘電材料に対して、フレキシ ブル、軽量、加工性が良く安価といった長所を有している。その代表的なものとして、 ポリフッ化ビ-リデン(PVdF)ゃフッ化ビ-リデン Zトリフルォロエチレン (VdFZTrF E)共重合体と!/、つたフッ化ビ-リデン系重合体が知られて 、る。
[0003] ところで PVdFは大きく分けて I型( 13型とも言う)、 II型(ひ型)および III型( γ型)の 3 種の結晶構造が存在し、そのうち充分大きな強誘電性を発現できるのは I型結晶の みである。
[0004] 従来、ラジカル重合法で製造した高分子量体の PVdFは II型結晶構造を形成し、そ のままでは強誘電性は示さな 、。 II型結晶構造の PVdFを I型結晶に変換するために は、フィルムの延伸'熱処理工程や、またキャスト時における高圧急冷など複雑な後 工程が必要となる。
[0005] 松重らは、 II型の結晶構造を有するフッ化ビ-リデンオリゴマー: CF (CH CF ) I (
3 2 2 n 数平均重合度 n= 17)を用いて、 I型結晶構造のフッ化ビ-リデンオリゴマーの薄膜 形成について検討している(M&BE最前線: M&BE Vol. 11, No. 2, 145 (2000 ) )。
[0006] し力しながら松重らはフッ化ビ-リデンオリゴマーの末端がヨウ素原子であるもので しか検討していない。
[0007] 奥居らは、 CC1を連鎖移動剤(テロ一ゲン)として用い、ジノルマルパーォキシジカ ーボネートを触媒としてラジカル重合して得たフッ化ビ-リデンオリゴマー: CC1 (CH
3 2
CF ) C1 (数平均重合度 n= 9)について結晶構造解析を行なっており、このものが I
2 n
型( j8型)結晶構造と III型( γ型)結晶構造の混合物であること、さらに結晶融点 Tm を 2点(74°Cと 110°C)有することを報告している(Polymer Journal, Vol. 30, No. 8, pp659— 663 (1998)、 POLYMER Vol. 38, No. 7, ppl677— 1683 (1997) )。し力しながら奥居らは末端が塩素原子であるものでし力検討して ヽな 、。
[0008] その他、連鎖移動剤 (テロ一ゲン)としてメタノールを用いる重合方法により末端に 水酸基を導入する方法があるが(Macromol. Chem. Phys. , 199, ρρ1271— 12 89 (1998) )、単に重合方法についての検討がされているだけであり、強誘電特性を 発現できる I型( β型)の結晶構造をもつ単独重合体を純度良ぐまた効率良く製造 する方法は示されて 、な 、。もちろん薄膜の形成に関しては全く検討されて 、な 、。
[0009] 本発明の第一の目的は、種々の基材に適用可能であり、また多様な機能を有する I 型結晶構造のフッ化ビ-リデン単独重合体の薄膜の形成方法を提供することにある
[0010] 本発明の第二の目的は、各種の機能を与え得る I型結晶構造のフッ化ビ-リデン単 独重合体の自己組織ィヒ膜またはフッ化ビニリデン単独重合体同士が結合してなる薄 膜を基材上に有する積層体を提供することにある。
[0011] 本発明の第三の目的は、新規なフッ化ビ-リデン単独重合体を提供することにある 発明の開示
[0012] 本発明者らは鋭意研究を行なった結果、 I型結晶構造のフッ化ビニリデン単独重合 体の末端を機能性官能基にすることに着目し、基材への密着性や自己組織化性、 得られる薄膜の強度や耐熱性を向上させることが可能になることを見出した。
[0013] すなわち本発明は、 I型結晶構造を単独または主成分とするフッ化ビ-リデンの単 独重合体力もなる薄膜の形成方法であって、式(1):
-(R1) -Υ (1)
(式中、 R1は 2価の有機基、ただしフッ化ビ-リデン単独重合体の構造単位は含まな V、; ηは 0または 1; Υは機能性官能基)で表される部位を片末端または両末端に有し 、かつフッ化ビニリデン単独重合体単位の数平均重合度、すなわちフッ化ビニリデン 単独重合体の構造単位におけるフッ化ビ-リデン単位の数平均重合度が 3— 100で あるフッ化ビ-リデン単独重合体を基材に適用して、 I型結晶構造を単独または主成 分とするフッ化ビ-リデン単独重合体力 なる薄膜を形成することを特徴とするフッ化 ビ-リデン単独重合体の薄膜の形成方法に関する。
[0014] 力かる薄膜中の I型結晶構造を単独または主成分とするフッ化ビ-リデン単独重合 体は、 IR分析法により算出されるフッ化ビ-リデン単独重合体の薄膜中の I型、 II型お よび III型結晶構造を有するそれぞれのフッ化ビニリデン単独重合体の存在比率に着 目したとき、 I型結晶構造を有するフッ化ビニリデン単独重合体の存在比率が、(数式 1):
100≥1型 Ζ(ι型 + Π型) > 50重量% (数式 1)
および (数式 2) :
100≥1型 Z(I型 + ΠΙ型) > 50重量% (数式 2)
の 、ずれの関係をも満たすことが好ま 、。
[0015] 前記式(1)中の Yとしては、有機材料および Zまたは無機材料カゝらなる基材の表面 との密着性をフッ化ビ-リデン単独重合体に付与することのできる官能基、有機材料 および Zまたは無機材料力 なる基材の表面にフッ化ビ-リデン単独重合体を自己 組織化可能な官能基、またはフッ化ビニリデン単独重合体同士を結合し得る官能基 が好ましくあげられる。
[0016] 例えば自己糸且織ィ匕可能な官能基としては、前記式(1)中の Yが、 SHおよび Zま たは— SiX R6 (nは 0— 2の整数; R6は CHまたは C H ;Xは一 OR7、 一 COOH、— C
3-n n 3 2 5
OOR7、 一 NH R7 、 一 OCNまたはハロゲン原子(ただし R7は CH 、 C Hまたは C H
3-m m 3 2 5 3 7
、 mは 0— 3の整数))であるもの、フッ化ビ-リデン単独重合体同士を結合し得る官能 基としては、前記式(1)中の Yが、一 CH = CH 、 一 OCOCH = CH 、 一 OCOCF = C
2 2
H 、— OCOC (CH ) =CHまたは OCOCCl=CHであるものが好ましく例示でき
2 3 2 2
る。
[0017] 本発明はまた、フッ化ビニリデン単独重合体単位の数平均重合度が 3— 100である I型結晶構造を単独または主成分とするフッ化ビ-リデン単独重合体力 形成される 自己組織ィ匕薄膜を基材上に有することを特徴とする積層体に関する。
[0018] さらに本発明は、フッ化ビニリデン単独重合体単位の数平均重合度が 3— 100であ る I型結晶構造を単独または主成分とするフッ化ビ-リデン単独重合体同士が結合し てなる薄膜を基材上に有することを特徴とする積層体にも関する。
[0019] これらの積層体において、薄膜中の I型結晶構造を単独または主成分とするフツイ匕 ビニリデン単独重合体は、上記 (数式 1)および (数式 2)の 、ずれの関係をも満たす ことが好ましい。
[0020] また、 I型結晶構造を単独または主成分とするフッ化ビニリデン単独重合体から形 成される自己組織ィ匕薄膜を基材上に有する積層体にあっては、自己組織ィ匕薄膜が、 式 (1 1) :
- (R1) - Y1 (1-1)
(式中、 R1は 2価の有機基、ただしフッ化ビ-リデン単独重合体の構造単位は含まな い; nは 0または ! Y1は— SHおよび/または— SiX R6 (nは 0— 2の整数; R6は CH
3- n n 3 または C H ;Xは— OR7、— COOH、— COOR7、—NH R7 、—OCNまたはハロゲン
2 5 3-m m
原子(ただし R7は CH 、 C Hまたは C H 、 mは 0— 3の整数)))で表される部位を片
3 2 5 3 7
末端または両末端に有し、かつフッ化ビ-リデン単独重合体単位の数平均重合度が 3— 100であるフッ化ビ-リデン単独重合体力も形成される自己組織ィ匕薄膜であるこ とが好ましい。
[0021] また、 I型結晶構造を単独または主成分とするフッ化ビニリデン単独重合体同士が 結合してなる薄膜を基材上に有する積層体にあっては、フッ化ビ-リデン単独重合 体同士が結合してなる薄膜が、式(1—2):
-(R1) -Y2 (1-2)
(式中、 R1は 2価の有機基、ただしフッ化ビ-リデン単独重合体の構造単位は含まな い; nは 0または 1 ;Y2は、一CH = CH 、 一 OCOCH = CH 、 一 OCOCF = CH 、 一OC
2 2 2
OC (CH ) =CHまたは OCOCCl=CH )で表される部位を片末端または両末端
3 2 2
に有し、かつフッ化ビ-リデン単独重合体単位の数平均重合度が 3— 100であるフッ 化ビ-リデン単独重合体同士が結合してなる薄膜であることが好ましい。
[0022] 本発明はさらに、上記の積層体力 なる強誘電体デバイスにも関する。 [0023] なお、式(IA— 2) :
Z -(R10) A1 - (R11) -S-M1 (IA - 2)
nl n2
(式中、 A1は数平均重合度が 3— 100のフッ化ビ-リデン単独重合体の構造単位; Z1 はポリフルォロアルキル基またはアルキル基; R1Qおよび R11は同じかまたは異なり、 2 価の有機基、ただし I型結晶構造を単独または主成分とするフッ化ビ-リデン単独重 合体単位は含まない; nlおよび n2は同じかまたは異なり 0または ! M1は水素原子ま たはアルカリ金属原子)で示されるフッ化ビ-リデン単独重合体、および
式(IB— 3):
M2— S— (R12) — A2— R2— A3— (R13) -S-M3 (IB— 3)
n3 n4
(式中、 A2および A3は同じ力または異なるフッ化ビ-リデン単独重合体の構造単位で あり、 A2および A3の合計の数平均重合度が 3— 100である; R2は 2価の有機基、ただ しフッ化ビ-リデン単独重合体の構造単位は含まな 、; R12および R13は同じ力または 異なり、 2価の有機基、ただしフッ化ビ-リデン単独重合体の構造単位は含まない; n 3および n4は同じかまたは異なり 0または 1 ;M2および M3は同じかまたは異なり、水 素原子またはアルカリ金属原子)で示されるフッ化ビニリデン単独重合体
は ヽずれも文献 ·特許未記載の新規化合物である。
[0024] また本発明によれば、各種の機能を与え得る I型結晶構造のフッ化ビ-リデン単独 重合体の自己組織ィヒ膜またはフッ化ビ-リデン単独重合体同士が結合してなる薄膜 を基材上に有する積層体を提供することができる。
[0025] またさらに本発明によれば、上記の発明に有用な新規なフッ化ビニリデン単独重合 体を提供することができる。
図面の簡単な説明
[0026] [図 1]全 I型結晶構造のフッ化ビニリデン単独重合体の IRチャートである。
[図 2]全 II型結晶構造のフッ化ビ-リデン単独重合体の IRチャートである。
[図 3]1型結晶構造と II型結晶構造の混合物力もなるフッ化ビニリデン単独重合体の I Rチャートから I型結晶構造と II型結晶構造の特性吸収のピーク高さを読み取る方法 の説明の図面である。
[図 4]11型結晶構造と III型結晶構造の混合物力もなるフッ化ビニリデン単独重合体の I Rチャートから II型結晶構造と III型結晶構造の特性吸収のピーク高さを読み取る方法 の説明の図面である。
[図 5]1型結晶構造の含有率 F(I)が判っている I型と II型と III型の混合物力もなるフッ化 ビ-リデン単独重合体の IRチャートから I型結晶構造と III型結晶構造の特性吸収の ピーク高さを読み取る方法の説明の図面である。
[図 6]合成例 1の(1-1)で得られた全 I型結晶構造のフッ化ビニリデン単独重合体の I Rチャートである。
[図 7]合成例 1の(ト 8)で得られた I型結晶構造と III型結晶構造の混合物力もなるフッ 化ビ-リデン単独重合体の IRチャートである。
[図 8]合成例 2の (2-1)で得られた II型結晶構造と III型結晶構造の混合物力もなるフッ 化ビ-リデン単独重合体の IRチャートである。
[図 9]合成例 3の (3-1)で得られた I型結晶構造と II型結晶構造の混合物力 なるフッ 化ビ-リデン単独重合体の IRチャートである。
[図 10]合成例 4で得られた全 I型結晶構造の水酸基末端フッ化ビニリデン単独重合 体の IRチャートである。
[図 11]合成例 5で得られた全 I型結晶構造のメルカプト基末端フッ化ビ-リデン単独 重合体の IRチャートである。
[図 12]合成例 8で得られた全 I型結晶構造のアタリロイル基 (-OCOCH = CH )末端
2 フッ化ビ-リデン単独重合体の IRチャートである。
[図 13]合成例 12で得られた全 I型結晶構造のフッ化ビ-リデンオリゴマー末端アタリ ル体同士が付加反応した重合体の IRチャートである。
発明を実施するための最良の形態
[0027] つぎに本発明を具体的に説明する。
[0028] まず本発明の薄膜の形成方法は、前記のとおり、片末端または両末端に機能性官 能基を有し、かつフッ化ビニリデン単独重合体単位の数平均重合度が 3— 100であ るフッ化ビ-リデン単独重合体を用いて、基材上に I型結晶構造を単独または主成分 とするフッ化ビ-リデン単独重合体力 なる薄膜を形成する方法である。
[0029] 本発明の方法によると、 KBrや KC1などの特定の基材だけでなくあらゆる基材に対 して適用できる点で、また末端の官能基を選択することにより種々の機能を薄膜に付 与できる点で好ましいものである。また、被覆方法や条件として、通常利用されている 条件を用いた手法を採用可能な点で好ましい。ただし、極低温といった特殊な塗布 条件下での被覆を排除するものではな 、。
[0030] その結果、本発明の方法で得られた薄膜は I型結晶構造のフッ化ビニリデン単独重 合体を単独または主成分とするものであって、薄膜自体に、分極処理等によって強 誘電性を発現する能力を付与できたり、基材密着性、自己組織化性、強度、耐熱性 などを付与し得るものである。
[0031] 本発明の薄膜形成に用いられるフッ化ビ-リデン単独重合体は、それ自体 I型結晶 構造を単独または主成分とするもの、または後処理によって I型結晶構造を単独また は主成分とするフッ化ビ-リデン単独重合体となり得るものであり、特に、形成された 薄膜中の I型、 II型および III型結晶構造をそれぞれ有するフッ化ビ-リデン単独重合 体に着目したとき、 I型結晶構造を有するフッ化ビ-リデン単独重合体が II型結晶構 造を有するフッ化ビ-リデン単独重合体よりも高い比率で存在し、かつ III型結晶構造 を有するフッ化ビ-リデン単独重合体よりも高 、比率で存在することが好ま U、。
[0032] フッ化ビニリデン単独重合体の I型結晶構造は、重合体分子中の 1つの主鎖炭素に 隣り合う炭素原子に結合したフッ素原子と水素原子がそれぞれトランスの立体配位( TT型構造)、つまり隣り合う炭素原子に結合するフッ素原子と水素原子が炭素 -炭素 結合の方向から見て 180度の位置に存在することを特徴とする。
[0033] 本発明において I型結晶構造を有するフッ化ビ-リデン単独重合体は、 1つの重合 体分子全体が TT型構造を有して ヽてもよ ヽし、また重合体分子の一部が TT型構造 を有するものであってもよぐかつ少なくとも 4つの連続するフッ化ビニリデン単量体単 位のユニットにおいて上記 TT型構造の分子鎖を有するものを示すものである。いず れの場合も TT型構造の部分が TT型の主鎖を構成する炭素 炭素結合は平面ジグ ザグ構造をもち、 C-F、 C-H結合の双極子能率が分子鎖に対して垂直方向の成
2 2
分を有して ヽる。 I型結晶構造を有するフッ化ビニリデン単独重合体にっ ヽて IR分析 を行なうと、 1274cm 1163cm 1および 840cm 1付近に特徴的なピーク(特性吸収 )を有し、粉末 X線回折分析においては 2 Θ = 21度付近に特徴的なピークを有する。 [0034] なお、 IR分析において、 I型結晶構造の特性吸収は認められるが実質的に II型結 晶構造および III型結晶構造の特性吸収が認められないものを「全 I型結晶構造」とい
[0035] フッ化ビニリデン単独重合体の II型結晶構造は、重合体分子中のある 1つの主鎖炭 素に結合するフッ素原子 (または水素原子)に対し、一方の隣接する炭素原子に結 合した水素原子 (またはフッ素原子)がトランスの位置にあり、なおかつもう一方 (逆側 )に隣接する炭素原子に結合する水素原子 (またはフッ素原子)がゴーシュの位置 (6 0度の位置)にあり、その立体構造の連鎖が 2つ以上連続して有すること
[外 1]
(T G T"S¾構造) を特徴とするものであって、分子鎖が
[外 2]
T G T G" 型で C F、 C-H結合の双極子能率が分子鎖に垂直方向と平行方向とにそれぞれ
2 2
成分を有して ヽる。 Π型結晶構造を有するフッ化ビニリデン単独重合体につ ヽて IR分 析を行なうと、 1212cm— 1183cm 1および 762cm 1付近に特徴的なピーク (特性吸 収)を有し、粉末 X線回折分析においては 2 0 = 17.7度、 18. 3度および 19. 9度付 近に特徴的なピークを有する。
[0036] なお、 IR分析において、 II型結晶構造の特性吸収は認められるが実質的に I型結 晶構造および III型結晶構造の特性吸収が認められないものを「全 II型結晶構造」とい
[0037] フッ化ビニリデン単独重合体の III型結晶構造は、 TT型構造と TG型構造が交互に 連続して構成された立体構造
[外 3]
T GT"G を有することを特徴とし、分子鎖が C外 4]
T 3 G T 3"G 型で C F、 C-H結合の双極子能率が分子鎖に垂直方向と平行方向とにそれぞれ
2 2
成分を有して 、る。 III型結晶構造を有するフッ化ビニリデン単独重合体につ 、て IR 分析を行なうと、 1235cm 1および 811cm 1付近に特徴的なピーク (特性吸収)を有し 、粉末 X線回折分析においては 2 0 = 18度付近に特徴的なピークを有する。
[0038] なお、通常、 III型結晶構造は I型結晶構造および Zまたは II型結晶構造と混在する 形でその存在が確認される。
[0039] 本発明で「I型結晶構造を主成分とする」とは、好ましくは、 I型結晶構造を有するフ ッ化ビ二リデン単独重合体の存在比率が、つぎの (数式 1)および (数式 2)の 、ずれ の関係をも満たすものをいう。
[0040] 100≥1型 Z(I型 + Π型) > 50重量% (数式 1)
100≥1型 Z(I型 + ΠΙ型) > 50重量% (数式 2)
[0041] I型、 II型および III型結晶構造のフッ化ビニリデン単独重合体の確認や存在比率に ついては、 X線解析や IR分析法など種々の方法で分析できるが、本発明において、 フッ化ビ-リデン単独重合体中の I型結晶構造の含有率 F(I)は、 IR分析により測定し たチャートの各結晶構造の特性吸収のピーク高さ(吸光度 A)から、以下の方法により 算出する。
[0042] (1) 1型と II型の混合物中の I型の含有率 (重量0 /0。 F(I) X 100)の算出
(1-1)計算式
Beerの法貝 IJ :A= ε bC
(式中、 Aは吸光度、 εはモル吸光係数、 bは光路長、 Cは濃度)から、 I型結晶構造 の特性吸収の吸光度を A"、 II型結晶構造の特性吸収の吸光度を A"、 I型結晶のモル 吸光係数を ε II型結晶のモル吸光係数を ε "、 I型結晶の濃度を C"、 II型結晶の濃 度を C"とすると、
Figure imgf000011_0001
ここで、モル吸光係数の補正係数( εソ ε ")を ΕΙΛΙとすると、 I型結晶構造の含有率 F(I)( = CI/(CI + C"))«,
[0043] [数 1]
X
I/K
F ( I )=
A11
+ X
\/\\ A:
(2- a)
+ A
[0044] となる。
[0045] したがって、補正係数 ΕΙΛΙを決定すれば、実測した I型結晶構造の特性吸収の吸光 度 Α1と II型結晶構造の特性吸収の吸光度 Α"から、 I型結晶構造の含有率 F(I)を算出 できる。
[0046] (1-2)補正係数 ΕΙΛΙの決定方法
全 I型結晶構造のサンプル (図 1)と全 II型結晶構造のサンプル (図 2)とを混合して I 型結晶構造の含有率 F(I)が分力ゝつているサンプルを調製し、 IR分析する。得られた チャートから各特性吸収の吸光度 (ピーク高さ) A1および A"を読み取る(図 3)。
[0047] っ 、で上記式(2— a)を ΕΙΛΙにつ!/、て解!、た式(3— a):
[0048] [数 2]
A1 X (1— F ( I ))
ΕΙ/Π = (3 - a)
A"X F ( I )
[0049] に代入して、補正係数 ΕΙΛΙを求める。混合比を変えたサンプルについて繰り返し行な つて補正係数 ΕΙΛΙを求め、それらの平均値として 1.681を得た。
[0050] I型結晶構造の特性吸収として 840cm 1を用い (参照文献:バックマンら、ジャーナ ル'ォブ 'アプライドヽフイジタス、 50卷、 10号(1979) (Bachmann et al., J. Appl. Phys., Vol.50, No.l0(1979)))、同文献力も II型結晶構造の特性吸収として 763cm 1 を用いた。
[0051] (2)1型と III型の混合物中の I型の含有率 F(I) III型結晶構造のみ力 なる物質が得にく 、ので、 II型と III型の混合物を標準物質と して使用する。
[0052] (2-1)まず、 II型と III型の標準混合物中の III型結晶構造の含有率を上記式(2— a)に ぉ 、て A1および A"をそれぞれ A"および A"1とし、 II型と III型の混合物における補正係 数 E"/mを文献 (エス'ォサキら、ジャーナル'ォブ'ポリマー'サイエンス:ポリマー フィ ジクス エディション、 13卷、 pp l071— 1083 ( 1975) (S.OSAKI et al, J. POLYMER SCIENCE: Polymer physics Edition, Vol.13, ppl071— 1083(1975))から 0. 81とし、 II 型と ΠΙ型の標準混合物の IRチャート(図 4)カゝら読み取った A"および A1"を代入して算 出した (F(III) = 0. 573)。 III型結晶構造の特性吸収として 81 lcm 1を用いた (参照文 献:バックマンら、ジャーナル'ォブ 'アプライド 'フイジタス、 50卷、 10号(1979) )。
[0053] (2-2)っ 、で、 III型の含有率が判明した II型と III型の標準混合物と全 I型結晶構造の 物質を所定の割合で混合し、 I型の含有率 F(I)が判って 、る I型と II型と III型の混合物 を調製し、この混合物を IR分析してチャート(図 5)から A1および A"1を読み取り、上記 式 (3-a) (ただし、 A"を A1"とする)力も補正係数 EI/m ( εソ ε を算出する。 II型と III 型の標準混合物と I型のみの物質混合比を変えたサンプルについて繰り返し行なつ て補正係数 を求め、それらの平均値として 6. 758を得た。
[0054] (2- 3)この補正係数 Ε^^ δ. 758を用い、上記式(2ι) (ただし、 Α"を Α"1とする)から I型と III型の混合物中の I型の含有率 F(I)を求める。
[0055] 本発明の形成方法で得られる薄膜中のフッ化ビ-リデン単独重合体の好ましいも のとしては、つぎの数式:
100≥1型7(1型+ 11型) >60重量%
および
100≥1型 Z(I型 + ΠΙ型) > 60重量%
のいずれの関係をも満たすものであり、より好ましくは、下式 (数式 3)および (数式 4) の 、ずれの関係をも満たすものである。
100≥1型 Z(I型 + Π型) > 70重量% (数式 3)
100≥1型 Z(I型 + ΠΙ型) > 70重量% (数式 4)
[0056] さらには、つぎの数式: 100≥ I型 Z (I型 + Π型) >80重量%
および
100≥I型 Z(I型 + ΠΙ型) >80重量%
のいずれの関係をも満たすものが好ましぐこれらは分極処理によって高い強誘電特 性を発現できる点で好まし ヽ。
[0057] またさらに、 I型結晶の存在比率は、式:
100≥1型 Ζ(ι型 + Π型 + ΠΙ型) > 50重量%
の関係にあるのが好ましぐより好ましくは、式:
100≥1型 Ζ(ι型 + Π型 + ΠΙ型) > 70重量%
特に好ましくは、式:
100≥1型 Ζ(ι型 + Π型 + ΠΙ型) >80重量%
の関係を有するものである。
[0058] つぎに、本発明において、フッ化ビ-リデン単独重合体が末端に有する式(1):
-(R1) -Y (1)
(式中、 R1は 2価の有機基、ただしフッ化ビ-リデン単独重合体単位は含まない; nは 0または 1; Yは機能性官能基)で示される部位にっ 、て説明する。
[0059] R1は 2価の有機基 (ただし、フッ化ビ-リデン単独重合体単位は含まな 、)である。
R1の 2価有機基として具体的には、エチレン基、プロピレン基、ブチレン基、ペンチレ ン基等のアルキレン基;メチレンォキシエチレン基、メチレンォキシプロピレン基、ェ チレンォキシプロピレン基等のアルキレンォキシアルキレン基;フエ-レンエチレン基 、フエ-レンプロピレン基、フエ二レンブチレン基等のァリーレンアルキレン基;フエ二 レンォキシエチレン基、フエ-レンォキシプロピレン基等のァリーレンォキシアルキレ ン基などが例示され、好ましくはエチレン基およびプロピレン基である。またこれらの 基の一部の水素原子がフッ素原子に置換されて 、てもよ 、。
[0060] Yで示される機能性官能基は化学結合を含む相互作用をフッ化ビニリデン単独重 合体に付与する機能をもつ官能基のことである。この機能性官能基をフッ化ビニリデ ン単独重合体の片末端または両末端に存在させることにより、フッ化ビ-リデン単独 重合体に、薄膜を形成するための基材と化学結合を含む相互作用をもたせるように したり(基材密着能)、自己組織ィ匕を可能にしたり(自己組織化能)、またはフッ化ビ- リデン単独重合体同士を結合させる機能 (重合体結合能)をもたせるようにすることが できる。
[0061] ここでいう化学結合を含む相互作用とは、共有結合、イオン性結合、配位結合、水 素結合を生じる相互作用のことであり、その結果として、基材密着能、 自己組織化能 、重合体結合能が発現する。こうした機能性官能基としては、ヘテロ原子を含む原子 団から構成される官能基が好ましくあげられる。
[0062] 共有結合性のある官能基としては、具体的にはアセチレン基、アタリロイル基、アル デヒド基、アミノ酸基、芳香族系エーテル基、カーボネート基、環状酸無水物基、環 状ァミン基、環状カーボネート基、環状エーテル基、環状イミド基、環状イミノエーテ ル基、環状ォレフィン基、環状硫化物基、ジァミン基、ジカルボン酸基、ジェン基、ジ イソシアナ一ト基、ジオール基、ラタタム基、ラタトン基、 N—力ルボン酸無水物基、ォ レフイン基、フエノール基、ビュル基、スチレン基、シラノール基、ホスファネート基な どの 1種または 2種以上があげられる。その中でも、アタリロイル基が好ましぐ特に— OCOCX5 = CH (X5は水素原子、 CH、フッ素原子または塩素原子)などが好ましく
2 3
例示できる。
[0063] イオン結合性の官能基は、対イオンの存在時にイオン性結合を形成する官能基で あればよぐァ-オン性のものでもカチオン性のものでもよい。
[0064] 具体的には、カルボキシル基、チォカルボン酸基、ジチォカルボン酸基、スルフォ ン酸基、スルフィン酸基、スルフェン酸基、リン酸基、亜リン酸基、次亜リン酸基、セレ ニン酸基、セレノン酸基などがあげられる。これらは単独または複数で、単独または 複数の対イオンと有機イオン性化合物の塩を形成する。
[0065] 対イオンとしては、 Li、 Na、 K、 Rb、 Cs、 Mg、 Ca、 Sr、 Ba、 Zn、 Cd、 Ag、 Cuなど の金属イオンが使用できる。
[0066] 配位結合性の官能基とは、孤立電子対 (ローンペア)をもち、かつ配位結合能をも つ官能基のことをいう。具体的には、メルカプト基、アミン基、ホスフィン基のほか、酸 素原子、硫黄、セレン、テルルを有するカルコゲン基などがあげられ、これらが単独ま たは複数で配位結合を形成する。 [0067] 水素結合性の官能基とは、水素結合を形成し得る官能基であり、具体的には、カル ボキシル基、アミノ基、置換アミノ基、アミド基、置換アミド基、エーテル基、スルホン酸 基、スルホニル基のほカゝ、ピリジン環、ビビリジン環など環を構成している窒素が単独 または複数で水素結合を形成する基などがあげられる。
[0068] 基材密着機能性の官能基としては、上記の共有結合性官能基、イオン結合性官能 基、配位結合性官能基、水素結合性官能基などが例示でき、基材の種類に応じて、 これらの相互作用の 、ずれかが奏されるように選択すればよ!、。
[0069] 例えば、基材として金属を用いる場合はイオン結合性官能基、配位結合性官能基 などが好ましぐまた基材として有機材料を用いるときは共有結合性官能基、水素結 合性官能基などが好ましい。
[0070] 自己組織化機能性官能基とは、該官能基を有する分子がある特定の基材表面との 相互作用により自己組織ィ匕膜を形成し、単分子膜からなるフッ化ビ-リデン単独重合 体の薄膜を形成できる機能を有する官能基をいう。自己組織ィ匕によって得られた薄 膜は単なる表面修飾 (塗膜など)とは異なり、高い密度と高度に秩序化された構造を 有することを特徴としている。このため、特に、基材表面上に触媒作用、生体機能な どの機能性を付与するのに有用であり、センサーや電子デバイスに利用する際に好 適である。また、基板上に形成された薄膜は基材と結合した単分子膜となるため、本 発明にお ヽて強誘電性のデバイスとして薄膜を利用する場合には、基板との密着性 が向上するのみならず印加電圧が小さくてすむなどの効果が奏される。また個々の 原子の位置取りに対して分子レベルの制御が可能となり、リソグラフィ法など他の方 法では困難な寸法領域(lnm力も 1000 μ m)で明確な構造が得られやすくなるため 、これらの寸法領域での微小な強誘電体デバイスを作製することも可能となる。
[0071] 自己組織化機能性官能基としては、具体的には、 CH = CH メルカプト基 (一 SH
2、
)、ジスルフイド基、スルフイド基、有機シランィ匕合物、ビュル基、カルボキシル基、ヒド ロキサム酸 (R CO— NH—OH)、シアン化物(一 CN)などがあげられる力 上述した 効果をより享受できる点から、 CH = CH メルカプト基、ジスルフイド基、有機シラン
2、
化合物がより好ましぐ CH = CH メルカプト基および有機シランィ匕合物が特に好
2、
ましい。 [0072] 有機シラン化合物としては、— SIX R6 (nは 0— 2の整数; R6は CHまたは C H ;X
3-n n 3 2 5 は一 OR7、 一 COOH、 一 COOR7、 一 NH R7 、 一 OCNまたはハロゲン原子(ただし
3~m m
は CH 、 C Hまたは C H; mは 0— 3の整数))が好ましくあげられ、特に SiCl 、—Si
3 2 5 3 7 3
OR7などが好ましい。
3
[0073] 自己組織化機能を有する薄膜を形成するときに用いられる好適な基材としては、金 、白金、銀、銅、シリコンなどの金属系基材;酸化スズ、インジウムチンオキサイド、酸 化亜鉛、ガラス等の酸ィ匕物系透明基板や、スズ、インジウム、アルミニウム、銅、クロム 、チタニウム、鉄、ニッケルなどの自然酸化膜を表面に有する金属酸化物系基材が 好ましく、自己組織化機能性官能基の種類などによって適宜選択すればよい。
[0074] 例えば、官能基がメルカプト基、ジスルフイド基、スルフイド基の場合は金、白金、銀 、銅基材が、官能基が有機シラン化合物残基、酸無水物残基、ビニル基の場合はシ リコン基材が、官能基がカルボキシル基の場合は金属酸化物基材が、官能基が N Cの場合は白金基材が好ましく選ばれる。
[0075] 自己組織ィ匕膜の形成の確認には、例えば湿潤度測定、エリプソメトリー、低ェネル ギーヘリウム回折、表面ラマン散乱、赤外分光、 X線光電子分光、走査型トンネル顕 微鏡、電子線回折法、水晶振動子マイクロバランス法を用いることができるが、その 他の周知の手段を用いてもよ 、。
[0076] フッ化ビニリデン単独重合体同士を結合し得る重合体結合機能性官能基は、フッ 化ビニリデン単独重合体が有する官能基同士で共有結合、イオン性結合、配位結合 、または水素結合などを形成するものである。結合形式としては、共有結合またはィ オン性結合を形成するものがより好ましぐ共有結合を形成するものが特に好ましい。 また、このような共有結合を形成する官能基としては、付加反応、縮合反応、重付カロ 反応、開環反応などにより共有結合を形成するものがあげられるが、そのなかでも付 加反応、縮合反応、開環反応により共有結合を形成するものが好ましい。具体的な 官能基としては、上記の基材密着機能性官能基で説明し例示したものカゝら適宜選択 すればよいが、 CH = CH 、— OCOCH = CH 、— OCOCF = CH 、— OCOC (CH
2 2 2 3
) =CHまたは OCOCCl=CHが特に好ましい。
2 2
[0077] これらの機能性官能基をもつフッ化ビニリデン単独重合体は、機能性官能基を単 独もしくは複数種有していてもよぐさらに薄膜はこれらの官能基をもつフッ化ビ-リ デン単独重合体の 1種または 2種以上で形成されて 、てもよ 、。
[0078] 上記の機能性官能基を有するフッ化ビニリデン単独重合体は、基材に適用した後 に化学結合を含む相互作用を発現させるために、化学反応を適用してもよい。化学 反応としては周知の光反応、熱反応のいずれを用いてもよぐ反応開始剤のような添 加物を利用してもよい。
[0079] こうした機能性官能基を末端に有するフッ化ビ-リデン単独重合体の薄膜を基材上 に形成することにより、 I型結晶構造を単独または主成分とするフッ化ビ-リデン単独 重合体の薄膜の基材に対する密着性、薄膜の緻密化、薄膜の強度、薄膜の耐熱性 などの性能の向上が図れる。
[0080] 薄膜中のフッ化ビ-リデン単独重合体中のフッ化ビ-リデンのみの繰返し単位に着 目した数平均重合度は、下限は 3、さらには 4、特に 5であることが好ましぐ上限は 1 00、さら〖こは 30、特に 15である。強誘電性材料として利用する場合の数平均重合度 は、下限は 4、特に 5であり、上限は 20、より好ましくは 15、さらには 12、とりわけ 10で あるのが好ましい。数平均重合度が大きすぎると薄膜中の I型結晶構造の比率が低 下することがある。
[0081] 本発明の薄膜の形成方法に用いる原料としてのフッ化ビ-リデン単独重合体は、 片末端または両末端に式(1)の機能性部位を有するフッ化ビニリデン単独重合体で あれば、結晶構造は I型単独でも Π型単独でも、これらの混合物でも、さらには m型を 含んでいるものでもよい。
[0082] 原料としての末端機能性官能基含有フッ化ビニリデン単独重合体は、例えば、末 端がヨウ素原子または臭素原子のフッ化ビ-リデン単独重合体を製造し、っ 、で末 端を前記式(1)で示される部位に変性することにより製造することができる。
[0083] このとき末端の変性は一段階の反応で進めてもよいが、ー且他の末端基に変性し てから、目的とする機能性末端基に変性してもよい。変性方法については、詳しく後 述する。
[0084] 以上のとおり、原料としての末端機能性官能基含有フッ化ビ-リデン単独重合体は 、必ずしも I型結晶構造を単独または主成分として有する必要はなぐ基材に適用す る工程で、または基材に適用してから I型結晶構造を単独または主成分として有する フッ化ビ-リデン単独重合体としてもょ 、。
[0085] しかし、適用(形成)方法の容易さ、条件の範囲の広さなどの点から、 I型結晶構造 を単独または主成分として有する末端機能性官能基含有フッ化ビ-リデン単独重合 体を出発原料 (原末)として使用することが好ましい。
[0086] かかる I型結晶構造を単独または主成分として有する末端機能性官能基含有フッ 化ビ-リデン単独重合体は、末端がヨウ素原子または臭素原子の I型結晶構造を単 独または主成分として有するフッ化ビ-リデン単独重合体のヨウ素原子または臭素原 子末端を機能性官能基末端に変性することにより製造できる。
[0087] 末端がヨウ素原子または臭素原子の I型結晶構造を単独または主成分として有する フッ化ビ-リデン単独重合体の製造方法は、本発明者らが開発したものである。
[0088] すなわち、フッ化ビ-リデンを式 ( 1 A):
R9- X10 (1A)
(式中、 R9は 1価の有機基、ただし I型結晶構造を単独または主成分とするフッ化ビ- リデン単独重合体単位は含まない; x1Qはヨウ素原子または臭素原子)で示されるヨウ 素化合物または臭素化合物または式(1B):
X10-R2-X10 (IB)
(式中、 R2は 2価の有機基、ただし I型結晶構造を単独または主成分とするフッ化ビ- リデン単独重合体単位は含まない; x1Qはヨウ素原子または臭素原子)で示されるヨウ 素化合物または臭素化合物を連鎖移動剤 (テロ一ゲン)として存在させてラジカル重 合することにより、末端力ヨウ素原子または臭素原子の I型結晶構造を単独または主 成分として有するフッ化ビ-リデン単独重合体を得ることができる。
[0089] 式(1A)において、 R9は 1価の有機基 (ただし I型結晶構造を単独または主成分とす るフッ化ビ-リデン単独重合体単位は含まない)であり、好ましくは炭素数 1一 50、さ らには 1一 20のフルォロアルキル基、アルキル基などがあげられる。これらのうち、製 造性向上の点で優れることから、ポリフルォロアルキル基が好ましぐさらにはパーフ ルォロアルキル基が好ましぐ特に CF
3、 C F
2 5、 CF (CF )が好ましい。
3 2
[0090] 式(1B)にお 、て、 R2は 2価の有機基 (ただし I型結晶構造を単独または主成分とす るフッ化ビ-リデン単独重合体単位は含まない)であり、好ましくは炭素数 1一 50、さ らには 2— 20のフルォロアルキレン基、特にポリフルォロアルキレン基などがあげられ る。これらのうち強誘電特性向上の点で優れることから、 CF
2、CF
2 4、CF
3 6、CF
4 8、C
5
F、 C F などのパーフルォロアルキレン基が好ましぐ特に CF、 C F、 C F、 C F
10 6 12 2 2 4 3 6 4 8 が好ましい。
[0091] 別の観点力もは、連鎖移動剤(1A)または(1B)は、式(la):
c c I
[0092] [化 1]
C -X: (1 a)
R f
[0093] (式中、 X1Qはヨウ素原子または臭素原子
Figure imgf000020_0001
Rf2は同じ力または異なり、フッ素原子 または炭素数 1一 5のパーフルォロアルキル基力も選ばれるもの)で示される部位を 少なくとも 1個含む炭素数 1一 20のヨウ素化合物または臭素化合物であることが、分 子量分布が狭!、重合体や分岐の比率の少な!/、重合体鎖が合成でき、 I型結晶構造 の含有比率の高 、フッ化ビ-リデン単独重合体が得られる点で好まし 、。
[0094] Rf1および Rf2としては、例えばフッ素原子、 CF、 C F、 C Fなどがあげられ、なか
3 2 5 3 7
でも式(la)の部位にぉ 、て I型結晶構造の含有比率の高 、フッ化ビ-リデン単独重 合体が得られる点でフッ素原子であることが好ましい。
[0095] 式(la)の部位の具体例は、一 CF Br、一 CF I
2 2、
[0096] [化 2]
CF3 C2FE 2 F 5
CFB r 、 CF I 、
C F g
i
C™ B r 、 C一 I
C F3 CF3
[0097] などがあげられる。なかでも、分子量分布をより狭くすることができ、結果的に I型結晶 構造の含有比率の高いフッ化ビ-リデン単独重合体がえられる点で、ヨウ素化合物 であることが好ましい。
[0098] 式(la)の部位を有するヨウ素化合物または臭素化合物は、より重合反応が収率よ く進行し、かつ分子量分布や分岐鎖の少ない重合体が得られる点で、式(la)の部 位を有するポリフルォロ化合物であることが好ましぐ式(la)の部位を有するパーフ ルォロ化合物であることがより好まし 、。
[0099] 特に、式(2A) :
F-(CF ) -X10 (2A)
2 n
(式中、 X1Qはヨウ素原子または臭素原子; nは 1一 20の整数)で示される少なくとも 1 種のパーフルォロアイオダイドまたはパーフルォロブロマイド、または式(2B):
X10-(CF ) -X10 (2B)
2 n
(式中、 X1Qはヨウ素原子または臭素原子; nは 1一 20の整数)で示される少なくとも 1 種のパーフルォロジアイオダイドまたはパーフルォロジブロマイドが好ましい。
[0100] このようなパーフルォロ化合物としては、例えばモノアイオダイドパーフルォロメタン 、モノアイオダイドパーフルォロェタン、モノアイオダイドパーフルォロプロパン、モノ アイオダイドパーフルォロブタン(例えば 2—アイオダイドパーフルォロブタン、 1 アイ オダイドパーフルォロ(1, 1ージメチルェタン))、モノアイオダイドパーフルォロペンタ ン(例えば 1 アイオダイドパーフルォロ(4 メチルブタン) )、 1 アイオダイドパーフル オロー n—ノナン、モノアイオダイドパーフルォロシクロブタン、 2—アイオダイドパーフル ォロ(1ーシクロブチル)ェタン、モノアイオダイドパーフルォロシクロへキサンなどのパ 一フルォロモノアイオダイドィ匕合物およびこれらのヨウ素化合物のヨウ素原子を臭素 原子に置換した臭素化合物;ジアイオダイドパーフルォロメタン、 1, 2—ジアイオダィ ドパーフルォロェタン、 1, 3—ジアイオダイドパーフルオロー n プロパン、 1, 4ージアイ オダイドパーフルオロー n ブタン、 1, 7—ジアイオダイドパーフルオロー n オクタン、 1 , 2—ジ(アイオダイドジフルォロメチル)パーフルォロシクロブタン、 2—アイオダイド 1, 1, 1 トリフルォロェタンなどのパーフルォロジアイオダイド化合物などのヨウ素化合 物、およびこれらのヨウ素化合物のヨウ素原子を臭素原子に置換した臭素化合物が あげられる。 [0101] 式(2A)、(2B)で示されるパーフルォロ化合物を連鎖移動剤 (テロ一ゲン)として選 択し、重合時に存在させることで、またさらに特定の数平均重合度とすることで、 I型 結晶構造をより一層高純度で含有するフッ化ビニリデン単独重合体を比較的簡単な 条件で得ることができる。なお、重合体におけるフッ化ビニリデン単位の数平均重合 度を 4一 20、好ましくは 4一 15とすることで、より確実に高純度の I型結晶構造の重合 体を高効率で得ることができる。
[0102] 式(2A)、 (2B)のパーフルォロ化合物のなかでも、ヨウ素化合物が好ましぐまた n 力 S 1または 4m (ただし mは 1一 5)であることがより好まし!/、。
[0103] 式(2A)のヨウ素化合物は具体的には、 CF I、 F (CF ) I
2 4、 F (CF ) Iなどが例示で
3 2 8
き、なかでも CF Iが好ましい。
3
[0104] 式(2B)のヨウ素化合物は具体的には、式: I (CF CF ) I (nlは 1
2 2 nl 一 5の整数)で示 されるパーフルォロジアイオダイド [例えば I (CF CF ) 1 F ) I
2 2 、 I (CF C
2 2 2、 I (CF CF ) I
2 2 3
、 I (CF CF ) Iなど]が好ましくあげられ、なかでも I (CF CF ) Iが好ましい。
2 2 4 2 2 2
[0105] フッ化ビ-リデン単独重合体中のフッ化ビ-リデンのみの繰返し単位に着目した数 平均重合度は、下限は 3、さらには 4、特に 5であることが好ましぐ上限は 100、さら には 30、特に 15である。強誘電性材料として利用する場合の数平均重合度は、下 限は 4、特に 5であり、上限は 20、より好ましくは 15、さらには 12、とりわけ 10であるの が好まし!/、。数平均重合度が大きすぎると I型結晶構造の比率が低下することがある
[0106] フッ化ビ-リデンの単独重合は、フッ化ビ-リデンを前述の連鎖移動剤の存在下、 ラジカル反応させることにより行われ、通常ラジカル発生源を接触させることによって 開始する。
[0107] ラジカル発生源としては、ラジカル重合開始剤、光、熱などが利用可能であり、好ま しくはラジカル重合開始剤の存在下で製造することが、重合度を制御できる点で、反 応をスムーズに進行させることができる点で、また高収量で重合体が得られる点で好 ましい。
[0108] ラジカル重合開始剤としては、パーオキサイド類、ァゾ系開始剤などが利用できる。
[0109] パーオキサイド類としては、例えば n プロピルパーォキシジカーボネート、 i プロピ ルバーオキシジカーボネート、 n ブチルパーォキシジカーボネート、 t ブチルパー ォキシジカーボネート、ビス(4 tーブチルシクロへキシル)パーォキシジカーボネート などのパーォキシジカーボネート類; a、 a ,一ビス(ネオデカノィルバーオキシ)ジイソ プロピルベンゼン、タミルパーォキシネオデカノネイト、 1, 1, 3, 3—テトラメチルブチ ルパーォキシネオデカノネイト、 1ーシクロへキシルー 1 メチルェチルパーォキシネオ デカノネイト、 t一へキシルバーォキシネオデカノネイト、 t ブチルパーォキシネオデカ ノネイト、 t一へキシルバーォキシビバレイト、 t ブチルパーォキシビバレイト、 1, 1, 3 , 3—テトラメチルブチルパーォキシ 2 ェチルへキサノネート、 2, 5 ジメチルー 2, 5 ビス(2—ェチルへキサノィルパーォキシ)へキサン、 t一へキシルバーォキシ 2—ェ チルへキサノネイト、 t ブチルパーォキシ 2 ェチルへキサノネイト、 t ブチルパー ォキシイソブチレート、 t一へキシルバーォキシイソプロピルモノカーボネート、 tーブチ ルパーォキシマレイツクアシッド、 t ブチルパーォキシ 3, 5, 5—トリメチルへキサノ ネイト、 t ブチルパーォキシラウレイト、 2, 5 ジメチルー 2, 5 ビス(m トルオイルパ ーォキシ)へキサン、 t ブチルパーォキシイソプロピルモノカーボネイト、 tーブチルバ 一ォキシ 2—ェチルへキシルモノカーボネイト、 t一へキシルパーォキシベンゾエート 、 2, 5 ジメチルー 2, 5—ビス(ベンゾィル)へキサン、 t ブチルパーォキシアセテート 、 t ブチルパーォキシ m トルレートとパーォキシベンゾエート混合物、 tーブチルバ 一ォキシベンゾエート、ジ t ブチルパーォキシイソフタレートなどのォキシパーエステ ル類;イソブチルパーオキサイド、 3, 5, 5—トリメチルへキサノィルパーオキサイド、ォ クタノィルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、サ クシニックアシッドパーオキサイド、 m トルオイルパーオキサイド、ベンゾィルバーオ キサイドなどのジァシルバーオキサイド類; 1, 1 ビス(t一へキシルバーォキシ )—3, 3 , 5—トリメチルシクロへキサン、 1, 1—ビス(t一へキシルバーォキシ)シクロへキサン、 1 , 1 ビス(t ブチルパーォキシ )—3, 3, 5—トリメチルシクロへキサン、 1 , 1 ビス(t ブチルパーォキシ )ー2—メチルシクロへキサン、 1, 1 ビス(t ブチルパーォキシ)シ クロへキサン、 2, 2 ビス(t ブチルパーォキシ)ブタン、 n—ブチルー 4, 4—ビス(tーブ チルバ一才キシ)バレレート、 2, 2 ビス(4, 4ージー t ブチルパーォキシシクロへキシ ル)プロパンなどのパーォキシケタール類;ひ、 ひ, ビス(t ブチルパーォキシ)ジィ ソプロピルベンゼン、ジクミルパーオキサイド、 2, 5 ジメチルー 2, 5ビス(tーブチルバ ーォキシ)へキサン、 t ブチルタミルパーオキサイド、ジー t ブチルパーオキサイド、 2 , 5 ジメチルー 2, 5ビス(t ブチルパーォキシ)へキシンー3などのジアルキルバーオ キサイド類; P—メンタンハイド口パーオキサイド、ジイソプロピルベンゼンハイド口パー オキサイド、 1, 1, 3, 3—テトラメチルブチルハイド口パーオキサイド、クメンハイドロパ 一オキサイド、 t ブチルハイド口パーオキサイドなどのハイド口パーオキサイド類;過 硫酸アンモ-ゥム、過硫酸カリウム、過硫酸ナトリウムなどの過硫酸塩類;その他、過 塩素酸類、過酸ィ匕水素などがあげられる。
[0110] また、フッ素原子を有するパーオキサイド類も利用可能であり、含フッ素ジァシルバ 一オキサイド類、含フッ素パーォキシジカーボネート類、含フッ素パーォキシジエステ ル類、含フッ素ジアルキルパーオキサイド類力 選ばれる 1種または 2種以上が好ま しい。なかでも例えば、ペンタフルォロプロピオノィルパーオキサイド(CF CF COO)
3 2
、ヘプタフルォロブチリルパーオキサイド(CF CF CF COO)、 7H—ドデカフルォロ
2 3 2 2 2
ヘプタノィルパーオキサイド(CHF CF CF CF CF CF COO)などのジフルォロア
2 2 2 2 2 2 2
シルバーオキサイド類が好ましくあげられる。
[0111] ァゾ系ラジカル重合開始剤としては、例えば 2, 2,ーァゾビスイソブチ口-トリル、 2, 2,ーァゾビス(2, 4—ジメチルバレ口-トリル)、 2, 2,ーァゾビス(2 メチルバレロ-トリ ル)、 2, 2,ーァゾビス(2—シクロプロピルプロピオ-トリル)、 2, 2,ーァゾビスイソ酪酸 ジメチル、 2, 2,ーァゾビス [2 (ヒドロキシメチル)プロピオ-トリル]、4, 4,ーァゾビス ( 4 シァノペンテン酸)などがあげられる。
[0112] ラジカル重合開始剤としては、なかでも、パーォキシジカーボネート類、ジフルォロ ァシルバーオキサイド類、ォキシパーエステル類、過硫酸塩類などが好ましい。
[0113] この重合法において、ヨウ素化合物の使用量は、使用するフッ化ビニリデン単量体 1モノレに対し、下限 ίま 0. 01モノレ、好ましく ίま 0. 02モノレ、より好ましく ίま 0. 03モノレ、 特に好ましくは 0. 08モルであり、上限は 10モル、好ましくは 6モル、より好ましくは 2 モル、特に好ましくは 1モルである。
[0114] 連鎖移動剤の使用量が少なすぎると、重合度が大きくなりすぎ、それによつて I型結 晶構造の含有比率が低下するため好ましくない。連鎖移動剤の使用量が多すぎると 、重合反応が進行しにくぐ収量が低下したり、重合度が低くなりすぎるため好ましく ない。
[0115] また、ラジカル重合開始剤の使用量は、使用する連鎖移動剤 1モルに対し、下限は 0. 0001モノレ、好ましく ίま 0. 01モノレ、より好ましく ίま 0. 03モノレ、特に好ましく ίま 0. 0 4モノレであり、上限 ίま 0. 9モノレ、好ましく ίま、 0. 5モノレ、より好ましく ίま 0. 1モノレ、特に 好ましくは 0. 08モルである。
[0116] ラジカル重合開始剤の使用量が少なすぎると、重合反応が進行しにくくなり、また使 用量が多すぎると I型結晶構造の含有比率が低下するため好ましくない。
[0117] フッ化ビ-リデン単独重合体の製造法に採用し得る重合方法としては、重合溶媒を 使用しな 、バルタ重合法、重合場におけるモノマーを溶解させる溶剤を使用した溶 液重合法、重合場におけるモノマーを溶解または分散させる溶剤と必要に応じて水 などの分散媒を加えた懸濁重合法、乳化剤を含む水性溶剤中で行なう乳化重合法 などがあげられる。
[0118] なかでも、溶液重合法および懸濁重合法が、重合度を制御しやす!、点で好ま 、
[0119] 溶液重合法、懸濁重合法で製造する場合の重合溶媒としては、アセトン、メチルェ チルケトン、メチルイソブチルケトンなどのケトン系溶剤;酢酸ェチル、セロソルブァセ テート、酢酸 η—ブチル、酢酸イソブチル、メチルセ口ソルブアセテート、酢酸カルビト ールなどのエステル系溶剤;メチルアルコール、エチルアルコール、イソプロピルアル コーノレ、 η—ブチノレアノレコーノレ、イソブチノレアノレコーノレ、 tert—ブチノレアノレコーノレ、 sec ブチルアルコール、 tert—ァミルアルコール、 3—ペンタノール、ォクチルアルコール 、 3—メチルー 3—メトキシブタノールなどのアルコール系溶剤;ベンゼン、トルエン、キ シレンなどの芳香族系溶剤などが利用可能であり、またさらに、 CHF CF OCHF、 (
2 2 2
CF ) CFOCH、 CF CF CF OCH、 CHF CF OCH、 CF CF CH OCHF、 CF
3 2 3 3 2 2 3 2 2 3 3 2 2 2
CFHCF OCH、 CHF CF OCH CF、 CF CF CF CF OCH、 CF CF CH OC
3 2 3 2 2 2 3 3 2 2 2 3 3 2 2
F CHF、 (CF ) CHCF OCH、 CF CFHCF OCH CF、 CF CF CF CF OCH
2 2 3 2 2 3 3 2 2 3 3 2 2 2 2
CH、 CF CHFCF OCH CF CF、 CF CHFCF CH OCHF、 CHF CF CH OC
3 3 2 2 2 3 3 2 2 2 2 2 2
F CHF、 CF CFHCF OCH CF CF H、 CHF CF CF CF CH OCH、 C F 、 C
2 2 3 2 2 2 2 2 2 2 2 2 3 6 12 9 F、 C F
6 14、 CF CH CF CH
3 2 2 3、 CHF CF CF CHF
2 2 2 2、 (CF ) CFCHFCHFCF
3 2 3、 C
18
F CHFCHFCF CF、 (CF ) CHCF CF CF、 C H F、 CF CF CHF、 CF C1C
3 2 3 3 2 2 2 3 4 2 6 3 2 2 2
F CF CHF、 CF CFC1CFC1CF、 CF C1CF CF CF Cl、 CF C1CF CF CF CF
2 2 2 3 3 2 2 2 2 2 2 2 2 2
CF CHF、 CF C1CFC1CFC1CF Cl、 HCFC— 225, HCFC— 141b、 CF C1CFC1
2 2 2 2 2
CFC1CF Cl、 CF C1CF Cl、 CF C1CFC1 , H (CF ) H (n: 1一 20の整数)、 CF O (
2 2 2 2 2 2 η 3
C F O) CF CF (n: 0または 1一 10の整数)、 N (C F )などのフッ素系溶剤も利用
2 4 n 2 3 4 9 3
できる。
[0120] なかでもフッ素系溶剤力 重合度を制御しやすい点で好ましぐ特に HCFC— 225 、 HCFC— 141b、 CF C1CFC1CFC1CF Cl、 CF C1CF Cl、 CF C1CFC1 , H (CF )
2 2 2 2 2 2 2
11 (11: 1ー20の整数)、じ?0 (じ?0) CF CF (n: 0または 1一 10の整数)、 N (C F n 3 2 4 n 2 3 4
)などのフッ素系溶剤が好ましい。
9 3
[0121] 重合温度は、使用するラジカル重合開始剤の種類によって適宜選択できるが、通 常 10— 200°Cであり、下限は好ましくは 5°C、より好ましくは 10°Cであり、上限は好 ましくは 150°C、より好ましくは 100°Cである。
[0122] 力べして得られる重合体は、少なくとも一方の末端がヨウ素原子または臭素原子で あって I型結晶構造を単独または主成分として含むフッ化ビ-リデン単独重合体であ り、例えば連鎖移動剤として化合物(1A)を使用すると、式 (IA— 1):
R -A -X10 (IA— 1)
(式中、 A1は数平均重合度が 5— 12のフッ化ビ-リデン単独重合体の構造単位; R9 は 1価の有機基、ただしフッ化ビ-リデン単独重合体の構造単位は含まない; x1Qはョ ゥ素原子または臭素原子)で示されるフッ化ビ-リデン単独重合体が得られ、また連 鎖移動剤として化合物(1B)を使用すると、式 (IB - 1):
X11— A2— R2— A3— X12 (IB— 1)
(式中、 A2および A3は同じ力または異なるフッ化ビ-リデン単独重合体の構造単位で あって、構造単位 A2と A3の合計の数平均重合度が 2— 20 ;XUおよび X12はヨウ素原 子または臭素原子; R2は 2価の有機基、ただしフッ化ビ-リデン単独重合体の構造単 位は含まな 、)で示されるフッ化ビ-リデン単独重合体が得られる。
[0123] フッ化ビ-リデン単独重合体 (IA— 1)は 1つの重合体分子において一方の末端にョ ゥ素原子または臭素原子を有するフッ化ビ-リデン単独重合体である。
[0124] 連鎖移動剤 (テロ一ゲン)として式(2A)の化合物のうち nが 1のものを使用すると、 次式 (IA— 3)に示すように他方の末端に CF基が入る。
3
CF -A -X10 (IA-3)
3
(式中、 A1および X1Qは前記と同じ)
[0125] 一方の末端の構造が CF基であることにより、例えば長鎖のパーフルォロアルキル
3
基や分岐状のパーフルォロアルキル基が末端である場合に比して、 I型結晶構造の 純度が高くなる(例えば II型結晶の比率が低下する)点で特に好ましい。
[0126] 式 (IA— 1)の重合体は種々の方法で合成可能であるが、特に CF Iを連鎖移動剤
3
に用いた前述の製造法を用いることが、分子量分布の狭い重合体を合成できる点で 好ましぐそれによつて I型結晶構造の純度を高められる点でも好ましい。
[0127] 式 (IA— 1)の重合体の分子量分布は、平均重合度によって異なるが、例えば GPC 分析により求められる MwZMnで 1以上で 3以下のもの、好ましくは 2以下のもの、よ り好ましくは 1. 5以下のものであり、分子量分布が大きくなると I型結晶構造の純度が 低くなる傾向にある。
[0128] つぎに、フッ化ビ-リデン単独重合体 (IB— 1)は 1つの重合体分子において両末端 にヨウ素原子または臭素原子を有するフッ化ビ-リデン単独重合体であり、式(1B) の連鎖移動剤を用いて製造できる。
[0129] また、連鎖移動剤 (テロ一ゲン)として式(2B)の化合物のうち、式(2B-1):
X10— (CF CF ) -X10 (2B-1)
2 2 m
(式中、 mは 1一 5の整数)のものを使用すると、式(IB— 2):
X10— A2— (CF CF ) -A -X10 (IB— 2)
2 2 m
(式中、 mは 1一 5の整数; Χω、 A2および A3は前記と同じ)で示されるフッ化ビ-リデン 単独重合体が得られ、これら重合体は I型結晶構造の純度の高 、ものである。
[0130] 構造単位 A2と A3の合計の数平均重合度は 5— 20の範囲から選ばれる力 数平均 重合度の上限は好ましくは 15、特に好ましくは 12である。
[0131] 数平均重合度が低すぎると室温で結晶を形成しにくくなり、また数平均重合度が高 すぎると I型結晶の純度が低くなる(例えば II型結晶の比率が増大する)。 [0132] 式 (IB— 2)の重合体にお 、て、 X1Qはヨウ素原子であること力 分子量分布の狭!、重 合体を合成できる点で好ましぐそれによつて I型結晶構造の純度を高められる点で も好ましい。
[0133] また、 mは 1一 5の整数力も選択できる力 より好ましくは 2であり、このものは I型結 晶構造の純度の特に高 、ものである。
[0134] 式 (IB— 1)の重合体にお 、て構造単位 A2および A3の部分の分子量分布は、構造 単位 A2と A3の合計の数平均重合度によって異なる力 例えば GPC分析により求めら れる MwZMnで 1以上で 3以下のもの、好ましくは 2以下のもの、より好ましくは 1. 5 以下のものであり、分子量分布が大きくなると I型結晶の純度が低くなる傾向がある。
[0135] また、式 (IA— 1)および (IB— 1)の重合体は、フッ化ビ-リデン連鎖 、 A2および A3 中のフッ化ビ-リデン単位が重合体 1分子中に同じ方向を向いた式 (la) :
(CH CF ) (la)
2 2 n
のみ力 なるものであってもよぐまた重合体 1分子中にフッ化ビ-リデン単位の一部 が逆向きに結合した式 (lb) :
-(CH CF ) (CF CH ) (lb)
2 2 nl 2 2 n2
の構造 (n 1 + n2 = n = 1— 20)の重合体分子を含んで!/、てもよ!/、。
[0136] なかでも、式 (la)のフッ化ビ-リデン単位が同方向を向いた重合体分子のみ力もな るものが好ましい。
[0137] 式 (la)と (lb)の混合物であっても、 n2の比率 (異常結合率と言う)が小さなほど好ま しぐ例えば NMR分析などのデータ力 次式で算出できる異常結合率:
異常結合率 = {n2/ (n+nl +n2) } X 100
力 S 20%以下、さらには 10%以下、特に 5%以下のものが好ましい。
[0138] 式 (IA— 1)および式 (IB— 1)で示したフッ化ビ-リデン単独重合体は、それぞれ前 述の (数式 1)および (数式 2)で示した関係を満たす I型結晶構造を含有するもの (I型 結晶構造を単独または主成分として含むもの)が好ましぐさらには高純度で I型結晶 を含有するものが薄膜に強誘電特性を効果的に付与することができる点から (数式 3 )および (数式 4)で示した関係を満たすものが好ま 、。
[0139] 以上に、原料としての I型結晶構造を単独または主成分として含むヨウ素原子また は臭素原子末端のフッ化ビ-リデン単独重合体について詳しく説明したが、上述した および後述するとおり、薄膜の形成方法として特定の方法を採用する場合には、片 末端または両末端に式(1)の機能性部位を有するフッ化ビ-リデン単独重合体であ れば、結晶構造は II型単独でも、 I型と II型の混合物で II型を主成分とするものでも、さ らには III型を含んで!/、るものでもよ!/、。
[0140] これらの II型結晶構造を単独または主成分とするフッ化ビ-リデン単独重合体は、 従来公知の II型結晶構造を単独または主成分として含むヨウ素原子または臭素原子 末端のフッ化ビ-リデン単独重合体 (例えば松重ら、 Jpn. J. Appl. Phys., 39, 6358 (2000))などに記載)の末端を機能性官能基末端に変性することにより製造することが できる。
[0141] I型結晶構造を有する機能性官能基末端のフッ化ビニリデン単独重合体は、上記 末端がヨウ素原子または臭素原子の I型結晶構造を単独または主成分として有する フッ化ビ-リデン単独重合体のヨウ素原子または臭素原子末端を前記式(1)で示さ れる機能性部位に変性することにより製造することができる。
[0142] このとき末端の変性は一段階の反応で進める必要はなぐいったん他の末端に変 性してから、目的とする機能性末端に変性してもよい。
[0143] また、基材に適用されるフッ化ビ-リデン単独重合体は、末端の変性率が 60%以 上のものが好ましぐ 70%以上のものがより好ましぐとりわけ 80%以上のものが好ま しぐ特には 85%以上のものが好ましい。末端の変性率は例えば、 NMRにより 分析すればよい。なお、高末端変性率のものは、末端変性の反応自体を高収率に 行うようにしても勿論よいが、後述する再沈法、蒸留法、クロマトグラフィー法、蒸着法 などにより末端が変性されたものを分離する分離処理を行ってもよい。
[0144] 例えば (IA— 1)および (IB— 1)を変性することによって、本発明で使用する式(1)の 官能基含有部位を末端に有するフッ化ビニリデン単独重合体、例えば (IA)および (I B)を製造することがでさる。
[0145] 末端にヨウ素原子または臭素原子を有するフッ化ビ-リデン単独重合体の末端部 位を式(1)の部位に変性する方法は、部位(1)が有する官能基 Yの種類や、フツイ匕 ビ-リデン単独重合体のフッ化ビ-リデンの繰り返し単位などによって、種々の方法 が採用できる。そうした変性方法を具体的に例示するが、末端の変性方法はこれらの 例示の方法に限定されるものではな 、。
[0146] 変性方法 1(水酸基末端)
末端にヨウ素原子または臭素原子を有するフッ化ビ-リデン単独重合体 1当量に対 し、ァリルアルコールを 1一 9当量と、末端にヨウ素原子または臭素原子を有するフッ 化ビニリデン単独重合体を溶解するのに十分な酢酸ェチルを加え、酢酸ェチルに対 して 0— 90体積%の純水を加える。その後反応系を窒素置換し、ラジカル反応開始 剤である AIBNを適量カ卩え、 0°C— 100°Cまで加熱または冷却し転化率が変化しなく なるまで反応させると、末端にァリルアルコールが付加したフッ化ビ-リデン単独重合 体が得られる(反応式 1)。
[0147] [化 3]
^ ( d ゾ ^ 1 \ 、 1』■ J
AIBN 65°C
(V d F) nCH CH I CH OH
H20、 AcOEt
[0148] 次に得られた末端にァリルアルコールが付加したフッ化ビ-リデン単独重合体 1当 量に対し、酸化白金 0.01— 1当量、トリェチルァミン 0.1-3.6当量、末端にァリル アルコールが付加したフッ化ビ-リデン単独重合体が十分溶解する量の酢酸を加え る。酢酸だけで十分な溶解度が得られない場合は、酢酸ェチル、 DMFなどを適宜 加えてもよい。その後、水素ガス 1当量以上を更に加えて、反応温度 0°C— 100°Cで 水素ガス圧が変化しなくなるまで反応を行うことにより末端にアルコール (水酸基)が 付加したフッ化ビ-リデン単独重合体を得ることができる (反応式 2)。
[0149] [化 4]
C F 3 (V d F) nCH2CH I CH2OH
PtOり、 Et3N、 AcOH、 H (gas)
^ C P. (V d F).C H? C H ? C H ? OH
AcOEt (室温)
[0150] 変性方法 2 (メルカプト基末端)
末端にヨウ素原子または臭素原子を有するフッ化ビ-リデン単独重合体 1当量に対 し、ラジカル反応開始剤である AIBNを適量と、末端にヨウ素原子または臭素原子を 有するフッ化ビニリデン単独重合体を溶解するのに十分な酢酸ェチルを加え、反応 系を窒素置換した後、エチレンガス 1当量以上加える。反応温度は 0— 100°Cでェチ レンガス圧が変化しなくなるまで反応を行うことにより、末端にヨウ素原子または臭素 原子を有するエチレン付加したフッ化ビ-リデン単独重合体を得ることができる(反応 式 3)。
[0151] [化 5]
CF3 (VdF) ri I + CH2 = CH2
A I BN 65t
►CF, (VdF) nCH2CH;; I
Ac OE t
[0152] 得られた末端にヨウ素原子または臭素原子を有するエチレン付加したフッ化ビ-リ デン単独重合体 1当量に対して 1一 10当量のジメチルチオホルムアミドをカ卩える。こ のとき末端にヨウ素原子または臭素原子を有するエチレン付加したフッ化ビ-リデン 単独重合体が十分に溶解して ヽな 、場合は DMFなどを適宜加えてもょ ヽ。反応温 度は 0— 100°Cで転ィ匕率が変化しなくなるまで反応を行うと末端にメルカプト基をもつ フッ化ビ-リデン単独重合体を得ることができる (反応式 4)。
[0153] [化 6]
CF3 (VdF) nCH2CH2 I + HSCN (CH3) 2 DMF
► CF3 (VdF) nCH2CH2SH
70V
[0154] 変性方法 3 (ビニル基末端)
反応式 1に従って得られた末端にァリルアルコールが付加したフッ化ビ-リデン単 独重合体 1当量に対して、 Zn粉末を 1一 10当量カ卩え、末端にァリルアルコールが付 カロしたフッ化ビ-リデン単独重合体を十分溶解させうる酢酸を加えて、転化率が変化 しなくなるまで加熱還流を行うと、末端にビニル基をもつフッ化ビ-リデン単独重合体 を得ることができる(反応式 5)。 [0155] [化 7]
C F 3 (Vd F) nCH2CH I CH2OH
酢酸
[0156] 変性方法 4 (有機シラン末端)
反応式 5に従って得られた末端にビニル基をもつフッ化ビ-リデン単独重合体 1当 量に対して、 40重量%—塩ィ匕白金酸のイソプロパノール溶液を触媒量、また末端に ビュル基をもつフッ化ビ-リデン単独重合体を十分溶解させるだけのエタノールをカロ え、トリエトキシシラン 1. 2— 10当量を加えて数時間以上加熱還流を行うと、末端に 有機シランィ匕合物をもつフッ化ビ-リデン単独重合体を得ることができる (反応式 6)。
[0157] [化 8]
CF3 (Vd F) nCH2CH = CH2 + HS i (OC2H5) 3 塩化白金
► CF3 (Vd F) nCH2CH2CH2S i (OC2Hs) 3 エタノール
[0158] 変性方法 5 (アタリロイル基末端)
反応式 2に従って得られた末端にアルコール (水酸基)が付加したフッ化ビニリデン 単独重合体 1当量に対し、アクリル酸クロライドもしくは 2—クロ口アクリル酸クロライドも しくはメタクリル酸クロライドもしくは 2—フルォロアクリル酸フルオリド 1一 10当量、有機 ァミン 1一 10当量をカ卩え、無水 THFを末端にアルコールが付カ卩したフッ化ビ-リデン 単独重合体が十分溶解する量加え、反応温度 0— 100°Cで転化率が変化しなくなる まで反応を行うと末端にアタリロイル基をもつフッ化ビ-リデン単独重合体を得ること ができる (反応式 7)。
[0159] [化 9]
C F a (Vd F) nCH2CH2CH2OH 十 C I OC— CH=CH2 ピリジン
► C F , ( V d F) n C FI ? C H P C H P O C C I I = C I ϊ
Dry THF 3 2 2 " |[ "
O
[0160] また両末端を変性する場合にはフッ化ビ-リデン単独重合体 1当量に対する各々 の試薬の量が上記した量の 2倍であることが好ましい。
[0161] なお、末端の変性工程で、末端部位以外の構造は実質的に変化することはなぐフ ッ化ビ二リデン部位の数平均分子量と分子量分布が維持されれば、結晶構造やそれ らの比率も含めて維持される。
[0162] 力べして少なくとも末端の一方に式(1)の部位を有する I型結晶構造を有するフツイ匕 ビ-リデン単独重合体、例えば式 (IA):
X -A -X2 (IA)
(式中、 A1は数平均重合度が 5— 12のフッ化ビ-リデン単独重合体の構造単位; X1 および X2は同じかまたは異なり、前記式(1)の部位、ポリフルォロアルキル基または アルキル基、ただし X1または X2の少なくとも 1つは前記式( 1 )の部位である)で示され る I型結晶構造を単独または主成分とするフッ化ビ-リデン単独重合体、または式 (IB ):
X3-A2-R -A3-X4 (IB)
(式中、 A2および A3は同じ力または異なるフッ化ビ-リデン単独重合体の構造単位で あって、数平均重合度が 2— 20である; X3および X4は同じ力または異なり、前記式(1 )の部位、ポリフルォロアルキル基またはアルキル基、ただし X3または X4の少なくとも 1つは前記式(1)の部位である; R2は 2価の有機基、ただしフッ化ビ-リデン単独重合 体単位は含まな ヽ)で示される I型結晶構造を単独または主成分とするフッ化ビ-リ デン単独重合体が得られる。
[0163] X1、 X2、 X3および X4において、式(1)で示される部位以外の基としては、例えば H、 F、 一 CH 、 一 CH CH 、 一 CH CH CH 、 一 CF 、 一 CH CF 、 一 CF CH 、 一 CF CF 、
3 2 3 2 2 3 3 2 3 2 3 2 3 一 C (CF ) 、 一 CF CF CF CF 、 一 CF CF CH CF 、 一 CF CF CF CH 、 一 CF CF
3 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2
CF (CF ) 、 一 CF CF CH (CF ) 、 一 CF CF CH (CF ) CH 、 一 CF CF CH (CH )
3 2 2 2 3 2 2 2 3 3 2 2 3 2
、 一 CF C (CF ) 、 一 CF C (CH ) 、 一 CF C (CF ) CH 、 一 CF C (CH ) CFなどが
2 3 3 2 3 3 2 3 2 3 2 3 2 3 あげられる。これらのうち、強誘電性向上の点から、 F、 H、 一 CH 、 -CH CH 、 -CH
3 2 3 2
CH CH 、 一 CF 、 一 CH CF 、 一 CF CH力好ましく、特に ίま H、 一 CH 、 一 CH CH 、
2 3 3 2 3 2 3 3 2 3 CF 、 一 CF CH力好まし!/ヽ。
3 2 3
[0164] また、 Z -(R10) A1 - (R11) -S-M1 (IA-2)
nl n2
(式中、 A1は数平均重合度が 3— 100のフッ化ビ-リデン単独重合体の構造単位; Z1 はポリフルォロアルキル基またはアルキル基; R1Qおよび R11は同じかまたは異なり、 2 価の有機基、ただし I型結晶構造を単独または主成分とするフッ化ビ-リデン単独重 合体単位は含まない; nlおよび n2は同じかまたは異なり 0または ! M1は水素原子ま たはアルカリ金属原子)で示されるフッ化ビ-リデン単独重合体、および式 (IB - 3): M2— S— (R12) — A2— R2— A3— (R13) -S-M3 (IB— 3)
n3 n4
(式中、 A2および A3は同じ力または異なるフッ化ビ-リデン単独重合体の構造単位で あり、 A2および A3の合計の数平均重合度が 3— 100である; R2は 2価の有機基、ただ しフッ化ビ-リデン単独重合体単位は含まな 、; R12および R13は同じ力または異なり、 2価の有機基、ただしフッ化ビ-リデン単独重合体単位は含まな ヽ; n3および n4は 同じかまたは異なり 0または 1 ;M2および M3は同じかまたは異なり、水素原子またはァ ルカリ金属原子)で示されるフッ化ビ-リデン単独重合体
は ヽずれも文献 ·特許未記載の新規化合物である。
[0165] なお、これらの新規ィ匕合物は、フッ化ビニリデン単独重合体単位の数平均重合度( A1または (A2および A3の合計))を3— 100とするほかは、前記式 (IA)または式 (IB) で示されるフッ化ビ-リデン単独重合体と同様にして製造することができる。
[0166]
Figure imgf000034_0001
M2および M3が 採りうるアルカリ金属としては、例えば Li、 Na、 Kなどがあげられ、特に強誘電性向上 の点から Li、 Naが好ましい。
[0167] また、 R1Q、 RU、 R12および R13はいずれも式(1)における R1と同じであり、 R1Qと RU、 R 12と R13はそれぞれ同じでも異なって 、てもよ!/、。
[0168] 式 (IA— 2)で示されるフッ化ビニリデン単独重合体の具体例としては、例えば [0169] [化 10]
R f — 0 (CH2) 6SH
Figure imgf000035_0001
または
R f
R f ' - Vd F) 4^40 ( C H 2) i〜6SNa
R f
(式中、 Rfは炭素数 1一 5のパーフルォロアルキル基もしくは炭素数] 、5のポリフル ォロアルキル基; VdFはフッ化ビ-リデン単位(以下同様))
などがあげられ、特に
(CF ) CF-(VdF) (CH ) SH、
3 2 4一 15 2 1一 2
CF CF CF -(VdF) (CH ) SH、
(CF ) C-(VdF) (CH ) SH、
3 3 4一 15 2 1—2
CF -(VdF) (CH ) SH、
3 4一 15 2 1—2
CH CF -(VdF) (CH ) SH、
3 2 4一 15 2 1—2
(CF ) CF— (VdF) (CH ) SNaゝ
3 2 4一 15 2 1一 2
CF CF CF -(VdF) (CH ) SNaゝ
(CF ) C-(VdF) (CH ) SNaゝ
3 3 4一 15 2 1一 2
CF— (VdF) (CH ) SNaゝ
CH CF -(VdF) SNa
が好ましい。
[0171] 式 (IB— 3)で示されるフッ化ビ-リデン単独重合体の具体例としては、例えば
[外 5]
R2が→CF2 "T i、 A2と Asの Vcl F単位の合計数が 4〜40、 R12および R13が CH2 "下 6、 M2および M3が Hまたは N aであるものなどがあげられ、 特に R2
Figure imgf000035_0002
Asと A3の Vd F単位の合計数が 4〜15、 R および R 13
→CH?— Γ -?^ Μ2および Μ3が Ηまたは Na であるものが好ましい。
[0172] 本発明の薄膜の形成方法は、これらの少なくとも一方の末端に部位(1)を有し I型 結晶構造を有する、好ましくは I型結晶構造を単独または主成分とするフッ化ビ -リデ ン単独重合体を基材に適用して、基材上に薄膜を形成する方法である。
[0173] フッ化ビ-リデン単独重合体は、反応生成物 (原末)を直接基材に適用してもよいし 、フッ化ビ-リデン単独重合体に何らかの処理工程をカ卩えたのち、フッ化ビ-リデン 単独重合体を基材に適用してもよい。 I型結晶構造を単独または主成分とするフツイ匕 ビ-リデン単独重合体原末の場合は、それらの処理は I型結晶構造を損なわな ヽ範 囲で行うことが望ましい。
[0174] 加える処理工程としては、例えば、重合体原末中の低分子量不純物などを除去す る洗浄処理工程のほか、フッ化ビニリデン単独重合体を特定の分子量のものに分離 する分離工程、再沈および再結晶などの工程、乾燥を目的とする加熱工程、真空処 理工程、結晶を成長させる目的の熱処理工程、 I型結晶構造の純度を上げる目的の 溶媒処理工程などがあげられる。
[0175] このうち分離工程により、特定の分子量のものに分離することで、例えば I型結晶構 造の純度が高まり、それによつて本発明の薄膜に強誘電特性をより効果的に付与す ることができる。分離工程は例えば再沈法、蒸留法、クロマトグラフィー法、蒸着法な どにより好ましく実施できる。
[0176] 再沈法によれば、フッ化ビニリデン単独重合体原末をできるだけ少量の溶媒(良溶 媒)に溶解させておき、ついでフッ化ビ-リデン単独重合体原末に対して溶解度の低 い溶媒 (貧溶媒)に投入してフッ化ビニリデン単独重合体を再沈させることにより、単 一分子量のフッ化ビ-リデン単独重合体を分離できる。
[0177] このときフッ化ビ-リデン単独重合体原末は、良溶媒に対して通常 1一 80重量%、 好ましくは 1一 70重量%、より好ましくは 1一 50重量%溶解させておくのが好まし 、。 また、貧溶媒は良溶媒の 10— 20倍量程度とすることが好ましい。再沈時の温度は、 通常— 30— 150°C、好ましくは 0— 80°C、より好ましくは 25— 50°Cが採用される。
[0178] 前記良溶媒や貧溶媒は、再沈させるフッ化ビニリデン単独重合体の溶解性に応じ て適宜選択すればよい。例えばアセトン、メチルェチルケトン、メチルイソブチルケト ン、シクロへキサノン、ァセチルアセトンなどのケトン系溶剤;酢酸ェチル、セロソルブ アセテート、酢酸 n—ブチル、酢酸イソブチル、メチルセ口ソルブアセテート、酢酸カル ビトール、ジブチルフタレートなどのエステル系溶剤;ベンズアルデヒドなどのアルデ ヒド系溶剤;ジメチルァミン、ジブチルァミン、ジメチルァ-リン、メチルァミン、ベンジ ルァミンなどのアミン系溶剤; N, N—ジメチルホルムアミド、 N, N—ジメチルァセトアミ ド、 N—メチルー 2—ピロリドンなどのアミド系溶剤;無水酢酸などのカルボン酸無水物 系溶剤;酢酸などのカルボン酸系溶剤;クロ口ホルム、ジクロロメタン、 1, 2—ジクロロ ェタン、クロ口ベンゼン、塩ィ匕べンジノレ、 1, 1, 2, 2—テトラクロロェタンなどのハロゲン 系溶剤;テトラヒドロフラン、ジォキサンなどのエーテル系溶剤;ジメチルスルホキシド などのスルホンアミド系溶剤;へキサン、ヘプタン、オクタン、石油エーテルなどの脂 肪族炭化水素系溶剤;メタノール、エタノール、 1 プロパノールなどのアルコール系 溶剤;ベンゼン、トルエン、キシレン、スチレンなどの芳香族炭化水素系溶剤;または これらの 2種以上の混合溶剤などが好ましく利用できる。
[0179] 蒸留法によれば、フッ化ビニリデン単独重合体原末を一定圧力(減圧)状態におい て一定温度下で蒸留することにより、単一分子量のフッ化ビニリデン単独重合体を効 率よく分離できる。
[0180] 蒸留時の圧力は、通常 0. lPa— lOlKPa、好ましくは lPa— 50KPa、より好ましく は lOOPa— lKPaである。蒸留時の温度は、通常 0— 500°C、好ましくは 0— 250°C
、より好ましくは 25— 200°Cである。
[0181] 洗浄法によれば、溶剤によりフッ化ビ-リデン単独重合体原末を洗浄する操作を施 すことにより、単一分子量のフッ化ビ-リデン単独重合体を分離できる。
[0182] 洗浄に用いる溶剤としては、 目的とするフッ化ビ-リデン単独重合体を溶解させるこ とのできるものを任意に用いればよい。具体的には、再沈法で例示したものと同様の ものが使用できる。
[0183] 洗浄の際の溶剤の温度は、通常— 30— 150°C、好ましくは 0— 80°C、より好ましくは 25— 50。Cである。
[0184] また、洗浄操作は使用する洗浄用の溶剤により異なるが、原則として何回でもよぐ 通常 100回以下、好ましくは 50回以下、より好ましくは 10回以下である。 [0185] クロマトグラフィー法によれば、効率よく単一分子量のフッ化ビ-リデン単独重合体 を単離できる。
[0186] 移動相がフッ化ビニリデン単独重合体を溶解するものであれば、公知の方法のうち のどの方法を採用してもよぐ例えば液相クロマトグラフィーやガスクロマトグラフィー が好ましく採用される。その際の温度は、通常- 30— 150°C、好ましくは 0— 100°C、 より好ましくは 25— 80°Cである。
[0187] 蒸着法によれば、フッ化ビ-リデン単独重合体原末を一定圧力(減圧)の状態にお いて一定温度下で蒸着することにより、効率よく単一分子量のフッ化ビニリデン単独 重合体を単離できる。
[0188] 蒸着の際、フッ化ビニリデン単独重合体原末を加熱または冷却するが、その温度は 、通常—30— 1000°C、好ましくは 0— 800°C、より好ましくは 0— 500°Cである。蒸着 の際の系内の圧力は、通常 1 X 10— 6Pa— 100KPa、好ましくは lKPa以下、より好ま しくは 1 Pa以下である。
[0189] より簡易かつ効率的にフッ化ビ-リデン単独重合体から単一分子量のフッ化ビ-リ デン単独重合体を単離できる点から、蒸留法またはクロマトグラフィー法を採用するこ とが好ましい。
[0190] 力かる分離工程により、分子量分布を狭くするほど、例えば I型結晶構造の純度が 高まり、本発明の薄膜に強誘電特性をより効果的に付与することができることから、単 一分子量のフッ化ビニリデン単独重合体の純度を 70重量%以上、さらには 80重量 %以上、さらに好ましくは 90重量%以上、特には 95重量%以上にまで高めることが 好ましい。
[0191] そして、前記溶媒処理工程としては、具体的には、フッ化ビ-リデン重合体を、双極 子モーメントが 2. 8以上の有機溶剤を単独でまたは一部として含む溶剤に溶解させ た後、該溶剤を蒸散させる工程が例示される。双極子モーメントが 2. 8以上の有機 溶剤を単独でまたは一部として含む溶剤を用いて処理することにより I型結晶構造が より高純度となる。
[0192] なお、本発明で使用する双極子モーメントの値は、主として化学便覧'基礎編 '改 訂 3版(日本化学会編:丸善)および CRC Handbook of Chemistry and Physics (Lide, David R.編: CRC Press)に記載されている値を採用している。
[0193] 双極子モーメントが 2. 8以上の有機溶剤としては、たとえばジメチルホルムアミド( 双極子モーメント = 3. 82)、ァセトニトリル(3. 92)、アセトン(2. 88)ジメチルァセト アミド(3. 81)、ジメチルスルフオキサイド(3. 96)、へキサメチルフォスホルアミド(5. 39)、N—メチルー 2—ピロリドン (4. 09)、テトラメチルゥレア(3. 47)などの 1種または 2種以上の混合溶剤が例示できる。これらのうち、 I型結晶構造の生成率が高い点か ら、有機溶媒の双極子モーメントは、 3. 0以上が好ましぐより好ましくは 3. 5以上、 特に 3. 7以上である。
[0194] また、双極子モーメントが 2. 8以上の有機溶剤を一部として含む溶剤も有効に使用 できる。この混合溶剤では双極子モーメントが 2. 8以上の有機溶剤を 5質量%以上、 さらには 10質量%以上、特に 30質量%以上含んでいれば、双極子モーメントが 2. 8 以上の有機溶剤の単独使用に匹敵する I型結晶構造の高純度化効果が奏される。
[0195] 混合する他の有機溶剤としては、併用する双極子モーメントが 2. 8以上の有機溶 剤よりも沸点が低いものが好ましぐたとえばメチルェチルケトン (MEK)、テトラヒドロ フラン(THF)、酢酸ェチル、酢酸、ピリジン、シクロペンタノン、シクロへキサノン、酢 酸ブチル、ポリエチレングリコールメチルエーテルアタリレート(PEGMEA)、メチルァ ミルケトン(MAK)などが例示できる。
[0196] 溶解温度は、通常— 30— 150°C、好ましくは 0— 80°C、より好ましくは 25— 50°Cが 採用される。高すぎるとフッ化ビニリデン単独重合体もしくは溶媒の変質がおきる傾 向となり、低すぎると溶媒が固化したり、粘度が上昇したり、フッ化ビニリデン単独重 合体が溶解しにくくなる傾向にある。
[0197] フッ化ビ-リデン単独重合体溶液の濃度としては、有機溶剤の種類や溶解温度な どによって適宜選定すればよいが、飽和溶解度まで溶解させても本発明の効果は奏 される。好ましい濃度は、 0. 1質量%以上、好ましくは 0. 5質量%以上、より好ましく は 1質量%以上であり、 50質量%以下、好ましくは 30質量%以下、より好ましくは 20 質量%以下である。
[0198] 有機溶剤を蒸散させる方法としては特に制限はなぐたとえば大気圧下に開放系で 放置する方法、大気圧下に密閉系で放置する方法、減圧下に室温で蒸散させる方 法、減圧下に加熱して蒸散させる方法など通常の方法が採用できる。ただ、高温に 加熱すると析出したフッ化ビニリデン単独重合体自身が溶融する傾向にあるので、周 囲圧力に関係なぐフッ化ビニリデン単独重合体が溶融しない温度が好ましぐ具体 的には 0°C以上、好ましくは 25°C以上、より好ましくは 30°C以上であり、 150°C以下、 好ましくは 100°C以下、より好ましくは 50°C以下である。
[0199] 周囲圧力は蒸散温度を低下させる点力 大気圧、特に減圧下が好ましい。好まし い周囲圧力は 0. 0013Pa以上、さらには 0. 133kPa以上、特に 1. 333kPa以上で あり、大気圧以下、さら【こ ίま 9. 333kPa以下、特【こ 6. 666kPa以下である。
[0200] 蒸散は残留溶媒による電気物性、特に強誘電特性の低下防止の点から溶剤が充 分に除去されるまで時間をかけて行うことが望ましい。
[0201] またさらに、 I型結晶構造を単独または主成分とするフッ化ビ-リデン単独重合体を 出発原末として使用する場合は、溶剤や添加剤などとブレンドして塗料の形態とする 工程を経由したのち、薄膜の形成を行ってもよい。
[0202] 本発明にお 、て、薄膜の形成には種々の方法が利用できる力 例えばフッ化ビ-リ デン単独重合体を液状媒体に溶解または分散させ、コーティング溶液 (塗料)の形態 で塗布する方法 (コーティング溶液法);フッ化ビ-リデン単独重合体を粉体の形態で 直接基材に塗布する方法 (粉体塗布法);フッ化ビニリデン単独重合体の粉体を真空 下および Zまたは加熱下において昇華させ、蒸着により被覆する方法 (真空蒸着法) などが好ましく利用できる。
[0203] またこれらの方法は、特に I型結晶構造を単独または主成分とするフッ化ビ-リデン 単独重合体を出発原末として使用する場合に効果的な方法である。 II型結晶構造を 単独または主成分とする、またはさらに III型結晶構造を含むフッ化ビ-リデン単独重 合体を出発原末として使用する場合の薄膜の形成方法については、別途、後述する
[0204] フッ化ビ-リデン単独重合体を用いてコーティング溶液 (塗料)の形態で塗布する 方法にお!、て使用する液状媒体としては、フッ化ビ-リデン単独重合体を溶解また は均一に分散させることができるものが利用できる。なかでも、薄層被膜の膜厚をコン トロールするためにはフッ化ビ-リデン単独重合体を溶解させる液状媒体が好まし ヽ [0205] そうした液状媒体としては、例えばアセトン、メチルェチルケトン、メチルイソブチル ケトン、シクロへキサノン、ァセチルアセトンなどのケトン系溶剤;酢酸ェチル、セロソ ルブアセテート、酢酸 n—ブチル、酢酸イソブチル、メチルセ口ソルブアセテート、酢酸 カルビトール、ジブチルフタレートなどのエステル系溶剤;ベンズアルデヒドなどのァ ルデヒド系溶剤;ジメチルァミン、ジブチルァミン、ジメチルァ-リン、メチルァミン、ベ ンジルァミンなどのアミン系溶剤; N, N—ジメチルホルムアミド、 N, N—ジメチルァセト アミド、 N—メチルー 2—ピロリドンなどのアミド系溶剤;無水酢酸などのカルボン酸無水 物系溶剤;酢酸などのカルボン酸系溶剤;クロ口ホルム、ジクロロメタン、 1, 2—ジクロ 口エタン、 1, 1, 2, 2—テトラクロロェタンなどのハロゲン系溶剤;テトラヒドロフラン、ジ ォキサンなどのエーテル系溶剤;ジメチルスルホキシドなどのスルホンアミド系溶剤な どが好ましい。
[0206] なかでも、ケトン系溶媒、アミド系溶媒カ^ツ化ビ-リデン単独重合体を良好に溶解 させる点で好ましい。
[0207] また、フッ化ビニリデン単独重合体が微粒子の形状で媒体中に安定に均一分散し たものであれば液状溶媒に不溶であっても薄膜の形成が可能である。例えばフツイ匕 ビニリデン単独重合体の水性分散体などが利用可能である。
[0208] これらのコーティング溶液におけるフッ化ビ-リデン単独重合体の濃度は、 目的と する膜厚やコーティング溶液の粘度などによって異なるが、 0. 1重量%以上、好まし くは 0. 5重量%以上、より好ましくは 1重量%以上であり、 50重量%以下、好ましくは 30重量%以下、より好ましくは 20重量%以下である。
[0209] これらのコーティング溶液を用いて基材に塗布する方法としては、スピンコート、ディ ップコート、スプレーコート、ロールコート、グラビアコートなどの公知の塗装方法が採 用可能であり、なかでも薄膜を効率よく形成する方法として、スピンコート法、グラビア コート法などが好ましく、特にスピンコ一トが好まし 、。
[0210] 上記の方法で塗布した後、溶媒を除去するための乾燥工程を行なってもよい。乾 燥方法としては、例えば室温での風乾、加熱乾燥、真空乾燥などが採用できるが、 過度に高温での乾燥は I型の結晶構造を変化させることがあるので注意を要する。 [0211] したがって、フッ化ビニリデン単独重合体の融点を下回る温度での加熱乾燥が好ま しい。加熱による乾燥の温度は、使用する溶媒の沸点などによって異なる力 30°C 以上、好ましくは 40°C以上、より好ましくは 50°C以上であり、 150°C以下、好ましくは 100°C以下、より好ましくは 80°C以下である。
[0212] このようにして、コーティング溶液の形態で塗布され基材に形成されたフッ化ビニリ デン単独重合体薄膜は I型の結晶構造を維持しており、優れた強誘電性を発現する 能力を有するものである。
[0213] また、真空蒸着装置を用い、真空蒸着法によって基材に薄膜を形成する方法も好 ましい。
[0214] 真空蒸着時における温度や真空度はフッ化ビニリデン単独重合体の重合度や昇 華性などによって適宜選択される力 蒸着温度は室温一 200°C、好ましくは 100°C以 下である。基材温度は 0— 100°C、好ましくは室温以上、そして 50°C以下である。真 空度は 10— 2Pa以下、好ましくは 10— 4Pa以下である。
[0215] これら真空蒸着方法において、本発明の薄膜形成方法を利用することで、特に基 材を極低温に設定しなくとも室温などの通常の条件下において、容易に I型結晶構 造のフッ化ビ-リデン単独重合体薄膜を形成できる。
[0216] II型結晶構造を単独または主成分とする、またはさらに III型結晶構造を含むフツイ匕 ビ-リデン単独重合体を出発原末として使用する場合の薄膜の形成方法としては、 末端がヨウ素原子や臭素原子のフッ化ビ-リデン単独重合体から I型結晶構造を単 独または主成分とするフッ化ビ-リデン単独重合体薄膜を形成する従来公知の方法 が採用できる。
[0217] 例えば、 II型結晶構造を単独または主成分とする、またはさらに III型結晶構造を含 むフッ化ビニリデン単独重合体を出発原末とし、このフッ化ビニリデン単独重合体を 特定の基板 (KCほたは KBr)に真空蒸着法 (基板温度: KC1= 50°C、 KBr=0°C) により薄膜を形成する方法、または液体窒素により低温 (約 160—— 100°C)にした 金属基板 (Ptなど)上に真空蒸着法により薄膜を形成する方法などが例示できる。
[0218] 本発明の薄膜形成方法によれば、適用可能な基材の種類を大幅に広くすることが でき、種々の基材上に I型結晶構造のフッ化ビ-リデン単独重合体薄膜を形成できる [0219] 基材の種類は、 目的とする積層体の狙いと用途、出発原末として使用するフッ化ビ ユリデン単独重合体の種類によって適宜選択される力 S、シリコン系基材または金属系 基材のほか、ガラス系基材などのセラミックス系基材、榭脂系基材などカゝら選ばれる。
[0220] 本発明の I型結晶構造を単独または主成分とするフッ化ビ-リデン単独重合体薄膜 の電気特性を利用する場合、基材としては、例えば、電極を形成できる導電性の基 材であることが好ましい。また、シリコン系基材、セラミックス系基材 (ガラス系基材など )、榭脂系基材など絶縁性基材の上に、導電性材料の薄膜を形成したものも導電性 の基材として好ましい。
[0221] 導電性基材または導電性薄膜用の金属系材料としては、アルミニウム、銅、クロム、 ニッケル、亜鉛、ステンレス、金、銀、白金、タンタル、チタン、ニオブ、モリブデン、ィ ンジゥム錫酸ィ匕物(ITO)などを用いることができる。なかでも、シリコンウェハ上にァ ルミ-ゥム、金、銀、白金、タンタル、チタンなどの薄膜を形成したものが好ましい。ま た、金属系基材として、アルミニウム、銅、金、銀および白金なども好ましい。
[0222] なお、基材表面に設けられたこれら導電性薄膜は、必要に応じてフォトリソグラフィ 一法やマスクデポジット法などの公知の方法で所定の回路にパターユングされてい てもよい。
[0223] こうした基材の上に、前述の方法で I型結晶構造のフッ化ビニリデン単独重合体薄 膜が形成される。
[0224] I型結晶構造のフッ化ビニリデン単独重合体薄膜の膜厚は、 目的とする積層体の狙 いと用途によって適宜選択される力 通常、 lnm以上、好ましくは 5nm以上、特に好 ましくは lOnm以上であり、 10 /z m以下、好ましくは 1 m以下、特に好ましくは 500η m以下程度である。
[0225] 本発明の方法にぉ 、て、機能性官能基を有する部位を末端に有するフッ化ビニリ デン単独重合体を用いることにより、前述のように、薄膜の基材への密着性が向上し たり、また薄膜の自己組織ィ匕が生じたり、さらに重合体同士が結合して薄膜の強度や 耐熱性が向上したりする。
[0226] 薄膜を形成した後に官能基を反応させて上記特性を得る場合、例えばつぎのよう な方法をとればよい。
[0227] 密着性を向上させるためには、形成された薄膜に、例えば熱処理や、光照射など による処理、化学反応による周知の化学結合形成、相互作用形成を促進させる処理 を施せばよい。なお、薄膜の密着性、強度、耐熱性の向上は、例えばスクラッチ試験 、鉛筆硬度試験、碁盤目試験などの周知の方法で確認できる。
[0228] また、自己組織ィ匕を進めるためには、薄膜形成時に適当な温度、適切な溶液濃度 を選択したり、形成された薄膜に、例えば熱処理や、光照射などによる周知の方法で 処理を施せばよい。
[0229] さらに重合体同士を結合させるためには、形成された薄膜に、例えば熱処理、光照 射により重合体同士の縮合反応、重付加反応、付加縮合反応、開環反応などによる 共有結合の形成や、イオン性結合、配位結合、水素結合などにより化学結合を形成 させる周知の方法を用いて処理を施せばよい。このとき反応を促進させるための添カロ 物を適量添カ卩してもよい。
[0230] 本発明はまた、フッ化ビニリデン単独重合体単位の数平均重合度が 3— 100である I型結晶構造を単独または主成分とするフッ化ビ-リデン単独重合体力 形成される 自己組織ィ匕膜を基材上に有することを特徴とする積層体に関する。
[0231] 自己組織ィ匕膜については上述したとおりであり、式(1—1):
- (R1) - Y1 (1-1)
(式中、 R1は 2価の有機基、ただしフッ化ビ-リデン単独重合体の構造単位は含まな い; nは 0または 1 ; は— SHおよび/または— SiX R6 (nは 0— 2の整数; R6は CH
3- n n 3 または C H ;Xは— OR7、— COOH、— COOR7、—NH R7、—OCNまたはハロゲン
2 5 3-m m
原子(ただし R7は CH、 C Hまたは C H、 mは 0— 3の整数)))で表される部位を片
3 2 5 3 7
末端または両末端に有し、かつフッ化ビ-リデン単独重合体単位の数平均重合度が 3— 100であるフッ化ビ-リデン単独重合体力も形成される自己組織ィ匕膜であること が好ましい。
[0232] 自己組織ィ匕可能なフッ化ビ-リデン単独重合体および薄膜の具体的例にっ 、ては
、上述したものがあげられる。
[0233] さらに本発明は、フッ化ビニリデン単独重合体単位の数平均重合度が 3— 100であ る I型結晶構造を単独または主成分とするフッ化ビ-リデン単独重合体同士が結合し てなる薄膜を基材上に有することを特徴とする積層体にも関する。
[0234] 重合体結合機能性官能基含有フッ化ビニリデン単独重合体については上述したと おりであり、式(1 2):
-(R1) -Y2 (1-2)
(式中、 R1は 2価の有機基、ただしフッ化ビ-リデン単独重合体の構造単位は含まな い; nは 0または 1 ;Y2は、 CH = CH OCOCH = CH OCOCF = CH OC
2 2 2
OC (CH ) =CHまたは OCOCCl=CH )で表される部位を片末端または両末端
3 2 2
に有し、かつフッ化ビ-リデン単独重合体単位の数平均重合度が 3— 100であるフッ 化ビ-リデン単独重合体同士が結合してなる薄膜であることが好ましい。
[0235] フッ化ビニリデン単独重合体同士が結合し得る重合体の具体的例については、上 述したものがあげられる。
[0236] これらの積層体において、薄膜中の I型結晶構造を単独または主成分とするフツイ匕 ビニリデン単独重合体は、上記 (数式 1)および (数式 2)、さらに好ましくは (数式 3)お よび (数式 4)の 、ずれの関係をも満たすことが好ま 、。
[0237] 本発明はさらに、上記の積層体力 なる強誘電体デバイスにも関する。
[0238] 強誘電性の材料またはデバイスを得ようとする場合は、基材上に I型結晶構造を単 独または主成分とするフッ化ビ-リデン単独重合体の薄膜を形成した後、形成された フッ化ビニリデン単独重合体薄膜の強誘電特性を高めるために、熱処理する工程 ( 熱処理工程)をさらに加えてもよい。フッ化ビ-リデン単独重合体薄膜の熱処理工程 は通常、フッ化ビニリデン単独重合体薄膜中の結晶を成長させ、結晶サイズを大きく する目的で行なわれ、その結果、強誘電特性を向上させることができる。
[0239] 熱処理工程は、具体的にはフッ化ビニリデン単独重合体の数平均重合度や結晶 融点、基材の種類により適宜選択できる力 通常 50°C以上、好ましくは 60°C以上、よ り好ましくは 70°C以上、特に好ましくは 80°C以上であり、上限は通常、結晶融点を下 回る温度、好ましくは結晶融点より 5°C低い温度、より好ましくは結晶融点より 10°C低 い温度である。
[0240] 熱処理時間は、通常、約 10分間以上、好ましくは 20分間以上、より好ましくは 30分 間以上であり、約 10時間以下、好ましくは 5時間以下、より好ましくは 3時間以下、特 には 2時間以下程度である。加熱後は、室温などで放置しゆっくり放冷するのが好ま しい。
[0241] ただし、本発明の I型結晶構造を単独または主成分として有するフッ化ビ-リデン単 独重合体の好まし 、ものを用いる場合は、上記熱処理工程を省!、ても充分な強誘電 性を発現できる点で好まし ヽ。
[0242] 本発明の薄膜の形成方法および積層体においては、薄膜に強誘電性を確実に発 現させる場合は、薄膜を形成した後、または上記熱処理工程を経た後または経ない で、分極処理工程をさらに行なってもよい。
[0243] 分極処理としては従来力 知られている方法が同様に利用できる。例えば、被膜に 電極を蒸着するか電極を接触させてこれに直流または交流電界あるいは直流または 交流電圧を印加する方法、またはコロナ放電で分極処理する方法などが利用できる
[0244] 分極処理工程における印加電界は、薄膜の膜厚や I型結晶構造の存在比率などに より適宜選択できる力 通常、 lOMVZm以上、好ましくは 50MVZm以上、より好ま しくは 80MVZm以上であり、絶縁破壊電界強度の電界以下、好ましくは 250MVZ m以下、より好ましくは 200MVZmである。印加電界が低すぎるまたは印加時間が 短すぎると、充分な分極処理が達成されず、また、印加電界が高すぎるまたは印加 時間が長すぎると、部分的にでもポリマー分子の結合が解裂してしまうため好ましくな い。
[0245] 印加時間は、通常、 20ナノ秒間以上、好ましくは 1秒間以上、より好ましくは 1分間 以上であり、約 48時間まで、好ましくは 6時間まで、より好ましくは 2時間までである。
[0246] 分極処理工程における薄膜の温度は、通常、 0°C以上、好ましくは 10°C以上、より 好ましくは 25°C以上であり、フッ化ビニリデン単独重合体の結晶融点以下、好ましく は 120°C以下、より好ましくは 85°C以下に維持する。
[0247] また、前述の熱処理工程と分極処理工程を同時に行なってもよ!/、。それによつてよ り高い強誘電特性を発現することができる。
[0248] またさらに、このようにして得られた積層体におけるフッ化ビ-リデン単独重合体薄 膜層は、必要に応じてフォトリソグラフィーゃマスクデポなどの公知の方法で所定の 回路にパターユングして 、てもよ 、。
[0249] このようにして得られた積層体において、必要に応じてフッ化ビ-リデン単独重合体 薄膜層の上に、さらに他の材料の層を設けてもよい。
[0250] 例えば、前述と同様の電極になりうる導電性材料の層、シリコン、セラミックス、榭脂 などの絶縁体層などを、フッ化ビ-リデン単独重合体薄膜を挟む形でサンドイッチ状 に設けて多層化することも可能である。このようにして得られた積層体は、強誘電性を 有している。
[0251] 本発明において強誘電性とは、物質内部の永久双極子が何らかの力の作用によつ て同じ向きに配向しており、電場を加えて 、な ヽときでも分極をもって ヽる性質を ヽ (電場がなくても生じている分極を自発分極という)、また、自発分極を外部からの電 場によって反転することができる性質のことである。物質が強誘電体であるかどうかは 、電界 Eと電気変位 Dの関係を調べれば、強誘電体であればある程度振幅の大きい 交流電場をカ卩えたとき強磁性体のようなヒステリシス (履歴)曲線を示すことでわかる。
[0252] 例えばフッ化ビ-リデン単独重合体の層の両側に A1薄膜などの電極を施した積層 体について、両電極間に周波数 15mHz、振幅 120Vの三角波電圧を印加した場合 、矩形状のヒステリシスカーブが得られるとともに、そこ力も算出される残留分極値で 7 5mCZm2以上のものが可能であり、好ましくは 90mCZm2以上、より好ましくは 110 mC/m2以上、特には 120mC/m2以上、とりわけ 135mC/m2以上のものが好まし ぐ本発明の方法により可能となる。
[0253] 強誘電性をもつ物質は、圧電性、焦電性、電気光学効果あるいは非線形光学効果 t 、つた電気的あるいは光学的な機能に結びつく性質を併せもって 、る。
[0254] これらの性質により、本発明で得られた薄膜または積層体は、機械的強度が向上し 、耐熱性も高くなるので、環境耐性が高く高性能な FE— RAM、赤外線センサー、マ イク口ホン、スピーカー、音声付ポスター、ヘッドホン、電子楽器、人工触覚、脈拍計、 補聴器、血圧計、心音計、超音波診断装置、超音波顕微鏡、超音波ハイパーサーミ ァ、サーモグラフィー、微小地震計、土砂崩予知計、近接警報 (距離計)侵入者検出 装置、キーボードスィッチ、水中通信バイモルフ型表示器、ソナ一、光シャッター、光 ファイバー電圧計、ハイド口ホン、超音波光変調偏向装置、超音波遅延線、超音波力 メラ、 POSFET、加速度計、工具異常センサ、 AE検出、ロボット用センサ、衝撃セン サ、流量計、振動計、超音波探傷、超音波厚み計、火災報知器、侵入者検出、焦電 ビジコン、複写機、タツチパネル、吸発熱反応検出装置、光強度変調素子、光位相 変調素子、光回路切換素子などの圧電性、焦電性、電気光学効果あるいは非線形 光学効果を利用したデバイスに利用可能である。
実施例
[0255] つぎに本発明を合成例、実施例などをあげて説明するが、本発明はかかる例のみ に限定されるものではない。
[0256] まず、本発明の説明で使用するパラメーターの測定法について説明する。
[0257] [1]フッ化ビニリデン (VdF)重合体の数平均重合度の測定法
(1) CF (VdF) Iの数平均重合度 (n)
3 n
19F— NMRより求める。具体的には、 61ppm付近のピーク面積 (CF—由来)と、 -
3
90一— 96ppm付近のピーク面積 (一 CF— CH—由来)からつぎの計算式で算出する
2 2
(数平均重合度) = ( (-90一— 96ppm付近のピーク面積) /2)/((—6 lppm付近のピー ク面積) /3)
[0258] (2) CF CF (VdF) Iの数平均重合度(n)
3 2 n
19F— NMRより求める。具体的には、 86ppm付近のピーク面積 (CF—由来)と、 -
3
90一— 96ppm付近のピーク面積 (一 CF— CH—由来)からつぎの計算式で算出する
2 2
(数平均重合度) =( (-90一— 96ppm付近のピーク面積) /2)/((-86ppm付近のピー ク面積) /3)
[0259] (3) 1 (VdF) CF CF CF CF (VdF) Iの数平均重合度(n+m)
n 2 2 2 2 m
19F— NMRより求める。具体的には、 112ppm付近のピーク面積と— 124ppm付近 のピーク面積(いずれも—CF CF CF CF一由来)の合計と、 -90
2 2 2 2 一一 96ppm付近の ピーク面積 (-CF -CH一由来)からつぎの計算式で算出する。
2 2
(数平均重合度) = ( (-90一— 96ppm付近のピーク面積) /2)/((—112ppm付近のピ ーク面積と- 124ppm付近のピーク面積の合計) /8)
[0260] [2]各種の測定 (分析)方法および装置
(1) IR分析
(1-1)測定条件
KBr法。 1一 5mgのフッ化ビ-リデン重合体粉末を 100— 500mgの KBr粉末に混 合し、加圧してペレット化した後、測定装置にペレットを固定し、 25°Cにて測定する。 (1-2)測定装置
PERKIN ELMER社製の FT— IR spectrometer 1760X
[0261] (2) — NMRおよび19 F— NMR分析
(2-1)測定条件
フッ化ビ-リデン重合体粉末 10— 20mgを d6-アセトン中に溶解し、得られたサン プルをプローブにセットして測定する。
(2-2)測定装置
Bruker社製の AC—300P
[0262] (3)粉末 X線回折分析
(3-1)測定条件
専用のガラスプレート上にフッ化ビ-リデン重合体粉末を塗布し、ガラスプレートを 測定装置にセットして測定する。
(3-2)測定装置
Rigaku社製の Rotaflex
[0263] (4)強誘電性の確認 (D— Eヒステリシス曲線)
ある材料が強誘電性である場合、その材料の D— Eヒステリシス曲線は矩形状を示 す。そこで、本発明においては、つぎの条件で電流電圧特性を調べ、 D— Eヒステリシ ス曲線を描き、強誘電性の有無を判断する。
(4-1)測定条件
周波数 15mHz、振幅 120Vの三角波電圧を VdF薄膜の両側に形成したアルミ- ゥム電極に加える。
(4-2)測定装置 ラジェント .テクノロジ株式会社製の強誘電体テストシステム RT6000HVS
[0264] (5)分子量と分子量分布の測定
(5-1)測定条件
フッ化ビ-リデン重合体を、 THF中に 0. 1-0. 2重量%溶解し、測定装置にセット して 35°Cで測定を行なう。
(5-2)測定装置
東ソー(株)製の HLC—8020 (本体)、昭和電工 (株)製の shodex GPC— KF— 80 1、 GPC— KF— 802、 GPC— KF— 806MX2 X二本(カラム)使用。
[0265] (6)異常結合率の測定
異常結合率(%) = {n2Z (n+nl +n2) } X 100
19F— NMR分析より求める。具体的には、— 112ppm付近のピーク面積と— 124ppm 付近のピーク面積 ( 、ずれも異常結合由来)の合計( =n2)と、 -90一— 96ppm付近 のピーク面積 (一 CF -CH—由来)(=n+nl)から上記の計算式で算出する。
2 2
(数平均重合度) = (-112ppm付近のピーク面積と— 124ppm付近のピーク面積の 合計)/ ((-112ppm付近のピーク面積と- 124ppm付近のピーク面積の合計) + (-90 一— 96ppm付近のピーク面積))
ここで、(一 90—— 96ppm付近のピーク面積) =nl、(一 112ppm付近のピーク面積 と— 124ppm付近のピーク面積の合計) = n2。
[0266] 合成例 1 (CF (VdF) Iの合成)
3 n
(l-l) CF (VdF) I (n=8. 1)の合成
3 8.1
ノ レブ、圧力ゲージ、温度計を備えた 300ml容のステンレススチール製オートタレ ーブに、 HCFC— 225を 50g入れ、ドライアイス Zメタノール溶液で冷却しながら、ジー n—プロピルパーォキシジカーボネイト(50重量%メタノール溶液) 0. 78gを加え、系 内をチッ素ガスで充分置換した。系内を減圧にした後、ノ レブ力も CF Iを 5. 2g仕込
3
み、系を 45°Cまで昇温の後、 VdFを系内圧が 0. 8MPaGになるまで仕込み、系内 圧 0. 8MPaG、系内温度を 45°Cに維持しながら VdFを連続供給し、 9時間反応を行 なった。
[0267] 反応終了後、系内温度を 25°Cまで冷却し、未反応物 (VdFと CF I)を放出した後、 析出した反応固形物(以下、「VdF重合体」という)を取り出し、デシケーター内で恒 量になるまで真空乾燥し、 VdF重合体 13.2gを得た。
[0268] この VdF重合体を19 F— NMRにより分析し、 VdFの数平均重合度(n)を求めたとこ ろ、数平均重合度 (n)は 8. 1であった。また、異常結合率は 4. 0%、 MwZMnは 1. 06であった。
[0269] この VdF重合体について IR分析および粉末 X線回折分析を行なったところ、 I型結 晶構造に特徴的なピークのみが観測され、全 I型結晶構造であることを確認した (図 6 参照)。
[0270] (1-2) CF (VdF) l (n= 5. 2)の合成
3 5.2
ノ レブ、圧力ゲージ、温度計を備えた 300ml容のステンレススチール製オートタレ ーブに、 HCFC— 225を 50g入れ、ドライアイス Zメタノール溶液で冷却しながら、ジー n—プロピルパーォキシジカーボネイト(50重量%メタノール溶液) 0. 53gを加え、系 内をチッ素ガスで充分置換した。系内を減圧にした後、ノ レブ力も CF I
3を 5. 4g仕込 み、系を 45°Cまで昇温の後、 VdFを系内圧が 0. 8MPaGになるまで仕込み、系内 圧 0. 8MPaG、系内温度を 45°Cに維持しながら VdFを連続供給し、 7. 5時間反応 を行なった。
[0271] 反応終了後、系内温度を 25°Cまで冷却し、未反応物 (VdFと CF I)を放出した後、
3
析出した反応固形物 (VdF重合体)を取り出し、デシケーター内で反応固形物を恒 量になるまで真空乾燥し、 VdF重合体 10. Ogを得た。
[0272] この VdF重合体を19 F— NMRにより分析し、 VdFの数平均重合度(n)を求めたとこ ろ、 5. 2であった。また、異常結合率は 4. 3%、 MwZMnは 1. 08であった。
[0273] この VdF重合体について IR分析および粉末 X線回折分析を行なったところ、 I型結 晶構造に特徴的なピークのみが観測され、全 I型結晶構造であることを確認した。
[0274] (1-3) CF (VdF) l (n= 10. 1)の合成
3 10.1
ノ レブ、圧力ゲージ、温度計を備えた 300ml容のステンレススチール製オートタレ ーブに、 HCFC— 225を 50g入れ、ドライアイス Zメタノール溶液で冷却しながら、ジー n—プロピルパーォキシジカーボネイト(50重量%メタノール溶液) 0. 53gを加え、系 内をチッ素ガスで充分置換した。系内を減圧にした後、ノ レブ力も CF Iを 5. 2g仕込 み、系を 45°Cまで昇温の後、 VdFを系内圧が 0. 8MPaGになるまで仕込み、系内 圧 0. 8MPaG、系内温度を 45°Cに維持しながら VdFを連続供給し、 12時間反応を 行なった。
[0275] 反応終了後、系内温度を 25°Cまで冷却し、未反応物 (VdFと CF I)を放出した後、
3
析出した反応固形物 (VdF重合体)を取り出し、デシケーター内で反応固形物を恒 量になるまで真空乾燥し、 VdF重合体 13. 4gを得た。
[0276] この VdF重合体を19 F— NMRにより分析し、 VdFの数平均重合度(n)を求めたとこ ろ、 10. 1であった。また、異常結合率は 3. 9%、 MwZMnは 1. 08であった。
[0277] この VdF重合体について IR分析および粉末 X線回折分析を行なったところ、 I型結 晶構造に特徴的なピークのみが観測され、全 I型結晶構造であることを確認した。
[0278] (1-4) CF (VdF) I (n= l l. 0)の合成
3 11.0
ノ レブ、圧力ゲージ、温度計を備えた 300ml容のステンレススチール製オートタレ ーブに、 HCFC— 225を 50g入れ、ドライアイス Zメタノール溶液で冷却しながら、ジー n—プロピルパーォキシジカーボネイト(50重量%メタノール溶液) 0. 38gを加え、系 内をチッ素ガスで充分置換した。系内を減圧にした後、ノ レブ力も CF I 3. 5g
3を 仕込 み、系を 45°Cまで昇温の後、 VdFを系内圧が 0. 8MPaGになるまで仕込み、系内 圧 0. 8MPaG、系内温度を 45°Cに維持しながら VdFを連続供給し、 9時間反応を行 なった。
[0279] 反応終了後、系内温度を 25°Cまで冷却し、未反応物 (VdFと CF I)を放出した後、
3
析出した反応固形物 (VdF重合体)を取り出し、デシケーター内で反応固形物を恒 量になるまで真空乾燥し、 VdF重合体 11. 2gを得た。
[0280] この VdF重合体を19 F— NMRにより分析し、 VdFの数平均重合度(n)を求めたとこ ろ、 11. 0であった。また、異常結合率は 4. 4%、 MwZMnは 1. 13であった。
[0281] この VdF重合体について IR分析を行なったところ、 I型結晶構造に特徴的なピーク と II型結晶構造に特徴的なピークの両方が観測され、 I型結晶構造と II型結晶構造の ものが混在していることを確認した。さらに、 I型結晶構造の含有率 (F(I))を算出した ところ、 85重量%であった。
[0282] (1-5) CF (VdF) I (n= 18. 4)の合成 ノ レブ、圧力ゲージ、温度計を備えた 300ml容のステンレススチール製オートタレ ーブに、 HCFC— 225を 50g入れ、ドライアイス Zメタノール溶液で冷却しながら、ジー n—プロピルパーォキシジカーボネイト(50重量%メタノール溶液) 0. 16gを加え、系 内をチッ素ガスで充分置換した。系内を減圧にした後、ノ レブカゝら CF Iを 1. 5g仕込
3
み、系を 45°Cまで昇温の後、 VdFを系内圧が 0. 8MPaGになるまで仕込み、系内 圧 0. 8MPaG、系内温度を 45°Cに維持しながら VdFを連続供給し、 9時間反応を行 なった。
[0283] 反応終了後、系内温度を 25°Cまで冷却し、未反応物 (VdFと CF I)を放出した後、
3
析出した反応固形物 (VdF重合体)を取り出し、デシケーター内で反応固形物を恒 量になるまで真空乾燥し、 VdF重合体 7. 9gを得た。
[0284] この VdF重合体を19 F— NMRにより分析し、 VdFの数平均重合度(n)を求めたとこ ろ、 18. 4であった。また、異常結合率は 3. 8%、 MwZMnは 1. 17であった。
[0285] この VdF重合体について IR分析を行なったところ、 I型結晶構造に特徴的なピーク と II型結晶構造に特徴的なピークの両方が観測され、 I型結晶構造と II型結晶構造の ものが混在していることを確認した。さらに、 I型結晶構造の含有率 (F(I))を算出した ところ、 18重量%であった。
[0286] (1-6) CF (VdF) l (n= 14. 6)の合成
3 14.6
ノ レブ、圧力ゲージ、温度計を備えた 300ml容のステンレススチール製オートタレ ーブに、 HCFC— 225を 50g入れ、ドライアイス Zメタノール溶液で冷却しながら、ジー n—プロピルパーォキシジカーボネイト(50重量%メタノール溶液) 0. 27gを加え、系 内をチッ素ガスで充分置換した。系内を減圧にした後、ノ レブカゝら CF Iを 2. 5g仕込
3
み、系を 45°Cまで昇温の後、 VdFを系内圧が 0. 8MPaGになるまで仕込み、系内 圧 0. 8MPaG、系内温度を 45°Cに維持しながら VdFを連続供給し、 9時間反応を行 なった。
[0287] 反応終了後、系内温度を 25°Cまで冷却し、未反応物 (VdFと CF I)を放出した後、
3
析出した反応固形物 (VdF重合体)を取り出し、デシケーター内で反応固形物を恒 量になるまで真空乾燥し、 VdF重合体 12. 2gを得た。
[0288] この VdF重合体を19 F— NMRにより分析し、 VdFの数平均重合度(n)を求めたとこ ろ、 14. 6であった。また、異常結合率は 4. 1%、 MwZMnは 1. 14であった。
[0289] この VdF重合体について IR分析を行なったところ、 I型結晶構造に特徴的なピーク と II型結晶構造に特徴的なピークの両方が観測され、 I型結晶構造と II型結晶構造の ものが混在していることを確認した。さらに、 I型結晶構造の含有率 (F(I))を算出した ところ、 60重量%であった。
[0290] (1-7) CF (VdF) I (n= 3)の合成と分離
3 3
ノ レブ、圧力ゲージ、温度計を備えた 3リットル容のステンレススチール製オートク レーブに、 HCFC— 225を 500g入れ、ドライアイス Zメタノール溶液で冷却しながら、 ジー n—プロピルパーォキシジカーボネイト(50重量%メタノール溶液) 21gを加え、系 内をチッ素ガスで充分置換した。系内を減圧にした後、ノ レブカゝら CF Iを 200g仕込
3
み、系を 45°Cまで昇温の後、 VdFを系内圧が 0. 8MPaGになるまで仕込み、系内 圧 0. 8MPaG、系内温度を 45°Cに維持しながら VdFを連続供給し、 3. 5時間反応 を行なった。
[0291] 反応終了後、系内温度を 25°Cまで冷却し、未反応物 (VdFと CF I)を放出した後、
3
析出した反応固形物を濾去し、濾液を減圧下(5mmHg)に分留し、 55°Cの留分を19 F— NMRにより分析し、 55°C留分の数平均重合度 (n)を求めたところ、 3であった。 n = 3の重合体は 25°Cで液状であった。
[0292] (1-8) CF (VdF) I (n= 8. 1)の I型結晶構造と III型結晶構造の混合物の合成
3 8.1
上記(1-1)で合成した CF (VdF) I (n=8. 1)の全 I型結晶構造の VdF重合体の
3 8.1
粉末をシャーレに 3g入れ、乾燥機内に静置し、 200°Cで 1時間加熱して粉末を完全 に溶融した。その後乾燥機内から取り出し、 25°Cで放置することによって 25°Cまで急 冷した。
[0293] 得られた VdF重合体について IR分析を行なったところ、 I型結晶構造に特徴的なピ ークと III型結晶構造に特徴的なピークの両方が観測され、 I型結晶構造と III型結晶 構造のものが混在していることを確認した。さらに、 I型結晶構造の含有率 (F(I))を算 出したところ、 67重量%であった(図 7参照)。
[0294] 合成例 2 (CF CF (VdF) Iの合成)
3 2 n
(2-1) CF CF (VdF) l (n= 10. 9)の合成 ノ レブ、圧力ゲージ、温度計を備えた 300ml容のステンレススチール製オートタレ ーブに、 HCFC— 225を 50g入れ、ドライアイス Zメタノール溶液で冷却しながら、ジー n—プロピルパーォキシジカーボネイト(50重量%メタノール溶液) 0. 08gを加え、系 内をチッ素ガスで充分置換した。系内を減圧にした後、ノ レブ力 CF CF Iを 1. 96
3 2 g仕込み、系を 45°Cまで昇温の後、 VdFを系内圧が 0. 8MPaGになるまで仕込み、 系内圧 0. 8MPaG、系内温度を 45°Cに維持しながら VdFを連続供給し、 9時間反 応を行なった。
[0295] 反応終了後、系内温度を 25°Cまで冷却し、未反応物 (VdFと CF CF I)を放出した
3 2
後、析出した反応固形物 (VdF重合体)を取り出し、デシケーター内で反応固形物を 恒量になるまで真空乾燥し、 VdF重合体 7. 3gを得た。
[0296] この VdF重合体を19 F— NMRにより分析し、 VdFの数平均重合度(n)を求めたとこ ろ、 10. 9であった。また、 Mw/Mnは 1. 10であった。
[0297] この VdF重合体について IR分析を行なったところ、 II型結晶構造に特徴的なピーク と III型結晶構造に特徴的なピークの両方が観測され、 II型結晶構造と III型結晶構造 のものが混在していることを確認した。さらに、 III型結晶構造の含有率 (F(III))を算出 したところ、 57重量%であった(図 8参照)。
[0298] 合成例 3 (1 (VdF) C F (VdF) Iの合成)
n 4 8 m
(3-1) I (VdF) (CF CF ) (VdF) l (n+m=8. 7)の合成
n 2 2 2 m
ノ レブ、圧力ゲージ、温度計を備えた 300ml容のステンレススチール製オートタレ ーブに、 HCFC— 225を 50g入れ、ドライアイス Zメタノール溶液で冷却しながら、ジー n—プロピルパーォキシジカーボネイト(50重量%メタノール溶液) 0. 27gを加え、系 内をチッ素ガスで充分置換した。系内を減圧にした後、ノ レブから I (CF CF ) Iを 1
2 2 2
. 96g仕込み、系を 45°Cまで昇温の後、 VdFを系内圧が 0. 8MPaGになるまで仕込 み、系内圧 0. 8MPaG、系内温度を 45°Cに維持しながら VdFを連続供給し、 9時間 反応を行なった。
[0299] 反応終了後、系内温度を 25°Cまで冷却し、未反応物 (VdFと I (CF CF ) I)を放出
2 2 2 した後、析出した反応固形物 (VdF重合体)を濾取し、 HCFC— 225で洗浄した後、 デシケーター内で反応固形物を恒量になるまで真空乾燥し、 VdF重合体 8. 8gを得 た。
[0300] この VdF重合体を19 F— NMRにより分析し、 VdFの数平均重合度(n+m)を求めた ところ、 8. 7であった。また、 Mw/Mnは 1. 03であった。
[0301] この VdF重合体について IR分析を行なったところ、 I型結晶構造に特徴的なピーク と II型結晶構造に特徴的なピークの両方が観測され、 I型結晶構造と II型結晶構造の ものが混在していることを確認した。さらに、 I型結晶構造の含有率 (F(I))を算出した ところ、 79重量%であった(図 9参照)。
[0302] (3-2) I (VdF) (CF CF ) (VdF) I (n+m = 10. 4)の合成
n 2 2 2 m
ノ レブ、圧力ゲージ、温度計を備えた 300ml容のステンレススチール製オートタレ ーブに、 HCFC— 225を 50g入れ、ドライアイス Zメタノール溶液で冷却しながら、ジー n—プロピルパーォキシジカーボネイト(50重量%メタノール溶液) 0. 162gを加え、 系内をチッ素ガスで充分置換した。系内を減圧にした後、ノ レブから I (CF CF ) Iを
2 2 2
3. 5g仕込み、系を 45°Cまで昇温の後、 VdFを系内圧が 0. 8MPaGになるまで仕込 み、系内圧 0. 8MPaG、系内温度を 45°Cに維持しながら VdFを連続供給し、 9時間 反応を行なった。
[0303] 反応終了後、系内温度を 25°Cまで冷却し、未反応物 (VdFと I (CF CF ) I)を放出
2 2 2 した後、析出した反応固形物 (VdF重合体)を濾取し、 HCFC— 225で洗浄した後、 デシケーター内で反応固形物を恒量になるまで真空乾燥し、 VdF重合体 7. 2gを得 た。
[0304] この VdF重合体を19 F— NMRにより分析し、 VdFの数平均重合度(n+m)を求めた ところ、 10. 4であった。また、 MwZMnは 1. 04であった。
[0305] この VdF重合体について IR分析を行なったところ、 I型結晶構造に特徴的なピーク と II型結晶構造に特徴的なピークの両方が観測され、 I型結晶構造と II型結晶構造の ものが混在していることを確認した。さらに、 I型結晶構造の含有率 (F(I))を算出した ところ、 70重量%であった。
[0306] 合成例 4 (水酸基末端)
環流冷却器、温度計を備えた 100ml三ッロフラスコに、合成例 (1-1)で得た全 I型 結晶構造の CF (VdF) I (n= 8. 1) 3. Og、酢酸ェチル 30ml、 AIBNO. 12g、純水 15. 4ml、ァリルアルコール 2. 20gを仕込み、ドライアイス Zメタノール溶液で冷却し ながら、系内をチッ素ガスで充分置換した。その後、反応系内を 65°Cに保ったまま 5 時間反応を行なった。
[0307] 反応後、系内温度を 25°Cまで冷却し、酢酸ェチルを減圧留去後、減圧濾過し反応 固形物を得た。デシケーター内で反応固形物を恒量になるまで真空乾燥し、 2. 2gを 得た。
[0308] 反応固形物を、 NMRおよび19 F— NMRにより分析したところ、 CF I末端由来
2 の—38ppm付近のピークの大幅な消失力 19F— NMRにより確認され、付カ卩したァリル アルコール由来のピークが 4. 4—3. 5ppmと 4. 0—3. 7ppmに1 H— NMRより観測 された。
[0309] このこと力ら、反応固形物は VdF重合体のァリルアルコール付加体であることが確 認された。このとき1 H— NMRより求められた末端変性率は 90%であった。
[0310] また、 IR分析および粉末 X線回折分析を行なったところ、 I型結晶構造に特徴的な ピークのみが観測され、全 I型結晶構造であることを確認した。
[0311] つ!、で、得られた VdF重合体のァリルアルコール付加体 6g、酢酸ェチル 30ml、酸 ィ匕白金 0. 05g、卜!;ェチノレ ミン 2. 8g、醉酸 7. Ogをノ ノレブ、圧力ゲージ、温度計を 備えた 200ml容のステンレススチール製オートクレーブに入れ、系内をチッ素ガスで 充分置換した。系内を減圧にした後、バルブ力も水素ガスを系内圧が 0. 5MPaGに なるまで仕込み、系内圧 0. 5MPaGで 25°Cに維持しながら、水素ガスを連続供給し 5時間反応を行った。
[0312] 反応後、未反応水素ガスを放出し減圧ろ過により酸化白金を取り除き、酢酸ェチル を減圧留去した。こうして得られた反応物の酢酸溶液を純水中に投入し、反応固形 物を再沈殿することにより取り出した。反応固形物をろ過した後、デシケーター内で 反応固形物を恒量になるまで真空乾燥し、 3. 5gを得た。
[0313] 反応固形物には、付カ卩したァリルアルコール由来の 4. 4-3. 5ppmと 4. 0-3. 7p pmのピークがほぼ消失し、ヨウ素が還元されたことにより生じる 3. 8-3. 5ppmと 1. 9—1. 6ppmのピーク力 NMRより観測された。このとき1 H— NMRより求められた 末端変性率は 95%であった。 [0314] このことから、反応固形物は水酸基末端をもつ VdF重合体であることが確認された
[0315] この水酸基末端 VdF重合体にっ 、て粉末 X線回折分析を行なったところ、 I型結晶 構造に特徴的なピークのみが観測され、水酸基を末端に有する全 I型結晶構造であ ることを確認した(図 10参照)。
[0316] 合成例 5 (メルカプト基末端)
合成例 (1-1)で得た全 I型結晶構造の CF (VdF) I (n=8. 1) 3g、酢酸ェチル 30g
3 8.1
、 AIBNO. 034gを、バルブ、圧力ゲージ、温度計を備えた 300ml容のステンレスス チール製オートクレープに仕込み、系内をチッ素ガスで充分置換したのち、系内温 度は 25°Cのまま、減圧にし、 65°Cまで昇温の後、エチレンガスを系内圧が 0. 7MPa Gになるまで仕込み、系内圧 0. 7MPaG、系内温度 65°Cを維持しながら、エチレン ガスを連続供給し 5時間反応を行った。
[0317] 反応後、系内温度を 25°Cまで冷却し、未反応物のエチレンガスを放出した後、系 中の酢酸ェチル溶液をへキサン中に投入し、析出した反応固形物をろ過により取り 出した。デシケーター内で反応固形物を恒量になるまで真空乾燥し、 2. 7gを得た。
[0318] この反応固形物を、 NMRおよび19 F— NMRにより分析したところ、 CF I末端
2 由来の— 38ppm付近のピークの大幅な消失が19 F-NMRにより確認され、付カ卩した エチレン由来のピークが 3. 4—3. 2ppmと 2. 8—2. 6ppmに1 H— NMRより観測され た。
[0319] このこと力 反応固形物は VdF重合体エチレン付加体であることが確認された。こ のとき1 H— NMRより求められた末端変性率は 97%であった。
[0320] この VdF重合体エチレン付加体について粉末 X線回折分析を行なったところ、 I型 結晶構造に特徴的なピークのみが観測され、全 I型結晶構造であることを確認した。
[0321] つ!、で、得られた VdF重合体エチレン付カ卩体 3g、 N、 N ジメチルチオホルムアミド
4. 8g、 DMF 15mlを環流冷却器、温度計を備えた 50ml三ッロフラスコに仕込み、 系内を窒素置換したあと、系内を 70°Cに加熱し 3時間反応を行った。
[0322] 反応後、系内温度を 25°Cまで冷却し、 1Mの重曹水 20mlをカ卩えて 30分間攪拌し た。その後系内に酢酸をカ卩えて酸性にし、一規定塩酸 100ml中に反応物の溶液を 投入して亜鉛粉末をろ過により除いた後、反応物の溶液を純水中に投入し、反応固 形物を再沈殿することにより取り出した。反応固形物をろ過した後、デシケーター内 で反応固形物を恒量になるまで真空乾燥し、 2. 3gを得た。
[0323] 反応固形物では、 ¾ NMRにより分析したところ、 CH CH I由来の 3. 4-3. 2p
2 2
pmのピークが消失し、代わりに— SH由来の 1. 6—1. 5ppm、末端の CF CH CH
2 2 2
—由来の 2. 8-2. 6ppmと 2. 5-2. 3ppmのピークが観測された。
[0324] このことから、反応固形物は末端にメルカプト基をもつ VdF重合体であることが確認 された。このとき1 H— NMRより求められた末端変性率は 90%であった。
[0325] このメルカプト基末端 VdF重合体について粉末 X線回折分析を行なったところ、 I型 結晶構造に特徴的なピークのみが観測され、メルカプト基を末端に有する全 I型結晶 構造であることを確認した(図 11参照)。
[0326] 合成例 6 (ビュル末端)
合成例 4で得た全 I型結晶構造の VdF重合体のァリルアルコール付加体 5g、酢酸
80ml、亜鉛粉末 14. 6gを環流冷却器、温度計を備えた 200ml三ッロフラスコに仕 込み加熱還流を 4時間行った。
[0327] 反応後、系内温度を 25°Cまで冷却し、亜鉛粉末をろ過により除いた後、反応物の 酢酸溶液を純水中に投入し、反応固形物を再沈殿することにより取り出した。デシケ 一ター内で反応固形物を恒量になるまで真空乾燥し、 2. 8gを得た。
[0328] 反応固形物では、 NMRより分析したところ、付カ卩したァリルアルコール由来の
4. 4—3. 5ppmと 4. 0—3. 7ppmのピーク力 ^ほぼ、消失し、 5. 8—5. 6ppmと 5. 3—
5. Oppmに二重結合由来のピークが観測された。
[0329] このことから、反応固形物は末端にビニル基をもつ VdF重合体であることが確認さ れた。このとき1 H— NMRより求められた末端変性率は 95%であった。
[0330] このビュル基を末端にもつ VdF重合体にっ 、て粉末 X線回折分析を行なったとこ ろ、 I型結晶構造に特徴的なピークのみが観測され、全 I型結晶構造であることを確認 した。
[0331] 合成例 7 (有機シラン末端)
合成例 6で得た末端にビュル基をもつ VdF重合体 lg、 40重量% -塩ィ匕白金酸のィ ソプロパノール溶液 0. 67mg、トリエトキシシラン 2. 6g、エタノール 30gを環流冷却 器、温度計を備えた 100ml三ッ口フラスコに仕込み加熱還流を 4時間行った。
[0332] 反応後、系内温度を 25°Cまで冷却し未反応のトリエトキシシラン、エタノールを真空 乾燥により留去した。デシケーター内で反応固形物を恒量になるまで真空乾燥し、 0 . 8gを得た。
[0333] 反応固形物では、 iH-NMRより分析したところ、二重結合由来の 5. 8-5. 6ppm と 5. 3—5. Oppmのピークがほぼ消失しエトキシシラン由来のピークが 4. 0—3. 7p pmと 1. 3—1. lppmに確認された。
[0334] このことから、反応固形物は末端に有機シラン基をもつ VdF重合体であることが確 認された。このとき1 H— NMRより求められた末端変性率は 92%であった。
[0335] この有機シラン末端をもつ VdF重合体について粉末 X線回折分析を行なったところ
、 I型結晶構造に特徴的なピークのみが観測され、全 I型結晶構造であることを確認し た。
[0336] 合成例 8 (アタリロイル基末端)
合成例 4で得た全 I型結晶構造の水酸基末端をもつ VdF重合体 1. Og、ピリジン 0. 17g、脱水 THF20mlを環流冷却器、温度計を備えた 50ml三ッロフラスコに仕込み 、ドライアイス Zメタノール溶液で冷却しながら、系内をチッ素ガスで充分置換した。 その後、反応系内を 30°Cに保ったままアクリル酸クロライド 1. 31gを滴下し、 3時間 反応を行った。
[0337] 反応終了後、 1M 重曹水中にフラスコ内容物を投じ、再沈殿によって反応固形物 を得た。デシケーター内で反応固形物を恒量になるまで真空乾燥し、 0. 7gを得た。
[0338] 反応固形物を、 NMRにより分析したところ付加したアクリル部位の二重結合由 来の 6. 3-5. 5ppmのピークが観測された。
[0339] このこと力ら、反応固形物は末端にアタリロイル基 (一 OCOCH= CH )をもつ VdF
2
重合体であることが確認された。このとき1 H— NMRより求められた末端変性率は 88 %であった。
[0340] また、 IR分析の結果から反応前後にお 、て I型結晶構造に特徴的なピークのみが 観測され、結晶構造に変化がな 、ことが確認された。 [0341] この末端にアクリル基をもつ VdF重合体にっ 、て粉末 X線回折分析を行なったとこ ろ、 I型結晶構造に特徴的なピークのみが観測され、アタリロイル基 (一 OCOCH = C H )を末端に有する全 I型結晶構造であることを確認した(図 12参照)。
2
[0342] 合成例 9 (両末端水酸基)
合成例 (3-1)で得た I型結晶構造を 79重量%含む I (VdF) (CF CF ) (VdF) l (n n 2 2 2 m
+m=8. 7) 3. Og、酢酸ェチル 30ml、 AIBNO. 33g、純水 15. 4ml、ァリルアルコ ール 6. 10gを仕込み、ドライアイス Zメタノール溶液で冷却しながら、系内をチッ素ガ スで充分置換した。その後、反応系内を 65°Cに保ったまま 5時間反応を行った。
[0343] 反応後、系内温度を 25°Cまで冷却し、酢酸ェチルを減圧留去後、減圧濾過し反応 固形物を得た。デシケーター内で反応固形物を恒量になるまで真空乾燥し、 2. 4gを 得た。
[0344] 反応固形物を、 ^H-NMRおよび19 F-NMRにより分析したところ、 -CF I末端由来
2 の—38ppm付近のピークの大幅な消失力 19F— NMRにより確認され、付カ卩したァリル アルコール由来のピークが 4. 4—3. 5ppmと 4. 0—3. 7ppmに1 H— NMRより観測 された。
[0345] このこと力ら、反応固形物は VdF重合体のァリルアルコール付加体であることが確 認された。このとき1 H— NMRより求められた末端変性率は 90%であった。
[0346] ついで、得られた VdF重合体のァリルアルコール付加体 6g、酢酸ェチル 30ml、酸 ィ匕白金 0. 13g、トリェチルァミン 7. 8g、酢酸 19. 4gをバルブ、圧力ゲージ、温度計 を備えた 200ml容のステンレススチール製オートクレーブに入れ、系内をチッ素ガス で充分置換した。系内を減圧にした後、ノ レブカゝら水素ガスを系内圧が 0. 5MPaG になるまで仕込み、系内圧 0. 5MPaGで 25°Cに維持しながら、水素ガスを連続供給 し 5時間反応を行った。
[0347] 反応後、未反応水素ガスを放出し減圧ろ過により酸化白金を取り除き、酢酸ェチル を減圧留去した。こうして得られた反応物の酢酸溶液を純水中に投入し、反応固形 物を再沈殿することにより取り出した。反応固形物をろ過した後、デシケーター内で 反応固形物を恒量になるまで真空乾燥し、 4. 5gを得た。
[0348] 反応固形物には、付カ卩したァリルアルコール由来の 4. 4-3. 5ppmと 4. 0-3. 7p pmのピークがほぼ消失し、ヨウ素が還元されたことにより生じる 3. 8-3. 5ppmと 1.
9—1. 6ppmのピーク力 NMRより観測された。このとき1 H— NMRより求められた 末端変性率は 92%であった。
[0349] この水酸基末端 VdF重合体について IR分析および粉末 X線回折分析を行なった ところ、 I型結晶構造を 79重量%含む VdF重合体であることが観測され、水酸基を両 末端に有する VdF重合体であることを確認した。
[0350] 合成例 10 (両末端メルカプト基)
合成例 (3-1)で得た I型結晶構造を 79重量%含む I (VdF) (CF CF ) (VdF) l (n n 2 2 2 m
+m=8. 7) 3g、酢酸ェチノレ 30g、 AIBNO. 094gを加え、系内をチッ素ガスで充分 置換したノ レブ、圧力ゲージ、温度計を備えた 300ml容のステンレススチール製ォ 一トクレーブに、系内温度は 25°Cのまま、減圧にし、 65°Cまで昇温の後、エチレンガ スを系内圧が 0. 7MPaGになるまで仕込み、系内圧 0. 7MPaG、系内温度 65°Cを 維持しながら、エチレンガスを連続供給し 5時間反応を行った。
[0351] 反応後、系内温度を 25°Cまで冷却し、未反応物のエチレンガスを放出した後、系 中の酢酸ェチル溶液をへキサン中に投入し、析出した反応固形物をろ過により取り 出した。デシケーター内で反応固形物を恒量になるまで真空乾燥し、 2. 5gを得た。
[0352] この反応固形物を、 NMRおよび19 F— NMRにより分析したところ、 CF I末端
2 由来の— 38ppm付近のピークの大幅な消失が19 F-NMRにより確認され、付カ卩した エチレン由来のピークが 3. 4—3. 2ppmと 2. 8—2. 6ppmに1 H— NMRより観測され た。
[0353] このこと力 反応固形物は VdF重合体エチレン付加体であることが確認された。こ のとき1 H— NMRより求められた末端変性率は 97%であった。
[0354] つ!、で、得られた VdF重合体エチレン付カ卩体 3g、 N、 N ジメチルチオホルムアミド 13. 3g、 DMF 15mlを環流冷却器、温度計を備えた 50ml三ッロフラスコに仕込み、 系内を窒素置換したあと、系内を 70°Cに加熱し 3時間反応を行った。
[0355] 反応後、系内温度を 25°Cまで冷却し、 1Mの重曹水 20mlをカ卩えて 30分間攪拌し た。その後系内に酢酸をカ卩えて酸性にし、一規定塩酸 100ml中に反応物の溶液を 投入して亜鉛粉末をろ過により除いた後、反応物の溶液を純水中に投入し、反応固 形物を再沈殿することにより取り出した。反応固形物をろ過した後、デシケーター内 で反応固形物を恒量になるまで真空乾燥し、 2. 4gを得た。
[0356] 反応固形物では、 ¾ NMRにより分析したところ、 CH CH I由来の 3. 4— 3. 2p
2 2
pmのピークが消失し、代わりに— SH由来の 1. 6—1. 5ppm、末端の CF CH CH
2 2 2
—由来の 2. 8-2. 6ppmと 2. 5-2. 3ppmのピークが観測された。
[0357] このことから、反応固形物は末端にメルカプト基をもつ VdF重合体であることが確認 された。このとき1 H— NMRより求められた末端変性率は 93%であった。
[0358] このメルカプト基末端 VdF重合体にっ ヽて IR分析および粉末 X線回折分析を行な つたところ、 I型結晶構造を 79重量%含む VdF重合体であることが観測され、このこと から、メルカプト基を両末端に有する VdF重合体であることを確認した。
[0359] 合成例 11 (両末端アタリロイル基)
合成例 9で得た I型結晶構造を 79重量%含む水酸基を両末端に有する VdF重合 体 1. 35g、ピリジン 0. 34g、脱水 THF20mlを環流冷却器、温度計を備えた 50ml 三ッロフラスコに仕込み、ドライアイス Zメタノール溶液で冷却しながら、系内をチッ 素ガスで充分置換した。その後、反応系内を 30°Cに保ったままアクリル酸クロライド 2
. 62gを滴下し、 3時間反応を行った。
[0360] 反応終了後、 1M 重曹水中にフラスコ内容物を投じ、再沈殿によって反応固形物 を得た。デシケーター内で反応固形物を恒量になるまで真空乾燥し、 1. Ogを得た。
[0361] 反応固形物を、 NMRにより分析したところ付加したアクリル部位の二重結合由 来の 6. 3-5. 5ppmのピークが観測された。
[0362] このこと力ら、反応固形物は両末端にアタリロイル基 (一 OCOCH=CH )をもつ Vd
2
F重合体であることが確認された。このとき1 H— NMRより求められた末端変性率は 90 %であった。
[0363] また、 IR分析の結果から反応前後にお 、て I型結晶構造を 79重量%含むことが確 認され結晶構造に変化がな 、ことがわ力つた。
[0364] 合成例 12 (末端アクリル変性オリゴマー付加物)
環流冷却器、温度計、撹拌装置を備えた 10ml三ッロフラスコに、 CF (VdF) CH
3 3 2
CH CH OCOCH = CHを 400mg、ベンゼンを 5ml、 AIBNを 24mg仕込み、ドライ アイス zメタノール溶液で冷却しながら、系内をチッ素ガスで充分置換した。その後、 反応系内を 65°Cに保ったまま 23時間反応を行った。
[0365] 反応後、系内温度を 25°Cまで冷却し、反応物のベンゼン溶液を恒量になるまで真 空乾燥した後、反応固形物を得た。
[0366] 反応固形物は、 NMRにより分析したところ、末端アクリル部位の二重結合由来 の 6. 3-5. 5ppmのピークがほぼ消失した。また GPCでの測定により高分子量体が 生成して!/ヽることが確認された(Mn= 8000、 Mw= 8300)。
[0367] このことからフッ化ビ-リデンオリゴマー末端アクリル体同士が付加反応により重合 していることが確認された。このとき1 H— NMRより求められた重合率は 84%であった
[0368] この反応固形物をリサイクル GPCにより高分子量体のみを取り出し、スピンコートに より、 Si基板上に薄膜を形成した。得られた薄膜の粉末 X線回折分析を行なったとこ ろ、 I型結晶構造に特徴的なピークのみが観測され、全 I型結晶構造であることを確認 した(図 13参照)。
[0369] 実施例 1 (機能性官能基末端 I型結晶構造の VdF重合体の薄膜のスピンコート法で の製造)
シリコン基板上に合成例 5, 6, 7, 8, 10, 11でそれぞれ合成した機能性官能基末 端 I型結晶構造の VdF重合体を MEKに溶解させて 10重量 0/(^MEK溶液とし、スピ ンコート法により回転速度 2000rpmで薄膜を形成し、ついでデシケーター内で溶媒 を留去して膜厚 2— 3 μ mの全 I型結晶構造の VdF重合体薄膜を形成した。
[0370] スピンコートは、つぎの条件と装置で行なった。
塗布条件:回転数: 2000rpm
装置:ミカサ(株)製の MIKASA SPINCOATER 1H-D7
[0371] 得られた VdF重合体薄膜積層体について、薄膜中の I型結晶構造を有するフツイ匕 ビ-リデン単独重合体の存在比を IR分析法により調べたところ、適用した機能性官 能基末端 I型結晶構造の VdF重合体と同様に、全 I型であることが確認できた。
碁盤目試験 (JIS K5600)により行った
[0372] 実施例 2 (官能基末端 I型結晶構造の VdF重合体の薄膜の真空蒸着法での製造) 合成例 4で合成した全 I型結晶構造の機能性官能基末端 VdF重合体の粉末を用 い、シリコン基板に真空蒸着法により膜厚 2 mの全 I型結晶構造の VdF重合体薄膜 を形成した。
[0373] 真空蒸着は、つぎの条件と装置で行なった。
蒸着条件:基板温度: 25°C
装置:城南工業 (株)製の有機薄膜形成装置
[0374] 実施例 3 (自己組織化薄膜の形成)
マックステック社製の膜厚評価システム装置 (TM— 350/400)の水晶振動子の表面 に金薄膜を真空蒸着したものに合成例 5で得たメルカプト基末端 VdF重合体の 0. 1 重量%酢酸ェチル溶液を塗布し、周波数をモニタリングしながら膜形成を観察した。 膜厚の増加と共に周波数は低下し、自己組織化膜の形成を確認した。
[0375] 実施例 4 (VdF重合体の強誘電薄膜の製造)
アルミニウム電極上に形成された合成例 6で製造した全 I型結晶構造の機能性官能 基末端 VdF重合体薄膜に、第 2電極としてアルミニウムを常法により真空蒸着した。
[0376] 得られた各積層体につぎの条件で分極処理を施した。
薄膜温度: 25°C
印加電圧: 200MVZm
処理時間: 30分間
[0377] 分極処理された全 I型結晶構造の官能基末端 VdF重合体薄膜について電気特性 を調べたところ、得られた D— Eヒステリシス曲線は強誘電材料に典型的な矩形状であ つた o
産業上の利用可能性
[0378] 本発明によれば、種々の基材に適用可能であり、また多様な機能を有する I型結晶 構造のフッ化ビ-リデン単独重合体の薄膜の形成方法を提供することができる。かか る方法では、従来の方法のほか、比較的簡便な方法 (被覆条件、手法など)でも、種 々の基材に I型結晶構造のフッ化ビ-リデン単独重合体の薄膜を形成できる。

Claims

請求の範囲
[1] I型結晶構造を単独または主成分とするフッ化ビ-リデンの単独重合体力 なる薄 膜の形成方法であって、式(1):
-(R1) -Y (1)
(式中、 R1は 2価の有機基、ただしフッ化ビ-リデン単独重合体の構造単位は含まな V、; nは 0または 1; Yは機能性官能基)で表される部位を片末端または両末端に有し 、かつフッ化ビ-リデン単独重合体単位の数平均重合度が 3— 100であるフッ化ビ- リデン単独重合体を基材に適用して、 I型結晶構造を単独または主成分とするフツイ匕 ビ-リデン単独重合体からなる薄膜を形成することを特徴とするフッ化ビ-リデン単独 重合体の薄膜の形成方法。
[2] 薄膜中の I型結晶構造を単独または主成分とするフッ化ビ-リデン単独重合体が、 I
R分析法により算出されるフッ化ビ-リデン単独重合体の薄膜中の I型、 II型および III 型結晶構造を有するそれぞれのフッ化ビニリデン単独重合体の存在比率に着目した とき、 I型結晶構造を有するフッ化ビニリデン単独重合体の存在比率が、(数式 1):
100≥1型 Z(I型 + Π型) > 50重量% (数式 1)
および (数式 2) :
100≥1型 Z(I型 + ΠΙ型) > 50重量% (数式 2)
のいずれの関係をも満たすものである請求の範囲第 1項記載の薄膜の形成方法。
[3] 前記式(1)中の Yが、有機材料および Zまたは無機材料力もなる基材の表面との 密着性をフッ化ビニリデン単独重合体に付与することのできる官能基である請求の範 囲第 1項または第 2項記載の薄膜の形成方法。
[4] 前記式(1)中の Yが、有機材料および Zまたは無機材料力もなる基材の表面にフ ッ化ビ二リデン単独重合体を自己組織化可能な官能基である請求の範囲第 1項また は第 2項記載の薄膜の形成方法。
[5] 前記式(1)中の Yが、フッ化ビニリデン単独重合体同士を結合し得る官能基である 請求の範囲第 1項または第 2項記載の薄膜の形成方法。
[6] 前記式(1)中の Y力 CH = CH — SHおよび
2 Zまたは— SiX R6 (nは 0— 2の整
3- n n
数; R6は CHまたは C H ;Xは— OR7 COOH — COOR7 NH R7 OCNま たはハロゲン原子(ただし R7は CH 、 C Hまたは C H 、 mは 0— 3の整数))である請
3 2 5 3 7
求の範囲第 4項記載の薄膜の形成方法。
[7] 前記式(1)中の Yが、 CH = CH 、— OCOCH = CH 、— OCOCF=CH 、— OC
2 2 2
OC (CH ) =CHまたは—OCOCCl=CHである請求の範囲第 5項記載の薄膜の
3 2 2
形成方法。
[8] フッ化ビニリデン単独重合体単位の数平均重合度が 3— 100である I型結晶構造を 単独または主成分とするフッ化ビ-リデン単独重合体から形成される自己組織化薄 膜を基材上に有することを特徴とする積層体。
[9] フッ化ビニリデン単独重合体単位の数平均重合度が 3— 100である I型結晶構造を 単独または主成分とするフッ化ビ-リデン単独重合体同士が結合してなる薄膜を基 材上に有することを特徴とする積層体。
[10] 薄膜中の I型結晶構造を単独または主成分とするフッ化ビ-リデン単独重合体が、 I R分析法により算出されるフッ化ビ-リデン単独重合体の薄膜中の I型、 II型および III 型結晶構造を有するそれぞれのフッ化ビニリデン単独重合体の存在比率に着目した とき、 I型結晶構造を有するフッ化ビニリデン単独重合体の存在比率が、(数式 1):
100≥1型 Z(I型 + Π型) > 50重量% (数式 1)
および (数式 2) :
100≥1型 Z(I型 + ΠΙ型) > 50重量% (数式 2)
のいずれの関係をも満たすものである請求の範囲第 8項または 9項記載の積層体。
[11] I型結晶構造を単独または主成分とするフッ化ビニリデン単独重合体から形成され る自己組織化膜が、式(1-1) :
- (R1) - Y1 (1-1)
(式中、 R1は 2価の有機基、ただしフッ化ビ-リデン単独重合体の構造単位は含まな い; nは 0または ! Y1は、— SHおよび/または— SiX R6 (nは 0— 2の整数; R6は CH
3-n n
または C H ;Xは OR7、 一 COOH、 一 COOR7、 一 NH R7 、 一 OCNまたはハロゲン
3 2 5 3-m m
原子(ただし R7は CH 、 C Hまたは C H 、 mは 0— 3の整数)))で表される部位を片
3 2 5 3 7
末端または両末端に有し、かつフッ化ビ-リデン単独重合体単位の数平均重合度が 3— 100であるフッ化ビ-リデン単独重合体カゝら形成される自己組織化膜である請求 の範囲第 8項記載の積層体。
[12] I型結晶構造を単独または主成分とするフッ化ビニリデン単独重合体同士が結合し てなる薄膜が、式(1—2) :
-(R1) -Y2 (1-2)
(式中、 R1は 2価の有機基、ただしフッ化ビ-リデン単独重合体の構造単位は含まな い; nは 0または 1 ;Y2は、 CH = CH OCOCH = CH OCOCF = CH OC
2 2 2
OC (CH ) =CHまたは OCOCCl=CH )で表される部位を片末端または両末端
3 2 2
に有し、かつフッ化ビ-リデン単独重合体単位の数平均重合度が 3— 100であるフッ 化ビニリデン単独重合体同士が結合してなる薄膜である請求の範囲第 9項記載の積 層体。
[13] 請求の範囲第 8項一第 12項のいずれかに記載の積層体力もなる強誘電体デバイ ス。
[14] 式(IA— 2) :
Z -(R10) A1 - (R11) -S-M1 (IA-2)
nl n2
(式中、 A1は数平均重合度が 3— 100のフッ化ビ-リデン単独重合体の構造単位; Z1 はポリフルォロアルキル基またはアルキル基; R1Qおよび R11は同じかまたは異なり、 2 価の有機基、ただし I型結晶構造を単独または主成分とするフッ化ビ-リデン単独重 合体単位は含まない; nlおよび n2は同じかまたは異なり 0または ! M1は水素原子ま たはアルカリ金属原子)で示されるフッ化ビ-リデン単独重合体。
[15] 式(IB— 3) :
M2— S— (R12) — A2— R2— A3— (R13) -S-M3 (IB— 3)
n3 n4
(式中、 A2および A3は同じ力または異なるフッ化ビ-リデン単独重合体の構造単位で あり、 A2および A3の合計の数平均重合度が 3— 100である; R2は 2価の有機基、ただ しフッ化ビ-リデン単独重合体の構造単位は含まな 、; R12および R13は同じ力または 異なり、 2価の有機基、ただしフッ化ビ-リデン単独重合体の構造単位は含まない; n 3および n4は同じかまたは異なり 0または 1 ;M2および M3は同じかまたは異なり、水 素原子またはアルカリ金属原子)で示されるフッ化ビ-リデン単独重合体。
PCT/JP2005/004102 2004-03-22 2005-03-09 フッ化ビニリデン単独重合体薄膜の形成方法 WO2005089962A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05720374A EP1743710A1 (en) 2004-03-22 2005-03-09 Process for forming vinylidene fluoride homopolymer thin films
JP2006511165A JPWO2005089962A1 (ja) 2004-03-22 2005-03-09 フッ化ビニリデン単独重合体薄膜の形成方法
US10/593,299 US20070190334A1 (en) 2004-03-22 2005-03-09 Method of forming thin film of vinylidene fluoride homopolymer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-083289 2004-03-22
JP2004083289 2004-03-22
JP2004-231250 2004-08-06
JP2004231250 2004-08-06

Publications (1)

Publication Number Publication Date
WO2005089962A1 true WO2005089962A1 (ja) 2005-09-29

Family

ID=34993498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004102 WO2005089962A1 (ja) 2004-03-22 2005-03-09 フッ化ビニリデン単独重合体薄膜の形成方法

Country Status (7)

Country Link
US (1) US20070190334A1 (ja)
EP (1) EP1743710A1 (ja)
JP (1) JPWO2005089962A1 (ja)
KR (1) KR100829293B1 (ja)
CN (1) CN1933923A (ja)
TW (1) TWI265050B (ja)
WO (1) WO2005089962A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009522436A (ja) * 2006-01-10 2009-06-11 クラリアント インターナショナル リミティド フルオラステロマー化合物とそれを含んでなるポリマー

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013701A1 (ja) 2004-08-06 2006-02-09 Daikin Industries, Ltd. I型結晶構造のフッ化ビニリデン単独重合体の製造方法
US8385885B2 (en) * 2008-10-17 2013-02-26 Sony Ericsson Mobile Communications Ab Method of unlocking a mobile electronic device
US8394905B2 (en) 2009-07-16 2013-03-12 E I Du Pont De Nemours And Company Fluoropolymers having diacrylate ends
US8394870B2 (en) 2009-07-16 2013-03-12 E.I. Du Pont De Nemours And Company Crosslinked fluoropolymer networks
EP2641921B1 (en) * 2010-11-18 2017-03-29 Hitachi, Ltd. Lithium ion battery and production method therefor
EP2762884A4 (en) * 2011-09-30 2015-04-29 Hitachi Ltd MOLECULAR TEMPLATE AND METHOD FOR THE PRODUCTION THEREOF
KR101814921B1 (ko) 2015-10-02 2018-01-04 스미또모 가가꾸 가부시키가이샤 다공질층, 적층체, 다공질층을 포함하는 비수 전해액 이차 전지용 부재, 및 다공질층을 포함하는 비수 전해액 이차 전지
JP6754628B2 (ja) 2016-06-21 2020-09-16 住友化学株式会社 積層体
JP7074419B2 (ja) 2016-06-21 2022-05-24 住友化学株式会社 積層体
JP6755726B2 (ja) 2016-06-21 2020-09-16 住友化学株式会社 積層体
JP6758943B2 (ja) 2016-06-21 2020-09-23 住友化学株式会社 積層体
JP6647973B2 (ja) 2016-06-21 2020-02-14 住友化学株式会社 積層体
JP6736375B2 (ja) 2016-06-21 2020-08-05 住友化学株式会社 積層体
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430623B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6430617B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430621B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6430618B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03124439A (ja) * 1989-10-11 1991-05-28 Asahi Glass Co Ltd 耐候性の優れたポリ塩化ビニル板の製造方法
JPH07216635A (ja) * 1993-05-28 1995-08-15 Kureha Chem Ind Co Ltd フッ化ビニリデン系樹脂繊維およびその製造方法ならびに水産資材用繊維
JPH1186844A (ja) * 1996-09-26 1999-03-30 Toray Ind Inc 電池用電極およびそれを用いた電池
JPH11323052A (ja) * 1998-03-12 1999-11-26 Kureha Chem Ind Co Ltd ポリフッ化ビニリデン系樹脂組成物
JPH11333924A (ja) * 1998-05-27 1999-12-07 Nippon Mitsubishi Oil Corp 強誘電性フッ化ビニリデンポリマーフィルム及びその製造方法
JP2000054000A (ja) * 1998-08-10 2000-02-22 Daikin Ind Ltd 含フッ素樹脂塗装皮革
JP2000070844A (ja) * 1998-09-02 2000-03-07 Nisshin Steel Co Ltd 高硬度透明フッ素樹脂塗装ステンレス鋼板及び製造方法
JP2004076108A (ja) * 2002-08-20 2004-03-11 Kansai Tlo Kk フッ化ビニリデンオリゴマー薄膜製造方法及び該薄膜を用いたデバイス

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03124439A (ja) * 1989-10-11 1991-05-28 Asahi Glass Co Ltd 耐候性の優れたポリ塩化ビニル板の製造方法
JPH07216635A (ja) * 1993-05-28 1995-08-15 Kureha Chem Ind Co Ltd フッ化ビニリデン系樹脂繊維およびその製造方法ならびに水産資材用繊維
JPH1186844A (ja) * 1996-09-26 1999-03-30 Toray Ind Inc 電池用電極およびそれを用いた電池
JPH11323052A (ja) * 1998-03-12 1999-11-26 Kureha Chem Ind Co Ltd ポリフッ化ビニリデン系樹脂組成物
JPH11333924A (ja) * 1998-05-27 1999-12-07 Nippon Mitsubishi Oil Corp 強誘電性フッ化ビニリデンポリマーフィルム及びその製造方法
JP2000054000A (ja) * 1998-08-10 2000-02-22 Daikin Ind Ltd 含フッ素樹脂塗装皮革
JP2000070844A (ja) * 1998-09-02 2000-03-07 Nisshin Steel Co Ltd 高硬度透明フッ素樹脂塗装ステンレス鋼板及び製造方法
JP2004076108A (ja) * 2002-08-20 2004-03-11 Kansai Tlo Kk フッ化ビニリデンオリゴマー薄膜製造方法及び該薄膜を用いたデバイス

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009522436A (ja) * 2006-01-10 2009-06-11 クラリアント インターナショナル リミティド フルオラステロマー化合物とそれを含んでなるポリマー

Also Published As

Publication number Publication date
EP1743710A1 (en) 2007-01-17
US20070190334A1 (en) 2007-08-16
TW200603905A (en) 2006-02-01
KR20070008647A (ko) 2007-01-17
TWI265050B (en) 2006-11-01
KR100829293B1 (ko) 2008-05-13
CN1933923A (zh) 2007-03-21
JPWO2005089962A1 (ja) 2008-01-31

Similar Documents

Publication Publication Date Title
WO2005089962A1 (ja) フッ化ビニリデン単独重合体薄膜の形成方法
US8883947B2 (en) Method of forming thin film
US7968649B2 (en) Process for preparing vinylidene fluoride homopolymer having I-form crystal structure
JP6633062B2 (ja) パターン化基板の製造方法
JP6637495B2 (ja) パターン化基板の製造方法
JP2017530238A (ja) ブロック共重合体
JP2017530236A (ja) ブロック共重合体
JP6822561B2 (ja) 積層体
US7517548B2 (en) Method of forming ferroelectric thin film
JP4026608B2 (ja) 強誘電性薄膜の形成方法
TWI636070B (zh) 嵌段共聚物
JP2005179524A (ja) フッ化ビニリデン単独重合体単結晶の製造法および単結晶
TWI649342B (zh) 嵌段共聚物
JP3988552B2 (ja) 含フッ素化合物および含フッ素重合体
JP2009137842A (ja) フッ化ビニリデン系化合物およびそれからなる層が基材の表面に形成されてなる積層体
Alsubhi Synthesis and Characterization of Electroactive Vinylidene Fluoride Based Block Copolymers via Iodine Transfer Polymerization
JP5320720B2 (ja) 新規な、含フッ素化合物および含フッ素重合体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511165

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007190334

Country of ref document: US

Ref document number: 10593299

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580009081.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005720374

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067021808

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005720374

Country of ref document: EP

Ref document number: 1020067021808

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10593299

Country of ref document: US